WO2010050109A1 - Kit for producing double-stranded rna with lactic acid bacterium, and use thereof - Google Patents

Kit for producing double-stranded rna with lactic acid bacterium, and use thereof Download PDF

Info

Publication number
WO2010050109A1
WO2010050109A1 PCT/JP2009/004465 JP2009004465W WO2010050109A1 WO 2010050109 A1 WO2010050109 A1 WO 2010050109A1 JP 2009004465 W JP2009004465 W JP 2009004465W WO 2010050109 A1 WO2010050109 A1 WO 2010050109A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
promoter
acid bacteria
vector
present
Prior art date
Application number
PCT/JP2009/004465
Other languages
French (fr)
Japanese (ja)
Inventor
大槻高史
宍戸昌彦
公文裕巳
柏倉祐司
落合和彦
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Priority to JP2010535629A priority Critical patent/JP5660537B2/en
Publication of WO2010050109A1 publication Critical patent/WO2010050109A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/05Animals modified by non-integrating nucleic acids, e.g. antisense, RNAi, morpholino, episomal vector, for non-therapeutic purpose
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/12Animals modified by administration of exogenous cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors

Definitions

  • the present invention relates to a kit for producing double-stranded RNA by lactic acid bacteria and its use. More specifically, the present invention relates to a kit for producing double-stranded RNA by lactic acid bacteria and a technology using the same for producing double-stranded RNA by lactic acid bacteria capable of expressing DNA encoding the double-stranded RNA.
  • RNAi is a technology for suppressing the expression of a specific gene by RNA interference (RNA interference).
  • RNAi can be caused by introducing double-stranded RNA into a cell, tissue, organ, individual or the like. When double-stranded RNA hybridizes to mRNA of the target gene, degradation of the mRNA is promoted. Thereby, the expression of the target gene is suppressed.
  • RNAi has a long-lasting effect of suppressing gene expression compared to these methods.
  • RNAi is rapidly spreading in molecular biology and cell biology research. Furthermore, since it has been clarified that it can be applied to humans and animals, it is attracting attention as a new method of mammal research in molecular biology, and is expected to be applied to pharmaceuticals and foods.
  • RNAi to pharmaceuticals and foods is as follows: (1) Use for treatment of diseases caused by excessive activity of specific genes such as cancer, hyperlipidemia, diabetes, etc. (for example, Patent Document 1) (2) It has been proposed to eliminate parasites such as nematodes and roundworms parasitizing human and animal bodies by suppressing the expression of genes necessary for their survival. For example, a method has been proposed in which Escherichia coli into which a dsRNA-encoding gene expression vector has been introduced is fed to Caenorhabditis elegans, a soil-dwelling nematode, to suppress the expression of a specific gene possessed by the nematode ( Non-patent document 1).
  • Patent Document 2 proposes a method using bacterial minicells as a carrier.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2006-246787 (published on September 21, 2006)” Japanese Patent Publication “Special Table 2005-505296 Publication (published February 24, 2005)”
  • the conventional method has a problem that it is difficult to cause RNAi easily and stably in the intestines of humans and animals.
  • Non-Patent Document 1 when using E. coli capable of expressing a gene encoding a double-stranded RNA disclosed in Non-Patent Document 1, when the E. coli is orally administered to cause RNAi in human and animal intestines, There is a high probability of being killed by stomach acid or the like without reaching the intestines.
  • oral administration of E. coli is problematic in terms of safety.
  • large-scale administration is difficult, it is difficult to efficiently cause RNAi in the intestine.
  • Patent Documents 1 and 2 using viruses, synthetic polymers, or bacterial minicells as carriers are difficult to reach the intestines due to the effects of gastric acid and the like. Can not cause RNAi stably.
  • Bacterial minicells are obtained by removing nuclei from bacterial cells and are completely different from bacterial cells. Therefore, in the method using bacterial minicells as a carrier, the carrier itself is not amplified and the effect of RNAi cannot be obtained stably for a long time.
  • Non-Patent Document 1 reports on conventional RNAi such as Non-Patent Document 1 and Patent Documents 1 and 2 cannot conceive even the problem of causing RNAi in human and animal intestines.
  • the nematode applied in Non-Patent Document 1 has soil habitat, and the soil has a completely different environment from the intestines of humans and animals. Therefore, it is difficult to even come up with the problem of causing RNAi in the intestine from Non-Patent Document 1.
  • the object of the present invention is to provide RNAi easily and stably in the intestines of humans and animals.
  • Kits for generating double-stranded RNA especially, short double-stranded RNA that exerts an RNAi effect on mammalian cells called siRNA or shRNA
  • siRNA or shRNA double-stranded RNA
  • a kit for producing double-stranded RNA by lactic acid bacteria according to the present invention is characterized by comprising a vector containing a promoter that functions in mammals.
  • the promoter that functions in the mammal is more preferably a promoter transcribed by PolIII.
  • the promoter transcribed by PolIII is more preferably a U6 promoter.
  • the lactic acid bacterium according to the present invention is characterized by containing a vector in which a DNA encoding a double-stranded RNA is operably linked to a promoter that functions in a mammal.
  • the promoter that functions in the mammal is more preferably a promoter transcribed by PolIII.
  • the therapeutic composition for enteric diseases according to the present invention is characterized by containing the lactic acid bacterium according to the present invention.
  • the kit for producing double-stranded RNA by lactic acid bacteria comprises a vector containing a promoter that functions in mammals such as a promoter transcribed by PolIII, the human and the human in the intestine of the animal and There is an effect that the effect of RNAi can be obtained stably and simply in an animal cell.
  • Example 4 it is a figure which shows a mode that 211H-Luc was administered to the mouse
  • Example 4 it is a figure which shows the result of having observed the mode of the mouse
  • Example 4 it is a figure which shows the result of having calculated the FLuc activity ratio before and behind administration of a sample.
  • Example 5 it is a figure which shows a mode that lactic acid bacteria are orally administered using the gastric thanke method.
  • FIG. 9 is a diagram showing the results of luciferase activity observed after oral administration of lactic acid bacteria to mice in Example 5.
  • FIG. 9 (a) shows the results of administration of pUCYIT-Luc Lactobacilli, and
  • FIG. 9 (b) shows a comparison.
  • FIG. 9C shows the results of administration of the pUCYIT-Luc vector solution prepared for the purpose, and FIG. 9C is an anatomical view of the mouse shown as a reference.
  • Kit for producing double-stranded RNA by lactic acid bacteria according to the present invention is provided with a vector containing a promoter that functions in mammals such as a promoter transcribed by PolIII. Good.
  • dsRNA double-stranded RNA
  • an expression vector for producing dsRNA in human and animal cells can be held in lactic acid bacteria and transported to the intestines of humans and animals.
  • dsRNA Lactic acid bacteria can reach the intestines alive even when administered orally to humans and animals. Then, dsRNA can be expressed in the human and animal cells to cause RNAi. Therefore, by using the kit according to the present invention, dsRNA can be stably produced in the intestines of humans and animals simply by preparing a lactic acid bacterium capable of producing dsRNA and orally administering it. Thus, for example, if dsRNA that suppresses the expression of a gene encoding a protein that causes intestinal diseases (short RNA dsRNA that exhibits RNAi effect on mammalian cells) is used as dsRNA. It is also possible to treat internal diseases.
  • dsRNA intends a double-stranded RNA as described above.
  • DsRNA may be used to refer to long double-stranded RNA, but in this specification, it includes “short-stranded double-stranded RNA such as siRNA and shRNA”.
  • “generates double-stranded RNA by lactic acid bacteria” means that dsRNA is generated by lactic acid bacteria. Specifically, the vector in the cells of lactic acid bacteria is different from the lactic acid bacteria. Then, a form in which the vector is expressed in the other cell to produce dsRNA is also included.
  • the vector provided in the kit according to the present invention only needs to contain a promoter that functions in mammals.
  • promoters that function in mammals include promoters transcribed by PolIII, SV promoters, and the like, and promoters transcribed by PolIII are more preferred.
  • the “promoter transcribed by PolIII” is referred to as “PolIII promoter”.
  • the PolIII promoter included in the vector include U6 promoter and H1 promoter. Of these, the U6 promoter is preferred. If the U6 promoter is used, dsRNA-encoding DNA can be expressed with high efficiency in human and animal cells, and if the U6 promoter is used, DNA encoding a short dsRNA is suitable. Can be expressed.
  • the PolIII promoter and the SV promoter are promoters that work in mammals and are known not to work in lactic acid bacteria.
  • the present inventors have come up with the idea that dsRNA is suitably expressed in vivo using lactic acid bacteria by using a vector containing such a promoter. That is, when a vector containing such a promoter is introduced into a lactic acid bacterium and administered to a mammal, the vector is released from the inside of the lactic acid bacterium to the outside of the mammal, and then the promoter and the like in the vector function. DsRNA is preferably expressed.
  • the idea of using a promoter that does not work in lactic acid bacteria despite the use of lactic acid bacteria is not easily conceived by those skilled in the art, and the present inventors have arrived at the present invention with a unique focus.
  • the type of vector provided in the kit according to the present invention is not particularly limited as long as a promoter that functions in a mammal such as a PolIII promoter introduced into the vector is operable.
  • a method using a plasmid, phage, cosmid or the like can be mentioned, but it is not particularly limited.
  • the vector provided in the kit according to the present invention may be provided with a region for introducing DNA encoding dsRNA downstream of a promoter that functions in mammals such as a PolIII promoter, depending on the use of the kit, etc. DsRNA may be introduced in advance.
  • a region for introducing DNA encoding dsRNA is provided downstream of a promoter that functions in mammals such as a PolIII promoter, if the region is formed by providing a conventionally known restriction enzyme site, etc. Good.
  • examples of the dsRNA include dsRNA that inhibits expression of a DNA encoding a protein that causes a disease in the intestine, which will be described later, but is not limited thereto. It is not something.
  • the vector provided in the kit according to the present invention may include a terminator downstream of the DNA encoding dsRNA or downstream of the region for introducing the DNA.
  • the terminator is not particularly limited, and may be appropriately selected according to the type of promoter. For example, when the U6 promoter is employed as the PolIII promoter, it is preferable to employ the U6 terminator, but it is not limited thereto.
  • DNA encoding RNA polymerase contained in the kit according to the present invention is not particularly limited, and can be included in various forms.
  • a DNA containing an RNA polymerase may be further introduced into a vector containing a PolIII promoter, or a vector containing a DNA encoding an RNA polymerase may be separately provided.
  • Such a vector provided in the kit according to the present invention can be prepared by a conventional method using a conventionally known restriction enzyme and / or ligase.
  • the configuration of the kit according to the present invention is not particularly limited as long as it includes a vector containing a promoter that functions in mammals, and may include other reagents and instruments.
  • a reagent for stably holding the vector, a buffer, or the like may be included, or a reagent such as a restriction enzyme or ligase for introducing dsRNA into the vector may be included.
  • a lactic acid bacterium which is a host cell of the vector may be included, or a reagent such as calcium phosphate or liposome for introducing the vector into the lactic acid bacterium may be included.
  • a plurality of different reagents may be mixed in an appropriate volume and / or form, or may be provided in separate containers.
  • kit according to the present invention may include instructions describing a procedure for introducing dsRNA into a vector and / or a procedure for introducing a vector after introduction of dsRNA into lactic acid bacteria. It may be written or printed on paper or other media, or it may be affixed to electronic media such as magnetic tape, computer readable discs or CD-ROMs.
  • kit according to the present invention may be used by introducing appropriately selected dsRNA into a vector provided in the kit. That is, DNAs encoding various dsRNAs can be inserted into the vector provided in the kit according to the present invention according to the purpose of the user. In addition, what is necessary is just to introduce
  • the type of dsRNA is not particularly limited.
  • dsRNA designed to hybridize to mRNA derived from DNA encoding the protein may be expressed.
  • a short dsRNA in which the length of the double-stranded region of RNA in the dsRNA is 20 to 30 bp is often employed.
  • the size of the double-stranded region in dsRNA varies depending on the use, according to the kit of the present invention, as described above, short-chain dsRNA can be suitably produced in lactic acid bacteria.
  • the method for inserting the DNA encoding dsRNA into the vector provided in the kit according to the present invention is not limited, and may be carried out by a conventional method using a conventionally known restriction enzyme and / or ligase or the like.
  • a vector into which a DNA encoding dsRNA has been introduced may be introduced into lactic acid bacteria.
  • the type of lactic acid bacterium used as a host cell for the dsRNA expression vector is not particularly limited, and Lactobacillus casei, L. et al. Rhamnosus, L. Plantarum, L. Delbrueckii, L.M.
  • Conventionally known lactic acid bacteria such as acidophilus and Lactococcus lactis can be exemplified.
  • L. Casei is preferable because it has a high resistance to gastric acid and has a high probability of reaching the intestines alive.
  • the method of introducing the dsRNA expression vector into lactic acid bacteria is not particularly limited, and a conventionally known method such as electroporation, calcium phosphate method, liposome method, DEAE dextran method or the like is preferably used. it can.
  • the lactic acid bacterium according to the present invention into which the dsRNA expression vector has been introduced is orally administered to the subject.
  • the lactic acid bacteria have strong resistance to gastric acid, they reach the intestines alive. Lactic acid bacteria that have reached the intestine, for example, are taken up by cells that cause disease in the intestine, cause RNAi in the cell, and inhibit the expression of protein genes that cause the disease. Can be treated.
  • the utilization method of the lactic acid bacteria produced by the kit according to the present invention is not limited to oral administration to a subject.
  • lactic acid bacteria can be safely delivered in the intestine to various organisms, they can be used for RNAi studies in various organisms.
  • a method of transforming lactic acid bacteria with a vector containing a promoter transcribed by PolIII and causing RNAi in the intestines of humans and / or animals is also within the scope of the present invention.
  • Lactic acid bacteria according to the present invention only needs to contain a vector in which a DNA encoding dsRNA is operably linked to a promoter that functions in mammals.
  • promoters that function in mammals include Pol III promoters and SV promoters, with Pol III promoters being more preferred.
  • the lactic acid bacterium according to the present invention contains a vector in which the DNA and the promoter are linked so that the DNA encoding the dsRNA can be expressed by a promoter that functions in a mammal such as a PolIII promoter. It only has to be.
  • the lactic acid bacterium according to the present invention can express the DNA encoding dsRNA. Further, since the host cell is a lactic acid bacterium, it has excellent resistance to gastric acid. Therefore, even when the lactic acid bacterium according to the present invention is orally administered to humans and animals, it passes through the stomach and reaches the intestine alive. And dsRNA is expressed in an enteric cell. Therefore, according to the lactic acid bacterium according to the present invention, it can be easily introduced into the intestines of humans and animals, and the RNAi effect can be obtained stably in the enteric cells.
  • the description of the vector provided for the lactic acid bacterium according to the present invention and the lactic acid bacterium as a host cell is based on the above description of the kit according to the present invention.
  • the lactic acid bacteria according to the present invention can be produced by a conventionally known method.
  • a dsRNA expression vector is constructed by first introducing a DNA encoding a PolIII promoter and dsRNA into a vector using a restriction enzyme and / or ligase so that the DNA is operably linked by the promoter. To do. And even if the dsRNA expression vector is introduced into lactic acid bacteria by electroporation or the like, the lactic acid bacteria according to the present invention can be produced.
  • the present invention provides a therapeutic composition for enteric diseases for treating diseases such as cancer in the intestine.
  • the therapeutic composition for enteric diseases according to the present invention only needs to contain the lactic acid bacterium according to the present invention.
  • therapeutic composition for enteric diseases is a therapeutic composition containing the lactic acid bacteria according to the present invention, and is intended to be a therapeutic composition that uses human and animal intestinal diseases as treatment targets.
  • the lactic acid bacteria contained in the composition for controlling intestinal parasites according to the present invention may be lactic acid bacteria according to the present invention described above.
  • a lactic acid bacterium according to the present invention which is prepared so as to generate dsRNA that inhibits the expression of a protein gene that causes intestinal diseases, may be included.
  • a dsRNA that inhibits the expression of a protein gene that causes a disease in the intestine a dsRNA that is appropriately set according to the target disease may be used.
  • a product designed to hybridize with mRNA of K-Ras mutant protein may be used.
  • the K-Ras mutant protein is, for example, a protein that is highly expressed in human colon cancer cells SW480, and is a mutant of K-Ras protein that is expressed in normal human cells.
  • the 12th codon is mutated from GGT (glycine) to GTT (valine).
  • GGT glycine
  • GTT valine
  • K-Ras mutant mRNA sequence Gen BanK accession No. M54968.
  • Matilde E. Lleonart, Santiago Ramon y Cajal, John D. Groopman and Marlin D. Friesen, Sensitive and specific detection of K-ras mutations in colon tumors by short oligonucleotide mass analysis No. 5 e53 also discloses a mutation of the K-Ras gene.
  • the intestinal diseases targeted by the therapeutic composition according to the present invention are not limited thereto, and examples thereof include intestinal diseases involving viruses. That is, the intestinal disease can be treated by suppressing the gene expression of the virus.
  • the length of the double-stranded region in dsRNA is not limited as long as the dsRNA can cause RNAi.
  • the length of the double-stranded region is generally about 20 to 30 bp. Short dsRNA is often used.
  • cancer or cell proliferation disorder can be treated or prevented in mammals by regulating gene expression by introducing lactic acid bacteria into the living body.
  • the proliferating cells to be treated or prevented may be, for example, colon cancer as described above, colon cancer cells, or pancreatic cancer cells.
  • RNAi targets are mutant K-Ras gene, EGFR gene, ⁇ -catenin gene and the like.
  • the colon cancer cell is a SW480 cell.
  • the pancreatic cancer cell is a CAPAN-1 cell. Treatment and prevention of various inflammatory bowel diseases is also possible with the present invention.
  • the target of RNAi is, for example, the TNF- ⁇ gene.
  • the form of lactic acid bacteria contained in the therapeutic composition for intestinal diseases according to the present invention is not limited as long as dsRNA can be produced in the intestine.
  • the therapeutic composition for intestinal diseases according to the present invention may include a culture solution containing the lactic acid bacteria according to the present invention, a crude product obtained by recovering cells from the culture solution, or a purified product. Such lactic acid bacteria may be put into a dormant state by freeze-drying or the like.
  • the therapeutic composition for intestinal diseases according to the present invention may include a composition other than the lactic acid bacteria according to the present invention.
  • the composition other than the lactic acid bacterium according to the present invention is not limited as long as it is less harmful to a subject to be administered such as humans and animals and does not impair the function of the lactic acid bacterium.
  • the therapeutic composition for enteric diseases according to the present invention may contain auxiliary substances such as water, physiological saline, wetting or emulsifying agents, pH buffering substances, stabilizers, antioxidants and the like.
  • the therapeutic composition for enteric diseases is preferably prepared for oral administration.
  • the therapeutic composition for enteric diseases according to the present invention when prepared for oral administration, it may contain, for example, starch, lactose, sucrose, mannitol, carboxymethylcellulose, and corn starch. Further, a binder, a disintegrant, a surfactant, a lubricant, a fluidity promoter, a corrigent, a colorant, a fragrance and the like may be further blended.
  • the therapeutic composition for enteric diseases according to the present invention is preferably prepared for oral administration, the form is preferably a tablet, capsule or the like, but is not limited thereto. .
  • the dosage of the therapeutic composition for intestinal diseases according to the present invention is appropriately set depending on the preparation form, administration method, purpose of use, and age, weight, and symptoms of the patient to whom the pharmaceutical is administered, and is not constant. Administration may be carried out in a single dose or divided into several doses within a desired dose range.
  • the therapeutic composition for intestinal diseases according to the present invention can be administered orally as it is, or can be added to any food or drink and consumed daily.
  • a method of treating an intestinal disease by administering the lactic acid bacterium according to the present invention is also within the scope of the present invention.
  • Example 1 Preparation of experimental material> [Plasmid]
  • pUCYIT-shLuc was used as a plasmid to be introduced into lactic acid bacteria.
  • the vector pUCYIT356N (Genbank accession No. AB119527) (provided by Yakult Central Research Institute) into which the erythromycin resistance gene and the repB gene necessary for replication in lactic acid bacteria have been introduced (shown in SEQ ID NO: 1).
  • DNA encoding U6 promoter and shRNA was introduced into the EcoRI-SalI site of ACCESSION No. AB119527).
  • the shRNA targets mRNA of firefly luciferase (Genbank ACCESSION No. ABO769905.1) and has a sequence complementary to positions 1188-1206 of the firefly luciferase coding region.
  • the sequence of the prepared pUCYIT-shLuc is shown in SEQ ID NO: 2. This vector is kept stable in lactic acid bacteria, but in which shRNA gene transcription does not occur, and when this vector is transferred into mammalian cells, transcription of the shRNA gene occurs by the U6 promoter.
  • the nucleotide sequences of the DNA encoding the U6 promoter and shRNA are the 1339th to 1596th positions and the 1603 to 1654th positions of the nucleotide sequence shown in SEQ ID NO: 2. Note that 1333 to 1338 are EcoRI sites, and 1658 to 1663 are SalI sites.
  • the nucleotide sequence of shRNA obtained by expression of pUCYIT-shLuc is shown in SEQ ID NO: 3.
  • Lactobacillus casei was used as a lactic acid bacterium (purchased from American Type Culture Collection (ATCC 27139)).
  • the solution was transferred to a cuvette (BIORAD 0.2 cm) and allowed to stand on ice for 5 minutes, and then electroporated at 1.5 kV, 200 ⁇ , 25 ⁇ F using Gene Pulser (BioRad).
  • 0.9 ml of MRS medium (+ Em 20 ⁇ g / ml) was added and cultured at 37 ° C. for 2 hours.
  • the cultured MRS medium was seeded on an MRS plate (+ Em 20 ⁇ g / ml), placed in a tapper so that the MRS plate did not dry, and incubated at 37 ° C. When cultured for 2 to 3 days, colonies grew. In this way, the L. elegans introduced with the vector was introduced. Casei was obtained.
  • FIG. 1 is a diagram showing the results of colony PCR using colonies obtained by introducing pUCYIT-shLuc, and lane 1 shows the results of colonies introduced with a vector.
  • Lane 2 represents a double-stranded DNA size marker (New England Biolabs 2-Log DNA Ladder).
  • Lane 3 is an L. elegans introduced with pUCYIT356N. Casei colony PCR results, lane 4 shows the results of PCR under the same conditions without using a template.
  • a 420 bp PCR fragment In the colony PCR, if a 420 bp PCR fragment is obtained, it indicates a colony into which a plasmid has been introduced. As shown in FIG. 1, a 420-bp PCR fragment was confirmed from the colony subjected to lane 1 (cannot be confirmed in lanes 3 and 4). Therefore, L. It was confirmed that pUCYIT-shLuc was introduced into casei.
  • Example 2 Quantification of pUCYIT-shLuc in lactic acid bacteria by real-time PCR>
  • L. pylori transformed with pUCYIT-shLuc prepared in Example 1 was used.
  • the amount of plasmid present in casei was measured using a real-time PCR instrument.
  • L. pylori transformed with pUCYIT-shLuc. casei was statically cultured in MRS medium (+ Em 20 ⁇ g / ml). The cultured cells were counted to make a suspension of 2 ⁇ 10 7 cells / ⁇ L, and 1 ⁇ L (that is, 2 ⁇ 10 7 cells / ⁇ L) was added to the 2 ⁇ TET to make a total volume of 20 ⁇ L. . Next, after incubating at 95 degrees for 5 minutes, the supernatant was collected by centrifuging for 5 minutes in a tabletop centrifuge. This was used as a template for PCR.
  • a PCR reaction solution was prepared in the same manner as the PCR reaction solution using 1 ⁇ l solution containing 30 pg, 300 pg, 3 ng and 30 ng of pUCYIT-shLuc instead of 1 ⁇ l of the cell extract.
  • the target plasmid was quantified using a real-time PCR system (Step One manufactured by Applied Biosystems). PCR conditions were 95 ° C. for 5 seconds, then (95 ° C. for 18 seconds, 60 ° C. for 30 seconds) for 40 cycles, 60 ° C. for 1 minute, and 95 ° C. for 15 seconds. Three sets of samples were prepared for each measurement point and measured.
  • FIG. 2 is a diagram showing the results of quantifying pUCYIT-shLuc in lactic acid bacteria by real-time PCR, and the vertical axis CT (threshold cycle) shows the PCR amplification curve as the threshold line (threshold set in the exponential amplification period). The number of cycles crossed is shown, and the horizontal axis shows the amount of pUCYIT-shLuc subjected to real-time PCR.
  • the measurement by real-time PCR showed that 1.2 ng of plasmid was contained in 1.0 ⁇ 10 5 cells.
  • Example 3 Confirmation of RNAi by shRNA expression vector>
  • RNAi by pUCYIT-shLuc constructed in Example 1 was confirmed.
  • PUCYIT-shLuc 70 ng, firefly luciferase (FLuc) expression vector (Promega pGL3-control) 70 ng, and Renilla luciferase (RLuc) expression vector (Promega pRL-SV40) 70 ng were introduced into CHO cells.
  • pGL3-control and the Fluc sequence encoded thereby are shown in SEQ ID NOs: 8 and 9, respectively.
  • SEQ ID NO: 8 is ACCESSION No. in GenBank. It is registered as U47296.
  • a peptide consisting of the amino acid sequence shown in SEQ ID NO: 9 is encoded at positions 280 to 1932 of pGL3-Control shown in SEQ ID NO: 8.
  • SEQ ID NO: 9 is ACCESSION No. in GenBank. It is registered as AAA89084. pRL-SV40 and the RLuc sequence encoded thereby are shown in SEQ ID NOs: 10 and 11.
  • SEQ ID NO: 10 is ACCESSION No. in GenBank. It is registered as AF025845.
  • the peptide consisting of the amino acid sequence shown in SEQ ID NO: 11 is encoded at positions 694 to 1629 of pRL-SV40 shown in SEQ ID NO: 10.
  • SEQ ID NO: 11 is ACCESSION No. in GenBank. It is registered as AAB82577.
  • the CHO cells were obtained from Invitrogen (product name: Flp-In-CHO cells).
  • RNA was introduced into the cells using Effectene (registered trademark) transfection reagent (manufactured by QIAGEN) according to the instruction manual attached thereto.
  • FIG. 3 shows the results of confirming the effect of RNAi by pUCYIT-shLuc in CHO cells.
  • Example 4 Confirmation of RNAi in mouse malignant tumor cells by lactic acid bacteria carrying shRNA expression vector> As an index for verifying the RNAi effect in the intestine, the following model experiment was conducted for the purpose of confirming the RNAi effect in vivo on human tumor cells.
  • FIG. 4 is a diagram showing how 211H-Luc was administered to mice in this example.
  • cells When ingested, cells were suspended in 100 ⁇ L of Matrigel (BD Biosciences, BD Matrigel Basement Matrix) so that 211H-Luc was easily engrafted. The cells were bred for about 3 weeks until the tumor of 211H-Luc cells grew to a sufficient size.
  • Matrigel BD Biosciences, BD Matrigel Basement Matrix
  • FIG. 5 is a diagram showing a state in which the lactic acid bacteria obtained in Example 1 are locally injected into a mouse.
  • FLuc activity was measured 2 days after local injection.
  • 50 ⁇ L of luciferin (30 mg / ml in PBS buffer) was administered to the abdominal cavity of mice, and IVIS 200 Imaging System 5 to 10 minutes later. (Measured in 0.02 seconds).
  • FLuc activity was also measured in the case of local injection of lactic acid bacteria transformed with an empty vector (pUCYIT356N) and local injection of physiological saline without administration of lactic acid bacteria.
  • the lactic acid bacterium transformed with pUCYIT-shLuc and the lactic acid bacterium transformed with the above empty vector were both administered in a concentration of 2 ⁇ 10 8 cells / 200 ⁇ l in physiological saline at 200 ⁇ l.
  • FIG. 6 is a diagram showing the results of observation of mice using IVIS 200 before and after sample administration
  • FIG. 7 is a diagram showing the results of calculating the FLuc activity ratio before and after sample administration.
  • shaft of FIG. 7 is the value computed as follows. That is, in the mouse FLuc image, the vicinity of the tumor site is surrounded by a circle, and the FLuc activity of that part is measured. Next, before and after sample administration and in the negative control experiment, the FLuc activity in the region surrounded by a circle of the same size is also measured. The value on the vertical axis is obtained by dividing the Fluc activity after sample administration by the FLuc activity before sample administration.
  • a lactic acid bacterium having a vector derived from pUCYIT356N having an SV promoter which is a promoter that functions in mammals in the same manner as a promoter transcribed by PolIII is orally administered to a mouse, so that the vector becomes a mouse. It was confirmed that it was transmitted to intestinal cells.
  • pGL3-control vector Promega was cleaved with KpnI and SalI, and a 2440 bp fragment was purified by agarose gel electrophoresis.
  • This fragment is a sequence in which a firefly luciferase gene follows downstream of the SV promoter that works in mammalian cells. The sequence is shown in SEQ ID NO: 12.
  • positions 1 to 6 are KpnI sequences
  • positions 2448 to 2453 are SalI sequences
  • positions 48 to 250 are promoters
  • positions 280 to 1932 are luciferase genes.
  • this fragment was incorporated into the KpnI-SalI site of pUCYIT356N (SEQ ID NO: 1), which is the same vector as used in Example 1.
  • pUCYIT-Luc is stably maintained in lactic acid bacteria, luciferase gene expression does not occur in lactic acid bacteria.
  • a pUCYIT-Luc vector solution containing the same amount as that contained in 2 ⁇ 10 9 cells / ⁇ L of lactic acid bacteria was also prepared in physiological saline (24 ⁇ g / mL).
  • FIG. 8 is a diagram showing a state in which lactic acid bacteria are orally administered using the gastric prompte method in this example.
  • 400 ⁇ L (8 ⁇ 10 8 cells) was administered per animal at a time.
  • Three times a day (10:00, 13:00, 16:00) were carried out continuously for 3 days (the administered lactic acid bacteria were cultured and collected on the day before the administration day).
  • the day after the last day of administration mice were examined for luciferase luminescence using an IVIS 200 Imaging System. Luciferin was administered intraperitoneally at 50 ⁇ L. Luciferin diluted to 30 mg / ml was used.
  • mice were dislocated from the cervical vertebrae and euthanized. Thereafter, the mouse abdomen was cut and the duodenum to rectum were removed. This was washed with PBS, transferred to a petri dish containing fresh PBS, and then luciferase luminescence was examined using an IVIS 200 Imaging System. 50 ⁇ L of luciferin was added to the petri dish. Luciferin diluted to 30 mg / ml was used.
  • FIG. 9 is a diagram showing the results of observation of luciferase activity after oral administration of lactic acid bacteria to mice in this example.
  • FIG. 9 (a) shows the results of administration of pUCYIT-Luc Lactobacilli
  • FIG. 9 Shows the results of administration of the pUCYIT-Luc vector solution prepared for comparison
  • FIG. 9C is an anatomical view of the mouse shown as a reference. As shown in FIG. 9, by administering pUCYIT-Luc Lactobacilli, luciferase activity was confirmed in the vicinity of the intestinal location.
  • the kit according to the present invention can generate dsRNA in human and animal cells using lactic acid bacteria. For this reason, RNAi can be stably generated in the intestines of humans and animals. Therefore, the present invention can be used in the pharmaceutical industry, food industry and related industries.

Abstract

Disclosed is a kit for producing double-stranded RNA with a lactic acid bacterium.  The kit comprises a vector carrying a promoter that can act in a mammal.  The kit can induce RNAi in an enterobacterium in a human or animal body conveniently and stably.

Description

乳酸菌により二本鎖RNAを生成するキット及びその利用Kit for generating double-stranded RNA by lactic acid bacteria and use thereof
 本発明は、乳酸菌により二本鎖RNAを生成するキット及びその利用に関するものである。さらに詳しくは、二本鎖RNAをコードするDNAを発現可能とした乳酸菌によって二本鎖RNAを生成するための、乳酸菌により二本鎖RNAを生成するキット及びそれを利用した技術に関するものである。 The present invention relates to a kit for producing double-stranded RNA by lactic acid bacteria and its use. More specifically, the present invention relates to a kit for producing double-stranded RNA by lactic acid bacteria and a technology using the same for producing double-stranded RNA by lactic acid bacteria capable of expressing DNA encoding the double-stranded RNA.
 RNAiとは、RNA interference(RNA干渉)によって特定の遺伝子の発現を抑制する技術である。例えば、二本鎖RNAを細胞、組織、器官、個体等に導入することによりRNAiを引き起こすことができる。標的遺伝子のmRNAに二本鎖RNAがハイブリダイズすると当該mRNAの分解が促進される。これにより、標的遺伝子の発現が抑制されるのである。 RNAi is a technology for suppressing the expression of a specific gene by RNA interference (RNA interference). For example, RNAi can be caused by introducing double-stranded RNA into a cell, tissue, organ, individual or the like. When double-stranded RNA hybridizes to mRNA of the target gene, degradation of the mRNA is promoted. Thereby, the expression of the target gene is suppressed.
 従来、遺伝子発現抑制法としては、アンチセンス法及びリボザイム法等が知られていたが、これらの方法と比べて、RNAiは遺伝子発現を抑制する効果が長時間持続することが判明してきた。 Conventionally, antisense methods and ribozyme methods have been known as gene expression suppression methods, but it has been found that RNAi has a long-lasting effect of suppressing gene expression compared to these methods.
 そのため、近年、RNAiは分子生物学・細胞生物学研究において急速に広まりつつある。さらに、人間及び動物にも適用できることが明らかになったことから、分子生物学における哺乳動物研究の新手法として脚光を浴びており、医薬品及び食品への応用が期待されている。 Therefore, in recent years, RNAi is rapidly spreading in molecular biology and cell biology research. Furthermore, since it has been clarified that it can be applied to humans and animals, it is attracting attention as a new method of mammal research in molecular biology, and is expected to be applied to pharmaceuticals and foods.
 RNAiの医薬品及び食品への応用として、(1)がん、高脂血症、糖尿病等の、特定の遺伝子の過剰な活性発現を原因とする疾患の治療に利用すること(例えば、特許文献1参照)、(2)人間及び動物の体内に寄生している線虫、回虫等の寄生虫を、その生存に必要な遺伝子の発現を抑制することにより駆除すること等が提案されている。例えば、dsRNAをコードする遺伝子の発現ベクターを導入した大腸菌を、土壌生息性の線虫であるCaenorhabditis elegansに食べさせて、当該線虫の有する特定遺伝子の発現を抑制する方法も提案されている(非特許文献1参照)。 Application of RNAi to pharmaceuticals and foods is as follows: (1) Use for treatment of diseases caused by excessive activity of specific genes such as cancer, hyperlipidemia, diabetes, etc. (for example, Patent Document 1) (2) It has been proposed to eliminate parasites such as nematodes and roundworms parasitizing human and animal bodies by suppressing the expression of genes necessary for their survival. For example, a method has been proposed in which Escherichia coli into which a dsRNA-encoding gene expression vector has been introduced is fed to Caenorhabditis elegans, a soil-dwelling nematode, to suppress the expression of a specific gene possessed by the nematode ( Non-patent document 1).
 また、RNAiを行なうための方法として、合成高分子又はウイルスを二本鎖RNA発現ベクターのキャリアとして細胞等に導入する方法、動物の受精卵に二本鎖RNA発現遺伝子を導入する方法等が報告されている。特許文献2には、キャリアとして細菌ミニ細胞を用いる方法が提案されている。 In addition, as a method for performing RNAi, a method of introducing a synthetic polymer or virus into a cell or the like as a carrier of a double-stranded RNA expression vector, a method of introducing a double-stranded RNA expression gene into a fertilized egg of an animal, etc. are reported. Has been. Patent Document 2 proposes a method using bacterial minicells as a carrier.
日本国公開特許公報「特開2006-246787号公報(2006年9月21日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-246787 (published on September 21, 2006)” 日本国公開特許公報「特表2005-505296号公報(2005年2月24日公表)」Japanese Patent Publication “Special Table 2005-505296 Publication (published February 24, 2005)”
 しかしながら、従来の方法では、人間及び動物の腸内で、簡便に且つ安定してRNAiを起こすことが困難であるという問題を生じる。 However, the conventional method has a problem that it is difficult to cause RNAi easily and stably in the intestines of humans and animals.
 例えば、非特許文献1に開示の、二本鎖RNAをコードする遺伝子を発現可能な大腸菌を用いる場合、人間及び動物の腸内でRNAiを起こさせるために当該大腸菌を経口投与すると、当該大腸菌は腸内に到達することなく胃酸等により死滅してしまう確率が高い。また、大腸菌を経口投与することは安全性の面でも問題があり、特に、大量投与は困難であるため、腸内で効率よくRNAiを起こすことが困難である。一方、経口投与以外の方法により腸内に当該大腸菌を導入することは簡便ではない。よって、腸内でRNAiの効果を簡便且つ安定に得ることはできない。 For example, when using E. coli capable of expressing a gene encoding a double-stranded RNA disclosed in Non-Patent Document 1, when the E. coli is orally administered to cause RNAi in human and animal intestines, There is a high probability of being killed by stomach acid or the like without reaching the intestines. In addition, oral administration of E. coli is problematic in terms of safety. In particular, since large-scale administration is difficult, it is difficult to efficiently cause RNAi in the intestine. On the other hand, it is not convenient to introduce the E. coli into the intestine by a method other than oral administration. Therefore, the effect of RNAi cannot be obtained easily and stably in the intestine.
 また、特許文献1及び2に開示の、ウイルス、合成高分子又は細菌ミニ細胞をキャリアとする方法でも、胃酸等の影響により、当該キャリアを腸内に到達させることが困難であるため、腸内で安定してRNAiを起こすことはできない。 In addition, the methods disclosed in Patent Documents 1 and 2 using viruses, synthetic polymers, or bacterial minicells as carriers are difficult to reach the intestines due to the effects of gastric acid and the like. Can not cause RNAi stably.
 なお、ウイルス又は合成高分子をキャリアとして用いる方法では、キャリア自体の安全性も問題となるため、そもそも人間及び動物に投与することは好ましくない。また、細菌ミニ細胞は細菌細胞から核を除去したものであり、細菌細胞とは全く異なる物質である。そのため、細菌ミニ細胞をキャリアとして用いる方法では、当該キャリア自体は増幅せず、RNAiによる効果を長時間安定して得ることができない。 In addition, in the method using a virus or a synthetic polymer as a carrier, since the safety of the carrier itself becomes a problem, it is not preferable to administer it to humans and animals in the first place. Bacterial minicells are obtained by removing nuclei from bacterial cells and are completely different from bacterial cells. Therefore, in the method using bacterial minicells as a carrier, the carrier itself is not amplified and the effect of RNAi cannot be obtained stably for a long time.
 そもそも、非特許文献1、特許文献1及び2のような従来のRNAiに関する報告からは、人間及び動物の腸内でRNAiを起こすという課題すら想到し得ない。例えば、非特許文献1で適用した線虫は土壌生息性であり、土壌は人間及び動物の腸内とは全く環境が異なる。そのため、非特許文献1から、腸内でRNAiを起こすという課題に想到することすら困難である。 In the first place, reports on conventional RNAi such as Non-Patent Document 1 and Patent Documents 1 and 2 cannot conceive even the problem of causing RNAi in human and animal intestines. For example, the nematode applied in Non-Patent Document 1 has soil habitat, and the soil has a completely different environment from the intestines of humans and animals. Therefore, it is difficult to even come up with the problem of causing RNAi in the intestine from Non-Patent Document 1.
 本発明は、上記の問題点に鑑みて、上述のように全く新たな課題を解決するためになされたものであり、その目的は、人間及び動物の腸内で簡便に且つ安定してRNAiを起こすために、人間及び動物の腸内の細胞内において二本鎖RNA(特に、siRNA又はshRNAと呼ばれる、哺乳動物細胞に対してRNAi効果を発揮する短い二本鎖RNA)を生成させるキット及びこれらを利用した技術を提供することにある。 In view of the above problems, the present invention has been made in order to solve a completely new problem as described above. The object of the present invention is to provide RNAi easily and stably in the intestines of humans and animals. Kits for generating double-stranded RNA (especially, short double-stranded RNA that exerts an RNAi effect on mammalian cells called siRNA or shRNA) in human and animal intestinal cells in order to wake up To provide technology using
 上記課題を解決するために、本発明に係る乳酸菌により二本鎖RNAを生成するキットは、哺乳動物内で機能するプロモーターを含むベクターを備えていることを特徴としている。 In order to solve the above problems, a kit for producing double-stranded RNA by lactic acid bacteria according to the present invention is characterized by comprising a vector containing a promoter that functions in mammals.
 本発明に係るキットでは、上記哺乳動物内で機能するプロモーターは、PolIIIによって転写されるプロモーターであることがより好ましい。 In the kit according to the present invention, the promoter that functions in the mammal is more preferably a promoter transcribed by PolIII.
 本発明に係るキットでは、上記PolIIIによって転写されるプロモーターが、U6プロモーターであることがより好ましい。 In the kit according to the present invention, the promoter transcribed by PolIII is more preferably a U6 promoter.
 また、本発明に係る乳酸菌は、哺乳動物内で機能するプロモーターに二本鎖RNAをコードするDNAが作動可能に連結されたベクターを、含有していることを特徴としている。 The lactic acid bacterium according to the present invention is characterized by containing a vector in which a DNA encoding a double-stranded RNA is operably linked to a promoter that functions in a mammal.
 本発明に係る乳酸菌では、上記哺乳動物内で機能するプロモーターは、PolIIIによって転写されるプロモーターであることがより好ましい。 In the lactic acid bacterium according to the present invention, the promoter that functions in the mammal is more preferably a promoter transcribed by PolIII.
 また、本発明に係る腸内疾患用治療組成物は、上記の本発明に係る乳酸菌を含んでいることを特徴としている。 Moreover, the therapeutic composition for enteric diseases according to the present invention is characterized by containing the lactic acid bacterium according to the present invention.
 本発明に係る乳酸菌により二本鎖RNAを生成するキットは、PolIIIによって転写されるプロモーター等の哺乳動物内で機能するプロモーターを含むベクターを備えているので、人間及び動物の腸内における当該人間及び動物の細胞内において安定して且つ簡便にRNAiの効果を得ることができるという効果を奏する。 Since the kit for producing double-stranded RNA by lactic acid bacteria according to the present invention comprises a vector containing a promoter that functions in mammals such as a promoter transcribed by PolIII, the human and the human in the intestine of the animal and There is an effect that the effect of RNAi can be obtained stably and simply in an animal cell.
pUCYIT-shLucを導入して得たコロニーをコロニーPCRに供した結果を示す図である。It is a figure which shows the result of having used the colony obtained by introduce | transducing pUCYIT-shLuc to colony PCR. リアルタイムPCR法により乳酸菌内のpUCYIT-shLucを定量した結果を示す図である。It is a figure which shows the result of having quantified pUCYIT-shLuc in lactic acid bacteria by real-time PCR method. CHO細胞内におけるpUCYIT-shLucによるRNAiの効果を確認した結果を示す図である。It is a figure which shows the result of having confirmed the effect of RNAi by pUCYIT-shLuc in a CHO cell. 実施例4において、211H-Lucをマウスに投与した様子を示す図である。In Example 4, it is a figure which shows a mode that 211H-Luc was administered to the mouse | mouth. 実施例4において、実施例1にて得た乳酸菌をマウスに局所注射する様子を示す図である。In Example 4, it is a figure which shows a mode that the lactic acid bacteria obtained in Example 1 are locally injected into a mouse | mouth. 実施例4において、サンプルの投与の前後におけるマウスの様子を、IVIS200を用いて観察した結果を示す図である。In Example 4, it is a figure which shows the result of having observed the mode of the mouse | mouth before and after administration of a sample using IVIS200. 実施例4において、サンプルの投与の前後におけるFLuc活性比を算出した結果を示す図である。In Example 4, it is a figure which shows the result of having calculated the FLuc activity ratio before and behind administration of a sample. 実施例5において胃ゾンテ法を用いて乳酸菌を経口投与している様子を示す図である。In Example 5, it is a figure which shows a mode that lactic acid bacteria are orally administered using the gastric sonte method. 実施例5において乳酸菌をマウスに経口投与してルシフェラーゼ活性を観察した結果を示す図であり、図9の(a)はpUCYIT-Luc Lactobacilliを投与した結果を示し、図9の(b)は比較のために作製したpUCYIT-Lucベクター溶液を投与した結果を示し、図9の(c)は参考として示すマウスの解剖図である。FIG. 9 is a diagram showing the results of luciferase activity observed after oral administration of lactic acid bacteria to mice in Example 5. FIG. 9 (a) shows the results of administration of pUCYIT-Luc Lactobacilli, and FIG. 9 (b) shows a comparison. FIG. 9C shows the results of administration of the pUCYIT-Luc vector solution prepared for the purpose, and FIG. 9C is an anatomical view of the mouse shown as a reference.
 <1.本発明に係る乳酸菌により二本鎖RNAを生成するキット>
 本発明に係る乳酸菌により二本鎖RNAを生成するキット(以下、単に「キット」と表記する)は、PolIIIによって転写されるプロモーター等の哺乳動物内で機能するプロモーターを含むベクターを備えていればよい。
<1. Kit for producing double-stranded RNA by lactic acid bacteria according to the present invention>
The kit for producing double-stranded RNA by lactic acid bacteria according to the present invention (hereinafter simply referred to as “kit”) is provided with a vector containing a promoter that functions in mammals such as a promoter transcribed by PolIII. Good.
 本発明に係るキットを用いれば、二本鎖RNA(以下、「dsRNA」と表記する。)を、乳酸菌を利用して人及び動物の腸内の細胞内にて生成させることができる。換言すれば、本発明に係るキットを用いれば、人及び動物細胞内でdsRNAを生成するための発現ベクターを乳酸菌に保持させて、人及び動物の腸内まで運搬することができる。 Using the kit according to the present invention, double-stranded RNA (hereinafter referred to as “dsRNA”) can be produced in cells of human and animal intestines using lactic acid bacteria. In other words, if the kit according to the present invention is used, an expression vector for producing dsRNA in human and animal cells can be held in lactic acid bacteria and transported to the intestines of humans and animals.
 乳酸菌は、人間及び動物に経口投与しても、生きたまま腸内に辿り着くことができる。そして、当該人間及び動物の細胞内にてdsRNAを発現してRNAiを起こすことができる。よって、本発明に係るキットを用いれば、dsRNAを生成することができる乳酸菌を作製して、これを経口投与するだけで、人間及び動物の腸内で安定してdsRNAを生成することができる。これにより、例えば、dsRNAとして、腸内疾患の原因タンパク質をコードする遺伝子の発現を抑制するdsRNA(siRNA又はshRNAと呼ばれる、哺乳動物細胞に対してRNAi効果を発揮する短鎖dsRNA)を用いれば腸内疾患の治療を行なうことも可能となる。 Lactic acid bacteria can reach the intestines alive even when administered orally to humans and animals. Then, dsRNA can be expressed in the human and animal cells to cause RNAi. Therefore, by using the kit according to the present invention, dsRNA can be stably produced in the intestines of humans and animals simply by preparing a lactic acid bacterium capable of producing dsRNA and orally administering it. Thus, for example, if dsRNA that suppresses the expression of a gene encoding a protein that causes intestinal diseases (short RNA dsRNA that exhibits RNAi effect on mammalian cells) is used as dsRNA. It is also possible to treat internal diseases.
 従来、dsRNAをコードするDNAを発現することが可能な乳酸菌に関する報告は無かった。これは、大腸菌等と比べ、乳酸菌を宿主細胞として用いた遺伝子操作および形質転換技術に関する知見が極めて少ないことが理由の一つとして挙げられる。 Heretofore, there has been no report on lactic acid bacteria capable of expressing DNA encoding dsRNA. One reason for this is that, as compared to E. coli and the like, there is very little knowledge regarding genetic manipulation and transformation techniques using lactic acid bacteria as host cells.
 なお、本明細書において用語「dsRNA」は、上述の通り二本鎖RNAを意図する。「dsRNA」は、長鎖の2本鎖RNAを指して用いられる場合もあるが、本明細書ではsiRNA及びshRNA等の短鎖の2本鎖RNAをも含めて「dsRNA」と表記する。また、本明細書において「乳酸菌により二本鎖RNAを生成する」とは、乳酸菌によってdsRNAを生成することを意味し、具体的には、乳酸菌の細胞内のベクターが当該乳酸菌とは別の細胞に移って、当該別の細胞内において当該ベクターが発現してdsRNAを生成する等の形態も包含される。 In the present specification, the term “dsRNA” intends a double-stranded RNA as described above. “DsRNA” may be used to refer to long double-stranded RNA, but in this specification, it includes “short-stranded double-stranded RNA such as siRNA and shRNA”. Further, in the present specification, “generates double-stranded RNA by lactic acid bacteria” means that dsRNA is generated by lactic acid bacteria. Specifically, the vector in the cells of lactic acid bacteria is different from the lactic acid bacteria. Then, a form in which the vector is expressed in the other cell to produce dsRNA is also included.
 〔1-1.ベクターの構成〕
 本発明に係るキットが備えるベクターは、哺乳動物内で機能するプロモーターを含むものであればよい。哺乳動物内で機能するプロモーターとしては、PolIIIによって転写されるプロモーター、SVプロモーター等が挙げられるが、PolIIIによって転写されるプロモーターがより好ましい。以下、説明の簡単のため「PolIIIによって転写されるプロモーター」を「PolIII系プロモーター」という。当該ベクターに含まれるPolIII系プロモーターとしては、例えば、U6プロモーター、H1プロモーター等が挙げられる。中でもU6プロモーターが好ましい。U6プロモーターを用いれば、高い効率で、かつ人間及び動物の細胞内にて、dsRNAをコードするDNAを発現させることができ、さらに、U6プロモーターを用いれば、短鎖のdsRNAをコードするDNAを好適に発現させることができる。
[1-1. (Vector structure)
The vector provided in the kit according to the present invention only needs to contain a promoter that functions in mammals. Examples of promoters that function in mammals include promoters transcribed by PolIII, SV promoters, and the like, and promoters transcribed by PolIII are more preferred. Hereinafter, for simplicity of explanation, the “promoter transcribed by PolIII” is referred to as “PolIII promoter”. Examples of the PolIII promoter included in the vector include U6 promoter and H1 promoter. Of these, the U6 promoter is preferred. If the U6 promoter is used, dsRNA-encoding DNA can be expressed with high efficiency in human and animal cells, and if the U6 promoter is used, DNA encoding a short dsRNA is suitable. Can be expressed.
 なお、PolIII系プロモーター、SVプロモーターは、哺乳動物内で働くプロモーターであり、且つ、乳酸菌内では働かないことが分かっているプロモーターである。しかし、本発明者らは鋭意検討した結果、このようなプロモーターを含むベクターを用いることにより、乳酸菌を用いて生体内でdsRNAを好適に発現させることに想到したのである。つまり、このようなプロモーターを含むベクターを乳酸菌に導入して哺乳動物に投与すると、哺乳動物の体内で乳酸菌の細胞内から細胞外へベクターの放出が起こり、その後当該ベクター中のプロモーター等が機能してdsRNAを好適に発現する。乳酸菌を用いるにもかかわらず、乳酸菌内では働かないプロモーターを用いるという発想は、当業者では容易に想到しないものであり、本発明者らは独自の着眼によって本発明に想到したのである。 The PolIII promoter and the SV promoter are promoters that work in mammals and are known not to work in lactic acid bacteria. However, as a result of intensive studies, the present inventors have come up with the idea that dsRNA is suitably expressed in vivo using lactic acid bacteria by using a vector containing such a promoter. That is, when a vector containing such a promoter is introduced into a lactic acid bacterium and administered to a mammal, the vector is released from the inside of the lactic acid bacterium to the outside of the mammal, and then the promoter and the like in the vector function. DsRNA is preferably expressed. The idea of using a promoter that does not work in lactic acid bacteria despite the use of lactic acid bacteria is not easily conceived by those skilled in the art, and the present inventors have arrived at the present invention with a unique focus.
 本発明に係るキットが備えるベクターの種類は特に限定させるものではなく、当該ベクター中に導入されたPolIII系プロモーター等の哺乳動物内で機能するプロモーターが作動可能であればよい。例えば、プラスミド、ファージ、またはコスミド等を用いる方法が挙げられるが特に限定されない。 The type of vector provided in the kit according to the present invention is not particularly limited as long as a promoter that functions in a mammal such as a PolIII promoter introduced into the vector is operable. For example, a method using a plasmid, phage, cosmid or the like can be mentioned, but it is not particularly limited.
 本発明に係るキットが備えるベクターは、PolIII系プロモーター等の哺乳動物内で機能するプロモーターの下流にdsRNAをコードするDNAを導入するための領域を設けていてもよく、キットの用途等に応じて予めdsRNAを導入していてもよい。 The vector provided in the kit according to the present invention may be provided with a region for introducing DNA encoding dsRNA downstream of a promoter that functions in mammals such as a PolIII promoter, depending on the use of the kit, etc. DsRNA may be introduced in advance.
 PolIII系プロモーター等の哺乳動物内で機能するプロモーターの下流にdsRNAをコードするDNAを導入するための領域を設けておく場合、従来公知の制限酵素部位等を設けることにより、当該領域を形成すればよい。予めdsRNAをコードするDNAを導入しておく場合、当該dsRNAとしては、後述の、腸内の疾患の原因となるタンパク質をコードするDNAの発現を阻害するdsRNA等を例示できるが、これに限定されるものではない。 In the case where a region for introducing DNA encoding dsRNA is provided downstream of a promoter that functions in mammals such as a PolIII promoter, if the region is formed by providing a conventionally known restriction enzyme site, etc. Good. When DNA encoding dsRNA is introduced in advance, examples of the dsRNA include dsRNA that inhibits expression of a DNA encoding a protein that causes a disease in the intestine, which will be described later, but is not limited thereto. It is not something.
 本発明に係るキットが備えるベクターは、dsRNAをコードするDNAの下流、又は当該DNAを導入するための領域の下流にターミネーターを含んでもよい。ターミネーターとしては、特に限定されるものではなく、プロモーターの種類等に応じて適宜選択すればよい。例えばPolIII系プロモーターとしてU6プロモーターを採用した場合、U6ターミネーターを採用することが好ましいが、これに限定されるものではない。 The vector provided in the kit according to the present invention may include a terminator downstream of the DNA encoding dsRNA or downstream of the region for introducing the DNA. The terminator is not particularly limited, and may be appropriately selected according to the type of promoter. For example, when the U6 promoter is employed as the PolIII promoter, it is preferable to employ the U6 terminator, but it is not limited thereto.
 本発明に係るキットに含まれる、RNAポリメラーゼをコードするDNAの形態は、特に限定されるものではなく、種々の形態で含むことができる。例えば、PolIII系プロモーターを含むベクターに、さらにRNAポリメラーゼをコードするDNAが導入されていてもよいし、RNAポリメラーゼをコードするDNAを含むベクターが別途備えられていてもよい。 The form of DNA encoding RNA polymerase contained in the kit according to the present invention is not particularly limited, and can be included in various forms. For example, a DNA containing an RNA polymerase may be further introduced into a vector containing a PolIII promoter, or a vector containing a DNA encoding an RNA polymerase may be separately provided.
 このような本発明に係るキットが備えるベクターは、従来公知の制限酵素及び/又はリガーゼ等を用いる慣用的な手法によって作製することができる。 Such a vector provided in the kit according to the present invention can be prepared by a conventional method using a conventionally known restriction enzyme and / or ligase.
 本発明に係るキットの構成は、哺乳動物内で機能するプロモーターを含むベクターを備える限り、特に限定されるものではなく、他の試薬及び器具を含んでもよい。例えば、ベクターを安定的に保持するための試薬、バッファー等を含んでもよいし、当該ベクターにdsRNAを導入するための制限酵素、リガーゼ等の試薬を含んでもよい。また、当該ベクターの宿主細胞である乳酸菌を含んでもよいし、当該ベクターを乳酸菌に導入するためのリン酸カルシウム、リポソーム等の試薬を含んでもよい。また、本発明に係るキットは、複数の異なる試薬を、適切な容量及び/又は形態で混合していてもよいし、それぞれ別の容器により提供してもよい。 The configuration of the kit according to the present invention is not particularly limited as long as it includes a vector containing a promoter that functions in mammals, and may include other reagents and instruments. For example, a reagent for stably holding the vector, a buffer, or the like may be included, or a reagent such as a restriction enzyme or ligase for introducing dsRNA into the vector may be included. In addition, a lactic acid bacterium which is a host cell of the vector may be included, or a reagent such as calcium phosphate or liposome for introducing the vector into the lactic acid bacterium may be included. In the kit according to the present invention, a plurality of different reagents may be mixed in an appropriate volume and / or form, or may be provided in separate containers.
 また、本発明に係るキットには、ベクターにdsRNAを導入するための手順及び/又はdsRNAを導入した後のベクターを乳酸菌に導入するための手順等を記載した指示書を含んでもよい。紙またはその他の媒体に書かれていても印刷されていてもよく、あるいは磁気テープ、コンピューター読み取り可能なディスク又はCD-ROM等のような電子媒体に付されてもよい。 In addition, the kit according to the present invention may include instructions describing a procedure for introducing dsRNA into a vector and / or a procedure for introducing a vector after introduction of dsRNA into lactic acid bacteria. It may be written or printed on paper or other media, or it may be affixed to electronic media such as magnetic tape, computer readable discs or CD-ROMs.
 〔1-2.本発明に係るキットの使用方法〕
 本発明に係るキットは、当該キットに備えられるベクターに、適宜選択したdsRNAを導入して用いればよい。つまり、本発明に係るキットが備えるベクターには、使用者の目的に応じて様々なdsRNAをコードするDNAを挿入することができる。なお、予めベクターにdsRNAが挿入されている場合は、そのまま乳酸菌に導入すればよい。
[1-2. Method of using kit according to the present invention]
The kit according to the present invention may be used by introducing appropriately selected dsRNA into a vector provided in the kit. That is, DNAs encoding various dsRNAs can be inserted into the vector provided in the kit according to the present invention according to the purpose of the user. In addition, what is necessary is just to introduce | transduce into lactic acid bacteria as it is, when dsRNA is previously inserted in the vector.
 本発明に係るキットが備えるベクターにdsRNAを挿入する場合、dsRNAの種類としては、特に限定されるものでない。 When inserting dsRNA into the vector provided in the kit according to the present invention, the type of dsRNA is not particularly limited.
 また、哺乳動物等の細胞におけるタンパク質遺伝子の発現を抑制するためには、当該タンパク質をコードするDNAに由来するmRNAにハイブリダイズするように設計したdsRNAを発現するようにすればよい。腸内疾患の原因タンパク質を標的として、当該原因タンパク質の遺伝子の発現を阻害することで、腸内疾患の治療が可能となる。 Moreover, in order to suppress the expression of a protein gene in a cell such as a mammal, dsRNA designed to hybridize to mRNA derived from DNA encoding the protein may be expressed. By targeting the causal protein of the intestinal disease and inhibiting the expression of the gene of the causative protein, it becomes possible to treat the intestinal disease.
 なお、哺乳動物等の細胞におけるタンパク質遺伝子の発現を抑制するためには、dsRNAにおけるRNAの二本鎖領域の長さを20~30bpとした短鎖dsRNAが採用されることが多い。このようにdsRNAにおける二本鎖領域のサイズは用途によって異なるが、本発明に係るキットによれば、上述のように、短鎖dsRNAを好適に、乳酸菌に生成させることができる。 In order to suppress the expression of a protein gene in a cell such as a mammal, a short dsRNA in which the length of the double-stranded region of RNA in the dsRNA is 20 to 30 bp is often employed. As described above, although the size of the double-stranded region in dsRNA varies depending on the use, according to the kit of the present invention, as described above, short-chain dsRNA can be suitably produced in lactic acid bacteria.
 本発明に係るキットが備えるベクターに、dsRNAをコードするDNAを挿入する方法は限定されるものではなく、従来公知の制限酵素及び/又はリガーゼ等を用いる慣用的な手法に従って方法により行なえばよい。 The method for inserting the DNA encoding dsRNA into the vector provided in the kit according to the present invention is not limited, and may be carried out by a conventional method using a conventionally known restriction enzyme and / or ligase or the like.
 dsRNAをコードするDNAが導入されたベクター(以下、「dsRNA発現ベクター」と表記する。)は、乳酸菌内に導入すればよい。dsRNA発現ベクターの宿主細胞として用いる乳酸菌の種類は特に限定されるものではなく、Lactobacillus casei、L. rhamnosus、L. plantarum、L. delbrueckii、L. acidophilus、Lactococcus lactis等の従来公知の乳酸菌を例示できる。中でも、L. caseiは、胃酸に対する抵抗力が強く、生きたまま腸内に届く確率が高いため、好ましい。 A vector into which a DNA encoding dsRNA has been introduced (hereinafter referred to as “dsRNA expression vector”) may be introduced into lactic acid bacteria. The type of lactic acid bacterium used as a host cell for the dsRNA expression vector is not particularly limited, and Lactobacillus casei, L. et al. Rhamnosus, L. Plantarum, L. Delbrueckii, L.M. Conventionally known lactic acid bacteria such as acidophilus and Lactococcus lactis can be exemplified. Among these, L. Casei is preferable because it has a high resistance to gastric acid and has a high probability of reaching the intestines alive.
 dsRNA発現ベクターを、乳酸菌に導入する方法、即ち形質転換法は、特に限定されるものではなく、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法等の従来公知の方法を好適に用いることができる。 The method of introducing the dsRNA expression vector into lactic acid bacteria, that is, the transformation method is not particularly limited, and a conventionally known method such as electroporation, calcium phosphate method, liposome method, DEAE dextran method or the like is preferably used. it can.
 人間及び動物等の被験体の腸内細胞内において、本発明に係る乳酸菌にdsRNAを生成させるためには、dsRNA発現ベクターが導入された本発明に係る乳酸菌を、当該被験体に経口投与すればよい。乳酸菌は胃酸に対して強い抵抗性を有しているので、生きたまま腸内に到達する。腸内に到達した乳酸菌は、例えば、腸内で疾患を生じている細胞に取り込まれ、当該細胞内でRNAiを起こして、当該疾患の原因となるタンパク質遺伝子の発現を阻害することで腸内疾患を治療することができる。 In order to cause the lactic acid bacterium according to the present invention to generate dsRNA in the intestinal cells of subjects such as humans and animals, the lactic acid bacterium according to the present invention into which the dsRNA expression vector has been introduced is orally administered to the subject. Good. Since lactic acid bacteria have strong resistance to gastric acid, they reach the intestines alive. Lactic acid bacteria that have reached the intestine, for example, are taken up by cells that cause disease in the intestine, cause RNAi in the cell, and inhibit the expression of protein genes that cause the disease. Can be treated.
 なお、本発明に係るキットにより作製した乳酸菌の利用方法は、被験体への経口投与に限定されるものではない。また、乳酸菌は様々な生物に対して安全に腸内送達しうるので、様々な生物におけるRNAiの研究に用いることができる。 In addition, the utilization method of the lactic acid bacteria produced by the kit according to the present invention is not limited to oral administration to a subject. In addition, since lactic acid bacteria can be safely delivered in the intestine to various organisms, they can be used for RNAi studies in various organisms.
 以上の説明にも示されているように、PolIIIによって転写されるプロモーターを含むベクターによって乳酸菌を形質転換し、人間及び/動物の腸内にてRNAiを起こす方法も本発明の範疇である。 As shown in the above description, a method of transforming lactic acid bacteria with a vector containing a promoter transcribed by PolIII and causing RNAi in the intestines of humans and / or animals is also within the scope of the present invention.
 <2.本発明に係る乳酸菌>
 本発明に係る乳酸菌は、哺乳動物内で機能するプロモーターにdsRNAをコードするDNAが作動可能に連結されたベクターを、含有していればよい。哺乳動物内で機能するプロモーターとしては、PolIII系プロモーター、SVプロモーター等が挙げられるが、PolIII系プロモーターがより好ましい。換言すれば、本発明に係る乳酸菌は、dsRNAをコードするDNAがPolIII系プロモーター等の哺乳動物内で機能するプロモーターによって発現可能なように、当該DNAと当該プロモーターとが連結されたベクターを含有していればよい。
<2. Lactic acid bacteria according to the present invention>
The lactic acid bacterium according to the present invention only needs to contain a vector in which a DNA encoding dsRNA is operably linked to a promoter that functions in mammals. Examples of promoters that function in mammals include Pol III promoters and SV promoters, with Pol III promoters being more preferred. In other words, the lactic acid bacterium according to the present invention contains a vector in which the DNA and the promoter are linked so that the DNA encoding the dsRNA can be expressed by a promoter that functions in a mammal such as a PolIII promoter. It only has to be.
 dsRNAをコードするDNAがPolIII系プロモーター等の哺乳動物内で機能するプロモーターに作動可能に連結されているので、本発明に係る乳酸菌は、dsRNAをコードするDNAを発現することができる。また、宿主細胞は乳酸菌であるので、胃酸に対して優れた耐性を有している。そのため、本発明に係る乳酸菌を人間及び動物に経口投与しても、胃を通過して、生きたまま腸内に到達する。そして、腸内細胞内においてdsRNAを発現する。よって、本発明に係る乳酸菌によれば、人間及び動物の腸内に簡便に導入することが可能で、且つ腸内細胞内にて安定してRNAi効果を得ることができる。 Since the DNA encoding dsRNA is operably linked to a promoter that functions in mammals such as a PolIII promoter, the lactic acid bacterium according to the present invention can express the DNA encoding dsRNA. Further, since the host cell is a lactic acid bacterium, it has excellent resistance to gastric acid. Therefore, even when the lactic acid bacterium according to the present invention is orally administered to humans and animals, it passes through the stomach and reaches the intestine alive. And dsRNA is expressed in an enteric cell. Therefore, according to the lactic acid bacterium according to the present invention, it can be easily introduced into the intestines of humans and animals, and the RNAi effect can be obtained stably in the enteric cells.
 本発明に係る乳酸菌が備えるベクター及び宿主細胞としての乳酸菌に関する説明は、上述の本発明に係るキットの説明に準ずる。 The description of the vector provided for the lactic acid bacterium according to the present invention and the lactic acid bacterium as a host cell is based on the above description of the kit according to the present invention.
 本発明に係る乳酸菌は、従来公知の方法により作製することができる。例えば、まず、PolIII系プロモーター及びdsRNAをコードするDNAを、当該DNAが当該プロモーターによって作動可能に連結されるように、制限酵素及び/又はリガーゼを用いてベクターに導入することでdsRNA発現ベクターを構築する。そして、当該dsRNA発現ベクターを電気穿孔法等によって乳酸菌に導入しても、本発明に係る乳酸菌を作製できる。 The lactic acid bacteria according to the present invention can be produced by a conventionally known method. For example, a dsRNA expression vector is constructed by first introducing a DNA encoding a PolIII promoter and dsRNA into a vector using a restriction enzyme and / or ligase so that the DNA is operably linked by the promoter. To do. And even if the dsRNA expression vector is introduced into lactic acid bacteria by electroporation or the like, the lactic acid bacteria according to the present invention can be produced.
 <3.本発明に係る乳酸菌の利用>
 本発明は、腸内における癌等の疾患を治療するための腸内疾患用治療組成物を提供する。
<3. Use of Lactic Acid Bacteria According to the Present Invention>
The present invention provides a therapeutic composition for enteric diseases for treating diseases such as cancer in the intestine.
 本発明に係る腸内疾患用治療組成物は、上記の本発明に係る乳酸菌を含んでいればよい。 The therapeutic composition for enteric diseases according to the present invention only needs to contain the lactic acid bacterium according to the present invention.
 本明細書において「腸内疾患用治療組成物」は、本発明に係る乳酸菌を含む治療組成物であって、人間及び動物の腸内疾患を治療の対象として用いる治療組成物を意図する。 As used herein, “therapeutic composition for enteric diseases” is a therapeutic composition containing the lactic acid bacteria according to the present invention, and is intended to be a therapeutic composition that uses human and animal intestinal diseases as treatment targets.
 本発明に係る腸内寄生虫駆除用組成物に含まれる乳酸菌としては、上述の本発明に係る乳酸菌であればよい。例えば、本発明に係る乳酸菌であって、腸内の疾患の原因となるタンパク質遺伝子の発現を阻害するdsRNAを生成するように作製した乳酸菌を含めばよい。 The lactic acid bacteria contained in the composition for controlling intestinal parasites according to the present invention may be lactic acid bacteria according to the present invention described above. For example, a lactic acid bacterium according to the present invention, which is prepared so as to generate dsRNA that inhibits the expression of a protein gene that causes intestinal diseases, may be included.
 腸内の疾患の原因となるタンパク質遺伝子の発現を阻害するdsRNAとしては、対象の疾患に応じて適宜設定したものを用いればよい。例えば疾患として大腸癌を対象とする場合、K-Ras変異体タンパク質のmRNAにハイブリダイズするように設計したものを用いればよい。K-Ras変異体タンパク質は、例えば、ヒト大腸癌細胞SW480で高発現しているタンパク質であり、通常のヒト細胞が発現するK-Rasタンパク質の変異体である。具体的には、12番目のコドンがGGT(グリシン)からGTT(バリン)に変異している。K-Ras変異体mRNAの配列は、当業者であれば容易に得ることができる。例えば、K-Ras変異体mRNA配列の一例として、GenBanKのaccession No.M54968が挙げられる。また、Matilde E. Lleonart, Santiago Ramon y Cajal, John D. Groopman and Marlin D. Friesen, Sensitive and specific detection of K-ras mutations in colon tumors by short oligonucleotide mass analysis, Nucleic Acids Research, 2004, vol.32, no.5 e53にもK-Ras遺伝子の変異について開示されている。 As the dsRNA that inhibits the expression of a protein gene that causes a disease in the intestine, a dsRNA that is appropriately set according to the target disease may be used. For example, when colorectal cancer is targeted as a disease, a product designed to hybridize with mRNA of K-Ras mutant protein may be used. The K-Ras mutant protein is, for example, a protein that is highly expressed in human colon cancer cells SW480, and is a mutant of K-Ras protein that is expressed in normal human cells. Specifically, the 12th codon is mutated from GGT (glycine) to GTT (valine). A person skilled in the art can easily obtain the sequence of K-Ras mutant mRNA. For example, as an example of the K-Ras mutant mRNA sequence, Gen BanK accession No. M54968. Matilde E. Lleonart, Santiago Ramon y Cajal, John D. Groopman and Marlin D. Friesen, Sensitive and specific detection of K-ras mutations in colon tumors by short oligonucleotide mass analysis No. 5 e53 also discloses a mutation of the K-Ras gene.
 また、本発明に係る治療用組成物が治療の対象とする腸内疾患はこれに限定されるものではなく、例えば、ウイルスの関与する腸内疾患が挙げられる。つまり、当該ウイルスの遺伝子発現を抑制することで、当該腸内疾患を治療することができる。dsRNAにおける二本鎖領域の長さは、当該dsRNAがRNAiを起こしうる限り限定されるものではないが、例えば、一般に哺乳動物細胞の中でRNAiを起こすために、20~30bp程度の長さの短鎖dsRNAがよく用いられる。 In addition, the intestinal diseases targeted by the therapeutic composition according to the present invention are not limited thereto, and examples thereof include intestinal diseases involving viruses. That is, the intestinal disease can be treated by suppressing the gene expression of the virus. The length of the double-stranded region in dsRNA is not limited as long as the dsRNA can cause RNAi. For example, in order to cause RNAi in mammalian cells, the length of the double-stranded region is generally about 20 to 30 bp. Short dsRNA is often used.
 また、本発明において、乳酸菌を生体内に導入することにより遺伝子の発現を調節することによって、哺乳動物において癌または細胞増殖障害を治療または予防することができる。治療または予防の対象となる増殖細胞は、例えば、上述のように大腸癌であってもよいし、結腸癌細胞または膵臓癌細胞であってもよい。大腸癌の場合、RNAiの標的は変異K-Ras遺伝子、EGFR遺伝子及びβ-カテニン遺伝子等である。1つの態様において、該結腸癌細胞はSW480細胞である。また、別の1つの態様において、該膵臓癌細胞はCAPAN-1細胞である。また、様々な炎症性腸疾患の治療及び予防も本発明によって可能である。この場合、RNAiの標的は例えばTNF-α遺伝子である。 In the present invention, cancer or cell proliferation disorder can be treated or prevented in mammals by regulating gene expression by introducing lactic acid bacteria into the living body. The proliferating cells to be treated or prevented may be, for example, colon cancer as described above, colon cancer cells, or pancreatic cancer cells. In the case of colorectal cancer, RNAi targets are mutant K-Ras gene, EGFR gene, β-catenin gene and the like. In one embodiment, the colon cancer cell is a SW480 cell. In another embodiment, the pancreatic cancer cell is a CAPAN-1 cell. Treatment and prevention of various inflammatory bowel diseases is also possible with the present invention. In this case, the target of RNAi is, for example, the TNF-α gene.
 本発明に係る腸内疾患用治療組成物に含まれる乳酸菌の形態は、腸内でdsRNAを生成可能である限り限定されるものではない。例えば、本発明に係る腸内疾患用治療組成物は、本発明に係る乳酸菌を含有する培養液、当該培養液から菌体を回収して粗精製物又は精製物を含んでもよく、本発明に係る乳酸菌を凍結乾燥等により休眠状態としたものを含んでいてもよい。 The form of lactic acid bacteria contained in the therapeutic composition for intestinal diseases according to the present invention is not limited as long as dsRNA can be produced in the intestine. For example, the therapeutic composition for intestinal diseases according to the present invention may include a culture solution containing the lactic acid bacteria according to the present invention, a crude product obtained by recovering cells from the culture solution, or a purified product. Such lactic acid bacteria may be put into a dormant state by freeze-drying or the like.
 本発明に係る腸内疾患用治療組成物は、本発明に係る乳酸菌以外の組成を含んでもよい。本発明に係る乳酸菌以外の組成としては、人間、動物等の投与対象に対して害が少なく且つ当該乳酸菌の機能を損なわないものであれば限定されない。 The therapeutic composition for intestinal diseases according to the present invention may include a composition other than the lactic acid bacteria according to the present invention. The composition other than the lactic acid bacterium according to the present invention is not limited as long as it is less harmful to a subject to be administered such as humans and animals and does not impair the function of the lactic acid bacterium.
 例えば、本発明に係る腸内疾患用治療組成物は、水、生理食塩水、湿潤剤又は乳化剤、pH緩衝化物質、安定化剤、抗酸化剤等のような補助物質を含み得る。 For example, the therapeutic composition for enteric diseases according to the present invention may contain auxiliary substances such as water, physiological saline, wetting or emulsifying agents, pH buffering substances, stabilizers, antioxidants and the like.
 また、本発明に係る乳酸菌を経口投与しても、腸内まで生きたまま到達して、腸内細胞内にてdsRNAを発現し、病気となっている細胞を駆除できるので、本発明に係る腸内疾患用治療組成物は経口投与用に調製されることが好ましい。 In addition, even if the lactic acid bacterium according to the present invention is orally administered, it reaches the intestine alive, expresses dsRNA in the intestinal cell, and can control the diseased cell. The therapeutic composition for enteric diseases is preferably prepared for oral administration.
 そして、本発明に係る腸内疾患用治療組成物を、経口投与用に調製する場合、例えばデンプン、乳糖、白糖、マンニット、カルボキシメチルセルロース、コーンスターチを含み得る。また、さらに結合剤、崩壊剤、界面活性剤、潤滑剤、流動性促進剤、矯味剤、着色剤、香料等を配合してもよい。 And, when the therapeutic composition for enteric diseases according to the present invention is prepared for oral administration, it may contain, for example, starch, lactose, sucrose, mannitol, carboxymethylcellulose, and corn starch. Further, a binder, a disintegrant, a surfactant, a lubricant, a fluidity promoter, a corrigent, a colorant, a fragrance and the like may be further blended.
 上述のように、本発明に係る腸内疾患用治療組成物は経口投与用に調製されることが好ましいので、その形態としては錠剤、カプセル等の形態が好ましいがこれに限定されるものではない。 As described above, since the therapeutic composition for enteric diseases according to the present invention is preferably prepared for oral administration, the form is preferably a tablet, capsule or the like, but is not limited thereto. .
 本発明に係る腸内疾患用治療組成物の投与量は、その製剤形態、投与方法、使用目的および当該医薬の投与対象である患者の年齢、体重、症状によって適宜設定され一定ではない。投与は、所望の投与量範囲内において、1日内において単回で、または数回に分けて行ってもよい。また、本発明に係る腸内疾患用治療組成物はそのまま経口投与するほか、任意の飲食品に添加して日常的に摂取させることもできる。 The dosage of the therapeutic composition for intestinal diseases according to the present invention is appropriately set depending on the preparation form, administration method, purpose of use, and age, weight, and symptoms of the patient to whom the pharmaceutical is administered, and is not constant. Administration may be carried out in a single dose or divided into several doses within a desired dose range. In addition, the therapeutic composition for intestinal diseases according to the present invention can be administered orally as it is, or can be added to any food or drink and consumed daily.
 以上の説明にも示されているように、本発明に係る乳酸菌を投与することにより腸内疾患を処置する方法も本発明の範疇である。 As shown in the above description, a method of treating an intestinal disease by administering the lactic acid bacterium according to the present invention is also within the scope of the present invention.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された特許文献及び非特許文献の全てが、本明細書中において参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the patent documents and nonpatent literatures described in this specification are used as reference in this specification.
 <実施例1:実験材料の調製>
 〔プラスミド〕
 本実施例では、乳酸菌に導入するプラスミドとしてpUCYIT-shLucを用いた。
<Example 1: Preparation of experimental material>
[Plasmid]
In this example, pUCYIT-shLuc was used as a plasmid to be introduced into lactic acid bacteria.
 erythromycin耐性遺伝子及び乳酸菌内での複製に必要なrepB遺伝子が導入されたベクターpUCYIT356N(Genbank accession No. AB119527)(ヤクルト株式会社中央研究所より供与された)(配列番号1に示す。なお、GenBankにACCESSION No. AB119527として登録されている。)のEcoRI-SalIサイトに、U6プロモーター、shRNAをコードするDNAを導入した。当該shRNAは、ホタルルシフェラーゼ(Genbank ACCESSION No. ABO76905.1)のmRNAを標的とし、ホタルルシフェラーゼコード領域の1188-1206位に相補的な配列を有するものである。 The vector pUCYIT356N (Genbank accession No. AB119527) (provided by Yakult Central Research Institute) into which the erythromycin resistance gene and the repB gene necessary for replication in lactic acid bacteria have been introduced (shown in SEQ ID NO: 1). DNA encoding U6 promoter and shRNA was introduced into the EcoRI-SalI site of ACCESSION No. AB119527). The shRNA targets mRNA of firefly luciferase (Genbank ACCESSION No. ABO769905.1) and has a sequence complementary to positions 1188-1206 of the firefly luciferase coding region.
 作製したpUCYIT-shLucの配列を配列番号2に示す。このベクターは乳酸菌の中で安定に保たれるが、その中ではshRNA遺伝子の転写は起こらず、このベクターが哺乳動物細胞内に移ったときにU6プロモーターによってshRNA遺伝子の転写が起こる。 The sequence of the prepared pUCYIT-shLuc is shown in SEQ ID NO: 2. This vector is kept stable in lactic acid bacteria, but in which shRNA gene transcription does not occur, and when this vector is transferred into mammalian cells, transcription of the shRNA gene occurs by the U6 promoter.
 U6プロモーター、shRNAをコードするDNAの、それぞれの塩基配列は、配列番号2に示す塩基配列のうち、1339位~1596位、1603位~1654位である。なお、1333位~1338位はEcoRIサイトであり、1658位~1663位はSalIサイトである。なお、pUCYIT-shLucの発現によって、得られるshRNAの塩基配列を配列番号3に示す。 The nucleotide sequences of the DNA encoding the U6 promoter and shRNA are the 1339th to 1596th positions and the 1603 to 1654th positions of the nucleotide sequence shown in SEQ ID NO: 2. Note that 1333 to 1338 are EcoRI sites, and 1658 to 1663 are SalI sites. The nucleotide sequence of shRNA obtained by expression of pUCYIT-shLuc is shown in SEQ ID NO: 3.
 〔乳酸菌〕
 乳酸菌として、Lactobacillus caseiを用いた(American Type Culture Collectionより購入した(ATCC27139))。
[Lactic acid bacteria]
Lactobacillus casei was used as a lactic acid bacterium (purchased from American Type Culture Collection (ATCC 27139)).
 〔エレクトロポレーションによるプラスミドの導入〕
 本実施例では、L. caseiに対するベクターの導入を、エレクトロポレーション法により行なった。
[Introduction of plasmid by electroporation]
In this embodiment, L.P. The vector was introduced into casei by electroporation.
 まず、MRS液体培地2mlに、L. caseiのグリセロールストック20μlを加えて、終夜37℃で静置培養した。次に、MRS液体培地から100μl採取して、10mlの新鮮なMRS液体培地に添加して培養した。次に、L. caseiの対数増殖期に、MRS液体培地から4ml採取して、2000g×5minで遠心して上清を取り除いた。得られた沈殿物に、10%グリセロール溶液40μlを加えて懸濁させた。このグリセロール溶液に、導入するベクター(500ng/μl)を1μl加えて、ピペッティングすることで攪拌した。 First, L.M. Casei glycerol stock (20 μl) was added and static culture was continued overnight at 37 ° C. Next, 100 μl was taken from the MRS liquid medium, added to 10 ml of fresh MRS liquid medium, and cultured. Next, L. In the logarithmic growth phase of casei, 4 ml was collected from the MRS liquid medium and centrifuged at 2000 g × 5 min to remove the supernatant. To the resulting precipitate, 40 μl of 10% glycerol solution was added and suspended. To this glycerol solution, 1 μl of the vector to be introduced (500 ng / μl) was added and stirred by pipetting.
 次に、キュベット(BIORAD社製 0.2cm)に溶液を移し氷上で5分間静置した後、Gene Pulser(BioRad社製)を用いて、1.5kV、200Ω、25μFでエレクトロポレーションした。その後、すぐに、0.9mlのMRS培地(+Em 20μg/ml)を加えて37℃で2時間培養した。次に、培養後のMRS培地をMRSプレート(+Em 20μg/ml)上に播いて、MRSプレートが乾かないようにタッパーの中に入れて37℃静置培養した。2~3日培養すると、コロニーが生えた。このようにして、ベクターの導入されたL. caseiを得た。 Next, the solution was transferred to a cuvette (BIORAD 0.2 cm) and allowed to stand on ice for 5 minutes, and then electroporated at 1.5 kV, 200Ω, 25 μF using Gene Pulser (BioRad). Immediately thereafter, 0.9 ml of MRS medium (+ Em 20 μg / ml) was added and cultured at 37 ° C. for 2 hours. Next, the cultured MRS medium was seeded on an MRS plate (+ Em 20 μg / ml), placed in a tapper so that the MRS plate did not dry, and incubated at 37 ° C. When cultured for 2 to 3 days, colonies grew. In this way, the L. elegans introduced with the vector was introduced. Casei was obtained.
 なお、ベクターの導入の確認はコロニーPCRにより行なった。まず、8連チューブに2×TET(20mM Tris-HCl,pH8.0,2mM EDTA,1% TritonX-100)を10μl入れた後、爪楊枝を用いてコロニーを軽くつつくことで菌体を採取して、上記2×TETに懸濁させた。次に、95度で5分間インキュベートした後、卓上遠心機で5分間遠心して、上清1μlを回収した。これをコロニーPCRの鋳型として用いた。 In addition, confirmation of vector introduction was performed by colony PCR. First, 10 μl of 2 × TET (20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 1% Triton X-100) was put into an 8-strip tube, and the cells were collected by gently pitting the colony with a toothpick. And suspended in the above 2 × TET. Next, after incubating at 95 ° C. for 5 minutes, the mixture was centrifuged for 5 minutes in a tabletop centrifuge, and 1 μl of the supernatant was recovered. This was used as a template for colony PCR.
 次に、当該上清1μl(鋳型)に、Vent DNA polymerase 0.1μl(New England Biolabs社製)、10×Vent Buffer 1μl(Vent DNA polymeraseに付属)、2mM dNTPs 1μl、正鎖プライマー(GCAAGGCGATTAAGTTGGG;配列番号4) 0.2μl、逆鎖プライマー(AGGTCCACCAAAATAGTCG;配列番号5) 0.2μl、超純水6.5μlを混合して、全量を10μlとした。また、上記超純水とは、Milli-Qシステム(ミリポア社製)を用いて精製した超純水である。 Next, 1 μl of the supernatant (template), 0.1 μl of Vent DNA polymerase (manufactured by New England Biolabs), 1 μl of 10 × Vent Buffer (attached to Vent DNA polymerase), 2 μm of dNTPs 1 μl, positive primer (GCAAGTGGTAGTAG; Number 4) 0.2 μl, reverse-strand primer (AGGTCCACCAAAATAGTCG; SEQ ID NO: 5) 0.2 μl and ultrapure water 6.5 μl were mixed to make the total volume 10 μl. The ultrapure water is ultrapure water purified using a Milli-Q system (Millipore).
 温度条件としては、95℃で3分間インキュベートした後、95℃で30秒間、54℃で30秒間、72℃で30秒間を30サイクル行なった。コロニーPCRを行なった後、反応後の溶液5μlを3%アガロースゲルによる電気泳動に供して、エチジウムブロマイド染色を行なうことによって、コロニーPCRの結果を確認した。 As temperature conditions, after incubation at 95 ° C. for 3 minutes, 30 cycles of 95 ° C. for 30 seconds, 54 ° C. for 30 seconds, and 72 ° C. for 30 seconds were performed. After performing colony PCR, 5 μl of the solution after the reaction was subjected to electrophoresis on a 3% agarose gel and stained with ethidium bromide to confirm the result of colony PCR.
 コロニーPCRの結果の例として、pUCYIT-shLucを導入した場合のコロニーPCRの結果を図1に示す。図1はpUCYIT-shLucを導入して得たコロニーをコロニーPCRに供した結果を示す図であり、レーン1はベクターを導入したコロニーの結果を示す。また、レーン2は、2本鎖DNAのサイズマーカー(New England Biolabs社 2-Log DNA Ladder)を示す。レーン3は,pUCYIT356N を導入したL. caseiのコロニーPCR結果、レーン4は鋳型を用いずに同条件でPCRした結果を示す。当該コロニーPCRでは、420bpのPCR断片が得られればプラスミドが導入されたコロニーであることを示す。図1に示すように、レーン1に供したコロニーから420bpのPCR断片が確認できた(レーン3,4では確認できない)。よって、L. caseiにpUCYIT-shLucが導入されたことが確認できた。 As an example of the results of colony PCR, the results of colony PCR when pUCYIT-shLuc was introduced are shown in FIG. FIG. 1 is a diagram showing the results of colony PCR using colonies obtained by introducing pUCYIT-shLuc, and lane 1 shows the results of colonies introduced with a vector. Lane 2 represents a double-stranded DNA size marker (New England Biolabs 2-Log DNA Ladder). Lane 3 is an L. elegans introduced with pUCYIT356N. Casei colony PCR results, lane 4 shows the results of PCR under the same conditions without using a template. In the colony PCR, if a 420 bp PCR fragment is obtained, it indicates a colony into which a plasmid has been introduced. As shown in FIG. 1, a 420-bp PCR fragment was confirmed from the colony subjected to lane 1 (cannot be confirmed in lanes 3 and 4). Therefore, L. It was confirmed that pUCYIT-shLuc was introduced into casei.
 <実施例2:リアルタイムPCRによる乳酸菌内のpUCYIT-shLucの定量>
 本実施例では、実施例1で作製したpUCYIT-shLucを用いて形質転換したL. caseiの中に存在するプラスミドの量を、リアルタイムPCR装置を用いて測定した。
<Example 2: Quantification of pUCYIT-shLuc in lactic acid bacteria by real-time PCR>
In this Example, L. pylori transformed with pUCYIT-shLuc prepared in Example 1 was used. The amount of plasmid present in casei was measured using a real-time PCR instrument.
 まず,pUCYIT-shLucを用いて形質転換したL. caseiをMRS培地(+Em 20μg/ml)中で静置培養した。培養した細胞を計数して細胞数2×10cell/μLの懸濁液を作り,これを1μL(すなわち2×10cell/μL)とって上記2×TETを加え、全量を20μLにした。次に、95度で5分間インキュベートした後、卓上遠心機で5分間遠心して、上清を回収した。これをPCRの鋳型として用いた。 First, L. pylori transformed with pUCYIT-shLuc. casei was statically cultured in MRS medium (+ Em 20 μg / ml). The cultured cells were counted to make a suspension of 2 × 10 7 cells / μL, and 1 μL (that is, 2 × 10 7 cells / μL) was added to the 2 × TET to make a total volume of 20 μL. . Next, after incubating at 95 degrees for 5 minutes, the supernatant was collected by centrifuging for 5 minutes in a tabletop centrifuge. This was used as a template for PCR.
 次に、当該上清を10倍希釈した溶液1μl(鋳型;1×10cell分に含まれるDNA)に、Fast SYBR green Mix (2x) 5μl(Applied Biosystems社製)、2μM 5U6-2プライマー(CCGAGCTCGAATTCAAGGTCGGGCAGG;配列番号6)1μl、2μM 3U6プライマー(GGTGTTTCGTCCTTTCCAC;配列番号7)1μl、超純水2μlを混合して、全量を10μlのPCR反応液とした。検量線用に、上記細胞抽出液1μlの代わりに、30pg、300pg、3ng、30ngのpUCYIT-shLucをそれぞれ含む1μl溶液を用いて、上記PCR反応液と同様にPCR反応液を調製した。これらのPCR反応液に対して、リアルタイムPCRシステム(Applied Biosystems社製StepOne)を用いて目的プラスミドを定量した。PCR条件は、95℃を5秒間、次に(95℃で18秒間、60℃で30秒間)を40サイクル、60℃で1分間、95℃15秒間とした。なお、各測定点について3セットずつサンプルを用意して、測定した。このリアルタイムPCRにより目的プラスミドが検出された場合、増幅されるDNAの長さは278bpとなる。結果を図2に示す。図2はリアルタイムPCR法により乳酸菌内のpUCYIT-shLucを定量した結果を示す図であり、縦軸CT(threshold cycle)は、PCR増幅曲線がthreshold line(指数関数的増幅期に設定した閾値)と交差したサイクル数を示し、横軸はリアルタイムPCRに供したpUCYIT-shLucの量を示す。 Next, 1 μl of the supernatant diluted 10-fold (template; DNA contained in 1 × 10 5 cells), Fast SYBR green Mix (2 ×) 5 μl (manufactured by Applied Biosystems), 2 μM 5U6-2 primer ( CGAGCTCGAATTCAAGGTCGGGCAGG; SEQ ID NO: 6) 1 μl, 2 μM 3U6 primer (GGTGTTTCGTCCTTTCAC; SEQ ID NO: 7) 1 μl, ultrapure water 2 μl were mixed to make a total volume of 10 μl of PCR reaction solution. For the calibration curve, a PCR reaction solution was prepared in the same manner as the PCR reaction solution using 1 μl solution containing 30 pg, 300 pg, 3 ng and 30 ng of pUCYIT-shLuc instead of 1 μl of the cell extract. For these PCR reaction solutions, the target plasmid was quantified using a real-time PCR system (Step One manufactured by Applied Biosystems). PCR conditions were 95 ° C. for 5 seconds, then (95 ° C. for 18 seconds, 60 ° C. for 30 seconds) for 40 cycles, 60 ° C. for 1 minute, and 95 ° C. for 15 seconds. Three sets of samples were prepared for each measurement point and measured. When the target plasmid is detected by this real-time PCR, the length of the amplified DNA is 278 bp. The results are shown in FIG. FIG. 2 is a diagram showing the results of quantifying pUCYIT-shLuc in lactic acid bacteria by real-time PCR, and the vertical axis CT (threshold cycle) shows the PCR amplification curve as the threshold line (threshold set in the exponential amplification period). The number of cycles crossed is shown, and the horizontal axis shows the amount of pUCYIT-shLuc subjected to real-time PCR.
 図2に示されるように、リアルタイムPCRによる計測によって、細胞1.0×10個中に1.2ngのプラスミドが含まれていることが示された。 As shown in FIG. 2, the measurement by real-time PCR showed that 1.2 ng of plasmid was contained in 1.0 × 10 5 cells.
 <実施例3:shRNA発現ベクターによるRNAiの確認>
 本実施例では、実施例1で構築したpUCYIT-shLucによるRNAiを確認した。
<Example 3: Confirmation of RNAi by shRNA expression vector>
In this example, RNAi by pUCYIT-shLuc constructed in Example 1 was confirmed.
 pUCYIT-shLuc 70ng、ホタルルシフェラーゼ(FLuc)発現ベクター(Promega社製pGL3-control)70ng及びウミシイタケルシフェラーゼ(RLuc)発現ベクター(Promega社製pRL―SV40)70ngを、CHO細胞に導入した。pGL3-control、及びそれにコードされているFluc配列をそれぞれ配列番号8及び9に示す。なお、配列番号8はGenBankにACCESSION No. U47296として登録されている。配列番号9に示されるアミノ酸配列からなるペプチドは、配列番号8に示すpGL3-Controlの280~1932位にコードされている。なお、配列番号9はGenBankにACCESSION No. AAA89084として登録されている。pRL-SV40、及びそれにコードされているRLuc配列を配列番号10及び11に示す。なお、配列番号10はGenBankにACCESSION No. AF025845として登録されている。配列番号11に示されるアミノ酸配列からなるペプチドは、配列番号10に示すpRL-SV40の694~1629位にコードされている。なお、配列番号11はGenBankにACCESSION No. AAB82577として登録されている。また、当該CHO細胞はInvitrogen社より得た(製品名:Flp-In-CHO細胞)。また、RNAの細胞内導入については、Effectene(登録商標) transfection regent(QIAGEN社製)を用いて、これに添付の取扱説明書に従って行なった。 PUCYIT-shLuc 70 ng, firefly luciferase (FLuc) expression vector (Promega pGL3-control) 70 ng, and Renilla luciferase (RLuc) expression vector (Promega pRL-SV40) 70 ng were introduced into CHO cells. pGL3-control and the Fluc sequence encoded thereby are shown in SEQ ID NOs: 8 and 9, respectively. In addition, SEQ ID NO: 8 is ACCESSION No. in GenBank. It is registered as U47296. A peptide consisting of the amino acid sequence shown in SEQ ID NO: 9 is encoded at positions 280 to 1932 of pGL3-Control shown in SEQ ID NO: 8. In addition, SEQ ID NO: 9 is ACCESSION No. in GenBank. It is registered as AAA89084. pRL-SV40 and the RLuc sequence encoded thereby are shown in SEQ ID NOs: 10 and 11. In addition, SEQ ID NO: 10 is ACCESSION No. in GenBank. It is registered as AF025845. The peptide consisting of the amino acid sequence shown in SEQ ID NO: 11 is encoded at positions 694 to 1629 of pRL-SV40 shown in SEQ ID NO: 10. In addition, SEQ ID NO: 11 is ACCESSION No. in GenBank. It is registered as AAB82577. The CHO cells were obtained from Invitrogen (product name: Flp-In-CHO cells). In addition, RNA was introduced into the cells using Effectene (registered trademark) transfection reagent (manufactured by QIAGEN) according to the instruction manual attached thereto.
 プラスミドベクターを導入したCHO細胞を室温で24時間、培養した後、翌日Dual-Luciferase Reporter Assay System(Promega社製)によってルシフェラーゼ活性を測定した。ネガティブコントロールとして、(1)FLuc発現ベクター及びRLuc発現ベクターのみを導入したCHO細胞、(2)FLuc発現ベクター及びRLuc発現ベクターに加えpUCYIT356Nを導入したCHO細胞を用いた。ネガティブコントロールでは、pUCYIT-shLucを用いなかった以外は本実施例に記載の方法と同じ方法を行なった。結果を図3に示す。図3はCHO細胞内におけるpUCYIT-shLucによるRNAiの効果を確認した結果を示す図である。 After culturing CHO cells into which the plasmid vector had been introduced at room temperature for 24 hours, luciferase activity was measured the next day using Dual-Luciferase Reporter Assay System (Promega). As negative controls, (1) CHO cells into which only FLuc expression vector and RLuc expression vector were introduced, and (2) CHO cells into which pUCYIT356N was introduced in addition to FLuc expression vector and RLuc expression vector were used. In the negative control, the same method as that described in this example was performed except that pUCYIT-shLuc was not used. The results are shown in FIG. FIG. 3 shows the results of confirming the effect of RNAi by pUCYIT-shLuc in CHO cells.
 図3に示されるように、ネガティブコントロールと比べて、pUCYIT-shLucを導入したCHO細胞では、特異的にFLucの発現抑制が起こっていることが確認された。すなわち、pUCYIT-shLucが哺乳動物細胞内でRNAi効果を持つことが確認された。 As shown in FIG. 3, it was confirmed that the expression of FLuc was specifically suppressed in the CHO cells into which pUCYIT-shLuc was introduced, compared to the negative control. That is, it was confirmed that pUCYIT-shLuc has an RNAi effect in mammalian cells.
 <実施例4:shRNA発現ベクターを保持する乳酸菌による、マウス皮下の悪性腫瘍細胞におけるRNAiの確認>
 腸内におけるRNAi効果を検証する指標として、ヒト腫瘍細胞に対してin vivoでRNAi効果を確認することを目的として、次のモデル実験を行った。
<Example 4: Confirmation of RNAi in mouse malignant tumor cells by lactic acid bacteria carrying shRNA expression vector>
As an index for verifying the RNAi effect in the intestine, the following model experiment was conducted for the purpose of confirming the RNAi effect in vivo on human tumor cells.
 ヌードマウス(雄、6週齢)20匹に対し、ヒト悪性中皮腫株化細胞FLuc発現株(211H-Luc)を10cellsずつ右側足根部皮下に投与した。その様子を図4に示す。図4は本実施例において、211H-Lucをマウスに投与した様子を示す図である。なお、摂取させる際、211H-Lucが生着しやすいように細胞はマトリゲル(BD biosciences社製、BD Matrigel Basement Membrane Matrix)100μLに懸濁させて投与した。211H-Luc細胞の腫瘍が十分な大きさに成長するまで約3週間飼育した。その後、RNAi効果を送達するための乳酸菌(実施例1にて得た、pUCYIT-shLucにより形質転換されたもの)を腫瘍が生着した部位に局所注射した。その様子を図5に示す。図5は、実施例1にて得た乳酸菌をマウスに局所注射する様子を示す図である。局所注射の2日後にFLuc活性を測定した。FLuc活性測定については、イソフルランを用いて麻酔をかけた後、マウスの腹腔にルシフェリン(30mg/ml in PBSバッファー)(Promega,Beetle Luciferin)を50μL投与し、5~10分後に、IVIS 200 Imaging System(Xenogen社)を用いて行なった(0.02秒で計測)。ネガティブコントロール実験として、空ベクター(pUCYIT356N)で形質転換した乳酸菌の局所注射、及び、乳酸菌を投与せずに生理食塩水を局所注射した場合についてもFLuc活性を測定した。なお、pUCYIT-shLucにより形質転換された乳酸菌、上記空ベクターにより形質転換された乳酸菌、共に、それぞれ2×10cells/200μlの濃度で生理食塩水に懸濁させたものを200μl投与した。 For 20 nude mice (male, 6 weeks old), 10 7 cells of human malignant mesothelioma cell line FLuc expression strain (211H-Luc) were subcutaneously administered to the right tarsal region. This is shown in FIG. FIG. 4 is a diagram showing how 211H-Luc was administered to mice in this example. When ingested, cells were suspended in 100 μL of Matrigel (BD Biosciences, BD Matrigel Basement Matrix) so that 211H-Luc was easily engrafted. The cells were bred for about 3 weeks until the tumor of 211H-Luc cells grew to a sufficient size. Thereafter, lactic acid bacteria for delivering the RNAi effect (transformed with pUCYIT-shLuc obtained in Example 1) were locally injected into the site where the tumor was engrafted. This is shown in FIG. FIG. 5 is a diagram showing a state in which the lactic acid bacteria obtained in Example 1 are locally injected into a mouse. FLuc activity was measured 2 days after local injection. For the measurement of FLuc activity, after anesthesia using isoflurane, 50 μL of luciferin (30 mg / ml in PBS buffer) (Promega, Betle Luciferin) was administered to the abdominal cavity of mice, and IVIS 200 Imaging System 5 to 10 minutes later. (Measured in 0.02 seconds). As a negative control experiment, FLuc activity was also measured in the case of local injection of lactic acid bacteria transformed with an empty vector (pUCYIT356N) and local injection of physiological saline without administration of lactic acid bacteria. The lactic acid bacterium transformed with pUCYIT-shLuc and the lactic acid bacterium transformed with the above empty vector were both administered in a concentration of 2 × 10 8 cells / 200 μl in physiological saline at 200 μl.
 結果を図6及び7に示す。図6はサンプルの投与の前後におけるマウスの様子を、IVIS200を用いて観察した結果を示す図であり、図7はサンプルの投与の前後におけるFLuc活性比を算出した結果を示す図である。なお、図7の縦軸は、次のようにして算出した値である。即ち、マウスのFLucイメージにおいて、腫瘍部位付近を円で囲み、その部分のFLuc活性を計測する。次に、サンプル投与前後及びネガティブコントロール実験においても全て同様に同じサイズの円で囲んだ領域のFLuc活性を計測する。そして、サンプル投与後のFluc活性をサンプル投与前のFLuc活性で割ったものが当該縦軸の数値である。 The results are shown in FIGS. FIG. 6 is a diagram showing the results of observation of mice using IVIS 200 before and after sample administration, and FIG. 7 is a diagram showing the results of calculating the FLuc activity ratio before and after sample administration. In addition, the vertical axis | shaft of FIG. 7 is the value computed as follows. That is, in the mouse FLuc image, the vicinity of the tumor site is surrounded by a circle, and the FLuc activity of that part is measured. Next, before and after sample administration and in the negative control experiment, the FLuc activity in the region surrounded by a circle of the same size is also measured. The value on the vertical axis is obtained by dividing the Fluc activity after sample administration by the FLuc activity before sample administration.
 図6及び7に示すように、ネガティブコントロールと比べて、pUCYIT-shLucを保持する乳酸菌を投与したマウス群では、有意にFLuc活性の低減が確認され、RNAi効果が確認された。この実験を繰り返し行なったところ再現性が確認された。また、図6で投与した乳酸菌(2×10cells)に含まれるプラスミド量(2.4μg)と等量のpUCYIT―shLucを200μlの生理食塩水に溶かしてマウスに投与しても、全くRNAi効果が見られなかった。これらの結果から、乳酸菌はshRNA発現ベクターをヒト腫瘍細胞内に運び入れ、当該shRNAによるRNAi効果が当該ヒト腫瘍細胞内にて発揮されたことが確認された。 As shown in FIGS. 6 and 7, in the group of mice administered with lactic acid bacteria retaining pUCYIT-shLuc as compared with the negative control, a significant decrease in FLuc activity was confirmed, and the RNAi effect was confirmed. When this experiment was repeated, reproducibility was confirmed. In addition, even when pUCYIT-shLuc in an amount equal to the amount of plasmid (2.4 μg) contained in lactic acid bacteria (2 × 10 8 cells) administered in FIG. 6 is dissolved in 200 μl of physiological saline and administered to mice, RNAi is completely removed. The effect was not seen. From these results, it was confirmed that lactic acid bacteria carried the shRNA expression vector into human tumor cells, and that the RNAi effect by the shRNA was exhibited in the human tumor cells.
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 The specific embodiments or examples made in the detailed description section of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted in a narrow sense. It should be understood that various modifications may be made within the spirit of the invention and the scope of the following claims.
 <実施例5:ルシフェラーゼの発現の確認>
 本実施例では、PolIIIによって転写されるプロモーターと同じく、哺乳動物内で機能するプロモーターであるSVプロモーターを備えた、pUCYIT356N由来のベクターを保持する乳酸菌をマウスに経口投与することで、そのベクターがマウス腸内細胞に伝わることを確認した。
<Example 5: Confirmation of luciferase expression>
In this example, a lactic acid bacterium having a vector derived from pUCYIT356N having an SV promoter which is a promoter that functions in mammals in the same manner as a promoter transcribed by PolIII is orally administered to a mouse, so that the vector becomes a mouse. It was confirmed that it was transmitted to intestinal cells.
 〔5-1:ルシフェラーゼ発現ベクターの作製〕
 pGL3-control vector(Promega社)をKpnI及びSalIで切断し、アガロースゲル電気泳動により2440bpの断片を精製した。この断片は哺乳動物細胞内で働くSVプロモーターの下流に、ホタル(firefly)ルシフェラーゼ遺伝子が続く配列である。配列を配列番号12に示す。配列番号12において、1位~6位がKpnI配列であり、2448位~2453位がSalI配列であり、48位~250位がプロモーターであり、280位~1932位がルシフェラーゼ遺伝子である。次に、この断片を、実施例1で用いたものと同じベクターであるpUCYIT356N(配列番号1)のKpnI-SalIサイトに組み込んだ。これによって、哺乳動物細胞内に入るとルシフェラーゼ遺伝子を発現するベクター[pUCYIT-Luc]を作製した。pUCYIT-Lucは乳酸菌内で安定に保持されるが、乳酸菌内ではルシフェラーゼ遺伝子の発現は起こらない。
[5-1: Preparation of luciferase expression vector]
pGL3-control vector (Promega) was cleaved with KpnI and SalI, and a 2440 bp fragment was purified by agarose gel electrophoresis. This fragment is a sequence in which a firefly luciferase gene follows downstream of the SV promoter that works in mammalian cells. The sequence is shown in SEQ ID NO: 12. In SEQ ID NO: 12, positions 1 to 6 are KpnI sequences, positions 2448 to 2453 are SalI sequences, positions 48 to 250 are promoters, and positions 280 to 1932 are luciferase genes. Next, this fragment was incorporated into the KpnI-SalI site of pUCYIT356N (SEQ ID NO: 1), which is the same vector as used in Example 1. This produced a vector [pUCYIT-Luc] that expresses the luciferase gene when entering mammalian cells. Although pUCYIT-Luc is stably maintained in lactic acid bacteria, luciferase gene expression does not occur in lactic acid bacteria.
 〔5-2:ルシフェラーゼを哺乳動物細胞内で発現する乳酸菌の作製〕
 実施例1の〔エレクトロポレーションによるプラスミドの導入〕の項と同様にして、pUCYIT-LucをL. caseiの細胞内に導入した。
[5-2: Production of lactic acid bacteria expressing luciferase in mammalian cells]
In the same manner as in [Introduction of plasmid by electroporation] in Example 1, pUCYIT-Luc was prepared by L. Casei was introduced into cells.
 〔5-3強制給餌法によるマウスへの乳酸菌投与(1日3回投与×3日間)と観察〕
 強制給餌法を用いてマウスへの乳酸菌投与を行なうことで、生体内でのpUCYIT-Lucベクターの移行を観察した。具体的には、Xenogen社製IVIS 200 Imaging Systemを用いてルシフェラーゼの発光を観察することで、マウスの腸内の細胞内にpUCYIT-Lucベクターが移行したか否かを調べた。
[5-3 Lactic acid bacteria administration (3 times a day x 3 days) and observation to mice by forced feeding method]
Transfer of pUCYIT-Luc vector in vivo was observed by administering lactic acid bacteria to mice using the forced feeding method. Specifically, by observing luciferase luminescence using an IVIS 200 Imaging System manufactured by Xenogen, it was examined whether or not the pUCYIT-Luc vector was transferred into cells in the intestine of mice.
 (1)乳酸菌の集菌
 2mL MRS培地(+Em 20μg/mL)中にpUCYIT-Lucを導入させた乳酸菌(pUCYIT-Luc Lactobacilli)を加え、プレ培養を行なった。翌日プレ培養した培養液2mLを800mL MRS培地(+Em 20μg/mL)に加えた。OD=1.0(A600)になるまで37℃で静置培養した。その後、全培養液を遠心した(2000×G 4℃ 4min)。上清を除き、生理食塩水200mLで懸濁してから遠心した(2000×G 4℃ 4min)。再び上清を除き生理食塩水を加え、遠心(2000×G 4℃ 4min)した。上清を取り除いてから全量8mLになるよう生理食塩水を加え、5mLの乳酸菌溶液(2×10cells/mL)を得た。
(1) Collection of lactic acid bacteria Lactic acid bacteria (pUCYIT-Luc Lactobacilli) into which pUCYIT-Luc was introduced were added to 2 mL of MRS medium (+ Em 20 μg / mL), and preculture was performed. The culture solution 2 mL pre-cultured the next day was added to 800 mL MRS medium (+ Em 20 μg / mL). Static culture was performed at 37 ° C. until OD = 1.0 (A600). Thereafter, the whole culture broth was centrifuged (2000 × G 4 ° C., 4 min). The supernatant was removed, suspended in 200 mL of physiological saline, and then centrifuged (2000 × G 4 ° C., 4 min). The supernatant was removed again, physiological saline was added, and the mixture was centrifuged (2000 × G 4 ° C., 4 min). After removing the supernatant, physiological saline was added to a total volume of 8 mL to obtain 5 mL of lactic acid bacteria solution (2 × 10 9 cells / mL).
 なお、比較のため、2×10cells/μLの乳酸菌内に含まれる量と同じ量を含むpUCYIT-Lucベクター溶液も生理食塩水で調製した(24μg/mL)。 For comparison, a pUCYIT-Luc vector solution containing the same amount as that contained in 2 × 10 9 cells / μL of lactic acid bacteria was also prepared in physiological saline (24 μg / mL).
 (2)乳酸菌の投与
 乳酸菌は、胃ゾンテ法(シリンジに投与したい溶液を入れ、そのシリンジにつなげたチューブを胃まで届かせて注入する方法)を用いて強制給餌した。給餌している様子を図8に示す。図8は本実施例において胃ゾンテ法を用いて乳酸菌を経口投与している様子を示す図である。一回一匹当たり400μL(8×10cell)ずつ投与した。1日3回(10:00、13:00、16:00)を3日間続けて行なった(投与した乳酸菌は投与日前日に培養・集菌したものを用いた)。投与最終日の翌日、IVIS 200 Imaging Systemを用いて、マウスのルシフェラーゼ発光を調べた。ルシフェリンは50μL腹腔投与した。ルシフェリンは30mg/mlに希釈したものを用いた。
(2) Administration of lactic acid bacteria Lactic acid bacteria were forcibly fed using the gastric sonte method (a method in which a solution to be administered is placed in a syringe and a tube connected to the syringe is injected to reach the stomach). A state of feeding is shown in FIG. FIG. 8 is a diagram showing a state in which lactic acid bacteria are orally administered using the gastric sonte method in this example. 400 μL (8 × 10 8 cells) was administered per animal at a time. Three times a day (10:00, 13:00, 16:00) were carried out continuously for 3 days (the administered lactic acid bacteria were cultured and collected on the day before the administration day). The day after the last day of administration, mice were examined for luciferase luminescence using an IVIS 200 Imaging System. Luciferin was administered intraperitoneally at 50 μL. Luciferin diluted to 30 mg / ml was used.
 (3)腸内の観察
 まずマウスを頸椎脱臼させ安楽死させた。その後、マウス腹部を切断し十二指腸~直腸までを摘出した。これをPBSで洗浄し、新しいPBSの入ったシャーレに移してからIVIS 200 Imaging Systemを用いてルシフェラーゼ発光を調べた。シャーレ内にルシフェリンは50μL添加した。ルシフェリンは30mg/mlに希釈したものを用いた。
(3) Observation in the intestine First, mice were dislocated from the cervical vertebrae and euthanized. Thereafter, the mouse abdomen was cut and the duodenum to rectum were removed. This was washed with PBS, transferred to a petri dish containing fresh PBS, and then luciferase luminescence was examined using an IVIS 200 Imaging System. 50 μL of luciferin was added to the petri dish. Luciferin diluted to 30 mg / ml was used.
 (4)結果
 結果を図9に示す。図9は本実施例において乳酸菌をマウスに経口投与してルシフェラーゼ活性を観察した結果を示す図であり、図9の(a)はpUCYIT-Luc Lactobacilliを投与した結果を示し、図9の(b)は比較のために作製したpUCYIT-Lucベクター溶液を投与した結果を示し、図9の(c)は参考として示すマウスの解剖図である。図9に示すように、pUCYIT-Luc Lactobacilliを投与することで、腸の存在位置付近にルシフェラーゼ活性を確認できた。
(4) Results The results are shown in FIG. FIG. 9 is a diagram showing the results of observation of luciferase activity after oral administration of lactic acid bacteria to mice in this example. FIG. 9 (a) shows the results of administration of pUCYIT-Luc Lactobacilli, and FIG. ) Shows the results of administration of the pUCYIT-Luc vector solution prepared for comparison, and FIG. 9C is an anatomical view of the mouse shown as a reference. As shown in FIG. 9, by administering pUCYIT-Luc Lactobacilli, luciferase activity was confirmed in the vicinity of the intestinal location.
 以上のように、pUCYIT356N由来のルシフェラーゼ発現ベクターが伝わり、機能したことが、ルシフェラーゼの発光を確認することによって確認された。 As described above, it was confirmed by confirming luminescence of luciferase that the pUCYIT356N-derived luciferase expression vector was transmitted and functioned.
 本発明に係るキットは、乳酸菌を用いて、人間及び動物の細胞内においてdsRNAを生成させることができる。このため、人間及び動物の腸内で安定してRNAiを起こすことができる。よって、本発明は、製薬産業、食品産業及びその関連産業に利用可能である。 The kit according to the present invention can generate dsRNA in human and animal cells using lactic acid bacteria. For this reason, RNAi can be stably generated in the intestines of humans and animals. Therefore, the present invention can be used in the pharmaceutical industry, food industry and related industries.

Claims (6)

  1.  哺乳動物内で機能するプロモーターを含むベクターを備えていることを特徴とする乳酸菌により二本鎖RNAを生成するキット。 A kit for producing double-stranded RNA by lactic acid bacteria, characterized by comprising a vector containing a promoter that functions in mammals.
  2.  上記哺乳動物内で機能するプロモーターは、PolIIIによって転写されるプロモーターであることを特徴とする請求項1に記載のキット。 The kit according to claim 1, wherein the promoter functioning in the mammal is a promoter transcribed by PolIII.
  3.  上記PolIIIによって転写されるプロモーターが、U6プロモーターであることを特徴とする請求項2に記載のキット。 The kit according to claim 2, wherein the promoter transcribed by PolIII is a U6 promoter.
  4.  哺乳動物内で機能するプロモーターに二本鎖RNAをコードするDNAが作動可能に連結されたベクターを、含有していることを特徴とする乳酸菌。 A lactic acid bacterium characterized by containing a vector in which a DNA encoding a double-stranded RNA is operably linked to a promoter that functions in mammals.
  5.  上記哺乳動物内で機能するプロモーターは、PolIIIによって転写されるプロモーターであることを特徴とする請求項4に記載の乳酸菌。 The lactic acid bacterium according to claim 4, wherein the promoter functioning in the mammal is a promoter transcribed by PolIII.
  6.  請求項4又は5に記載の乳酸菌を含んでいることを特徴とする腸内疾患用治療組成物。 A therapeutic composition for intestinal diseases, comprising the lactic acid bacterium according to claim 4 or 5.
PCT/JP2009/004465 2008-10-30 2009-09-09 Kit for producing double-stranded rna with lactic acid bacterium, and use thereof WO2010050109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010535629A JP5660537B2 (en) 2008-10-30 2009-09-09 Kit for generating double-stranded RNA by lactic acid bacteria and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008279228 2008-10-30
JP2008-279228 2008-10-30

Publications (1)

Publication Number Publication Date
WO2010050109A1 true WO2010050109A1 (en) 2010-05-06

Family

ID=42128483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004465 WO2010050109A1 (en) 2008-10-30 2009-09-09 Kit for producing double-stranded rna with lactic acid bacterium, and use thereof

Country Status (2)

Country Link
JP (1) JP5660537B2 (en)
WO (1) WO2010050109A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651035A (en) * 2017-05-12 2020-01-03 龟甲万株式会社 Method for producing lactic acid bacterium having high double-stranded RNA content, and lactic acid bacterium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510794A (en) * 2004-08-26 2008-04-10 エンジェネイック モレキュラー デリバリー ピーティーワイ リミテッド Delivery of functional nucleic acids to mammalian cells via intact minicells from bacteria
JP2008301812A (en) * 2007-05-10 2008-12-18 Okayama Univ Kit for forming double-stranded rna by lactobacillus and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510794A (en) * 2004-08-26 2008-04-10 エンジェネイック モレキュラー デリバリー ピーティーワイ リミテッド Delivery of functional nucleic acids to mammalian cells via intact minicells from bacteria
JP2008301812A (en) * 2007-05-10 2008-12-18 Okayama Univ Kit for forming double-stranded rna by lactobacillus and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUWAHARA, A. ET AL.: "Delivery of dsRNA with lactic acid bacteria for RNA interference", NUCLEIC ACIDS SYMP. SER. (OXF.), no. 51, 2007, pages 413 - 414 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651035A (en) * 2017-05-12 2020-01-03 龟甲万株式会社 Method for producing lactic acid bacterium having high double-stranded RNA content, and lactic acid bacterium
CN110651035B (en) * 2017-05-12 2024-03-19 龟甲万株式会社 Method for producing lactic acid bacterium highly containing double-stranded RNA, and lactic acid bacterium

Also Published As

Publication number Publication date
JP5660537B2 (en) 2015-01-28
JPWO2010050109A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
Bron et al. Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract
Fanning et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection
JP4975630B2 (en) Bacteria vector
Van Pijkeren et al. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy
JP2016510595A (en) Compositions and methods for polypeptide delivery by bacteria
JP2012508582A (en) E. coli mediated gene silencing of β-catenin
CN107129957A (en) The gene targeting for promoting long dsRNA to can be used in mammal and other selected animal cells
JP2008523812A (en) Compositions for bacteria-mediated gene silencing and methods of use thereof
US20100086526A1 (en) Nucleic acid constructs and methods for specific silencing of h19
JP5645044B2 (en) Novel Ad vector containing gene expression control mechanism
JP2022549519A (en) Modulation of microbiota composition using targeted nucleases
CN106414776B (en) Growth independent detection of cells
US20140199402A1 (en) Novel compounds for the treatment of inflammatory bowel disease
Yin et al. Two (p) ppGpp synthetase genes, relA and spoT, are involved in regulating cell motility, exopolysaccharides production, and biofilm formation of Vibrio alginolyticus
EP3981880A1 (en) Dna construct for diagnosing and treating cancer
JP5660537B2 (en) Kit for generating double-stranded RNA by lactic acid bacteria and use thereof
KR20220025757A (en) Bacterial platform for delivering gene editing systems to eukaryotic cells
WO2015085903A1 (en) Non-coded rna of in-vivo infected microorganisms, parasitic microorganisms, symbiotic microorganisms and identification and application thereof
WO2022117658A1 (en) Bacterial delivery of gene silencing tools into eukaryotic cells
WO2018217819A1 (en) Transbiotic regulation of bacterial gene expression
US20220387626A1 (en) Compositions and methods comprising viral vector systems for multiplexed activation of endogenous genes as immunotherapy and viral-based immune-gene therapy
JP2008301812A (en) Kit for forming double-stranded rna by lactobacillus and use thereof
KR20220097382A (en) Genetically Modified Enterovirus Vectors
Xiang et al. In vitro and in vivo gene silencing by TransKingdom RNAi (tkRNAi)
KR101660294B1 (en) Novel bacterial vector system based on glmS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535629

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823226

Country of ref document: EP

Kind code of ref document: A1