WO2010054506A1 - 多轴伺服电机控制*** - Google Patents

多轴伺服电机控制*** Download PDF

Info

Publication number
WO2010054506A1
WO2010054506A1 PCT/CN2008/073010 CN2008073010W WO2010054506A1 WO 2010054506 A1 WO2010054506 A1 WO 2010054506A1 CN 2008073010 W CN2008073010 W CN 2008073010W WO 2010054506 A1 WO2010054506 A1 WO 2010054506A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
module
speed
current
axis
Prior art date
Application number
PCT/CN2008/073010
Other languages
English (en)
French (fr)
Inventor
周兆勇
刘亚静
李铁才
张岩
杨贵杰
王鸿鹏
Original Assignee
深圳航天科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航天科技创新研究院 filed Critical 深圳航天科技创新研究院
Priority to PCT/CN2008/073010 priority Critical patent/WO2010054506A1/zh
Priority to US13/056,308 priority patent/US8598832B2/en
Publication of WO2010054506A1 publication Critical patent/WO2010054506A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4144Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by using multiplexing for control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42062Position and speed and current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42237Pwm pulse width modulation, pulse to position modulation ppm

Definitions

  • the present invention relates to the field of control, and more particularly to a multi-axis servo motor control system.
  • the motor is the main component of motion control.
  • the multi-axis servo motor such as the spindle drive of the CNC lathe and the X and Y axis drive feed; the spindle drive of the CNC milling machine and the X, ⁇ , ⁇ axis drive feed, and Robots and robots need to control multiple axes.
  • the multi-axis servo motor control chip has not been seen in the prior art, so the single-axis servo motor control chip is often used to control each axis, wherein the LM628 and LM629 square wave brushless motor position control chip, I R2102 positive rotation Waveless brushless motor speed control chips, which have good performance and are the most representative.
  • MCX314 series motion control chip can be called position loop servo control chip, which can be used for servo unit upper control, but they do not contain low-level control such as motor vector control and motor speed and torque closed-loop control.
  • the integration of such chips is not high, and its functions can be completely replaced by DSP, so the current significance is not significant.
  • the technical problem to be solved by the present invention is that, for a single-axis servo motor control system in the prior art, a plurality of axles are separately driven, and defects that cannot be synchronized are prone to occur, and a plurality of axes are provided for the same axis. Synchronously controlled multi-axis servo motor control system.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a multi-axis servo motor control system
  • a position loop module configured to receive a position loop reference value and a position feedback value of each axis, and calculate a speed loop reference value
  • a speed loop module configured to receive a speed loop reference value and a speed feedback value of each axis And calculating the current loop reference value
  • the current loop module is configured to receive the current loop reference value and the current feedback value of each axis, And outputting a current loop output value
  • a pulse width modulation signal generating module configured to receive the current loop output value from the current loop module and generate a pulse width modulation signal for controlling a servo motor of each axis
  • multi-axis timing control And a module configured to control signal reception and processing of the position loop module, the speed loop module, the current loop module, and the pulse width modulation signal generating module.
  • the multi-axis servo motor control system includes: a digital-to-analog conversion module for acquiring a position feedback value under the control of the multi-axis sequence control module and/or Or current feedback value; speed measuring module, used to obtain the speed feedback value of each axis under the control of the multi-axis sequence control module.
  • the digital-to-analog conversion module is further configured to acquire a position loop reference value, a speed loop reference value, and/or under the control of the multi-axis sequence control module. Or current loop reference
  • the position loop module converts from the digital-to-analog
  • the module obtains a position loop reference value and a position feedback value
  • the speed loop module acquires a speed loop reference value from the position loop module, obtains a speed feedback value from the speed measuring module
  • the current loop module acquires from the speed loop module a current loop reference value, obtaining a current feedback value from the digital-to-analog conversion module
  • the speed loop module is from the The speed measuring module obtains a speed feedback value, obtains a speed loop reference value from the digital-to-analog conversion module
  • the current loop module acquires a current loop reference value from the speed loop module, and obtains a current feedback value from the digital-to-analog conversion module
  • the digital-to-analog conversion module includes: an analog-to-digital conversion interface unit, an analog-digital sequence control unit, and a first data latch, wherein The axis servo motor control system is operated in the position loop, the analog-to-digital conversion interface unit acquires a position loop reference value, a position feedback value, and a current feedback value; when the multi-axis servo motor control system operates in the speed loop, The analog-to-digital conversion interface unit obtains a speed loop reference value, a current feedback value; when the multi-axis servo motor control system is running in the current loop, the analog-to-digital conversion interface unit acquires a current loop reference value and a current feedback value; The first data latch latches the acquired values under the control of the analog-order sequence control unit.
  • the multi-axis servo motor control system further A current calibration module is included for scaling to obtain a current feedback value from the digital to analog conversion module and transmitting the scaled current feedback value to the current loop module.
  • the speed measuring module includes a code wheel interface unit, an M/T method speed measuring unit, and a second data latch, wherein the code wheel interface unit is used for Obtaining an angular displacement of each axis; the M/T method speed measuring unit is configured to convert the angular displacement into a speed feedback value; and the second data latch is controlled by the multi-axis sequence control module The speed feedback value is latched.
  • the position loop module further includes a position loop adjuster and a position loop data latch; the position loop adjuster is configured to receive a position loop reference value and Positioning the feedback value, and generating a speed loop reference value, the position loop data latch latching the position loop reference value, the position feedback value, and/or the speed loop reference under the control of the multi-axis sequence control module value.
  • the speed loop module further includes a speed loop regulator and a speed loop data latch; the speed loop regulator is configured to receive a speed loop reference value and a speed feedback value, and generating a current loop reference value, the speed loop data latch latching the speed loop reference value, the speed feedback value, and/or the current loop reference under the control of the multi-axis sequence control module value.
  • the current loop module further includes a current loop regulator and a current loop data latch; the current loop regulator is configured to receive a current loop reference value and The current feedback value, and a current loop output value is generated, the current loop data latch latching the current loop setpoint and the current feedback value and/or the current loop output value under the control of the multi-axis sequence control module.
  • FIG. 2 is a model diagram of a forward channel system of a multi-axis servo motor control system of the present invention
  • Figure 3 is a schematic diagram of the data flow of the current loop forward channel model
  • Figure 4 is a schematic diagram of the data flow of the position loop forward channel model
  • Figure 5 is a system block diagram of a first embodiment of a multi-axis servo motor control system of the present invention
  • Figure 6 is a system block diagram of a second embodiment of the multi-axis servo motor control system of the present invention.
  • Figure 7 is a system block diagram of a third embodiment of the multi-axis servo motor control system of the present invention.
  • FIG. 8 is a flow chart of current loop data of an embodiment of the multi-axis servo motor control system illustrated in FIG. 7;
  • FIG. 9 is a velocity loop data flow diagram of an embodiment of the multi-axis servo motor control system illustrated in FIG. 7;
  • Figure 10 is a flow diagram of a position loop data flow of an embodiment of the multi-axis servo motor control system illustrated in Figure 7;
  • FIG. 11 is a block diagram showing an implementation of an analog-to-digital conversion module of the present invention.
  • Figure 12 is a data flow diagram of the PI regulator
  • Figure 13 is a block diagram of the implementation of the PI regulator
  • FIG. 14 is a data flow diagram of the PID regulator
  • FIG. 15 is a block diagram of the implementation of the PID regulator
  • FIG. 16 is a block diagram of an implementation of a code wheel interface unit
  • FIG. 17 is a block diagram of the implementation of the M/T method speed measuring unit
  • Figure 18 is a sequence diagram of the multi-axis sequence control unit of the multi-axis sequence control module
  • Figure 19 is a sequence diagram of the single-axis data calculation control unit of the multi-axis sequence control module
  • Figure 20 is a sequence diagram of the multi-axis sequence control unit of the system operating in the position loop;
  • Figure 21 is a sequence diagram of the multi-axis sequence control unit of the system running in the speed loop;
  • Figure 22 is a sequence diagram of the multi-axis sequence control unit of the system operating in the current loop.
  • the system model consists of two parts: the forward channel and the feedback channel.
  • the model description of the forward channel is shown in Figure 2.
  • the port description of the model shown in Figure 2 is:
  • KpP, KiP, KdP, PbitsP, IbitsP, DbitsP, PlimitP, PlimitN, KpV, KiV, PbitsVs IbitsVs VlimitP, VlimitN, Kpl, Kil, Pbitsl, Ibitsl, IlimitP, ILi mitN in Figure 1-2 can be set Parameters.
  • CLUpdate, VLUpdate, and PLUpdate are used to control the calculation of the current loop, speed loop, and position loop, respectively.
  • PositionLoop is the model of the position loop forward channel
  • VelocityLoop is the model of the speed loop forward channel
  • CurrentLoop is the model of the current loop forward channel
  • CLUpdate is the sequence control signal for controlling the current loop data calculation
  • VLUpdate is The sequence control signal for controlling the calculation of the speed loop data
  • PLUpdate is the sequence control signal for calculating the position loop data
  • CLUpdate, VLUpdate, PLUpdate signals are generated by programming, which are fixed frequencies, and the frequencies correspond to fc, fv, fp, respectively. The relationship between them is:
  • Figure 3 is a schematic diagram of the data flow of the current loop; the variable representation in the figure is the variable name (), where the number in parentheses indicates the number of bits of the variable, such as Kpl (16), indicating that the bit width of the variable Kpl is 16 bits; Figure 3 includes the addition module, subtraction module, multiplication module (16x16), multiplication module (17x16), right shift module ⁇ , right shift module I, latch module, limiter module.
  • the multiplication module (16x16) represents 16-bit and 16-bit data multiplied, and its output is 32-bit, multiplication module
  • (17x16) indicates that the 17-bit and 16-bit data are multiplied, and the output is 33 bits.
  • the other modules in the above figure are represented by expressions in C language, such as subtraction module, subtraction module, addition module, multiplication module, right shift mode 3 ⁇ 4P, right shift module I, respectively, subtraction in C language, Addition, multiplication, and shift operations.
  • the right shift module P is shifted to the right 32-PBits
  • the right shift module I is shifted to the right 33-IBits
  • the velocity loop model is identical to the current loop model and is therefore not mentioned.
  • FIG. 4 is a schematic diagram of the data flow of the position loop model.
  • the right shift module P is right shift 32-PBits
  • the right shift module I is right shift 32-IBits
  • the right shift module D is right shift 33-DBits.
  • FIG. 5 is a system block diagram of a first embodiment of a multi-axis servo motor control system of the present invention.
  • the multi-axis servo motor control system of the present invention comprises: a position loop module 400 for receiving a position loop reference value and a position feedback value of each axis, and calculating a speed loop reference value; the speed loop module 500 , for receiving the speed loop reference value and the speed feedback value of each axis, and calculating the current loop reference value; the current loop module 200 is configured to receive the current loop reference value and the current feedback value of each axis, and output the current loop The output value; the pulse width modulation signal generating module 300 is configured to receive the current loop output value from the current loop module 200 and generate a pulse width modulation signal for controlling a servo motor of each axis.
  • the multi-axis servo motor control system of the present invention further includes a digital-to-analog conversion module 100 for acquiring a position feedback value and/or a current feedback value under the control of the multi-axis sequence control module 700; For acquiring the speed feedback value of each axis under the control of the multi-axis sequence control module 700.
  • the digital-to-analog conversion module 100 is further configured to acquire a position loop reference value, a speed loop reference value, and/or a current loop reference value under the control of the multi-axis sequence control module 700.
  • FIG. 7 is a system block diagram of a third embodiment of the multi-axis servo motor control system of the present invention.
  • the system mainly includes a position loop adjuster 401, a position loop data latch 402, a speed loop regulator 501, a speed loop data latch 502, a current loop regulator 201, and a current loop data latch 202.
  • the pulse width modulation signal generating module 300, the analog to digital conversion interface unit 101, the analog data sequence control unit 103, the first data latch 102, the code disk interface unit 601, the M/T method speed measuring unit 602, and the second data lock The memory 603, the multi-axis sequence control module 700, and the current calibration module 800.
  • the position loop adjuster 401, the position loop data latch 402, the speed loop regulator 501, the speed loop data latch 502, the current loop regulator 201, and the current loop data latch 202 correspond to FIG. 1 respectively.
  • Current scaling module 800 and converter module 100 together form a current loop feedback path shown in Figure 1, the interface unit and the code wheel M / T speed corresponding to the speed of the units shown in FIG loop feedback path,
  • the digital to analog conversion module 100 constitutes the position loop feedback channel shown in FIG.
  • the analog-to-digital conversion interface unit 101 acquires a position loop reference value, a position feedback value, and a current feedback value; when the multi-axis servo motor control system After the speed loop operation, the analog-to-digital conversion interface unit 101 acquires a speed loop reference value, a current feedback value; when the multi-axis servo motor control system is running in the current loop, the analog-to-digital conversion interface unit 101 acquires a current a loop set value and a current feedback value; the first data latch 102 latches the acquired values under the control of the modulus sequence control unit 103.
  • the position loop, the speed loop and the current loop respectively process the corresponding data with different refresh frequencies (the current loop refresh frequency fc is greater than the speed loop refresh frequency fv is greater than the position loop refresh frequency fp) Corresponding data.
  • the position loop refresh rate is 1 ⁇ 5KHz (0.2 ⁇ lms) ; (the international advanced level is 0.5ms), the rate loop refresh rate is 5 ⁇ 10KHz (100 ⁇ 20( ⁇ sec); The international advanced level is 25 ( ⁇ sec) current loop refresh rate 20 ⁇ 40KHz (25 ⁇ 5( ⁇ sec); speed range 0 ⁇ 10000r/min.
  • the position loop module 400 acquires the position loop reference value and the position feedback value from the digital-to-analog conversion module 100.
  • the speed loop module 500 obtains a speed loop reference value from the position loop module 400 , and obtains a speed feedback value from the speed measuring module 600.
  • the current loop module 200 obtains a current loop reference value from the speed loop module 500, A current feedback value is obtained from the digital to analog conversion module 100.
  • the speed loop module 500 obtains a speed feedback value from the speed measuring module 600, from the digital model
  • the conversion module 100 acquires a speed loop reference value
  • the current loop module 200 acquires a current loop reference value from the speed loop module 500, and obtains a current feedback value from the digital-to-analog conversion module 100;
  • the multi-axis sequence The control module 70 0 controls the multi-axis servo motor control system to operate, and the current loop module 200 obtains a current feedback value and a current loop reference value from the digital-to-analog conversion module 100, and outputs a current loop output value.
  • the WM signal generation module 300 thereby generating a signal that controls the power device, thereby controlling motor motion.
  • the thick line in the figure indicates the direction of data flow
  • the thin line indicates the control signal transmission of the control data stream.
  • FIG. 11 is an implementation block diagram of an analog to digital conversion module 100 of the present invention, which includes an analog to digital conversion interface unit 101, an analog to digital sequence control unit 103, and a first data latch 102.
  • Figure 12 is a data flow diagram of the PI regulator
  • Figure 13 is a block diagram of the implementation of the PI regulator.
  • both the current loop and the speed loop regulator use a PI regulator, and the PI regulator uses a bilinear transformation.
  • Figure 14 is a data flow diagram of the PID regulator.
  • Figure 15 is a block diagram of the implementation of the PID regulator. In the present invention
  • the position loop uses a PID regulator, where I and D use the backward difference method.
  • FIG. 16 is a block diagram of an implementation of a code wheel interface unit.
  • Figure 17 is a block diagram of an implementation of the M/T method speed measuring unit, which includes
  • the multi-axis sequence control module may include a multi-axis sequence control unit and a single-axis data calculation sequence control unit.
  • the multi-axis sequence control unit controls the conversion between the 1st axis and the nth axis; and the single axis data calculation sequence control unit performs data calculation for controlling each axis.
  • FIG. 19 is a sequence diagram of a single-axis data calculation control unit of the multi-axis sequence control module.
  • Each axis consists of three loops, a position loop, a speed loop and a current loop, which correspond to three cases:
  • Sequence a represents the PWM sync signal, which is the synchronization signal of the motor control system, all data conversion and calculation It is all synchronized by it.
  • the sequence bf represents the relevant signal of the feedback channel, where ADDone represents the completion signal of the data conversion part, IFBStart and MTStart respectively represent the start of the current feedback channel data calculation and the speed feedback channel data calculation, and IFBDone and MTDone respectively represent the current and The end of the speed feedback channel data calculation.
  • Sequence h-1 represents the correlation signal of the forward channel, where SLStart and CLStart represent the start of the calculation of the velocity loop and current loop forward channel data respectively, and SLDone and CLDone represent the velocity loop and current loop forward channel data, respectively. The end of the calculation.
  • Sequence g denotes a signal related to both the forward channel and the backward channel, which is the calculation signal for the position loop data.
  • the multi-axis servo motor control system of the present invention can realize complex AC servo motor vector control, torque, speed, position closed-loop control using fully digital, multi-axis, single-chip hardware, so that the servo system is more compact. Tightening, dynamic performance is improved by 2-10 times.
  • the high-performance control strategy and chip architecture increase the power performance of the control system by 2-3 times.
  • the system's peripheral components are reduced by 50-80%, the overall machine volume is reduced by 2-4 times, and the product cost is reduced by 2-3 times.
  • the present invention uses a controller to divide and reuse the idea, that is, to use space resources instead of space resources.
  • the sample frequency is 40kHz, a controller core, and a servo drive unit with 4 axes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Description

说明书 多轴伺服电机控制***
#細或
[1] 本发明涉及控制领域, 更具体地说, 涉及一种多轴伺服电机控制***。
[2] 电机是运动控制主要部件。 随着科学技术的发展, 通常需要同吋控制多轴伺服 电机, 例如数控车床的主轴驱动与 X、 Y轴驱动进刀; 数控銑床的主轴驱动与 X 、 Υ、 Ζ轴驱动进给, 而对于机器人和机械手更需要对多个轴进行控制。
[3] 已有技术中还未见到多轴伺服电动机控制芯片, 因而往往釆用单轴伺服电动机 控制芯片分别控制各轴, 其中 LM628和 LM629方波无刷电动机位置控制芯片、 I R2102正旋波无刷电动机速度控制芯片, 它们性能良好, 最具代表性。
[4] 美国国家半导体公司推出 LM628运动控制芯片以及日本 Plentylsland公司推出的
MCX314系列运动控制芯片实际上可称为位置环伺服控制芯片, 可用于伺服单元 上位控制, 但实质上它们并不包含电机矢量控制和电机速率、 力矩闭环控制等 低层控制环节。 这类芯片的集成度不高, 其功能完全可以利用 DSP来替代, 所以 目前意义已经不大。
[5] 而釆用现有技术中的单轴伺服电机控制***单独驱动多个轴吋, 容易出现无法 同步的问题。 因此, 需要一种同吋对多个轴进行同步控制的多轴伺服电机控制 ***。
[6] 本发明要解决的技术问题在于, 针对釆用现有技术中的单轴伺服电机控制*** 单独驱动多个轴吋, 容易出现无法同步的缺陷, 提供一种同吋对多个轴进行同 步控制的多轴伺服电机控制***。
[7] 本发明解决其技术问题所釆用的技术方案是: 构造一种多轴伺服电机控制***
, 包括: 位置环模块, 用于接收各轴的位置环给定值和位置反馈值, 并计算速 度环给定值; 速度环模块, 用于接收各轴的速度环给定值和速度反馈值, 并计 算电流环给定值; 电流环模块, 用于接收各轴的电流环给定值和电流反馈值, 并输出电流环输出值; 脉宽调制信号生成模块, 用于从所述电流环模块接收所 述电流环输出值并生成用于控制各轴的伺服电机的脉宽调制信号; 多轴吋序控 制模块, 用于控制所述位置环模块、 速度环模块、 电流环模块和脉宽调制信号 生成模块的信号接收和处理。
[8] 在本发明所述的多轴伺服电机控制***中, 所述多轴伺服电机控制***包括: 数模转换模块, 用于在多轴吋序控制模块的控制下获取位置反馈值和 /或电流反 馈值; 测速模块, 用于在多轴吋序控制模块的控制下获取各轴的速度反馈值。
[9] 在本发明所述的多轴伺服电机控制***中, 所述数模转换模块进一步用于在多 轴吋序控制模块的控制下获取位置环给定值、 速度环给定值和 /或电流环给定值
[10] 在本发明所述的多轴伺服电机控制***中, 当所述多轴吋序控制模块控制所述 多轴伺服电机控制***在位置环运行吋, 位置环模块从所述数模转换模块获取 位置环给定值和位置反馈值, 速度环模块从所述位置环模块获取速度环给定值 、 从所述测速模块获取速度反馈值, 所述电流环模块从所述速度环模块获取电 流环给定值、 从所述数模转换模块获取电流反馈值; 当所述多轴吋序控制模块 控制所述多轴伺服电机控制***在速度环运行吋, 所述速度环模块从所述测速 模块获取速度反馈值、 从所述数模转换模块获取速度环给定值, 所述电流环模 块从所述速度环模块获取电流环给定值、 从所述数模转换模块获取电流反馈值 ; 当所述多轴吋序控制模块控制所述多轴伺服电机控制***在电流环运行吋, 所述电流环模块从所述数模转换模块获取电流反馈值和电流环给定值。
[11] 在本发明所述的多轴伺服电机控制***中, 所述数模转换模块包括: 模数转换 接口单元、 模数吋序控制单元和第一数据锁存器, 其中, 所述多轴伺服电机控 制***在位置环运行吋, 所述模数转换接口单元获取位置环给定值、 位置反馈 值和电流反馈值; 当所述多轴伺服电机控制***在速度环运行吋, 所述模数转 换接口单元获取速度环给定值, 电流反馈值; 当所述多轴伺服电机控制***在 电流环运行吋, 所述模数转换接口单元获取电流环给定值和电流反馈值; 所述 第一数据锁存器在所述模数吋序控制单元的控制下对获取的各值进行锁存。
[12] 在本发明所述的多轴伺服电机控制***中, 所述多轴伺服电机控制***进一步 包括电流定标模块, 用于定标从所述数模转换模块获取电流反馈值并将定标后 的电流反馈值发送到电流环模块。
[13] 在本发明所述的多轴伺服电机控制***中, 所述测速模块包括码盘接口单元、 M/T法测速单元和第二数据锁存器, 其中所述码盘接口单元用于获取各轴角位移 ; 所述 M/T法测速单元用于将所述角位移转换成速度反馈值; 所述第二数据锁存 器在所述多轴吋序控制模块的控制下对所述速度反馈值进行锁存。
[14] 在本发明所述的多轴伺服电机控制***中, 所述位置环模块进一步包括位置环 调节器和位置环数据锁存器; 所述位置环调节器用于接收位置环给定值和位置 反馈值, 并生成速度环给定值, 所述位置环数据锁存器在多轴吋序控制模块的 控制下锁存所述位置环给定值、 位置反馈值和 /或速度环给定值。
[15] 在本发明所述的多轴伺服电机控制***中, 所述速度环模块进一步包括速度环 调节器和速度环数据锁存器; 所述速度环调节器用于接收速度环给定值和速度 反馈值, 并生成电流环给定值, 所述速度环数据锁存器在多轴吋序控制模块的 控制下锁存所述速度环给定值、 速度反馈值和 /或电流环给定值。
[16] 在本发明所述的多轴伺服电机控制***中, 所述电流环模块进一步包括电流环 调节器和电流环数据锁存器; 所述电流环调节器用于接收电流环给定值和电流 反馈值, 并生成电流环输出值, 所述电流环数据锁存器在多轴吋序控制模块的 控制下锁存所述电流环给定值和电流反馈值和 /或电流环输出值。
[17] 实施本发明的多轴伺服电机控制***, 具有以下有益效果:
[18] (1) 解决了单轴伺服控制各轴单独驱动无法同步的问题;
[19] (2) 内部吋序保证, 在输出不变吋釆样各种输入, 例如, 位置、 电流、 速度 等较弱信号, 然后在同一吋刻输出幅度强大的输出信号, 这就从原理上保证各 轴具有最佳电磁兼容性能;
[20] (3) 快速性能好, 其动态性能几乎比微程序控制器、 数字信号处理器高一个 数量级;
[21] (4) 体积最小化、 可靠性高、 成本低、 功耗小。
國删
[22] 下面将结合附图及实施例对本发明作进一步说明, 附图中: [23] 图 1是本发明的多轴伺服电机控制***的模型图;
[24] 图 2本发明的多轴伺服电机控制***的前向通道***的模型图;
[25] 图 3是电流环前向通道模型的数据流程示意图;
[26] 图 4是位置环前向通道模型的数据流程示意图;
[27] 图 5是本发明的多轴伺服电机控制***的第一实施例的***框图;
[28] 图 6是本发明的多轴伺服电机控制***的第二实施例的***框图;
[29] 图 7是本发明的多轴伺服电机控制***的第三实施例的***框图;
[30] 图 8是图 7示出的多轴伺服电机控制***的实施例的电流环数据流向图;
[31] 图 9是图 7示出的多轴伺服电机控制***的实施例的速度环数据流向图;
[32] 图 10是图 7示出的多轴伺服电机控制***的实施例的位置环数据流向图;
[33] 图 11是本发明的模数转换模块的实现框图;
[34] 图 12是 PI调节器的数据流向图;
[35] 图 13是 PI调节器的实现框图;
[36] 图 14是 PID调节器的数据流向图;
[37] 图 15是 PID调节器的实现框图;
[38] 图 16是码盘接口单元的实现框图;
[39] 图 17是 M/T法测速单元的实现框图;
[40] 图 18是多轴吋序控制模块的多轴吋序控制单元的吋序图;
[41] 图 19是多轴吋序控制模块的单轴数据计算控制单元的吋序图;
[42] 图 20是***在位置环运行吋的多轴吋序控制单元的吋序图;
[43] 图 21是***在速度环运行吋的多轴吋序控制单元的吋序图;
[44] 图 22是***在电流环运行吋的多轴吋序控制单元的吋序图。
[45] 如图 1所示, ***模型包括两部分: 前向通道和反馈通道。 其中前向通道的模 型描述如图 2所示。 图 2示出的模型的端口描述为:
[46] Model
[47] Input [11:0] PRef;
[48] Input [14:0] IFdb; [49] Input [14:0] VFdb;
[50] Input [11:0] PFdb;
[51] Output [15:0] CLOut;
[52] 图 1-2中的 KpP、 KiP、 KdP、 PbitsP、 IbitsP、 DbitsP、 PlimitP、 PlimitN、 KpV、 KiV、 PbitsVs IbitsVs VlimitP、 VlimitN、 Kpl、 Kil、 Pbitsl、 Ibitsl、 IlimitP、 ILi mitN为可以设置的参数。 CLUpdate、 VLUpdate、 PLUpdate分别用来控制电流环 、 速度环和位置环的计算。
[53] 可将图 2釆用语言描述为:
[54] If PLUpdate then
[55] Do 'PositionLoop' ;
[56] Do 'Velocity Loop' ;
[57] Do 'CurrentLoop' ;
[58] Else if VLUpdate then
[59] Do 'VelocityLoop' ;
[60] Do 'CurrentLoop' ;
[61] Else if CLUpdate then
[62] Do 'CurrentLoop' ;
[63] Endif
[64] 其中, PositionLoop为位置环前向通道的模型; VelocityLoop为速度环前向通道的 模型; CurrentLoop为电流环前向通道的模型; CLUpdate为控制电流环数据计算 的吋序控制信号; VLUpdate为控制速度环数据计算的吋序控制信号; PLUpdate 为控制位置环数据计算的吋序控制信号; CLUpdate, VLUpdate, PLUpdate信号 由编程产生, 其是固定频率的, 频率分别对应于 fc,fv,fp, 其之间的关系为:
[65] fc=n* fv
[66] fc=m* fp
[67] 图 3是电流环的数据流程示意图; 图中的变量的表示方法为变量名 () , 其中 括号里的数字表示变量的位数, 如 Kpl (16) , 表示变量 Kpl的位宽为 16位; 图 3 中包括加法模块、 减法模块、 乘法模块 (16x16)、 乘法模块 (17x16)、 右移模块 Ρ 、 右移模块 I、 锁存模块、 限幅模块。 其中, 乘法模块 (16x16)表示 16位与 16位的 数据相乘, 其输出为 32位, 乘法模块
(17x16)表示 17位与 16位的数据相乘, 其输出为 33位。
[68] 电流环模块的端口描述如下:
[69] Model current loop
[70] Input [14:0] Ref;
[71] Input [14:0] Fdb;
[72] Input [15:0] Kpl;
[73] Input [15:0] Kil;
[74] Input [15:0] LimitP;
[75] Input [15:0] LimitN;
[76] Input [7:0] PBits;
[77] Input [7:0] IBits;
[78] 乘法模块的端口描述如下:
[79] Model Multiply ( 16x16)
[80] Input [15:0] a;
[81] Input [15:0] b;
[82] Output [31:0] Out;
[83] Model Multiply(17xl6)
[84] Input [16:0] a;
[85] Input [15:0] b;
[86] Output [32:0] Out;
[87] 限幅模块的端口描述如下:
[88] Model Limit
[89] Input [15:0] LimitP;
[90] Input [15:0] LimitN;
[91] Input [15:0] IN;
[92] Output[ 15:0] Out; [93] 锁存模块的语言描述如下:
[94] If nRESET='0' then
[95] Out='0';
[96] Else
[97] Out=PrevOut;
[98] Endif
[99] PrevOut= Out;
[100] 限幅模块的语言描述如下:
[101] If IN <=LimitN then
[102] Out =LimitN
[103] Elseif IN >=LimitP then
[104] Out =LimitP
[105] Else
[106] Out=IN
[107] Endif
[108] 上图中的其他模块釆用 c语言中的表达式表示, 如减法模块、 减法模块、 加法 模块、 乘法模块、 右移模 ¾P、 右移模块 I分别釆用 c语言中的减法、 加法、 乘法 和移位运算。 其中, 右移模块 P为右移 32-PBits,右移模块 I为右移 33-IBits
[109] 速度环模型与电流环模型相同, 因此不再赞述。
[110] 图 4是位置环模型的数据流程示意图。 其中右移模块 P为右移 32-PBits,右移模块 I 为右移 32-IBits,右移模块 D为右移 33-DBits。
[111] 位置环模块的接口描述如下所述:
[112] Model Positionloop
[113] Input [14:0] Ref;
[114] Input [14:0] Fdb;
[115] Input [15:0] KpP;
[116] Input [15:0] KiP;
[117] Input [15:0] KdP; [118] Input [15:0] LimitP;
[119] Input [15:0] LimitN;
[120] Input [7:0] PBits;
[121] Input [7:0] IBits;
[122] Input [7:0] DBits;
[123] 右移模块的端口描述:
[124] Model Shift
[125] Input [31:0] IN;
[126] Output[31 :0]Outl ;
[127] Output[31:0]Out2;
[128] Output[31:0]Out3;
[129] Output[31:0]Out4;
[130] 切换模块的端口描述:
[131] Model Switch
[132] Input [31:0] INI;
[133] Input [31:0] IN2;
[134] Input [31:0] IN3;
[135] Input [31:0] IN4;
[136] Input [7:0] Threholdl; (图 1-4中 Switch模块的 Tl端口)
[137] Input [7:0] Threhold2; (图 1-4中 Switch模块的 T2端口)
[138] Input [7:0] Threhold3; (图 1-4中 Switch模块的 T3端口)
[139] Input [7:0] Threhold4; (图 1-4中 Switch模块的 T4端口)
[140] Output [31 :0]Out;
[141] 其中切换模块的语言描述:
[142] If Select<Threholdl then
[143] Out=INl;
[144] Else if Select<Threhold2 then
[145] Out=IN2; [146] Else if Select<Threhold3 then
[147] Out=IN3;
[148] Else if Select<Threhold4 then
[149] Out=IN4;
[150] Else
[151] Out=0;
[152] Endif
[153] 右移模块的语言描述:
[154] Outl=IN;
[155] Out2=IN»l;
[156] Out3=IN»2;
[157] Out4=IN»3;
[158] 锁存和限幅模块已经在上面描述, 在此不再赞述。 其他的模块, 如加法模块、 减法模块、 乘法模块 (16x16)、 乘法模块 (17x16)、 右移模块!5、 I、 D可以釆用 c语 言中的加法, 减法, 乘法与右移运算。
[159] 图 5是本发明的多轴伺服电机控制***的第一实施例的***框图。 如图 5所示, 本发明的多轴伺服电机控制***包括: 位置环模块 400, 用于接收各轴的位置环 给定值和位置反馈值, 并计算速度环给定值; 速度环模块 500, 用于接收各轴的 速度环给定值和速度反馈值, 并计算电流环给定值; 电流环模块 200, 用于接收 各轴的电流环给定值和电流反馈值, 并输出电流环输出值; 脉宽调制信号生成 模块 300, 用于从所述电流环模块 200接收所述电流环输出值并生成用于控制各 轴的伺服电机的脉宽调制信号。
[160] 图 6是本发明的多轴伺服电机控制***的第二实施例的***框图。 如图 6所示, 本发明的多轴伺服电机控制***进一步包括数模转换模块 100, 用于在多轴吋序 控制模块 700的控制下获取位置反馈值和 /或电流反馈值; 测速模块 600, 用于在 多轴吋序控制模块 700的控制下获取各轴的速度反馈值。 所述数模转换模块 100 进一步用于在多轴吋序控制模块 700的控制下获取位置环给定值、 速度环给定值 和 /或电流环给定值。 [161] 图 7是本发明的多轴伺服电机控制***的第三实施例的***框图。 参照图 7可知 , 本***主要包括位置环调节器 401、 位置环数据锁存器 402、 速度环调节器 501 、 速度环数据锁存器 502、 电流环调节器 201和电流环数据锁存器 202、 脉宽调制 信号生成模块 300、 模数转换接口单元 101、 模数吋序控制单元 103、 第一数据锁 存器 102、 码盘接口单元 601、 M/T法测速单元 602、 第二数据锁存器 603、 多轴吋 序控制模块 700、 电流定标模块 800。 其中, 位置环调节器 401、 位置环数据锁存 器 402、 速度环调节器 501、 速度环数据锁存器 502、 电流环调节器 201和电流环 数据锁存器 202分别对应于图 1所示的位置环、 速度环和电流环。 电流定标模块 8 00与数模转换模块 100共同组成了图 1所示的电流环反馈通道、 码盘接口单元和 M /T测速单元构成了对应于图 1所示的速度环反馈通道, 数模转换模块 100构成了图 1所示的位置环反馈通道。
[162] 其中所述多轴伺服电机控制***在位置环运行吋, 所述模数转换接口单元 101 获取位置环给定值、 位置反馈值和电流反馈值; 当所述多轴伺服电机控制*** 在速度环运行吋, 所述模数转换接口单元 101获取速度环给定值, 电流反馈值; 当所述多轴伺服电机控制***在电流环运行吋, 所述模数转换接口单元 101获取 电流环给定值和电流反馈值; 所述第一数据锁存器 102在所述模数吋序控制单元 103的控制下对获取的各值进行锁存。
[163] 与此同吋, 位置环、 速度环和电流环分别以不同的刷新频率 (电流环刷新频率 fc大于速度环刷新频率 fv大于位置环刷新频率 fp) 对相应的数据进行处理, 从而 更新相应的数据。
[164] 在本发明的一个实施例中, 位置环刷新率 l~5KHz(0.2~lms) ; (国际先进水平 为 0.5ms) 速率环刷新率 5~10KHz(100~20(^sec); (国际先进水平为 25(^sec) 电流环刷新率 20~40KHz(25~5(^sec); 转速范围 0±10000r/min。
[165] 当所述多轴吋序控制模块 700控制所述多轴伺服电机控制***在位置环运行吋 , 位置环模块 400从所述数模转换模块 100获取位置环给定值和位置反馈值, 速 度环模块 500从所述位置环模块 400获取速度环给定值、 从所述测速模块 600获取 速度反馈值, 所述电流环模块 200从所述速度环模块 500获取电流环给定值、 从 所述数模转换模块 100获取电流反馈值。 [166] 当所述多轴吋序控制模块 700控制所述多轴伺服电机控制***在速度环运行吋 , 所述速度环模块 500从所述测速模块 600获取速度反馈值、 从所述数模转换模 块 100获取速度环给定值, 所述电流环模块 200从所述速度环模块 500获取电流环 给定值、 从所述数模转换模块 100获取电流反馈值; 当所述多轴吋序控制模块 70 0控制所述多轴伺服电机控制***在电流环运行吋, 所述电流环模块 200从所述 数模转换模块 100获取电流反馈值和电流环给定值, 并输出电流环输出值输给 P
WM信号生成模块 300, 从而产生控制功率器件的信号, 进而控制电机运动。
[167] 对图 7进行更详细的分解, 可以得到电流环、 速度环、 位置环的数据流向如图 8
-10所示, 图中的粗线表示数据流方向, 细线表示控制数据流的控制信号传递。
[168] 图 11是本发明的模数转换模块 100的实现框图, 其包括模数转换接口单元 101、 模数吋序控制单元 103、 第一数据锁存器 102。
[169] 图 12是 PI调节器的数据流向图; 图 13是 PI调节器的实现框图。 在本发明中, 电 流环与速度环调节器均使用 PI调节器, PI调节器釆用双线性变换。
[170] 图 14是是 PID调节器的数据流向图。 图 15是 PID调节器的实现框图。 在本发明中
, 位置环釆用 PID调节器, 其中 I、 D釆用后向差分法。
[171] 图 16是码盘接口单元的实现框图。 图 17是 M/T法测速单元的实现框图, 其包括
M/T测速部份和数据锁存部份。
[172] 在本发明的优选实施例中, 所述多轴吋序控制模块可包括用于多轴吋序控制单 元和单轴数据计算吋序控制单元。 其中, 多轴吋序控制单元为控制 1号轴至 n号 轴之间的转换; 而单轴数据计算吋序控制单元为控制每个轴进行数据计算。 图 1 8是多轴吋序控制模块的多轴吋序控制单元的吋序图。 在本发明的一个优选实施 例中, n=4。
[173] 图 19是多轴吋序控制模块的的单轴数据计算控制单元的吋序图。 每个轴包括三 个环路, 分别为位置环、 速度环和电流环, 其对应于三种情况:
[174] (1) 只有电流环, 如图 18中的 1所示;
[175] (2) 速度环 +电流环, 如图 18中的 2所示;
[176] (3) 位置环 +速度环 +电流环, 如图 18中的 3所示。
[177] 吋序 a代表 PWM同步信号, 其是电机控制***的同步信号, 所有数据转换与计 算都由其进行同步。
[178] 吋序 b-f代表反馈通道的相关信号, 其中, ADDone表示数据转换部分的完成信 号, IFBStart和 MTStart分别表示电流反馈通道数据计算和速度反馈通道数据计算 的开始, IFBDone和 MTDone分别表示电流和速度反馈通道数据计算的结束。
[179] 吋序 h-1表示前向通道的相关信号, 其中, SLStart和 CLStart分别表示速度环和 电流环前向通道数据计算的开始, SLDone和 CLDone分别表示速度环和电流环前 向通道数据计算的结束。
[180] 吋序 g表示与前向通道和后向通道均有关的信号, 其为位置环数据开始计算信 号。
[181] 对于图 19所示的情况 3, ***进行位置环, 速度环和电流环的运算, 吋序如图 2 0所示。 对于图 19所示的情况 2, ***进行速度环和电流环的运算, 吋序如图 21 所示。 对于图 19所示的情况 2, ***只进行电流环的运算, 吋序如图 22图所示。
[182] 釆用本发明的多轴伺服电机控制***, 可釆用全数字化、 多轴、 单芯片硬件实 现复杂交流伺服电动机矢量控制、 力矩、 速率、 位置闭环控制, 以使伺服*** 的体积更加紧缩, 动态性能提高 2-10倍。 高性能控制策略和芯片体系结构, 使控 制***的力能指标提高 2-3倍。 使******元器件减少 50-80%, 整机体积减少 2-4 倍, 产品成本下降 2-3倍。
[183] 本发明釆用控制器吋分复用思想, 即利用吋间资源来代替空间资源。 釆样频率 为 40kHz, 一个控制器内核, 实现 4个轴的伺服驱动单元。
[184] 虽然本发明是通过具体实施例进行说明的, 本领域技术人员应当明白, 在不脱 离本发明范围的情况下, 还可以对本发明进行各种变换及等同替代。 因此, 本 发明不局限于所公开的具体实施例, 而应当包括落入本发明权利要求范围内的 全部实施方式。

Claims

权利要求书
[1] 1、 一种多轴伺服电机控制***, 其特征在于, 所述多轴伺服电机控制*** 包括:位置环模块 (400) , 用于接收各轴的位置环给定值和位置反馈值, 并计算速度环给定值;速度环模块 (500) , 用于接收各轴的速度环给定值 和速度反馈值, 并计算电流环给定值; 电流环模块 (200) , 用于接收各轴 的电流环给定值和电流反馈值, 并输出电流环输出值; 脉宽调制信号生成 模块 (300) , 用于从所述电流环模块 (200) 接收所述电流环输出值并生 成用于控制各轴的伺服电机的脉宽调制信号; 和多轴吋序控制模块 (700) , 用于控制所述位置环模块 (400) 、 速度环模块 (500) 、 电流环模块 (2 00) 和脉宽调制信号生成模块 (300) 的信号接收和处理。
[2] 2、 根据权利要求 1所述多轴伺服电机控制***, 其特征在于, 所述多轴伺 服电机控制***包括: 数模转换模块 (100) , 用于在多轴吋序控制模块 ( 700) 的控制下获取位置反馈值和 /或电流反馈值; 测速模块 (600) , 用于 在多轴吋序控制模块 (700) 的控制下获取各轴的速度反馈值。
[3] 3、 根据权利要求 2所述多轴伺服电机控制***, 其特征在于, 所述数模转 换模块 (100) 进一步用于在多轴吋序控制模块 (700) 的控制下获取位置 环给定值、 速度环给定值和 /或电流环给定值。
[4] 4、 根据权利要求 3所述多轴伺服电机控制***, 其特征在于, 当所述多轴 吋序控制模块 (700) 控制所述多轴伺服电机控制***在位置环运行吋, 位 置环模块 (400) 从所述数模转换模块 (100) 获取位置环给定值和位置反 馈值, 速度环模块 (500) 从所述位置环模块 (400) 获取速度环给定值、 从所述测速模块 (600) 获取速度反馈值, 所述电流环模块 (200) 从所述 速度环模块 (500) 获取电流环给定值、 从所述数模转换模块 (100) 获取 电流反馈值; 当所述多轴吋序控制模块 (700) 控制所述多轴伺服电机控制 ***在速度环运行吋, 所述速度环模块 (500) 从所述测速模块 (600) 获 取速度反馈值、 从所述数模转换模块 (100) 获取速度环给定值, 所述电流 环模块 (200) 从所述速度环模块 (500) 获取电流环给定值、 从所述数模 转换模块 (100) 获取电流反馈值; 当所述多轴吋序控制模块 (700) 控制 所述多轴伺服电机控制***在电流环运行吋, 所述电流环模块 (200) 从所 述数模转换模块 (100) 获取电流反馈值和电流环给定值。
[5] 5、 根据权利要求 3所述多轴伺服电机控制***, 其特征在于, 所述数模转 换模块 (100) 包括: 模数转换接口单元 (101) 、 模数吋序控制单元 (103 ) 和第一数据锁存器 (102) , 其中, 所述多轴伺服电机控制***在位置环 运行吋, 所述模数转换接口单元 (101) 获取位置环给定值、 位置反馈值和 电流反馈值; 当所述多轴伺服电机控制***在速度环运行吋, 所述模数转 换接口单元 (101) 获取速度环给定值, 电流反馈值; 当所述多轴伺服电机 控制***在电流环运行吋, 所述模数转换接口单元 (101) 获取电流环给定 值和电流反馈值; 所述第一数据锁存器 (102) 在所述模数吋序控制单元 ( 103) 的控制下对获取的各值进行锁存。
[6] 6、 根据权利要求 3所述多轴伺服电机控制***, 其特征在于, 所述多轴伺 服电机控制***进一步包括电流定标模块 (800) , 用于定标从所述数模转 换模块 (100) 获取电流反馈值并将定标后的电流反馈值发送到电流环模块 (200)
[7] 7、 根据权利要求 3所述多轴伺服电机控制***, 其特征在于, 所述测速模 块 (600) 包括码盘接口单元 (601) 、 M/T法测速单元 (602) 和第二数据 锁存器 (603) , 其中所述码盘接口单元 (601) 用于获取各轴角位移; 所 述 M/T法测速单元 (602) 用于将所述角位移转换成速度反馈值; 所述第二 数据锁存器 (603) 在所述多轴吋序控制模块 (700) 的控制下对所述速度 反馈值进行锁存。
[8] 8、 根据权利要求 1所述多轴伺服电机控制***, 其特征在于, 所述位置环 模块 (400) 进一步包括位置环调节器 (401) 和位置环数据锁存器 (402) ; 所述位置环调节器 (401) 用于接收位置环给定值和位置反馈值, 并生成 速度环给定值; 所述位置环数据锁存器 (402) 在多轴吋序控制模块 (700 ) 的控制下锁存所述位置环给定值、 位置反馈值和 /或速度环给定值。
[9] 9、 根据权利要求 1所述多轴伺服电机控制***, 其特征在于, 所述速度环 模块 (500) 进一步包括速度环调节器 (501) 和速度环数据锁存器 (502) ; 所述速度环调节器 (501) 用于接收速度环给定值和速度反馈值, 并生成 电流环给定值; 所述速度环数据锁存器 (502) 在多轴吋序控制模块 (700 ) 的控制下锁存所述速度环给定值、 速度反馈值和 /或电流环给定值。
[10] 10、 根据权利要求 1所述多轴伺服电机控制***, 其特征在于, 所述电流环 模块 (200) 进一步包括电流环调节器 (201) 和电流环数据锁存器 (202) ; 所述电流环调节器 (201) 用于接收电流环给定值和电流反馈值, 并生成 电流环输出值; 所述电流环数据锁存器 (202) 在多轴吋序控制模块 (700 ) 的控制下锁存所述电流环给定值和电流反馈值和 /或电流环输出值。
PCT/CN2008/073010 2008-11-11 2008-11-11 多轴伺服电机控制*** WO2010054506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2008/073010 WO2010054506A1 (zh) 2008-11-11 2008-11-11 多轴伺服电机控制***
US13/056,308 US8598832B2 (en) 2008-11-11 2008-11-11 Control system of multi-shaft servo motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/073010 WO2010054506A1 (zh) 2008-11-11 2008-11-11 多轴伺服电机控制***

Publications (1)

Publication Number Publication Date
WO2010054506A1 true WO2010054506A1 (zh) 2010-05-20

Family

ID=42169584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073010 WO2010054506A1 (zh) 2008-11-11 2008-11-11 多轴伺服电机控制***

Country Status (2)

Country Link
US (1) US8598832B2 (zh)
WO (1) WO2010054506A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075125A (zh) * 2010-12-08 2011-05-25 沈阳工业大学 数控机床多轴联动伺服控制***的控制方法
CN102509887A (zh) * 2011-10-27 2012-06-20 零八一电子集团有限公司 线性变系数伺服驱动雷达天线跟踪运动目标的伺服***
US8598832B2 (en) 2008-11-11 2013-12-03 Shenzhen Academy Of Aerospace Technology Control system of multi-shaft servo motor
CN103955163A (zh) * 2013-10-25 2014-07-30 北京理工大学 一种面向微装配***的多轴混合快速控制单元设计方法
CN109302103A (zh) * 2018-11-29 2019-02-01 上海福赛特控制技术有限公司 一种远程分离的电机驱动及电机控制***

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207571B (zh) * 2013-03-05 2015-07-08 中国核电工程有限公司 一种应用于装卸料机模拟机的编码器信号仿真***和方法
CN104251536B (zh) * 2013-06-26 2017-04-12 青岛海尔空调电子有限公司 一种一对多的电流环通信方法及通讯装置
CN104714407B (zh) * 2013-12-17 2018-02-09 北京自动化控制设备研究所 一种旋转机构pid/h∞控制方法
KR101789597B1 (ko) * 2016-04-04 2017-11-20 지석기 다축구동 모터
CN106448375A (zh) * 2016-07-28 2017-02-22 华侨大学 一种面向Matlab的直流电机调速控制教学实验装置
CN108762183A (zh) * 2018-05-05 2018-11-06 深圳市越疆科技有限公司 芯片式驱控一体结构
CN109194230A (zh) * 2018-11-14 2019-01-11 苏州绿控新能源科技有限公司 一种永磁同步电机控制算法中电流环硬件加速方法
CN112928950B (zh) * 2021-01-25 2022-12-13 上海雷诺尔科技股份有限公司 基于光纤复用的数据传输***和高压软起动控制***
CN113359420A (zh) * 2021-06-25 2021-09-07 盛视科技股份有限公司 闸机控制方法、装置和***及闸机
CN117075482B (zh) * 2023-10-13 2024-01-05 深圳市正弦电气股份有限公司 一种伺服自适应前馈控制***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202455A (ja) * 1995-01-26 1996-08-09 Toshiba Corp ロボット制御装置
JP2001268974A (ja) * 2000-03-15 2001-09-28 Fuji Electric Co Ltd 永久磁石同期電動機の制御装置
CN1433950A (zh) * 2002-01-24 2003-08-06 北京航天万源稀土电机应用技术有限公司 稀土永磁自同步无齿电梯拖动控制***
CN1519671A (zh) * 2003-01-23 2004-08-11 香港城市大学 多轴电机数控处理***
JP2005094826A (ja) * 2003-09-12 2005-04-07 Hitachi Ltd 同期電動機の速度制御装置及び磁極位置推定方法
CN1960161A (zh) * 2006-11-17 2007-05-09 清华大学 一种异频供电永磁同步电动机矢量控制***
JP2007151344A (ja) * 2005-11-29 2007-06-14 Denso Corp 磁極位置推定方法、モータ速度推定方法及びモータ制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639653A (en) * 1985-04-15 1987-01-27 Applied Microbotics Corporation Method and apparatus for performing work in a three dimensional space
US4763055A (en) * 1986-11-20 1988-08-09 Westinghouse Electric Corp. Digital robot control having high performance servo control system
US7072740B2 (en) * 2002-12-16 2006-07-04 Sony Corporation Legged mobile robot
WO2010054506A1 (zh) 2008-11-11 2010-05-20 深圳航天科技创新研究院 多轴伺服电机控制***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202455A (ja) * 1995-01-26 1996-08-09 Toshiba Corp ロボット制御装置
JP2001268974A (ja) * 2000-03-15 2001-09-28 Fuji Electric Co Ltd 永久磁石同期電動機の制御装置
CN1433950A (zh) * 2002-01-24 2003-08-06 北京航天万源稀土电机应用技术有限公司 稀土永磁自同步无齿电梯拖动控制***
CN1519671A (zh) * 2003-01-23 2004-08-11 香港城市大学 多轴电机数控处理***
JP2005094826A (ja) * 2003-09-12 2005-04-07 Hitachi Ltd 同期電動機の速度制御装置及び磁極位置推定方法
JP2007151344A (ja) * 2005-11-29 2007-06-14 Denso Corp 磁極位置推定方法、モータ速度推定方法及びモータ制御装置
CN1960161A (zh) * 2006-11-17 2007-05-09 清华大学 一种异频供电永磁同步电动机矢量控制***

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598832B2 (en) 2008-11-11 2013-12-03 Shenzhen Academy Of Aerospace Technology Control system of multi-shaft servo motor
CN102075125A (zh) * 2010-12-08 2011-05-25 沈阳工业大学 数控机床多轴联动伺服控制***的控制方法
CN102509887A (zh) * 2011-10-27 2012-06-20 零八一电子集团有限公司 线性变系数伺服驱动雷达天线跟踪运动目标的伺服***
CN102509887B (zh) * 2011-10-27 2014-03-26 零八一电子集团有限公司 线性变系数伺服驱动雷达天线跟踪运动目标的伺服***
CN103955163A (zh) * 2013-10-25 2014-07-30 北京理工大学 一种面向微装配***的多轴混合快速控制单元设计方法
CN109302103A (zh) * 2018-11-29 2019-02-01 上海福赛特控制技术有限公司 一种远程分离的电机驱动及电机控制***

Also Published As

Publication number Publication date
US20110127942A1 (en) 2011-06-02
US8598832B2 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
WO2010054506A1 (zh) 多轴伺服电机控制***
CN101738978B (zh) 多轴伺服电机控制***
US20070069665A1 (en) Multi-axis ac servo control system and method
Bose et al. A microcomputer-based control and simulation of an advanced IPM synchronous machine drive system for electric vehicle propulsion
CN102545760B (zh) 控制***
JPS62166946A (ja) 主軸位置決め装置
CN112994532B (zh) 一体化多轴同步运动控制***及同步控制方法
CN108599659B (zh) 基于实时运动控制平台以及fpga的伺服***及其控制方法
US8214415B2 (en) Interpolator for a networked motion control system
CN212433614U (zh) 一种基于fpga的多轴电机流水线控制***
JP7453268B2 (ja) 多軸サーボ制御システム
JPH0884492A (ja) サーボモータの同期運転方法及びその装置
US6978186B2 (en) Modular functional block for an electronic control system
JP2007025759A (ja) 電動機駆動装置および位置指令装置ならびに位置決め装置
KR100520779B1 (ko) Fpga를 이용한 다 축 위치 제어장치
Sun et al. An SoC-based platform for integrated multi-axis motion control and motor drive
CN207908952U (zh) 一种数控机床攻牙控制***
WO1990016022A1 (en) Axis control system of numerical control apparatus
Zeroug et al. Speed synchronization control of multiple DC motors using DSP
Gu et al. Optimized design of soc-based control system for multi-axis drive
Akhbari et al. Low-cost real-time coordinated motion generator firmware for multi-DOF parallel robots
JPS59229616A (ja) 運動制御装置
JP2668050B2 (ja) 交流サーボモータの制御装置
Puiu et al. INTELLIGENT SERVO DRIVES AND FIELDBUSSES COMMUNICATION FOR MULTI-AXIS MOTION CONTROL
JPS62126405A (ja) 軌道制御方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13056308

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 08878066

Country of ref document: EP

Kind code of ref document: A1