WO2010054522A1 - 节点间通信的方法及*** - Google Patents

节点间通信的方法及*** Download PDF

Info

Publication number
WO2010054522A1
WO2010054522A1 PCT/CN2008/073684 CN2008073684W WO2010054522A1 WO 2010054522 A1 WO2010054522 A1 WO 2010054522A1 CN 2008073684 W CN2008073684 W CN 2008073684W WO 2010054522 A1 WO2010054522 A1 WO 2010054522A1
Authority
WO
WIPO (PCT)
Prior art keywords
data signal
user
coordinated
uplink data
node
Prior art date
Application number
PCT/CN2008/073684
Other languages
English (en)
French (fr)
Inventor
张晨晨
朱常青
李峰
赵楠
梁枫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010054522A1 publication Critical patent/WO2010054522A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for inter-node communication.
  • LTE-A Long-Term Evolution Advanced
  • the average spectral efficiency of a cell and the spectrum efficiency of a cell edge are receiving more and more attention.
  • the spectrum efficiency of a cell edge is most affected.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the LTE-A system Compared with the traditional wireless communication system with Code-Division Multiple Access (CDMA) as the basic multiple access multiplexing method, the LTE-A system has no processing gain, which is due to the cell.
  • the internal complete frequency division is orthogonal, and there is almost no interference problem, but the interference processing at the cell edge is relatively complicated. Since the distance between the user at the edge of the cell and the antenna of multiple adjacent cells is not much different, it is most susceptible to system performance. If the different antennas of multiple cells can be used to simultaneously provide services for users at the cell edge, not only inter-cell interference can be avoided, but also the spatial dimension information added by multiple antennas can be fully utilized, so that the capacity and performance of the system are greatly improved. . Based on the above background, a multi-point coordinated transmission technology is proposed.
  • the multi-point coordinated transmission technology uses different antennas of multiple cells to simultaneously provide services for users at the cell edge. Therefore, the technology can not only avoid interference between cells, but also adopts multi-antenna technology, and can fully utilize multiple antennas to increase spatial dimensions. Information, which greatly increases the capacity and performance of the system.
  • Multi-point coordinated transmission technology can be applied between cells, and can also be applied in a cell. Since the transmission of user data is spatially dispersed into multiple transmission points, these transmission points cooperate with each other to achieve optimal configuration of power, frequency and space resources, thereby suppressing interference and realizing a reliable and high-capacity chain. Road performance.
  • a plurality of nodes usually form a cooperative group to jointly provide coordinated transmission for users.
  • a master node in the collaboration group which is a master node that provides multi-point coordinated transmission for the user, and the master node may be a service node of the user.
  • the master node determines the selection of the collaborative group members, the scheduling of the coordinated resources, and the choice of the coordinated mode.
  • Other nodes participating in multipoint coordinated transmission in the cooperative group are regarded as slave nodes.
  • a wireless interface used for interaction of data signals and control signaling between the base station and the user terminal
  • the X2 interface is used for interaction between the data signal and the control signaling between the base station and the base station;
  • the S1 interface is used for interaction between the data signal and the control signaling of the base station and the core network side.
  • the coordination requirements of coordinated multi-point transmission and the transmission requirements between the cooperative node and the user terminal determine that the coordinated multi-point transmission should be divided into control plane and user plane.
  • the control plane the above three types of interfaces can meet the functional requirements.
  • the performance indicators can be improved by designing reasonable control signaling and reducing the control signaling transmission delay.
  • downlink multi-point coordinated transmission and uplink multipoint Cooperative transmission should be treated differently.
  • the downlink multi-point coordinated transmission can adopt the diversity mode or the multiplexing mode, and finally merge or demultiplex in the user terminal.
  • the above three types of interfaces can be satisfied, and the uplink multi-point coordinated transmission.
  • the multiple cooperative nodes are required to jointly process the uplink data signals of the user after receiving the uplink data signal of the user, which requires each slave node to aggregate the received uplink data signals to the master node, and at the master node according to the The predetermined algorithm is combined to obtain a certain combination gain, thereby implementing uplink joint processing.
  • the X2 interface cannot meet such requirements.
  • the X2 interface is based on the Internet Protocol (IP) transmission.
  • IP Internet Protocol
  • the inner package is the service data unit (SDU) processed by the decision and the wireless interface.
  • SDU service data unit
  • the master node merges the information.
  • the lost SDU will not get the best combination gain, so the current X2 interface cannot meet the uplink multipoint coordinated transmission requirements.
  • the main object of the present invention is to provide an improved inter-node communication.
  • a method of communication between nodes is provided.
  • a plurality of nodes cooperate for a user terminal, and a master node and each slave node are connected through a physical direct connection port, and the method includes: the slave node passes the physical direct connection port Sending an uplink data signal from the coordinated user to the master node; Synchronous processing of the uplink data signals of the coordinated users received by the direct connection port.
  • the method further includes: the master node determines that the user is a collaborative user according to one of the following information or a combination thereof: the measurement on the user terminal Information, the channel condition of the neighboring node to the user, the load condition of the neighboring node, the processing capability of the user terminal, and the service priority; when the master node determines that the coordinated multi-point coordinated transmission is performed by the coordinated user, the coordinated area is established, and the coordinated area is established Each slave node provides collaborative user information.
  • the collaborative user information includes one or a combination of the following: user identity information, data resource allocation information, and data transmission mode.
  • the slave node sends the uplink data signal from the coordinated user to the master node through the physical direct connection port, and includes: determining whether the slave node separates the uplink data signal of the coordinated user, and if separated, transmitting the collaboration to the master node through the physical direct connection port.
  • the uplink data signal of the user; if not separated, the uplink data signal of all the users received is sent to the primary node through the physical direct connection port.
  • the uplink data signal sent by the slave node to the master node through the physical direct connection port includes one of the following: an uplink data signal before channel coding and decoding; and an uplink data signal after channel coding and decoding.
  • the master node When the slave node sends the received uplink data signal of all the users to the master node through the physical direct connection port, the master node performs cooperative processing on the uplink data signal of the coordinated user received through the physical direct connection port, including:
  • the uplink data signal received by the connection port is separated from the uplink data signal received by the connection port, and coordinated processing is performed.
  • the uplink data signal before the channel coding of the coordinated user includes one or a combination of the following: a data signal before channel coding in the spatial domain, a data signal before channel coding in the time domain, a data signal before channel coding in the frequency domain,
  • the channel of the code resource encodes the data signal before decoding.
  • the ten-dollar processing includes one of the following: diversity and processing; demultiplexing processing.
  • a system for communication between nodes includes: a master node and at least one slave node, a main section The point is connected to the slave node through a physical direct connection port, and the physical direct connection port is used to transmit the uplink data signal of the coordinated user.
  • the cooperative nodes in the present invention are connected by a physical direct connection port, and the uplink data signals of the user terminal are transmitted through the physical direct connection port when being transmitted between the cooperative nodes, and the data before the channel coding and decoding is performed.
  • the data signal decoded by the signal or the channel code can be transmitted by the physical direct connection port, and the data signal before the channel coding and decoding can be transmitted between the master and the slave nodes, so that the master node sends the data lossless data to the slave node.
  • the signals are cooperatively processed, and with the present invention, the delay can be reduced and the optimal combining gain can be obtained.
  • FIG. 1 is a schematic diagram of a principle for implementing coordinated multi-point transmission in an embodiment of the present invention
  • FIG. 2 is a flowchart of implementing coordinated multi-point transmission in an embodiment of the present invention
  • FIG. 3 is a multi-point implementation according to an embodiment of the present invention
  • FIG. 4 is a flowchart of Embodiment 2 of implementing multi-point coordinated transmission according to an embodiment of the present invention
  • the cooperative nodes are connected through a physical direct connection port, and the uplink data signals of the user terminal are not transmitted through the X2 interface when being transmitted between the cooperative nodes, but Through the physical direct connection port, both the data signal before channel coding and the data signal after channel coding and decoding can be transmitted by the physical direct connection port, and the data signal before channel coding and decoding can be transmitted between the master and slave nodes, thereby
  • the master node performs cooperative processing on the data signal without information loss sent from the node, which not only reduces the delay but also obtains the best combining gain; and can also transmit the channel encoded and decoded data signal between the master and slave nodes, although Only the combined gains similar to the current X2 interface can be obtained, but the delay is much longer than the X2 interface.
  • FIG. 1 is a schematic diagram of a principle for implementing coordinated multi-point transmission according to an embodiment of the present invention. As shown in FIG. 1 , the method includes a master node and at least one slave node, where the physical direct interface is used as a master for participating in coordinated multi-point transmission.
  • the slave node directly transmits the uplink data signal of the coordinated user, and the master node receives the uplink data signal of the coordinated user and performs cooperative processing, and can obtain the best combining gain in the uplink coordinated multi-point transmission when the uplink data signal of the coordinated user has no information loss. .
  • each slave node processes the uplink data signal from the user terminal to the channel coded decoding or after channel coding and decoding, and then transmits the uplink data signal to the master through the physical direct connection port. node.
  • the master node may perform a cooperative processing on the received data signal by using a combining algorithm (such as a selective combining algorithm), although this case can only obtain the same combining gain as the prior art, but Compared with the prior art, since the encapsulation and decapsulation of the IP packet are not required, the delay is reduced.
  • a combining algorithm such as a selective combining algorithm
  • the specific processing process for implementing coordinated multi-point transmission includes the following steps (step 201 - step 203): Step 201: Start one uplink Point coordinated transmission, the user terminal of the coordinated user sends an uplink data signal to the master and the slave node. Step 202: The slave node sends an uplink data signal from the coordinated user to the master node through the physical direct interface.
  • the physical direct connection port is pre-established between the master node and each slave node, that is, the connection relationship between the physical base stations is established in advance, and the coordinated base station refers to a base station having a cooperative function, which may also be called Collaborative node.
  • the uplink data signal sent by the slave node to the master node through the physical direct connection port may be an uplink data signal before channel coding and decoding, or may be an uplink data signal after channel coding and decoding, and specifically transmitting which uplink data signal is to be configured.
  • Step 203 The master node performs cooperative processing on the uplink data signal of the coordinated user received through the physical direct connection port, and ends the current uplink multi-point coordinated transmission process.
  • the coordinated processing herein may be a diversity combining process or a demultiplexing process. After the node receives the modulated uplink data signal, it can send it to the master node through the physical direct connection port.
  • FIG. 3 is a flowchart of Embodiment 1 for implementing coordinated multi-point transmission according to an embodiment of the present invention. As shown in FIG. 3, the specific processing process for implementing coordinated multi-point transmission in this embodiment includes the following steps (step 301 - step 310) Step 301: The master node determines whether the uplink multi-point coordinated transmission is performed for the user.
  • the user is the coordinated user, and the process proceeds to step 302. Otherwise, the current process ends.
  • the user node of the user is used as the master node to determine whether the multi-point coordinated transmission is suitable according to the measurement information reported by the terminal of the user. If the judgment result is suitable, the user is a collaborative user, if The result is not suitable, and the current process is terminated; it is also possible to judge whether it is suitable to use multi-point coordinated transmission according to one of the following or a combination thereof: the channel condition of the adjacent node to the user, the load condition of the adjacent node, the user Terminal processing power and service priority.
  • Step 302 to step 303 The master node establishes a collaboration area, and provides coordinated user information to each slave node in the collaboration area.
  • the slave nodes participating in the coordinated multi-point transmission may be selected according to the location of the user terminal, or the channel condition of the neighboring base station to the user, or the load condition of the neighboring base station, or any combination thereof. region.
  • the coordinated user information herein includes one or a combination of the following: user identity information, data resource allocation information, and data transmission mode, and the data resource allocation information may be one collaborative user or multiple coordinated users.
  • Step 304 to step 305 The user terminal of the collaborative user sends uplink data, and the primary and secondary nodes in the coordinated area receive the uplink data signal.
  • Step 306 The slave node determines whether the uplink data signal of the coordinated user is separated, and if it is separated, proceeds to step 307, otherwise, proceeds to step 309.
  • the slave node determines whether to separate the received uplink data signal according to the configuration, and when the slave node sends the separated uplink data signal of the coordinated user to the master node, the transmission data can be saved because the amount of data transmitted is small; the slave node sends the uplink data to the master node.
  • the processing load of the slave node can be alleviated since there is no need to perform separation processing from the node.
  • Step 307 to step 308 The slave node sends the uplink data signal before the channel coding of the coordinated user to the master node through the physical direct connection port, where the uplink data signal includes any of the spatial domain, or the time domain, or the frequency domain, or the code resource.
  • the data signal before channel coding/decoding on one or any combination the master node performs cooperative processing on the uplink data signal of the coordinated user, and ends the current uplink coordinated multi-point transmission process.
  • the physical direct connection port is pre-established between the master node and each slave node.
  • the coordinated processing here may be a diversity combining process or a demultiplexing process.
  • Step 309 to step 310 the slave node sends the received uplink data signal of all users before the channel coding to the master node through the physical direct connection port; the master node separates the uplink data signal of the coordinated user from the received uplink data signal. And co-processing.
  • the physical direct connection port is pre-established between the master node and each slave node.
  • the coordinated processing here may be a diversity combining process or a demultiplexing process.
  • the slave node sends the uplink data signal before the channel coding and decoding to the master node through the physical direct connection port, such that the data signal has no information loss, and therefore, the coordinated user obtained by the master node after the cooperative processing is obtained.
  • the upstream data signal can achieve the best combined gain.
  • FIG. 4 is a flowchart of Embodiment 2 of implementing multi-point coordinated transmission according to an embodiment of the present invention.
  • the specific processing process for implementing coordinated multi-point transmission in this embodiment includes the following steps (step 401: step 410)
  • the user node of the user is used as the master node to determine whether the multi-point coordinated transmission is suitable according to the measurement information reported by the terminal of the user. If the judgment result is suitable, the user is a collaborative user, if the user determines If the result is unsuitable, the user is not multi-point coordinated transmission, and the current process is terminated.
  • one or the following combination may be used as a judgment basis to determine whether it is suitable for multi-point coordinated transmission: The channel condition of the node to the user, the load condition of the neighboring node, the processing capability of the user terminal, and the service priority.
  • Step 402 to step 403 The master node establishes a collaboration area, and provides coordinated user information to each slave node in the collaboration area.
  • the slave nodes participating in the coordinated multi-point transmission may be selected according to the location of the user terminal, or the channel condition of the neighboring base station to the user, or the load condition of the neighboring base station, or any combination thereof. region.
  • the collaborative user information herein includes one or a combination of the following: user identity information, data resource allocation information, data transmission mode, data resource
  • the allocation information may be one collaborative user or multiple collaborative users.
  • Step 404 to step 405 The user terminal of the collaborative user sends uplink data, and the primary and secondary nodes in the coordinated area receive the uplink data signal.
  • Step 406 The slave node determines whether the uplink data signal of the coordinated user is separated. If the determination result is separated, the process proceeds to step 407. Otherwise, the process proceeds to step 409.
  • the slave node determines whether to separate the received uplink data signal according to the configuration, and when the slave node sends the separated uplink data signal of the coordinated user to the master node, the transmission data can be saved because the amount of data transmitted is small; When the node transmits the uplink data signal without separation, since the separation processing is not required from the node, the processing load of the slave node can be alleviated.
  • Step 407 to step 408 The slave node transmits the uplink data signal of the coordinated user's channel coding to the master node through the physical direct connection port, and the master node performs cooperative processing on the uplink data signal of the coordinated user, and ends the current uplink multipoint coordinated transmission process. .
  • Step 409 to step 410 The slave node sends the received uplink data signal of all users to the master node through the physical direct connection port, and the master node separates the cooperation from the uplink data signal received through the physical direct connection port.
  • the user's uplink data signal is coordinated.
  • the physical direct connection port in the above steps 407 to 410 is pre-established between the master node and each slave node, and the cooperative processing may be a diversity combining process, or may be a demultiplexing process.
  • FIG. 5 is a schematic structural diagram of a system for implementing coordinated multi-point transmission according to the present invention. As shown in FIG.
  • a system for implementing coordinated multi-point transmission includes: a master node and at least one slave node, and the master node and the slave node are connected through a physical straight connection port.
  • the physical direct connection port is used for transmitting the uplink data signal of the coordinated user, where the node (including the master node and the slave node) may be a base station, a relay (relay station) or a home eNB (E-UTRAN Node B, an evolved node B) (indoor base station).
  • the physical direct connection port used in the embodiment of the present invention can change the current uplink multi-point coordinated transmission The lack of an effective interface in the transmission makes the uplink data signals of the coordinated users transmitted between the master and slave nodes no longer transmitted according to the protocol of the existing X2 interface.
  • the technical solution provided by the embodiment of the present invention can not only reduce the delay, but also obtain the best combining gain, and can also transmit the channel coded and decoded data signal between the master and the slave nodes, although only the At present, the X2 interface has similar merge gain, but the delay is far from the X2 connection.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

节点间通信的方法及***
技术领域 本发明涉及通信领域, 特别地, 涉及一种节点间通信的方法及***。 背景技术 随着先进长期演进 ( Long-Term Evolution Advanced, 简称为 LTE-A ) 需求的提出, 小区的平均频谱效率和小区边缘的频谱效率越来越受到重视, 其中, 小区边缘的频谱效率最受人们关注, 这主要是因为 LTE-A ***的上 / 下行啫是以正交频分复用 ( Orthogonal Frequency Division Multiplexing, 简称 为 OFDM )、 或以 OFDM的某种变形为基本的多址复用方式的频分***, 相 比于传统的以码分多址 ( Code-Division Multiple Access, 简称为 CDMA ) 为 基本多址复用方式的无线通信***, LTE-A***没有处理增益, 这是由于小 区内部完全频分正交, 而几乎不存在干扰问题, 但是, 在小区边缘处的干扰 处理就相对复杂。由于小区边缘的用户与多个相邻小区天线的距离相差不大, 因此, 最易受到干 ·ί尤而影响***性能。 如果能够利用多个小区的不同天线为 小区边缘的用户同时提供服务, 则不仅可以避免小区间的干扰, 还能充分利 用多天线增加的空间维的信息, 使得***的容量和性能得到大幅地提升。 基于上述背景, 提出了多点协同传输技术。 多点协同传输技术是使用多 个小区的不同天线为小区边缘的用户同时提供服务, 因此该技术不但可以避 免小区间的干扰, 由于采用了多天线技术, 还能够充分发挥多天线增加空间 维的信息, 使得***的容量和性能得到大幅度地提升。 多点协同传输技术可 以应用在小区间, 也可以应用在小区内。 由于用户数据的发射在空间上分散 为多个传输点, 这些传输点又互相配合, 实现了对功率、 频率和空间资源的 最佳配置, 从而抑制了干扰、 并实现了可靠和高容量的链路性能。 在多点协同传输中, 通常由若干个节点构成一个协同组, 共同为用户提 供协同传输。 协同组中有一个主节点, 是为用户提供多点协同传输的主控节 点, 该主节点可以是用户的服务节点。 主节点决定协同组成员的选择、 协同 资源的调度、 协同方式的抉择等。 协同组中其他参与多点协同传输的节点均 作为从节点。 在目前的 LTE 架构中, 在多点协同传输中存在以下三种类型的接口:
(一 ) 无线接口, 用于基站与用户终端之间的数据信号、 控制信令的交互;
(二) X2接口, 用于基站与基站之间的数据信号、 控制信令的交互; (三) S1接口, 用于基站与核心网络侧的数据信号、 控制信令的交互。 由多点协同传输的协同要求以及协同节点与用户终端间的传输要求,决 定了多点协同传输应该分为控制面和用户面。 对于控制面, 以上三种类型的 接口都能够满足功能要求, 可以通过设计合理的控制信令、 减少控制信令传 输时延来提高性能指标; 对于用户面, 下行多点协同传输与上行多点协同传 输应区别对待, 其中, 下行多点协同传输可以采用分集方式或复用方式, 最 终在用户终端进行合并或解复用, 以上三种类型的接口均可以满足, 而上行 多点协同传输, 则要求多个协同节点在接收到用户的上行数据信号后, 对用 户的上行数据信号进行联合处理, 这就需要各从节点将接收到的上行数据信 号汇总至主节点处, 在主节点处按照预定算法进行合并, 得到一定的合并增 益, 从而实现上行联合处理, 但是, 在目前 LTE 中, X2接口无法满足这样 的要求。 在目前的 LTE中, X2接口基于网际十办议 ( Internet Protocol, 简称为 IP ) 传输, 由于 X2接口基于 IP传输, 因此 IP包的封装、 解封装会带来较大时 延; 并且, IP 包内封装的是经过判决、 无线接口处理后的^ ^务数据单元 ( Service Data Unit, 简称为 SDU ), —旦对上行数据信号进行判决, 就会带 来信息损失, 主节点合并这些已具有信息损失的 SDU 将无法获得最佳合并 增益, 因此, 当前的 X2接口无法满足上行多点协同传输要求。 发明内容 针对上述 X2接口无法满足上行多点协同传输要求而导致的主节点无法 获得最佳合并增益的问题而提出本发明, 为此, 本发明的主要目的在于提供 一种改进的节点间通信的方案, 以解决上述问题。 为了实现上述目的, 才艮据本发明的一个方面, 提供了一种节点间通信的 方法。 才艮据本发明的节点间通信的方法, 用于多个节点协同为用户终端月 务, 主节点与各从节点之间通过物理直连接口相连, 该方法包括: 从节点通过物 理直连接口将来自协同用户的上行数据信号发送给主节点; 主节点对通过物 理直连接口接收的协同用户的上行数据信号进行协同处理。 从节点通过物理直连接口向主节点发送上行数据信号时,将上行数据信 号进行调制后发送, 或者, 不经调制直接发送。 从节点通过物理直连接口将来自协同用户的上行数据信号发送给主节 点之前, 该方法还包括: 主节点根据如下信息之一或其组合来确定用户为协 同用户: 用户终端上 4艮的测量信息、 相邻节点到用户的信道情况、 相邻节点 的负载情况、 用户终端的处理能力、 业务优先级; 主节点确定为协同用户进 行上行多点协同传输时, 建立协同区域, 并向协同区域的各从节点提供协同 用户信息。 协同用户信息包括以下之一或其组合: 用户身份信息、数据资源分配信 息、 数据传输模式。 从节点通过物理直连接口将来自协同用户的上行数据信号发送给主节 点, 包括: 判断从节点是否分离出协同用户的上行数据信号, 如果分离出, 则通过物理直连接口向主节点发送协同用户的上行数据信号; 如果没有分离 出, 则通过物理直连接口向主节点发送收到的所有用户的上行数据信号。 从节点通过物理直连接口发送给主节点的上行数据信号包括以下之一: 信道编码解码前的上行数据信号; 信道编码解码后的上行数据信号。 从节点通过物理直连接口向主节点发送接收到的所有用户的上行数据 信号时, 主节点对通过物理直连接口接收的协同用户的上行数据信号进行协 同处理, 包括: 主节点从通过物理直连接口收到的上行数据信号中分离出协 同用户的上行数据信号, 并进行协同处理。 协同用户的信道编码前的上行数据信号包括以下之一或其组合:空域的 信道编码解码前的数据信号、 时域的信道编码解码前的数据信号、 频域的信 道编码解码前的数据信号、 码资源的信道编码解码前的数据信号。 十办同处理包括以下之一: 分集合并处理; 解复用处理。 为了实现上述目的, 才艮据本发明的另一方面, 还提供了一种节点间通信 的***。 才艮据本发明的节点间通信的***包括: 主节点和至少一个从节点, 主节 点与从节点通过物理直连接口相连, 物理直连接口用于传输协同用户的上行 数据信号。 借助于上述技术方案至少之一,本发明中的协同节点之间通过物理直连 接口相连, 用户终端的上行数据信号在协同节点之间传输时通过物理直连接 口进行, 信道编码解码前的数据信号或信道编码解码后的数据信号均能够由 该物理直连接口传输, 可以在主从节点间传输信道编码解码前的数据信号, 从而主节点对从节点发送过来的这种无信息损失的数据信号进行协同处理, 通过本发明, 可以降低时延以及获得最佳合并增益。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为本发明实施例中实现多点协同传输的原理示意图; 图 2为本发明实施例中实现多点协同传输的流程图; 图 3为本发明实施例中实现多点协同传输的实施例一的流程图; 图 4为本发明实施例中实现多点协同传输的实施例二的流程图; 图 5为本发明实施例中实现多点协同传输的***结构示意图。 具体实施方式 功能相克述 在本发明实施例提供的技术方案中,协同节点之间通过物理直连接口相 连, 用户终端的上行数据信号在协同节点之间传输时不再通过 X2接口进行, 而是通过物理直连接口进行, 无论是信道编码解码前的数据信号还是信道编 码解码后的数据信号均能够由该物理直连接口传输, 可以在主从节点间传输 信道编码解码前的数据信号, 从而主节点对从节点发送过来的这种无信息损 失的数据信号进行协同处理, 既降低了时延又能够获得最佳合并增益; 也可 以在主从节点间传输信道编码解码后的数据信号, 虽然只能获得与目前 X2 接口相近的合并增益, 但时延却要远远氏于 X2接口。 下面将参考附图并结合实施例, 来详细说明本发明。 需要说明的是, 如 果不沖突, 本申请中的实施例以及实施例中的特征可以相互组合。 由于参与多点协同传输的基站都相距比较近, 因此本发明实施例中, 将 参与多点协同传输的基站通过物理直连接口相连。 图 1为本发明实施例中实 现多点协同传输的原理示意图, 如图 1所示, 其中, 包括主节点和至少一个 从节点, 该物理直连接口用于为参与多点协同传输的主、 从节点直接传输协 同用户的上行数据信号, 主节点接收协同用户的上行数据信号并进行协同处 理, 在协同用户的上行数据信号无信息损失时, 能够获得上行多点协同传输 中的最佳合并增益。通过在主节点与各从节点之间建立这样的物理直连接口, 各从节点将来自用户终端的上行数据信号处理到信道编码解码之前或信道编 码解码之后, 然后通过该物理直连接口传给主节点。 如果从节点发送给主节 点的是信道编码解码之前的上行数据信号, 则该上行数据信号无信息损失, 主节点协同处理后能够获得最佳合并增益; 如果从节点发送给主节点的是已 进行信道编码解码之后的数据信号, 则主节点可采用合并算法 (诸如选择性 合并算法) 对接收到的数据信号进行协同处理, 虽然这种情况只能获得与现 有技术相同的合并增益, 但相比现有技术, 由于无需进行 IP包的封装、 解封 装, 而降低了时延。 图 2为本发明实施例中实现多点协同传输的流程图, 如图 2所示, 实现 多点协同传输的具体处理过程包括以下步骤 (步骤 201—步骤 203 ): 步骤 201 : 开始一次上行多点协同传输, 协同用户的用户终端向主、 从 节点发送上行数据信号。 步骤 202: 从节点通过物理直连接口将来自协同用户的上行数据信号发 送给主节点。 物理直连接口已经预先建立在主节点与各从节点之间, 即, 协 同基站之间预先建立了物理直连接口的连接关系, 这里的协同基站是指具有 协同功能的基站, 也可以称为协同节点。 从节点通过物理直连接口向主节点 发送的上行数据信号可以为信道编码解码之前的上行数据信号, 也可以为信 道编码解码之后的上行数据信号, 具体传输哪种上行数据信号将 4艮据配置来 执行。 步骤 203: 主节点对通过物理直连接口接收的协同用户的上行数据信号 进行协同处理, 结束当前上行多点协同传输流程, 这里的协同处理可以是分 集合并处理, 也可以是解复用处理。 从节点对接收的上行数据信号进行调制后,可以通过物理直连接口发送 给主节点, 主节点通过物理直连接口接收调制后的上行数据信号之后, 对接 收到的调制后的上行数据信号进行解调; 从节点也可以将接收的上行数据信 号直接(即, 不经过调制) 通过物理直连接口发送给主节点, 主节点通过物 理直连接口接收上行数据信号后, 无需解调。 图 3为本发明实施例中实现多点协同传输的实施例一的流程图, 如图 3 所示,本实施例中实现多点协同传输的具体处理过程包括以下步骤(步骤 301 一步骤 310 ): 步骤 301 : 主节点判断是否为用户进行上行多点协同传输, 如果判断结 果为进行多点协同传输, 则该用户为协同用户, 进行到步骤 302, 否则, 结 束当前流程。 具体地, 将一用户的月 务节点作为主节点, 才艮据该用户的终端 上报的测量信息来判断是否适合使用多点协同传输, 如果判断结果为适合, 则该用户为协同用户, 如果判断结果为不适合, 结束当前流程; 也可以才艮据 以下之一或其组合作为判断依据来判断是否适合使用多点协同传输: 相邻节 点到用户的信道情况、 相邻节点的负载情况、 用户终端的处理能力、 业务优 先级。 步骤 302〜步骤 303: 主节点建立协同区域, 并向协同区域内各从节点提 供协同用户信息。 在建立协同区域时, 可以才艮据用户终端所在位置、 或相邻 基站到用户的信道情况、 或相邻基站的负载情况、 或以上任意的组合选择参 与多点协同传输的从节点并建立协同区域。 这里的协同用户信息包括以下之 一或其组合: 用户身份信息、 数据资源分配信息、 数据传输模式, 数据资源 分配信息可以是一个协同用户的也可以是多个协同用户的。 步骤 304〜步骤 305: 协同用户的用户终端发送上行数据, 协同区域内的 主、 从节点接收上行数据信号。 步骤 306: 从节点判断是否分离出协同用户的上行数据信号, 如果分离 出, 则进行到步骤 307 , 否则, 进行到步骤 309。 从节点根据配置判断是否 对接收的上行数据信号进行分离, 从节点向主节点发送分离出的协同用户的 上行数据信号时, 由于传输的数据量小, 可以节省传输资源; 从节点向主节 点发送没有分离的上行数据信号时, 由于无需从节点进行分离处理, 可以减 轻从节点的处理负荷。 步骤 307〜步骤 308:从节点通过物理直连接口将协同用户的信道编码前 的上行数据信号发送给主节点, 该上行数据信号包括空域、 或时域、 或频域、 或码资源中的任一或任意组合上的信道编码 /解码前的数据信号; 主节点对协 同用户的上行数据信号进行协同处理, 结束当前上行多点协同传输流程。 物 理直连接口已经预先建立在主节点与各从节点之间, 这里的协同处理可以是 分集合并处理, 也可以是解复用处理。 步骤 309〜步骤 310:从节点通过物理直连接口将接收到的所有用户的信 道编码前的上行数据信号发送给主节点; 主节点从接收到的上行数据信号中 分离出协同用户的上行数据信号, 并进行协同处理。 物理直连接口已经预先 建立在主节点与各从节点之间, 这里的协同处理可以是分集合并处理, 也可 以是解复用处理。 在本实施例中,从节点通过物理直连接口发送给主节点的是信道编码解 码前的上行数据信号, 这样的数据信号是没有信息损失的, 因此, 主节点协 同处理后得到的协同用户的上行数据信号能够获得最佳合并增益。 通过该实 施例,可以降氏物理直连接口对上行多点协同传输的时延, 并改善合并增益。 图 4为本发明实施例中实现多点协同传输的实施例二的流程图, 如图 4 所示,本实施例中实现多点协同传输的具体处理过程包括以下步骤(步骤 401 一步骤 410 ): 步骤 401 : 主节点判断是否为用户进行上行多点协同传输, 如果判断结 果为进行多点协同传输, 则该用户为协同用户, 进行到步骤 402; 否则, 结 束当前流程。 具体地, 将一用户的月 务节点作为主节点, 可以才艮据该用户的 终端上报的测量信息判断是否适合使用多点协同传输,如果判断结果为适合, 则该用户为协同用户, 如果判断结果为不适合, 则不对用户进行多点协同传 输, 结束当前流程; 在具体实施过程中, 也可以才艮据以下之一或其组合作为 判断依据来判断是否适合进行多点协同传输: 相邻节点到用户的信道情况、 相邻节点的负载情况、 用户终端的处理能力、 业务优先级。 步骤 402〜步骤 403: 主节点建立协同区域, 并向协同区域内各从节点提 供协同用户信息。 在建立协同区域时, 可以才艮据用户终端所在位置、 或相邻 基站到用户的信道情况、 或相邻基站的负载情况、 或以上任意的组合选择参 与多点协同传输的从节点并建立协同区域。 这里的协同用户信息包括以下之 一或其组合: 用户身份信息、 数据资源分配信息、 数据传输模式, 数据资源 分配信息可以是一个协同用户的也可以是多个协同用户的。 步骤 404〜步骤 405: 协同用户的用户终端发送上行数据, 协同区域内的 主、 从节点接收上行数据信号。 步骤 406: 从节点判断是否分离出协同用户的上行数据信号, 如果判断 结果为分离出, 则进行到步骤 407, 否则, 进行到步骤 409。 从节点根据配 置来判断是否对接收到的上行数据信号进行分离, 从节点向主节点发送分离 出的协同用户的上行数据信号时, 由于传输的数据量小,可以节省传输资源; 从节点向主节点发送没有分离的上行数据信号时, 由于无需从节点进行分离 处理, 可以减轻从节点的处理负荷。 步骤 407〜步骤 408:从节点通过物理直连接口将协同用户的信道编码后 的上行数据信号发送给主节点, 主节点对协同用户的上行数据信号进行协同 处理, 结束当前上行多点协同传输流程。 步骤 409〜步骤 410:从节点通过物理直连接口将接收到的所有用户的信 道编码后的上行数据信号发送给主节点, 主节点从通过物理直连接口接收到 的上行数据信号中分离出协同用户的上行数据信号, 并进行协同处理。 上述步骤 407〜步骤 410 中的物理直连接口为预先建立在主节点与各从 节点之间, 以及协同处理可以是分集合并处理, 也可以是解复用处理。 本实施例中,从节点通过物理直连接口发送给主节点的是信道编码解码 后的上行数据信号, 这样的数据信号已经具有一定的信息损失, 虽然主节点 协同处理后得到的协同用户的上行数据信号并不能获得最佳合并增益, 但所 得合并增益与现有技术中 X2接口所得合并增益相近, 并且时延要远小于采 用 X2接口所需的时延。 因此, 本实施例可应用于一些对合并增益无严格要 求, 但对时延要求较严格的场景中。 图 5为本发明中实现多点协同传输的***结构示意图, 如图 5所示, 实 现多点协同传输的***包括: 主节点和至少一个从节点, 主节点与从节点通 过物理直连接口相连, 该物理直连接口用于传输协同用户的上行数据信号, 这里的节点(包括主节点和从节点)可以是基站、 Relay (中继站)或 home eNB ( E-UTRAN Node B , 演进的节点 B ) (室内基站)。 本发明实施例中所采用的物理直连接口能够改变当前上行多点协同传 输中缺乏有效接口的现状, 使得主从节点之间传输的协同用户的上行数据信 号不再依照现有 X2接口的协议进行传输。 对于其他应用场景, 包括多点协 同传输中的下行用户面传输,仍然可以使用协同节点间的其他现有逻辑接口, 不需要改变其处理流程。 综上所述, 通过本发明实施例提供的技术方案, 不但可以降低时延, 还 可以获得最佳合并增益, 也可以在主从节点间传输信道编码解码后的数据信 号, 虽然只能获得与目前 X2接口相近的合并增益, 但时延却要远远氐于 X2 接 。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种节点间通信的方法, 用于多个节点协同为用户终端服务, 其特征 在于, 主节点与各从节点之间通过物理直连接口相连, 所述方法包括: 从节点通过物理直连接口将来自协同用户的上行数据信号发送 给主节点;
所述主节点对通过物理直连接口接收的协同用户的上行数据信 号进行协同处理。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述从节点通过所述物理 直连接口向所述主节点发送上行数据信号时, 将所述上行数据信号进 行调制后发送, 或者, 不经调制直接发送。
3. 根据权利要求 1 所述的方法, 其特征在于, 所述从节点通过所述物理 直连接口将来自所述协同用户的上行数据信号发送给所述主节点之 前, 所述方法进一步包括:
所述主节点根据如下信息之一或其组合来确定用户为协同用户: 所述用户的终端上报的测量信息、 相邻节点到所述用户的信道情况、 相邻节点的负载情况、 所述用户的终端的处理能力、 业务优先级; 所述主节点确定为所述协同用户进行上行多点协同传输时, 建立 协同区域, 并向所述协同区域内的各从节点提供协同用户信息。
4. 根据权利要求 3所述的方法, 其特征在于, 所述协同用户信息包括以 下之一或其组合: 用户身份信息、 数据资源分配信息、 数据传输模式。
5. 根据权利要求 1 所述的方法, 其特征在于, 所述从节点通过所述物理 直连接口将来自所述协同用户的所述上行数据信号发送给所述主节 点, 包括:
判断所述从节点是否分离出协同用户的上行数据信号, 如果分离 出, 则通过所述物理直连接口向所述主节点发送所述协同用户的所述 上行数据信号; 如果没有分离出, 则通过所述物理直连接口向所述主 节点发送接收到的所有用户的上行数据信号。
6. 根据权利要求 1或 5所述的方法, 其特征在于, 所述从节点通过所述 物理直连接口发送给所述主节点的所述上行数据信号包括以下之一: 信道编码解码前的上行数据信号;
信道编码解码后的上行数据信号。
7. 根据权利要求 5所述的方法, 其特征在于, 所述从节点通过所述物理 直连接口向所述主节点发送接收到的所述所有用户的上行数据信号 时,
所述主节点对通过所述物理直连接口接收的所述协同用户的所 述上行数据信号进行协同处理, 包括: 所述主节点从通过所述物理直 连接口接收到的上行数据信号中分离出所述协同用户的上行数据信 号, 并进行协同处理。
8. 根据权利要求 7所述的方法, 其特征在于, 所述协同用户的信道编码 前的所述上行数据信号包括以下之一或其组合: 空域的信道编码解码 前的数据信号、 时域的信道编码解码前的数据信号、 频域的信道编码 解码前的数据信号、 码资源的信道编码解码前的数据信号。
9. 根据权利要求 1或 5所述的方法, 其特征在于, 所述协同处理包括以 下之一:
分集合并处理;
解复用处理。
10. 一种节点间通信的***, 其特征在于, 该***包括: 主节点和至少一 个从节点, 所述主节点与从节点通过物理直连接口相连, 所述物理直 连接口用于传输协同用户的上行数据信号。
PCT/CN2008/073684 2008-11-11 2008-12-24 节点间通信的方法及*** WO2010054522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810226458 CN101741449B (zh) 2008-11-11 2008-11-11 一种节点间通信的方法及***
CN200810226458.3 2008-11-11

Publications (1)

Publication Number Publication Date
WO2010054522A1 true WO2010054522A1 (zh) 2010-05-20

Family

ID=42169598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073684 WO2010054522A1 (zh) 2008-11-11 2008-12-24 节点间通信的方法及***

Country Status (2)

Country Link
CN (1) CN101741449B (zh)
WO (1) WO2010054522A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125560A (zh) * 2014-08-07 2014-10-29 宇龙计算机通信科技(深圳)有限公司 基于多终端协同通信的方法及***、终端和通信基站

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945482B (zh) * 2010-09-21 2012-11-21 华为技术有限公司 一种用于多点协作CoMP方式的资源分配方法及基站
CN101958805B (zh) * 2010-09-26 2014-12-10 中兴通讯股份有限公司 一种云计算中终端接入和管理的方法及***
CN104067551B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 数据传输方法、基站和用户设备
WO2014110800A1 (zh) 2013-01-18 2014-07-24 华为技术有限公司 数据传输方法、基站和用户设备
CN106507267A (zh) * 2015-09-07 2017-03-15 ***通信集团公司 业务处理方法、终端及基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276132A (zh) * 1996-12-05 2000-12-06 诺基亚电信公司 扩展业务的基站
CN1996845A (zh) * 2006-01-03 2007-07-11 华为技术有限公司 长期演进网络及其中用户设备状态的转换方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132632B (zh) * 2007-09-25 2010-06-02 中国科学技术大学 分布式无线通信***中的主从协同通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276132A (zh) * 1996-12-05 2000-12-06 诺基亚电信公司 扩展业务的基站
CN1996845A (zh) * 2006-01-03 2007-07-11 华为技术有限公司 长期演进网络及其中用户设备状态的转换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO BIN: "3GPP LTE Wireless Interface Protocol and Architecture", MOBILE COMMUNICATIONS, 31 December 2007 (2007-12-31), pages 54 - 57 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125560A (zh) * 2014-08-07 2014-10-29 宇龙计算机通信科技(深圳)有限公司 基于多终端协同通信的方法及***、终端和通信基站

Also Published As

Publication number Publication date
CN101741449A (zh) 2010-06-16
CN101741449B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
CN106792739B (zh) 网络切片方法、装置和设备
CN104105158B (zh) 一种基于d2d中继通信的中继选择方法
JP6703008B2 (ja) リンク品質ベースの中継器選択のためのシステム、方法、およびデバイス
JP6833837B2 (ja) 発展型マシンタイプ通信をもつデバイスツーデバイス通信のためのシステムおよび方法
TWI678081B (zh) 使用者設備的無線通訊方法
CN101971687B (zh) 增强无线终端的测距过程标识
TW201844026A (zh) 在設備到設備通訊系統中進行中繼
CN104954975B (zh) Ofdm蜂窝网络中进行能量收集的d2d协作通信方法
JP6553213B2 (ja) ユニキャスト信号とマルチキャスト信号との間の非直交多元接続
TWI723558B (zh) 無線通訊方法及裝置、電腦可讀介質
CN109478991A (zh) 设备到设备通信***中基于优先级的资源选择
CN103024914B (zh) 终端直通技术共享***下行资源的跨层设计方法
CN103298084B (zh) 一种基于能效准则的协作多中继选择与功率分配方法
CN108476104A (zh) 用于窄带上行链路单音调传输的***和方法
CN103580814B (zh) 一种基于终端直通的虚拟多入多出通信方法
CN109952734A (zh) 基于争用的接入中的冲突减少
WO2014015660A1 (zh) 无线通信***的基带处理装置和无线通信***
TW201703564A (zh) 在存在d2d傳輸的情況下的lte-tdd配置的動態訊號傳遞
TW201922011A (zh) 在針對eMTC的子PRB與普通PRB分配之間切換
WO2013152743A1 (zh) 传输信号的方法和装置
WO2010054522A1 (zh) 节点间通信的方法及***
TW202106074A (zh) 無線通訊方法及裝置、電腦可讀介質
TW202042575A (zh) 頻寬部分操作方法、裝置和電腦可讀介質
CN110061764A (zh) 基于noma和中继技术的协作d2d传输方案
TW202044879A (zh) 無線通訊方法、無線通訊裝置及電腦可讀介質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878082

Country of ref document: EP

Kind code of ref document: A1