WO2010047249A1 - Room temperature and humidity curable one-part liquid resin composition - Google Patents

Room temperature and humidity curable one-part liquid resin composition Download PDF

Info

Publication number
WO2010047249A1
WO2010047249A1 PCT/JP2009/067746 JP2009067746W WO2010047249A1 WO 2010047249 A1 WO2010047249 A1 WO 2010047249A1 JP 2009067746 W JP2009067746 W JP 2009067746W WO 2010047249 A1 WO2010047249 A1 WO 2010047249A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
group
parts
mass
carbon atoms
Prior art date
Application number
PCT/JP2009/067746
Other languages
French (fr)
Japanese (ja)
Inventor
孝治 楠木
純 乾
幸弘 野村
慎一 佐藤
Original Assignee
コニシ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008273688A external-priority patent/JP2010100737A/en
Priority claimed from JP2009065623A external-priority patent/JP2010215826A/en
Priority claimed from JP2009089813A external-priority patent/JP2010241889A/en
Application filed by コニシ株式会社 filed Critical コニシ株式会社
Publication of WO2010047249A1 publication Critical patent/WO2010047249A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups

Definitions

  • the present invention relates to a curable resin composition containing a hydrolyzable silyl group that can be cured at room temperature, and more specifically, it is possible to reduce environmental burden and to be stable while ensuring safety.
  • the present invention relates to a curable resin composition having a curing rate and a curable resin composition having excellent adhesiveness in addition to these characteristics.
  • the present invention further relates to a sealing material composition containing a hydrolyzable silyl group, which can be cured at room temperature, and more specifically, it is possible to reduce environmental burden and to ensure safety.
  • the present invention relates to a sealing material composition having a sufficient curing rate, good weather resistance, and a practical modulus.
  • Curable resins having hydrolyzable silyl groups in the molecule are widely used as base polymers for sealants, adhesives, pressure-sensitive adhesives, paints and the like. This curable resin is cured by hydrolyzable silyl groups that are hydrolyzed and crosslinked with moisture in the atmosphere, so it is also called a moisture-curing polymer, and is widely used for its safety and low odor. Yes.
  • a modified silicone resin having a structure in which the hydrolyzable silyl group is an alkoxysilyl group and bonded to the main chain polyoxypropylene (PPG) via — (CH 2 ) 3 — is most commonly used. in use.
  • Patent Document 1 Patent Document 2
  • a heteroatom such as oxygen, nitrogen, or sulfur having an unshared electron pair is bonded to a carbon atom bonded to a silicon atom in a hydrolyzable silyl group.
  • a compound having a bonding group also referred to as “ ⁇ -silane structure” has been proposed (Patent Document 5), but the cured product has a high modulus and tends to be too hard.
  • Sealing materials other than siding boards are often used for applications that are expected to fill the joints (clearances) and maintain watertightness and airtightness. There is a need for a modulus sealant.
  • organotin compounds have recently become problematic in toxicity, and the amount used is desired to be suppressed to 1000 ppm or less based on the composition.
  • organic tin compounds those that contain a relatively toxic tributyltin derivative require special attention for its use.
  • the present inventors have reduced the content of organotin catalyst as much as possible in the resin composition using a curable resin having a hydrolyzable silyl group, and ultimately do not contain at all, but the actual performance is currently In order to obtain a curable resin composition that is comparable to or superior to those of the above, intensive research was conducted.
  • a curable resin having a chemical structure in the vicinity of a specific hydrolyzable silyl group (also referred to as “curable resin having an ⁇ -silane structure”) as described in Patent Document 5 above,
  • curable resin having an ⁇ -silane structure also referred to as “curable resin having an ⁇ -silane structure”
  • the curing performance of the entire system is surprisingly increased.
  • these combined systems can be cured sufficiently without using an organic tin catalyst. It was found that the speed was obtained and the cured product showed a practical modulus, and this combined system was filed earlier (Japanese Patent Application No. 2008-187669).
  • the organotin compound also acts as a curing catalyst for the curable resin having a hydrolyzable silyl group, but also acts as a catalyst for hydrolyzing the ester bond. Therefore, the ester bond contained in the molecule of the commonly used anti-aging agent is hydrolyzed, and the effect as an anti-aging agent does not last long. Tend to decline.
  • a curable resin having an ⁇ -silane structure that exhibits sufficient curability with only a basic compound without using an organic tin catalyst has good weather resistance, but has a high modulus of the cured product and a sealing material. When used as, there was a tendency to be too hard.
  • the first aspect of the present invention is 1) In the molecule, the following general formula (1): —X—SiR 1 a (OR 2 ) 3-a Formula (1) (Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, a represents 0, 1 or 2) To 100 parts by mass of the curable resin (A) having a hydrolyzable silyl group represented by 2) In the molecule, the following general formula (2): —W—CH 2 —SiR 3 (OR 4 ) 2 Formula (2) (W is —O—CO—NH—, —N (R 5 ) —CO—NH—, —NH—CO—N (R 5 ) —, —S—CO—NH—, —NH—CO— Represents a group selected from S—, R 3 represents an alkyl group having 1 to 20 carbon atoms, R 4 represents an alkyl group having 1
  • the curable resin (A) preferably has a dialkoxysilyl group. That is, this preferred invention is 1) In the molecule, the following general formula (1 ′): -X-SiR 1 (OR 2 ) 2 Formula (1 ') (Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, and R 2 represents an alkyl group having 1 to 3 carbon atoms).
  • a curable resin composition contains.
  • this preferred invention is 1) In addition to 100 parts by mass of the curable resin (A) having a urethane bond in the molecule in addition to the hydrolyzable silyl group represented by the general formula (1), 2) 5 to 400 parts by mass of a curable resin (B) having a dialkoxysilyl group represented by the following general formula (2) in the molecule, and curable resin (A) and curable resin (B) For a total of 100 parts by mass, 3) 0.1 to 30 parts by weight of the basic compound (C), and 4) 10 to 500 parts by weight of a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule, Is a curable resin composition.
  • the general formula (1) is more preferably the general formula (1 ′).
  • a curable resin composition having good adhesion can be obtained by using the curable resin (A) having a hydrolyzable silyl group represented by the following formula.
  • the general formula (1) is more preferably the general formula (1 ′).
  • the plasticizer (D) is a phthalate ester compound, an alkyl sulfonate ester compound, a polyoxyalkylene having a hydroxyl group blocked, an acrylic resin not containing a hydroxyl group, an adipate ester compound, a hydrocarbon It is preferable that it is 1 or more types selected from the compound.
  • the main chain of the curable resin (A) is essentially polyoxyalkylene and / or poly (meth) acrylate.
  • the main chain of the curable resin (B) is essentially polyoxyalkylene and / or poly (meth) acrylate.
  • the basic compound (C) is preferably an amine compound, and the basic compound (C) has an amino group in its molecule and the following general formula (3): -SiR 6 n Y 3-n Formula (3) (Wherein Y represents a hydrolyzable group, R 6 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2), and a compound having a hydrolyzable silyl group It is more preferable that
  • the organotin catalyst is substantially not contained or less than 1000 ppm.
  • the first invention it is preferable to contain a filler or an anti-aging agent.
  • an ⁇ -silane structure which has sufficient curability only with a basic compound without using an organotin catalyst, but has a high modulus and is difficult to use alone.
  • a curable resin (a) having a curable resin, a curable resin (b), a basic compound (c), and an anti-aging agent (d) as a modulus regulator, it exhibits a practical modulus and is weather resistant. Has been found to be good, the environmental load can be reduced, and a necessary and sufficient curing rate can be obtained, and the second invention has been completed.
  • a sealing material composition comprising It is.
  • the main chain of the curable resin (a) is essentially polyoxyalkylene and / or poly (meth) acrylate.
  • the main chain of the curable resin (b) is essentially polyoxyalkylene and / or poly (meth) acrylate.
  • the basic compound (c) is preferably an amine compound, and the basic compound (c) has an amino group in its molecule and the following general formula (III): -SiR 15 n Y 3-n Formula (III) (Wherein Y represents a hydrolyzable group such as a hydroxyl group or an alkoxyl group, R 15 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2).
  • Y represents a hydrolyzable group such as a hydroxyl group or an alkoxyl group
  • R 15 represents an alkyl group having 1 to 20 carbon atoms
  • n represents 0, 1 or 2
  • a compound having a decomposable silyl group is preferred.
  • the organotin catalyst is substantially not contained or less than 1000 ppm.
  • the second aspect of the present invention it is preferable to further contain a filler and a plasticizer.
  • the curable resin composition according to the first aspect of the present invention can reduce the environmental burden, has a necessary and sufficient curing rate while ensuring safety, and has a stable effect rate over time. There is an effect.
  • the curable resin composition according to the first preferred embodiment of the present invention has an effect that the adhesiveness is further good.
  • the sealing material composition according to the second aspect of the present invention can reduce the environmental load, has a necessary and sufficient curing rate while ensuring safety, has good weather resistance, and exhibits a practical modulus. There is an effect.
  • the curable resin (A) in the present invention has the following general formula (1) in its molecule: —X—SiR 1 a (OR 2 ) 3-a Formula (1) (Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, a represents 0, 1 or 2) Each having a hydrolyzable silyl group represented by
  • a hydrocarbon group X having 2 or more carbon atoms is bonded to a silicon atom.
  • This hydrocarbon group X is bonded to the main chain skeleton.
  • the bond between the hydrocarbon group X and the main chain skeleton may be direct or via a linking functional group such as a urethane bond.
  • the silicon atom has 3 to 1 alkoxyl groups (OR 2 ) bonded as hydrolyzable groups, and the remaining hydrocarbon group is a hydrocarbon group (R 1 ). 0 to 2 are bonded.
  • R 1 is an alkyl group having 1 to 20 carbon atoms
  • R 2 is an alkyl group having 1 to 3 carbon atoms.
  • the hydrocarbon group (R 1 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and more preferably a methyl group or an ethyl group.
  • Examples of the main chain skeleton of the curable resin (A) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. What is generally used for silylated urethane resins is employed, but in particular, polyoxyalkylene and / or poly (meth) acrylic acid esters are easy to obtain, such as film properties of cured products. It is preferable from the point. In the present application, acrylic acid and methacrylic acid are collectively referred to as “(meth) acrylic acid”.
  • curable resin (A) a curable silicone resin containing a polar group such as a urethane bond or a (substituted) urea bond in the molecule can also be used.
  • the curable resin (A) containing a polar group in the molecule may be synthesized by a conventionally known method.
  • a method of reacting an isocyanate group-containing polymer with an amino group-containing alkoxysilane compound (or a mercapto group-containing alkoxysilane compound), a hydroxyl group-containing organic polymer, a first and / or second amino group-containing organic polymer, or a mercapto group A method of reacting an isocyanate group-containing alkoxysilane compound with a containing organic polymer is known. More specifically, it can be easily synthesized by the methods described in Japanese Patent No. 3030020, Japanese Patent No. 3343604, Japanese Patent Application Laid-Open No. 2005-54174, and the like.
  • the said curable resin (A) can be used individually or in combination of 2 or more types.
  • the curable resin (A) a curable resin in which the hydrolyzable silyl group is a trialkoxysilyl group or a monoalkoxysilyl group may be used in combination. At this time, if a trialkoxysilyl group-containing curable resin is used, the modulus of the final cured product can be increased, but the elongation tends to decrease as the amount used increases.
  • the curable resin (A) has the following general formula (1 ′): -X-SiR 1 (OR 2 ) 2 Formula (1 ') (Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, and R 2 represents an alkyl group having 1 to 3 carbon atoms).
  • a curable resin having an alkoxysilyl group is more preferable.
  • curable resins are sold as silicone resins or modified silicone resins.
  • Kaneka's Silyl series MS polymer series, MA series, SA series, OR series, Epion series
  • Asahi Glass Co., Ltd. ES series ESGX series
  • Evonik Degussa's silane-modified polyalphaolefin Shin-Etsu
  • examples thereof include KC series, KR series, X-40 series manufactured by Chemical Industry Co., Ltd .; XPR series manufactured by Toagosei Co., Ltd., ARUFON US series; Actflow series manufactured by Soken Chemical Co., Ltd., and the like.
  • the curable resin (A) preferably has a urethane bond in the molecule.
  • the reason why the adhesion is improved by using the curable resin (A) having a urethane bond and a hydrolyzable silyl group in the molecule is not clear, but it is probably a cure that does not contain a urethane bond in the molecule such as modified silicone.
  • the curable resin (A) contains a urethane bond, which is a polar group, in the molecule, so that the adhesive itself is excellent, the reactivity is increased, and the curable resin (B) is cured. It is thought that it is easy to proceed well as the cause of the improvement in adhesion.
  • the above adhesiveness specifically indicates a broken state with the adherend. “Adhesiveness is good” means that when the cured product is peeled off after the curable resin composition is applied to the adherend and cured, the rate of cohesive failure of the cured product (the cured product itself is destroyed) is high. “Poor adhesion” indicates that the cured product has a high interfacial fracture rate (breakage between the adherend and the cured product). When the interface fracture rate is high, water vapor or water can easily enter from the interface, and there is a concern that the adhesive strength may decrease with time. For this reason, even if the adhesive strength is high, if the fracture state is interfacial failure, it is not preferable because the reliability such as adhesiveness and airtightness is lacking.
  • curable resin (B) By blending the curable resin (B) with the curable resin (A), the curing performance of the curable resin (A) is increased, and as a result, the entire system is cured only with the basic compound (C) described later. . That is, it is assumed that the curable resin (B) is a curable resin and also acts as a curing accelerator for the curable resin (A).
  • the curable resin (B) in the present invention is a curable resin having a dialkoxysilyl group represented by the following general formula (2) in the molecule.
  • Formula (2) (W is —O—CO—NH—, —N (R 5 ) —CO—NH—, —NH—CO—N (R 5 ) —, —S—CO—NH—, —NH—CO—
  • R 3 represents an alkyl group having 1 to 20 carbon atoms
  • R 4 represents an alkyl group having 1 to 3 carbon atoms
  • R 5 may be substituted with hydrogen or halogen.
  • a cyclic, linear or branched alkyl or alkenyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms is shown.
  • the hydrolyzable silyl group is a group in which a linking group containing a heteroatom having an unshared electron pair is bonded to a silicon atom via a methylene group. Further, the hydrolyzable silyl group is bonded to the main chain skeleton through this bonding group.
  • the silicon atom has two alkoxyl groups (OR 4 ) bonded as hydrolyzable groups and one hydrocarbon group (R 3 ) bonded as the remaining bond. It is what.
  • R 3 is an alkyl group having 1 to 20 carbon atoms
  • R 4 is an alkyl group having 1 to 3 carbon atoms.
  • the alkoxyl group (OR 4 ) is preferably a methoxy group, an ethoxy group, or a propoxy group, and more preferably a methoxy group or an ethoxy group.
  • the hydrocarbon group (R 3 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and more preferably a methyl group or an ethyl group.
  • such a chemical structure is sometimes referred to as an “ ⁇ -silane structure”.
  • ⁇ -silane structure By selecting an ⁇ -silane structure, the moisture reactivity is much higher than that of a normal hydrolyzable silyl group, so that a sufficient curing rate can be obtained even when a tin catalyst is not used or a much smaller amount is used than usual. Obtainable. Furthermore, as described above, the curable resin having an ⁇ -silane structure raises the curing performance of other curable resins having a hydrolyzable silyl group.
  • Examples of the main chain skeleton of the curable resin (B) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. Commonly used ones are employed, but polyoxyalkylene and / or poly (meth) acrylic acid esters are particularly preferred from the viewpoints of easy availability and film properties of the cured product.
  • the curable resin (B) In order to obtain the curable resin (B), synthesis may be performed by a conventionally known method. For example, a method of reacting an isocyanate methyl alkoxysilane compound with a polyol compound and / or an acrylic polyol compound is known. More specifically, it can be easily synthesized by the methods described in JP-T-2004-518801, JP-T-2004-536957, JP-T-2005-501146, and the like. The said curable resin (B) can be used individually or in combination of 2 or more types.
  • the compounding amount of the curable resin (B) is 5 to 400 parts by mass, preferably 10 to 200 parts by mass, particularly preferably 20 to 100 parts by mass with respect to 100 parts by mass of the curable resin (A).
  • the blending amount of the curable resin (B) is less than 5 parts by mass, the curability is not sufficiently exhibited, and when it exceeds 400 parts by weight, the ratio of the curable resin (A) is relatively decreased and the curable resin is reduced. There is a concern that the performance of (A) (particularly the physical properties of the cured product) is not sufficiently exhibited.
  • the main chain skeleton of the curable resin (A) and the curable resin (B) may be the same or different.
  • a conventionally known technique can be used to improve the compatibility of the curable resin (A) and the curable resin (B).
  • a compound generally known as a compatibilizing agent can be added.
  • compatibility of both can also be improved by selecting the combination with which the main chain frame
  • the compatibility can be improved by using a main chain skeleton having a relatively close polarity. For example, if the same main chain skeleton is selected for both, the compatibility is very good. Even if they are not the same, it is also preferable to select skeletons having relatively similar structures such as polyolefin skeletons or polyether skeletons.
  • a polyoxyalkylene skeleton and a poly (meth) acrylate skeleton having a specific structure also have good compatibility.
  • the basic compound (C) in the present invention is a compound that acts as a curing catalyst for the curable resin (A) when used in combination with the curable resin (B), and is not particularly limited as long as it is a basic compound. Even salts with acids such as carboxylic acids can be used as long as they are basic. For example, primary to tertiary amine compounds and salts thereof, quaternary ammonium salts, organometallic salts and the like can be suitably used. It may be a reaction product of an amine compound and an epoxy compound.
  • the basic compound (C) include compounds having a primary amino group such as ethylamine, propylamine, butylamine, octylamine, laurylamine; N-methyl-3,3′-iminobis (propylamine) , Ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9 -Bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5.5] undecane), CTU guanamine, dodecanoic acid dihydrazide, hexamethylenediamine, m-xylylenediamine, dianisidine, 4,4 '-Diamino-3,3'-diethy
  • the basic compound (C) is preferably an amine compound from the viewpoint of easy availability and cost. Further, the basic compound (C) has an amino group and the following general formula (3) in its molecule: -SiR 6 n Y 3-n Formula (3) (Wherein Y represents a hydrolyzable group, R 6 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2), and a compound having a hydrolyzable silyl group In this case, the effect as a curing catalyst is exhibited more remarkably, and adhesion to various adherends (particularly metal) can be imparted. Further, the curable resin (A) and the curable resin (B) This reaction is also possible, so that it does not bleed out from the film after curing.
  • the hydrolyzable group Y is not particularly limited as long as it is conventionally known, but is preferably a hydroxyl group or an alkoxyl group.
  • ⁇ -aminopropyltrimethoxysilane ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltrimethoxysilane, (aminoethylaminomethyl)
  • the basic compound (C) can be used alone or in combination of two or more.
  • the compounding amount of the basic compound (C) is 0.1 to 30 parts by weight, preferably 1 to 15 parts by weight, particularly 100 parts by weight of the total of the curable resin (A) and the curable resin (B).
  • the amount is preferably 2 to 10 parts by mass.
  • the compounding quantity of a basic compound (C) is less than 0.1 mass part, the effect as a curing catalyst will be weak and hardening will become very slow.
  • the compounding amount of the basic compound (C) is more than 30 parts by mass, the storage stability is poor and the viscosity increases with time, the curable resin composition changes to yellow, or the color of the cured product changes with time. It is not preferable because it turns yellow (especially by heat exposure or ultraviolet irradiation).
  • the plasticizer (D) in the present invention enables adjustment of physical properties of the cured product, viscosity reduction of the curable resin composition (dilution effect), and further increase of filler addition amount due to the dilution effect, thereby reducing costs and work. It is used for the purpose of improving the property and weather resistance.
  • curable resin composition which used together curable resin (A) and metal catalysts, such as an organotin catalyst, and the curable resin composition which used curable resin (B) independently, as a plasticizer, Polypropylene glycol (PPG) and polyethylene glycol (PEG), which are compounds having one or more hydroxyl groups therein, have been most commonly used without problems such as curing delay.
  • PPG Polypropylene glycol
  • PEG polyethylene glycol
  • polypropylene glycol which is a compound having one or more hydroxyl groups in the molecule, is used as a plasticizer for a curable resin composition in which the curable resin (B) and the curable resin (A) are used in combination.
  • PPG polypropylene glycol
  • PEG polyethylene glycol
  • this curable resin combined system is used as a sealant, an adhesive, a pressure-sensitive adhesive, a paint, etc.
  • Such a phenomenon is not observed when the curable resin (B) is used alone, but is a unique phenomenon that is observed only in the combined system of the curable resin (A) and the curable resin (B).
  • the inventors of the present invention found that the cause of the curing delay was a compound having one or more hydroxyl groups in the molecule because of the high reactivity of the alkoxysilyl group of the curable resin (B).
  • the curable resin (B) is a curable resin and also acts as a curing accelerator for the curable resin (A).
  • the compound having one or more hydroxyl groups in the molecule is used as the plasticizer of the curable resin composition using the highly reactive curable resin (B) alone, the above alcohol exchange occurs.
  • the ratio of the curable resin (B) is large, the ratio of alkoxysilyl groups that do not cause alcohol exchange and the reactivity does not decrease is relatively large, so that it is considered that curing delay is not caused.
  • the reactivity of the alkoxysilyl group is low, so that it is considered that alcohol exchange hardly occurs and curing delay does not occur.
  • plasticizer (D) examples include a phthalate ester compound, an alkyl sulfonate ester compound, a polyoxyalkylene having a hydroxyl group blocked, an acrylic resin not containing a hydroxyl group, an adipate ester compound, and a hydrocarbon compound. 1 or more types of compounds selected from, and the like.
  • phthalate ester compounds examples include dioctyl phthalate (DOP), dibutyl phthalate (DBP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), and butyl benzyl phthalate (BBP).
  • DOP dioctyl phthalate
  • DBP dibutyl phthalate
  • DINP diisononyl phthalate
  • DIDP diisodecyl phthalate
  • BBP butyl benzyl phthalate
  • alkyl sulfonic acid ester compound examples include alkyl sulfonic acid phenyl ester (product name: Mezamol, manufactured by Bayer Chemicals Japan), decane sulfonic acid phenyl ester, undecane sulfonic acid phenyl ester, dodecane sulfonic acid phenyl ester, tridecane sulfonic acid phenyl ester.
  • Tetradecanesulfonic acid phenyl ester Tetradecanesulfonic acid phenyl ester, pentadecanesulfonic acid phenyl ester, pentadecanesulfonic acid cresyl ester, hexadecanesulfonic acid phenyl ester, heptadecanesulfonic acid phenyl ester, octadecanesulfonic acid phenyl ester, nonadecanesulfonic acid phenyl ester, icosandecylsulfonic acid Phenyl ester etc. are mentioned.
  • a polyoxyalkylene having a hydroxyl group blocked is a polyoxyalkylene containing substantially no hydroxyl group.
  • a hydroxyl group in a molecule such as polypropylene glycol (PPG), polyethylene glycol (PEG), a copolymer of propylene oxide (PO) and ethylene oxide (EO) is substituted with an organic group such as an alkyl group,
  • the hydrogen atom is substituted with an organic group such as an alkyl group or etherified, or a hydroxyl group is reacted with a carboxylic acid to be esterified.
  • the term “blocking” refers to inactivating an active hydrogen group of a hydroxyl group as described above. Specific product names include Sanflex SPX-80 (polyoxyalkylene in which the hydroxyl group is alkylesterified (blocked)) manufactured by Sanyo Chemical Industries.
  • acrylic resin not containing a hydroxyl group examples include vinyl polymers obtained by polymerizing a vinyl monomer not containing a hydroxyl group by various methods.
  • a polymer of an acrylate ester not containing a hydroxyl group, a hydroxyl group It is a polymer of methacrylic acid ester not contained, and a copolymer thereof.
  • Specific product names include Alfon UP-1000 series, UF-5000 series, US-6000 series and the like manufactured by Toagosei Co., Ltd.
  • adipic acid ester compounds include dimethyl adipate, dioctyl adipate (DOA), diisopropyl adipate, bis (2-ethylhexyl) adipate, and the like.
  • hydrocarbon-based compounds those well-known can be used as long as they do not have a hydroxyl group in the molecule, and in particular, aliphatic hydrocarbons such as paraffin-based, polyolefin-based, naphthene-based, aroma-based and the like can be mentioned. Structurally, it may be linear or branched. Specific product names include Diana Process Oil PW series, PS series, NP series, NR series, NS series, NM series, AC series, AH series, etc. manufactured by Idemitsu Kosan Co., Ltd. is not. Furthermore, the said plasticizer (D) can be used individually or in combination of 2 or more types.
  • the plasticizer (D) has a boiling point of less than 200 ° C., there is a problem that it volatilizes during processing, a problem that it gradually evaporates after curing, a problem that the physical properties of the cured product change over time, and a problem of odor.
  • the boiling point is preferably 200 ° C. or higher.
  • the blending amount of the plasticizer (D) is 10 to 500 parts by weight, preferably 20 to 300 parts by weight, particularly preferably based on 100 parts by weight of the total of the curable resin (A) and the curable resin (B). 25 to 150 parts by mass. If the blending amount of the plasticizer (D) is less than 10 parts by mass, the effects such as lowering the viscosity and improving workability due to the addition of the plasticizer (D) are not preferable. On the other hand, when the blending amount of the plasticizer (D) is more than 500 parts by mass, the blending ratio of the curable resin (A) and the curable resin (B) is relatively decreased, and the physical properties of the cured product are decreased. It is not preferable because a problem occurs.
  • curable resins (A) having hydrolyzable silyl groups in their molecules which have been widely used as base polymers for sealants, adhesives, adhesives, paints, etc., are most commonly organotin compounds as curing catalysts. Has been used. However, in recent years, due to increasing awareness of environmental problems, toxicity of organotin compounds and environmental load are regarded as problems, and the amount of use thereof is desired to be suppressed to 1000 ppm or less based on the composition.
  • the organotin compound also acts as a curing catalyst for the curable resin (A), but acts as a catalyst for hydrolyzing urethane bonds, (substituted) urea bonds, thiourethane bonds, and the like. Therefore, when a certain amount or more of an organic tin compound is added, these bonds contained in the curable resin (B), and when these bonds are contained in the curable resin (A), these bonds are especially hydrolyzed when heated. It tends to be decomposed, and there is a concern that the physical properties and the like of the cured product of the curable resin composition will be significantly reduced. Therefore, the addition amount of the organotin catalyst is preferably 0 to 1000 ppm, more preferably 0 to 500 ppm, and particularly preferably 0 to 200 ppm with respect to the curable resin composition.
  • a filler, an antioxidant and the like can be blended.
  • the filler that can be blended in the curable resin composition according to the present invention include calcium carbonate, various treated calcium carbonates, magnesium carbonate, organic polymer, clay, talc, silica, and fumed silica. Examples thereof include, but are not limited to, fillers such as glass balloons, plastic balloons, aluminum hydroxides, and magnesium hydroxides.
  • the above filler is added not only for the purpose of preventing sagging of the curable resin composition and improving workability but also for improving weather resistance.
  • light especially ultraviolet rays
  • a curable resin composition to which no filler is added light (especially ultraviolet rays) easily enters the inside of the resin composition, so that deterioration occurs not only on the surface of the cured product but also on the inside when exposed. Resulting in.
  • a curable resin composition to which a filler is added light is not incident on the inside of the cured product due to the shielding effect resulting from the addition of the filler, and internal deterioration can be suppressed.
  • Anti-aging agents include metal deactivators (hydrazide, amide, etc.) as radical chain initiation inhibitors, UV absorbers (benzotriazole, triazine, benzophenone, etc.), quenchers (organic nickel, etc.) ), HALS (hindered amines, etc.) as radical scavengers, phenolic antioxidants (hindered phenols, semi-hindered phenols, etc.), and phosphorus antioxidants (phosphites, phosphonites) as peroxide decomposers Etc.), sulfur-based antioxidants (thioether-based), etc., but are not limited thereto.
  • any conventionally known compound or substance can be blended in addition to the filler and the antioxidant.
  • functional oligomers such as silicone alkoxy oligomer, acrylic oligomer, pigment, ethyl silicate, propyl silicate, butyl Silicate such as silicate
  • Conventionally known curing catalysts such as compounds and oligomers thereof, titanate coupling agents, zirconium coupling agents, aluminum coupling agents, organotin compounds, bismuth compounds, titanium compounds, boron trifluoride compounds are appropriately blended. be able to.
  • the curable resin composition according to the present invention is cured by condensation polymerization of hydrolyzable silyl groups in the presence of moisture. Therefore, during storage or transportation, it is handled in an airtightly sealed state so as not to come into contact with air (water in the air). And if it opens at the time of use and it applies to an arbitrary location, it will contact with the water
  • the curable resin (a) in the present invention has the formula (I): —W—CH 2 —SiR 11 (OR 12 ) 2 ...
  • Formula (I) (W represents a group selected from —O—CO—NH—, —N (R 16 ) —CO—N (R 17 ) —, —S—CO—NH—, —NH—CO—S—).
  • R 11 and R 12 are alkyl groups having 1 to 20 carbon atoms
  • R 16 and R 17 are cyclic, linear or branched carbon atoms having 1 to 18 carbon atoms which may be substituted with hydrogen or halogen.
  • the hydrolyzable silyl group is a group in which a linking group containing a heteroatom having an unshared electron pair is bonded to a silicon atom via a methylene group. Further, the hydrolyzable silyl group is bonded to the main chain skeleton through this bonding group.
  • the silicon atom has two alkoxyl groups (OR 12 ) as hydrolyzable groups and one hydrocarbon group (R 11 ) as the remaining bonds. It is what.
  • R 11 and R 12 are each an alkyl group having 1 to 20 carbon atoms.
  • the alkoxyl group (OR 12 ) is preferably a methoxy group, an ethoxy group, a propoxy group or a butoxy group, more preferably a methoxy group or an ethoxy group.
  • the hydrocarbon group (R 11 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group or a butyl group, more preferably a methyl group or an ethyl group.
  • the cured product has a high modulus and tends to be inferior in the ability to follow joints.
  • the hydrolyzable silyl group is a monoalkoxysilyl group
  • the reactivity is low and the curing rate becomes very slow, and further, the physical properties of the cured product tend to be inferior because a three-dimensional network cannot be formed by crosslinking. This is not preferable.
  • the reactive silicon group of the curable resin (a) is preferably a dialkoxysilyl group from the viewpoint of the reactivity and the physical properties of the cured product.
  • such a chemical structure is also referred to as “ ⁇ -silane structure”.
  • ⁇ -silane structure By selecting an ⁇ -silane structure, the moisture reactivity is much higher than that of a normal hydrolyzable silyl group, so that a sufficient curing rate can be obtained even when a tin catalyst is not used or a much smaller amount is used than usual. Obtainable.
  • Examples of the main chain skeleton of the curable resin (a) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. Commonly used ones are employed, but polyoxyalkylene and / or poly (meth) acrylic acid esters are particularly preferable from the viewpoint of easy availability and film properties of the cured product.
  • synthesis may be performed by a conventionally known method.
  • a method of reacting an isocyanate methyl alkoxysilane compound with a polyol compound and / or an acrylic polyol compound is known. More specifically, it can be easily synthesized by the methods described in JP-T-2004-518801, JP-T-2004-536957, JP-T-2005-501146, and the like.
  • curable resin (a) Commercially available products of the curable resin (a) include GENIOSIL STP-E10 manufactured by Wacker Chemie AG (molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa ⁇ s / 25 ° C. (catalog value)), GENIOSIL STP- E30 (molecular weight of about 16000 converted from equivalent amount of methoxy group, viscosity of about 30000 mPa ⁇ s / 25 ° C. (catalog value)) and the like.
  • GENIOSIL STP-E10 manufactured by Wacker Chemie AG (molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa ⁇ s / 25 ° C. (catalog value)
  • GENIOSIL STP- E30 molecular weight of about 16000 converted from equivalent amount of methoxy group, viscosity of about 30000 mPa ⁇ s / 25 °
  • the curable resin (b) in the present invention is added as a modulus regulator (modulus lowering agent) of the curable resin (a), and the following general formula (II): -X-SiR 13 (OR 14 ) 2 Formula (II) (Wherein X represents a hydrocarbon having 2 or more carbon atoms, and R 13 and R 14 each represents an alkyl group having 1 to 20 carbon atoms), and a curable resin having a hydrolyzable silyl group. is there.
  • a hydrocarbon group X having 2 or more carbon atoms is bonded to a silicon atom, and this is bonded to the main chain skeleton.
  • the silicon atom has two alkoxyl groups (OR 14 ) as hydrolyzable groups and one hydrocarbon group (R 13 ) as the remaining bond. It is what is combined.
  • R 13 and R 14 are each an alkyl group having 1 to 20 carbon atoms.
  • the alkoxyl group (OR 14 ) is preferably a methoxy group, an ethoxy group, a propoxy group or a butoxy group, more preferably a methoxy group or an ethoxy group.
  • the hydrocarbon group (R 13 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, more preferably a methyl group or an ethyl group.
  • the hydrolyzable silyl group When the hydrolyzable silyl group is only a trialkoxysilyl group, the modulus of the cured product tends to be high, and the effect as a modulus regulator (modulus lowering agent) may not be exhibited.
  • the hydrolyzable silyl group when the hydrolyzable silyl group is only a monoalkoxysilyl group, there is a tendency that the reactivity is low and the curing rate is very slow, and further, the physical properties of the cured product cannot be formed because a three-dimensional network cannot be formed by crosslinking. May be inferior.
  • the reactive silicon group of the curable resin (b) is preferably a dialkoxysilyl group in view of the reactivity and the physical properties of the cured product.
  • Examples of the main chain skeleton of the curable resin (b) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. Commonly used ones are employed, but polyoxyalkylene and / or poly (meth) acrylic acid esters are particularly preferable from the viewpoint of easy availability and film properties of the cured product. In the present application, acrylic acid and methacrylic acid are collectively referred to as “(meth) acrylic acid”.
  • curable resins (b) are sold as silicone resins or modified silicone resins.
  • XPR series manufactured by Toagosei Co., Ltd., ARUFON US series
  • a curable silicone resin containing a polar group such as a urethane bond or a urea bond in the molecule can also be used.
  • the curable resin (b) containing a polar group in the molecule may be synthesized by a conventionally known method. For example, a method of reacting an isocyanate group-containing polymer with an amino group-containing alkoxysilane compound (or a mercapto group-containing alkoxysilane compound), a hydroxyl group-containing organic polymer, a first and / or second amino group-containing organic polymer, or a mercapto.
  • a method of reacting an isocyanate group-containing alkoxysilane compound with a group-containing organic polymer is known. More specifically, it can be easily synthesized by the methods described in Japanese Patent No. 3030020, Japanese Patent No. 3343604, Japanese Patent Application Laid-Open No. 2005-54174, and the like.
  • the basic compound (b) can be used alone or in combination of two or more.
  • the blending amount of the curable resin (b) is 40 to 400 parts by mass, preferably 100 to 300 parts by mass, and particularly preferably 200 to 250 parts by mass with respect to 100 parts by mass of the curable resin (a).
  • the compounding quantity of curable resin (b) will be less than 40 mass parts, the effect as a modulus regulator will decrease and hardened
  • cured material will become hard.
  • the blending amount of the curable resin (b) is more than 400 parts by mass, the curability is not sufficiently exhibited because the ratio of the curable resin (a) is relatively decreased.
  • the main chain skeleton of the curable resin (a) and the curable resin (b) may be the same or different.
  • a conventionally known technique can be used.
  • a compound generally known as a compatibilizing agent can be added.
  • compatibility of both can also be improved by selecting the combination whose main chain frame
  • the compatibility can be improved by using a main chain skeleton having a relatively close polarity. For example, if the same main chain skeleton is selected for both, the compatibility is very good. Even if they are not the same, it is also preferable to select skeletons having relatively similar structures such as polyolefin skeletons or polyether skeletons.
  • a polyoxyalkylene skeleton and a poly (meth) acrylate skeleton having a specific structure also have good compatibility. Examples of combinations having good compatibility as described above are exemplified, but the present invention is not limited to these.
  • a plasticizer As a modulus adjuster for the curable resin (a), a plasticizer has generally been added so far. However, adding a large amount of plasticizer may cause the plasticizer component to bleed out on the surface of the cured product, the adhesion of the paint to decrease, or the weather resistance to decrease. There was a limit to the amount of addition.
  • the curable resin (b) having a dialkoxysilyl group as the modulus adjuster of the curable resin (a), even if it is blended in a large amount for adjusting the modulus, it is cured during the curing process. Since the dialkoxysilyl group in the conductive resin (b) is taken into the curing, it is difficult to cause problems as in the case of using a large amount of plasticizer, which is preferable.
  • the basic compound in the present invention is a compound that acts as a curing catalyst for the curable resin (a) and the curable resin (b), particularly the curable resin (a), and is particularly limited as long as it is a basic compound.
  • salts with acids such as carboxylic acids can be used as long as they are basic.
  • primary to tertiary amine compounds and salts thereof, quaternary ammonium salts, organometallic salts and the like can be suitably used. It may be a reaction product of an amine compound and an epoxy compound.
  • the basic compound (c) include, for example, N-methyl-3,3′-iminobis (propylamine), ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine, 1,2-diaminopropane, 1,3-diamino Propane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5.
  • N-methyl-3,3′-iminobis propylamine
  • ethylenediamine diethylenetriamine
  • triethylenediamine pentaethylenediamine
  • 1,2-diaminopropane 1,3-diamino Propane
  • 1,2-diaminobutane 1,4-diaminobutane
  • 1,9-diaminononane 1,9-dia
  • the basic compound (c) is preferably an amine compound from the viewpoint of easy availability and cost. Further, the basic compound (c) has an amino group and the following general formula (III) in its molecule: -SiR 15 n Y 3-n Formula (III) (Y represents a hydrolyzable group such as a hydroxyl group or an alkoxyl group, R 15 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2)
  • Y represents a hydrolyzable group such as a hydroxyl group or an alkoxyl group
  • R 15 represents an alkyl group having 1 to 20 carbon atoms
  • n represents 0, 1 or 2
  • the effect as a curing catalyst is more remarkably exhibited and adhesion to various adherends (particularly metals) can be imparted, which is preferable.
  • ⁇ -aminopropyltrimethoxysilane ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltrimethoxysilane, (aminoethylaminomethyl)
  • the above compounds can also be used as commercial products.
  • the basic compound (c) can be used alone or in combination of two or more.
  • the compounding amount of the basic compound (c) is 0.1 to 70 parts by weight, preferably 1 to 60 parts by weight, particularly preferably 2 to 50 parts by weight with respect to 100 parts by weight of the curable resin (a). . If the blending amount of the basic compound (c) is less than 0.1 parts by mass, the effect as a curing catalyst is weak and curing is very slow. On the other hand, when the compounding amount of the basic compound (c) is more than 70 parts by mass, the storage stability is poor and the viscosity increases with time, the sealant composition turns yellow, or the color of the cured product changes with time ( It is not preferable because it turns yellow (especially by heat exposure or ultraviolet irradiation).
  • the anti-aging agent (d) in the present invention suppresses the deterioration of the sealing material composition due to light (mainly ultraviolet rays) or heat.
  • the anti-aging agent (d) catches the radical and suppresses the progress of deterioration, or catches the peroxide generated in the process of deterioration and suppresses the progress of deterioration.
  • the anti-aging agent (d) includes a metal deactivator (hydrazide, amide, etc.), an ultraviolet absorber (benzotriazole, triazine, benzophenone, etc.), a quencher (organic) as a radical chain initiation inhibitor. Nickel) etc., HALS (hindered amines etc.) as radical scavengers, phenolic antioxidants (hindered phenols, semi-hindered phenols etc.), phosphorous antioxidants (phosphites) as peroxide decomposers , Phosphonites, etc.), sulfur antioxidants (thioethers, etc.) and the like, but are not limited thereto.
  • anti-aging agent (d) examples include: Adeka Stub series manufactured by Asahi Denka Kogyo Co., Ltd .; Hostanox series, Hostabin series, Sanduboa series, Hostastat series manufactured by Clariant Japan; Knoll series; Chinubin series, Irgafos series, Irganox series, Kimasorb series, etc. manufactured by Ciba Specialty Chemicals are included, but are not limited thereto.
  • the amount of the antioxidant (d) is 0.1 to 70 parts by weight, preferably 1 to 60 parts by weight, particularly preferably 2 to 50 parts by weight, based on 100 parts by weight of the curable resin (a). is there.
  • the blending amount of the anti-aging agent (d) is less than 0.1 parts by mass, the effect of anti-aging is weak and it is difficult to sufficiently suppress deterioration of the sealing material composition, and when it exceeds 70 parts by mass, The storage stability is poor, the viscosity increases over time, the adhesiveness decreases, the sealant composition turns yellow, the color of the cured product turns yellow over time (especially due to heat exposure or ultraviolet irradiation), It is not preferable because there are problems such as inferior economy.
  • the organotin compound most commonly used as a curing catalyst for a hydrolyzable silyl group-containing curable resin also acts as a catalyst for hydrolyzing ester bonds. Therefore, HALS (such as hindered amines), which are radical scavengers commonly used as antioxidants, and phenolic antioxidants (such as hindered phenols and semi-hindered phenols) are included in the molecule. Since the bond is hydrolyzed and the effect as a radical scavenger does not last long, generally the weather resistance tends to be reduced by using an organotin catalyst.
  • HALS hindered amines
  • phenolic antioxidants such as hindered phenols and semi-hindered phenols
  • the addition amount of the organic tin-based catalyst is preferably less than 1000 ppm, more preferably 500 ppm or less, and particularly preferably 200 ppm or less with respect to the sealing material composition.
  • the amount of the organic tin-based catalyst is 1000 ppm or more, there is a concern that the cured product may be significantly deteriorated by being exposed to ultraviolet rays.
  • a filler in the sealing material composition according to the present invention, a filler, a plasticizer and the like can be blended.
  • the filler that can be blended in the sealing material composition according to the present invention calcium carbonate, various treated calcium carbonate, magnesium carbonate, organic polymer, clay, talc, silica, fumed silica, Examples of the filler include, but are not limited to, a glass balloon type, a plastic balloon type, an aluminum hydroxide type, and a magnesium hydroxide type.
  • the above filler is added not only for the purpose of preventing sagging of the sealant composition and improving workability but also for improving weather resistance.
  • light especially ultraviolet rays
  • deterioration progresses not only on the surface of the cured product but also inside. End up.
  • a sealing material composition to which a filler is added due to the shielding effect due to the addition of the filler, light does not enter the cured product and internal deterioration can be suppressed.
  • the plasticizer that can be blended in the sealing material composition according to the present invention is not particularly limited.
  • Derivatives such as polyethers; epoxy plasticizers such as epoxidized soybean oil and epoxy benzyl stearate; dibasic acids such as sebacic acid, adipic acid, azelaic acid, and phthalic acid; ethylene glycol, Polyester plasticizers obtained from dihydric alcohols such as tylene glycol, triethylene glycol, propylene glycol, dipropylene glycol; vinyl resins obtained by polymerizing vinyl monomers including acrylic plasticizers by various methods Examples thereof include polymers.
  • polyoxyalkylene polymers such as polyether polyols such as polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and derivatives obtained by converting hydroxyl groups of these polyether polyols to ester groups, ether groups, and the like, Phthalate esters.
  • polyether polyols such as polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and derivatives obtained by converting hydroxyl groups of these polyether polyols to ester groups, ether groups, and the like, Phthalate esters.
  • the above plasticizer is very useful because it can reduce the viscosity of the sealing material composition to improve workability, lower the modulus of the cured product, increase elongation, and incorporate a large amount of filler.
  • a plasticizer there is a limit to the decrease in modulus due to the addition of a plasticizer. If too much plasticizer is added, there are problems such as a decrease in curing speed, contamination of the cured product surface and adherend due to bleeding out, and a decrease in the physical properties of the cured product. appear. Therefore, as shown in the present invention, by adding a curable resin (b) having a reactive group and the reactive group being a dialkoxysilyl group as a modulus modifier, This is preferable because it is less likely to occur.
  • any conventionally known compound or substance can be blended in addition to the filler and the plasticizer.
  • conventionally known curing catalysts such as vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldi Silane coupling agents such as ethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, phenol resin, petroleum resin, terpene resin, etc.
  • Tackifiers anhydrous silica, thixotropic agents such as amide wax, dehydrating agents such as calcium oxide, diluents such as isoparaffin, aluminum hydroxide, halogen flame retardants, phosphorus flame retardants, silicone flame retardants, etc.
  • Sex oligomers, pigments, ethyl silicate, propyl silicate, silicate compounds and oligomers thereof such as butyl silicate, titanate coupling agent, zirconium coupling agent, aluminum coupling agent, can be appropriately blended drying oil.
  • the sealing material composition according to the present invention is cured by condensation polymerization of hydrolyzable silyl groups in the presence of moisture. Therefore, when used as a one-pack type, it is handled in an airtightly sealed state so as not to come into contact with air (water in the air) during storage or transportation. And if it opens and uses it in arbitrary places at the time of use, it will contact with the water
  • the sealing material composition according to the present invention can be used as a two-component type. In this case, since the curable resin (a) according to the present invention has high reactivity (curability), it is necessary to devise such that it does not cure during storage or transportation.
  • the main agent containing the curable resin (a) and the like is mixed with a curing agent containing the basic compound (c) or other catalyst and applied to any location, moisture in the air or a sealing material system
  • the moisture curable sealant composition is cured by reacting with moisture contained therein.
  • curable resin A-2 As the curable resin A-2, a modified silicone resin “EXCESTER S2410” (manufactured by Asahi Glass Co., Ltd.) (low modulus) in which the terminal methyldimethoxysilyl group is bonded to the main chain polyoxypropylene via — (CH 2 ) 3 — Type).
  • curable resin A-3 As the curable resin A-3, a modified silicone resin “EXCESTER S2420” (manufactured by Asahi Glass Co., Ltd.) (medium modulus) in which the terminal methyldimethoxysilyl group is bonded to the main chain polyoxypropylene via — (CH 2 ) 3 — Type).
  • Plasticizer (D): Mezamol (manufactured by Bayer Chemicals Japan Ltd./alkyl sulfonic acid phenyl ester) Xd 50 parts by mass
  • Curable resin A-1 Ya 70 parts by mass Curable resin
  • Curable resin B-1 Yb 30 parts by mass Basic compound
  • KBM903 Yc 5 0.0 part by mass / plasticizer
  • Actol P-21 Yd 50 parts by mass
  • Example A1 to Example A13 From the results of Example A1 to Example A13 and Comparative Example A1 to Comparative Example A8, 1) curable resin (A) having a dialkoxysilyl group represented by the general formula (1) in the molecule, and 2) curing having a dialkoxysilyl group represented by the general formula (2) in the molecule.
  • Examples A1 to C which are curable resin compositions containing a curable resin (B), 3) a basic compound (C), and 4) a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule
  • an organic tin catalyst was not substantially contained (1000 ppm or less), and environmental load could be reduced, and a stable curing rate was ensured while ensuring safety.
  • the tack free time after storage at 50 ° C. for 2 weeks is the same as that in the initial stage.
  • the curable resin composition containing a plasticizer (D) that does not contain a hydroxyl group has a tack-free time (curing speed) that is stable at the initial stage and after storage at 50 ° C. for 2 weeks. And showed good results.
  • Examples B7 to B10 were carried out according to the following formulations according to Examples A1 to A13.
  • the tack free time of the curable resin compositions of Examples B7 to B10 was measured by the method described above.
  • Table 3 shows the measured tack-free times of the curable resin compositions of Examples A1 to 6 and Examples B7 to B10, and
  • Table 4 shows the curable resin compositions of Comparative Examples A1 to A8.
  • Table 5 shows measured values of tack free time, and Table 5 shows measured values of tack free time of Examples A7 to A10.
  • Table 3 shows measured values of the H-type adhesion test of the curable resin compositions of Examples A1 to A6 and Examples B7 to B10
  • Table 4 shows the curable resin compositions of Comparative Examples A1 to A8
  • Table 5 shows the measured values of the H-type adhesion test of Examples A7 to A10.
  • Example A1 to Example A6 and Example B7 to Example B10 which are substantially free of organotin catalyst (1000 ppm or less), are capable of reducing environmental burden and are stable while ensuring safety. It is a curable resin composition that maintains the cured speed and is excellent in adhesiveness.
  • the curable resin composition using the plasticizer (D ′) containing one or more hydroxyl groups in the molecule had good adhesion, but 50 The tack free time after storage at 2 ° C. for 2 weeks is delayed more than twice compared with the initial one.
  • Example A7 to Example A10 the tack-free time (curing rate) was aged with the curable resin composition using the curable resin containing no urethane bond in the molecule and the plasticizer (D) containing no hydroxyl group. However, the improvement in adhesion was not sufficient.
  • a curable resin composition using the curable resin (A) containing a urethane bond in the molecule and the plasticizer (D) containing no hydroxyl group in Examples A1 to A6 and B7 to B10 Then, the tack free time (curing speed) was stable over time, and the adhesion was also good.
  • PMLS4012 polyoxypropylene polyol, number average molecular weight 10,000 manufactured by Asahi Glass Urethane Co.
  • 47.2 g of isophorone diisocyanate, and 0.10 g of dioctyltin diversate were charged, and a nitrogen atmosphere
  • the mixture was allowed to react at 80 ° C. for 3 hours with stirring under mixing to obtain a polyoxyalkylene resin PZ-2 having an isocyanate group in the molecule.
  • Example C1 "GENIOSIL STP-E30" having a main chain of polyoxypropylene as the curable resin (a) and having a methyldimethoxysilyl group-type ⁇ -silane structure (Wacker Chemie AG., Converted from methoxy group equivalent amount)
  • the molecular weight is about 16000, the viscosity is about 30000 mPa ⁇ s / 25 ° C.
  • Shellsol TK manufactured by Shell Chemicals Japan, isoparaffin diluent
  • KBM1003 Shin-Etsu Chemical Co., Ltd., vinyltrimethoxysilane
  • KBM403 Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane
  • Mass parts were added and kneaded for 15 minutes under reduced pressure to obtain a sealing material composition.
  • the sealing material composition was quickly filled in a sealed container, and then a tack-free time measurement, an adhesion test (H-type test), and a weather resistance test were performed. (Details of the test are described later.
  • Example C2 A sealing material composition was blended in the same manner as in Example C1 except that “GENIOSIL STP-E30” was changed to 30 parts by mass and “EXCESTER S2410” was changed to 70 parts by mass.
  • Example C3 In the above Example C2, a sealing material composition was blended in the same manner except that the curable resin b-1 was used instead of “EXCESTER S2410”, and the test was performed.
  • Example C4 a sealing material composition was formulated in the same manner except that KBM603 (manufactured by Shin-Etsu Chemical Co., Ltd., N- (2-aminoethyl) -3-aminopropyltrimethoxysilane) was used instead of KBM602. The test was conducted.
  • KBM603 manufactured by Shin-Etsu Chemical Co., Ltd., N- (2-aminoethyl) -3-aminopropyltrimethoxysilane
  • Example C5 a sealing material composition was blended in the same manner except that KBM903 (manufactured by Shin-Etsu Chemical Co., Ltd., ⁇ -aminopropyltrimethoxysilane) was used instead of KBM602, and the test was conducted.
  • KBM903 manufactured by Shin-Etsu Chemical Co., Ltd., ⁇ -aminopropyltrimethoxysilane
  • Example C6 (Example C6) In Example C2, instead of “GENIOSIL STP-E30”, “GENIOSIL STP-E10” (manufactured by Wacker Chemie AG., Molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa ⁇ s / 25 ° C. (catalog Value)) was blended in the same manner except that KBM903 was used instead of KBM602, and the test was conducted.
  • Example C7 In Example C3, a sealing material composition was blended in the same manner except that octylamine was used instead of KBM602, and the test was performed.
  • Example C8 In the above Example C2, a sealing material composition was blended in the same manner except that 1,8-diazabicyclo [5,4,0] undecene-7 (DBU) was used instead of KBM602, and the test was conducted. .
  • DBU 1,8-diazabicyclo [5,4,0] undecene-7
  • Example C9 In Example C2, a sealing material composition was blended in the same manner except that diisononyl phthalate (DINP) was used instead of Actol P-21, and the test was conducted.
  • DINP diisononyl phthalate
  • Example C1 A sealing material composition was blended in the same manner as in Example C1 except that “GENIOSIL STP-E30” was not used and “EXCESTER S2410” was changed from 50 parts by mass to 100 parts by mass, and the test was performed.
  • Comparative Example C2 In Comparative Example C1, after heating and dehydrating and cooling to room temperature, together with other additives, 1.5 parts by mass of SCAT-32A (manufactured by Sankyo Gosei Co., Ltd., butyltin-based catalyst), STANNBL (Trishader Synthesis) A sealing material composition was blended in the same manner except that 1.5 parts by mass of a butyltin catalyst (manufactured by Kogyo Co., Ltd.) was added, and the test was conducted.
  • SCAT-32A manufactured by Sankyo Gosei Co., Ltd.
  • STANNBL Trishader Synthesis
  • Comparative Example C3 In the above Comparative Example C1, a sealing material composition was blended in the same manner except that “GENIOSIL STP-E30” was used instead of “EXCESTER S2410”, and the test was conducted.
  • Comparative Example C4 A sealing material composition was blended in the same manner as in Comparative Example C3 except that KBM603 was used instead of KBM602, and the test was performed.
  • Example C5 A sealing material composition was prepared in the same manner as in Example C4 except that a modified silicone resin “ES-G3440-ST” (manufactured by Asahi Glass Co., Ltd.) having a trimethoxysilyl group at the terminal was used instead of “EXCESTER S2410”. And the test was conducted.
  • a modified silicone resin “ES-G3440-ST” manufactured by Asahi Glass Co., Ltd.
  • Comparative Example C6 In Comparative Example C5, a sealing material composition was blended in the same manner except that curable resin Z-1 was used instead of “ES-G3440-ST”, and the test was performed.
  • Comparative Example C7 In the above Comparative Example C4, a sealing material composition was blended in the same manner except that “GENIOSIL STP-E10” was used instead of “GENIOSIL STP-E30”, and the test was conducted.
  • Comparative Example C8 In Comparative Example C7, a sealing material composition was blended in the same manner except that KBM602 was used instead of KBM603, and the test was performed.
  • a sheet having a thickness of about 5 mm was prepared on the surface of an aluminum plate (50 ⁇ 50 ⁇ 3 mm), and the sealing material composition was cured at 23 ° C. and 50% RH for 7 days and then at 40 ° C. for 7 days. Thereafter, irradiation was performed for 200 hours with a metal weather meter tester (manufactured by Daipura Wintes Co., Ltd., model number: KU-R5CI-A).
  • Evaluation criteria for weather resistance test ⁇ When no degradation such as cracks is confirmed on the surface ⁇ : When slight degradation such as fine cracks can be confirmed on the surface ⁇ : Cracks are generated on the surface, and obvious degradation is confirmed Case
  • Examples C1 to C9 and Comparative Examples C1 to C8 1) a curable resin (a) having a dialkoxysilyl group represented by the general formula (I) in the molecule; and 2) a dialkoxysilyl group represented by the general formula (II) in the molecule.
  • Examples C1 to C9 which are sealing material compositions containing a curable resin (b), 3) a basic compound (c), and 4) an anti-aging agent (d), It can be seen that the sealing material composition has a necessary and sufficient curing rate, good weather resistance, and a practical modulus without using a catalyst containing a heavy metal (tin), which is a concern for load.
  • the sealing material composition of the present invention had excellent performance as a result of tack-free time measurement, adhesion test, and weather resistance test.
  • the curable resin composition according to the present invention is capable of reducing the environmental burden and exhibits a stable curing rate while ensuring safety. Further, the curable resin composition according to the present invention in a preferred aspect is Since it can be suitably used as a curable material composition having excellent adhesiveness in addition to the above properties, for example, a one-component adhesive, sealing material, pressure-sensitive adhesive, paint, coating material, sealing material It can be used as a casting material, a covering material, and the like.
  • the sealing material composition according to the present invention is capable of reducing the environmental load, has a necessary and sufficient curing rate while ensuring safety, has good weather resistance, and exhibits a practical modulus. It can be suitably used as a product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

Provided are a curable resin composition that reduces the burden on the environment and that demonstrates stable curing speed while ensuring safety, as well as a curable resin composition that has excellent adhesion. The curable resin composition is made by including 1) to 100 parts by mass of a curable resin (A) that has in the molecule a hydrolysable silyl group represented by general formula (1): (1) (Where X represents a hydrocarbon with carbon number 2 or greater, R1 represents an alkyl group with carbon number 1-20, R2 represents an alkyl group with carbon number 1-3, and a represents 0, 1 or 2.), 2) 5-400 parts by mass of a curable resin (B) that has in the molecule a dialkoxysilyl group represented by general formula (2): (2) (Where W represents a group selected from –O–CO–NH–, –N(R5)–CO–NH–, –NH–CO–N(R5)–, –S–CO–NH–, and –NH–CO–S–, R3 represents an alkyl group with carbon number 1-20, R4 represents an alkyl group with carbon number 1-3, and R5 represents hydrogen, an optionally halogen-substituted cyclic, a linear or branched-chain alkyl or alkenyl group with carbon number 1-18, or an aryl group with carbon number 6-18.), and to a total of 100 parts by mass of the curable resin (A) and the curable resin (B), 3) 0.1-30 parts by mass of a basic compound (C), and 4) 10-500 parts by weight of a plasticizer (D) containing no hydroxyl groups in the molecule and having a boiling point of at least 200°C.

Description

1液室温湿気硬化型硬化性樹脂組成物One component room temperature moisture curable resin composition
 本発明は、室温大気下で硬化可能である、加水分解性シリル基を含有する硬化性樹脂組成物に関し、より詳しくは、環境負荷の低減が可能であるとともに、安全性を確保しつつ安定した硬化速度を有する硬化性樹脂組成物、及びこれらの特性に加えて優れた接着性を有する硬化性樹脂組成物に関する。本発明は、さらに、室温大気下で硬化可能である、加水分解性シリル基を含有するシーリング材組成物に関し、より詳しくは、環境負荷の低減が可能であるとともに、安全性を確保しつつ必要十分な硬化速度を有し、耐候性が良好で、実用可能なモジュラスを示すシーリング材組成物に関する。 The present invention relates to a curable resin composition containing a hydrolyzable silyl group that can be cured at room temperature, and more specifically, it is possible to reduce environmental burden and to be stable while ensuring safety. The present invention relates to a curable resin composition having a curing rate and a curable resin composition having excellent adhesiveness in addition to these characteristics. The present invention further relates to a sealing material composition containing a hydrolyzable silyl group, which can be cured at room temperature, and more specifically, it is possible to reduce environmental burden and to ensure safety. The present invention relates to a sealing material composition having a sufficient curing rate, good weather resistance, and a practical modulus.
 分子内に加水分解性シリル基を有する硬化性樹脂は、シーラント、接着剤、粘着剤、塗料等のベースポリマーとして広く用いられている。この硬化性樹脂は加水分解性シリル基が大気中の水分で加水分解し架橋することによって硬化するため、湿気硬化型ポリマーとも呼ばれており、安全性や臭気が少ないことなどから幅広く用いられている。このポリマーのうち、加水分解性シリル基がアルコキシシリル基であり、主鎖のポリオキシプロピレン(PPG)に-(CH-を介して結合した構造を持つ変成シリコーン樹脂が最も一般的に使用されている。(特許文献1、特許文献2) Curable resins having hydrolyzable silyl groups in the molecule are widely used as base polymers for sealants, adhesives, pressure-sensitive adhesives, paints and the like. This curable resin is cured by hydrolyzable silyl groups that are hydrolyzed and crosslinked with moisture in the atmosphere, so it is also called a moisture-curing polymer, and is widely used for its safety and low odor. Yes. Of these polymers, a modified silicone resin having a structure in which the hydrolyzable silyl group is an alkoxysilyl group and bonded to the main chain polyoxypropylene (PPG) via — (CH 2 ) 3 — is most commonly used. in use. (Patent Document 1, Patent Document 2)
 しかし、アルコキシシリル基だけでは室温で十分な硬化速度を得られないため、これらの硬化性樹脂は十分な硬化速度を得るために、通常は硬化触媒を配合して使用される。硬化触媒としては有機スズ化合物が広く使用されている。 However, since the alkoxysilyl group alone cannot provide a sufficient curing rate at room temperature, these curable resins are usually used in combination with a curing catalyst in order to obtain a sufficient curing rate. Organotin compounds are widely used as curing catalysts.
 一方で、アミン化合物やカルボン酸化合物、又はビスマス系化合物やチタン系化合物(特許文献3、特許文献4)を硬化触媒として使用することが提案されている。しかし、これらの触媒系では硬化速度が実用的に満足できるものではなかった。 On the other hand, it has been proposed to use an amine compound, a carboxylic acid compound, a bismuth compound, or a titanium compound (Patent Documents 3 and 4) as a curing catalyst. However, these catalyst systems have not been practically satisfactory in curing rate.
 また、無触媒でも十分な硬化性を有するアルコキシシリル基として、加水分解性シリル基中のケイ素原子に結合した炭素原子に、非共有電子対を有する酸素、窒素、硫黄等のヘテロ原子が結合した結合基をもつ化合物(「α-シラン構造」ともいう)が提案されている(特許文献5)が、硬化物のモジュラスが高く、硬すぎる傾向がある。 In addition, as an alkoxysilyl group having sufficient curability even without a catalyst, a heteroatom such as oxygen, nitrogen, or sulfur having an unshared electron pair is bonded to a carbon atom bonded to a silicon atom in a hydrolyzable silyl group. A compound having a bonding group (also referred to as “α-silane structure”) has been proposed (Patent Document 5), but the cured product has a high modulus and tends to be too hard.
 近年、建築物の外壁としてサイディングボードを用いる外壁が戸建、集合住宅、中低層建築物に広く採用されおり、サイディングボードの目地にシーリング材を充填することで目地部の水密性・気密性を維持している。サイディングボードは外部環境条件(特に夏冬、昼夜の温度変化)による伸縮や、経年変化により収縮する傾向があり、充填するシーリング材にはその目地の動きに追従することが強く求められており、低モジュラスのシーリング材が採用されている。(高モジュラスなシーリング材で目地を充填した場合、サイディングボードの伸縮に伴い大きな荷重が目地にかかるため、シーリング材部分の割れ、剥がれ等が起こり、水密性・気密性の維持が困難になることが懸念される。) In recent years, exterior walls that use siding boards as exterior walls of buildings have been widely adopted in detached houses, apartment buildings, and low- and middle-rise buildings, and by filling the joints of the siding boards with sealing materials, the water-tightness and air-tightness of the joints are increased. Is maintained. Siding boards tend to shrink due to expansion and contraction due to external environmental conditions (especially summer and winter, day and night temperature changes), and aging, and the sealing material to be filled is strongly required to follow the movement of the joints. Low modulus sealing material is used. (If the joint is filled with a high modulus sealing material, a large load will be applied to the joint as the siding board expands and contracts, causing cracking and peeling of the sealing material, making it difficult to maintain watertightness and airtightness. Is a concern.)
 サイディングボード以外でもシーリング材は目地(隙間)に充填し、水密性・気密性を維持することが期待される用途に使われることが多く、目地の動きに追従し、余計な負荷をかけない低モジュラスのシーリング材が求められている。 Sealing materials other than siding boards are often used for applications that are expected to fill the joints (clearances) and maintain watertightness and airtightness. There is a need for a modulus sealant.
特開昭52-073998号公報Japanese Patent Laid-Open No. 52-073998 特開昭63-112642号公報Japanese Unexamined Patent Publication No. Sho 63-112642 特許第3793074号公報Japanese Patent No. 3793074 特許第3768072号公報Japanese Patent No. 3768072 特表2005-514504号公報JP 2005-514504 Gazette
 有機スズ化合物については、近年その毒性が問題となっているものがあり、その使用量については組成物に対し1000ppm以下に抑えることが望まれている。特に有機スズ化合物の中でも、毒性の比較的高いトリブチルスズ誘導体が含まれているものは、その使用について特に注意が必要となる。 Some organotin compounds have recently become problematic in toxicity, and the amount used is desired to be suppressed to 1000 ppm or less based on the composition. In particular, among organic tin compounds, those that contain a relatively toxic tributyltin derivative require special attention for its use.
 また、トリブチルスズ誘導体に限らず、スズ等の重金属を中心とする触媒は毒性、環境への負荷が懸念されるため、使用に際してはその取り扱いや使用量に十分な注意が必要であるのは言うまでもない。 In addition, not only tributyltin derivatives but also catalysts such as tin and other heavy metals have concerns about toxicity and environmental impact, so it is needless to say that sufficient attention should be paid to their handling and usage. .
 そこで、本発明者等は、加水分解性シリル基を有する硬化性樹脂を用いた樹脂組成物において、有機スズ系触媒の含有量を極力減らし、究極的には全く含まないものの、実性能は現行のものと遜色ない、もしくはそれを上回る硬化性樹脂組成物を得ることを目的として鋭意研究を行った。 Therefore, the present inventors have reduced the content of organotin catalyst as much as possible in the resin composition using a curable resin having a hydrolyzable silyl group, and ultimately do not contain at all, but the actual performance is currently In order to obtain a curable resin composition that is comparable to or superior to those of the above, intensive research was conducted.
 その結果、上記の特許文献5に記載されるような特定の加水分解性シリル基近傍の化学構造を持つ硬化性樹脂(「α-シラン構造を持つ硬化性樹脂」ともいう)と、従来公知の加水分解性シリル基を有する硬化性樹脂とを併用すると、驚くべきことに系全体の硬化性能が引き上げられ、その結果としてこれらの併用系では有機スズ系触媒を用いることなく、十分実用的な硬化速度が得られ、且つ硬化物が実用可能なモジュラスを示すことを見出し、この併用系を先に出願した(特願2008-187669)。 As a result, a curable resin having a chemical structure in the vicinity of a specific hydrolyzable silyl group (also referred to as “curable resin having an α-silane structure”) as described in Patent Document 5 above, When used in combination with a curable resin having a hydrolyzable silyl group, the curing performance of the entire system is surprisingly increased. As a result, these combined systems can be cured sufficiently without using an organic tin catalyst. It was found that the speed was obtained and the cured product showed a practical modulus, and this combined system was filed earlier (Japanese Patent Application No. 2008-187669).
 本発明者等はこの発明の実用化に向けて研究を続けたところ、さらにこの併用系での特殊性を見出した。 The inventors of the present invention have continued research for practical application of the present invention, and have found further speciality in this combined system.
 すなわち、従来公知の加水分解性シリル基を有する硬化性樹脂と、α-シラン構造を持つ硬化性樹脂とを併用した場合には、使用する可塑剤によっては硬化速度が経時で大きく遅延する現象がみられたのである。 That is, when a conventionally known curable resin having a hydrolyzable silyl group and a curable resin having an α-silane structure are used in combination, the phenomenon that the curing rate is greatly delayed over time may occur depending on the plasticizer used. It was seen.
 このような現象は、従来公知の加水分解性シリル基を有する硬化性樹脂を用いた系ではみられなかったことである。従って、この問題を解決しない限り、この硬化性樹脂併用系をシーラント、接着剤、粘着剤、塗料等として実際に使用するにあたっての大きな制約となってしまう。 Such a phenomenon was not observed in a system using a conventionally known curable resin having a hydrolyzable silyl group. Therefore, unless this problem is solved, this curable resin combined system becomes a great restriction when actually used as a sealant, an adhesive, a pressure-sensitive adhesive, a paint, or the like.
 また、有機スズ化合物は加水分解性シリル基を有する硬化性樹脂の硬化触媒としても作用するが、エステル結合を加水分解する触媒としても作用する。そのため、一般的に使用されている老化防止剤の分子内に含まれるエステル結合を加水分解してしまい、老化防止剤としての効果が長続きしないため、一般的に有機スズ触媒を使用することで耐候性が低下してしまう傾向がある。 The organotin compound also acts as a curing catalyst for the curable resin having a hydrolyzable silyl group, but also acts as a catalyst for hydrolyzing the ester bond. Therefore, the ester bond contained in the molecule of the commonly used anti-aging agent is hydrolyzed, and the effect as an anti-aging agent does not last long. Tend to decline.
 一方、有機スズ触媒を使用しなくても、塩基性化合物のみで十分な硬化性を示すα-シラン構造を持つ硬化性樹脂は、耐候性は良好であるが、硬化物のモジュラスが高くシーリング材として使用した場合に、硬すぎる傾向があった。 On the other hand, a curable resin having an α-silane structure that exhibits sufficient curability with only a basic compound without using an organic tin catalyst has good weather resistance, but has a high modulus of the cured product and a sealing material. When used as, there was a tendency to be too hard.
 本発明者等は、鋭意研究の結果、ついに上述のような経時での硬化遅延を起こさせない可塑剤がいかなるものであるかを突き止め、第1の本発明を完成させるに至った。 As a result of diligent research, the present inventors finally found out what kind of plasticizer does not cause a delay in curing as described above, and completed the first present invention.
 すなわち、第1の本発明は、
1)分子内に下記一般式(1):
  -X-SiR (OR3-a    ・・・式(1)
(但し、Xは炭素数2以上の炭化水素を、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基を、aは0、1又は2をそれぞれ示す。)で表される加水分解性シリル基を有する硬化性樹脂(A)の100質量部に対して、
2)分子内に下記一般式(2):
  -W-CH-SiR(OR    ・・・式(2)
(但し、Wは-O-CO-NH-、-N(R)-CO-NH-、-NH-CO-N(R)-、-S-CO-NH-、-NH-CO-S-から選択される基を表し、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基を、Rは水素、ハロゲン置換されていてもよい環状、線状又は分枝鎖状の炭素数1~18のアルキルもしくはアルケニル基又は炭素数6~18個のアリール基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂(B)を5~400質量部、並びに、硬化性樹脂(A)と硬化性樹脂(B)の総和100質量部に対して、
3)塩基性化合物(C)を0.1~30質量部、及び
4)分子内に水酸基を含有しない沸点が200℃以上の可塑剤(D)を10~500重量部、
を含有させてなる硬化性樹脂組成物である。
That is, the first aspect of the present invention is
1) In the molecule, the following general formula (1):
—X—SiR 1 a (OR 2 ) 3-a Formula (1)
(Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, a represents 0, 1 or 2) To 100 parts by mass of the curable resin (A) having a hydrolyzable silyl group represented by
2) In the molecule, the following general formula (2):
—W—CH 2 —SiR 3 (OR 4 ) 2 Formula (2)
(W is —O—CO—NH—, —N (R 5 ) —CO—NH—, —NH—CO—N (R 5 ) —, —S—CO—NH—, —NH—CO— Represents a group selected from S—, R 3 represents an alkyl group having 1 to 20 carbon atoms, R 4 represents an alkyl group having 1 to 3 carbon atoms, and R 5 may be substituted with hydrogen or halogen. A curable resin having a dialkoxysilyl group represented by a cyclic, linear or branched alkyl or alkenyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms. ) To 5 to 400 parts by mass, and the total of 100 parts by mass of the curable resin (A) and the curable resin (B),
3) 0.1 to 30 parts by weight of the basic compound (C), and 4) 10 to 500 parts by weight of a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule,
Is a curable resin composition.
 有機スズ触媒を使用しなくても上記式(2)の化学構造を持つ硬化性樹脂(B)と塩基性化合物(C)とを、硬化性樹脂(A)に添加することで十分な硬化性を示し、分子内に水酸基を含有しない沸点が200℃以上の可塑剤(D)を使用することで経時で硬化速度が大きく遅延することがない。 Even if an organic tin catalyst is not used, sufficient curability can be obtained by adding the curable resin (B) having the chemical structure of the above formula (2) and the basic compound (C) to the curable resin (A). By using a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule, the curing rate is not greatly delayed over time.
 第1の本発明において、硬化性樹脂(A)がジアルコキシシリル基を有するものが好ましい。すなわち、この好ましい発明は、
1)分子内に下記一般式(1’):
  -X-SiR(OR    ・・・式(1’)
(但し、Xは炭素数2以上の炭化水素を、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂の100質量部に対して、
2)分子内に下記一般式(2):
  -W-CH-SiR(OR    ・・・式(2)
(但し、Wは-O-CO-NH-、-N(R)-CO-NH-、-NH-CO-N(R)-、-S-CO-NH-、-NH-CO-S-から選択される基を表し、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基を、Rは水素、ハロゲン置換されていてもよい環状、線状又は分枝鎖状の炭素数1~18のアルキルもしくはアルケニル基又は炭素数6~18個のアリール基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂(B)を5~400質量部、並びに、硬化性樹脂(A)と硬化性樹脂(B)の総和100質量部に対して、
3)塩基性化合物(C)を0.1~30質量部、及び
4)分子内に水酸基を含有しない沸点が200℃以上の可塑剤(D)を10~500重量部、
を含有させてなる硬化性樹脂組成物であることがより好ましい。
In the first invention, the curable resin (A) preferably has a dialkoxysilyl group. That is, this preferred invention is
1) In the molecule, the following general formula (1 ′):
-X-SiR 1 (OR 2 ) 2 Formula (1 ')
(Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, and R 2 represents an alkyl group having 1 to 3 carbon atoms). For 100 parts by mass of the curable resin having an alkoxysilyl group,
2) In the molecule, the following general formula (2):
—W—CH 2 —SiR 3 (OR 4 ) 2 Formula (2)
(W is —O—CO—NH—, —N (R 5 ) —CO—NH—, —NH—CO—N (R 5 ) —, —S—CO—NH—, —NH—CO— Represents a group selected from S—, R 3 represents an alkyl group having 1 to 20 carbon atoms, R 4 represents an alkyl group having 1 to 3 carbon atoms, and R 5 may be substituted with hydrogen or halogen. A curable resin having a dialkoxysilyl group represented by a cyclic, linear or branched alkyl or alkenyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms. ) To 5 to 400 parts by mass, and the total of 100 parts by mass of the curable resin (A) and the curable resin (B),
3) 0.1 to 30 parts by weight of the basic compound (C), and 4) 10 to 500 parts by weight of a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule,
More preferably, the curable resin composition contains.
 第1の本発明において、硬化性樹脂(A)として分子内にさらにウレタン結合を有する硬化性樹脂を用いると、得られる硬化性樹脂組成物の接着性が改善される。つまり、この好ましい発明は、
1)前記一般式(1)で表される加水分解性シリル基に加えて、さらに分子内にウレタン結合を有する硬化性樹脂(A)の100質量部に対して、
2)分子内に下記一般式(2)で表されるジアルコキシシリル基を有する硬化性樹脂(B)を5~400質量部、並びに、硬化性樹脂(A)と硬化性樹脂(B)の総和100質量部に対して、
3)塩基性化合物(C)を0.1~30質量部、及び
4)分子内に水酸基を含有しない沸点が200℃以上の可塑剤(D)を10~500重量部、
を含有させてなる硬化性樹脂組成物である。なお、前記一般式(1)が前記一般式(1’)であることがより好ましい。
In the first aspect of the present invention, when a curable resin further having a urethane bond in the molecule is used as the curable resin (A), the adhesion of the resulting curable resin composition is improved. In other words, this preferred invention is
1) In addition to 100 parts by mass of the curable resin (A) having a urethane bond in the molecule in addition to the hydrolyzable silyl group represented by the general formula (1),
2) 5 to 400 parts by mass of a curable resin (B) having a dialkoxysilyl group represented by the following general formula (2) in the molecule, and curable resin (A) and curable resin (B) For a total of 100 parts by mass,
3) 0.1 to 30 parts by weight of the basic compound (C), and 4) 10 to 500 parts by weight of a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule,
Is a curable resin composition. The general formula (1) is more preferably the general formula (1 ′).
 この好ましい本発明によれば、有機スズ触媒を使用しなくても十分な硬化性を示し、経時で硬化速度が大きく遅延することがなく、その上、ウレタン結合を有し、上記式(1)で表される加水分解性シリル基を有する硬化性樹脂(A)を用いることで接着性が良好な硬化性樹脂組成物が得られる。なお、前記一般式(1)が前記一般式(1’)であることがより好ましい。 According to this preferred embodiment of the present invention, sufficient curability is exhibited without using an organotin catalyst, the curing rate is not greatly delayed over time, and furthermore, it has a urethane bond, and the above formula (1) A curable resin composition having good adhesion can be obtained by using the curable resin (A) having a hydrolyzable silyl group represented by the following formula. The general formula (1) is more preferably the general formula (1 ′).
 第1の本発明において、可塑剤(D)がフタル酸エステル系化合物、アルキルスルホン酸エステル系化合物、水酸基を封鎖したポリオキシアルキレン、水酸基を含有しないアクリル樹脂、アジピン酸エステル系化合物、炭化水素系化合物から選択された1種以上であることが好ましい。 In the first present invention, the plasticizer (D) is a phthalate ester compound, an alkyl sulfonate ester compound, a polyoxyalkylene having a hydroxyl group blocked, an acrylic resin not containing a hydroxyl group, an adipate ester compound, a hydrocarbon It is preferable that it is 1 or more types selected from the compound.
 第1の本発明において、硬化性樹脂(A)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが好ましい。 In the first invention, it is preferable that the main chain of the curable resin (A) is essentially polyoxyalkylene and / or poly (meth) acrylate.
 第1の本発明において、硬化性樹脂(B)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが好ましい。 In the first invention, it is preferable that the main chain of the curable resin (B) is essentially polyoxyalkylene and / or poly (meth) acrylate.
 第1の本発明において、塩基性化合物(C)がアミン化合物であることが好ましく、塩基性化合物(C)がその分子内にアミノ基と下記一般式(3):
  -SiR 3-n   ・・・式(3)
(但し、Yは加水分解性基を、Rは炭素数1~20個のアルキル基を、nは0、1又は2を、それぞれ示す。)で表される加水分解性シリル基を有する化合物であることがより好ましい。
In the first aspect of the present invention, the basic compound (C) is preferably an amine compound, and the basic compound (C) has an amino group in its molecule and the following general formula (3):
-SiR 6 n Y 3-n Formula (3)
(Wherein Y represents a hydrolyzable group, R 6 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2), and a compound having a hydrolyzable silyl group It is more preferable that
 第1の本発明において、有機スズ系触媒が実質的に含まれない、または1000ppm未満であることが好ましい。 In the first invention, it is preferable that the organotin catalyst is substantially not contained or less than 1000 ppm.
 第1の本発明において、充填剤又は老化防止剤を含有することが好ましい。 In the first invention, it is preferable to contain a filler or an anti-aging agent.
 さらに、本発明者等は、鋭意研究の結果、有機スズ触媒を使用しなくても塩基性化合物のみで十分な硬化性を示すが、モジュラスが高く単独では使用が困難であったα-シラン構造を持つ硬化性樹脂(a)と、モジュラス調整剤として硬化性樹脂(b)と、塩基性化合物(c)と、老化防止剤(d)を用いることで、実用可能なモジュラスを示し、耐候性が良好であり、環境負荷の低減が可能であり、しかも、必要十分な硬化速度が得られることを見出し、第2の本発明を完成させるに至った。 Further, as a result of intensive studies, the present inventors have shown that an α-silane structure which has sufficient curability only with a basic compound without using an organotin catalyst, but has a high modulus and is difficult to use alone. By using a curable resin (a) having a curable resin, a curable resin (b), a basic compound (c), and an anti-aging agent (d) as a modulus regulator, it exhibits a practical modulus and is weather resistant. Has been found to be good, the environmental load can be reduced, and a necessary and sufficient curing rate can be obtained, and the second invention has been completed.
 すなわち、第2の本発明は、1)分子内に下記一般式(I):
  -W-CH-SiR11(OR12    ・・・式(I)
(但し、Wは-O-CO-NH-、-N(R16)-CO-N(R17)-、-S-CO-NH-、-NH-CO-S-から選択される基を表し、R11、R12は炭素数1~20個のアルキル基を、R16、R17は水素、ハロゲン置換されていてもよい環状、線状又は分枝鎖状の炭素数1~18のアルキルもしくはアルケニル基又は炭素数6~18個のアリール基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂(a)を100質量部に対して、
2)分子内に下記一般式(II):
  -X-SiR13(OR14    ・・・式(II)
(但し、Xは炭素数2以上の炭化水素を、R13、R14は炭素数1~20個のアルキル基を、それぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂(b)を40~400質量部、
3)塩基性化合物(c)を0.1~70質量部、及び
4)老化防止剤(d)を0.1~70質量部、
を含有させてなるシーリング材組成物、
である。
That is, according to the second aspect of the present invention, 1) the following general formula (I):
—W—CH 2 —SiR 11 (OR 12 ) 2 ... Formula (I)
(W represents a group selected from —O—CO—NH—, —N (R 16 ) —CO—N (R 17 ) —, —S—CO—NH—, —NH—CO—S—). R 11 and R 12 are alkyl groups having 1 to 20 carbon atoms, R 16 and R 17 are cyclic, linear or branched carbon atoms having 1 to 18 carbon atoms which may be substituted with hydrogen or halogen. An alkenyl or alkenyl group or an aryl group having 6 to 18 carbon atoms, respectively), and curable resin (a) having a dialkoxysilyl group represented by
2) The following general formula (II) in the molecule:
-X-SiR 13 (OR 14 ) 2 Formula (II)
(Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 13 and R 14 each represent an alkyl group having 1 to 20 carbon atoms), and a curable resin having a dialkoxysilyl group (b 40 to 400 parts by mass of
3) 0.1 to 70 parts by weight of the basic compound (c), and 4) 0.1 to 70 parts by weight of the anti-aging agent (d),
A sealing material composition comprising
It is.
 第2の本発明においては、硬化性樹脂(a)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが好ましい。 In the second aspect of the present invention, it is preferable that the main chain of the curable resin (a) is essentially polyoxyalkylene and / or poly (meth) acrylate.
 第2の本発明においては、硬化性樹脂(b)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが好ましい。 In the second invention, it is preferable that the main chain of the curable resin (b) is essentially polyoxyalkylene and / or poly (meth) acrylate.
 第2の本発明においては、塩基性化合物(c)がアミン化合物であることが好ましく、塩基性化合物(c)がその分子内にアミノ基と下記一般式(III):
  -SiR15 3-n   ・・・式(III)
(但し、Yはヒドロキシル基又はアルコキシル基等の加水分解性基を、R15は炭素数1~20個のアルキル基を、nは0、1又は2を、それぞれ示す。)で表される加水分解性シリル基を有する化合物であることが好ましい。
In the second aspect of the present invention, the basic compound (c) is preferably an amine compound, and the basic compound (c) has an amino group in its molecule and the following general formula (III):
-SiR 15 n Y 3-n Formula (III)
(Wherein Y represents a hydrolyzable group such as a hydroxyl group or an alkoxyl group, R 15 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2). A compound having a decomposable silyl group is preferred.
 第2の本発明においては、有機錫系触媒が実質的に含まれない、または1000ppm未満であることが好ましい。 In the second aspect of the present invention, it is preferable that the organotin catalyst is substantially not contained or less than 1000 ppm.
 第2の本発明においては、さらに、充填剤、可塑剤を含有することが好ましい。 In the second aspect of the present invention, it is preferable to further contain a filler and a plasticizer.
 第1の本発明に係る硬化性樹脂組成物は、環境負荷の低減が可能であるとともに、安全性を確保しつつ実用上必要十分な硬化速度を有し、しかも経時で安定した効果速度を有するという効果を奏する。好ましい第1の本発明に係る硬化性樹脂組成物は、前記の本発明の効果に加えて、さらに接着性が良好であるという効果を奏する。 The curable resin composition according to the first aspect of the present invention can reduce the environmental burden, has a necessary and sufficient curing rate while ensuring safety, and has a stable effect rate over time. There is an effect. In addition to the effect of the present invention, the curable resin composition according to the first preferred embodiment of the present invention has an effect that the adhesiveness is further good.
 第2の本発明に係るシーリング材組成物は、環境負荷の低減が可能であるとともに、安全性を確保しつつ必要十分な硬化速度を有し、耐候性が良好で、実用可能なモジュラスを示すという効果を奏する。 The sealing material composition according to the second aspect of the present invention can reduce the environmental load, has a necessary and sufficient curing rate while ensuring safety, has good weather resistance, and exhibits a practical modulus. There is an effect.
発明を実施するため最良の形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明の実施の形態を、詳細に説明する。なお、本発明はこれらの例示にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加え得ることは勿論である。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited only to these illustrations, Of course, a various change can be added in the range which does not deviate from the summary of this invention.
第1の本発明
[硬化性樹脂(A)及びについて]
 本発明における硬化性樹脂(A)は、分子内に下記一般式(1):
  -X-SiR (OR3-a    ・・・式(1)
(但し、Xは炭素数2以上の炭化水素を、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基を、aは0、1又は2をそれぞれ示す。)で表される加水分解性シリル基を有する。
1st this invention [about curable resin (A) and]
The curable resin (A) in the present invention has the following general formula (1) in its molecule:
—X—SiR 1 a (OR 2 ) 3-a Formula (1)
(Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, a represents 0, 1 or 2) Each having a hydrolyzable silyl group represented by
 上記加水分解性シリル基は、ケイ素原子に炭素数2以上の炭化水素基Xが結合している。この炭化水素基Xは主鎖骨格に結合している。さらにこの炭化水素基Xと主鎖骨格との結合は、直接であってもウレタン結合等の連結官能基を介していてもよい。また、当該ケイ素原子については炭化水素基Xとの結合手以外に加水分解性基としてアルコキシル基(OR)が3~1個結合すると共に、残りの結合手として炭化水素基(R)が0~2個結合しているものである。 In the hydrolyzable silyl group, a hydrocarbon group X having 2 or more carbon atoms is bonded to a silicon atom. This hydrocarbon group X is bonded to the main chain skeleton. Furthermore, the bond between the hydrocarbon group X and the main chain skeleton may be direct or via a linking functional group such as a urethane bond. In addition to the bond with the hydrocarbon group X, the silicon atom has 3 to 1 alkoxyl groups (OR 2 ) bonded as hydrolyzable groups, and the remaining hydrocarbon group is a hydrocarbon group (R 1 ). 0 to 2 are bonded.
 ここで、Rは炭素数1~20個のアルキル基、Rは炭素数1~3個のアルキル基である。アルコキシル基(OR)としては、メトキシ基、エトキシ基、プロポキシ基であり、好ましくはメトキシ基又はエトキシ基である。ケイ素原子の残りの結合手に結合している炭化水素基(R)としては、メチル基、エチル基、プロピル基、ブチル基であるのが好ましく、さらに好ましくはメチル基又はエチル基である。 Here, R 1 is an alkyl group having 1 to 20 carbon atoms, and R 2 is an alkyl group having 1 to 3 carbon atoms. The alkoxyl group (OR 2), a methoxy group, an ethoxy group, a propoxy group, preferably a methoxy group or an ethoxy group. The hydrocarbon group (R 1 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and more preferably a methyl group or an ethyl group.
 硬化性樹脂(A)の主鎖骨格としては、ポリオキシアルキレン、ビニル重合体、飽和炭化水素重合体、不飽和炭化水素重合体、ポリエステル、ポリカーボネート、ポリジメチルシロキサン等のシリコーン樹脂及び変成シリコーン樹脂やシリル化ウレタン樹脂に一般的に用いられているものが採用されるが、特にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが、入手の容易さ、硬化物の皮膜物性等の点から好ましい。なお、本願においては、アクリル酸とメタクリル酸とを総称して「(メタ)アクリル酸」と表記する。 Examples of the main chain skeleton of the curable resin (A) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. What is generally used for silylated urethane resins is employed, but in particular, polyoxyalkylene and / or poly (meth) acrylic acid esters are easy to obtain, such as film properties of cured products. It is preferable from the point. In the present application, acrylic acid and methacrylic acid are collectively referred to as “(meth) acrylic acid”.
 また、硬化性樹脂(A)として、分子内にウレタン結合、(置換)尿素結合等の極性基を含有する硬化性シリコーン系樹脂を用いることもできる。分子内に極性基を含有する硬化性樹脂(A)は、従来公知の方法で合成すればよい。例えば、イソシアネート基含有ポリマーにアミノ基含有アルコキシシラン化合物(或いはメルカプト基含有アルコキシシラン化合物)を反応させる方法や、水酸基含有有機重合体や第一および/または第二アミノ基含有有機重合体あるいはメルカプト基含有有機重合体にイソシアネート基含有アルコキシシラン化合物を反応させる方法等が知られている。より具体的には、特許第3030020号公報、特許第3343604号公報、特開2005-54174公報等に記載の方法で容易に合成することができる。上記硬化性樹脂(A)は、単独又は2種以上を組み合わせて使用できる。 Further, as the curable resin (A), a curable silicone resin containing a polar group such as a urethane bond or a (substituted) urea bond in the molecule can also be used. The curable resin (A) containing a polar group in the molecule may be synthesized by a conventionally known method. For example, a method of reacting an isocyanate group-containing polymer with an amino group-containing alkoxysilane compound (or a mercapto group-containing alkoxysilane compound), a hydroxyl group-containing organic polymer, a first and / or second amino group-containing organic polymer, or a mercapto group A method of reacting an isocyanate group-containing alkoxysilane compound with a containing organic polymer is known. More specifically, it can be easily synthesized by the methods described in Japanese Patent No. 3030020, Japanese Patent No. 3343604, Japanese Patent Application Laid-Open No. 2005-54174, and the like. The said curable resin (A) can be used individually or in combination of 2 or more types.
 硬化性樹脂(A)として、加水分解性シリル基がトリアルコキシシリル基であったり、モノアルコキシシリル基であるような硬化性樹脂を併用してもよい。この際に、トリアルコキシシリル基含有硬化性樹脂を用いると、最終硬化物のモジュラスを上げることができるが、使用量が増えると伸びが少なくなる傾向がある。一方、モノアルコキシシリル基含有硬化性樹脂を用いると、最終硬化物のモジュラスを下げることができるが、使用量が増えると系全体の反応性が低下し硬化速度が非常に遅くなる傾向があり、さらに、架橋による三次元ネットワークを形成できないため硬化物の物性に劣る傾向がある。 As the curable resin (A), a curable resin in which the hydrolyzable silyl group is a trialkoxysilyl group or a monoalkoxysilyl group may be used in combination. At this time, if a trialkoxysilyl group-containing curable resin is used, the modulus of the final cured product can be increased, but the elongation tends to decrease as the amount used increases. On the other hand, when a monoalkoxysilyl group-containing curable resin is used, the modulus of the final cured product can be lowered, but when the amount used is increased, the reactivity of the whole system is lowered and the curing rate tends to be very slow, Furthermore, since the three-dimensional network by bridge | crosslinking cannot be formed, there exists a tendency for the physical property of hardened | cured material to be inferior.
 したがって、硬化性樹脂(A)は、下記一般式(1’):
  -X-SiR(OR    ・・・式(1’)
(但し、Xは炭素数2以上の炭化水素を、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂であることがより好ましい。
Accordingly, the curable resin (A) has the following general formula (1 ′):
-X-SiR 1 (OR 2 ) 2 Formula (1 ')
(Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, and R 2 represents an alkyl group having 1 to 3 carbon atoms). A curable resin having an alkoxysilyl group is more preferable.
 硬化性樹脂(A)の市販品として、シリコーン樹脂又は変性シリコーン樹脂として多数販売されている。例えば、株式会社カネカ製のサイリルシリーズ、MSポリマーシリーズ、MAシリーズ、SAシリーズ、ORシリーズ、エピオンシリーズ;旭硝子株式会社製のESシリーズ、ESGXシリーズ;エボニックデグサ社製のシラン変性ポリアルファオレフィン、信越化学工業株式会社製のKCシリーズ、KRシリーズ、X-40シリーズ;東亞合成株式会社製のXPRシリーズ、ARUFON USシリーズ;綜研化学株式会社製のアクトフローシリーズ等が挙げられる。 Many commercially available curable resins (A) are sold as silicone resins or modified silicone resins. For example, Kaneka's Silyl series, MS polymer series, MA series, SA series, OR series, Epion series; Asahi Glass Co., Ltd. ES series, ESGX series; Evonik Degussa's silane-modified polyalphaolefin, Shin-Etsu Examples thereof include KC series, KR series, X-40 series manufactured by Chemical Industry Co., Ltd .; XPR series manufactured by Toagosei Co., Ltd., ARUFON US series; Actflow series manufactured by Soken Chemical Co., Ltd., and the like.
 硬化性樹脂(A)は、分子内にウレタン結合を有することが好ましい。分子内にウレタン結合及び加水分解性シリル基を有する硬化性樹脂(A)を用いることで接着性が向上する理由は定かではないが、おそらく、変成シリコーン等の分子内にウレタン結合を含有しない硬化性樹脂に比べ、硬化性樹脂(A)は分子内に極性基であるウレタン結合を含有するため、それ自体の接着性が優れること、反応性が高まり硬化性樹脂(B)等との硬化がうまく進行し易いこと等が接着性向上の原因として考えられる。 The curable resin (A) preferably has a urethane bond in the molecule. The reason why the adhesion is improved by using the curable resin (A) having a urethane bond and a hydrolyzable silyl group in the molecule is not clear, but it is probably a cure that does not contain a urethane bond in the molecule such as modified silicone. Compared to the curable resin, the curable resin (A) contains a urethane bond, which is a polar group, in the molecule, so that the adhesive itself is excellent, the reactivity is increased, and the curable resin (B) is cured. It is thought that it is easy to proceed well as the cause of the improvement in adhesion.
 上記接着性とは具体的には、被着体との破壊状態のことを示している。「接着性が良い」とは、被着体に硬化性樹脂組成物を塗り、硬化させた後に、硬化物を剥がした場合に、硬化物の凝集破壊(硬化物自体が破壊)率が高いことを示し、「接着性が悪い」とは、その硬化物の界面破壊(被着体と硬化物の間で破壊)率が高いことを示す。界面破壊率が高い場合、その界面から水蒸気や水が浸入し易く、経時的な接着強さの低下が懸念される。そのため、たとえ高い接着強さであったとしても、破壊状態が界面破壊であると、接着性や気密性といった性能に対する信頼性に欠けることになり好ましくない。 The above adhesiveness specifically indicates a broken state with the adherend. “Adhesiveness is good” means that when the cured product is peeled off after the curable resin composition is applied to the adherend and cured, the rate of cohesive failure of the cured product (the cured product itself is destroyed) is high. "Poor adhesion" indicates that the cured product has a high interfacial fracture rate (breakage between the adherend and the cured product). When the interface fracture rate is high, water vapor or water can easily enter from the interface, and there is a concern that the adhesive strength may decrease with time. For this reason, even if the adhesive strength is high, if the fracture state is interfacial failure, it is not preferable because the reliability such as adhesiveness and airtightness is lacking.
[硬化性樹脂(B)について]
 硬化性樹脂(B)を硬化性樹脂(A)に配合することで、硬化性樹脂(A)の硬化性能が引き上げられ、その結果、後述する塩基性化合物(C)のみで系全体が硬化する。すなわち、硬化性樹脂(B)は硬化性樹脂であるとともに、硬化性樹脂(A)の硬化促進剤としても作用しているものと推察される。
[Curable resin (B)]
By blending the curable resin (B) with the curable resin (A), the curing performance of the curable resin (A) is increased, and as a result, the entire system is cured only with the basic compound (C) described later. . That is, it is assumed that the curable resin (B) is a curable resin and also acts as a curing accelerator for the curable resin (A).
 本発明における硬化性樹脂(B)は、分子内に下記一般式(2)で表されるジアルコキシシリル基を有する硬化性樹脂である。
  -W-CH-SiR(OR    ・・・式(2)
(但し、Wは-O-CO-NH-、-N(R)-CO-NH-、-NH-CO-N(R)-、-S-CO-NH-、-NH-CO-S-から選択される基を表し、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基を、Rは水素、ハロゲン置換されていてもよい環状、線状又は分枝鎖状の炭素数1~18のアルキルもしくはアルケニル基又は炭素数6~18個のアリール基をそれぞれ示す。)
The curable resin (B) in the present invention is a curable resin having a dialkoxysilyl group represented by the following general formula (2) in the molecule.
—W—CH 2 —SiR 3 (OR 4 ) 2 Formula (2)
(W is —O—CO—NH—, —N (R 5 ) —CO—NH—, —NH—CO—N (R 5 ) —, —S—CO—NH—, —NH—CO— Represents a group selected from S—, R 3 represents an alkyl group having 1 to 20 carbon atoms, R 4 represents an alkyl group having 1 to 3 carbon atoms, and R 5 may be substituted with hydrogen or halogen. A cyclic, linear or branched alkyl or alkenyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms is shown.)
 式(2)で示したように上記加水分解性シリル基は、ケイ素原子にメチレン基を介して非共有電子対を有するヘテロ原子を含む結合基が結合しているものである。さらに当該加水分解性シリル基は、この結合基を介して主鎖骨格に結合している。 As shown in Formula (2), the hydrolyzable silyl group is a group in which a linking group containing a heteroatom having an unshared electron pair is bonded to a silicon atom via a methylene group. Further, the hydrolyzable silyl group is bonded to the main chain skeleton through this bonding group.
 また、当該ケイ素原子についてはメチレン基との結合手以外に加水分解性基としてアルコキシル基(OR)が2個結合すると共に、残りの結合手として炭化水素基(R)が1個結合しているものである。 In addition to the bond with the methylene group, the silicon atom has two alkoxyl groups (OR 4 ) bonded as hydrolyzable groups and one hydrocarbon group (R 3 ) bonded as the remaining bond. It is what.
 ここで、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基である。アルコキシル基(OR)としては、メトキシ基、エトキシ基、プロポキシ基であるのが好ましく、さらに好ましくはメトキシ基又はエトキシ基である。珪素原子の残りの結合手に結合している炭化水素基(R)としては、メチル基、エチル基、プロピル基、ブチル基であるのが好ましく、さらに好ましくはメチル基又はエチル基である。 Here, R 3 is an alkyl group having 1 to 20 carbon atoms, and R 4 is an alkyl group having 1 to 3 carbon atoms. The alkoxyl group (OR 4 ) is preferably a methoxy group, an ethoxy group, or a propoxy group, and more preferably a methoxy group or an ethoxy group. The hydrocarbon group (R 3 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, and more preferably a methyl group or an ethyl group.
 本願では、このような化学構造を「α-シラン構造」と表記することがある。α-シラン構造を選択することにより通常の加水分解性シリル基よりも極めて高い湿分反応性を示すため、スズ触媒を使用しない、或いは通常よりもはるかに少量の使用量でも充分な硬化速度を得ることができる。さらに、α-シラン構造を持つ硬化性樹脂が他の加水分解性シリル基を有する硬化性樹脂の硬化性能を引き上げることは上述のとおりである。 In the present application, such a chemical structure is sometimes referred to as an “α-silane structure”. By selecting an α-silane structure, the moisture reactivity is much higher than that of a normal hydrolyzable silyl group, so that a sufficient curing rate can be obtained even when a tin catalyst is not used or a much smaller amount is used than usual. Obtainable. Furthermore, as described above, the curable resin having an α-silane structure raises the curing performance of other curable resins having a hydrolyzable silyl group.
 硬化性樹脂(B)の主鎖骨格としては、ポリオキシアルキレン、ビニル重合体、飽和炭化水素重合体、不飽和炭化水素重合体、ポリエステル、ポリカーボネート、ポリジメチルシロキサン等のシリコーン樹脂及び変成シリコーン樹脂に一般的に用いられているものが採用されるが、特にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが、入手の容易さ、硬化物の皮膜物性等の点から好ましい。 Examples of the main chain skeleton of the curable resin (B) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. Commonly used ones are employed, but polyoxyalkylene and / or poly (meth) acrylic acid esters are particularly preferred from the viewpoints of easy availability and film properties of the cured product.
 硬化性樹脂(B)を得るためには、従来公知の方法で合成を行えばよい。例えばポリオール化合物及び/又はアクリルポリオール化合物にイソシアネートメチルアルコキシシラン化合物を反応させる方法等が知られている。より具体的には、特表2004-518801、特表2004-536957、特表2005-501146等に記載の方法で容易に合成できる。上記硬化性樹脂(B)は、単独又は2種以上を組み合わせて使用できる。
 硬化性樹脂(B)の市販品としては、Wacker Chemie AG製のGENIOSIL STP-E10(メトキシ基当量から換算した分子量約10,000、粘度約10,000mPa・s/25℃(カタログ値))、GENIOSIL STP-E30(メトキシ基当量から換算した分子量約16,000、粘度約30,000mPa・s/25℃(カタログ値))等が挙げられる。これらの構造は、上記一般式(2)のWが-O-CO-NH-、RがCH、RがCHであり、下記一般式(4)で示される。
  -O-CO-NH-CH-SiCH(OCH ・・・式(4)
In order to obtain the curable resin (B), synthesis may be performed by a conventionally known method. For example, a method of reacting an isocyanate methyl alkoxysilane compound with a polyol compound and / or an acrylic polyol compound is known. More specifically, it can be easily synthesized by the methods described in JP-T-2004-518801, JP-T-2004-536957, JP-T-2005-501146, and the like. The said curable resin (B) can be used individually or in combination of 2 or more types.
As a commercially available product of the curable resin (B), GENIOSIL STP-E10 manufactured by Wacker Chemie AG (molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa · s / 25 ° C. (catalog value)), GENIOSIL STP-E30 (molecular weight about 16,000 converted from methoxy group equivalent, viscosity about 30,000 mPa · s / 25 ° C. (catalog value)), and the like. These structures are represented by the following general formula (4), wherein W in the general formula (2) is —O—CO—NH—, R 3 is CH 3 , and R 4 is CH 3 .
—O—CO—NH—CH 2 —SiCH 3 (OCH 3 ) 2 Formula (4)
 硬化性樹脂(B)の配合量は、硬化性樹脂(A)100質量部に対して、5~400質量部、好ましくは10~200質量部、特に好ましくは20~100質量部である。硬化性樹脂(B)の配合量が5質量部よりも少なくなると、硬化性が十分に発揮されず、400重量部より多くなると相対的に硬化性樹脂(A)の割合が少なくなり硬化性樹脂(A)の性能(特に硬化物の物性)が十分に発揮されないことが懸念される。 The compounding amount of the curable resin (B) is 5 to 400 parts by mass, preferably 10 to 200 parts by mass, particularly preferably 20 to 100 parts by mass with respect to 100 parts by mass of the curable resin (A). When the blending amount of the curable resin (B) is less than 5 parts by mass, the curability is not sufficiently exhibited, and when it exceeds 400 parts by weight, the ratio of the curable resin (A) is relatively decreased and the curable resin is reduced. There is a concern that the performance of (A) (particularly the physical properties of the cured product) is not sufficiently exhibited.
 硬化性樹脂(A)と硬化性樹脂(B)とは、各々の主鎖骨格は同じであっても異なっていてもよい。また、硬化性樹脂(A)と硬化性樹脂(B)が相溶しているほうがより本発明の効果が得られやすいため好ましい。 The main chain skeleton of the curable resin (A) and the curable resin (B) may be the same or different. In addition, it is preferable that the curable resin (A) and the curable resin (B) are compatible with each other because the effects of the present invention are more easily obtained.
 硬化性樹脂(A)と硬化性樹脂(B)の相溶性を向上させるために従来公知の技術を用いることができる。例えば一般的に相溶化剤として知られている化合物を添加することができる。また、硬化性樹脂(A)と硬化性樹脂(B)の主鎖骨格を相溶性が良好である組み合わせを選ぶことによって両者の相溶性を向上させることもできる。具体的には主鎖骨格の極性が比較的近いものを用いることで相溶性を向上することができる。例えば、双方ともに同じ主鎖骨格を選ぶと相溶性が非常に良好である。また同じではなくても、ポリオレフィン骨格同士、ポリエーテル骨格同士といった比較的構造が似通った骨格を選択することも好ましい。さらに、ポリオキシアルキレン骨格と特定構造のポリ(メタ)アクリレート骨格なども相溶性が良好であることが知られている。上記のように相溶性が良好である組み合わせを例示したが、本発明はこれらに限定されるものではない。 A conventionally known technique can be used to improve the compatibility of the curable resin (A) and the curable resin (B). For example, a compound generally known as a compatibilizing agent can be added. Moreover, compatibility of both can also be improved by selecting the combination with which the main chain frame | skeleton of curable resin (A) and curable resin (B) has favorable compatibility. Specifically, the compatibility can be improved by using a main chain skeleton having a relatively close polarity. For example, if the same main chain skeleton is selected for both, the compatibility is very good. Even if they are not the same, it is also preferable to select skeletons having relatively similar structures such as polyolefin skeletons or polyether skeletons. Furthermore, it is known that a polyoxyalkylene skeleton and a poly (meth) acrylate skeleton having a specific structure also have good compatibility. Although the combination with favorable compatibility was illustrated as mentioned above, this invention is not limited to these.
[塩基性化合物(C)について]
 本発明における塩基性化合物(C)は、硬化性樹脂(B)と併用することで硬化性樹脂(A)の硬化触媒として作用する化合物であり、塩基性を示す化合物であれば特に限定されず、カルボン酸等の酸との塩であっても塩基性である限り使用可能である。例えば、第1~3級アミン化合物及びその塩、4級アンモニウム塩、有機金属塩等が好適に使用できる。アミン化合物とエポキシ化合物との反応物であっても良い。
[About the basic compound (C)]
The basic compound (C) in the present invention is a compound that acts as a curing catalyst for the curable resin (A) when used in combination with the curable resin (B), and is not particularly limited as long as it is a basic compound. Even salts with acids such as carboxylic acids can be used as long as they are basic. For example, primary to tertiary amine compounds and salts thereof, quaternary ammonium salts, organometallic salts and the like can be suitably used. It may be a reaction product of an amine compound and an epoxy compound.
 塩基性化合物(C)の具体例として、例えば、エチルアミン、プロピルアミン、ブチルアミン、オクチルアミン、ラウリルアミン等の第1級アミノ基を有する化合物;N-メチル-3,3′-イミノビス(プロピルアミン)、エチレンジアミン、ジエチレントリアミン、トリエチレンジアミン、ペンタエチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,4-ジアミノブタン、1,9-ジアミノノナン、ATU(3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)、CTUグアナミン、ドデカン酸ジヒドラジド、ヘキサメチレンジアミン、m-キシリレンジアミン、ジアニシジン、4,4′-ジアミノ-3,3′-ジエチルジフェニルメタン、ジアミノジフェニルエーテル、3,3′-ジメチル-4,4′-ジアミノジフェニルメタン、トリジンベース、m-トルイレンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、メラミン、1,3-ジフェニルグアニジン、ジ-o-トリルグアニジン、ビス(アミノプロピル)ピペラジン、N-(3-アミノプロピル)-1,3-プロパンジアミン、ビス(3-アミノプロピル)エーテル、サンテクノケミカル社製ジェファーミン(商品名)等の複数の第1級アミノ基を有する化合物;ピペラジン、シス-2,6-ジメチルピペラジン、シス-2,5-ジメチルピペラジン、2-メチルピペラジン、N,N′-ジ-t-ブチルエチレンジアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、1,3-ジ-(4-ピペリジル)-プロパン、4-アミノプロピルアニリン、ホモピペラジン、N,N′-ジフェニルチオ尿素、N,N′-ジエチルチオ尿素、N-メチル-1,3-プロパンジアミン等の複数の第二級アミノ基を有する化合物;メチルアミノプロピルアミン、エチルアミノプロピルアミン、エチルアミノエチルアミン、ラウリルアミノプロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、1-(2-アミノエチル)ピペラジン、N-アミノプロピルピペラジン、3-アミノピロリジン、1-o-トリルビグアニド、2-アミノメチルピペラジン、N-アミノプロピルアニリン、2-ヒドロキシエチルアミノプロピルアミン、ラウリルアミノプロピルアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、式:HN(CNH)H(n≒5)で表わされる化合物(商品名:ポリエイト、東ソー社製)等の第1級アミノ基及び第2級アミノ基を有する化合物;テトラメチルアンモニウムクロライド、ベンザルコニウムクロライド等の第四級アンモニウム塩類;三共エアプロダクツ社製のDABCO(登録商標)シリーズ、DABCOBLシリーズ、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の複数の窒素を含む直鎖或いは環状の第三級アミン及び第四級アンモニウム塩等が挙げられる。 Specific examples of the basic compound (C) include compounds having a primary amino group such as ethylamine, propylamine, butylamine, octylamine, laurylamine; N-methyl-3,3′-iminobis (propylamine) , Ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9 -Bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5.5] undecane), CTU guanamine, dodecanoic acid dihydrazide, hexamethylenediamine, m-xylylenediamine, dianisidine, 4,4 '-Diamino-3,3'-diethyldipheny Methane, diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, tolidine base, m-toluylenediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, melamine, 1,3- Diphenylguanidine, di-o-tolylguanidine, bis (aminopropyl) piperazine, N- (3-aminopropyl) -1,3-propanediamine, bis (3-aminopropyl) ether, Jeffamine (product of Sun Techno Chemical) A compound having a plurality of primary amino groups, such as piperazine, cis-2,6-dimethylpiperazine, cis-2,5-dimethylpiperazine, 2-methylpiperazine, N, N′-di-t-butyl Ethylenediamine, 2-aminomethylpiperidine, 4-aminome Lupiperidine, 1,3-di- (4-piperidyl) -propane, 4-aminopropylaniline, homopiperazine, N, N'-diphenylthiourea, N, N'-diethylthiourea, N-methyl-1,3- Compounds having a plurality of secondary amino groups such as propanediamine; methylaminopropylamine, ethylaminopropylamine, ethylaminoethylamine, laurylaminopropylamine, 2-hydroxyethylaminopropylamine, 1- (2-aminoethyl) Piperazine, N-aminopropylpiperazine, 3-aminopyrrolidine, 1-o-tolylbiguanide, 2-aminomethylpiperazine, N-aminopropylaniline, 2-hydroxyethylaminopropylamine, laurylaminopropylamine, 2-aminomethylpiperidine , 4-Ami Primary amino groups and secondary amino groups such as nomethylpiperidine, a compound represented by the formula: H 2 N (C 2 H 4 NH) n H (n≈5) (trade name: Polyate, manufactured by Tosoh Corporation) A quaternary ammonium salt such as tetramethylammonium chloride and benzalkonium chloride; DABCO (registered trademark) series, DABCOBL series, 1,8-diazabicyclo [5.4.0]-from Sankyo Air Products Examples thereof include linear or cyclic tertiary amines and quaternary ammonium salts containing a plurality of nitrogen such as 7-undecene.
 塩基性化合物(C)がアミン化合物であることが、入手の容易さや、コストの面から好ましい。また、塩基性化合物(C)がその分子内にアミノ基と下記一般式(3):
  -SiR 3-n   ・・・式(3)
(但し、Yは加水分解性基を、Rは炭素数1~20個のアルキル基を、nは0、1又は2を、それぞれ示す。)で表される加水分解性シリル基を有する化合物である場合は、硬化触媒としての効果がより顕著に発揮されると共に、各種被着体(特に金属)への接着性付与もでき、さらに硬化性樹脂(A)及び硬化性樹脂(B)との反応も可能であるため、硬化後に皮膜からブリードアウトすることもないため好ましい。
The basic compound (C) is preferably an amine compound from the viewpoint of easy availability and cost. Further, the basic compound (C) has an amino group and the following general formula (3) in its molecule:
-SiR 6 n Y 3-n Formula (3)
(Wherein Y represents a hydrolyzable group, R 6 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2), and a compound having a hydrolyzable silyl group In this case, the effect as a curing catalyst is exhibited more remarkably, and adhesion to various adherends (particularly metal) can be imparted. Further, the curable resin (A) and the curable resin (B) This reaction is also possible, so that it does not bleed out from the film after curing.
 ここで、加水分解性基Yとしては従来公知のものであれば特に限定されないが、ヒドロキシル基又はアルコキシル基であるのが好ましい。 Here, the hydrolyzable group Y is not particularly limited as long as it is conventionally known, but is preferably a hydroxyl group or an alkoxyl group.
 具体的には、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、4-アミノ-3-ジメチルブチルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-3-[アミノ(ジプロピレンオキシ)]アミノプロピルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン等のアミノシラン化合物も挙げられる。 Specifically, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N- β (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (6-amino) Hexyl) aminopropyltrimethoxysilane, N Phenyl -γ- aminopropyltrimethoxysilane, N- (2- aminoethyl) -11-Amino aminosilane compounds such as undecyl trimethoxysilane may be mentioned.
 上記化合物は市販品も使用することができる。市販品として、信越化学工業社製、商品名、KBM-602、KBM-603、KBE-603、KBM-903、KBE-93、KBM-902、KBE-902、KBE-9103、KBM-573、KBM-575、KBM-576、KBM-6123、KBE-585、X-12-806、X-12-666、X-12-896、X-12-5263、X-12-580、X-12-575、X-12-577、X-12-563B、X-12-565、X-12-562、X-12-817H、KBM-6063、モメンティブ・パフォーマンス・マテリアルズ社製、商品名:TSL8331、TSL8340、TSL8345、TSL8802、チッソ社製、商品名:S360、S320、S310、S311、S321、S330、エボニックデグサ社製、商品名:ダイナシラン(DYNASYLAN)1189等が挙げられる。 Commercially available products can be used for the above compounds. Commercially available products manufactured by Shin-Etsu Chemical Co., Ltd., trade names, KBM-602, KBM-603, KBE-603, KBM-903, KBE-93, KBM-902, KBE-902, KBE-9103, KBM-573, KBM -575, KBM-576, KBM-6123, KBE-585, X-12-806, X-12-666, X-12-896, X-12-5263, X-12-580, X-12-575 , X-12-577, X-12-563B, X-12-565, X-12-562, X-12-817H, KBM-6063, manufactured by Momentive Performance Materials, Inc., trade names: TSL8331, TSL8340 , TSL8345, TSL8802, manufactured by Chisso Corporation, trade names: S360, S320, S310, S311, S321, S3 0, Evonik Degussa Corporation, trade name: Dynasylan (DYNASYLAN) 1189, and the like.
 上記塩基性化合物(C)は、単独又は2種以上を組み合わせて使用できる。 The basic compound (C) can be used alone or in combination of two or more.
 塩基性化合物(C)の配合量は、硬化性樹脂(A)と硬化性樹脂(B)の総和100質量部に対して、0.1~30質量部、好ましくは1~15質量部、特に好ましくは2~10質量部である。塩基性化合物(C)の配合量が0.1質量部よりも少ないと、硬化触媒としての効果が弱く硬化が非常に遅くなってしまう。一方、塩基性化合物(C)の配合量が30質量部よりも多くなると、貯蔵安定性が悪く経時で増粘したり、硬化性樹脂組成物が黄色く変色したり、硬化物の色が経時で(特に熱暴露や紫外線照射によって)黄色く変化したりするため好ましくない。 The compounding amount of the basic compound (C) is 0.1 to 30 parts by weight, preferably 1 to 15 parts by weight, particularly 100 parts by weight of the total of the curable resin (A) and the curable resin (B). The amount is preferably 2 to 10 parts by mass. When the compounding quantity of a basic compound (C) is less than 0.1 mass part, the effect as a curing catalyst will be weak and hardening will become very slow. On the other hand, when the compounding amount of the basic compound (C) is more than 30 parts by mass, the storage stability is poor and the viscosity increases with time, the curable resin composition changes to yellow, or the color of the cured product changes with time. It is not preferable because it turns yellow (especially by heat exposure or ultraviolet irradiation).
[可塑剤(D)について]
 本発明における可塑剤(D)は、硬化物の物性の調整、硬化性樹脂組成物の粘度低減(希釈効果)、さらにはその希釈効果によってフィラー添加量の増量を可能にし、コストの低減、作業性の向上、耐候性の向上等の目的で使用される。
[About plasticizer (D)]
The plasticizer (D) in the present invention enables adjustment of physical properties of the cured product, viscosity reduction of the curable resin composition (dilution effect), and further increase of filler addition amount due to the dilution effect, thereby reducing costs and work. It is used for the purpose of improving the property and weather resistance.
 これまで、硬化性樹脂(A)と有機スズ触媒等の金属触媒を併用した硬化性樹脂組成物や、硬化性樹脂(B)を単独で用いた硬化性樹脂組成物では、可塑剤として、分子内に1個以上の水酸基を有する化合物であるポリプロピレングリコール(PPG)やポリエチレングリコール(PEG)が硬化遅延等の問題もなく最も一般的に使用されてきた。 Until now, in the curable resin composition which used together curable resin (A) and metal catalysts, such as an organotin catalyst, and the curable resin composition which used curable resin (B) independently, as a plasticizer, Polypropylene glycol (PPG) and polyethylene glycol (PEG), which are compounds having one or more hydroxyl groups therein, have been most commonly used without problems such as curing delay.
 しかし驚くべきことに、硬化性樹脂(B)と硬化性樹脂(A)を併用した硬化性樹脂組成物の可塑剤として、分子内に1個以上の水酸基を有する化合物であるポリプロピレングリコール(PPG)やポリエチレングリコール(PEG)を用いた場合、経時で著しい硬化遅延を起こすことがわかった。そのため、硬化性樹脂(A)と硬化性樹脂(B)と併用する系においては大きな問題であり、この問題を解決しない限り、この硬化性樹脂併用系をシーラント、接着剤、粘着剤、塗料等として実際に使用するにあたっての大きな制約となってしまう。このような現象は硬化性樹脂(B)を単独使用した場合には見られず、硬化性樹脂(A)と硬化性樹脂(B)との併用系でのみ見られる特異な現象である。 Surprisingly, however, polypropylene glycol (PPG), which is a compound having one or more hydroxyl groups in the molecule, is used as a plasticizer for a curable resin composition in which the curable resin (B) and the curable resin (A) are used in combination. When polyethylene glycol (PEG) was used, it was found that significant curing delay occurred over time. Therefore, it is a big problem in the system used together with the curable resin (A) and the curable resin (B), and unless this problem is solved, this curable resin combined system is used as a sealant, an adhesive, a pressure-sensitive adhesive, a paint, etc. As a result, it will be a major limitation in actual use. Such a phenomenon is not observed when the curable resin (B) is used alone, but is a unique phenomenon that is observed only in the combined system of the curable resin (A) and the curable resin (B).
 そこで本発明者等は、鋭意研究の結果その硬化遅延の原因が、硬化性樹脂(B)のアルコキシシリル基の反応性の高さのために、分子内に1個以上の水酸基を有する化合物とアルコール交換を起こすことで、硬化性樹脂(B)の反応性が著しく低下し、その結果硬化遅延すると推察した。このことは、硬化性樹脂(B)は硬化性樹脂であるとともに、硬化性樹脂(A)の硬化促進剤としても作用していることの証左であると考える。 Therefore, the inventors of the present invention, as a result of diligent research, found that the cause of the curing delay was a compound having one or more hydroxyl groups in the molecule because of the high reactivity of the alkoxysilyl group of the curable resin (B). By causing the alcohol exchange, it was assumed that the reactivity of the curable resin (B) was remarkably lowered, and as a result, the curing was delayed. This is considered to be evidence that the curable resin (B) is a curable resin and also acts as a curing accelerator for the curable resin (A).
 そこで、分子内に水酸基を含有しない可塑剤(D)を使用することで、従来通りの可塑剤の効果を損なわず、硬化速度が安定した硬化性樹脂組成物が得られることを見出した。 Thus, it has been found that by using a plasticizer (D) that does not contain a hydroxyl group in the molecule, a curable resin composition having a stable curing rate can be obtained without impairing the effect of the conventional plasticizer.
 また、反応性の高い硬化性樹脂(B)を単独で用いた硬化性樹脂組成物の可塑剤として、分子内に1個以上の水酸基を有する化合物を用いた場合も、上記アルコール交換が起こると考えられるが、硬化性樹脂(B)の割合が多いため、アルコール交換を起こさず反応性が低下しないアルコキシシリル基の割合が相対的に多いために硬化遅延を起こさないと考えられる。 In addition, when the compound having one or more hydroxyl groups in the molecule is used as the plasticizer of the curable resin composition using the highly reactive curable resin (B) alone, the above alcohol exchange occurs. Although it is considered, since the ratio of the curable resin (B) is large, the ratio of alkoxysilyl groups that do not cause alcohol exchange and the reactivity does not decrease is relatively large, so that it is considered that curing delay is not caused.
 また、硬化性樹脂(A)の様な反応性の低い硬化性樹脂の場合、そのアルコキシシリル基の反応性が低いため、アルコール交換が起こり難く硬化遅延が起こらないのだと考えられる。 In addition, in the case of a curable resin having a low reactivity such as the curable resin (A), the reactivity of the alkoxysilyl group is low, so that it is considered that alcohol exchange hardly occurs and curing delay does not occur.
 本発明に係る可塑剤(D)としては、フタル酸エステル系化合物、アルキルスルホン酸エステル系化合物、水酸基を封鎖したポリオキシアルキレン、水酸基を含有しないアクリル樹脂、アジピン酸エステル系化合物、炭化水素系化合物から選択された1種以上の化合物等が挙げられる。 Examples of the plasticizer (D) according to the present invention include a phthalate ester compound, an alkyl sulfonate ester compound, a polyoxyalkylene having a hydroxyl group blocked, an acrylic resin not containing a hydroxyl group, an adipate ester compound, and a hydrocarbon compound. 1 or more types of compounds selected from, and the like.
 フタル酸エステル系化合物として例えば、フタル酸ジオクチル(DOP)、フタル酸ジブチル(DBP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソデシル(DIDP)、フタル酸ブチルベンジル(BBP)等が挙げられる。 Examples of the phthalate ester compounds include dioctyl phthalate (DOP), dibutyl phthalate (DBP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), and butyl benzyl phthalate (BBP).
 アルキルスルホン酸エステル化合物として例えば、アルキルスルホン酸フェニルエステル(製品名:メザモール、バイエルケミカルズジャパン社製)、デカンスルホン酸フェニルエステル、ウンデカンスルホン酸フェニルエステル、ドデカンスルホン酸フェニルエステル、トリデカンスルホン酸フェニルエステル、テトラデカンスルホン酸フェニルエステル、ペンタデカンスルホン酸フェニルエステル、ペンタデカンスルホン酸クレジルエステル、ヘキサデカンスルホン酸フェニルエステル、ヘプタデカンスルホン酸フェニルエステル、オクタデカンスルホン酸フェニルエステル、ノナデカンスルホン酸フェニルエステル、イコサンデシルスルホン酸フェニルエステル等が挙げられる。 Examples of the alkyl sulfonic acid ester compound include alkyl sulfonic acid phenyl ester (product name: Mezamol, manufactured by Bayer Chemicals Japan), decane sulfonic acid phenyl ester, undecane sulfonic acid phenyl ester, dodecane sulfonic acid phenyl ester, tridecane sulfonic acid phenyl ester. , Tetradecanesulfonic acid phenyl ester, pentadecanesulfonic acid phenyl ester, pentadecanesulfonic acid cresyl ester, hexadecanesulfonic acid phenyl ester, heptadecanesulfonic acid phenyl ester, octadecanesulfonic acid phenyl ester, nonadecanesulfonic acid phenyl ester, icosandecylsulfonic acid Phenyl ester etc. are mentioned.
 水酸基を封鎖したポリオキシアルキレンとは、実質的に水酸基を含有しないポリオキシアルキレンである。例えば、ポリプロピレングリコール(PPG)や、ポリエチレングリコール(PEG)、プロピレンオキサイド(PO)とエチレンオキサイド(EO)の共重合体等の分子内にある水酸基をアルキル基等の有機基に置換したり、水酸基の水素原子をアルキル基等の有機基に置換してエーテル化したり、又は水酸基に対してカルボン酸を反応させエステル化したりした化合物である。本願における「封鎖」とは前記のように水酸基の活性水素基を不活性化することをいう。具体的な製品名としては、三洋化成工業社製のサンフレックスSPX-80(水酸基をアルキルエステル化(封鎖)したポリオキシアルキレン)等が挙げられる。 A polyoxyalkylene having a hydroxyl group blocked is a polyoxyalkylene containing substantially no hydroxyl group. For example, a hydroxyl group in a molecule such as polypropylene glycol (PPG), polyethylene glycol (PEG), a copolymer of propylene oxide (PO) and ethylene oxide (EO) is substituted with an organic group such as an alkyl group, In which the hydrogen atom is substituted with an organic group such as an alkyl group or etherified, or a hydroxyl group is reacted with a carboxylic acid to be esterified. As used herein, the term “blocking” refers to inactivating an active hydrogen group of a hydroxyl group as described above. Specific product names include Sanflex SPX-80 (polyoxyalkylene in which the hydroxyl group is alkylesterified (blocked)) manufactured by Sanyo Chemical Industries.
 水酸基を含有しないアクリル樹脂としては、水酸基を含有しないビニル系モノマーを種々の方法で重合して得られるビニル系重合体類等であり、例えば、水酸基を含有しないアクリル酸エステルの重合体、水酸基を含有しないメタクリル酸エステルの重合体及び、その共重合体である。具体的な製品名として、東亞合成社製アルフォンUP-1000シリーズ、UF-5000シリーズ、US-6000シリーズ等が挙げられる。 Examples of the acrylic resin not containing a hydroxyl group include vinyl polymers obtained by polymerizing a vinyl monomer not containing a hydroxyl group by various methods. For example, a polymer of an acrylate ester not containing a hydroxyl group, a hydroxyl group It is a polymer of methacrylic acid ester not contained, and a copolymer thereof. Specific product names include Alfon UP-1000 series, UF-5000 series, US-6000 series and the like manufactured by Toagosei Co., Ltd.
 アジピン酸エステル系化合物として例えば、アジピン酸ジメチル、アジピン酸ジオクチル(DOA)、アジピン酸ジイソプロピル、アジピン酸ビス(2-エチルヘキシル)等が挙げられる。 Examples of adipic acid ester compounds include dimethyl adipate, dioctyl adipate (DOA), diisopropyl adipate, bis (2-ethylhexyl) adipate, and the like.
 炭化水素系化合物としては、その分子内に水酸基を有さなければ一般によく知られたものが利用でき、特に脂肪族炭化水素、例えばパラフィン系、ポリオレフィン系、ナフテン系、アロマ系等が挙げられる。構造的には、直鎖状でも分岐があってもよい。具体的な製品名として、出光興産社製のダイアナプロセスオイルPWシリーズ、PSシリーズ、NPシリーズ、NRシリーズ、NSシリーズ、NMシリーズ、ACシリーズ、AHシリーズ等が挙げられるが、これらに限定されるわけではない。さらに、上記可塑剤(D)は、単独又は2種以上を組み合わせて使用できる。 As the hydrocarbon-based compounds, those well-known can be used as long as they do not have a hydroxyl group in the molecule, and in particular, aliphatic hydrocarbons such as paraffin-based, polyolefin-based, naphthene-based, aroma-based and the like can be mentioned. Structurally, it may be linear or branched. Specific product names include Diana Process Oil PW series, PS series, NP series, NR series, NS series, NM series, AC series, AH series, etc. manufactured by Idemitsu Kosan Co., Ltd. is not. Furthermore, the said plasticizer (D) can be used individually or in combination of 2 or more types.
 上記可塑剤(D)の沸点が200℃未満である場合、加工時に揮発してしまう問題、硬化後徐々に揮発し硬化物の物性が経時で変化してしまう問題、臭気の問題等があるため、沸点が200℃以上であることが好ましい。 When the plasticizer (D) has a boiling point of less than 200 ° C., there is a problem that it volatilizes during processing, a problem that it gradually evaporates after curing, a problem that the physical properties of the cured product change over time, and a problem of odor. The boiling point is preferably 200 ° C. or higher.
 上記可塑剤(D)の配合量は、硬化性樹脂(A)と硬化性樹脂(B)の総和100質量部に対して、10~500質量部、好ましくは20~300質量部、特に好ましくは25~150質量部である。可塑剤(D)の配合量が10質量部よりも少ないと、可塑剤(D)を添加することによる低粘度化や作業性向上等の効果が発揮されず好ましくない。一方、可塑剤(D)の配合量が500質量部よりも多くなると、相対的に硬化性樹脂(A)と硬化性樹脂(B)の配合割合が少なくなり硬化物の物性が低下する等の不具合が起こるため好ましくない。 The blending amount of the plasticizer (D) is 10 to 500 parts by weight, preferably 20 to 300 parts by weight, particularly preferably based on 100 parts by weight of the total of the curable resin (A) and the curable resin (B). 25 to 150 parts by mass. If the blending amount of the plasticizer (D) is less than 10 parts by mass, the effects such as lowering the viscosity and improving workability due to the addition of the plasticizer (D) are not preferable. On the other hand, when the blending amount of the plasticizer (D) is more than 500 parts by mass, the blending ratio of the curable resin (A) and the curable resin (B) is relatively decreased, and the physical properties of the cured product are decreased. It is not preferable because a problem occurs.
 これまで、シーラント、接着剤、粘着剤、塗料等のベースポリマーとして広く用いられてきた分子内に加水分解性シリル基を有する硬化性樹脂(A)は、硬化触媒として有機スズ化合物が最も一般的に使用されてきた。しかし近年、環境問題への意識の高まりによって、有機スズ化合物の毒性や環境への負荷が問題視されておりその使用量については組成物に対し1000ppm以下に抑えることが望まれている。 So far, curable resins (A) having hydrolyzable silyl groups in their molecules, which have been widely used as base polymers for sealants, adhesives, adhesives, paints, etc., are most commonly organotin compounds as curing catalysts. Has been used. However, in recent years, due to increasing awareness of environmental problems, toxicity of organotin compounds and environmental load are regarded as problems, and the amount of use thereof is desired to be suppressed to 1000 ppm or less based on the composition.
 また、有機スズ化合物は硬化性樹脂(A)の硬化触媒としても作用するが、ウレタン結合や、(置換)尿素結合、チオウレタン結合等を加水分解する触媒として作用する。そのため、有機スズ化合物を一定量以上添加した場合、硬化性樹脂(B)中に含まれるこれら結合や、硬化性樹脂(A)中にこれら結合が含まれる場合にこれらの結合が特に熱時に加水分解され易くなり、硬化性樹脂組成物の硬化物の物性等が著しく低下することが懸念される。そのため、有機スズ系触媒の添加量は硬化性樹脂組成物に対して、好ましくは0~1000ppmであり、さらに好ましくは0~500ppmであり、特に好ましくは0~200ppmである。 The organotin compound also acts as a curing catalyst for the curable resin (A), but acts as a catalyst for hydrolyzing urethane bonds, (substituted) urea bonds, thiourethane bonds, and the like. Therefore, when a certain amount or more of an organic tin compound is added, these bonds contained in the curable resin (B), and when these bonds are contained in the curable resin (A), these bonds are especially hydrolyzed when heated. It tends to be decomposed, and there is a concern that the physical properties and the like of the cured product of the curable resin composition will be significantly reduced. Therefore, the addition amount of the organotin catalyst is preferably 0 to 1000 ppm, more preferably 0 to 500 ppm, and particularly preferably 0 to 200 ppm with respect to the curable resin composition.
 本発明に係る硬化性樹脂組成物中には、充填剤、老化防止剤等を配合することができる。本発明に係る硬化性樹脂組成物に配合できる上記充填剤としては、炭酸カルシウム系、各種処理炭酸カルシウム系、炭酸マグネシウム系、有機高分子系、クレー系、タルク系、シリカ系、フュームドシリカ系、ガラスバルーン系、プラスチックバルーン系、水酸化アルミニウム系、水酸化マグネシウム系等の充填剤が挙げられるが、これらに限定されるものではない。 In the curable resin composition according to the present invention, a filler, an antioxidant and the like can be blended. Examples of the filler that can be blended in the curable resin composition according to the present invention include calcium carbonate, various treated calcium carbonates, magnesium carbonate, organic polymer, clay, talc, silica, and fumed silica. Examples thereof include, but are not limited to, fillers such as glass balloons, plastic balloons, aluminum hydroxides, and magnesium hydroxides.
 上記充填剤は硬化性樹脂組成物のたれ防止、作業性向上の目的のみならず、耐候性の向上の目的で添加される。充填剤が添加されていない硬化性樹脂組成物の場合、その内部にまで容易に光(特に紫外線)が入ってくるため、露光された場合に硬化物の表面のみならず、内部でも劣化が進行してしまう。しかし、充填剤を添加した硬化性樹脂組成物の場合、充填剤を添加したことによる遮蔽効果によって、硬化物内部にまで光が入らず内部の劣化を抑えることができる。 The above filler is added not only for the purpose of preventing sagging of the curable resin composition and improving workability but also for improving weather resistance. In the case of a curable resin composition to which no filler is added, light (especially ultraviolet rays) easily enters the inside of the resin composition, so that deterioration occurs not only on the surface of the cured product but also on the inside when exposed. Resulting in. However, in the case of a curable resin composition to which a filler is added, light is not incident on the inside of the cured product due to the shielding effect resulting from the addition of the filler, and internal deterioration can be suppressed.
 上記老化防止剤としては、ラジカル連鎖開始阻止剤として金属不活性化剤(ヒドラジド系、アミド系等)、紫外線吸収剤(ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等)、クエンチャー(有機ニッケル系等)、ラジカル捕捉剤としてHALS(ヒンダードアミン系等)、フェノール系酸化防止剤(ヒンダードフェノール系、セミヒンダードフェノール系等)、過酸化物分解剤としてリン系酸化防止剤(ホスファイト系、ホスホナイト系等)、イオウ系酸化防止剤(チオエーテル系等)等が挙げられるが、これらに限定されるわけではない。 Anti-aging agents include metal deactivators (hydrazide, amide, etc.) as radical chain initiation inhibitors, UV absorbers (benzotriazole, triazine, benzophenone, etc.), quenchers (organic nickel, etc.) ), HALS (hindered amines, etc.) as radical scavengers, phenolic antioxidants (hindered phenols, semi-hindered phenols, etc.), and phosphorus antioxidants (phosphites, phosphonites) as peroxide decomposers Etc.), sulfur-based antioxidants (thioether-based), etc., but are not limited thereto.
 本発明に係る硬化性樹脂組成物中には、充填剤、老化防止剤以外に従来公知の任意の化合物乃至物質を配合することができる。 In the curable resin composition according to the present invention, any conventionally known compound or substance can be blended in addition to the filler and the antioxidant.
 例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシシラン、γ-グリシドキシプロピルトリエトキシシシラン等のシランカップリング剤、フェノール樹脂、石油樹脂、テルペン樹脂等の粘着付与剤、無水シリカ、アマイドワックス等の揺変剤、酸化カルシウム等の脱水剤、イソパラフィン等の希釈剤、乾性油、水酸化アルミニウム、ハロゲン系難燃剤、リン系難燃剤、シリコーン系難燃剤等の難燃剤、シリコーンアルコキシオリゴマー、アクリルオリゴマー等の機能性オリゴマー、顔料、エチルシリケート、プロピルシリケート、ブチルシリケート等のシリケート化合物及びそのオリゴマー、チタネートカップリング剤、ジルコニウム系カップリング剤、アルミニウムカップリング剤、有機スズ化合物、ビスマス系化合物、チタン系化合物、三フッ化ホウ素系化合物等の従来公知の硬化触媒を適宜配合することができる。 For example, vinyltrimethoxysilane, vinyltriethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ- Silane coupling agents such as glycidoxypropyltriethoxysilane, tackifiers such as phenol resin, petroleum resin and terpene resin, thixotropic agents such as anhydrous silica and amide wax, dehydrating agents such as calcium oxide, isoparaffin, etc. Diluent, drying oil, aluminum hydroxide, halogen flame retardant, phosphorus flame retardant, silicone flame retardant, etc., functional oligomers such as silicone alkoxy oligomer, acrylic oligomer, pigment, ethyl silicate, propyl silicate, butyl Silicate such as silicate Conventionally known curing catalysts such as compounds and oligomers thereof, titanate coupling agents, zirconium coupling agents, aluminum coupling agents, organotin compounds, bismuth compounds, titanium compounds, boron trifluoride compounds are appropriately blended. be able to.
 本発明に係る硬化性樹脂組成物は、水分の存在下で、加水分解性シリル基同士が縮重合することによって硬化するものである。したがって、保管乃至搬送中は、空気(空気中の水分)と接触しないよう、気密に密封した状態で取り扱われる。そして、使用時には開封して任意の箇所に適用すれば、空気中の水分と接触して湿気硬化性樹脂組成物が硬化するのである。 The curable resin composition according to the present invention is cured by condensation polymerization of hydrolyzable silyl groups in the presence of moisture. Therefore, during storage or transportation, it is handled in an airtightly sealed state so as not to come into contact with air (water in the air). And if it opens at the time of use and it applies to an arbitrary location, it will contact with the water | moisture content in air and a moisture curable resin composition will harden | cure.
第2の本発明
[硬化性樹脂(a)について]
 本発明における硬化性樹脂(a)は、分子内に式(I):
  -W-CH-SiR11(OR12    ・・・式(I)
(但し、Wは-O-CO-NH-、-N(R16)-CO-N(R17)-、-S-CO-NH-、-NH-CO-S-から選択される基を表し、R11、R12は炭素数1~20個のアルキル基を、R16、R17は水素、ハロゲン置換されていてもよい環状、線状又は分枝鎖状の炭素数1~18のアルキルもしくはアルケニル基又は炭素数6~18個のアリール基をそれぞれ示す。)で表される加水分解性シリル基を有する硬化性樹脂である。
Second invention [about curable resin (a)]
The curable resin (a) in the present invention has the formula (I):
—W—CH 2 —SiR 11 (OR 12 ) 2 ... Formula (I)
(W represents a group selected from —O—CO—NH—, —N (R 16 ) —CO—N (R 17 ) —, —S—CO—NH—, —NH—CO—S—). R 11 and R 12 are alkyl groups having 1 to 20 carbon atoms, R 16 and R 17 are cyclic, linear or branched carbon atoms having 1 to 18 carbon atoms which may be substituted with hydrogen or halogen. An alkenyl or alkenyl group or an aryl group having 6 to 18 carbon atoms, respectively).
 式(I)で示したように上記加水分解性シリル基は、ケイ素原子にメチレン基を介して非共有電子対を有するヘテロ原子を含む結合基が結合しているものである。さらに当該加水分解性シリル基は、この結合基を介して主鎖骨格に結合している。 As shown in Formula (I), the hydrolyzable silyl group is a group in which a linking group containing a heteroatom having an unshared electron pair is bonded to a silicon atom via a methylene group. Further, the hydrolyzable silyl group is bonded to the main chain skeleton through this bonding group.
 また、当該ケイ素原子についてはメチレン基との結合手以外に加水分解性基としてアルコキシル基(OR12)が2個結合すると共に、残りの結合手として炭化水素基(R11)が1個結合しているものである。 In addition to the bond with the methylene group, the silicon atom has two alkoxyl groups (OR 12 ) as hydrolyzable groups and one hydrocarbon group (R 11 ) as the remaining bonds. It is what.
 ここで、R11及びR12はそれぞれ炭素数1~20個のアルキル基である。アルコキシル基(OR12)としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であるのが好ましく、さらに好ましくはメトキシ基又はエトキシ基である。珪素原子の残りの結合手に結合している炭化水素基(R11)としては、メチル基、エチル基、プロピル基、ブチル基であるのが好ましく、さらに好ましくはメチル基又はエチル基である。 Here, R 11 and R 12 are each an alkyl group having 1 to 20 carbon atoms. The alkoxyl group (OR 12 ) is preferably a methoxy group, an ethoxy group, a propoxy group or a butoxy group, more preferably a methoxy group or an ethoxy group. The hydrocarbon group (R 11 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group or a butyl group, more preferably a methyl group or an ethyl group.
 上記加水分解性シリル基がトリアルコキシシリル基である場合、硬化物のモジュラスが高く、目地への追従性に劣る傾向があるため好ましくない。また、上記加水分解性シリル基がモノアルコキシシリル基である場合も、反応性が低く硬化速度が非常に遅くなってしまい、さらに、架橋による三次元ネットワークを形成できないため硬化物の物性に劣る傾向があるため好ましくない。そのため、上記硬化性樹脂(a)の反応性ケイ素基はジアルコキシシリル基であることが、反応性及び硬化物の物性等から好ましい。 When the hydrolyzable silyl group is a trialkoxysilyl group, the cured product has a high modulus and tends to be inferior in the ability to follow joints. Also, when the hydrolyzable silyl group is a monoalkoxysilyl group, the reactivity is low and the curing rate becomes very slow, and further, the physical properties of the cured product tend to be inferior because a three-dimensional network cannot be formed by crosslinking. This is not preferable. For this reason, the reactive silicon group of the curable resin (a) is preferably a dialkoxysilyl group from the viewpoint of the reactivity and the physical properties of the cured product.
 本発明(第2の発明)では、このような化学構造を「α-シラン構造」とも表記する。α-シラン構造を選択することにより通常の加水分解性シリル基よりも極めて高い湿分反応性を示すため、スズ触媒を使用しない、或いは通常よりもはるかに少量の使用量でも充分な硬化速度を得ることができる。 In the present invention (second invention), such a chemical structure is also referred to as “α-silane structure”. By selecting an α-silane structure, the moisture reactivity is much higher than that of a normal hydrolyzable silyl group, so that a sufficient curing rate can be obtained even when a tin catalyst is not used or a much smaller amount is used than usual. Obtainable.
 硬化性樹脂(a)の主鎖骨格としては、ポリオキシアルキレン、ビニル重合体、飽和炭化水素重合体、不飽和炭化水素重合体、ポリエステル、ポリカーボネート、ポリジメチルシロキサン等のシリコーン樹脂及び変成シリコーン樹脂に一般的に用いられているものが採用されるが、特にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが、入手の容易さ硬化物の皮膜物性等の点から好ましい。 Examples of the main chain skeleton of the curable resin (a) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. Commonly used ones are employed, but polyoxyalkylene and / or poly (meth) acrylic acid esters are particularly preferable from the viewpoint of easy availability and film properties of the cured product.
 硬化性樹脂(a)を得るためには、従来公知の方法で合成を行えばよい。例えばポリオール化合物及び/又はアクリルポリオール化合物にイソシアネートメチルアルコキシシラン化合物を反応させる方法等が知られている。より具体的には、特表2004-518801、特表2004-536957、特表2005-501146等に記載の方法で容易に合成できる。 In order to obtain the curable resin (a), synthesis may be performed by a conventionally known method. For example, a method of reacting an isocyanate methyl alkoxysilane compound with a polyol compound and / or an acrylic polyol compound is known. More specifically, it can be easily synthesized by the methods described in JP-T-2004-518801, JP-T-2004-536957, JP-T-2005-501146, and the like.
 硬化性樹脂(a)の市販品としては、Wacker Chemie AG製のGENIOSIL STP-E10(メトキシ基等量から換算した分子量約10000、粘度約10000mPa・s/25℃(カタログ値))、GENIOSIL STP-E30(メトキシ基等量から換算した分子量約16000、粘度約30000mPa・s/25℃(カタログ値))等が挙げられる。 Commercially available products of the curable resin (a) include GENIOSIL STP-E10 manufactured by Wacker Chemie AG (molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa · s / 25 ° C. (catalog value)), GENIOSIL STP- E30 (molecular weight of about 16000 converted from equivalent amount of methoxy group, viscosity of about 30000 mPa · s / 25 ° C. (catalog value)) and the like.
[硬化性樹脂(b)について]
 本発明における硬化性樹脂(b)は、硬化性樹脂(a)のモジュラス調整剤(モジュラス低下剤)として添加され、分子内に下記一般式(II):
  -X-SiR13(OR14    ・・・式(II)
(但し、Xは炭素数2以上の炭化水素を、R13、R14は炭素数1~20個のアルキル基を、それぞれ示す。)で表される加水分解性シリル基を有する硬化性樹脂である。
[Curable resin (b)]
The curable resin (b) in the present invention is added as a modulus regulator (modulus lowering agent) of the curable resin (a), and the following general formula (II):
-X-SiR 13 (OR 14 ) 2 Formula (II)
(Wherein X represents a hydrocarbon having 2 or more carbon atoms, and R 13 and R 14 each represents an alkyl group having 1 to 20 carbon atoms), and a curable resin having a hydrolyzable silyl group. is there.
 上記加水分解性シリル基は、ケイ素原子に炭素数2以上の炭化水素基Xが結合しており、これが主鎖骨格に結合している。また、当該ケイ素原子については炭化水素基Xとの結合手以外に加水分解性基としてアルコキシル基(OR14)が2個結合すると共に、残りの結合手として炭化水素基(R13)が1個結合しているものである。 In the hydrolyzable silyl group, a hydrocarbon group X having 2 or more carbon atoms is bonded to a silicon atom, and this is bonded to the main chain skeleton. In addition to the bond to the hydrocarbon group X, the silicon atom has two alkoxyl groups (OR 14 ) as hydrolyzable groups and one hydrocarbon group (R 13 ) as the remaining bond. It is what is combined.
 ここで、R13及びR14はそれぞれ炭素数1~20個のアルキル基である。アルコキシル基(OR14)としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であるのが好ましく、さらに好ましくはメトキシ基又はエトキシ基である。ケイ素原子の残りの結合手に結合している炭化水素基(R13)としては、メチル基、エチル基、プロピル基、ブチル基であるのが好ましく、さらに好ましくはメチル基又はエチル基である。 Here, R 13 and R 14 are each an alkyl group having 1 to 20 carbon atoms. The alkoxyl group (OR 14 ) is preferably a methoxy group, an ethoxy group, a propoxy group or a butoxy group, more preferably a methoxy group or an ethoxy group. The hydrocarbon group (R 13 ) bonded to the remaining bond of the silicon atom is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, more preferably a methyl group or an ethyl group.
 上記加水分解性シリル基がトリアルコキシシリル基のみである場合、硬化物のモジュラスが高くなる傾向があり、モジュラス調整剤(モジュラス低下剤)としての効果が発揮されないことがある。また、上記加水分解性シリル基がモノアルコキシシリル基のみである場合も、反応性が低く硬化速度が非常に遅くなる傾向があり、さらに、架橋による三次元ネットワークを形成できないため硬化物の物性に劣ることがある。そのため、上記硬化性樹脂(b)の反応性ケイ素基はジアルコキシシリル基であることが、反応性及び硬化物の物性等から好ましい。 When the hydrolyzable silyl group is only a trialkoxysilyl group, the modulus of the cured product tends to be high, and the effect as a modulus regulator (modulus lowering agent) may not be exhibited. In addition, when the hydrolyzable silyl group is only a monoalkoxysilyl group, there is a tendency that the reactivity is low and the curing rate is very slow, and further, the physical properties of the cured product cannot be formed because a three-dimensional network cannot be formed by crosslinking. May be inferior. For this reason, the reactive silicon group of the curable resin (b) is preferably a dialkoxysilyl group in view of the reactivity and the physical properties of the cured product.
 硬化性樹脂(b)の主鎖骨格としては、ポリオキシアルキレン、ビニル重合体、飽和炭化水素重合体、不飽和炭化水素重合体、ポリエステル、ポリカーボネート、ポリジメチルシロキサン等のシリコーン樹脂及び変成シリコーン樹脂に一般的に用いられているものが採用されるが、特にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることが、入手の容易さ硬化物の皮膜物性等の点から好ましい。なお、本願においては、アクリル酸とメタクリル酸とを総称して「(メタ)アクリル酸」と表記する。 Examples of the main chain skeleton of the curable resin (b) include polyoxyalkylene, vinyl polymer, saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester, polycarbonate, polydimethylsiloxane, and other silicone resins and modified silicone resins. Commonly used ones are employed, but polyoxyalkylene and / or poly (meth) acrylic acid esters are particularly preferable from the viewpoint of easy availability and film properties of the cured product. In the present application, acrylic acid and methacrylic acid are collectively referred to as “(meth) acrylic acid”.
 硬化性樹脂(b)の市販品としては、シリコーン樹脂又は変成シリコーン樹脂として多数販売されている。例えば、株式会社カネカ製のサイリルシリーズ、MSポリマーシリーズ、MAシリーズ、SAシリーズ、ORシリーズ、エピオンシリーズ;旭硝子株式会社製のESシリーズ、ESGXシリーズ;エボニックデグサ社製のシラン変性ポリアルファオレフィン、信越化学工業株式会社製のKCシリーズ、KRシリーズ、X-40シリーズ;東亞合成株式会社製のXPRシリーズ、ARUFON USシリーズ;綜研化学株式会社製のアクトフローシリーズ等が挙げられる。 Many commercially available curable resins (b) are sold as silicone resins or modified silicone resins. For example, Kaneka's Silyl series, MS polymer series, MA series, SA series, OR series, Epion series; Asahi Glass Co., Ltd. ES series, ESGX series; Evonik Degussa's silane-modified polyalphaolefin, Shin-Etsu Examples thereof include KC series, KR series, X-40 series manufactured by Chemical Industry Co., Ltd .; XPR series manufactured by Toagosei Co., Ltd., ARUFON US series; Actflow series manufactured by Soken Chemical Co., Ltd., and the like.
 また、硬化性樹脂(b)として、分子内にウレタン結合、尿素結合等の極性基を含有する硬化性シリコーン系樹脂を用いることもできる。分子内に極性基を含有する硬化性樹脂(b)は、従来公知の方法で合成すればよい。例えば、イソシアネート基含有ポリマーにアミノ基含有アルコキシシラン化合物(或いはメルカプト基含有アルコキシシラン化合物)を反応させる方法や、水酸基含有有機重合体や第一および/または第二アミノ基含有含有有機重合体あるいはメルカプト基含有有機重合体にイソシアネート基含有アルコキシシラン化合物を反応させる方法等が知られている。より具体的には、特許第3030020号公報、特許第3343604号公報、特開2005-54174公報等に記載の方法で容易に合成することができる。 Further, as the curable resin (b), a curable silicone resin containing a polar group such as a urethane bond or a urea bond in the molecule can also be used. The curable resin (b) containing a polar group in the molecule may be synthesized by a conventionally known method. For example, a method of reacting an isocyanate group-containing polymer with an amino group-containing alkoxysilane compound (or a mercapto group-containing alkoxysilane compound), a hydroxyl group-containing organic polymer, a first and / or second amino group-containing organic polymer, or a mercapto. A method of reacting an isocyanate group-containing alkoxysilane compound with a group-containing organic polymer is known. More specifically, it can be easily synthesized by the methods described in Japanese Patent No. 3030020, Japanese Patent No. 3343604, Japanese Patent Application Laid-Open No. 2005-54174, and the like.
 上記塩基性化合物(b)は、単独又は2種以上を組み合わせて使用できる。 The basic compound (b) can be used alone or in combination of two or more.
 硬化性樹脂(b)の配合量は、硬化性樹脂(a)100質量部に対して、40~400質量部、好ましくは100~300質量部、特に好ましくは200~250質量部である。硬化性樹脂(b)の配合量が40質量部よりも少なくなると、モジュラス調整剤としての効果が少なくなり硬化物が硬くなってしまう。硬化性樹脂(b)の配合量が400質量部よりも多くなると、相対的に硬化性樹脂(a)の割合が少なくなることで硬化性が十分発揮されない。 The blending amount of the curable resin (b) is 40 to 400 parts by mass, preferably 100 to 300 parts by mass, and particularly preferably 200 to 250 parts by mass with respect to 100 parts by mass of the curable resin (a). When the compounding quantity of curable resin (b) will be less than 40 mass parts, the effect as a modulus regulator will decrease and hardened | cured material will become hard. When the blending amount of the curable resin (b) is more than 400 parts by mass, the curability is not sufficiently exhibited because the ratio of the curable resin (a) is relatively decreased.
 硬化性樹脂(a)と硬化性樹脂(b)とは、各々の主鎖骨格は同じであっても異なっていてもよい。また、硬化性樹脂(a)と硬化性樹脂(b)が相溶しているほうがより本発明の効果が得られやすいため好ましい。 The main chain skeleton of the curable resin (a) and the curable resin (b) may be the same or different. In addition, it is preferable that the curable resin (a) and the curable resin (b) are compatible since the effects of the present invention are more easily obtained.
 硬化性樹脂(a)と硬化性樹脂(b)の相溶性を向上させるために従来公知の技術を用いることができる。例えば一般的に相溶化剤として知られている化合物を添加することができる。また、硬化性樹脂(a)と硬化性樹脂(b)の主鎖骨格を相溶性が良好である組み合わせを選ぶことによって両者の相溶性を向上させることもできる。具体的には主鎖骨格の極性が比較的近いものを用いることで相溶性を向上することができる。例えば、双方ともに同じ主鎖骨格を選ぶと相溶性が非常に良好である。また同じではなくても、ポリオレフィン骨格同士、ポリエーテル骨格同士といった比較的構造が似通った骨格を選択することも好ましい。さらに、ポリオキシアルキレン骨格と特定構造のポリ(メタ)アクリレート骨格なども相溶性が良好であることが知られている。上記のように相溶性が良好である組み合わせの一例を例示したが、本発明はこれらに限定されるものではない。 In order to improve the compatibility of the curable resin (a) and the curable resin (b), a conventionally known technique can be used. For example, a compound generally known as a compatibilizing agent can be added. Moreover, compatibility of both can also be improved by selecting the combination whose main chain frame | skeleton of curable resin (a) and curable resin (b) has favorable compatibility. Specifically, the compatibility can be improved by using a main chain skeleton having a relatively close polarity. For example, if the same main chain skeleton is selected for both, the compatibility is very good. Even if they are not the same, it is also preferable to select skeletons having relatively similar structures such as polyolefin skeletons or polyether skeletons. Furthermore, it is known that a polyoxyalkylene skeleton and a poly (meth) acrylate skeleton having a specific structure also have good compatibility. Examples of combinations having good compatibility as described above are exemplified, but the present invention is not limited to these.
 硬化性樹脂(a)のモジュラス調整剤として、可塑剤の添加がこれまで一般的に行われてきた。しかし、可塑剤を多量に添加することで、可塑剤成分が硬化物表面にブリードアウトしたり、塗料の密着性が低下したり、耐候性が低下したりする可能性があるため、可塑剤の添加量には限度があった。 As a modulus adjuster for the curable resin (a), a plasticizer has generally been added so far. However, adding a large amount of plasticizer may cause the plasticizer component to bleed out on the surface of the cured product, the adhesion of the paint to decrease, or the weather resistance to decrease. There was a limit to the amount of addition.
 一方、本発明では硬化性樹脂(a)のモジュラス調整剤としてジアルコキシシリル基を有する硬化性樹脂(b)を用いることで、モジュラス調整のために多量に配合しても、硬化の過程で硬化性樹脂(b)中のジアルコキシシリル基が硬化に取り込まれるために、可塑剤を多量に使用した場合のような不具合が起き難いため、好ましい。 On the other hand, in the present invention, by using the curable resin (b) having a dialkoxysilyl group as the modulus adjuster of the curable resin (a), even if it is blended in a large amount for adjusting the modulus, it is cured during the curing process. Since the dialkoxysilyl group in the conductive resin (b) is taken into the curing, it is difficult to cause problems as in the case of using a large amount of plasticizer, which is preferable.
[塩基性化合物(c)について]
 本発明における塩基性化合物は、硬化性樹脂(a)及び硬化性樹脂(b)、特に硬化性樹脂(a)の硬化触媒として作用する化合物であり、塩基性を示す化合物であれば特に限定されず、カルボン酸等の酸との塩であっても塩基性である限り使用可能である。例えば、第1~3級アミン化合物及びその塩、4級アンモニウム塩、有機金属塩等が好適に使用できる。アミン化合物とエポキシ化合物との反応物であっても良い。
[About the basic compound (c)]
The basic compound in the present invention is a compound that acts as a curing catalyst for the curable resin (a) and the curable resin (b), particularly the curable resin (a), and is particularly limited as long as it is a basic compound. In addition, salts with acids such as carboxylic acids can be used as long as they are basic. For example, primary to tertiary amine compounds and salts thereof, quaternary ammonium salts, organometallic salts and the like can be suitably used. It may be a reaction product of an amine compound and an epoxy compound.
 塩基性化合物(c)の具体例として、例えば、N-メチル-3,3’-イミノビス(プロピルアミン)、エチレンジアミン、ジエチレントリアミン、トリエチレンジアミン、ペンタエチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,4-ジアミノブタン、1,9-ジアミノノナン、ATU(3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)、CTUグアナミン、ドデカン酸ジヒドラジド、ヘキサメチレンジアミン、m-キシリレンジアミン、ジアニシジン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、トリジンベース、m-トルイレンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、メラミン、1,3-ジフェニルグアニジン、ジ-o-トリルグアニジン、ビス(アミノプロピル)ピペラジン、N-(3-アミノプロピル)-1,3-プロパンジアミン、ビス(3-アミノプロピル)エーテル、サンテクノケミカル社製ジェファーミン(商品名)等の複数の第一級アミノ基を有する化合物;ピペラジン、シス-2,6-ジメチルピペラジン、シス-2,5-ジメチルピペラジン、2-メチルピペラジン、N,N’-ジ-t-ブチルエチレンジアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、1,3-ジ-(4-ピペリジル)-プロパン、4-アミノプロピルアニリン、ホモピペラジン、N,N’-ジフェニルチオ尿素、N,N’-ジエチルチオ尿素、N-メチル-1,3-プロパンジアミン等の複数の第二級アミノ基を有する化合物;メチルアミノプロピルアミン、エチルアミノプロピルアミン、エチルアミノエチルアミン、ラウリルアミノプロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、1-(2-アミノエチル)ピペラジン、N-アミノプロピルピペラジン、3-アミノピロリジン、1-o-トリルビグアニド、2-アミノメチルピペラジン、N-アミノプロピルアニリン、エチルアミン、2-ヒドロキシエチルアミノプロピルアミン、ラウリルアミノプロピルアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、式:HN(CNH)H(n≒5)で表わされる化合物(商品名:ポリエイト、東ソー社製)等の第1級アミノ基及び第2級アミノ基を有する化合物;テトラメチルアンモニウムクロライド、ベンザルコニウムクロライド等の第四級アンモニウム塩類;三共エアプロダクツ社製のDABCO(登録商標)シリーズ、DABCOBLシリーズ、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の複数の窒素を含む直鎖或いは環状の第三級アミン及び第四級アンモニウム塩等が挙げられる。 Specific examples of the basic compound (c) include, for example, N-methyl-3,3′-iminobis (propylamine), ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine, 1,2-diaminopropane, 1,3-diamino Propane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5. 5] undecane), CTU guanamine, dodecanoic acid dihydrazide, hexamethylenediamine, m-xylylenediamine, dianisidine, 4,4'-diamino-3,3'-diethyldiphenylmethane, diaminodiphenyl ether, 3,3'-dimethyl-4 , 4'-diaminodiphenylmethane, tolidine base, m- Louisene diamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, melamine, 1,3-diphenylguanidine, di-o-tolylguanidine, bis (aminopropyl) piperazine, N- (3-aminopropyl) Compounds having a plurality of primary amino groups such as 1,3-propanediamine, bis (3-aminopropyl) ether, and Jeffamine (trade name) manufactured by Sun Techno Chemical Co .; piperazine, cis-2,6-dimethylpiperazine Cis-2,5-dimethylpiperazine, 2-methylpiperazine, N, N′-di-t-butylethylenediamine, 2-aminomethylpiperidine, 4-aminomethylpiperidine, 1,3-di- (4-piperidyl) -Propane, 4-aminopropylaniline, homopiperazine, N, N'-diphe Compounds having a plurality of secondary amino groups such as ruthiourea, N, N′-diethylthiourea, N-methyl-1,3-propanediamine; methylaminopropylamine, ethylaminopropylamine, ethylaminoethylamine, laurylamino Propylamine, 2-hydroxyethylaminopropylamine, 1- (2-aminoethyl) piperazine, N-aminopropylpiperazine, 3-aminopyrrolidine, 1-o-tolylbiguanide, 2-aminomethylpiperazine, N-aminopropylaniline , Ethylamine, 2-hydroxyethylaminopropylamine, laurylaminopropylamine, 2-aminomethylpiperidine, 4-aminomethylpiperidine, represented by the formula: H 2 N (C 2 H 4 NH) n H (n≈5) Compound (trade name: Poly Eight A compound having a primary amino group and a secondary amino group such as Tosoh Corp .; quaternary ammonium salts such as tetramethylammonium chloride and benzalkonium chloride; DABCO (registered trademark) series manufactured by Sankyo Air Products , DABCOBL series, 1,8-diazabicyclo [5.4.0] -7-undecene and the like, and straight-chain or cyclic tertiary amines and quaternary ammonium salts containing a plurality of nitrogen.
 塩基性化合物(c)がアミン化合物であることが、入手の容易さや、コストの面から好ましい。また、塩基性化合物(c)がその分子内にアミノ基と下記一般式(III):
  -SiR15 3-n   ・・・式(III)
(但し、Yはヒドロキシル基又はアルコキシル基等の加水分解性基を、R15は炭素数1~20個のアルキル基を、nは0、1又は2を、それぞれ示す。)
で表される加水分解性シリル基を有する化合物である場合は、硬化触媒としての効果がより顕著に発揮されると共に、各種被着体(特に金属)への接着性付与もできるため好ましい。
The basic compound (c) is preferably an amine compound from the viewpoint of easy availability and cost. Further, the basic compound (c) has an amino group and the following general formula (III) in its molecule:
-SiR 15 n Y 3-n Formula (III)
(Y represents a hydrolyzable group such as a hydroxyl group or an alkoxyl group, R 15 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2)
In the case of a compound having a hydrolyzable silyl group represented by the formula, the effect as a curing catalyst is more remarkably exhibited and adhesion to various adherends (particularly metals) can be imparted, which is preferable.
 具体的には、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、4-アミノ-3-ジメチルブチルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-3-[アミノ(ジプロピレンオキシ)]アミノプロピルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン等のアミノシラン化合物も挙げられる。 Specifically, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N- β (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltrimethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (6-amino) Hexyl) aminopropyltrimethoxysilane, N Phenyl -γ- aminopropyltrimethoxysilane, N- (2- aminoethyl) -11-Amino aminosilane compounds such as undecyl trimethoxysilane may be mentioned.
 上記化合物は市販品でも使用することができる。市販品として、信越化学工業社製、商品名,KBM-602,KBM-603,KBE-603,KBM-903,KBE-903,KBM-902,KBE-902,KBE-9103,KBM-573,KBM-575,KBM-576,KBM-6123,KBE-585,X-12-806,X-12-666,X-12-896,X-12-5263,X-12-580,X-12-575,X-12-577,X-12-563B,X-12-565,X-12-562,X-12-817H,KBM-6063、モメンティブ・パフォーマンス・マテリアルズ社製、商品名:TSL8331,TSL8340,TSL8345,TSL8802、チッソ社製、商品名:S360,S320,S310,S311,S321,S330、エボニックデグサ社製、商品名:ダイナシラン(DYNASYLAN)1189等が挙げられる。 The above compounds can also be used as commercial products. Commercially available products manufactured by Shin-Etsu Chemical Co., Ltd., trade name, KBM-602, KBM-603, KBE-603, KBM-903, KBE-903, KBM-902, KBE-902, KBE-9103, KBM-573, KBM -575, KBM-576, KBM-6123, KBE-585, X-12-806, X-12-666, X-12-896, X-12-5263, X-12-580, X-12-575 , X-12-577, X-12-563B, X-12-565, X-12-562, X-12-817H, KBM-6063, manufactured by Momentive Performance Materials, Inc., trade names: TSL8331, TSL8340 , TSL8345, TSL8802, manufactured by Chisso Corporation, trade names: S360, S320, S310, S311, S321, S 30, Evonik Degussa Corporation, trade name: Dynasylan (DYNASYLAN) 1189, and the like.
 上記塩基性化合物(c)は、単独又は2種以上を組み合わせて使用できる。 The basic compound (c) can be used alone or in combination of two or more.
 塩基性化合物(c)の配合量は、硬化性樹脂(a)100質量部に対して、0.1~70質量部、好ましくは1~60質量部、特に好ましくは2~50質量部である。塩基性化合物(c)の配合量が0.1質量部よりも少ないと、硬化触媒としての効果が弱く硬化が非常に遅くなってしまう。一方、塩基性化合物(c)の配合量が70質量部よりも多くなると、貯蔵安定性が悪く経時で増粘したり、シーリング材組成物が黄色く変色したり、硬化物の色が経時で(特に熱暴露や紫外線照射によって)黄色く変化したりするため好ましくない。 The compounding amount of the basic compound (c) is 0.1 to 70 parts by weight, preferably 1 to 60 parts by weight, particularly preferably 2 to 50 parts by weight with respect to 100 parts by weight of the curable resin (a). . If the blending amount of the basic compound (c) is less than 0.1 parts by mass, the effect as a curing catalyst is weak and curing is very slow. On the other hand, when the compounding amount of the basic compound (c) is more than 70 parts by mass, the storage stability is poor and the viscosity increases with time, the sealant composition turns yellow, or the color of the cured product changes with time ( It is not preferable because it turns yellow (especially by heat exposure or ultraviolet irradiation).
[老化防止剤(d)について]
 本発明における老化防止剤(d)は、光(主に紫外線)や熱等によってシーリング材組成物が劣化するのを抑制するものである。
[Anti-aging agent (d)]
The anti-aging agent (d) in the present invention suppresses the deterioration of the sealing material composition due to light (mainly ultraviolet rays) or heat.
 一般的に、硬化性樹脂組成物は光(主に紫外線)や熱等によって発生したラジカルが原因で劣化が進行する。そのため、老化防止剤(d)はそのラジカルをキャッチし劣化の進行を抑制するか、または劣化の過程で生成する過酸化物をキャッチし劣化の進行を抑制する。 Generally, deterioration of a curable resin composition proceeds due to radicals generated by light (mainly ultraviolet rays) or heat. Therefore, the anti-aging agent (d) catches the radical and suppresses the progress of deterioration, or catches the peroxide generated in the process of deterioration and suppresses the progress of deterioration.
 例えば、老化防止剤(d)は、ラジカル連鎖開始阻止剤として金属不活性化剤(ヒドラジド系、アミド系等)、紫外線吸収剤(ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等)、クエンチャー(有機ニッケル系等)、ラジカル捕捉剤としてHALS(ヒンダードアミン系等)、フェノール系酸化防止剤(ヒンダードフェノール系、セミヒンダードフェノール系等)、過酸化物分解剤としてリン系酸化防止剤(ホスファイト系、ホスホナイト系等)、イオウ系酸化防止剤(チオエーテル系等)等が挙げられるが、これらに限定されるわけではない。 For example, the anti-aging agent (d) includes a metal deactivator (hydrazide, amide, etc.), an ultraviolet absorber (benzotriazole, triazine, benzophenone, etc.), a quencher (organic) as a radical chain initiation inhibitor. Nickel) etc., HALS (hindered amines etc.) as radical scavengers, phenolic antioxidants (hindered phenols, semi-hindered phenols etc.), phosphorous antioxidants (phosphites) as peroxide decomposers , Phosphonites, etc.), sulfur antioxidants (thioethers, etc.) and the like, but are not limited thereto.
 上記老化防止剤(d)の具体例としては旭電化工業社製のアデカスタブシリーズ;クラリアントジャパン社製のホスタノックスシリーズ、ホスタビンシリーズ、サンデュボアシリーズ、ホスタスタットシリーズ;三共ライフテック社製のサノールシリーズ;チバ・スペシャルティ・ケミカルズ社製のチヌビンシリーズ、イルガフォスシリーズ、イルガノックスシリーズ、キマソーブシリーズ等が挙げられるが、これらに限定されるわけではない。 Specific examples of the anti-aging agent (d) include: Adeka Stub series manufactured by Asahi Denka Kogyo Co., Ltd .; Hostanox series, Hostabin series, Sanduboa series, Hostastat series manufactured by Clariant Japan; Knoll series; Chinubin series, Irgafos series, Irganox series, Kimasorb series, etc. manufactured by Ciba Specialty Chemicals are included, but are not limited thereto.
 老化防止剤(d)の配合量は、上記硬化性樹脂(a)100質量部に対して、0.1~70質量部、好ましくは1~60質量部、特に好ましくは2~50質量部である。老化防止剤(d)の配合量が0.1質量部よりも少ないと、老化防止の効果が弱くシーリング材組成物の劣化を十分に抑制することが困難であり、70質量部より多くなると、貯蔵安定性が悪く経時で増粘したり、接着性が低下したり、シーリング材組成物が黄色く変色したり、硬化物の色が経時で(特に熱暴露や紫外線照射によって)黄色く変化したり、経済性に劣る等の不具合があるため好ましくない。 The amount of the antioxidant (d) is 0.1 to 70 parts by weight, preferably 1 to 60 parts by weight, particularly preferably 2 to 50 parts by weight, based on 100 parts by weight of the curable resin (a). is there. When the blending amount of the anti-aging agent (d) is less than 0.1 parts by mass, the effect of anti-aging is weak and it is difficult to sufficiently suppress deterioration of the sealing material composition, and when it exceeds 70 parts by mass, The storage stability is poor, the viscosity increases over time, the adhesiveness decreases, the sealant composition turns yellow, the color of the cured product turns yellow over time (especially due to heat exposure or ultraviolet irradiation), It is not preferable because there are problems such as inferior economy.
 加水分解性シリル基含有硬化性樹脂の硬化触媒として最も一般的に使用されている有機スズ化合物は、エステル結合を加水分解する触媒としても作用する。そのため、老化防止剤として一般的に使われているラジカル捕捉剤であるHALS(ヒンダードアミン系等)や、フェノール系酸化防止剤(ヒンダードフェノール系、セミヒンダードフェノール系等)分子内に含まれるエステル結合を加水分解してしまい、ラジカル捕捉剤としての効果が長続きしないため、一般的に有機スズ触媒を使用することで耐候性が低下してしまう傾向がある。そのため、有機錫系触媒の添加量はシーリング材組成物に対して、好ましくは1000ppm未満であり、さらに好ましくは500ppm以下であり、特に好ましくは200ppm以下である。有機錫系触媒の添加量が1000ppm以上であると、硬化物が紫外線暴露されることで著しく劣化してしまうことが懸念される。 The organotin compound most commonly used as a curing catalyst for a hydrolyzable silyl group-containing curable resin also acts as a catalyst for hydrolyzing ester bonds. Therefore, HALS (such as hindered amines), which are radical scavengers commonly used as antioxidants, and phenolic antioxidants (such as hindered phenols and semi-hindered phenols) are included in the molecule. Since the bond is hydrolyzed and the effect as a radical scavenger does not last long, generally the weather resistance tends to be reduced by using an organotin catalyst. Therefore, the addition amount of the organic tin-based catalyst is preferably less than 1000 ppm, more preferably 500 ppm or less, and particularly preferably 200 ppm or less with respect to the sealing material composition. When the amount of the organic tin-based catalyst is 1000 ppm or more, there is a concern that the cured product may be significantly deteriorated by being exposed to ultraviolet rays.
 本発明に係るシーリング材組成物中には、充填剤、可塑剤等を配合することができる。本発明に係るシーリング材組成物に配合できる上記充填剤としては、炭酸カルシウム系、各種処理炭酸カルシウム系、炭酸マグネシウム系、有機高分子系、クレー系、タルク系、シリカ系、フュームドシリカ系、ガラスバルーン系、プラスチックバルーン系、水酸化アルミニウム系、水酸化マグネシウム系等の充填剤が挙げられるが、これらに限定されるものではない。 In the sealing material composition according to the present invention, a filler, a plasticizer and the like can be blended. As the filler that can be blended in the sealing material composition according to the present invention, calcium carbonate, various treated calcium carbonate, magnesium carbonate, organic polymer, clay, talc, silica, fumed silica, Examples of the filler include, but are not limited to, a glass balloon type, a plastic balloon type, an aluminum hydroxide type, and a magnesium hydroxide type.
 上記充填剤はシーリング材組成物のたれ防止、作業性向上の目的のみならず、耐候性の向上の目的で添加される。充填剤が添加されていないシーリング材組成物の場合、その内部にまで容易に光(特に紫外線)が入ってくるため、露光された場合に硬化物の表面のみならず、内部でも劣化が進行してしまう。しかし、充填剤を添加したシーリング材組成物の場合、充填剤を添加したことによる遮蔽効果によって、硬化物内部にまで光が入らず内部の劣化を抑えることができる。 The above filler is added not only for the purpose of preventing sagging of the sealant composition and improving workability but also for improving weather resistance. In the case of a sealing material composition to which no filler is added, light (especially ultraviolet rays) easily enters the inside of the sealing material composition. Therefore, when exposed to light, deterioration progresses not only on the surface of the cured product but also inside. End up. However, in the case of a sealing material composition to which a filler is added, due to the shielding effect due to the addition of the filler, light does not enter the cured product and internal deterioration can be suppressed.
 本発明に係るシーリング材組成物に配合できる上記可塑剤としては、特に限定はされないが、たとえば、フタル酸ジオクチル(DOP)、フタル酸ジブチル(DBP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソデシル(DIDP)、フタル酸ブチルベンジル(BBP)等のフタル酸エステル類、アジピン酸ジオクチル、ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシノール酸メチル等の脂肪族エステル類;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;ポリスチレン、ポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油;プロセスオイル類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールとこれらポリエーテルポリオールの水酸基をエステル基、エーテル基等に変換した誘導体等のポリエーテル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤類;アクリル系可塑剤を始めとするビニル系モノマーを種々の方法で重合して得られるビニル系重合体類等が挙げられる。好ましくは、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールとこれらポリエーテルポリオールの水酸基をエステル基、エーテル基等に変換した誘導体等のポリエーテル類等のポリオキシアルキレン系重合体、フタル酸エステル類である。 The plasticizer that can be blended in the sealing material composition according to the present invention is not particularly limited. For example, dioctyl phthalate (DOP), dibutyl phthalate (DBP), diisononyl phthalate (DINP), diisodecyl phthalate ( DIDP), phthalates such as butylbenzyl phthalate (BBP), non-aromatic dibasic esters such as dioctyl adipate, dioctyl adipate, dioctyl sebacate, dibutyl sebacate, isodecyl succinate; butyl oleate, Aliphatic esters such as methyl acetyl ricinoleate; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, pentaerythritol ester; tricresyl phosphate, tributyl phosphate Phosphate esters such as carbonate; trimellitic acid esters; polystyrenes such as polystyrene and poly-α-methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile copolymer, polychloroprene; chlorinated paraffins; Hydrocarbon oils such as alkyl diphenyls and partially hydrogenated terphenyls; Process oils; Polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the hydroxyl groups of these polyether polyols are converted to ester groups, ether groups, etc. Derivatives such as polyethers; epoxy plasticizers such as epoxidized soybean oil and epoxy benzyl stearate; dibasic acids such as sebacic acid, adipic acid, azelaic acid, and phthalic acid; ethylene glycol, Polyester plasticizers obtained from dihydric alcohols such as tylene glycol, triethylene glycol, propylene glycol, dipropylene glycol; vinyl resins obtained by polymerizing vinyl monomers including acrylic plasticizers by various methods Examples thereof include polymers. Preferably, polyoxyalkylene polymers such as polyether polyols such as polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and derivatives obtained by converting hydroxyl groups of these polyether polyols to ester groups, ether groups, and the like, Phthalate esters.
 上記可塑剤は、シーリング材組成物の粘度を下げ作業性を向上させたり、硬化物のモジュラスを下げ、伸びを大きくできたり、多量の充填剤を配合できたりするため非常に有用である。しかし、可塑剤添加によるモジュラス低下には限度があり、可塑剤を入れすぎることにより硬化スピードの低下や、ブリードアウトによる硬化物表面や被着体の汚染、硬化物の物性の低下等の不具合が発生する。そのため、本発明で示したように、反応性基を持ち、なお且つその反応性基がジアルコキシシリル基であるような硬化性樹脂(b)をモジュラス調整剤として添加することで、上記不具合が発生し難くなるため好ましい。 The above plasticizer is very useful because it can reduce the viscosity of the sealing material composition to improve workability, lower the modulus of the cured product, increase elongation, and incorporate a large amount of filler. However, there is a limit to the decrease in modulus due to the addition of a plasticizer. If too much plasticizer is added, there are problems such as a decrease in curing speed, contamination of the cured product surface and adherend due to bleeding out, and a decrease in the physical properties of the cured product. appear. Therefore, as shown in the present invention, by adding a curable resin (b) having a reactive group and the reactive group being a dialkoxysilyl group as a modulus modifier, This is preferable because it is less likely to occur.
 本発明に係るシーリング材組成物中には、充填剤、可塑剤以外に従来公知の任意の化合物乃至物質を配合することができる。たとえば、従来公知の硬化触媒、ビニルトリメトキシシラン,ビニルトリエトキシシラン,β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシシラン、γ-グリシドキシプロピルトリエトキシシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン等のシランカップリング剤、フェノール樹脂,石油樹脂,テルペン樹脂等の粘着付与剤、無水シリカ、アマイドワックス等の揺変剤、酸化カルシウム等の脱水剤、イソパラフィン等の希釈剤、水酸化アルミニウム,ハロゲン系難燃剤,リン系難燃剤,シリコーン系難燃剤等の難燃剤、シリコーンアルコキシオリゴマー,アクリルオリゴマー等の機能性オリゴマー、顔料、エチルシリケート、プロピルシリケート、ブチルシリケート等のシリケート化合物及びそのオリゴマー、チタネートカップリング剤、ジルコニウム系カップリング剤、アルミニウムカップリング剤、乾性油等を適宜配合することができる。 In the sealing material composition according to the present invention, any conventionally known compound or substance can be blended in addition to the filler and the plasticizer. For example, conventionally known curing catalysts such as vinyltrimethoxysilane, vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldi Silane coupling agents such as ethoxysilane, γ-glycidoxypropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, phenol resin, petroleum resin, terpene resin, etc. Tackifiers, anhydrous silica, thixotropic agents such as amide wax, dehydrating agents such as calcium oxide, diluents such as isoparaffin, aluminum hydroxide, halogen flame retardants, phosphorus flame retardants, silicone flame retardants, etc. Machines for flame retardants, silicone alkoxy oligomers, acrylic oligomers, etc. Sex oligomers, pigments, ethyl silicate, propyl silicate, silicate compounds and oligomers thereof such as butyl silicate, titanate coupling agent, zirconium coupling agent, aluminum coupling agent, can be appropriately blended drying oil.
 本発明に係るシーリング材組成物は、水分の存在下で、加水分解性シリル基同士が縮重合することによって硬化するものである。したがって、1液型として使用される場合は、保管乃至搬送中は、空気(空気中の水分)と接触しないよう、気密に密封した状態で取り扱われる。そして、使用時には開封して任意の箇所に適用すれば、空気中の水分と接触して湿気硬化性シーリング材組成物が硬化するのである。あるいは、本発明に係るシーリング材組成物は、2液型としても使用することができる。この場合には、本発明に係る硬化性樹脂(a)は反応性(硬化性)が高いため保管乃至搬送中に硬化しないような工夫が必要である。そして使用時に、硬化性樹脂(a)等を含む主剤に、塩基性化合物(c)や他の触媒等を含む硬化剤を混合し任意の箇所に適用すれば、空気中の水分やシーリング材系内に含まれる水分と反応して湿気硬化性シーリング材組成物が硬化するのである。 The sealing material composition according to the present invention is cured by condensation polymerization of hydrolyzable silyl groups in the presence of moisture. Therefore, when used as a one-pack type, it is handled in an airtightly sealed state so as not to come into contact with air (water in the air) during storage or transportation. And if it opens and uses it in arbitrary places at the time of use, it will contact with the water | moisture content in air, and a moisture hardening sealing material composition will harden | cure. Alternatively, the sealing material composition according to the present invention can be used as a two-component type. In this case, since the curable resin (a) according to the present invention has high reactivity (curability), it is necessary to devise such that it does not cure during storage or transportation. In use, if the main agent containing the curable resin (a) and the like is mixed with a curing agent containing the basic compound (c) or other catalyst and applied to any location, moisture in the air or a sealing material system The moisture curable sealant composition is cured by reacting with moisture contained therein.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the examples.
<第1の本発明>
[硬化性樹脂A-1の調製]
 反応容器内で、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン(206.4g、1.0mol)を窒素雰囲気下50℃で撹拌しながら、アクリル酸メチル(172.2g、2.0mol)を1時間かけて滴下し、さらに、室温で5時間反応させた後、50℃で7日間反応させることで、分子内にメチルジメトキシシリル基及び第2級アミノ基を有する反応物SA-1を得た。
<First Invention>
[Preparation of Curable Resin A-1]
While stirring N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane (206.4 g, 1.0 mol) at 50 ° C. in a nitrogen atmosphere in a reaction vessel, methyl acrylate (172.2 g, 2 0.0 mol) is added dropwise over 1 hour, and further reacted at room temperature for 5 hours, followed by reaction at 50 ° C. for 7 days, whereby reactant SA having a methyldimethoxysilyl group and a secondary amino group in the molecule. -1 was obtained.
 別の反応容器内に、旭硝子ウレタン社製のPMLS4012(ポリオキシプロピレンポリオール、数平均分子量10,000)を500g、旭硝子ウレタン社製のPMLS1005(ポリオキシプロピレンモノオール、数平均分子量5,500)を500g、イソホロンジイソシアネートを47.4g、及びジオクチルスズジバーサテートを0.10g仕込み、窒素雰囲気下にて撹拌混合しながら、80℃で3時間反応させて、分子内にイソシアネート基を有するポリオキシアルキレン樹脂PA-1を得た。 In a separate reaction container, 500 g of PMLS4012 (polyoxypropylene polyol, number average molecular weight 10,000) manufactured by Asahi Glass Urethane Co., Ltd., and PMLS1005 (polyoxypropylene monool, number average molecular weight 5,500) manufactured by Asahi Glass Urethane Co., Ltd. 500 g, 47.4 g of isophorone diisocyanate, and 0.10 g of dioctyltin diversate are charged and reacted at 80 ° C. for 3 hours with stirring and mixing in a nitrogen atmosphere to obtain a polyoxyalkylene having an isocyanate group in the molecule. Resin PA-1 was obtained.
 その後、これに上記反応物SA-1を100.1g添加し、窒素雰囲気下にて撹拌混合しながら、80℃で1時間反応させることで、主鎖がポリオキシアルキレンであり分子内にメチルジメトキシシリル基を有する硬化性樹脂A-1を得た。得られた硬化性樹脂A-1をFT-IRで分析することにより、NCO基が消失していることを確認した。 Thereafter, 100.1 g of the above reactant SA-1 was added thereto, and reacted for 1 hour at 80 ° C. with stirring and mixing under a nitrogen atmosphere, whereby the main chain was polyoxyalkylene and methyldimethoxy was present in the molecule. A curable resin A-1 having a silyl group was obtained. The obtained curable resin A-1 was analyzed by FT-IR to confirm that the NCO group had disappeared.
(硬化性樹脂A-2)
 硬化性樹脂A-2として、末端のメチルジメトキシシリル基が-(CH-を介して主鎖のポリオキシプロピレンに結合した変成シリコーン樹脂「EXCESTER S2410」(旭硝子株式会社製)(低モジュラスタイプ)を用意した。
(Curable resin A-2)
As the curable resin A-2, a modified silicone resin “EXCESTER S2410” (manufactured by Asahi Glass Co., Ltd.) (low modulus) in which the terminal methyldimethoxysilyl group is bonded to the main chain polyoxypropylene via — (CH 2 ) 3 — Type).
 「EXCESTER S2410」の合成方法としては、分子末端をアリル化してあるポリオキシアルキレンに、ヒドロメチルジメトキシシランをヒドロシリル化する方法等が知られている。 As a method of synthesizing “EXCESTER S2410”, a method of hydrosilylating hydromethyldimethoxysilane to polyoxyalkylene in which molecular terminals are allylated is known.
(硬化性樹脂A-3)
 硬化性樹脂A-3として、末端のメチルジメトキシシリル基が-(CH-を介して主鎖のポリオキシプロピレンに結合した変成シリコーン樹脂「EXCESTER S2420」(旭硝子株式会社製)(中モジュラスタイプ)を用意した。
(Curable resin A-3)
As the curable resin A-3, a modified silicone resin “EXCESTER S2420” (manufactured by Asahi Glass Co., Ltd.) (medium modulus) in which the terminal methyldimethoxysilyl group is bonded to the main chain polyoxypropylene via — (CH 2 ) 3 — Type).
 「EXCESTER S2420」の合成方法としては、分子末端をアリル化してあるポリオキシアルキレンに、ヒドロメチルジメトキシシランをヒドロシリル化する方法等が知られている。 As a method of synthesizing “EXCESTER S2420”, a method of hydrosilylating hydromethyldimethoxysilane to polyoxyalkylene in which molecular ends are allylated is known.
(硬化性樹脂B-1)
 硬化性樹脂B-1として、上記一般式(2)のWが-O-CO-NH-、RがCH、RがCHであり、下記一般式(4)で示されるジアルコキシシリル基を有するWacker Chemie AG製のGENIOSIL STP-E30(メトキシ基当量から換算した分子量約16,000、粘度約30,000mPa・s/25℃(カタログ値))を用意した。
  -O-CO-NH-CH-SiCH(OCH ・・・式(4)
(Curable resin B-1)
As the curable resin B-1, W in the general formula (2) is —O—CO—NH—, R 3 is CH 3 , R 4 is CH 3 and the dialkoxy represented by the following general formula (4) GENIOSIL STP-E30 manufactured by Wacker Chemie AG having a silyl group (molecular weight about 16,000 converted from methoxy group equivalent, viscosity about 30,000 mPa · s / 25 ° C. (catalog value)) was prepared.
—O—CO—NH—CH 2 —SiCH 3 (OCH 3 ) 2 Formula (4)
(硬化性樹脂B-2)
 硬化性樹脂B-2として、上記一般式(2)のWが-O-CO-NH-、RがCH、RがCHであり、上記一般式(4)で示されるジアルコキシシリル基を有するWacker Chemie AG製のGENIOSIL STP-E10(メトキシ基当量から換算した分子量約10,000、粘度約10,000mPa・s/25℃(カタログ値))を用意した。
(Curable resin B-2)
As the curable resin B-2, W in the general formula (2) is —O—CO—NH—, R 3 is CH 3 , R 4 is CH 3 and the dialkoxy represented by the general formula (4) GENIOSIL STP-E10 manufactured by Wacker Chemie AG having a silyl group (molecular weight about 10,000 converted from methoxy group equivalent, viscosity about 10,000 mPa · s / 25 ° C. (catalog value)) was prepared.
[実施例A1~実施例A13の硬化性樹脂組成物の調製]
 硬化性樹脂(A)をXa質量部、硬化性樹脂(B)をXb質量部、可塑剤(D)をXd質量部、ディスパロン#6500(楠本化成社製、タレ防止剤)2.5質量部、サノールLS770(三共ライフテック社製、ヒンダードアミン系老化防止剤)1.0質量部、チヌビン326(チバ・スペシャルティ・ケミカルズ社製、ベンゾトリアゾール系老化防止剤)1.0質量部、白艶華CCR-B(白石工業社製、表面処理炭酸カルシウム)110質量部、NS400(日東粉化工業社製、重質炭酸カルシウム)65質量部をプラネタリーミキサーに投入し、減圧下にて100℃で2時間加熱脱水しながら混練し、室温まで冷却した後これに、シェルゾールTK(シェルケミカルズジャパン社製、イソパラフィン系希釈剤)5.0質量部、KBM1003(信越化学工業社製、ビニルトリメトキシシラン)3.0質量部、KBM403(信越化学工業社製、3-グリシドキシプロピルトリメトキシシラン)1.0質量部、塩基性化合物(C)Xc質量部を添加し、減圧下にて15分間混練して、硬化性樹脂組成物を得た。硬化性樹脂組成物は、速やかに密栓容器に充填しタックフリータイムの測定を行った(詳しい測定法や養生条件は後述する)。
[Preparation of Curable Resin Compositions of Examples A1 to A13]
Xa part by mass of curable resin (A), Xb part by mass of curable resin (B), Xd part by mass of plasticizer (D), 2.5 parts by mass of Disparon # 6500 (manufactured by Enomoto Kasei Co., Ltd.) , Sanol LS770 (manufactured by Sankyo Lifetech Co., Ltd., hindered amine-based anti-aging agent) 1.0 part by mass, Tinuvin 326 (manufactured by Ciba Specialty Chemicals Co., Ltd., benzotriazole-based anti-aging agent) 1.0 part by mass, Shiraka Hana CCR-B 110 parts by mass (manufactured by Shiraishi Kogyo Co., Ltd., surface-treated calcium carbonate) and 65 parts by mass of NS400 (manufactured by Nitto Flour Chemical Co., Ltd., heavy calcium carbonate) are put into a planetary mixer and heated at 100 ° C. under reduced pressure for 2 hours. After kneading while dehydrating and cooling to room temperature, 5.0 parts by mass of Shellsol TK (manufactured by Shell Chemicals Japan, isoparaffin-based diluent), KBM 003 (Shin-Etsu Chemical Co., Ltd., vinyltrimethoxysilane) 3.0 parts by mass, KBM403 (Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane) 1.0 parts by mass, basic compound (C) Xc A part by mass was added and kneaded for 15 minutes under reduced pressure to obtain a curable resin composition. The curable resin composition was immediately filled into a sealed container and the tack free time was measured (detailed measurement method and curing conditions will be described later).
 以下の実施例A1~実施例A13では、用いた硬化性樹脂(A)、硬化性樹脂(B)、塩基性化合物(C)、可塑剤(D)及び、それらの配合量(質量部)Xa、Xb、Xc、Xdのみを記載する。 In Examples A1 to A13 below, the curable resin (A), the curable resin (B), the basic compound (C), the plasticizer (D), and the blending amount (parts by mass) Xa thereof were used. , Xb, Xc, Xd are only described.
(実施例A1)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=30質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=70質量部
・塩基性化合物(C): KBM903(信越化学工業社製/γ-アミノプロピルトリメトキシシラン)  Xc=5.0質量部
・可塑剤(D)   : ジイソノニルフタレート(DINP) Xd=50質量部
(Example A1)
Curable resin (A): Curable resin A-1 Xa = 30 parts by mass Curable resin (B): Curable resin B-1 Xb = 70 parts by mass Basic compound (C): KBM903 (Shin-Etsu Chemical) Manufactured by Kogyo Co., Ltd./γ-aminopropyltrimethoxysilane) Xc = 5.0 parts by mass Plasticizer (D): diisononyl phthalate (DINP) Xd = 50 parts by mass
(実施例A2)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=50質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=50質量部
・塩基性化合物(C): KBM903    Xc=5.0質量部
・可塑剤(D)   : DINP      Xd=50質量部
(Example A2)
Curable resin (A): Curable resin A-1 Xa = 50 parts by mass Curable resin (B): Curable resin B-1 Xb = 50 parts by mass Basic compound (C): KBM903 Xc = 5 0.0 part by mass / plasticizer (D): DINP Xd = 50 parts by mass
(実施例A3)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=30質量部
・塩基性化合物(C): KBM903    Xc=5.0質量部
・可塑剤(D)   : DINP      Xd=50質量部
(Example A3)
Curable resin (A): Curable resin A-1 Xa = 70 parts by mass Curable resin (B): Curable resin B-1 Xb = 30 parts by mass Basic compound (C): KBM903 Xc = 5 0.0 part by mass / plasticizer (D): DINP Xd = 50 parts by mass
(実施例A4)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=30質量部
・塩基性化合物(C): KBM903    Xc=3.0質量部
・可塑剤(D)   : DINP      Xd=50質量部
(Example A4)
Curable resin (A): Curable resin A-1 Xa = 70 parts by mass Curable resin (B): Curable resin B-1 Xb = 30 parts by mass Basic compound (C): KBM903 Xc = 3 0.0 part by mass / plasticizer (D): DINP Xd = 50 parts by mass
(実施例A5)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=30質量部
・塩基性化合物(C): KBM602(信越化学工業社製/N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン)Xc=3.0質量部
・可塑剤(D)   : メザモール(バイエルケミカルズジャパン社製/アルキルスルホン酸フェニルエステル)  Xd=50質量部
(Example A5)
Curable resin (A): Curable resin A-1 Xa = 70 parts by mass Curable resin (B): Curable resin B-1 Xb = 30 parts by mass Basic compound (C): KBM602 (Shin-Etsu Chemical) Kogyo Co., Ltd./N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane) Xc = 3.0 parts by mass. Plasticizer (D): Mezamol (manufactured by Bayer Chemicals Japan Ltd./alkyl sulfonic acid phenyl ester) Xd = 50 parts by mass
(実施例A6)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=30質量部
・塩基性化合物(C): 1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)  Xc=3.0質量部
・可塑剤(D)   : メザモール     Xd=50質量部
(Example A6)
Curable resin (A): Curable resin A-1 Xa = 70 parts by mass Curable resin (B): Curable resin B-1 Xb = 30 parts by mass Basic compound (C): 1,8- Diazabicyclo [5,4,0] undecene-7 (DBU) Xc = 3.0 parts by mass Plasticizer (D): Mezamol Xd = 50 parts by mass
(実施例A7)
・硬化性樹脂(A) : 硬化性樹脂A-2  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=30質量部
・塩基性化合物(C): KBM903    Xc=3.0質量部
・可塑剤(D)   : DINP      Xd=50質量部
(Example A7)
Curable resin (A): Curable resin A-2 Xa = 70 parts by mass Curable resin (B): Curable resin B-1 Xb = 30 parts by mass Basic compound (C): KBM903 Xc = 3 0.0 part by mass / plasticizer (D): DINP Xd = 50 parts by mass
(実施例A8)
・硬化性樹脂(A) : 硬化性樹脂A-2  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=30質量部
・塩基性化合物(C): KBM603(信越化学工業社製/N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン)  Xc=3.0質量部
・可塑剤(D)   : DINP      Xd=50質量部
(Example A8)
Curable resin (A): Curable resin A-2 Xa = 70 parts by mass Curable resin (B): Curable resin B-1 Xb = 30 parts by mass Basic compound (C): KBM603 (Shin-Etsu Chemical) Kogyo / N- (2-aminoethyl) -3-aminopropyltrimethoxysilane) Xc = 3.0 parts by mass Plasticizer (D): DINP Xd = 50 parts by mass
(実施例A9)
・硬化性樹脂(A) : 硬化性樹脂A-2  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Xb=30質量部
・塩基性化合物(C): KBM602    Xc=3.0質量部
・可塑剤(D)   : メザモール     Xd=50質量部
(Example A9)
Curable resin (A): Curable resin A-2 Xa = 70 parts by mass Curable resin (B): Curable resin B-1 Xb = 30 parts by mass Basic compound (C): KBM602 Xc = 3 0.0 part by mass / plasticizer (D): mezamol Xd = 50 parts by mass
(実施例A10)
・硬化性樹脂(A) : 硬化性樹脂A-2  Xa=80質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=20質量部
・塩基性化合物(C): KBM603    Xc=3.0質量部
・可塑剤(D)   : サンフレックスSPX-80(三洋化成工業社製/平均分子量8,000/水酸基をアルキルエステル化した水酸基非含有ポリオキシアルキレン)    Xd=50質量部
(Example A10)
Curable resin (A): Curable resin A-2 Xa = 80 parts by mass Curable resin (B): Curable resin B-2 Xb = 20 parts by mass Basic compound (C): KBM603 Xc = 3 0.0 part by mass / plasticizer (D): Sunflex SPX-80 (manufactured by Sanyo Chemical Industries, Ltd./average molecular weight 8,000 / hydroxyl-free polyoxyalkylene obtained by alkyl esterifying a hydroxyl group) Xd = 50 parts by mass
(実施例A11)
・硬化性樹脂(A) : 硬化性樹脂A-3  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=30質量部
・塩基性化合物(C): KBM603    Xc=3.0質量部
・可塑剤(D)   : アルフォンUP-1110(東亞合成社製/平均分子量2,500/水酸基非含有アクリル樹脂)    Xd=50質量部
(Example A11)
Curable resin (A): Curable resin A-3 Xa = 70 parts by mass Curable resin (B): Curable resin B-2 Xb = 30 parts by mass Basic compound (C): KBM603 Xc = 3 0.0 part by mass / plasticizer (D): Alfon UP-1110 (manufactured by Toagosei Co., Ltd./average molecular weight 2,500 / hydroxyl-free acrylic resin) Xd = 50 parts by mass
(実施例A12)
・硬化性樹脂(A) : 硬化性樹脂A-3  Xa=80質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=20質量部
・塩基性化合物(C): KBM603    Xc=3.0質量部
・可塑剤(D)   : アジピン酸ジオクチル(DOA)Xd=50質量部
(Example A12)
Curable resin (A): Curable resin A-3 Xa = 80 parts by mass Curable resin (B): Curable resin B-2 Xb = 20 parts by mass Basic compound (C): KBM603 Xc = 3 0.0 part by mass / plasticizer (D): Dioctyl adipate (DOA) Xd = 50 parts by mass
(実施例A13)
・硬化性樹脂(A) : 硬化性樹脂A-3  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=30質量部
・塩基性化合物(C): KBM603    Xc=3.0質量部
・可塑剤(D)   : PW-150(出光興産社製/水酸基非含有パラフィン系プロセスオイル)  d=50質量部
(Example A13)
Curable resin (A): Curable resin A-3 Xa = 70 parts by mass Curable resin (B): Curable resin B-2 Xb = 30 parts by mass Basic compound (C): KBM603 Xc = 3 0.0 part by mass / plasticizer (D): PW-150 (manufactured by Idemitsu Kosan Co., Ltd./paraffinic process oil not containing hydroxyl group) d = 50 parts by mass
[比較例A1~比較例A8の硬化性樹脂組成物の調製]
 比較例A1~比較例A8においては、実施例における可塑剤(D)を本願の効果を奏しない化合物に置き換えたものを検証する。なお、以下では便宜上、可塑剤(D’)と記載する。
[Preparation of Curable Resin Compositions of Comparative Examples A1 to A8]
In Comparative Examples A1 to A8, the plasticizer (D) in Example was replaced with a compound that does not have the effect of the present application. Hereinafter, for the sake of convenience, it will be referred to as a plasticizer (D ′).
 硬化性樹脂(A)をYa質量部、硬化性樹脂(B)をYb質量部、可塑剤(D’)をYd質量部、ディスパロン#6500(楠本化成社製、タレ防止剤)2.5質量部、サノールLS770(三共ライフテック社製、ヒンダードアミン系老化防止剤)1.0質量部、チヌビン326(チバ・スペシャルティ・ケミカルズ社製、ベンゾトリアゾール系老化防止剤)1.0質量部、白艶華CCR-B(白石工業社製、表面処理炭酸カルシウム)110質量部、NS400(日東粉化工業社製、重質炭酸カルシウム)65質量部をプラネタリーミキサーに投入し、減圧下にて100℃で2時間加熱脱水しながら混練し、室温まで冷却した後これに、シェルゾールTK(シェルケミカルズジャパン社製、イソパラフィン系希釈剤)5.0質量部、KBM1003(信越化学工業社製、ビニルトリメトキシシラン)3.0質量部、KBM403(信越化学工業社製、3-グリシドキシプロピルトリメトキシシラン)1.0質量部、塩基性化合物(C)Yc質量部を添加し、減圧下にて15分間混練して、硬化性樹脂組成物を得た。硬化性樹脂組成物は、速やかに密栓容器に充填しタックフリータイムの測定を行った(詳しい測定法や養生条件は後述する)。 Ya parts by mass of curable resin (A), Yb parts by mass of curable resin (B), Yd parts by mass of plasticizer (D ′), 2.5 parts by weight of Disparon # 6500 (manufactured by Enomoto Kasei Co., Ltd., sagging inhibitor) Part, Sanol LS770 (manufactured by Sankyo Lifetech Co., Ltd., hindered amine type anti-aging agent) 1.0 part by mass, Tinuvin 326 (manufactured by Ciba Specialty Chemicals Co., Ltd., benzotriazole type anti-aging agent) 1.0 part by mass, white gloss flower CCR- 110 parts by mass of B (manufactured by Shiraishi Kogyo Co., Ltd., surface-treated calcium carbonate) and 65 parts by mass of NS400 (manufactured by Nitto Flour Chemical Co., Ltd., heavy calcium carbonate) were put into a planetary mixer, and reduced pressure at 100 ° C. for 2 hours. After kneading while heating and dehydrating, cooling to room temperature, 5.0 parts by mass of Shellsol TK (manufactured by Shell Chemicals Japan, isoparaffin-based diluent), K M1003 (Shin-Etsu Chemical Co., Ltd., vinyltrimethoxysilane) 3.0 parts by mass, KBM403 (Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane) 1.0 parts by mass, basic compound (C) Yc A part by mass was added and kneaded for 15 minutes under reduced pressure to obtain a curable resin composition. The curable resin composition was immediately filled into a sealed container and the tack free time was measured (detailed measurement method and curing conditions will be described later).
 以下の比較例A1~比較例A8では、上記の硬化性樹脂(A)とその配合量Ya質量部、硬化性樹脂(B)とその配合量Yb質量部、塩基性化合物(C)とその添加量Yc質量部、可塑剤(D’)とその配合量Yd質量部のみを記載する。 In the following Comparative Examples A1 to A8, the curable resin (A) and its blending amount Ya parts by mass, the curable resin (B) and its blending amount Yb parts by mass, the basic compound (C) and its addition Only the amount Yc part by mass, the plasticizer (D ′) and the blending amount Yd part by mass are described.
(比較例A1)
・硬化性樹脂(A) : 硬化性樹脂A-1  Ya=30質量部
・硬化性樹脂(B) : 硬化性樹脂B-1  Yb=70質量部
・塩基性化合物(C): KBM903    Yc=5.0質量部
・可塑剤(D’)   : アクトコールP-21(三井武田ケミカル社製/平均分子量2,000/ポリプロピレングリコール)    Yd=50質量部
(Comparative Example A1)
Curable resin (A): Curable resin A-1 Ya = 30 parts by mass Curable resin (B): Curable resin B-1 Yb = 70 parts by mass Basic compound (C): KBM903 Yc = 5 0.0 part by mass / plasticizer (D ′): Actol P-21 (Mitsui Takeda Chemical Co./average molecular weight 2,000 / polypropylene glycol) Yd = 50 parts by mass
(比較例A2)
・硬化性樹脂(A) : 硬化性樹脂A-1    Ya=50質量部
・硬化性樹脂(B) : 硬化性樹脂B-1    Yb=50質量部
・塩基性化合物(C): KBM903      Yc=5.0質量部
・可塑剤(D’)  : アクトコールP-21  Yd=50質量部
(Comparative Example A2)
Curable resin (A): Curable resin A-1 Ya = 50 parts by mass Curable resin (B): Curable resin B-1 Yb = 50 parts by mass Basic compound (C): KBM903 Yc = 5 0.0 part by mass / plasticizer (D ′): Actol P-21 Yd = 50 parts by mass
(比較例A3)
・硬化性樹脂(A) : 硬化性樹脂A-1    Ya=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1    Yb=30質量部
・塩基性化合物(C): KBM903      Yc=5.0質量部
・可塑剤(D’)  : アクトコールP-21  Yd=50質量部
(Comparative Example A3)
Curable resin (A): Curable resin A-1 Ya = 70 parts by mass Curable resin (B): Curable resin B-1 Yb = 30 parts by mass Basic compound (C): KBM903 Yc = 5 0.0 part by mass / plasticizer (D ′): Actol P-21 Yd = 50 parts by mass
(比較例A4)
・硬化性樹脂(A) : 硬化性樹脂A-1    Ya=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1    Yb=30質量部
・塩基性化合物(C): KBM903      Yc=3.0質量部
・可塑剤(D’)  : アクトコールP-21  Yd=50質量部
(Comparative Example A4)
Curable resin (A): Curable resin A-1 Ya = 70 parts by mass Curable resin (B): Curable resin B-1 Yb = 30 parts by mass Basic compound (C): KBM903 Yc = 3 0.0 part by mass / plasticizer (D ′): Actol P-21 Yd = 50 parts by mass
(比較例A5)
・硬化性樹脂(A) : 硬化性樹脂A-1    Ya=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1    Yb=30質量部
・塩基性化合物(C): KBM602      Yc=3.0質量部
・可塑剤(D’)  : アクトコールP-21  Yd=50質量部
(Comparative Example A5)
Curable resin (A): Curable resin A-1 Ya = 70 parts by mass Curable resin (B): Curable resin B-1 Yb = 30 parts by mass Basic compound (C): KBM602 Yc = 3 0.0 part by mass / plasticizer (D ′): Actol P-21 Yd = 50 parts by mass
(比較例A6)
・硬化性樹脂(A) : 硬化性樹脂A-2    Ya=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-2    Yb=30質量部
・塩基性化合物(C): KBM903      Yc=3.0質量部
・可塑剤(D’)  : アクトコールP-21  Yd=50質量部
(Comparative Example A6)
Curable resin (A): Curable resin A-2 Ya = 70 parts by mass Curable resin (B): Curable resin B-2 Yb = 30 parts by mass Basic compound (C): KBM903 Yc = 3 0.0 part by mass / plasticizer (D ′): Actol P-21 Yd = 50 parts by mass
(比較例A7)
・硬化性樹脂(A) : 硬化性樹脂A-2    Ya=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-1    Yb=30質量部
・塩基性化合物(C): DBU         Yc=3.0質量部
・可塑剤(D’)  : アクトコールP-21  Yd=50質量部
(Comparative Example A7)
Curable resin (A): Curable resin A-2 Ya = 70 parts by mass Curable resin (B): Curable resin B-1 Yb = 30 parts by mass Basic compound (C): DBU Yc = 3 0.0 part by mass / plasticizer (D ′): Actol P-21 Yd = 50 parts by mass
(比較例A8)
・硬化性樹脂(A) : 硬化性樹脂A-3  Ya=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Yb=30質量部
・塩基性化合物(C): KBM603    Yc=3.0質量部
・可塑剤(D’)  : アルフォンUH-2032(東亞合成社製/平均分子量2,000/水酸基価110mgKOH/gである水酸基含有アクリル樹脂)    Yd=50質量部
(Comparative Example A8)
Curable resin (A): Curable resin A-3 Ya = 70 parts by mass Curable resin (B): Curable resin B-2 Yb = 30 parts by mass Basic compound (C): KBM603 Yc = 3 0.0 part by mass / plasticizer (D ′): Alfon UH-2032 (manufactured by Toagosei Co., Ltd./average molecular weight 2,000 / hydroxyl group-containing acrylic resin having a hydroxyl value of 110 mgKOH / g) Yd = 50 parts by mass
[タックフリータイム(初期)の測定]
 上記実施例A1~実施例A13、比較例A1~比較例A8で得られた硬化性樹脂組成物を密栓容器に充填し23℃で12時間調温した後、密栓容器から硬化性樹脂組成物を取り出し約3mmの厚みに薄くのばし、23℃50%RH条件下で、表面を指触したときに、該硬化性樹脂組成物が指に付着しなくなるまでの時間(タックフリータイム)を測定した。タックフリータイムが短い方が、硬化性が高いことを表す。
[Measurement of tack free time (initial)]
The curable resin compositions obtained in Examples A1 to A13 and Comparative Examples A1 to A8 were filled in a sealed container and the temperature was adjusted at 23 ° C. for 12 hours, and then the curable resin composition was discharged from the sealed container. When the surface was touched with a finger under a condition of 23 ° C. and 50% RH, the time until the curable resin composition did not adhere to the finger (tack-free time) was measured. A shorter tack-free time indicates higher curability.
[タックフリータイム(50℃2週間)の測定]
 上記実施例A1~実施例A13、比較例A1~比較例A8で得られた硬化性樹脂組成物を密栓容器に充填し50℃で2週間養生した。その後23℃で12時間調温し、密栓容器から硬化性樹脂組成物を取り出し約3mmの厚みに薄くのばし、23℃50%RH条件下で、表面を指触したときに、該硬化性樹脂組成物が指に付着しなくなるまでの時間(タックフリータイム)を測定した。
[Measurement of tack-free time (50 ° C, 2 weeks)]
The curable resin compositions obtained in Examples A1 to A13 and Comparative Examples A1 to A8 were filled in sealed containers and cured at 50 ° C. for 2 weeks. Thereafter, the temperature is adjusted at 23 ° C. for 12 hours, the curable resin composition is taken out from the sealed container, thinned to a thickness of about 3 mm, and the surface of the curable resin composition is touched at 23 ° C. and 50% RH. The time (tack free time) until an object no longer adhered to the finger was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例A1~実施例A13と比較例A1~比較例A8の結果から、
1)分子内に上記一般式(1)で表されるジアルコキシシリル基を有する硬化性樹脂(A)、2)分子内に上記一般式(2)で表されるジアルコキシシリル基を有する硬化性樹脂(B)、3)塩基性化合物(C)及び、4)分子内に水酸基を含有しない沸点が200℃以上の可塑剤(D)を含有する硬化性樹脂組成物である実施例A1~実施例A13は、有機スズ触媒を実質的に含有せず(1000ppm以下)環境負荷の低減が可能であるとともに、安全性を確保しつつ安定した硬化速度を示した。
From the results of Example A1 to Example A13 and Comparative Example A1 to Comparative Example A8,
1) curable resin (A) having a dialkoxysilyl group represented by the general formula (1) in the molecule, and 2) curing having a dialkoxysilyl group represented by the general formula (2) in the molecule. Examples A1 to C, which are curable resin compositions containing a curable resin (B), 3) a basic compound (C), and 4) a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule In Example A13, an organic tin catalyst was not substantially contained (1000 ppm or less), and environmental load could be reduced, and a stable curing rate was ensured while ensuring safety.
 具体的には、比較例A1~比較例A8で分子内に1個以上の水酸基を含有する化合物を用いた硬化性樹脂組成物では、50℃、2週間貯蔵後のタックフリータイムが初期のそれと比べて2倍以上遅れてしまうのに対し、水酸基を含有しない可塑剤(D)を含有する硬化性樹脂組成物では、タックフリータイム(硬化速度)が初期及び50℃、2週間貯蔵後で安定しており良好な結果を示した。 Specifically, in the curable resin composition using the compound containing one or more hydroxyl groups in the molecule in Comparative Examples A1 to A8, the tack free time after storage at 50 ° C. for 2 weeks is the same as that in the initial stage. Compared to more than twice the delay, the curable resin composition containing a plasticizer (D) that does not contain a hydroxyl group has a tack-free time (curing speed) that is stable at the initial stage and after storage at 50 ° C. for 2 weeks. And showed good results.
[実施例B7~実施例B10の硬化性樹脂組成物の調製]
 実施例B7~実施例B10を、実施例A1~A13に準じて、以下の配合により行った。
[Preparation of Curable Resin Compositions of Examples B7 to B10]
Examples B7 to B10 were carried out according to the following formulations according to Examples A1 to A13.
(実施例B7)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=80質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=20質量部
・塩基性化合物(C): KBM603(信越化学工業社製/N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン)  Xc=3.0質量部
・可塑剤(D)   : サンフレックスSPX-80(三洋化成工業社製/平均分子量8,000/水酸基をアルキルエステル化した水酸基非含有ポリオキシアルキレン)    Xd=50質量部
(Example B7)
Curable resin (A): Curable resin A-1 Xa = 80 parts by mass Curable resin (B): Curable resin B-2 Xb = 20 parts by mass Basic compound (C): KBM603 (Shin-Etsu Chemical) Industrial company / N- (2-aminoethyl) -3-aminopropyltrimethoxysilane) Xc = 3.0 parts by mass Plasticizer (D): Sunflex SPX-80 (manufactured by Sanyo Chemical Industries / average molecular weight 8) , 000 / hydroxy group-free polyoxyalkylene obtained by alkyl esterifying a hydroxyl group) Xd = 50 parts by mass
(実施例B8)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=30質量部
・塩基性化合物(C): KBM603    Xc=3.0質量部
・可塑剤(D)   : アルフォンUP-1110(東亞合成社製/平均分子量2,500/水酸基非含有アクリル樹脂)    Xd=50質量部
(Example B8)
Curable resin (A): Curable resin A-1 Xa = 70 parts by mass Curable resin (B): Curable resin B-2 Xb = 30 parts by mass Basic compound (C): KBM603 Xc = 3 0.0 part by mass / plasticizer (D): Alfon UP-1110 (manufactured by Toagosei Co., Ltd./average molecular weight 2,500 / hydroxyl-free acrylic resin) Xd = 50 parts by mass
(実施例B9)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=80質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=20質量部
・塩基性化合物(C): KBM603    Xc=3.0質量部
・可塑剤(D)   : アジピン酸ジオクチル(DOA)  Xd=50質量部
(Example B9)
Curable resin (A): Curable resin A-1 Xa = 80 parts by mass Curable resin (B): Curable resin B-2 Xb = 20 parts by mass Basic compound (C): KBM603 Xc = 3 0.0 part by mass / plasticizer (D): Dioctyl adipate (DOA) Xd = 50 parts by mass
(実施例B10)
・硬化性樹脂(A) : 硬化性樹脂A-1  Xa=70質量部
・硬化性樹脂(B) : 硬化性樹脂B-2  Xb=30質量部
・塩基性化合物(C): KBM603    Xc=3.0質量部
・可塑剤(D)   : PW-150(出光興産社製/水酸基非含有パラフィン系プロセスオイル)  Xd=50質量部
(Example B10)
Curable resin (A): Curable resin A-1 Xa = 70 parts by mass Curable resin (B): Curable resin B-2 Xb = 30 parts by mass Basic compound (C): KBM603 Xc = 3 0.0 part by mass / plasticizer (D): PW-150 (produced by Idemitsu Kosan Co., Ltd./hydroxyl-free paraffinic process oil) Xd = 50 parts by mass
 実施例B7~実施例B10の硬化性樹脂組成物のタックフリータイムを前述の方法で測定した。表3に実施例A1~実施例6及び実施例B7~実施例B10の硬化性樹脂組成物のタックフリータイムの測定値を、表4に比較例A1~比較例A8の硬化性樹脂組成物のタックフリータイムの測定値を、表5に実施例A7~実施例A10のタックフリータイムの測定値を示す。 The tack free time of the curable resin compositions of Examples B7 to B10 was measured by the method described above. Table 3 shows the measured tack-free times of the curable resin compositions of Examples A1 to 6 and Examples B7 to B10, and Table 4 shows the curable resin compositions of Comparative Examples A1 to A8. Table 5 shows measured values of tack free time, and Table 5 shows measured values of tack free time of Examples A7 to A10.
[H型接着性試験]
 実施例A1~実施例A10、実施例B7~実施例B10及び比較例A1~比較例A8の硬化性樹脂組成物のH型接着性試験を下記の方法で行った。
[H-type adhesion test]
The H-type adhesion tests of the curable resin compositions of Example A1 to Example A10, Example B7 to Example B10, and Comparative Example A1 to Comparative Example A8 were performed by the following method.
[接着性試験]
 JIS A 1439に準じてアルミニウム板を被着体に用いてH型試験体を作成し、養生後の引張り接着性試験を行い破壊状態の評価を行った。接着性の付与効果をより明確に評価するために、シーリング材を使用する時に用いられることが多い接着性付与のためのプライマーは塗布せずに評価を行った。本評価法で破壊状態の評価が悪いものであっても、プライマーを塗布する工程を行うことにより実用上耐えうるものに成り得るが、工程改善の観点からはプライマーを塗布せずとも接着性が向上している方がより好ましいことは明白である。
 破壊状態の評価方法
   ○ :凝集破壊100%(界面破壊0%)
   △ :凝集破壊80~99%(界面破壊20~1%)
   × :凝集破壊50~79%(界面破壊50~21%)
   ××:凝集破壊0~49%(界面破壊100~51%)
[Adhesion test]
In accordance with JIS A 1439, an aluminum plate was used as the adherend, and an H-type test body was prepared. A tensile adhesion test after curing was performed, and the fracture state was evaluated. In order to more clearly evaluate the effect of imparting adhesiveness, evaluation was performed without applying a primer for imparting adhesiveness, which is often used when a sealing material is used. Even if the evaluation of the fracture state is poor in this evaluation method, it can be practically endurable by performing the step of applying the primer, but from the viewpoint of improving the process, the adhesion is not required without applying the primer. It is clear that an improvement is more preferable.
Evaluation method of fracture state ○: Cohesive fracture 100% (interface fracture 0%)
Δ: Cohesive failure 80-99% (interface failure 20-1%)
×: Cohesive failure 50 to 79% (interface failure 50 to 21%)
XX: Cohesive failure 0 to 49% (interface failure 100 to 51%)
 表3に実施例A1~実施例A6及び実施例B7~実施例B10の硬化性樹脂組成物のH型接着性試験の測定値を、表4に比較例A1~比較例A8の硬化性樹脂組成物のH型接着性試験の測定値を、表5に実施例A7~実施例A10のH型接着性試験の測定値を示す。 Table 3 shows measured values of the H-type adhesion test of the curable resin compositions of Examples A1 to A6 and Examples B7 to B10, and Table 4 shows the curable resin compositions of Comparative Examples A1 to A8. Table 5 shows the measured values of the H-type adhesion test of Examples A7 to A10.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例A1~実施例A6及び実施例B7~実施例B10と、比較例A1~比較例A8及び実施例A7~実施例A10の結果から、
1)分子内にウレタン結合及び、上記一般式(1)で表される加水分解性シリル基を有する硬化性樹脂(A)、2)分子内に上記一般式(2)で表されるジアルコキシシリル基を有する硬化性樹脂(B)、3)塩基性化合物(C)、4)分子内に水酸基を含有しない沸点が200℃以上の可塑剤(D)を含有させてなる硬化性樹脂組成物である実施例A1~実施例A6及び実施例B7~実施例B10は、有機スズ触媒を実質的に含有せず(1000ppm以下)環境負荷の低減が可能であるとともに安全性を確保しつつ、安定した硬化速度を維持し、尚且つ、接着性に優れた硬化性樹脂組成物である。
From the results of Example A1 to Example A6 and Example B7 to Example B10, and Comparative Example A1 to Comparative Example A8 and Example A7 to Example A10,
1) A curable resin (A) having a urethane bond in the molecule and a hydrolyzable silyl group represented by the general formula (1), 2) a dialkoxy represented by the general formula (2) in the molecule Curable resin (B) having silyl group, 3) basic compound (C), 4) curable resin composition containing a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule Example A1 to Example A6 and Example B7 to Example B10, which are substantially free of organotin catalyst (1000 ppm or less), are capable of reducing environmental burden and are stable while ensuring safety. It is a curable resin composition that maintains the cured speed and is excellent in adhesiveness.
 具体的には、比較例A1~比較例A8で分子内に1個以上の水酸基を含有する可塑剤(D’)を用いた硬化性樹脂組成物では、接着性は良好であったものの、50℃、2週間貯蔵後のタックフリータイムが初期のそれと比べて2倍以上遅れてしまう。 Specifically, in Comparative Examples A1 to A8, the curable resin composition using the plasticizer (D ′) containing one or more hydroxyl groups in the molecule had good adhesion, but 50 The tack free time after storage at 2 ° C. for 2 weeks is delayed more than twice compared with the initial one.
 実施例A7~実施例A10で、分子内にウレタン結合を含有しない硬化性樹脂及び、水酸基を含有しない可塑剤(D)を用いた硬化性樹脂組成物では、タックフリータイム(硬化速度)は経時で安定したものの、接着性の改善が十分とはいえなかった。 In Example A7 to Example A10, the tack-free time (curing rate) was aged with the curable resin composition using the curable resin containing no urethane bond in the molecule and the plasticizer (D) containing no hydroxyl group. However, the improvement in adhesion was not sufficient.
 実施例A1~実施例A6及び実施例B7~実施例B10で、分子内にウレタン結合を含有する硬化性樹脂(A)及び、水酸基を含有しない可塑剤(D)を用いた硬化性樹脂組成物では、タックフリータイム(硬化速度)が経時で安定し、尚且つ、接着性も良好な結果となった。 A curable resin composition using the curable resin (A) containing a urethane bond in the molecule and the plasticizer (D) containing no hydroxyl group in Examples A1 to A6 and B7 to B10 Then, the tack free time (curing speed) was stable over time, and the adhesion was also good.
<第2の本発明>
(硬化性樹脂b-1の調整)
 反応容器内で、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン(206.4g、1.0mol)を窒素雰囲気下50℃で撹拌しながら、アクリル酸メチル(172.2g、2.0mol)を1時間かけて滴下し、さらに、室温で5時間反応させた後、50℃で7日間反応させることで、分子内にメチルジメトキシシリル基及び第2級アミノ基を有する反応物SB-1を得た。
<Second Invention>
(Adjustment of curable resin b-1)
While stirring N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane (206.4 g, 1.0 mol) at 50 ° C. in a nitrogen atmosphere in a reaction vessel, methyl acrylate (172.2 g, 2 0.0 mol) is added dropwise over 1 hour, and further reacted at room temperature for 5 hours, followed by reaction at 50 ° C. for 7 days, whereby a reactant SB having a methyldimethoxysilyl group and a secondary amino group in the molecule. -1 was obtained.
 別の反応容器内に、旭硝子ウレタン社製のPMLS4012(ポリオキシプロピレンポリオール、数平均分子量10,000)を500g、旭硝子ウレタン社製のPMLS1005(ポリオキシプロピレンモノオール、数平均分子量5,500)を500g、イソホロンジイソシアネートを47.4g、及びジオクチルスズジバーサテートを0.10g仕込み、窒素雰囲気下にて撹拌混合しながら、80℃で3時間反応させて、分子内にイソシアネート基を有するポリオキシアルキレン樹脂PB-1を得た。 In a separate reaction container, 500 g of PMLS4012 (polyoxypropylene polyol, number average molecular weight 10,000) manufactured by Asahi Glass Urethane Co., Ltd., and PMLS1005 (polyoxypropylene monool, number average molecular weight 5,500) manufactured by Asahi Glass Urethane Co., Ltd. 500 g, 47.4 g of isophorone diisocyanate, and 0.10 g of dioctyltin diversate are charged and reacted at 80 ° C. for 3 hours with stirring and mixing in a nitrogen atmosphere to obtain a polyoxyalkylene having an isocyanate group in the molecule. Resin PB-1 was obtained.
 その後、これに上記反応物SB-1を100.1g添加し、窒素雰囲気下にて撹拌混合しながら、80℃で1時間反応させることで、主鎖がポリオキシアルキレンであり分子内にメチルジメトキシシリル基を有する硬化性樹脂b-1を得た。得られた硬化性樹脂B-1をFT-IRで分析することにより、NCO基が消失していることを確認した。 Thereafter, 100.1 g of the above reactant SB-1 was added thereto, and the mixture was reacted for 1 hour at 80 ° C. with stirring and mixing in a nitrogen atmosphere, so that the main chain was polyoxyalkylene and methyldimethoxy in the molecule. A curable resin b-1 having a silyl group was obtained. The obtained curable resin B-1 was analyzed by FT-IR to confirm disappearance of the NCO group.
(硬化性樹脂Z-1の調整)
 反応容器内で、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(222.4g、1.0mol)を窒素雰囲気下50℃で撹拌しながら、アクリル酸メチル(172.2g、2.0mol)を1時間かけて滴下し、さらに、室温で5時間反応させた後、50℃で7日間反応させることで、分子内にトリメトキシシリル基及び第2級アミノ基を有する反応物SZ-2を得た。
(Adjustment of curable resin Z-1)
While stirring N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (222.4 g, 1.0 mol) at 50 ° C. in a nitrogen atmosphere in a reaction vessel, methyl acrylate (172.2 g, 2 0.0 mol) is added dropwise over 1 hour, and further reacted at room temperature for 5 hours, followed by reaction at 50 ° C. for 7 days, whereby a reactant SZ having a trimethoxysilyl group and a secondary amino group in the molecule -2 was obtained.
 別の反応容器内に、旭硝子ウレタン社製のPMLS4012(ポリオキシプロピレンポリオール、数平均分子量10,000)を1000g、イソホロンジイソシアネートを47.2g、及びジオクチルスズジバーサテートを0.10g仕込み、窒素雰囲気下にて撹拌混合しながら、80℃で3時間反応させて、分子内にイソシアネート基を有するポリオキシアルキレン樹脂PZ-2を得た。 In a separate reaction vessel, 1000 g of PMLS4012 (polyoxypropylene polyol, number average molecular weight 10,000) manufactured by Asahi Glass Urethane Co., 47.2 g of isophorone diisocyanate, and 0.10 g of dioctyltin diversate were charged, and a nitrogen atmosphere The mixture was allowed to react at 80 ° C. for 3 hours with stirring under mixing to obtain a polyoxyalkylene resin PZ-2 having an isocyanate group in the molecule.
 その後、これに上記反応物SZ-2を102.1g添加し、窒素雰囲気下にて撹拌混合しながら、80℃で1時間反応させることで、主鎖がポリオキシアルキレンであり分子内にトリメトキシシリル基を有する硬化性樹脂Z-1を得た。得られた硬化性樹脂Z-1をFT-IRで分析することにより、NCO基が消失していることを確認した。 Thereafter, 102.1 g of the above reactant SZ-2 was added thereto, and the mixture was reacted at 80 ° C. for 1 hour with stirring and mixing under a nitrogen atmosphere, whereby the main chain was polyoxyalkylene and trimethoxy was present in the molecule. A curable resin Z-1 having a silyl group was obtained. The obtained curable resin Z-1 was analyzed by FT-IR to confirm disappearance of the NCO group.
(実施例C1)
 硬化性樹脂(a)として主鎖がポリオキシプロピレンであり、末端にメチルジメトキシシリル基型のα-シラン構造を有する「GENIOSIL STP-E30」(Wacker Chemie AG.製、メトキシ基等量から換算した分子量約16000、粘度約30000mPa・s/25℃(カタログ値))50質量部、硬化性樹脂(b)として末端のメチルジメトキシシリル基が-(CH-を介して主鎖のポリオキシプロピレンに結合した変成シリコーン樹脂「EXCESTER S2410」(旭硝子株式会社製)50質量部、アクトコールP-21(三井武田ケミカル社製、平均分子量2,000のポリプロピレングリコール)を50質量部、ディスパロン#6500(楠本化成社製、タレ防止剤)2.5質量部、サノールLS770(三共ライフテック社製、ヒンダードアミン系老化防止剤)1.0質量部、チヌビン326(チバ・スペシャルティ・ケミカルズ社製、ベンゾトリアゾール系老化防止剤)1.0質量部、コートサイド水和剤(日本エンバイロケミカルズ社製、防カビ剤)0.5質量部、白艶華CCR-B(白石工業社製、表面処理炭酸カルシウム)110質量部、NS400(日東粉化工業社製、重質炭酸カルシウム)62.5質量部をプラネタリーミキサーに投入し、減圧下にて100℃で2時間加熱脱水しながら混練し、室温まで冷却した後これに、シェルゾールTK(シェルケミカルズジャパン社製、イソパラフィン系希釈剤)5.0質量部、KBM1003(信越化学工業社製、ビニルトリメトキシシラン)3.0質量部、KBM602(信越化学工業社製、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン)3.0質量部、KBM403(信越化学工業社製、3-グリシドキシプロピルトリメトキシシラン)1.0質量部を添加し、減圧下にて15分間混練して、シーリング材組成物を得た。シーリング材組成物は、速やかに密栓容器に充填し、その後タックフリータイムの測定、接着性試験(H型試験)、耐候性試験を行った。(詳しい試験内容に関しては後述してある。)
(Example C1)
"GENIOSIL STP-E30" having a main chain of polyoxypropylene as the curable resin (a) and having a methyldimethoxysilyl group-type α-silane structure (Wacker Chemie AG., Converted from methoxy group equivalent amount) The molecular weight is about 16000, the viscosity is about 30000 mPa · s / 25 ° C. (catalog value), 50 parts by mass, and the terminal methyldimethoxysilyl group as a curable resin (b) is bonded via — (CH 2 ) 3 — 50 parts by mass of modified silicone resin “EXCESTER S2410” (Asahi Glass Co., Ltd.) bonded to propylene, 50 parts by mass of Actcol P-21 (manufactured by Mitsui Takeda Chemicals, polypropylene glycol having an average molecular weight of 2,000), Disparon # 6500 (Enomoto Kasei Co., anti-sagging agent) 2.5 parts by mass, sanol LS770 (manufactured by Sankyo Lifetech Co., Ltd., hindered amine type anti-aging agent) 1.0 part by mass, Tinuvin 326 (manufactured by Ciba Specialty Chemicals Co., Ltd., benzotriazole type anti-aging agent) 1.0 part by mass, coatside wettable powder ( Nippon Enviro Chemicals Co., Ltd., mold preventive agent) 0.5 parts by mass, Shiraka Hana CCR-B (Shiraishi Kogyo Co., Ltd., surface treated calcium carbonate) 110 parts by mass, NS400 (Nitto Flour Chemical Co., Ltd., heavy calcium carbonate) 62 .5 parts by mass was put into a planetary mixer, kneaded while heating and dehydrating at 100 ° C. for 2 hours under reduced pressure, cooled to room temperature, and then added to Shellsol TK (manufactured by Shell Chemicals Japan, isoparaffin diluent) ) 5.0 parts by mass, KBM1003 (Shin-Etsu Chemical Co., Ltd., vinyltrimethoxysilane) 3.0 parts by mass, KBM602 Shin-Etsu Chemical Co., Ltd., N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane) 3.0 parts by mass, KBM403 (Shin-Etsu Chemical Co., Ltd., 3-glycidoxypropyltrimethoxysilane) 1.0 Mass parts were added and kneaded for 15 minutes under reduced pressure to obtain a sealing material composition. The sealing material composition was quickly filled in a sealed container, and then a tack-free time measurement, an adhesion test (H-type test), and a weather resistance test were performed. (Details of the test are described later.)
(実施例C2)
 上記実施例C1において、「GENIOSIL STP-E30」を30質量部、「EXCESTER S2410」を70質量部にした以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C2)
A sealing material composition was blended in the same manner as in Example C1 except that “GENIOSIL STP-E30” was changed to 30 parts by mass and “EXCESTER S2410” was changed to 70 parts by mass.
(実施例C3)
 上記実施例C2において、「EXCESTER S2410」の代わりに硬化性樹脂b-1を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C3)
In the above Example C2, a sealing material composition was blended in the same manner except that the curable resin b-1 was used instead of “EXCESTER S2410”, and the test was performed.
(実施例C4)
 上記実施例C2において、KBM602の代わりに、KBM603(信越化学工業社製、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン)を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C4)
In Example C2, a sealing material composition was formulated in the same manner except that KBM603 (manufactured by Shin-Etsu Chemical Co., Ltd., N- (2-aminoethyl) -3-aminopropyltrimethoxysilane) was used instead of KBM602. The test was conducted.
(実施例C5)
 上記実施例C3において、KBM602の代わりに、KBM903(信越化学工業社製、γ-アミノプロピルトリメトキシシラン)を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C5)
In Example C3, a sealing material composition was blended in the same manner except that KBM903 (manufactured by Shin-Etsu Chemical Co., Ltd., γ-aminopropyltrimethoxysilane) was used instead of KBM602, and the test was conducted.
(実施例C6)
 上記実施例C2において、「GENIOSIL STP-E30」の代わりに、「GENIOSIL STP-E10」(Wacker Chemie AG.製、メトキシ基等量から換算した分子量約10000、粘度約10000mPa・s/25℃(カタログ値))を、KBM602の代わりにKBM903を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C6)
In Example C2, instead of “GENIOSIL STP-E30”, “GENIOSIL STP-E10” (manufactured by Wacker Chemie AG., Molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa · s / 25 ° C. (catalog Value)) was blended in the same manner except that KBM903 was used instead of KBM602, and the test was conducted.
(実施例C7)
 上記実施例C3において、KBM602の代わりに、オクチルアミンを使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C7)
In Example C3, a sealing material composition was blended in the same manner except that octylamine was used instead of KBM602, and the test was performed.
(実施例C8)
 上記実施例C2において、KBM602の代わりに、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C8)
In the above Example C2, a sealing material composition was blended in the same manner except that 1,8-diazabicyclo [5,4,0] undecene-7 (DBU) was used instead of KBM602, and the test was conducted. .
(実施例C9)
 上記実施例C2において、アクトコールP-21の代わりに、ジイソノニルフタレート(DINP)を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Example C9)
In Example C2, a sealing material composition was blended in the same manner except that diisononyl phthalate (DINP) was used instead of Actol P-21, and the test was conducted.
(比較例C1)
 上記実施例C1において、「GENIOSIL STP-E30」を使用せず、「EXCESTER S2410」を50質量部から100質量部にした以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C1)
A sealing material composition was blended in the same manner as in Example C1 except that “GENIOSIL STP-E30” was not used and “EXCESTER S2410” was changed from 50 parts by mass to 100 parts by mass, and the test was performed.
(比較例C2)
 上記比較例C1において、加熱脱水し室温まで冷却した後に、他の添加剤と一緒に、SCAT-32A(三共有機合成社製、ブチルスズ系触媒)1.5質量部、STANNBL(三共有機合成社製、ブチルスズ系触媒)1.5質量部を添加した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C2)
In Comparative Example C1, after heating and dehydrating and cooling to room temperature, together with other additives, 1.5 parts by mass of SCAT-32A (manufactured by Sankyo Gosei Co., Ltd., butyltin-based catalyst), STANNBL (Trishader Synthesis) A sealing material composition was blended in the same manner except that 1.5 parts by mass of a butyltin catalyst (manufactured by Kogyo Co., Ltd.) was added, and the test was conducted.
(比較例C3)
 上記比較例C1において、「EXCESTER S2410」の代わりに、「GENIOSIL STP-E30」を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C3)
In the above Comparative Example C1, a sealing material composition was blended in the same manner except that “GENIOSIL STP-E30” was used instead of “EXCESTER S2410”, and the test was conducted.
(比較例C4)
 上記比較例C3において、KBM602の代わりにKBM603を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C4)
A sealing material composition was blended in the same manner as in Comparative Example C3 except that KBM603 was used instead of KBM602, and the test was performed.
(比較例C5)
 上記実施例C4において、「EXCESTER S2410」の代わりに、末端にトリメトキシシリル基を有する変成シリコーン樹脂「ES-G3440-ST」(旭硝子株式会社製)を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C5)
A sealing material composition was prepared in the same manner as in Example C4 except that a modified silicone resin “ES-G3440-ST” (manufactured by Asahi Glass Co., Ltd.) having a trimethoxysilyl group at the terminal was used instead of “EXCESTER S2410”. And the test was conducted.
(比較例C6)
 上記比較例C5において、「ES-G3440-ST」の代わりに、硬化性樹脂Z-1を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C6)
In Comparative Example C5, a sealing material composition was blended in the same manner except that curable resin Z-1 was used instead of “ES-G3440-ST”, and the test was performed.
(比較例C7)
 上記比較例C4において、「GENIOSIL STP-E30」の代わりに、「GENIOSIL STP-E10」を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C7)
In the above Comparative Example C4, a sealing material composition was blended in the same manner except that “GENIOSIL STP-E10” was used instead of “GENIOSIL STP-E30”, and the test was conducted.
(比較例C8)
 上記比較例C7において、KBM603の代わりに、KBM602を使用した以外は同様にしてシーリング材組成物を配合し、該試験を行った。
(Comparative Example C8)
In Comparative Example C7, a sealing material composition was blended in the same manner except that KBM602 was used instead of KBM603, and the test was performed.
[タックフリータイムの測定]
 23℃に調温したシーリング材組成物を約3mmの厚みに薄くのばし、23℃50%RH条件下で、表面を指触したときに、指が汚れなくなるまでの時間(タックフリータイム)を測定した。タックフリータイムが短い方が、硬化性が早いことを表す。
[Measurement of tack-free time]
The sealant composition adjusted to 23 ° C is thinned to a thickness of about 3 mm, and when the surface is touched with a finger under 23 ° C and 50% RH, the time until the finger is not soiled (tack-free time) is measured. did. A shorter tack-free time indicates faster curability.
[接着性試験]
 JIS A 1439に準じてアルミニウム板を被着体に用いてH型試験体を作成し、養生後の引張り接着性試験を行い、50%モジュラス(伸び率が50%時の荷重)の測定を行った。
[Adhesion test]
Create an H-type specimen using an aluminum plate as the adherend in accordance with JIS A 1439, perform a tensile adhesion test after curing, and measure 50% modulus (load at 50% elongation). It was.
[耐候性試験]
 シーリング材組成物を、アルミニウム板(50×50×3mm)の表面に厚さ約5mmのシートを作成し、23℃50%RHにて7日間、その後40℃にて7日間養生した。その後メタルウェザーメーター試験機(ダイプラ・ウインテス社製、型番:KU-R5CI-A)で200時間の照射を行った。(メタルウェザーメーター試験機で100時間の照射は、サンシャインウェザーメーターで500~1000時間照射に相当する。)照射後、表面についてクラック発生の有無等の劣化状況を目視で観察して、耐候性試験を行った。
[Weather resistance test]
A sheet having a thickness of about 5 mm was prepared on the surface of an aluminum plate (50 × 50 × 3 mm), and the sealing material composition was cured at 23 ° C. and 50% RH for 7 days and then at 40 ° C. for 7 days. Thereafter, irradiation was performed for 200 hours with a metal weather meter tester (manufactured by Daipura Wintes Co., Ltd., model number: KU-R5CI-A). (100 hours of irradiation with a metal weather meter tester is equivalent to 500 to 1000 hours of irradiation with a sunshine weather meter.) After irradiation, the surface is visually observed for deterioration, such as the presence or absence of cracks, and a weather resistance test. Went.
耐候性試験の評価基準
 ○:表面にクラック等の劣化が全く確認されない場合
 △:表面に微細なクラック等の劣化が若干確認できる場合
 ×:表面にクラックが発生し、明らかな劣化が確認される場合
Evaluation criteria for weather resistance test ○: When no degradation such as cracks is confirmed on the surface △: When slight degradation such as fine cracks can be confirmed on the surface ×: Cracks are generated on the surface, and obvious degradation is confirmed Case
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例C1~実施例C9と比較例C1~比較例C8の結果から、
1)分子内に上記一般式(I)で表されるジアルコキシシリル基加を有する硬化性樹脂(a)と、2)分子内に上記一般式(II)で表されるジアルコキシシリル基を有する硬化性樹脂(b)と、3)塩基性化合物(c)と、4)老化防止剤(d)を含有させてなるシーリング材組成物である実施例C1~実施例C9は、環境への負荷が懸念される重金属(スズ)を含む触媒を使用することなく、必要十分な硬化速度を有し、耐候性が良好で、実用可能なモジュラスを示すシーリング材組成物であることが分かる。
From the results of Examples C1 to C9 and Comparative Examples C1 to C8,
1) a curable resin (a) having a dialkoxysilyl group represented by the general formula (I) in the molecule; and 2) a dialkoxysilyl group represented by the general formula (II) in the molecule. Examples C1 to C9, which are sealing material compositions containing a curable resin (b), 3) a basic compound (c), and 4) an anti-aging agent (d), It can be seen that the sealing material composition has a necessary and sufficient curing rate, good weather resistance, and a practical modulus without using a catalyst containing a heavy metal (tin), which is a concern for load.
 具体的には、実施例と比較例C1の結果より、硬化性樹脂(a)を硬化性樹脂(b)に一部添加することで、環境への負荷が懸念されるスズ触媒を使用することなく、必要十分な硬化速度を得ることができた。 Specifically, based on the results of Examples and Comparative Example C1, use a tin catalyst that is partly added to the curable resin (b) and is likely to be burdened with the environment. The necessary and sufficient curing rate could be obtained.
 実施例と比較例C2の結果より、スズ触媒を抜いて、硬化性樹脂(a)を一部添加することで、十分な硬化速度を維持しつつ、しかも、耐候性を向上させることができた。 From the results of Examples and Comparative Example C2, by removing the tin catalyst and adding a part of the curable resin (a), it was possible to improve the weather resistance while maintaining a sufficient curing rate. .
 実施例と比較例C3、比較例C4、比較例C7及び比較例C8の結果より、硬化性樹脂(a)にモジュラス調整剤として硬化性樹脂(b)を添加することにより、50%モジュラスが低く軟らかいシーリング材に適した硬化物を得ることができた。 From the results of Example and Comparative Example C3, Comparative Example C4, Comparative Example C7 and Comparative Example C8, the addition of the curable resin (b) as a modulus adjuster to the curable resin (a) reduces the 50% modulus. A cured product suitable for a soft sealant could be obtained.
 実施例と比較例C5及び比較例C6の結果より、トリメトキシシリル基を持つ硬化性樹脂を添加しても、モジュラスを下げることはできなかったが、ジメトキシシリル基を持つ硬化性樹脂(b)を添加することでモジュラスを下げ、シーリング材に好適な物性を得ることができた。 From the results of Examples and Comparative Examples C5 and C6, even when a curable resin having a trimethoxysilyl group was added, the modulus could not be lowered, but the curable resin having a dimethoxysilyl group (b) As a result, the modulus was lowered and physical properties suitable for a sealing material could be obtained.
 以上のとおり、本願発明のシーリング材組成物は、タックフリータイムの測定、接着性試験、耐候性試験の結果、優れた性能を有することが確認できた。 As described above, it was confirmed that the sealing material composition of the present invention had excellent performance as a result of tack-free time measurement, adhesion test, and weather resistance test.
 本発明に係る硬化性樹脂組成物は、環境負荷の低減が可能であるとともに、安全性を確保しつつ安定した硬化速度を示し、また、好ましい態様の本発明に係る硬化性樹脂組成物は、前記の特性に加えて、優れた接着性を有する硬化性材組成物として好適に用いることができることから、例えば、1液形の接着剤、シーリング材、粘着剤、塗料、コーティング材、目止め材、注型材、被覆材等として用いることができる。本発明に係るシーリング材組成物は、環境負荷の低減が可能であるとともに、安全性を確保しつつ必要十分な硬化速度を有し、耐候性が良好で、実用可能なモジュラスを示すシーリング材組成物として好適に用いることができる。 The curable resin composition according to the present invention is capable of reducing the environmental burden and exhibits a stable curing rate while ensuring safety. Further, the curable resin composition according to the present invention in a preferred aspect is Since it can be suitably used as a curable material composition having excellent adhesiveness in addition to the above properties, for example, a one-component adhesive, sealing material, pressure-sensitive adhesive, paint, coating material, sealing material It can be used as a casting material, a covering material, and the like. The sealing material composition according to the present invention is capable of reducing the environmental load, has a necessary and sufficient curing rate while ensuring safety, has good weather resistance, and exhibits a practical modulus. It can be suitably used as a product.

Claims (18)

  1.  1)分子内に下記一般式(1):
      -X-SiR (OR3-a    ・・・式(1)
    (但し、Xは炭素数2以上の炭化水素を、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基を、aは0、1又は2をそれぞれ示す。)で表される加水分解性シリル基を有する硬化性樹脂(A)の100質量部に対して、
    2)分子内に下記一般式(2):
      -W-CH-SiR(OR    ・・・式(2)
    (但し、Wは-O-CO-NH-、-N(R)-CO-NH-、-NH-CO-N(R)-、-S-CO-NH-、-NH-CO-S-から選択される基を表し、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基を、Rは水素、ハロゲン置換されていてもよい環状、線状又は分枝鎖状の炭素数1~18のアルキルもしくはアルケニル基又は炭素数6~18個のアリール基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂(B)を5~400質量部、並びに、硬化性樹脂(A)と硬化性樹脂(B)の総和100質量部に対して、
    3)塩基性化合物(C)を0.1~30質量部、及び
    4)分子内に水酸基を含有しない沸点が200℃以上の可塑剤(D)を10~500重量部、
    を含有させてなる硬化性樹脂組成物。
    1) In the molecule, the following general formula (1):
    —X—SiR 1 a (OR 2 ) 3-a Formula (1)
    (Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, a represents 0, 1 or 2) To 100 parts by mass of the curable resin (A) having a hydrolyzable silyl group represented by
    2) In the molecule, the following general formula (2):
    —W—CH 2 —SiR 3 (OR 4 ) 2 Formula (2)
    (W is —O—CO—NH—, —N (R 5 ) —CO—NH—, —NH—CO—N (R 5 ) —, —S—CO—NH—, —NH—CO— Represents a group selected from S—, R 3 represents an alkyl group having 1 to 20 carbon atoms, R 4 represents an alkyl group having 1 to 3 carbon atoms, and R 5 may be substituted with hydrogen or halogen. A curable resin having a dialkoxysilyl group represented by a cyclic, linear or branched alkyl or alkenyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms. ) To 5 to 400 parts by mass, and the total of 100 parts by mass of the curable resin (A) and the curable resin (B),
    3) 0.1 to 30 parts by weight of the basic compound (C), and 4) 10 to 500 parts by weight of a plasticizer (D) having a boiling point of 200 ° C. or higher that does not contain a hydroxyl group in the molecule,
    A curable resin composition comprising:
  2.  硬化性樹脂(A)中の一般式(1)の全てもしくは一部が下記一般式(1’):
      -X-SiR(OR    ・・・式(1’)
    (但し、Xは炭素数2以上の炭化水素を、Rは炭素数1~20個のアルキル基を、Rは炭素数1~3個のアルキル基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂であることを特徴とする請求項1に記載の硬化性樹脂組成物。
    All or part of the general formula (1) in the curable resin (A) is represented by the following general formula (1 ′):
    -X-SiR 1 (OR 2 ) 2 Formula (1 ')
    (Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 1 represents an alkyl group having 1 to 20 carbon atoms, and R 2 represents an alkyl group having 1 to 3 carbon atoms). The curable resin composition according to claim 1, which is a curable resin having an alkoxysilyl group.
  3.  硬化性樹脂(A)が分子内にさらにウレタン結合を有することを特徴とする請求項1又は2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the curable resin (A) further has a urethane bond in the molecule.
  4.  可塑剤(D)がフタル酸エステル系化合物、アルキルスルホン酸エステル系化合物、水酸基を封鎖したポリオキシアルキレン、水酸基を含有しないアクリル樹脂、アジピン酸エステル系化合物、炭化水素系化合物から選択された1種以上であることを特徴とする請求項1~3のいずれか1項に記載の硬化性樹脂組成物。 One type of plasticizer (D) selected from phthalic acid ester compounds, alkylsulfonic acid ester compounds, polyoxyalkylenes with hydroxyl groups blocked, acrylic resins not containing hydroxyl groups, adipic acid ester compounds, and hydrocarbon compounds The curable resin composition according to any one of claims 1 to 3, which is as described above.
  5.  硬化性樹脂(A)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることを特徴とする、請求項1~4のいずれか1項に記載の硬化性樹脂組成物。 The curable resin according to any one of claims 1 to 4, wherein the main chain of the curable resin (A) is essentially a polyoxyalkylene and / or a poly (meth) acrylic ester. Composition.
  6.  硬化性樹脂(B)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることを特徴とする、請求項1~5のいずれか1項に記載の硬化性樹脂組成物。 The curable resin according to any one of claims 1 to 5, wherein the main chain of the curable resin (B) is essentially polyoxyalkylene and / or poly (meth) acrylic acid ester. Composition.
  7.  塩基性化合物(C)がアミン化合物であることを特徴とする請求項1~6のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, wherein the basic compound (C) is an amine compound.
  8.  塩基性化合物(C)がその分子内にアミノ基と下記一般式(3):
      -SiR 3-n   ・・・式(3)
    (但し、Yは加水分解性基を、Rは炭素数1~20個のアルキル基を、nは0、1又は2を、それぞれ示す。)で表される加水分解性シリル基を有する化合物であることを特徴とする請求項1~7のいずれか1項に記載の硬化性樹脂組成物。
    The basic compound (C) has an amino group and the following general formula (3) in its molecule:
    -SiR 6 n Y 3-n Formula (3)
    (Wherein Y represents a hydrolyzable group, R 6 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2), and a compound having a hydrolyzable silyl group The curable resin composition according to any one of claims 1 to 7, wherein
  9.  有機スズ系触媒が実質的に含まれない、または1000ppm未満であることを特徴とする請求項1~8のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 8, which is substantially free of organotin catalyst or less than 1000 ppm.
  10.  さらに、充填剤又は老化防止剤を含有することを特徴とする請求項1~9のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 9, further comprising a filler or an anti-aging agent.
  11.  1)分子内に下記一般式(I):
      -W-CH-SiR11(OR12    ・・・式(I)
    (但し、Wは-O-CO-NH-、-N(R16)-CO-N(R17)-、-S-CO-NH-、-NH-CO-S-から選択される基を表し、R11、R12は炭素数1~20個のアルキル基を、R16、R17は水素、ハロゲン置換されていてもよい環状、線状又は分枝鎖状の炭素数1~18のアルキルもしくはアルケニル基又は炭素数6~18個のアリール基をそれぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂(a)を100質量部に対して、
    2)分子内に下記一般式(II):
      -X-SiR13(OR14    ・・・式(II)
    (但し、Xは炭素数2以上の炭化水素を、R13、R14は炭素数1~20個のアルキル基を、それぞれ示す。)で表されるジアルコキシシリル基を有する硬化性樹脂(b)を40~400質量部、
    3)塩基性化合物(c)を0.1~70質量部、及び
    4)老化防止剤(d)を0.1~70質量部、
    を含有させてなるシーリング材組成物。
    1) In the molecule, the following general formula (I):
    —W—CH 2 —SiR 11 (OR 12 ) 2 ... Formula (I)
    (W represents a group selected from —O—CO—NH—, —N (R 16 ) —CO—N (R 17 ) —, —S—CO—NH—, —NH—CO—S—). R 11 and R 12 are alkyl groups having 1 to 20 carbon atoms, R 16 and R 17 are cyclic, linear or branched carbon atoms having 1 to 18 carbon atoms which may be substituted with hydrogen or halogen. An alkenyl or alkenyl group or an aryl group having 6 to 18 carbon atoms, respectively), and curable resin (a) having a dialkoxysilyl group represented by
    2) The following general formula (II) in the molecule:
    -X-SiR 13 (OR 14 ) 2 Formula (II)
    (Wherein X represents a hydrocarbon having 2 or more carbon atoms, R 13 and R 14 each represent an alkyl group having 1 to 20 carbon atoms), and a curable resin having a dialkoxysilyl group (b 40 to 400 parts by mass of
    3) 0.1 to 70 parts by weight of the basic compound (c), and 4) 0.1 to 70 parts by weight of the anti-aging agent (d),
    A sealant composition comprising:
  12.  硬化性樹脂(a)が分子内にさらにウレタン結合を有することを特徴とする請求項11に記載のシーリング材組成物。 The sealing material composition according to claim 11, wherein the curable resin (a) further has a urethane bond in the molecule.
  13.  硬化性樹脂(a)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることを特徴とする、請求項11又は12に記載のシーリング材組成物。 The sealing material composition according to claim 11 or 12, wherein the main chain of the curable resin (a) is essentially polyoxyalkylene and / or poly (meth) acrylate.
  14.  硬化性樹脂(b)の主鎖が本質的にポリオキシアルキレン及び/又はポリ(メタ)アクリル酸エステルであることを特徴とする、請求項11~13のいずれか1項に記載のシーリング材組成物。 The sealing material composition according to any one of claims 11 to 13, wherein the main chain of the curable resin (b) is essentially polyoxyalkylene and / or poly (meth) acrylic acid ester. object.
  15.  塩基性化合物(c)がアミン化合物であることを特徴とする請求項11~14のいずれか1項に記載のシーリング材組成物。 The sealing material composition according to any one of claims 11 to 14, wherein the basic compound (c) is an amine compound.
  16.  塩基性化合物(c)がその分子内にアミノ基と下記一般式(III):
      -SiR15 3-n   ・・・式(III)
    (但し、Yは加水分解性基を、R15は炭素数1~20個のアルキル基を、nは0、1又は2を、それぞれ示す。)で表される加水分解性シリル基を有する化合物であることを特徴とする請求項11~15のいずれか1項に記載のシーリング材組成物。
    The basic compound (c) has an amino group in its molecule and the following general formula (III):
    -SiR 15 n Y 3-n Formula (III)
    (Wherein Y represents a hydrolyzable group, R 15 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0, 1 or 2), and a compound having a hydrolyzable silyl group The sealing material composition according to any one of claims 11 to 15, wherein the composition is a sealing material composition.
  17.  有機スズ系触媒が実質的に含まれない、または1000ppm未満であることを特徴とする請求項11~16のいずれか1項に記載のシーリング材組成物。 The sealing material composition according to any one of claims 11 to 16, wherein the organotin catalyst is substantially not contained or less than 1000 ppm.
  18.  さらに、充填剤又は老化防止剤を含有することを特徴とする請求項11~17のいずれか1項に記載のシーリング材組成物。 The sealing material composition according to any one of claims 11 to 17, further comprising a filler or an anti-aging agent.
PCT/JP2009/067746 2008-10-24 2009-10-14 Room temperature and humidity curable one-part liquid resin composition WO2010047249A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-273688 2008-10-24
JP2008273688A JP2010100737A (en) 2008-10-24 2008-10-24 Sealing material composition
JP2009065623A JP2010215826A (en) 2009-03-18 2009-03-18 One pack room temperature moisture-curing type curable resin composition
JP2009-065623 2009-03-18
JP2009-089813 2009-04-02
JP2009089813A JP2010241889A (en) 2009-04-02 2009-04-02 One-pack room-temperature moisture-curing resin composition

Publications (1)

Publication Number Publication Date
WO2010047249A1 true WO2010047249A1 (en) 2010-04-29

Family

ID=42119290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067746 WO2010047249A1 (en) 2008-10-24 2009-10-14 Room temperature and humidity curable one-part liquid resin composition

Country Status (1)

Country Link
WO (1) WO2010047249A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089987A1 (en) * 2010-01-20 2011-07-28 コニシ株式会社 Flame-resistant moisture-curable resin composition, flame-resistant moisture-curable bonding agent comprising said composition, and bonding method using said bonding agent
JP2014101499A (en) * 2012-10-22 2014-06-05 Sekisui Fuller Co Ltd Curable composition
JP2016522308A (en) * 2013-06-20 2016-07-28 モーメンティブ・パフォーマンス・マテリアルズ・インク Moisture curable compounds with thiourea
CN107567469A (en) * 2015-05-05 2018-01-09 赢创德固赛有限公司 Delayed action gel catalysts composition and the method for preparing polyether polyols
JP2020066708A (en) * 2018-10-26 2020-04-30 株式会社カネカ Curable composition for sealing material, sealing method and building exterior wall
WO2020149269A1 (en) * 2019-01-18 2020-07-23 日本化学塗料株式会社 Curable water-swelling waterstop material, waterstop steel sheet pile, waterstop steel sheet pile production method, and water-stopping method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139452A (en) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh Method for enhancing flexibility of moisture cured elastomer
JP2005281495A (en) * 2004-03-30 2005-10-13 Yokohama Rubber Co Ltd:The Curable composition
JP2006199725A (en) * 2005-01-18 2006-08-03 Konishi Co Ltd Curable resin composition
WO2007085605A1 (en) * 2006-01-26 2007-08-02 Wacker Chemie Ag Polymer mixtures containing alkoxysilane terminated polymers
WO2007085604A1 (en) * 2006-01-26 2007-08-02 Wacker Chemie Ag Polymer mixtures containing alkoxysilane terminated polymers
JP2007246577A (en) * 2006-03-14 2007-09-27 Konishi Co Ltd Hardening catalyst for hardenable silicone-based resin and hardenable silicone-based resin composition
WO2007131986A2 (en) * 2006-05-16 2007-11-22 Wacker Chemie Ag Alkoxysilane cross-linked polymers having improved elastic recovery properties
WO2007131912A1 (en) * 2006-05-11 2007-11-22 Wacker Chemie Ag Transparent polymer mixtures which contain alkoxysilane-terminated polymers
JP2008169283A (en) * 2007-01-11 2008-07-24 Konishi Co Ltd Moisture-curable resin composition, method for producing the same and moisture-curable adhesive composition
JP2009057563A (en) * 2007-09-03 2009-03-19 Wacker Chemie Ag Crosslinkable compound based on organic silicon compound

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139452A (en) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh Method for enhancing flexibility of moisture cured elastomer
JP2005281495A (en) * 2004-03-30 2005-10-13 Yokohama Rubber Co Ltd:The Curable composition
JP2006199725A (en) * 2005-01-18 2006-08-03 Konishi Co Ltd Curable resin composition
WO2007085605A1 (en) * 2006-01-26 2007-08-02 Wacker Chemie Ag Polymer mixtures containing alkoxysilane terminated polymers
WO2007085604A1 (en) * 2006-01-26 2007-08-02 Wacker Chemie Ag Polymer mixtures containing alkoxysilane terminated polymers
JP2007246577A (en) * 2006-03-14 2007-09-27 Konishi Co Ltd Hardening catalyst for hardenable silicone-based resin and hardenable silicone-based resin composition
WO2007131912A1 (en) * 2006-05-11 2007-11-22 Wacker Chemie Ag Transparent polymer mixtures which contain alkoxysilane-terminated polymers
WO2007131986A2 (en) * 2006-05-16 2007-11-22 Wacker Chemie Ag Alkoxysilane cross-linked polymers having improved elastic recovery properties
JP2008169283A (en) * 2007-01-11 2008-07-24 Konishi Co Ltd Moisture-curable resin composition, method for producing the same and moisture-curable adhesive composition
JP2009057563A (en) * 2007-09-03 2009-03-19 Wacker Chemie Ag Crosslinkable compound based on organic silicon compound

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089987A1 (en) * 2010-01-20 2011-07-28 コニシ株式会社 Flame-resistant moisture-curable resin composition, flame-resistant moisture-curable bonding agent comprising said composition, and bonding method using said bonding agent
JP2014101499A (en) * 2012-10-22 2014-06-05 Sekisui Fuller Co Ltd Curable composition
JP2016522308A (en) * 2013-06-20 2016-07-28 モーメンティブ・パフォーマンス・マテリアルズ・インク Moisture curable compounds with thiourea
CN107567469A (en) * 2015-05-05 2018-01-09 赢创德固赛有限公司 Delayed action gel catalysts composition and the method for preparing polyether polyols
JP2020066708A (en) * 2018-10-26 2020-04-30 株式会社カネカ Curable composition for sealing material, sealing method and building exterior wall
JP7194560B2 (en) 2018-10-26 2022-12-22 株式会社カネカ Curable composition for sealant, sealing method and outer wall of building
WO2020149269A1 (en) * 2019-01-18 2020-07-23 日本化学塗料株式会社 Curable water-swelling waterstop material, waterstop steel sheet pile, waterstop steel sheet pile production method, and water-stopping method
JPWO2020149269A1 (en) * 2019-01-18 2021-10-14 日本化学塗料株式会社 Curable water expansion water stop material, water stop steel sheet pile, water stop steel sheet pile manufacturing method and water stop method
EP3926097A4 (en) * 2019-01-18 2022-10-12 Nippon Chemical Paint Co., Ltd. Curable water-swelling waterstop material, waterstop steel sheet pile, waterstop steel sheet pile production method, and water-stopping method
JP7264509B2 (en) 2019-01-18 2023-04-25 日本化学塗料株式会社 Water-swelling water-stopping material hardening, water-stopping steel sheet pile, water-stopping steel sheet pile manufacturing method, and water-stopping construction method

Similar Documents

Publication Publication Date Title
EP1279709B1 (en) Method of bonding adherend
JP4690329B2 (en) Reactive hot melt resin composition and reactive hot melt adhesive
JP6162480B2 (en) Curable composition
KR20130008530A (en) Curable composition
US20050261412A1 (en) Curable compositions, sealing material, and adhesive
WO2007142067A1 (en) Curable composition
WO2005097898A1 (en) Curable composition
WO2005121255A1 (en) Curable composition
WO2010047249A1 (en) Room temperature and humidity curable one-part liquid resin composition
CN111699216B (en) One-component curable composition for working seams
WO2007040101A1 (en) Curable composition improved in curability and storage stability
WO2004096887A1 (en) Organic polymer containing reactive silicon group
JP5564997B2 (en) Curable composition and method for producing the same
US7718749B2 (en) Curable composition
JP2010047722A (en) Sealing material composition
JP5264105B2 (en) Curable resin composition
WO2004090035A1 (en) Curable composition
EP3392036B1 (en) Method for producing laminate, and laminate
EP0620241A1 (en) Curable composition of polyoxyalkylenes
JP4685470B2 (en) Method for producing curable resin composition
JP2011063669A (en) Curable composition
WO2019139157A1 (en) Curable composition and coating film waterproofing agent
JP2010100737A (en) Sealing material composition
JPH0762205A (en) Curing composition
JP2010241889A (en) One-pack room-temperature moisture-curing resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821946

Country of ref document: EP

Kind code of ref document: A1