WO2010052930A1 - Motor and motor control device - Google Patents

Motor and motor control device Download PDF

Info

Publication number
WO2010052930A1
WO2010052930A1 PCT/JP2009/005944 JP2009005944W WO2010052930A1 WO 2010052930 A1 WO2010052930 A1 WO 2010052930A1 JP 2009005944 W JP2009005944 W JP 2009005944W WO 2010052930 A1 WO2010052930 A1 WO 2010052930A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
salient
poles
inverter
armature
Prior art date
Application number
PCT/JP2009/005944
Other languages
French (fr)
Japanese (ja)
Inventor
金弘中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2010052930A1 publication Critical patent/WO2010052930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a permanent magnet field type synchronous motor and a control system including the motor and an inverter.
  • Permanent magnet motor is usually driven by a motor controller combined with an inverter and controller.
  • This motor control device includes an inverter circuit for driving and controlling the motor such as PWM control, and controls the drive current by ON / OFF operation (PWM control or the like) of the semiconductor switch element of the inverter circuit.
  • ⁇ Permanent magnets have the wonderful feature that the characteristics of the magnets do not change forever, as is the case with permanent magnet motors, but the induced voltage that increases in proportion to the rotational speed is a limitation in the system configuration.
  • field weakening control by an inverter is implemented, but this field weakening control causes a large amount of reactive current that does not contribute to motor torque to flow, resulting in reduced efficiency, heat generation, increased inverter current capacity, etc. There are many problems.
  • the present invention provides a permanent magnet motor control device in which an induced voltage that increases in proportion to the number of revolutions becomes a problem.
  • the armature winding is provided in a multiphase structure, and the operation mode of the multiphase inverter is changed according to the required operation state. Accordingly, it is an object of the present invention to provide a synchronous motor and a motor control device that are characterized by high efficiency operation in a wide operation region.
  • the present invention provides a motor having a plurality of salient poles having armature windings and a plurality of field poles, each salient pole having a first armature winding or The second armature winding is wound, the number of salient poles of the winding group of the first armature winding, and the number of salient poles of the winding group of the second armature winding.
  • the combination ratio is 2: 1.
  • the motor of the present invention is characterized in that a linear motor is configured by combining the field magnetic pole and the salient pole magnetic pole.
  • the present invention provides a motor including P field magnetic poles arranged at equal intervals and M salient magnetic poles having armature windings.
  • the basic unit of the salient pole M is composed of nine salient poles in the order of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m, and the salient poles are 1 m and 2 m,
  • Six armature phases are formed by combinations of 3 m, 4 m and 5 m, 6 m, 7 m, 8 m, and 9 m, and the basic unit of the salient pole magnetic pole M is repeatedly added.
  • the basic unit of the salient pole magnetic pole M is configured as a three-phase connection by a combination of 1 m and 2 m, 4 m and 5 m, 7 m and 8 m, and another three-phase connection by 3 m, 6 m, and 9 m.
  • the basic unit of the salient pole magnetic pole M is repeatedly added.
  • the basic unit of the salient pole magnetic pole M is configured as six armature phases with combinations of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m.
  • the basic unit of the magnetic pole M is configured as a six-phase motor that is repeatedly added.
  • the motor of the present invention is characterized in that the field magnetic pole and the salient pole magnetic pole are combined to form a linear motor.
  • the present invention provides a motor control apparatus for driving a motor having a salient pole magnetic pole having a plurality of armature windings and a plurality of field magnetic poles by a multiple inverter. The operation mode is switched.
  • the salient poles of the motor have a three-phase connection inverter with a combination of 1 m and 2 m, 4 m and 5 m, 7 m and 8 m, and another three-phase connection with 3 m, 6 m, and 9 m.
  • the inverter is composed of multiple inverters, and the operation mode of the inverter is switched according to the required operation state.
  • the motor control device of the present invention is characterized in that it constitutes a servo control system that combines a motor, a position detecting device for field magnetic poles, a multiple inverter, and a controller.
  • the motor control device of the present invention is characterized in that the field magnetic pole includes a permanent magnet.
  • the motor of the present invention it is possible to provide a permanent magnet field type motor that realizes a reduction in cogging torque by using the disclosed slot combination of the number of salient poles and the number of field poles.
  • the motor control device of the present invention is provided with multiple three-phase armature windings in one rotor, and individually connected to the respective inverter circuits corresponding to the three-phase armature windings.
  • 1 shows a basic configuration of a motor according to an embodiment of the present invention.
  • 1 shows an armature winding connection diagram of a motor according to an embodiment of the present invention.
  • 1 shows a basic concept of a motor according to an embodiment of the present invention.
  • An example of the armature winding connection of the motor by this invention is shown.
  • An example of the armature winding connection of the motor by this invention is shown.
  • An example of the armature winding connection of the motor by this invention is shown.
  • the Example which combined several basic units of this invention is shown.
  • An example of an armature winding connection in which a plurality of basic units of the present invention are combined is shown.
  • An example of the armature winding connection of the motor by this invention is shown.
  • 6 shows another embodiment (external rotation type) of a motor according to the present invention. 6 shows another embodiment (linear motor) of a motor according to the present invention. 6 shows another embodiment (linear motor) of a motor according to the present invention.
  • 1 shows an embodiment of a control circuit system of the present invention. Another embodiment of the control circuit system of the present invention is shown. An example of the motor drive pattern of this invention is shown. Another embodiment of the control circuit system of the present invention is shown. An example of the rotor cross-section of the motor of this invention is shown. An example of the freedom degree of the rotor shape of the motor of this invention is shown.
  • the motor of this embodiment includes P field magnetic poles 21 arranged at equal intervals, and an armature provided with M salient poles 13 having armature windings 11, and the movement of the field magnetic poles
  • P field magnetic poles
  • M armature windings
  • the basic unit of the salient pole magnetic pole M is composed of nine salient poles 13 in the order of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m, and the salient poles are 1 m and 2 m. , 3 m, 4 m and 5 m, 6 m, 7 m and 8 m, 9 m are combined to form six armature phases, and the motor has a basic unit of the salient pole M.
  • an arbitrary salient pole magnetic pole can be set as the salient pole magnetic pole 1m.
  • the field magnetic pole 21 made of a permanent magnet is composed of eight pieces, but may be ten pieces based on the relationship of the expression (1).
  • the field magnetic pole 21 made of a permanent magnet is integrated with the shaft 12 and is configured to move in synchronization with a rotating magnetic field generated by a current flowing through the armature winding 11 of the salient pole magnetic pole 13.
  • the number of magnetic poles of the salient poles 13 needs to be a multiple of 3, and in the case of a six-phase motor, the number of magnetic poles of the salient poles 13 is a multiple of 6. is required.
  • This example shows that it can be driven as a six-phase motor with nine salient poles.
  • the cogging torque pulsation number increases due to the slot combination by the combination of the salient pole magnetic pole 13 and the field magnetic pole 21 as shown in the equation (1).
  • the cogging torque pulsation number is 72, and a slot combination of field poles consisting of 9 salient poles and 10 permanent magnets.
  • the cogging torque pulsation number is 90.
  • the greater the cogging torque pulsation number the greater the effect of reducing the cogging torque.
  • FIG. 7 shows an embodiment in which a plurality of basic units of the present invention are combined.
  • the number of salient poles 13 when the number of salient poles 13 is 18, the number of field poles 21 made of permanent magnets is 16. However, as shown in the equation (1), 20 may be used. Similarly, when the number of salient poles 13 is 27, the number of field poles 21 made of permanent magnets may be 24 or 30.
  • the basic unit of the salient pole magnetic pole M is composed of nine salient poles 13 in the order of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m.
  • FIG. 7 shows a case where there are 18 salient poles and 16 field poles, but the basic unit of salient poles M according to the present invention is arranged twice.
  • FIG. 2 shows an armature winding connection diagram of a motor according to an embodiment of the present invention.
  • the number of rotors provided with the permanent magnet 21 is one, but the salient poles are 1m and 2m U phase, 4m and 5m V phase, 7m and 8m W phase, and 6m R motor, 9m is S phase, and 3m is a motor characterized in that six armature phases are formed by combination of T phase. It is a basic unit configuration that combines one set UVW three-phase connection with U phase, V phase, and W phase and two sets of three-phase connection consisting of another one RST three-phase connection with R phase, S phase, and T phase. .
  • FIG. 3 shows a basic concept of a motor according to an embodiment of the present invention.
  • FIG. 3 shows that the motor of this embodiment can be driven as a 6-slot 8-pole motor and can be driven as a 3-slot 8-pole motor.
  • the 9-slot is formed by combining the 3-phase connection consisting of 6 slots and the 3-phase connection consisting of the other 3 slots into a 2Y connection.
  • the outline which becomes an 8-pole motor is shown.
  • the armature winding of the U-phase salient pole magnetic pole of U1 and the armature winding of the salient pole magnetic pole of U2 are shown in a configuration example in series connection. In the V phase and the W phase, the same-phase armature windings are connected in series as in the U phase.
  • FIG. 4 shows another armature winding connection diagram of the motor according to the present invention.
  • the in-phase armature windings of the UVW phase are configured in parallel connection.
  • the induced voltage of each phase is about half when connected in parallel. It is possible to select a configuration according to these conditions from a system configuration including a circuit.
  • the number of salient pole armature windings of each of the nine salient pole magnetic base units is the same, and the in-phase armature windings of the UVW phase are connected in parallel, thereby inducing the RST phase. The value can be close to the voltage.
  • FIG. 5 shows another armature winding connection diagram of the motor according to the present invention.
  • the UVW phase and the RST phase are an example of ⁇ connection, and are a combination of in-phase armature windings of the UVW phase connected in series.
  • FIG. 6 shows another armature winding connection diagram of the motor according to the present invention.
  • the UVW phase is an example in which the ⁇ connection is made and the RST phase is made in the Y connection, and is a combination in which the armature windings in the same phase of the UVW phase are connected in series. As shown in FIG. The child windings may be connected in parallel. Further, the UVW phase can be combined with Y connection and the RST phase with ⁇ connection.
  • FIG. 8 shows another armature winding connection diagram of the motor according to the present invention.
  • the field magnetic pole 21 is a schematic showing an image of a permanent magnet, and the actual number of field magnetic poles is adjusted to the number as shown in equation (1). The same applies to other drawings.
  • FIG. 10 shows another embodiment of the motor according to the present invention.
  • the rotor 20 is an abduction type, and the combination of the armature windings 11 is in principle the same as the salient pole magnetic basic unit shown in FIG.
  • a salient pole magnetic pole 13 having an armature winding 11 wound around the outer periphery of the armature is provided.
  • a permanent magnet 21 magnetized in N and S at equal intervals and a rotor 20 including a yoke through which a magnetic flux passes as a magnetic path of a magnetic circuit are rotatably supported through a gap. .
  • FIG. 11 shows another embodiment of the motor according to the present invention.
  • the linear motor structure is supported by a support mechanism (not shown) so as to maintain a constant air gap with the armature 10 as the primary side and the portion made of the permanent magnet as the secondary side, and is relatively movable. Indicates. Further, auxiliary magnetic poles 14 are provided at both short portions of the armature for the purpose of reducing the thrust unevenness.
  • 11A and 11B show examples of combinations of the armature windings 11 wound around the salient pole magnetic poles 13.
  • the left and right balance of the magnetic circuit of the RST phase salient pole magnetic poles 13 can be taken, and more stable running is possible.
  • the relative distance between the salient pole magnetic pole 13 and the field magnetic pole 21 shown in the formula (1) may be maintained, and the number of permanent magnets may be increased in accordance with the travel stroke.
  • FIG. 12 shows another embodiment of the motor according to the present invention.
  • FIG. 13 shows a basic configuration of the control circuit system of the present invention.
  • a first inverter 1 and a second inverter 2 are connected to the power circuit 3, and each inverter is connected to a respective armature winding.
  • the encoder 7 detects the position of the permanent magnet (magnetic pole detection) and the rotation information of the rotor, and supplies the drive controller 5 and the gate circuit controller 6 with the magnetic pole information and the rotation information of the motor.
  • the power circuit in the first inverter 1 and the second inverter 2 is controlled to be turned on / off by the gate circuit controller 6 so that current flows from the power supply circuit 3 to the armature winding.
  • a current sensor 9 is provided between the inverter and the armature winding, and the actual load current value is fed back to the gate circuit controller 6 to control the difference from the command current.
  • the drive circuit system described here is only an example, and if current sensorless control, magnetic pole position detection sensorless control, or the like is applied, the current sensor 9, the encoder 7 and the like may be omitted depending on the application. Is possible.
  • FIG. 14 shows an example of the basic configuration of the control circuit system of the present invention.
  • a smoothing capacitor 4 is connected to the power supply circuit 3, a first inverter 1 and a second inverter 2 are connected, and each inverter is connected to an armature winding.
  • a control circuit system configuration using a current source inverter may be used.
  • the output voltage of the bridge inverter is a basic inverter system that outputs two levels of ⁇ E, assuming that the DC voltage is E, but a multi-level inverter system may be used.
  • the multi-level inverter system is a mechanism in which a multi-level value can be obtained by dividing a DC voltage into a plurality and selecting one of the output voltages of the inverter, as in the motor of the present invention. In the case of multiple connection, it is effective when switching the operation mode of the multiple inverter according to the required operation state.
  • the encoder 7 detects the position of the permanent magnet (magnetic pole detection) and the rotation information of the rotor, and supplies the drive controller 5 and the gate circuit controller 6 with the magnetic pole information and the rotation information of the motor.
  • a linear encoder may be used as a means for detecting the position information and speed information of the mover.
  • the gate circuit controller 6 controls the power elements in the first inverter 1 and the second inverter 2 to turn on and off so that current flows from the power supply circuit 3 to the armature winding. Yes.
  • the drive controller 5 also controls the entire control circuit system while receiving and transmitting external information other than the motor of the present invention.
  • a current sensor 9 is provided between the inverter and the armature winding, and the actual load current value is speeded back to the gate circuit controller 6 to control the difference from the command current.
  • the drive circuit system described here is an example, and it is also possible to control by converting the current amount of the other armature winding by the information amount of only one of the current sensors.
  • each inverter circuit corresponding to the multi-phase armature winding is individually connected to the rotor, and these multiple windings are based on the required operation state of the motor.
  • each inverter circuit individually controls the drive current that is passed through the phase armature winding.
  • the switching of the operation mode of the multiple inverter according to the requested operation state is performed based on the motor torque, the motor rotation speed, the motor control area, and the like.
  • FIG. 15 shows an example of a drive pattern by the motor of the present invention.
  • the induced voltage of the UVW phase is RST.
  • the operation mode is set so that the RST phase with a small number of turns per phase is driven mainly.
  • the UVW phase may be driven as the main.
  • both the UVW-phase inverter 1 and the RST-phase inverter 2 may be driven while maintaining the optimum phase difference between them.
  • an armature winding (not shown) is provided between the armature windings connected to the UVW-phase inverter 1 and the RST-phase inverter 2, and the armature winding in the sleep mode is opened and closed. It is also possible to turn on and off by machine.
  • FIG. 16 shows another embodiment of the drive circuit system of the present invention.
  • FIG. 16 shows a combination of two or more sets of multiple inverters in the basic control circuit system of the present invention.
  • Each inverter UVW-Y1, UVW-Y2, RST-Y1, RST-Y2 and the like is in accordance with instructions from the drive controller 5. It is a system configuration that performs overall control. In the case of a large-capacity motor with a large number of salient poles, this system can be operated by combining a plurality of small inverters in parallel without using a large-capacity inverter.
  • FIG. 17 shows an example of the rotor cross-sectional structure of the present invention.
  • FIG. 18 shows various configuration examples of the rotor shape of the present invention.
  • FIG. 18 shows a mechanism in which the rotor connected to the shaft 12 rotates, and shows (a) inner rotation type, (b) outer rotation type, (c) axial gap type, and (d) hollow type.
  • a double-sided axial gap type in which the armature 10 is sandwiched from both sides by two sets of rotors is also possible.
  • other systems may be configured by combining a plurality of armatures.
  • the permanent magnet has the effect of reducing the cogging torque by using a slot combination of nine salient poles and eight (or ten) field poles.
  • a field type motor can be provided.
  • the present invention provides multiple three-phase armature windings with six salient poles and three salient poles in one rotor, and each inverter corresponding to these three-phase armature windings. It is possible to provide a system in which a circuit is connected and each inverter circuit individually controls a drive current to be supplied to these three-phase armature windings based on a required operation state of the motor. As a result, it is possible to use only the armature winding with a small number of turns that is highly efficient when the motor speed is high speed rotation in the field weakening area where the motor speed is high speed. The effect which can improve the driving efficiency of a motor is acquired.
  • the motor and motor control device of the present invention can be applied to conventional permanent magnet field synchronous motors and motor control devices that drive them in general.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Control Of Ac Motors In General (AREA)
  • Windings For Motors And Generators (AREA)
  • Linear Motors (AREA)

Abstract

Provided are a synchronous motor of the permanent magnet field type and a control system equipped with the motor and an inverter.  That is, provided are a synchronous motor and a motor control device which can execute a highly effective operation. The motor includes: a plurality of salient poles having an armature winding; and a plurality of field poles.  Each of the salient poles has a first armature winding and a second armature winding arranged around the pole.  The ratio of the number of the salient poles of the first armature windings with respect to the number of the salient poles of the second armature windings is set to 2 : 1.  The slot combination of the number of the salient poles and the number of the field poles realizes reduction of the cogging torque.

Description

モータ、およびモータ制御装置Motor and motor control device
 本発明は永久磁石界磁形の同期タイプのモータと、及びこのモータとインバータを備えた制御システムに関する。 The present invention relates to a permanent magnet field type synchronous motor and a control system including the motor and an inverter.
 永久磁石モータは通常インバータとコントローラなどと組み合わせたモータ制御装置で駆動する。このモータ制御装置は、PWM制御などモータを駆動制御するためのインバータ回路を備え、このインバータ回路の半導体スイッチ素子のON・OFF動作(PWM制御等)により駆動電流を制御している。 Permanent magnet motor is usually driven by a motor controller combined with an inverter and controller. This motor control device includes an inverter circuit for driving and controlling the motor such as PWM control, and controls the drive current by ON / OFF operation (PWM control or the like) of the semiconductor switch element of the inverter circuit.
特公平8-8764号公報Japanese Patent Publication No. 8-8764
 永久磁石モータにおいて、永久磁石は言葉通り永久に磁石の特性が変わらない素晴らしい特徴を持つが、回転数に比例して増加する誘起電圧がシステム構成において制約になる。その誘起電圧対策として、インバータによる弱め界磁制御が実施されているが、この弱め界磁制御にはモータトルクに寄与しない無効電流を多量に流すことになり、効率の低下,発熱,インバータ電流容量の増加など、問題も多い。 ¡Permanent magnets have the wonderful feature that the characteristics of the magnets do not change forever, as is the case with permanent magnet motors, but the induced voltage that increases in proportion to the rotational speed is a limitation in the system configuration. As a countermeasure against the induced voltage, field weakening control by an inverter is implemented, but this field weakening control causes a large amount of reactive current that does not contribute to motor torque to flow, resulting in reduced efficiency, heat generation, increased inverter current capacity, etc. There are many problems.
 本発明は回転数に比例して増加する誘起電圧が問題になる永久磁石モータ制御装置において、電機子巻線を多相構造に備えて、要求運転状態に応じて多相インバータの運転モードを替えることで広い運転領域において高効率運転が出来る特徴とする同期モータ、およびモータ制御装置を提供することにある。 The present invention provides a permanent magnet motor control device in which an induced voltage that increases in proportion to the number of revolutions becomes a problem. The armature winding is provided in a multiphase structure, and the operation mode of the multiphase inverter is changed according to the required operation state. Accordingly, it is an object of the present invention to provide a synchronous motor and a motor control device that are characterized by high efficiency operation in a wide operation region.
 上記課題を達成するために、本発明は電機子巻線を有する複数の突極磁極と、複数の界磁磁極を備えたモータにおいて、各々の突極磁極には第一の電機子巻線又は、第二の電機子巻線が巻かれて、前記第一の電機子巻線の巻線群の突極磁極数と、前記第二の電機子巻線の巻線群の突極磁極数の組み合わせ比を2:1にしたことを特徴とするものである。 In order to achieve the above object, the present invention provides a motor having a plurality of salient poles having armature windings and a plurality of field poles, each salient pole having a first armature winding or The second armature winding is wound, the number of salient poles of the winding group of the first armature winding, and the number of salient poles of the winding group of the second armature winding. The combination ratio is 2: 1.
 更に、本発明のモータは、前記界磁磁極と突極磁極を組み合わせて、リニアモータに構成したことを特徴とするものである。 Furthermore, the motor of the present invention is characterized in that a linear motor is configured by combining the field magnetic pole and the salient pole magnetic pole.
 また、上記課題を達成するために、本発明は等間隔に配列されたP個の界磁磁極と、電機子巻線を有する突極磁極M個の電機子とを備えたモータにおいて、前記界磁極数Pと前記突極磁極Mの関係を以下の関係にし、
  P:M=9n±n:9n(但し、nは1以上の整数)
前記突極磁極Mの基本ユニットは、1m,2m,3m,4m,5m,6m,7m,8m,9mの順の9個の突極磁極で構成され、該突極磁極は、1mと2m,3m,4mと5m,6m,7mと8m,9mの組み合わせで6個の電機子相を作り、該突極磁極Mの基本ユニットを繰り返して増設されたことを特徴とするものである。
In order to achieve the above object, the present invention provides a motor including P field magnetic poles arranged at equal intervals and M salient magnetic poles having armature windings. The relationship between the number of magnetic poles P and the salient pole magnetic pole M is as follows:
P: M = 9n ± n: 9n (where n is an integer of 1 or more)
The basic unit of the salient pole M is composed of nine salient poles in the order of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m, and the salient poles are 1 m and 2 m, Six armature phases are formed by combinations of 3 m, 4 m and 5 m, 6 m, 7 m, 8 m, and 9 m, and the basic unit of the salient pole magnetic pole M is repeatedly added.
 更に、本発明のモータは、該突極磁極Mの基本ユニットは1mと2m、4mと5m、7mと8m、の組み合わせによる3相結線、3m,6m,9mによる他の3相結線として構成し、該突極磁極Mの基本ユニットを繰り返して増設することを特徴とするものである。 Further, in the motor of the present invention, the basic unit of the salient pole magnetic pole M is configured as a three-phase connection by a combination of 1 m and 2 m, 4 m and 5 m, 7 m and 8 m, and another three-phase connection by 3 m, 6 m, and 9 m. The basic unit of the salient pole magnetic pole M is repeatedly added.
 更に、本発明のモータは、前記突極磁極Mの基本ユニットは1mと2m,3m,4mと5m,6m,7mと8m,9mの組み合わせで6個の電機子相として構成し、該突極磁極Mの基本ユニットを繰り返して増設する6相モータとして構成することを特徴とするものである。 Further, in the motor of the present invention, the basic unit of the salient pole magnetic pole M is configured as six armature phases with combinations of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m. The basic unit of the magnetic pole M is configured as a six-phase motor that is repeatedly added.
 更に、本発明のモータは前記界磁磁極と突極磁極を組み合わせて、リニアモータに構成したことを特徴とするものである。 Further, the motor of the present invention is characterized in that the field magnetic pole and the salient pole magnetic pole are combined to form a linear motor.
 更に、本発明は複数の電機子巻線を有する突極磁極と、複数の界磁磁極を備えたモータに対して、多重インバータにより駆動させるモータ制御装置において、要求運転状態に応じて前記多重インバータの運転モードを切り替えることを特徴とするものである。 Furthermore, the present invention provides a motor control apparatus for driving a motor having a salient pole magnetic pole having a plurality of armature windings and a plurality of field magnetic poles by a multiple inverter. The operation mode is switched.
 また、本発明のモータ制御装置は、前記モータの突極磁極は1mと2m、4mと5m、7mと8m、の組み合わせによる3相結線のインバータと3m,6m,9mによる他の3相結線のインバータとして多重インバータで構成し、要求運転状態に応じてインバータの運転モードを切り替えることを特徴とするものである。 In the motor control device of the present invention, the salient poles of the motor have a three-phase connection inverter with a combination of 1 m and 2 m, 4 m and 5 m, 7 m and 8 m, and another three-phase connection with 3 m, 6 m, and 9 m. The inverter is composed of multiple inverters, and the operation mode of the inverter is switched according to the required operation state.
 また、本発明のモータ制御装置は、モータ,界磁磁極の位置検出装置,多重インバータ,コントローラを組み合わせたサーボ制御システムを構成することを特徴とするものである。 Further, the motor control device of the present invention is characterized in that it constitutes a servo control system that combines a motor, a position detecting device for field magnetic poles, a multiple inverter, and a controller.
 また、本発明のモータ制御装置は、前記界磁磁極は永久磁石を備えていることを特徴とするものである。 The motor control device of the present invention is characterized in that the field magnetic pole includes a permanent magnet.
 本発明のモータによれば、開示した突極磁極数と界磁磁極数とのスロットコンビネーションにすることで、コギングトルクの低減を実現した永久磁石界磁形のモータを提供することができる。 According to the motor of the present invention, it is possible to provide a permanent magnet field type motor that realizes a reduction in cogging torque by using the disclosed slot combination of the number of salient poles and the number of field poles.
 さらに、本発明のモータ制御装置は、1つの回転子に多重の三相電機子巻線を設け、これらに三相電機子巻線に対応したそれぞれのインバータ回路を個別に接続し、これらの三相電機子巻線に通電する駆動電流を各インバータ回路で個々に制御するシステムを採用することで、モータ回転数が高速領域である弱め界磁領域で、高効率となる巻数の少ない電機子巻線のみを用いることができるため、高速領域でのモータの運転効率を向上させることができる。 Furthermore, the motor control device of the present invention is provided with multiple three-phase armature windings in one rotor, and individually connected to the respective inverter circuits corresponding to the three-phase armature windings. By adopting a system that individually controls the drive current to be supplied to the phase armature winding by each inverter circuit, the armature winding with a low number of turns that is highly efficient in the field-weakening region where the motor speed is the high speed region Since only the wire can be used, it is possible to improve the operation efficiency of the motor in the high speed region.
 本発明のその他の目的と特徴は以下に述べる実施形態の中で明らかにする。 Other objects and features of the present invention will be clarified in the embodiments described below.
本発明の一実施例によるモータの基本構成を示す。1 shows a basic configuration of a motor according to an embodiment of the present invention. 本発明の一実施例によるモータの電機子巻線結線図を示す。1 shows an armature winding connection diagram of a motor according to an embodiment of the present invention. 本発明の一実施例によるモータの基本概念を示す。1 shows a basic concept of a motor according to an embodiment of the present invention. 本発明によるモータの電機子巻線結線の一例を示す。An example of the armature winding connection of the motor by this invention is shown. 本発明によるモータの電機子巻線結線の一例を示す。An example of the armature winding connection of the motor by this invention is shown. 本発明によるモータの電機子巻線結線の一例を示す。An example of the armature winding connection of the motor by this invention is shown. 本発明の基本ユニットを複数個組み合わせた実施例を示す。The Example which combined several basic units of this invention is shown. 本発明の基本ユニットを複数個組み合わせた電機子巻線結線の一例を示す。An example of an armature winding connection in which a plurality of basic units of the present invention are combined is shown. 本発明によるモータの電機子巻線結線の一例を示す。An example of the armature winding connection of the motor by this invention is shown. 本発明によるモータの他の実施例(外転型)を示す。6 shows another embodiment (external rotation type) of a motor according to the present invention. 本発明によるモータの他の実施例(リニアモータ)を示す。6 shows another embodiment (linear motor) of a motor according to the present invention. 本発明によるモータの他の実施例(リニアモータ)を示す。6 shows another embodiment (linear motor) of a motor according to the present invention. 本発明の制御回路システムの実施例を示す。1 shows an embodiment of a control circuit system of the present invention. 本発明の制御回路システムの他の実施例を示す。Another embodiment of the control circuit system of the present invention is shown. 本発明のモータ駆動パターンの一例を示す。An example of the motor drive pattern of this invention is shown. 本発明の制御回路システムの他の実施例を示す。Another embodiment of the control circuit system of the present invention is shown. 本発明のモータの回転子断面構造の一例を示す。An example of the rotor cross-section of the motor of this invention is shown. 本発明のモータの回転子形状の自由度の一例を示す。An example of the freedom degree of the rotor shape of the motor of this invention is shown.
 以下、本発明の実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の第1実施例を図1に基づいて説明する。本実施例のモータは、等間隔に配列されたP個の界磁磁極21と、電機子巻線11を有する突極磁極13をM個備えた電機子とを備え、前記界磁磁極の移動位置に応じて前記電機子巻線電流を制御して動くモータにおいて、前記界磁極数(P)と前記突極極数(M)の関係を、以下の式の関係にする。 A first embodiment of the present invention will be described with reference to FIG. The motor of this embodiment includes P field magnetic poles 21 arranged at equal intervals, and an armature provided with M salient poles 13 having armature windings 11, and the movement of the field magnetic poles In a motor that moves by controlling the armature winding current according to the position, the relationship between the number of field poles (P) and the number of salient poles (M) is expressed by the following equation.
 P:M=9n±n:9n(但し、nは1以上の整数)・・・・式(1)
 この関係式として、突極磁極Mの基本ユニットは1m,2m,3m,4m,5m,6m,7m,8m,9m順の9個突極磁極13で構成され、該突極磁極は1mと2m,3m,4mと5m,6m,7mと8m,9mの組み合わせで6個の電機子相を作り、該突極磁極Mの基本ユニットを備えたことを特徴とするモータである。ここで、突極磁極1mとして、任意の突極磁極を設定し得る。
P: M = 9n ± n: 9n (where n is an integer of 1 or more) ··· Formula (1)
As a relational expression, the basic unit of the salient pole magnetic pole M is composed of nine salient poles 13 in the order of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m, and the salient poles are 1 m and 2 m. , 3 m, 4 m and 5 m, 6 m, 7 m and 8 m, 9 m are combined to form six armature phases, and the motor has a basic unit of the salient pole M. Here, an arbitrary salient pole magnetic pole can be set as the salient pole magnetic pole 1m.
 また、図1において、永久磁石からなる界磁磁極21は8個で構成されているが、式(1)の関係から10個でも良い。永久磁石からなる界磁磁極21はシャフト12と一体になって突極磁極13の電機子巻線11に流す電流で作られる回転磁界に同期して動く構成になっている。 In FIG. 1, the field magnetic pole 21 made of a permanent magnet is composed of eight pieces, but may be ten pieces based on the relationship of the expression (1). The field magnetic pole 21 made of a permanent magnet is integrated with the shaft 12 and is configured to move in synchronization with a rotating magnetic field generated by a current flowing through the armature winding 11 of the salient pole magnetic pole 13.
 従来技術によると、3相モータの場合に突極磁極13の磁極数は3の倍数であることが必要であり、6相モータの場合に突極磁極13の磁極数は6の倍数であることが必要である。本実施例は、9個の突極磁極で6相モータとして駆動可能であることを示している。 According to the prior art, in the case of a three-phase motor, the number of magnetic poles of the salient poles 13 needs to be a multiple of 3, and in the case of a six-phase motor, the number of magnetic poles of the salient poles 13 is a multiple of 6. is required. This example shows that it can be driven as a six-phase motor with nine salient poles.
 又、式(1)に示すような突極磁極13と界磁磁極21の組み合わせによるスロットコンビネーションにより、コギングトルク脈動数が増大する。例えば、9個の突極磁極と8個の永久磁石による界磁磁極のスロットコンビネーションではコギングトルク脈動数は72であり、9個の突極磁極と10個の永久磁石による界磁磁極のスロットコンビネーションではコギングトルク脈動数は90である。一般的に、コギングトルク脈動数が多いほど、コギングトルクの低減効果が大きい。 Further, the cogging torque pulsation number increases due to the slot combination by the combination of the salient pole magnetic pole 13 and the field magnetic pole 21 as shown in the equation (1). For example, in a slot combination of field poles composed of 9 salient poles and 8 permanent magnets, the cogging torque pulsation number is 72, and a slot combination of field poles consisting of 9 salient poles and 10 permanent magnets. Then, the cogging torque pulsation number is 90. Generally, the greater the cogging torque pulsation number, the greater the effect of reducing the cogging torque.
 図7に本発明の基本ユニットを複数個組み合わせた実施例を示す。 FIG. 7 shows an embodiment in which a plurality of basic units of the present invention are combined.
 図7において、突極磁極13が18個の場合は、永久磁石からなる界磁磁極21は16個で構成されているが、式(1)に示すように20個でも良い。同じく、突極磁極13が27個の場合は、永久磁石からなる界磁磁極21は24個、又は、30個でも良い。この場合は、突極磁極Mの基本ユニットは、1m,2m,3m,4m,5m,6m,7m,8m,9mの順の9個の突極磁極13で構成され、該突極磁極は、1mと2m,3m,4mと5m,6m,7mと8m,9mの組み合わせで6個の電機子相を作り、該突極磁極Mの基本ユニットを繰り返して増設することになる。図7は、突極磁極が18個と界磁磁極が16極の場合を示しているが、本発明による突極磁極Mの基本ユニットを2回繰り返して配置している。 In FIG. 7, when the number of salient poles 13 is 18, the number of field poles 21 made of permanent magnets is 16. However, as shown in the equation (1), 20 may be used. Similarly, when the number of salient poles 13 is 27, the number of field poles 21 made of permanent magnets may be 24 or 30. In this case, the basic unit of the salient pole magnetic pole M is composed of nine salient poles 13 in the order of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m. Six armature phases are formed by a combination of 1 m and 2 m, 3 m, 4 m and 5 m, 6 m, 7 m, 8 m, and 9 m, and the basic unit of the salient pole M is repeatedly added. FIG. 7 shows a case where there are 18 salient poles and 16 field poles, but the basic unit of salient poles M according to the present invention is arranged twice.
 図2に、本発明の一実施例によるモータの電機子巻線結線図を示す。 FIG. 2 shows an armature winding connection diagram of a motor according to an embodiment of the present invention.
 図2のモータの構成では、永久磁石21を備えた回転子は一つであるが、突極磁極は1mと2mがU相、4mと5mがV相、7mと8mがW相、6mはR相、9mはS相、3mはT相の組み合わせで6個の電機子相を作ることを特徴とするモータである。U相,V相,W相による1組UVW3相結線と、R相,S相,T相による他の1組のRST3相結線からなる2組の3相結線を合わせた基本ユニットの構成である。 In the motor configuration of FIG. 2, the number of rotors provided with the permanent magnet 21 is one, but the salient poles are 1m and 2m U phase, 4m and 5m V phase, 7m and 8m W phase, and 6m R motor, 9m is S phase, and 3m is a motor characterized in that six armature phases are formed by combination of T phase. It is a basic unit configuration that combines one set UVW three-phase connection with U phase, V phase, and W phase and two sets of three-phase connection consisting of another one RST three-phase connection with R phase, S phase, and T phase. .
 図3に、本発明の一実施例によるモータの基本概念を示す。 FIG. 3 shows a basic concept of a motor according to an embodiment of the present invention.
 図3において、本実施例のモータは、6スロット8極モータとしても駆動可能であり、3スロット8極モータとしても駆動可能であることを示している。それらの二つのモータを組み合わせて、8極の回転子20を一つに共通化することで6スロットからなる3相結線と他の3スロットからなる3相結線を合わせて2Y結線にした9スロット8極モータになる概略を示す。また、図3において、U相のU1の突極磁極の電機子巻線とU2の突極磁極の電機子巻線は直列接続による構成例を示している。V相とW相においても、同相の電機子巻線はU相と同じく直列接続であることを示している。 FIG. 3 shows that the motor of this embodiment can be driven as a 6-slot 8-pole motor and can be driven as a 3-slot 8-pole motor. By combining these two motors and sharing the 8-pole rotor 20 into one, the 9-slot is formed by combining the 3-phase connection consisting of 6 slots and the 3-phase connection consisting of the other 3 slots into a 2Y connection. The outline which becomes an 8-pole motor is shown. Further, in FIG. 3, the armature winding of the U-phase salient pole magnetic pole of U1 and the armature winding of the salient pole magnetic pole of U2 are shown in a configuration example in series connection. In the V phase and the W phase, the same-phase armature windings are connected in series as in the U phase.
 図4に、本発明によるモータの他の電機子巻線結線図を示す。 FIG. 4 shows another armature winding connection diagram of the motor according to the present invention.
 図4において、UVW相の同相の電機子巻線は並列接続で構成している。例えば各スロット毎の電機子巻線の巻数を同じにして、同相の電機子巻線を直列接続した場合に比べて、並列接続した場合には各相の誘起電圧が約半分になるので、電源回路を含めたシステム構成からこれらの条件に合わせて構成を選択することが可能である。又、9個からなる突極磁極の基本ユニットの各々の突極磁極の電機子巻線の巻数を同じにして、UVW相の同相の電機子巻線を並列接続することで、RST相の誘起電圧に近い値にすることができる。 In FIG. 4, the in-phase armature windings of the UVW phase are configured in parallel connection. For example, compared to the case where the number of armature windings in each slot is the same and the armature windings of the same phase are connected in series, the induced voltage of each phase is about half when connected in parallel. It is possible to select a configuration according to these conditions from a system configuration including a circuit. In addition, the number of salient pole armature windings of each of the nine salient pole magnetic base units is the same, and the in-phase armature windings of the UVW phase are connected in parallel, thereby inducing the RST phase. The value can be close to the voltage.
 図5に本発明によるモータの他の電機子巻線結線図を示す。 FIG. 5 shows another armature winding connection diagram of the motor according to the present invention.
 図5において、UVW相とRST相は△結線をした例であり、UVW相の同相の電機子巻線を直列接続した組み合わせである。 In FIG. 5, the UVW phase and the RST phase are an example of Δ connection, and are a combination of in-phase armature windings of the UVW phase connected in series.
 図6に本発明によるモータの他の電機子巻線結線図を示す。 FIG. 6 shows another armature winding connection diagram of the motor according to the present invention.
 図6において、UVW相は△結線をRST相はY結線をした例であり、UVW相の同相の電機子巻線を直列接続した組み合わせであるが、図4に示すように、UVW相の電機子巻線は並列接続でも良い。また、UVW相はY結線、RST相を△結線にする組み合わせも可能である。 In FIG. 6, the UVW phase is an example in which the △ connection is made and the RST phase is made in the Y connection, and is a combination in which the armature windings in the same phase of the UVW phase are connected in series. As shown in FIG. The child windings may be connected in parallel. Further, the UVW phase can be combined with Y connection and the RST phase with Δ connection.
 図8に本発明によるモータの他の電機子巻線結線図を示す。 FIG. 8 shows another armature winding connection diagram of the motor according to the present invention.
 図8において、突極磁極13が18個、永久磁石からなる界磁磁極21は16個の構成で、UVWによる3相結線とRSTによる他の3相結線にした場合に、各相の電機子巻線は直列接続の構成になっている。 In FIG. 8, when the salient poles 13 are 18 and the field magnetic pole 21 made of a permanent magnet is 16, the armature of each phase is obtained when the three-phase connection by UVW and the other three-phase connection by RST. The windings are connected in series.
 図8において、界磁磁極21は永久磁石のイメージを示す概略であり、実際の界磁磁極の個数は式(1)に示すように個数に合わせる。他の図面においても同様である。 In FIG. 8, the field magnetic pole 21 is a schematic showing an image of a permanent magnet, and the actual number of field magnetic poles is adjusted to the number as shown in equation (1). The same applies to other drawings.
 図9において、突極磁極13が18個、永久磁石からなる界磁磁極21は16個の構成で、UVWによる3相結線とRSTによる他の3相結線にした場合に、各相の電機子巻線は並列接続の構成になっている。 In FIG. 9, when there are 18 salient magnetic poles 13 and 16 field magnetic poles 21 made of permanent magnets, when three-phase connection by UVW and another three-phase connection by RST are made, the armature of each phase The windings are configured in parallel connection.
 突極磁極の基本ユニットを複数回繰り返したモータ(図7の場合は突極磁極の基本ユニットを2回繰り返し)は、図4,図5,図6に示すように、Y結線,△結線,直列接続,並列接続の組み合わせをシステム構成の要求仕様に合わせて選択することが可能である。 A motor in which the basic unit of salient poles is repeated a plurality of times (in the case of FIG. 7, the basic unit of salient poles is repeated twice), as shown in FIG. 4, FIG. 5 and FIG. It is possible to select a combination of series connection and parallel connection according to the required specifications of the system configuration.
 図10に本発明によるモータの他の実施例を示す。 FIG. 10 shows another embodiment of the motor according to the present invention.
 図10において、回転子20は外転型であり、電機子巻線11の組み合わせは図1に示す突極磁極の基本ユニットと原理的に同じである。電機子の外周に電機子巻線11を巻回した突極磁極13を備える。電機子10の外周には、等間隔にN,Sに着磁した永久磁石21と磁気回路の磁路として磁束を通すヨークを含めた回転子20が空隙を介して回転可能に支持されている。 10, the rotor 20 is an abduction type, and the combination of the armature windings 11 is in principle the same as the salient pole magnetic basic unit shown in FIG. A salient pole magnetic pole 13 having an armature winding 11 wound around the outer periphery of the armature is provided. On the outer periphery of the armature 10, a permanent magnet 21 magnetized in N and S at equal intervals and a rotor 20 including a yoke through which a magnetic flux passes as a magnetic path of a magnetic circuit are rotatably supported through a gap. .
 また、電機子巻線の多重結線においては、Y結線,△結線,直列接続,並列接続の組み合わせをシステム構成の要求仕様に合わせて選択することが可能である。 Also, in the multiple connection of armature windings, it is possible to select a combination of Y connection, Δ connection, series connection, and parallel connection according to the required specifications of the system configuration.
 図11に本発明によるモータの他の実施例を示す。 FIG. 11 shows another embodiment of the motor according to the present invention.
 図11において、電機子10を一次側、永久磁石からなる部分を二次側として、一定のエアギャップを保つように支持機構(図示せず)で支持され、相対的に移動可能なリニアモータ構造を示す。また、推力むらを低減する目的で電機子の両短部には補助磁極14を備える。 In FIG. 11, the linear motor structure is supported by a support mechanism (not shown) so as to maintain a constant air gap with the armature 10 as the primary side and the portion made of the permanent magnet as the secondary side, and is relatively movable. Indicates. Further, auxiliary magnetic poles 14 are provided at both short portions of the armature for the purpose of reducing the thrust unevenness.
 また、突極磁極13に巻かれている各電機子巻線11の組み合わせの例として、図11(a)と(b)を示す。図11(b)のように電機子巻線を結線することで、RST相の突極磁極13の磁気回路の左右のバランスが取れて、より安定した走行が可能である。 11A and 11B show examples of combinations of the armature windings 11 wound around the salient pole magnetic poles 13. By connecting the armature windings as shown in FIG. 11 (b), the left and right balance of the magnetic circuit of the RST phase salient pole magnetic poles 13 can be taken, and more stable running is possible.
 ここで、式(1)で示す突極磁極13と界磁磁極21の相対的な間隔を保つようにして、走行ストロークに合わせて永久磁石の数を増やした構成にすればよい。 Here, the relative distance between the salient pole magnetic pole 13 and the field magnetic pole 21 shown in the formula (1) may be maintained, and the number of permanent magnets may be increased in accordance with the travel stroke.
 図12に本発明によるモータの他の実施例を示す。 FIG. 12 shows another embodiment of the motor according to the present invention.
 図12において、図11に示したリニアモータの電機子基本ユニット二組を合わせた突極磁極13が18個の構成で、電機子の両短部には補助磁極14を備える。電機子基本ユニットを追加することで推力が増加する。また、円筒型リニアモータにも適用可能である。 12, there are 18 salient poles 13 formed by combining two sets of the armature basic units of the linear motor shown in FIG. 11, and auxiliary poles 14 are provided at both short portions of the armature. Thrust increases by adding an armature basic unit. It can also be applied to a cylindrical linear motor.
 また、電機子巻線の多重結線においては、回転機と同じくY結線,△結線,直列接続,並列接続の組み合わせをシステム構成の要求仕様に合わせて自由に選択することが可能である。 Also, in the multiple connection of armature windings, it is possible to freely select the combination of Y connection, Δ connection, series connection, and parallel connection according to the required specifications of the system configuration, as with the rotating machine.
 次に、図13に本発明の制御回路システムの基本構成を示す。 Next, FIG. 13 shows a basic configuration of the control circuit system of the present invention.
 図13において、電源回路3には第一インバータ1と第二インバータ2が接続され、各インバータにはそれぞれの電機子巻線に接続されている。エンコーダー7は永久磁石の位置(磁極検出)と回転子の回転情報を検出し、ドライブコントローラ5とゲート回路コントローラ6にモータの磁極情報と回転情報を与える。ドライブコントローラ5の指示に従って、ゲート回路コントローラ6より第一インバータ1と第二インバータ2内部のパワー素子をオンオフ制御して、電源回路3から電機子巻線に電流が出入りするようになっている。インバータと電機子巻線の間には電流センサー9を備えて、実負荷電流値をゲート回路コントローラ6にフィードバックして指令電流との差分を制御するようになっている。勿論、ここに述べた駆動回路システムは一例であり、電流センサーレス制御,磁極位置検出センサーレス制御などを適用すれば、電流センサー9,エンコーダー7等は用途によっては省いた構成も採用することが可能である。 In FIG. 13, a first inverter 1 and a second inverter 2 are connected to the power circuit 3, and each inverter is connected to a respective armature winding. The encoder 7 detects the position of the permanent magnet (magnetic pole detection) and the rotation information of the rotor, and supplies the drive controller 5 and the gate circuit controller 6 with the magnetic pole information and the rotation information of the motor. In accordance with an instruction from the drive controller 5, the power circuit in the first inverter 1 and the second inverter 2 is controlled to be turned on / off by the gate circuit controller 6 so that current flows from the power supply circuit 3 to the armature winding. A current sensor 9 is provided between the inverter and the armature winding, and the actual load current value is fed back to the gate circuit controller 6 to control the difference from the command current. Of course, the drive circuit system described here is only an example, and if current sensorless control, magnetic pole position detection sensorless control, or the like is applied, the current sensor 9, the encoder 7 and the like may be omitted depending on the application. Is possible.
 図14に本発明の制御回路システムの基本構成の一例を示す。 FIG. 14 shows an example of the basic configuration of the control circuit system of the present invention.
 図14において、電源回路3には平滑コンデンサ4が接続されて、第一インバータ1と第二インバータ2が接続され、各インバータはそれぞれの電機子巻線に接続されている。図14の例では電圧形インバータの基本構成を示すが、電流形インバータによる制御回路システム構成でも良い。 In FIG. 14, a smoothing capacitor 4 is connected to the power supply circuit 3, a first inverter 1 and a second inverter 2 are connected, and each inverter is connected to an armature winding. Although the basic configuration of the voltage source inverter is shown in the example of FIG. 14, a control circuit system configuration using a current source inverter may be used.
 図14において、ブリッジインバータの出力電圧は、直流電圧をEとすれば、±Eの2レベルを出力する基本的なインバータ方式であるが、マルチレベルインバータ方式を用いても良い。マルチレベルインバータ方式とは、直流電圧を複数に分割して、インバータの出力電圧は、その中の一つを選択することで、多レベル値を得ることができる仕組みであり、本発明モータのように多重結線の場合は、要求運転状態に応じて多重インバータの運転モードを切り替える場合に有効である。 In FIG. 14, the output voltage of the bridge inverter is a basic inverter system that outputs two levels of ± E, assuming that the DC voltage is E, but a multi-level inverter system may be used. The multi-level inverter system is a mechanism in which a multi-level value can be obtained by dividing a DC voltage into a plurality and selecting one of the output voltages of the inverter, as in the motor of the present invention. In the case of multiple connection, it is effective when switching the operation mode of the multiple inverter according to the required operation state.
 エンコーダー7は永久磁石の位置(磁極検出)と回転子の回転情報を検出し、ドライブコントローラ5とゲート回路コントローラ6にモータの磁極情報と回転情報を与える。また、本発明のモータをリニアモータに適用した場合は、可動子の位置情報,速度情報の検出手段として、リニアエンコーダーを用いても良い。 The encoder 7 detects the position of the permanent magnet (magnetic pole detection) and the rotation information of the rotor, and supplies the drive controller 5 and the gate circuit controller 6 with the magnetic pole information and the rotation information of the motor. When the motor of the present invention is applied to a linear motor, a linear encoder may be used as a means for detecting the position information and speed information of the mover.
 そして、ドライブコントローラ5の指示に従って、ゲート回路コントローラ6より第一インバータ1と第二インバータ2内部のパワー素子をオンオフ制御して、電源回路3から電機子巻線に電流が出入りするようになっている。また、ドライブコントローラ5は本発明のモータ以外の外部情報を受送信しながら制御回路システム全体の制御も行う。 Then, in accordance with an instruction from the drive controller 5, the gate circuit controller 6 controls the power elements in the first inverter 1 and the second inverter 2 to turn on and off so that current flows from the power supply circuit 3 to the armature winding. Yes. The drive controller 5 also controls the entire control circuit system while receiving and transmitting external information other than the motor of the present invention.
 インバータと電機子巻線の間には電流センサー9を備えて、実負荷電流値をゲート回路コントローラ6にピードバックして指令電流との差分を制御するようになっている。勿論、ここに述べた駆動回路システムは一例であり、片方の電流センサーのみの情報量で他方電機子巻線の電流量を換算して制御することも可能である。 A current sensor 9 is provided between the inverter and the armature winding, and the actual load current value is speeded back to the gate circuit controller 6 to control the difference from the command current. Of course, the drive circuit system described here is an example, and it is also possible to control by converting the current amount of the other armature winding by the information amount of only one of the current sensors.
 応用の構成によっては、電流センサーレス制御,磁極位置検出センサーレス制御などを適用すれば、電流センサー9,エンコーダー7等は省いた構成も採用することが可能である。 Depending on the configuration of the application, if current sensorless control, magnetic pole position detection sensorless control, or the like is applied, a configuration in which the current sensor 9, the encoder 7, etc. are omitted can be employed.
 本発明は、1つの回転子に多重の電機子巻線を設け、これらに多相電機子巻線に対応したそれぞれのインバータ回路を個別に接続し、モータの要求運転状態に基づいてこれらの多相電機子巻線に通電する駆動電流を各インバータ回路で個々に制御するシステムである。 In the present invention, multiple armature windings are provided in one rotor, and each inverter circuit corresponding to the multi-phase armature winding is individually connected to the rotor, and these multiple windings are based on the required operation state of the motor. In this system, each inverter circuit individually controls the drive current that is passed through the phase armature winding.
 前記要求運転状態による多重インバータの運転モードの切り替えは、モータトルクとモータ回転数とモータの制御領域等に基づいて行われる。 The switching of the operation mode of the multiple inverter according to the requested operation state is performed based on the motor torque, the motor rotation speed, the motor control area, and the like.
 図15に本発明のモータによる駆動パターンの一例を示す。 FIG. 15 shows an example of a drive pattern by the motor of the present invention.
 例えば、図1に示す本発明による一実施例のモータにおいて、9個の突極磁極13に巻かれている電機子巻線11が同じ巻数で巻かれたとすれば、UVW相の誘起電圧はRST相の誘起電圧より約2倍大きい。モータ回転数が低速領域で大トルクを要求する場合は、UVW相のインバータ1とRST相のインバータ2の両方がお互いの最適位相差を保ちながら通電電流を制御して最大トルクを得て、高速領域時は相当たりの巻数が少ないRST相をメインに駆動するように運転モードを設定する。また、中速領域時はUVW相をメインにして駆動しても良い。減速時には、UVW相のインバータ1とRST相のインバータ2の両方がお互いの最適位相差を保ちながら駆動すれば良い。 For example, in the motor of one embodiment according to the present invention shown in FIG. 1, if the armature windings 11 wound around the nine salient poles 13 are wound with the same number of turns, the induced voltage of the UVW phase is RST. About twice as large as the induced voltage of the phase. When a large torque is required at a low motor speed, both the UVW-phase inverter 1 and the RST-phase inverter 2 control the energizing current while maintaining the optimum phase difference between each other, and obtain the maximum torque. In the region, the operation mode is set so that the RST phase with a small number of turns per phase is driven mainly. Further, in the middle speed region, the UVW phase may be driven as the main. At the time of deceleration, both the UVW-phase inverter 1 and the RST-phase inverter 2 may be driven while maintaining the optimum phase difference between them.
 勿論、UVW相の電機子巻線とRST相の電機子巻線の力行制御,回生制御の組み合わせは運転モードに応じて組み合わせれば良い。 Of course, the combination of powering control and regenerative control of the armature winding of the UVW phase and the armature winding of the RST phase may be combined according to the operation mode.
 言い換えれば、モータ回転数が高速回転の時に電機子巻数の少ない結線のみを用いることができるため高効率となり、弱め界磁領域でのモータの運転効率を向上させることができる効果が得られる。 In other words, since only a connection with a small number of armature turns can be used when the motor rotation speed is high speed, the efficiency becomes high, and an effect of improving the operation efficiency of the motor in the field weakening region can be obtained.
 また、応用製品によってはUVW相のインバータ1とRST相のインバータ2らに接続する電機子巻線の間に開閉機(図に示せず)を備えて、休止モードの電機子巻線は該開閉機でオンオフすることも可能である。 Also, depending on the application product, an armature winding (not shown) is provided between the armature windings connected to the UVW-phase inverter 1 and the RST-phase inverter 2, and the armature winding in the sleep mode is opened and closed. It is also possible to turn on and off by machine.
 図16に本発明の駆動回路システムの他の実施例を示す。 FIG. 16 shows another embodiment of the drive circuit system of the present invention.
 図16は本発明の基本制御回路システムの多重インバータ部分を2組以上拡大した組み合わせであり、ドライブコントローラ5の指示に従って、各々のインバータUVW-Y1,UVW-Y2,RST-Y1,RST-Y2らを統括制御するシステム構成である。このシステムは突極磁極数が多い大型大容量モータの場合に、大型大容量のインバータを用いなくても、複数の小型インバータらを並列に組み合わせることで動作させることを実現している。 FIG. 16 shows a combination of two or more sets of multiple inverters in the basic control circuit system of the present invention. Each inverter UVW-Y1, UVW-Y2, RST-Y1, RST-Y2 and the like is in accordance with instructions from the drive controller 5. It is a system configuration that performs overall control. In the case of a large-capacity motor with a large number of salient poles, this system can be operated by combining a plurality of small inverters in parallel without using a large-capacity inverter.
 図17に本発明の回転子断面構造の一例を示す。 FIG. 17 shows an example of the rotor cross-sectional structure of the present invention.
 図17において、(a)は表面磁石型を(b)は埋込磁石型を示し、永久磁石の数は下記に示す界磁極数Pと突極磁極Mの関係を保ちながら構成されている。 17, (a) shows a surface magnet type, (b) shows an embedded magnet type, and the number of permanent magnets is configured while maintaining the relationship between the number of field poles P and salient poles M shown below.
  P:M=9n±n:9n (但し、nは1以上の整数)
 図18に本発明の回転子形状のいろいろな構成例を示す。
P: M = 9n ± n: 9n (where n is an integer of 1 or more)
FIG. 18 shows various configuration examples of the rotor shape of the present invention.
 図18はシャフト12に接続された回転子が回る仕組みを示しており、(a)内転型,(b)外転型,(c)アキシャルギャップ型,(d)中空型を示す。例えば、(c)アキシャルギャップ型においては、2組の回転子で電機子10を両側から挟んだ両側式アキシャルギャップ型も可能である。勿論、他の方式も電機子を複数個組み合わせた構成も可能である。 FIG. 18 shows a mechanism in which the rotor connected to the shaft 12 rotates, and shows (a) inner rotation type, (b) outer rotation type, (c) axial gap type, and (d) hollow type. For example, in the (c) axial gap type, a double-sided axial gap type in which the armature 10 is sandwiched from both sides by two sets of rotors is also possible. Of course, other systems may be configured by combining a plurality of armatures.
 以上に説明した本発明の実施例によれば、9個の突極磁極と8個(または10個)の界磁磁極とのスロットコンビネーションにすることで、コギングトルクを低減した効果を有する永久磁石界磁形のモータを提供することができる。 According to the embodiment of the present invention described above, the permanent magnet has the effect of reducing the cogging torque by using a slot combination of nine salient poles and eight (or ten) field poles. A field type motor can be provided.
 さらに、本発明は、1つの回転子に6個の突極磁極と3個の突極磁極で多重の三相電機子巻線を設け、これらに三相電機子巻線に対応したそれぞれのインバータ回路を接続し、モータの要求運転状態に基づいてこれらの三相電機子巻線に通電する駆動電流を各インバータ回路で個々に制御するシステムを提供できる。これにより、モータ回転数が高速領域である弱め界磁領域で、モータ回転数が高速回転の時に高効率となる巻数の少ない電機子巻線のみを用いることができるため、弱め界磁領域でのモータの運転効率を向上させることができる効果が得られる。 Furthermore, the present invention provides multiple three-phase armature windings with six salient poles and three salient poles in one rotor, and each inverter corresponding to these three-phase armature windings. It is possible to provide a system in which a circuit is connected and each inverter circuit individually controls a drive current to be supplied to these three-phase armature windings based on a required operation state of the motor. As a result, it is possible to use only the armature winding with a small number of turns that is highly efficient when the motor speed is high speed rotation in the field weakening area where the motor speed is high speed. The effect which can improve the driving efficiency of a motor is acquired.
 本発明のモータ、およびモータ制御装置によれば、従来使用されてきた永久磁石界磁形の同期タイプのモータ、およびそれらを駆動するモータ制御装置全般に適用することが可能である。 The motor and motor control device of the present invention can be applied to conventional permanent magnet field synchronous motors and motor control devices that drive them in general.
1,2 インバータ
3 電源回路
4 平滑コンデンサ
5 ドライブコントローラ
6 ゲート回路コントローラ
7 エンコーダー
8 負荷
9 電流センサー
10 電機子
11 電機子巻線
12 シャフト
13 突極磁極
14 補助磁極
20 回転子
21 界磁磁極
DESCRIPTION OF SYMBOLS 1, 2 Inverter 3 Power supply circuit 4 Smoothing capacitor 5 Drive controller 6 Gate circuit controller 7 Encoder 8 Load 9 Current sensor 10 Armature 11 Armature winding 12 Shaft 13 Salient magnetic pole 14 Auxiliary magnetic pole 20 Rotor 21 Field magnetic pole

Claims (10)

  1.  電機子巻線を有する複数の突極磁極と、
     複数の界磁磁極を備えたモータにおいて、
     各々の突極磁極には第一の電機子巻線又は、
     第二の電機子巻線が巻かれて、
     前記第一の電機子巻線の巻線群の突極磁極数と、前記第二の電機子巻線の巻線群の突極磁極数の組み合わせ比を2:1にしたことを特徴とするモータ。
    A plurality of salient poles having armature windings;
    In motors with multiple field poles,
    Each salient pole has a first armature winding or
    The second armature winding is wound,
    The combination ratio of the number of salient poles of the winding group of the first armature winding and the number of salient poles of the winding group of the second armature winding is 2: 1. motor.
  2.  請求項1において、
     前記界磁磁極と突極磁極を組み合わせて、リニアモータに構成したことを特徴とするモータ。
    In claim 1,
    A motor characterized in that a linear motor is configured by combining the field magnetic pole and the salient pole magnetic pole.
  3.  等間隔に配列されたP個の界磁磁極と、
     電機子巻線を有する突極磁極M個の電機子とを備えたモータにおいて、
     前記界磁極数Pと前記突極磁極Mの関係を以下の関係にし、
      P:M=9n±n:9n  (但し、nは1以上の整数)
     前記突極磁極Mの基本ユニットは1m,2m,3m,4m,5m,6m,7m,8m,9m順の9個の突極磁極で構成され、該突極磁極は1mと2m,3m,4mと5m,6m,7mと8m,9mの組み合わせで6個の電機子相を作り、該突極磁極Mの基本ユニットを備えたことを特徴とするモータ。
    P field magnetic poles arranged at equal intervals;
    In a motor having M salient pole magnetic poles having armature windings,
    The relationship between the number of field poles P and the salient pole magnetic pole M is as follows:
    P: M = 9n ± n: 9n (where n is an integer of 1 or more)
    The basic unit of the salient pole magnetic pole M is composed of nine salient poles in the order of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, and 9 m, and the salient pole magnetic poles are 1 m, 2 m, 3 m, and 4 m. 6m, 6m, 7m and 8m, 9m are combined to form six armature phases, and the motor has a salient pole magnetic pole M basic unit.
  4.  請求項3において、
     該突極磁極Mの基本ユニットは1mと2m、4mと5m、7mと8m、の組み合わせによる3相結線、3m,6m,9mによる他の3相結線として構成し、該突極磁極Mの基本ユニットを備えたことを特徴とするモータ。
    In claim 3,
    A basic unit of the salient pole magnetic pole M is configured as a three-phase connection by a combination of 1 m and 2 m, 4 m and 5 m, 7 m and 8 m, and another three-phase connection by 3 m, 6 m, and 9 m. A motor comprising a unit.
  5.  請求項3において、
     該突極磁極Mの基本ユニットは1mと2m,3m,4mと5m,6m,7mと8m,9mの組み合わせで6個の電機子相として構成し、該突極磁極Mの基本ユニットを備え、6相モータとして構成することを特徴とするモータ。
    In claim 3,
    A basic unit of the salient pole magnetic pole M is configured as six armature phases by combining 1 m and 2 m, 3 m, 4 m and 5 m, 6 m, 7 m, 8 m, and 9 m, and includes the salient pole magnetic pole M basic unit, A motor characterized by being configured as a six-phase motor.
  6.  請求項3において、
     前記界磁磁極と突極磁極を組み合わせて、リニアモータに構成したことを特徴とするモータ。
    In claim 3,
    A motor characterized in that a linear motor is configured by combining the field magnetic pole and the salient pole magnetic pole.
  7.  複数の電機子巻線を有する突極磁極と、複数の界磁磁極を備えたモータに対して、多重インバータにより駆動させるモータ制御装置において、
     要求運転状態に応じて前記多重インバータの運転モードを切り替えることを特徴とするモータ制御装置。
    In a motor control device driven by a multiple inverter for a salient pole magnetic pole having a plurality of armature windings and a motor having a plurality of field magnetic poles,
    A motor control device that switches an operation mode of the multiple inverter according to a requested operation state.
  8.  請求項7において、前記モータの突極磁極は1mと2m、4mと5m、7mと8m、の組み合わせによる3相結線のインバータと3m,6m,9mによる他の3相結線のインバータとして多重インバータで構成し、要求運転状態に応じてインバータの運転モードを切り替えることを特徴とするモータ制御装置。   In claim 7, the salient pole of the motor is a multi-inverter as an inverter of 3 phase connection by combination of 1m and 2m, 4m and 5m, 7m and 8m and another 3 phase connection inverter of 3m, 6m and 9m. A motor control device configured to switch an operation mode of an inverter according to a requested operation state. *
  9.  請求項7において、モータ,界磁磁極の位置検出装置,多重インバータ,コントローラを組み合わせたサーボ制御システムを構成することを特徴とするモータ制御装置。 8. A motor control device according to claim 7, comprising a servo control system in which a motor, a position detecting device for a magnetic pole, a multiple inverter, and a controller are combined.
  10.  請求項7において、
     前記界磁磁極は永久磁石を備えていることを特徴とするモータ制御装置。
    In claim 7,
    The motor control apparatus, wherein the field magnetic pole includes a permanent magnet.
PCT/JP2009/005944 2008-11-10 2009-11-09 Motor and motor control device WO2010052930A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-287267 2008-11-10
JP2008287267A JP2010115068A (en) 2008-11-10 2008-11-10 Motor and motor control device

Publications (1)

Publication Number Publication Date
WO2010052930A1 true WO2010052930A1 (en) 2010-05-14

Family

ID=42152743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005944 WO2010052930A1 (en) 2008-11-10 2009-11-09 Motor and motor control device

Country Status (2)

Country Link
JP (1) JP2010115068A (en)
WO (1) WO2010052930A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166337A (en) * 2013-01-30 2013-06-19 东南大学 Double-speed winding switch reluctance motor
CN108400742A (en) * 2018-05-14 2018-08-14 西安清泰科新能源技术有限责任公司 A kind of double winding three phase electric machine and its control method
EP2991206B1 (en) * 2013-04-25 2020-04-29 Changzhou Leili Motor Science & Technology Co., Ltd. Brushless motor for drainage pump and drainage pump

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241366A1 (en) * 2012-02-27 2013-09-19 Daniel Kee Young Kim High torque/high efficiency winding motor
GB201216099D0 (en) * 2012-09-10 2012-10-24 Protean Electric Ltd Capacitor
JP6668389B2 (en) * 2015-06-23 2020-03-18 トラネ アンド トラネ アクティーゼルスカブ Vehicle, ship or aircraft with rotatable antenna
CN105897064B (en) * 2016-05-30 2019-02-05 南京航空航天大学 A kind of integrated winding is from suspension permanent magnet motor and control system and control method
CN106899159B (en) * 2017-05-10 2019-04-09 山东理工大学 A kind of double △ winding alternating current generators
JP7044844B2 (en) * 2020-09-18 2022-03-30 株式会社神戸製鋼所 Electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049862A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Electric machine with built-in magnetic pole position sensor, electric machine device, and on-vehicle electric machine system
JP2007151366A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Motor driver and automobile using the same
JP2007221995A (en) * 2006-02-18 2007-08-30 Nishu Lee Motor generator
JP2008092739A (en) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd Power conversion device and control method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049862A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Electric machine with built-in magnetic pole position sensor, electric machine device, and on-vehicle electric machine system
JP2007151366A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Motor driver and automobile using the same
JP2007221995A (en) * 2006-02-18 2007-08-30 Nishu Lee Motor generator
JP2008092739A (en) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd Power conversion device and control method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166337A (en) * 2013-01-30 2013-06-19 东南大学 Double-speed winding switch reluctance motor
EP2991206B1 (en) * 2013-04-25 2020-04-29 Changzhou Leili Motor Science & Technology Co., Ltd. Brushless motor for drainage pump and drainage pump
CN108400742A (en) * 2018-05-14 2018-08-14 西安清泰科新能源技术有限责任公司 A kind of double winding three phase electric machine and its control method
CN108400742B (en) * 2018-05-14 2024-05-03 西安清泰科新能源技术有限责任公司 Double-winding three-phase motor and control method thereof

Also Published As

Publication number Publication date
JP2010115068A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
WO2010052930A1 (en) Motor and motor control device
US11223311B2 (en) Rotary electric machine and rotary electric machine system
CN102113204A (en) Synchronous electric motor driving system
JP2001157487A (en) Controller for electric rotating machine
US20090322176A1 (en) Synchronous motor with rotor having suitably-arranged field coil, permanent magnets, and salient-pole structure
CN110383639B (en) Rotating electric machine system
JP2003009486A (en) Variable speed motor
JP6388611B2 (en) Hybrid field double gap synchronous machine
JP4984420B2 (en) Reluctance motor driving apparatus and method
US20110241599A1 (en) System including a plurality of motors and a drive circuit therefor
JP2005304119A (en) Motor drive system
US6642683B1 (en) Controller and associated drive assembly for power sharing, time sliced control of a brushless direct current motor
WO2011043118A1 (en) Motor system
US6661190B1 (en) Controller and associated drive assembly controlling a brushless direct current motor
JP5885423B2 (en) Permanent magnet rotating electric machine
JP2017225203A (en) Switched reluctance motor drive system
JP2008160920A (en) Wire connection pattern switching unit
JP5301905B2 (en) Multi-phase rotating electrical machine drive device, multi-phase generator converter, multi-phase rotating electrical machine, and rotating electrical machine drive system
JP2010028957A (en) Inductor and inductor pole-number switching system
CN109643969B (en) Bridge converter and multiphase motor
KR101368211B1 (en) BLDC motor for the electric car and controlling apparatus for the BLDC motor, and controlling method for the same
JP2004509599A (en) Electric machine
JP2016077052A (en) Magnetless rotary electric machine and rotary electric machine control system
JP2009142130A (en) Rotating electric machine and drive device for rotating electric machine
JP5696438B2 (en) Permanent magnet type motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824630

Country of ref document: EP

Kind code of ref document: A1