WO2010044342A1 - Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device - Google Patents

Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device Download PDF

Info

Publication number
WO2010044342A1
WO2010044342A1 PCT/JP2009/066910 JP2009066910W WO2010044342A1 WO 2010044342 A1 WO2010044342 A1 WO 2010044342A1 JP 2009066910 W JP2009066910 W JP 2009066910W WO 2010044342 A1 WO2010044342 A1 WO 2010044342A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound
group
layer
transport layer
Prior art date
Application number
PCT/JP2009/066910
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 ▲高▼
善幸 硯里
利恵 片倉
秀謙 尾関
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010533870A priority Critical patent/JPWO2010044342A1/en
Publication of WO2010044342A1 publication Critical patent/WO2010044342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to an organic electroluminescence element, a method for producing an organic electroluminescence element, a white organic electroluminescence element, a display device, and an illumination device.
  • ELD electroluminescence display
  • inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements).
  • organic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoints of space saving and portability.
  • the organic EL device using phosphorescence emission is greatly different from the organic EL device using fluorescence emission, and the method for controlling the position of the emission center, particularly the emission layer, is particularly different.
  • An important technical issue in capturing the efficiency and lifetime of the device is how to recombine inside to stably emit light.
  • a multilayer stacked device having a hole transport layer (located on the anode side of the light emitting layer) and an electron transport layer (located on the cathode side of the light emitting layer) adjacent to the light emitting layer is better.
  • a hole transport layer located on the anode side of the light emitting layer
  • an electron transport layer located on the cathode side of the light emitting layer
  • Examples of electrode film formation by a wet process include using PEDOT / PSS in place of the ITO anode, applying low-melting metal paste (see, for example, Patent Document 1), and conductive paste material.
  • a cathode forming method by coating film formation (for example, see Patent Document 2) has been reported.
  • An object of the present invention is to provide an organic electroluminescence element having a high external extraction quantum efficiency, a long emission lifetime, and a low driving voltage, a white organic electroluminescence element including the element, a display device, and an illumination device. That is.
  • a phosphorescent organic EL device having an organic layer sandwiched between an anode and a cathode, It has an electron transport layer adjacent to the cathode as a constituent layer of the organic layer, and the electron transport layer is formed through a step of forming a film by a wet method and contains a low molecular weight compound or a non-conjugated high molecular weight compound
  • An organic electroluminescence device wherein the cathode is formed through a step of forming a film by a wet method using a conductive paste.
  • A represents —O—, —S— or —N (R1) —, and A11 to A18 each represents a nitrogen atom or —C (R2) —.
  • R1 and R2 each represent a bond, a hydrogen atom or a substituent. However, when there are a plurality of —C (R2) —, each —C (R2) — may be the same or different.
  • 4 The organic electroluminescence device as described in 2 or 3 above, wherein the compound represented by the general formula (1) has at least one pyridine ring as a partial structure.
  • Q1 represents a 5-membered or 6-membered aromatic ring.
  • Ar represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and R3 and R4 represent a hydrogen atom or a substituent.
  • k represents an integer of 2 or 3, and has m secondary ligands L so as to satisfy the valence of iridium.
  • 11. 11 The organic electroluminescent device as described in 10 above, wherein the phosphorescent light emitting layer contains the compound represented by the general formula (1) as a light emitting host.
  • a film is formed by a wet method using a mixed solution or mixed dispersion of the compound represented by the general formula (1) and an alkali metal, alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound.
  • a step of forming an electron transport layer by forming a film by a wet method using a coating liquid or dispersion containing the compound represented by the general formula (1), then alkali metal, alkaline earth metal, and the alkali metal And a step of impregnating the electron transport layer with a solution or dispersion containing the above compound or the alkaline earth metal compound, followed by a step of forming a cathode by a wet method using a conductive paste.
  • a white organic electroluminescence device comprising the organic electroluminescence device according to any one of 1 to 11 above.
  • a display device comprising the organic electroluminescent element according to any one of 1 to 11 or the white organic electroluminescent element according to 16.
  • An illumination device comprising the organic electroluminescent element according to any one of 1 to 11 or the white organic electroluminescent element according to 16.
  • an organic electroluminescence element having a high external extraction quantum efficiency, a long emission lifetime, and a low driving voltage, a white organic electroluminescence element including the element, a display device, and an illumination device. did it.
  • the compound for an organic EL device of the present invention has the structure according to any one of claims 1 to 11, and thereby has high external extraction quantum efficiency, long emission lifetime, and low driving voltage.
  • a luminescence element could be provided.
  • the organic EL device of the present invention is a phosphorescent organic EL device having an organic layer sandwiched between an anode and a cathode as described in claim 1, and the cathode is used as a constituent layer of the organic layer.
  • the electron transport layer is formed through a process of forming a film by a wet method, contains a low molecular weight compound or a non-conjugated high molecular weight compound, and the cathode is conductive.
  • It is an organic electroluminescence device that exhibits the effects described in the present invention (high external extraction quantum efficiency, long light emission lifetime, low driving voltage, etc.) by being formed through a process that uses a paste to form a film by a wet method. .
  • the cathode constituting the organic EL device of the present invention is formed by a wet process using a conductive paste, and an electron transport layer adjacent to the cathode (the cathode, anode, electron transport layer, etc. are described later)
  • the film is also formed by a wet method.
  • the low molecular weight compound according to the present invention refers to a compound having a value of 2,000 or less, which is obtained by directly measuring the relative mass (synonymous with molecular weight) of a molecule by mass spectrometry.
  • Mass spectrometry uses ionization methods such as EI, CI, FD, FAB, MALDI, ESI, etc., magnetic field deflection type, quadrupole type, ion trap type, time of flight (TOF) type, etc.
  • TOF time of flight
  • the low molecular weight compound according to the present invention is preferably a compound represented by the above general formula (1), and more preferably a compound represented by any one of the following general formulas (3) to (99).
  • the condensed aromatic heterocyclic ring represented by L is specifically acridine.
  • carbazole ring carboline ring, dibenzofuran ring, dibenzothiophene ring and the like are preferable.
  • these rings may have a substituent described later.
  • examples of the aromatic hydrocarbon ring represented by Q include a benzene ring, a biphenyl ring, and naphthalene.
  • Ring azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, Examples include a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthrathrene ring.
  • these rings may have a substituent described later.
  • the aromatic heterocycle represented by Q includes a furan ring, a thiophene ring, an oxazole ring. , Pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, Benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, carboline ring, carboline ring, carboline ring, carboline ring
  • these rings may have a substituent described later.
  • L of the compound represented by the general formula (1) according to the present invention preferably has a partial structure represented by the general formula (2).
  • each of R1 and R2 is an alkyl group.
  • alkyl group e.g, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, etc.
  • cycloalkyl groups eg, cyclopentyl
  • alkenyl group eg, vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, isopropenyl group, etc.
  • alkynyl group eg, Ethynyl group, propargyl group, etc.
  • aromatic hydrochloric acid e.g, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl,
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • the compound represented by the general formula (1) according to the present invention preferably has at least one pyridine ring as a partial structure.
  • the low molecular weight compounds according to the present invention are disclosed in JP 2007-288035 A, Chem. Mater. It can be synthesized by referring to known methods described in 2008, 20, 5951, Experimental Chemistry Course 5th Edition (Edited by Chemical Society of Japan).
  • the non-conjugated high molecular weight compound according to the present invention refers to a compound having a number average molecular weight (Mw) of 1,000 or more in terms of standard polystyrene using a molecular weight measurement method using size exclusion chromatography (SEC).
  • Mw number average molecular weight
  • SEC size exclusion chromatography
  • the preferred molecular weight (Mw) for use in organic EL applications is 1,000 to 1,000,000.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the conjugated system is a general term for molecular systems in which the ⁇ electrons of the multiple bond are delocalized due to the repetition of multiple bonds and single bonds.
  • the conjugated polymer means poly p-phenylene, polyacetylene, etc.
  • a non-conjugated polymer refers to a polymer material in which the polymer main chain does not mainly form a conjugated system (non-conjugated), such as polystyrene that does not have multiple bonds in the main chain or a polymer in which the main chain conjugated system is interrupted. and m-phenylene.
  • the low molecular weight compound and the non-conjugated high molecular weight compound according to the present invention are preferably used as an electron transport material constituting the electron transport layer of the organic EL device of the present invention, but in other organic layers of the organic EL device of the present invention. It may be contained.
  • the non-conjugated high molecular weight compound according to the present invention can be synthesized with reference to known methods described in the above-mentioned description relating to the synthesis of low molecular weight compounds and polymer synthesis / reaction (edited by the Society of Polymer Science). .
  • the low molecular weight compound and the non-conjugated high molecular weight compound according to the present invention are preferably used as an electron transport material constituting the electron transport layer of the organic EL device of the present invention, but in other organic layers of the organic EL device of the present invention. It may be contained.
  • the cathode (the cathode, anode, organic layer, etc. will be described in detail later) constituting the organic EL device of the present invention is formed by a wet method using a conductive paste.
  • the conductive paste according to the present invention preferably contains a conductive compound dispersion or a low melting point metal compound.
  • a conductive compound dispersion refers to a liquid material in a state where a conductive compound is dispersed in a liquid such as water or an organic solvent.
  • the conductive compound include metals and conductive polymer materials, and either an inorganic compound or an organic compound may be used.
  • the conductive compound is preferably used in a fine particle state (particle size is 1 nm to 10 ⁇ m) in order to facilitate the formation of a dispersion.
  • the organic solvent generally well-known solvents such as hydrocarbon solvents and fluorine-containing solvents can be appropriately used.
  • the conductive compound dispersion liquid is preferably a metal nanoparticle dispersion liquid.
  • the metal nanoparticle dispersion refers to a solution in which metal nanoparticles having an average particle diameter of 1 nm to 100 nm are suspended in a solvent.
  • a dispersion stabilizer, a protective agent or the like may be mixed in order to prevent reaggregation of metal nanoparticles.
  • the viscosity and the like can be adjusted by selecting the metal nanoparticle concentration and the type of solvent in accordance with the purpose of use and apparatus specifications.
  • Examples of the metal species of the metal nanoparticles related to the present invention include Ag, Au, Cu, Pd, Sn, In, Co, Bi, Al, and Zn.
  • the low melting point metal compound refers to an alloy having a melting point of 100 ° C. or lower, and the low melting point alloy is classified into an alkali metal type and other types depending on the use and handling.
  • Alkali metal is an alloy between alkali metals, and NaK is known. However, since it reacts violently with air and water, it is mainly used as a heat medium in a sealed state.
  • various alloys mainly containing zinc, indium, gallium, tin, bismuth, lead, etc. other than alkali metal are preferred.
  • solder that is an alloy of tin, galinstan that is a gallium alloy (composition is gallium 68.5%, indium 21.5%, tin 10%), wood metal that is a bismuth alloy (composition is 50% bismuth, lead 26 0.7%, tin 13.3%, cadmium 10%) and the like, and the melting point can be changed by changing the composition ratio of the alloy.
  • the conductive paste preferably contains an alkali metal, alkaline earth metal, alkali metal compound or alkaline earth metal compound.
  • the alkali metal according to the present invention represents an element excluding hydrogen among elements belonging to Group 1 (hydrogen, lithium, sodium, potassium, rubidium, cesium, francium) in the periodic table.
  • the alkaline earth metal according to the present invention represents a typical element (beryllium, magnesium, calcium, strontium, barium, radium) belonging to Group 2 of the periodic table.
  • the alkali metal compound or alkaline earth metal compound according to the present invention represents a salt, complex, oxide, or the like containing the alkali metal or alkaline earth metal element.
  • an alkali metal, an alkaline earth metal, a compound of the alkali metal or a compound of the alkaline earth metal is preferably contained at the interface between the electron transport layer and the cathode adjacent to the cathode.
  • the cathode contains an alkali metal, an alkaline earth metal, the alkali metal compound or the alkaline earth metal compound, or the electron transport layer contains an alkali metal, an alkaline earth metal, or the alkali metal. Or a compound of the alkaline earth metal.
  • an anode is fabricated by forming an electrode material, for example, a thin film made of an anode material on an appropriate substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm.
  • a thin film containing organic compounds such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are element materials, is formed thereon.
  • the cathode and the electron transport layer adjacent to the cathode are applied and formed by a wet method.
  • the wet method there are a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, etc., but a precise thin film can be formed.
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film forming methods may be applied for each layer.
  • a thin film made of a cathode material is formed thereon so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
  • the cathode, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be produced in the order of the reverse order.
  • a DC voltage When a DC voltage is applied to the multicolor display device obtained in this way, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL device of the present invention it is preferable to produce from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light
  • the thickness of the light emitting layer is not particularly limited, but from the viewpoint of the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 200 nm, and more preferably in the range of 5 nm to 100 nm.
  • the light emitting layer of the organic EL device of the present invention preferably contains at least one of a light emitting host compound and a light emitting dopant as a guest material, and preferably contains a phosphorescent light emitting dopant described later as the light emitting dopant.
  • a light emitting layer of the organic EL device of the present invention it can be mentioned as an example of a preferable embodiment that a light emitting host compound and three or more kinds of light emitting dopants are contained.
  • a host compound also referred to as a light emitting host
  • a light emitting dopant also referred to as a light emitting dopant compound
  • the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1.
  • the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the mass ratio in a layer is 20% or more among the compounds contained in a light emitting layer.
  • the compound represented by the general formula (1) according to the present invention is also preferably used as the host compound according to the present invention.
  • known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the light emitting host used in the present invention may be a conventionally known low molecular weight compound or a high molecular weight compound having a repeating unit, and a low molecular weight compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerization property). Light emitting host).
  • a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • Luminescent dopant The light emitting dopant according to the present invention will be described.
  • the organic EL device of the present invention is phosphorescent, it contains at least a phosphorescent dopant (also referred to as phosphorescent emitter, phosphorescent compound, phosphorescent compound, etc.) as the luminescent dopant according to the present invention. To do.
  • a phosphorescent dopant also referred to as phosphorescent emitter, phosphorescent compound, phosphorescent compound, etc.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield.
  • the phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitting dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
  • phosphorescent dopants There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. Energy transfer type to obtain light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and the phosphorescent dopant In any case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element.
  • the phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex).
  • System compounds preferably iridium compounds, an osmium compound, or a platinum compound (platinum complex).
  • System compounds rare earth complexes, and most preferred are iridium compounds.
  • a compound represented by the above general formula (A) is preferably used.
  • the 5-membered or 6-membered aromatic ring represented by Q1 includes a benzene ring, an oxazole ring, an isoxazole ring, a thiophene ring, a furan ring, a pyrrole ring, a pyridine ring, a pyridazine ring, and a pyrimidine ring.
  • Pyrazine ring diazine ring, triazine ring, imidazole ring, pyrazole ring, triazole ring and the like.
  • the above ring may further form a condensed ring and may have a substituent.
  • the aromatic hydrocarbon group and the aromatic heterocyclic group represented by Ar are respectively -N (R1)-represented by A in the general formula (2), and A11 to A18.
  • -C (R2)-represented by each has the same meaning as the aromatic hydrocarbon group and aromatic heterocyclic group mentioned as examples of the substituent represented by R1 and R2.
  • the substituents represented by R3 and R4 are each represented by —N (R1) — represented by A in the general formula (2) and —C (R2) represented by A11 to A18. )-Has the same meaning as the substituents represented by R1 and R2.
  • oxycarboxylic acid for example, salicylaldehyde, oxyacetophenonate, etc.
  • dioxy compounds for example, biphenolate, etc.
  • diketones For example, acetylacetonato, dibenzoylmethanato, diethylmalonate, ethylacetoacetate, etc.
  • oxyquinones eg, pyromeconato, oxynaphthoquinato, oxyanthraquinato, etc.
  • tropolones eg, troponato, hinokitiolato, etc.
  • N-oxide compounds aminocarboxylic acids and similar compounds (eg, glycinato, alaninato, anthranilate, picolinato, etc.), hydroxylamines (eg, aminophenolato, ethanolaminato, mercap
  • ligands may also be used.
  • Nitrogen heterocyclic ligands for example, bipyridyl, phenanthroline, etc.
  • diketone ligands for example, bipyridyl, phenanthroline, etc.
  • the charge injection layer according to the present invention is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, between the anode and the light emitting layer or the hole transport layer, and the cathode and the light emitting layer or the electron transport layer. It may be present between.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. It is done.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
  • the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer of the organic EL device according to the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound described above.
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
  • Gaussian 98 Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.
  • the ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *.
  • the reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
  • Charge transport layer electron transport layer, hole transport layer >> Examples of the charge transport layer according to the present invention include an electron transport layer and a hole transport layer.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used from the viewpoint of obtaining a light emitting element with higher efficiency.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is preferably in the range of 5 nm to 5 ⁇ m, more preferably 5 nm to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Cu , Ca, Sn, Ga, or Pb can also be used as an electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • n-type electron transport layer doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness is preferably in the range of 10 nm to 1000 nm, more preferably in the range of 10 nm to 200 nm, although it depends on the material.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • these electrode substances are used as a conductive paste to form a thin film by a wet method to produce a cathode.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is preferably in the range of 10 nm to 5 ⁇ m, more preferably in the range of 50 nm to 200 nm.
  • the emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • substrate As a substrate (hereinafter also referred to as a base, a base material, a support substrate, a support, etc.) that can be used in the organic EL device according to the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. Or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade
  • an inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film.
  • a high barrier property film having a degree of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL device according to the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film measured oxygen permeability by the method based on JIS K 7126-1987 is 1 ⁇ 10 -3 ml / m 2 / 24h or less, as measured by the method based on JIS K 7129-1992 water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is preferably that of 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • an inorganic or organic layer as a sealing film by covering the electrode and the organic layer on the outer side of the electrode facing the substrate with the organic layer interposed therebetween, and in contact with the substrate.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • metal oxides eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an organic EL element (Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (Japanese Patent Laid-Open No.
  • a method of introducing a flat layer having a structure Japanese Patent Laid-Open No. 2001-202827, a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) No. 283751) That.
  • these methods can be used in combination with the organic EL device according to the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of 1.5 or less, more preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device according to the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or in combination with a so-called condensing sheet, for example, with respect to a specific direction, for example, the light emitting surface By condensing in the front direction, the luminance in a specific direction can be increased.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m.
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • the organic EL element according to the present invention is a white element
  • the display device of the present invention comprises the organic EL element of the present invention.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited, but preferred examples include vapor deposition, ink jet, spin coating, and printing.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the obtained multicolor display device, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the present invention is not limited to these examples.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
  • the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the lighting device of the present invention will be described.
  • the illuminating device of this invention has the said organic EL element.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of use of the organic EL element having such a resonator structure is as follows.
  • the light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However, It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved.
  • the elements themselves are luminescent white.
  • luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
  • CF color filter
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material.
  • LC0629B is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and an illumination device as shown in FIGS. Can be formed.
  • FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Example 1 Solution stability during preparation of coating solution ⁇
  • BCP, PBD, BAlq and the compound (11 types) according to the general formula (1) of the present invention which are materials used as the constituent material of the electron transport layer of the organic electroluminescence device of the present invention.
  • the solution stability of was evaluated.
  • the solvent is selected from five general solvents shown in Table 1 based on the solvent classification such as nonpolar aliphatic hydrocarbon, nonpolar aromatic hydrocarbon, polar aprotic, polar protic, and fluorine. I went there.
  • test sample 10 mg test sample was weighed, 1 ml of solvent was added, and the mixture was stirred at room temperature with a magnetic stirrer. After stirring for 30 minutes, when an insoluble matter could be visually confirmed, the mixture was heated and stirred at 50 ° C. for 30 minutes.
  • Evaluation conditions were purity measurement by HPLC (High Performance Liquid Chromatography) before and after standing at 25 ° C. for 24 hours.
  • Measuring device name High-performance liquid chromatograph LC-2000Plus series (manufactured by JASCO Corporation) Column: GL Science Co., Ltd. Inert Sil SIL-100A (4.6 ⁇ x250mm) Measurement conditions: Toluene / cyclohexane mixed solvent system (50/50 to 30/70) Evaluation was performed by the following rank evaluation.
  • Table 1 shows that the solution prepared using the compound represented by the general formula (1) according to the present invention exhibits very excellent solution stability.
  • the compounds of Sample Nos. 1 to 11 are highly versatile and very excellent as wet-type film-forming materials because they are dissolved in a plurality of solvent systems and exhibit high solution stability. all right.
  • Example 2 Manufacture of organic EL element 1-1 >> Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 150 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
  • a solution prepared by dissolving 30 mg of HS-69 and 3 mg of cesium fluoride in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was spun on this light emitting layer under conditions of 1000 rpm and 30 seconds.
  • a film was formed by a coating method. Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
  • Organic EL element 1-1 was produced in the same manner except that Poly-1 which is a non-conjugated polymer electron transporting material was used instead of HS-69 used for the electron transport layer. 2 and the organic EL device 1-3 was produced in the same manner except that the cathode was directly formed without providing the electron transport layer on the light emitting layer.
  • the external quantum efficiency also referred to as light emission efficiency
  • the light emission lifetime and the drive voltage of the organic EL element 1-1 being 100, respectively.
  • the external quantum efficiency, light emission lifetime, and drive voltage of 2 are 105, 60, and 95, respectively
  • the external quantum efficiency, light emission lifetime, and drive voltage of the organic EL element 1-3 are 80, 1, 170, respectively.
  • Each of the organic EL elements 1-1 and 1-2 having an excellent performance as compared with the organic EL element 1-3 having no electron transporting layer has an electron transporting property in the phosphorescent organic EL element. It is clear that the layer has an important role.
  • Example 3 Manufacture of organic EL element 2-1 >> Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • HT-24 and 10 mg of HT-26 were dissolved in 3 ml of dehydrated toluene, and a film was formed by spin coating using this solution under conditions of 1000 and 30 seconds.
  • UV irradiation 100 W UVA, 200 mJ
  • photopolymerization / crosslinking 15 seconds
  • further heat drying 120 ° C. for 10 minutes to effect insolubilization by polymerizing polymerizable groups, resulting in a film thickness of 20 nm
  • the second hole transport layer was formed.
  • a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed into a film by spin coating under conditions of 1000 rpm and 30 seconds. Heat-dried at 1 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
  • a solution prepared by dissolving 30 mg of HS-70 in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
  • a solution prepared by dissolving 20 mg of potassium fluoride in 1 ml of methanol is dropped on the electron transport layer, spin coating is initially performed at 100 rpm for 10 seconds, and then immediately at 3000 rpm for 30 seconds. Potassium halide immersion was performed.
  • ⁇ Luminescent life> When driving at a constant current of 2.5 mA / cm 2 in a dry nitrogen gas atmosphere at 23 ° C., the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured. The half-life time ( ⁇ 0.5 ) was used as an index of life. Similarly, a spectral radiance meter CS-1000 (manufactured by Minolta) was used for the measurement.
  • ⁇ Drive voltage> The voltage at the start of light emission was measured at a temperature of 23 ° C. in a dry nitrogen gas atmosphere. In addition, the voltage value at the time of the brightness
  • Table 2 shows the results obtained.
  • relative evaluation was performed by setting the external quantum efficiency, light emission lifetime, and driving voltage of the organic EL element 2-4 to 100, and Table 2 shows the results.
  • the effect of the present invention obtained by providing an electron transport layer (high external extraction quantum efficiency) It is clear that the electron transport layer is indispensable in the organic EL device using phosphorescence emission since the long emission lifetime and the low driving voltage are lower than those using the phosphorescence emission dopant. It is.
  • Example 4 Preparation of organic EL element 3-8 >> Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 150 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
  • a solution prepared by dissolving 30 mg of HS-42 in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was formed by spin coating at 1000 rpm for 30 seconds. . Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
  • the above dispersion was discharged and patterned using an inkjet head (manufactured by Epson; MJ800C), and then baked at 120 ° C. for 5 minutes under nitrogen to form a silver cathode having a thickness of 110 nm. Manufactured.
  • organic EL elements 3-1 to 3-7 and 3-9 to 3-24 were changed in the same manner except that the constituent material of the electron transport layer (also referred to as electron transport material) was changed as shown in Table 3. 9 to 3-24 were produced respectively.
  • the lower light-emitting layer flowed out when the electron transport layer was applied, and the element could not be manufactured.
  • the organic EL device of the present invention in which the compound represented by the general formula (1) according to the present invention is contained in the electron transport layer as an electron transport material has a high external extraction quantum efficiency and a long emission lifetime. It is also clear that the driving voltage is low.
  • Example 5 Preparation of organic EL element 4-1 >> Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm ⁇ 100 mm ⁇ 1.1 mm glass substrate as a positive electrode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 150 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
  • a solution prepared by dissolving 30 mg of HS-42 in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was formed by spin coating at 1000 rpm for 30 seconds. . Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
  • the obtained paste was set in a dispenser, discharged and patterned while being heated to 100 ° C., a cathode was formed, and an organic EL element 4-1 was manufactured.
  • Relative evaluation was performed by setting the external quantum efficiency, light emission lifetime, and drive voltage of the organic EL element 4-1 to 100.
  • the external quantum efficiency, light emission lifetime, and drive of the organic EL element 4-2 lacking the electron transport layer were obtained.
  • the voltages were 69, 5, and 200, respectively, and the importance of the electron transport layer in the phosphorescent organic EL device became clear.
  • Example 6 Provide of full-color display device> (Blue light emitting organic EL device) The organic EL element 2-1 described in Example 2 was used.
  • Green light-emitting organic EL device A green light-emitting organic EL element 2-1G was produced in the same manner as in the organic EL element 2-1 produced in Example 2, except that ID-4 was changed to PD-1.
  • red light-emitting organic EL element 2-1R was produced in the same manner as in the organic EL element 2-1 produced in Example 2, except that ID-4 was changed to PD-10.
  • the red, green and blue light-emitting organic EL elements are juxtaposed on the same substrate to produce an active matrix type full-color display device having the form shown in FIG. 1, and FIG. 2 shows the display of the produced display device. Only the schematic diagram of part A is shown.
  • a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.)
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions ( Details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data.
  • Example 7 Preparation of white light emitting lighting device ⁇
  • a white light-emitting organic EL element 2-1W was manufactured in the same manner as in the manufacture of the organic EL element 2-1 of Example 2, except that ID-4 was changed to PD-1, PD-10, and ID-4.
  • the obtained organic EL element 2-1W was covered with a glass case on the non-light emitting surface to obtain a lighting device.
  • the lighting device can be used as a thin white light emitting lighting device that emits white light having a low driving voltage, high external quantum efficiency (also referred to as light emission efficiency), and a long light emission lifetime.

Abstract

Provided is an organic EL element having a high external extraction quantum efficiency and a long light emission life while requiring a low drive voltage.  Provided also are a white organic EL element, a display device, and an illumination device having the element.

Description

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。 The present invention relates to an organic electroluminescence element, a method for producing an organic electroluminescence element, a white organic electroluminescence element, a display device, and an illumination device.
 従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。 Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (ELD). Examples of the constituent elements of ELD include inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements). Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
 一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。 On the other hand, an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoints of space saving and portability.
 実用化に向けた有機EL素子の開発としては、M.A.Baldo et al.,nature、395巻、151~154ページ(1998年)により、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされて以来、M.A.Baldo et al.,nature、403巻、17号、750~753頁(2000年)、米国特許第6,097,147号明細書により、室温で燐光を示す材料の研究が活発になってきている。 Developed organic EL elements for practical use A. Baldo et al. , Nature, 395, 151-154 (1998), since Princeton University reported on an organic EL device using phosphorescence emission from an excited triplet. A. Baldo et al. , Nature, 403, 17, 750-753 (2000) and US Pat. No. 6,097,147, research on materials that exhibit phosphorescence at room temperature has become active.
 更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。 In addition, recently discovered organic EL devices that use phosphorescence can realize a luminous efficiency that is approximately four times that of previous devices that use fluorescence. Research and development of light-emitting element layer configurations and electrodes are performed all over the world.
 例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)には、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている。 For example, S. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001), a number of compounds have been studied for synthesis centering on heavy metal complexes such as iridium complexes.
 このように大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用する有機ELデバイスとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を捕らえる上で重要な技術的な課題となっている。 Although this is a very high potential method, the organic EL device using phosphorescence emission is greatly different from the organic EL device using fluorescence emission, and the method for controlling the position of the emission center, particularly the emission layer, is particularly different. An important technical issue in capturing the efficiency and lifetime of the device is how to recombine inside to stably emit light.
 そこで、近年、発光層に隣接する形で、(発光層の陽極側に位置する)正孔輸送層と(発光層の陰極側に位置する)電子輸送層を備えた多層積層型の素子が良く知られている(例えば、非特許文献1参照。)。 Therefore, in recent years, a multilayer stacked device having a hole transport layer (located on the anode side of the light emitting layer) and an electron transport layer (located on the cathode side of the light emitting layer) adjacent to the light emitting layer is better. (For example, refer nonpatent literature 1).
 特に、青色リン光発光を利用するにあたっては、青色リン光発光材料自身の励起三重項エネルギーが大きいため、周辺材料の開発と精密な発光中心の制御が強く求められている。 In particular, when using blue phosphorescence, since the excited triplet energy of the blue phosphorescent material itself is large, development of peripheral materials and precise control of the emission center are strongly demanded.
 一方で、大面積化、低コスト化、高生産性に対する要求から、ウエットプロセスに対する期待が大きく、特に電極成膜における脱真空化が強く求められている。また、真空プロセスでの成膜に比して低温で成膜可能であるため、下層の有機層のダメージを低減でき、発光効率や素子寿命の改善の面からも大きな期待が寄せられる。 On the other hand, due to demands for large area, low cost, and high productivity, there is a great expectation for the wet process, and there is a strong demand for evacuation in electrode film formation. In addition, since the film can be formed at a low temperature as compared with the film formation by the vacuum process, damage to the lower organic layer can be reduced, and there are great expectations in terms of improving the light emission efficiency and the device life.
 ウエットプロセスによる電極成膜の例としては、ITO陽極に代わってPEDOT/PSSを用いること等、また、低融金属ペーストの塗布成膜(例えば、特許文献1参照。)、や導電性ペースト材料の塗布成膜(例えば、特許文献2参照。)等による陰極形成方法が報告されている。 Examples of electrode film formation by a wet process include using PEDOT / PSS in place of the ITO anode, applying low-melting metal paste (see, for example, Patent Document 1), and conductive paste material. A cathode forming method by coating film formation (for example, see Patent Document 2) has been reported.
 前述の通り、青色リン光発光を利用する有機EL素子において、有機層から陰極までを含めたウエット成膜を実現するためには、とりわけ隣接する電子輸送材料が課題となり、実用上の観点から、現在知られている電子輸送材料では、溶液安定性、駆動電圧等の点で、まだ不十分であり、更なる改良技術が不可欠である。 As described above, in the organic EL element using blue phosphorescence emission, in order to realize wet film formation including from the organic layer to the cathode, an adjacent electron transport material becomes a problem, from a practical viewpoint, Currently known electron transport materials are still insufficient in terms of solution stability, driving voltage, and the like, and further improvement techniques are indispensable.
特開2005-285732号公報JP 2005-285732 A 特表2005-514729号公報JP 2005-514729 A
 本発明の目的は、外部取り出し量子効率が高く、発光寿命が長く、且つ、低駆動電圧である有機エレクトロルミネッセンス素子、該素子を備えた白色有機エレクトロルミネッセンス素子や、表示装置及び照明装置を提供することである。 An object of the present invention is to provide an organic electroluminescence element having a high external extraction quantum efficiency, a long emission lifetime, and a low driving voltage, a white organic electroluminescence element including the element, a display device, and an illumination device. That is.
 本発明の上記目的は下記の構成により達成された。 The above object of the present invention has been achieved by the following constitution.
 1.陽極と陰極の間に挟持された有機層を有するリン光発光性の有機EL素子において、
 該有機層の構成層として該陰極に隣接する電子輸送層を有し、該電子輸送層が、湿式法により成膜される工程を経て形成され、低分子量化合物または非共役系高分子量化合物を含有し、且つ、該陰極が導電性ペーストを用いて湿式法により成膜される工程を経て形成されたことを特徴とする有機エレクトロルミネッセンス素子。
1. In a phosphorescent organic EL device having an organic layer sandwiched between an anode and a cathode,
It has an electron transport layer adjacent to the cathode as a constituent layer of the organic layer, and the electron transport layer is formed through a step of forming a film by a wet method and contains a low molecular weight compound or a non-conjugated high molecular weight compound An organic electroluminescence device, wherein the cathode is formed through a step of forming a film by a wet method using a conductive paste.
 2.前記低分子量化合物が下記一般式(1)で表される化合物であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device as described in 1 above, wherein the low molecular weight compound is a compound represented by the following general formula (1).
 一般式(1)
 Qm-Ln
〔式中、Lは縮合した芳香族複素環を表し、Qは芳香族炭化水素環または芳香族複素環を表し、であり、n、mは、各々1~3の整数である。nが2以上の時は、Lは互いに異なっていても良く、mが2以上の時は、Qは互いに異なっていても良い。〕
 3.前記一般式(1)で表される化合物のLが下記一般式(2)で表される部分構造を有することを特徴とする前記2に記載の有機エレクトロルミネッセンス素子。
General formula (1)
Qm-Ln
[In the formula, L represents a condensed aromatic heterocyclic ring, Q represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and n and m each represent an integer of 1 to 3. L may be different from each other when n is 2 or more, and Q may be different from each other when m is 2 or more. ]
3. 3. The organic electroluminescence device according to 2 above, wherein L of the compound represented by the general formula (1) has a partial structure represented by the following general formula (2).
〔式中、Aは、-O-、-S-または-N(R1)-を表し、A11~A18は、各々窒素原子または-C(R2)-を表す。R1、R2は、各々結合手、水素原子または置換基を表す。但し、-C(R2)-が複数の場合、各々の-C(R2)-は同じでも異なっていても良い。〕
 4.前記一般式(1)で表される化合物が部分構造として少なくとも一つのピリジン環を有することを特徴とする前記2または3に記載の有機エレクトロルミネッセンス素子。
[Wherein, A represents —O—, —S— or —N (R1) —, and A11 to A18 each represents a nitrogen atom or —C (R2) —. R1 and R2 each represent a bond, a hydrogen atom or a substituent. However, when there are a plurality of —C (R2) —, each —C (R2) — may be the same or different. ]
4). 4. The organic electroluminescence device as described in 2 or 3 above, wherein the compound represented by the general formula (1) has at least one pyridine ring as a partial structure.
 5.前記導電性ペーストが、導電性化合物分散液及び低融点金属化合物から選択される少なくとも1つを含有することを特徴とする前記1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 5. 5. The organic electroluminescence device according to any one of 1 to 4, wherein the conductive paste contains at least one selected from a conductive compound dispersion and a low melting point metal compound.
 6.前記導電性化合物分散液が金属ナノ粒子分散液であることを特徴とする前記5に記載の有機エレクトロルミネッセンス素子。 6. 6. The organic electroluminescence device as described in 5 above, wherein the conductive compound dispersion is a metal nanoparticle dispersion.
 7.前記電子輸送層と前記陰極の界面に、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする前記1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。 7. 7. The method according to any one of 1 to 6 above, wherein an alkali metal, an alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound is contained at the interface between the electron transport layer and the cathode. The organic electroluminescent element of description.
 8.前記導電性ペーストが、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする前記1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。 8. 8. The organic electroluminescence according to any one of 1 to 7, wherein the conductive paste contains an alkali metal, an alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound. element.
 9.前記電子輸送層が、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする前記1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子。 9. 9. The organic electroluminescence according to any one of 1 to 8 above, wherein the electron transport layer contains an alkali metal, an alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound. element.
 10.構成層としてリン光発光性の発光層を有し、該発光層は電子輸送層と隣接し、且つ、前記発光層は、少なくともリン光発光性ドーパントと発光ホストを含有し、該リン光発光性ドーパントが下記一般式(A)で表される化合物であることを特徴とする前記1~9のいずれか1項に記載の有機エレクトロルミネッセンス素子。 10. A phosphorescent light-emitting layer as a constituent layer, the light-emitting layer is adjacent to the electron transport layer, and the light-emitting layer contains at least a phosphorescent dopant and a light-emitting host; 10. The organic electroluminescence device as described in any one of 1 to 9 above, wherein the dopant is a compound represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔式中、Q1は5員または6員の芳香環を表す。Arは芳香族炭化水素基または芳香族複素環基を表し、R3、R4は水素原子または置換基を表す。kは2または3の整数を示し、イリジウムの価数を満足するようにm個の副配位子Lを有する。〕
 11.前記リン光発光性の発光層が、前記一般式(1)で表される化合物を発光ホストとして含有することを特徴とする前記10に記載の有機エレクトロルミネッセンス素子。
[Wherein, Q1 represents a 5-membered or 6-membered aromatic ring. Ar represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and R3 and R4 represent a hydrogen atom or a substituent. k represents an integer of 2 or 3, and has m secondary ligands L so as to satisfy the valence of iridium. ]
11. 11. The organic electroluminescent device as described in 10 above, wherein the phosphorescent light emitting layer contains the compound represented by the general formula (1) as a light emitting host.
 12.前記1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を製造するにあたり、電子輸送層を湿式法により塗布・成膜される工程、次いで、陰極を導電性ペーストを用いて湿式法により塗布・成膜する工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。 12. 12. In manufacturing the organic electroluminescence device according to any one of 1 to 11, the step of applying and forming the electron transport layer by a wet method, and then applying the cathode by a wet method using a conductive paste -The manufacturing method of the organic electroluminescent element characterized by having the process of forming into a film.
 13.前記導電性ペーストが、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする前記12に記載の有機エレクトロルミネッセンス素子の製造方法。 13. 13. The method for producing an organic electroluminescent element as described in 12 above, wherein the conductive paste contains an alkali metal, an alkaline earth metal, a compound of the alkali metal or a compound of the alkaline earth metal.
 14.前記一般式(1)で表される化合物及び、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物との混合溶液または混合分散液を用いて湿式法により成膜して電子輸送層を形成する工程、次いで、陰極を導電性ペーストを用いて湿式法により成膜する工程を有することを特徴とする前記12に記載の有機エレクトロルミネッセンス素子の製造方法。 14. A film is formed by a wet method using a mixed solution or mixed dispersion of the compound represented by the general formula (1) and an alkali metal, alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound. 13. The method for producing an organic electroluminescence device as described in 12 above, further comprising a step of forming an electron transport layer and then a step of forming a cathode film by a wet method using a conductive paste.
 15.前記一般式(1)で表される化合物を含有する塗布液または分散液を用いて湿式法により成膜して電子輸送層を形成する工程、次いで、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有する溶液または分散液を該電子輸送層に含浸させる工程の後に、陰極を導電性ペーストを用いて湿式法により成膜する工程を有することを特徴とする前記12に記載の有機エレクトロルミネッセンス素子の製造方法。 15. A step of forming an electron transport layer by forming a film by a wet method using a coating liquid or dispersion containing the compound represented by the general formula (1), then alkali metal, alkaline earth metal, and the alkali metal And a step of impregnating the electron transport layer with a solution or dispersion containing the above compound or the alkaline earth metal compound, followed by a step of forming a cathode by a wet method using a conductive paste. 13. The method for producing an organic electroluminescence device according to 12 above.
 16.前記1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする白色有機エレクトロルミネッセンス素子。 16. A white organic electroluminescence device comprising the organic electroluminescence device according to any one of 1 to 11 above.
 17.前記1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子または前記16に記載の白色有機エレクトロルミネッセンス素子を具備したことを特徴とする表示装置。 17. 14. A display device comprising the organic electroluminescent element according to any one of 1 to 11 or the white organic electroluminescent element according to 16.
 18.前記1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子または前記16に記載の白色有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。 18. An illumination device comprising the organic electroluminescent element according to any one of 1 to 11 or the white organic electroluminescent element according to 16.
 本発明により、外部取り出し量子効率が高く、発光寿命が長く、且つ、低駆動電圧である有機エレクトロルミネッセンス素子、該素子を備えた白色有機エレクトロルミネッセンス素子や、表示装置及び照明装置を提供することができた。 According to the present invention, there are provided an organic electroluminescence element having a high external extraction quantum efficiency, a long emission lifetime, and a low driving voltage, a white organic electroluminescence element including the element, a display device, and an illumination device. did it.
有機EL素子から構成される表示装置の一例を示した模式図である。It is the schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 表示部の模式図である。It is a schematic diagram of a display part. 画素の模式図である。It is a schematic diagram of a pixel. パッシブマトリクス方式フルカラー表示装置の模式図である。It is a schematic diagram of a passive matrix type full-color display device. 照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の断面図である。It is sectional drawing of an illuminating device.
 本発明の有機EL素子用化合物においては、請求項1~11のいずれか1項に記載の構成を有することにより、外部取り出し量子効率が高く、発光寿命が長く、且つ、低駆動電圧の有機エレクトロルミネッセンス素子を提供することができた。 The compound for an organic EL device of the present invention has the structure according to any one of claims 1 to 11, and thereby has high external extraction quantum efficiency, long emission lifetime, and low driving voltage. A luminescence element could be provided.
 併せて、該素子の製造方法、白色発光有機エレクトロルミネッセンス素子、表示装置及び照明装置を提供することができた。 In addition, it was possible to provide a method for manufacturing the element, a white light-emitting organic electroluminescence element, a display device, and a lighting device.
 以下、本発明の有機エレクトロルミネッセンス素子の各構成要素の詳細について、順次説明する。 Hereinafter, details of each component of the organic electroluminescence element of the present invention will be described sequentially.
 本発明の有機EL素子は、請求項1に記載のように、陽極と陰極の間に挟持された有機層を有するリン光発光性の有機EL素子であり、該有機層の構成層として該陰極に隣接する電子輸送層を有し、該電子輸送層が、湿式法により成膜せれる工程を経て形成され、低分子量化合物または非共役系高分子量化合物を含有し、且つ、該陰極が導電性ペーストを用いて湿式法により成膜される工程を経て形成されたことにより、本発明に記載の効果(高い外部取り出し量子効率、長発光寿命、低駆動電圧等)を示す有機エレクトロルミネッセンス素子であります。 The organic EL device of the present invention is a phosphorescent organic EL device having an organic layer sandwiched between an anode and a cathode as described in claim 1, and the cathode is used as a constituent layer of the organic layer. The electron transport layer is formed through a process of forming a film by a wet method, contains a low molecular weight compound or a non-conjugated high molecular weight compound, and the cathode is conductive. It is an organic electroluminescence device that exhibits the effects described in the present invention (high external extraction quantum efficiency, long light emission lifetime, low driving voltage, etc.) by being formed through a process that uses a paste to form a film by a wet method. .
 本発明の有機EL素子を構成する陰極は、導電性ペーストを用いて湿式法により成膜され、該陰極に隣接する電子輸送層(陰極、陽極、電子輸送層等については、後述する有機EL素子の構成層のところで詳細に説明する)も湿式法により成膜される。 The cathode constituting the organic EL device of the present invention is formed by a wet process using a conductive paste, and an electron transport layer adjacent to the cathode (the cathode, anode, electron transport layer, etc. are described later) The film is also formed by a wet method.
 ここで、湿式法については、有機EL素子の製造方法のところで詳細に説明する。 Here, the wet method will be described in detail in the method of manufacturing the organic EL element.
 《低分子量化合物》
 本発明に係る低分子量化合物について説明する。
<Low molecular weight compound>
The low molecular weight compound according to the present invention will be described.
 本発明に係る低分子量化合物とは、質量分析法にて分子の相対質量(分子量と同義)を直接測定し、その値が2,000以下のものをさす。質量分析方法は、EI法、CI法、FD法、FAB法、MALDI法、ESI法等のイオン化方法を用い、磁場偏向型、四重極型、イオントラップ型、飛行時間(TOF)型、等の分離方法による、一般的に広く知られた分析方法を用いることができる。 The low molecular weight compound according to the present invention refers to a compound having a value of 2,000 or less, which is obtained by directly measuring the relative mass (synonymous with molecular weight) of a molecule by mass spectrometry. Mass spectrometry uses ionization methods such as EI, CI, FD, FAB, MALDI, ESI, etc., magnetic field deflection type, quadrupole type, ion trap type, time of flight (TOF) type, etc. Generally well-known analysis methods based on these separation methods can be used.
 本発明に係る低分子量化合物としては、上記一般式(1)で表される化合物が好ましく、更に好ましくは、下記一般式(3)~(99)のいずれかで表される化合物が好ましい。 The low molecular weight compound according to the present invention is preferably a compound represented by the above general formula (1), and more preferably a compound represented by any one of the following general formulas (3) to (99).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(1)で表される化合物または一般式(3)~(99)のいずれかで表される化合物において、Lで表される縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。 In the compound represented by the general formula (1) or the compound represented by any one of the general formulas (3) to (99), the condensed aromatic heterocyclic ring represented by L is specifically acridine. Ring, benzoquinoline ring, carbazole ring, phenazine ring, phenanthridine ring, phenanthroline ring, carboline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrine ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring , Anthrazine ring, perimidine ring, diazacarbazole ring (representing any one of carbon atoms constituting the carboline ring replaced by a nitrogen atom), phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofurene ring, naphthothiophene ring , Benzodifuran ring, benzodithiophene ring, naphth Difuran ring, naphthodifuran thiophene ring, Antorafuran ring, anthradithiophene furan ring, anthracite thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan train ring (naphthothiophene ring).
 中でも、カルバゾール環、カルボリン環、ジベンゾフラン環、ジベンゾチオフェン環等が好ましい。 Of these, carbazole ring, carboline ring, dibenzofuran ring, dibenzothiophene ring and the like are preferable.
 また、これらの環は後述する置換基を有していても良い。 Moreover, these rings may have a substituent described later.
 一般式(1)で表される化合物または一般式(3)~(99)のいずれかで表される化合物において、Qで表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。 In the compound represented by the general formula (1) or the compound represented by any one of the general formulas (3) to (99), examples of the aromatic hydrocarbon ring represented by Q include a benzene ring, a biphenyl ring, and naphthalene. Ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, Examples include a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthrathrene ring.
 更に、これらの環は後述する置換基を有してもよい。 Furthermore, these rings may have a substituent described later.
 一般式(1)で表される化合物または一般式(3)~(99)のいずれかで表される化合物において、Qで表される芳香族複素環としては、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。 In the compound represented by the general formula (1) or the compound represented by any one of the general formulas (3) to (99), the aromatic heterocycle represented by Q includes a furan ring, a thiophene ring, an oxazole ring. , Pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, Benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (one of the carbon atoms constituting the carboline ring is Furthermore, a ring substituted with a nitrogen atom Be), and the like.
 更にこれらの環は後述する置換基を有していてもよい。 Further, these rings may have a substituent described later.
 本発明では、本発明に係る一般式(1)で表される化合物のLが上記一般式(2)で表される部分構造を有することが好ましい。 In the present invention, L of the compound represented by the general formula (1) according to the present invention preferably has a partial structure represented by the general formula (2).
 一般式(2)のAで表される-N(R1)-、A11~A18で、各々表される-C(R2)-において、R1、R2で各々表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1-プロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。 In —C (R2) — each represented by —N (R1) —, A11 to A18 represented by A in the general formula (2), the substituent represented by each of R1 and R2 is an alkyl group. (Eg, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, hexyl, octyl, dodecyl, tridecyl, tetradecyl, pentadecyl, etc.), cycloalkyl groups (eg, cyclopentyl) Group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, isopropenyl group, etc.), alkynyl group (eg, Ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc., for example, Phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, xylyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, etc.), aromatic heterocyclic group (for example, , Furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (said carbolinyl group) Any one of the carbon atoms constituting the carboline ring is substituted with a nitrogen atom), a phthalazinyl group, etc.), a heterocyclic group (eg, a pyrrolidyl group, an imidazolidyl group, a morpholyl group, an oxazolidyl group, etc.), an alkoxy group (For example, a methoxy group, Toxyl group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (for example, phenoxy group, Naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), Arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyl) Oxycarbonyl group etc.), aryloxycarbonyl group (eg phenyloxycarbonyl group, naphthyloxycarbonyl group etc.), sulfamoyl group (eg aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexyl) Aminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propyl group) Carbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbon Nyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide Groups (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group) , Phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylamino) Rubonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group Ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group), sulfinyl group ( For example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecyls Rufinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group) Etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, butylamino group, Cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom) Fluorinated hydrocarbon group (for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, trimethyl group) Isopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.) and phosphono group.
 これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。 These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
 また、本発明に係る一般式(1)で表される化合物は、部分構造として少なくとも一つのピリジン環を有することが好ましい。 In addition, the compound represented by the general formula (1) according to the present invention preferably has at least one pyridine ring as a partial structure.
 以下、本発明に係る低分子量化合物として好ましく用いられる化合物の具体例を示すが、本発明はこれらに限定されない。 Hereinafter, specific examples of the compound preferably used as the low molecular weight compound according to the present invention will be shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 本発明に係る低分子量化合物は、特開2007-288035号公報、Chem.Mater.2008,20,5951、実験化学講座第5版(日本化学会編)等に記載の公知の方法を参照して合成することができる。 The low molecular weight compounds according to the present invention are disclosed in JP 2007-288035 A, Chem. Mater. It can be synthesized by referring to known methods described in 2008, 20, 5951, Experimental Chemistry Course 5th Edition (Edited by Chemical Society of Japan).
 《非共役系高分子量化合物》
 本発明に係る非共役系高分子量化合物について説明する。
《Non-conjugated high molecular weight compound》
The nonconjugated high molecular weight compound according to the present invention will be described.
 本発明に係る非共役系高分子量化合物とは、サイズ排除クロマトグラフィー(SEC)を用いた分子量測定方法を用いて、標準ポリスチレン換算で数平均分子量(Mw)1,000以上の化合物を指す。有機EL用途での使用上、好ましい分子量(Mw)は1,000~1,000,000である。 The non-conjugated high molecular weight compound according to the present invention refers to a compound having a number average molecular weight (Mw) of 1,000 or more in terms of standard polystyrene using a molecular weight measurement method using size exclusion chromatography (SEC). The preferred molecular weight (Mw) for use in organic EL applications is 1,000 to 1,000,000.
 また、SECとしては、THF(テトラヒドロフラン)をカラム溶媒として用いるGPC(ゲルパーミエーションクロマトグラフィー)を用いることができ、一般に知られた分子量測定用GPC装置を使用できる。 Further, as SEC, GPC (gel permeation chromatography) using THF (tetrahydrofuran) as a column solvent can be used, and generally known GPC devices for molecular weight measurement can be used.
 本発明に係る非共役系高分子量化合物を説明するまえに、まず、共役系高分子について説明する。 Before explaining the non-conjugated high molecular weight compound according to the present invention, first, the conjugated polymer will be explained.
 ここで、共役系とは、多重結合と単結合の繰り返しにより、多重結合のπ電子が非局在化を生じる分子系の総称をいい、特に共役系高分子とはポリp-フェニレンやポリアセチレン等、ポリマー主鎖が主として共役系を形成している高分子材料をさす。 Here, the conjugated system is a general term for molecular systems in which the π electrons of the multiple bond are delocalized due to the repetition of multiple bonds and single bonds. Particularly, the conjugated polymer means poly p-phenylene, polyacetylene, etc. A polymer material in which the polymer main chain mainly forms a conjugated system.
 これに対し、非共役系高分子とは、ポリマー主鎖が主として共役系を形成しない(非共役)高分子材料を指し、主鎖に多重結合を持たないポリスチレンや主鎖の共役系が途切れるポリm-フェニレン等が挙げられる。 In contrast, a non-conjugated polymer refers to a polymer material in which the polymer main chain does not mainly form a conjugated system (non-conjugated), such as polystyrene that does not have multiple bonds in the main chain or a polymer in which the main chain conjugated system is interrupted. and m-phenylene.
 本発明に係る低分子量化合物、非共役系高分子量化合物は、本発明の有機EL素子の電子輸送層を構成する電子輸送材料として好ましく用いられるが、本発明の有機EL素子の他の有機層に含有されていても良い。 The low molecular weight compound and the non-conjugated high molecular weight compound according to the present invention are preferably used as an electron transport material constituting the electron transport layer of the organic EL device of the present invention, but in other organic layers of the organic EL device of the present invention. It may be contained.
 以下、本発明に係る非共役系高分子量化合物の具体例を挙げるが、本発明はこれらに限定されない。 Hereinafter, specific examples of the non-conjugated high molecular weight compound according to the present invention will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 本発明に係る非共役系高分子量化合物は、前述の低分子量化合物の合成に関わる記載や高分子合成・反応(高分子学会編)等に記載の公知の方法を参照して合成することができる。 The non-conjugated high molecular weight compound according to the present invention can be synthesized with reference to known methods described in the above-mentioned description relating to the synthesis of low molecular weight compounds and polymer synthesis / reaction (edited by the Society of Polymer Science). .
 本発明に係る低分子量化合物、非共役系高分子量化合物は、本発明の有機EL素子の電子輸送層を構成する電子輸送材料として好ましく用いられるが、本発明の有機EL素子の他の有機層に含有されていても良い。 The low molecular weight compound and the non-conjugated high molecular weight compound according to the present invention are preferably used as an electron transport material constituting the electron transport layer of the organic EL device of the present invention, but in other organic layers of the organic EL device of the present invention. It may be contained.
 《導電性ペースト》
 本発明の有機EL素子を構成する陰極(陰極、陽極、有機層等については後に詳細に説明する。)は、導電性ペーストを用いて湿式法により成膜される。
《Conductive paste》
The cathode (the cathode, anode, organic layer, etc. will be described in detail later) constituting the organic EL device of the present invention is formed by a wet method using a conductive paste.
 本発明に係る導電性ペーストは、導電性化合物分散液または低融点金属化合物を含有することが好ましい。 The conductive paste according to the present invention preferably contains a conductive compound dispersion or a low melting point metal compound.
 ここで、
 (a)導電性化合物分散液とは、導電性化合物を水や有機溶媒等の液体に分散させた状態の液状材料を指す。導電性化合物としては、金属や導電性高分子材料が挙げられ、無機化合物、有機化合物のどちらでも構わない。また前記導電性化合物は分散液の形成を容易にするために、微粒子状態(粒子サイズが1nm~10μm)で使用されるのが好ましい。有機溶媒としては、炭化水素系溶媒や含フッ素系溶媒等、一般に良く知られた溶媒を適宜使用できる。
here,
(A) A conductive compound dispersion refers to a liquid material in a state where a conductive compound is dispersed in a liquid such as water or an organic solvent. Examples of the conductive compound include metals and conductive polymer materials, and either an inorganic compound or an organic compound may be used. The conductive compound is preferably used in a fine particle state (particle size is 1 nm to 10 μm) in order to facilitate the formation of a dispersion. As the organic solvent, generally well-known solvents such as hydrocarbon solvents and fluorine-containing solvents can be appropriately used.
 本発明では、導電性化合物分散液が金属ナノ粒子分散液であることが好ましい。ここで、金属ナノ粒子分散液とは、平均粒径1nm~100nmの金属のナノ粒子が、溶媒中に懸濁している溶液を指す。 In the present invention, the conductive compound dispersion liquid is preferably a metal nanoparticle dispersion liquid. Here, the metal nanoparticle dispersion refers to a solution in which metal nanoparticles having an average particle diameter of 1 nm to 100 nm are suspended in a solvent.
 前記溶液においては、金属ナノ粒子どうしの再凝集を防ぐために、分散安定剤、保護剤等を混入しても良い。また、使用目的や装置仕様にあわせて、金属のナノ粒子濃度や溶媒の種類を選択することで、粘度等の調整が可能である。 In the solution, a dispersion stabilizer, a protective agent or the like may be mixed in order to prevent reaggregation of metal nanoparticles. In addition, the viscosity and the like can be adjusted by selecting the metal nanoparticle concentration and the type of solvent in accordance with the purpose of use and apparatus specifications.
 本発明に関する金属ナノ粒子の金属種としては、Ag、Au、Cu、Pd、Sn、In、Co、Bi、Al、Zn等が挙げられる。 Examples of the metal species of the metal nanoparticles related to the present invention include Ag, Au, Cu, Pd, Sn, In, Co, Bi, Al, and Zn.
 また、Alナノ粒子の製造については、2008年9月24日 産総研プレスリリース「プラスチックフィルム上に金属電極を低温で印刷形成する技術」等を参照することもできる。 In addition, for the production of Al nanoparticles, it is also possible to refer to the AIST press release “Technology for forming metal electrodes on plastic films at low temperatures” on September 24, 2008.
 (b)低融点金属化合物とは、低融点合金は100℃以下の融点を持つ合金をさす、用途や扱いの違いによりアルカリ金属系とそれ以外のものに分けられる。アルカリ金属系は、アルカリ金属間の合金でNaKが知られているが、空気や水と激しく反応するため、密閉された状態で、主に熱媒体として利用される。本発明においては、特にアルカリ金属系以外の亜鉛、インジウム、ガリウム、スズ、ビスマス、鉛などを主成分とした種々の合金が好ましい態様である。 (B) The low melting point metal compound refers to an alloy having a melting point of 100 ° C. or lower, and the low melting point alloy is classified into an alkali metal type and other types depending on the use and handling. Alkali metal is an alloy between alkali metals, and NaK is known. However, since it reacts violently with air and water, it is mainly used as a heat medium in a sealed state. In the present invention, various alloys mainly containing zinc, indium, gallium, tin, bismuth, lead, etc. other than alkali metal are preferred.
 例えば、錫の合金であるはんだや、ガリウム合金であるガリンスタン(組成はガリウム68.5%、インジウム21.5%、錫10%)、ビスマス合金であるウッドメタル(組成はビスマス50%、鉛26.7%、錫13.3%、カドミウム10%)等があり、合金の組成比を変化させることで、融点を変化させることが可能である。 For example, solder that is an alloy of tin, galinstan that is a gallium alloy (composition is gallium 68.5%, indium 21.5%, tin 10%), wood metal that is a bismuth alloy (composition is 50% bismuth, lead 26 0.7%, tin 13.3%, cadmium 10%) and the like, and the melting point can be changed by changing the composition ratio of the alloy.
 また、本発明では、
 (c)導電性ペーストが、アルカリ金属、アルカリ土類金属、アルカリ金属の化合物またはアルカリ土類金属の化合物を含有することが好ましい。
In the present invention,
(C) The conductive paste preferably contains an alkali metal, alkaline earth metal, alkali metal compound or alkaline earth metal compound.
 本発明に係るアルカリ金属とは、周期表において第1族に属する元素(水素・リチウム・ナトリウム・カリウム・ルビジウム・セシウム・フランシウム)のうち、水素を除いた元素を表す。 The alkali metal according to the present invention represents an element excluding hydrogen among elements belonging to Group 1 (hydrogen, lithium, sodium, potassium, rubidium, cesium, francium) in the periodic table.
 本発明に係るアルカリ土類金属とは、周期表の第2族に属する典型元素(ベリリウム・マグネシウム・カルシウム・ストロンチウム・バリウム・ラジウム)を表す。 The alkaline earth metal according to the present invention represents a typical element (beryllium, magnesium, calcium, strontium, barium, radium) belonging to Group 2 of the periodic table.
 本発明に係るアルカリ金属の化合物、アルカリ土類金属の化合物とは、前記アルカリ金属、またはアルカリ土類金属元素を含む、その塩、錯体、もしくは酸化物等を表す。 The alkali metal compound or alkaline earth metal compound according to the present invention represents a salt, complex, oxide, or the like containing the alkali metal or alkaline earth metal element.
 本発明では、電子輸送層と隣接する陰極の界面に、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することが好ましい。 In the present invention, an alkali metal, an alkaline earth metal, a compound of the alkali metal or a compound of the alkaline earth metal is preferably contained at the interface between the electron transport layer and the cathode adjacent to the cathode.
 その態様として、陰極に、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有する、もしくは、電子輸送層に、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することが好ましい。 As an aspect thereof, the cathode contains an alkali metal, an alkaline earth metal, the alkali metal compound or the alkaline earth metal compound, or the electron transport layer contains an alkali metal, an alkaline earth metal, or the alkali metal. Or a compound of the alkaline earth metal.
 《有機EL素子の製造方法》
 有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる素子の製造方法について説明する。
<< Method for Manufacturing Organic EL Element >>
As an example of a method for producing an organic EL element, a method for producing an element comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
 まず、適当な基体上に電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように形成させ、陽極を作製する。 First, an anode is fabricated by forming an electrode material, for example, a thin film made of an anode material on an appropriate substrate so as to have a thickness of 1 μm or less, preferably 10 nm to 200 nm.
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成させる。 Next, a thin film containing organic compounds such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are element materials, is formed thereon.
 本発明のリン光発光性の有機EL素子においては、少なくとも陰極と該陰極に隣接する電子輸送層は、湿式法により塗布・成膜される。 In the phosphorescent organic EL device of the present invention, at least the cathode and the electron transport layer adjacent to the cathode are applied and formed by a wet method.
 ここで、湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法等があるが、精密な薄膜が形成可能で、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。また、層ごとに異なる製膜法を適用してもよい。 Here, as the wet method, there are a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, etc., but a precise thin film can be formed. In view of high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable. Different film forming methods may be applied for each layer.
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nm~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。 After these layers are formed, a thin film made of a cathode material is formed thereon so as to have a film thickness of 1 μm or less, preferably in the range of 50 nm to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
 また、順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Also, the cathode, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be produced in the order of the reverse order.
 このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device obtained in this way, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 For the production of the organic EL device of the present invention, it is preferable to produce from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 《有機EL素子の層構成》
 次に、本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Layer structure of organic EL element >>
Next, although the preferable specific example of the layer structure of the organic EL element of this invention is shown below, this invention is not limited to these.
 (i)陽極/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 《発光層》
 本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode << light emitting layer >>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
 発光層の膜厚は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~200nmの範囲に調整することが好ましく、更に好ましくは5nm~100nmの範囲に調整される。 The thickness of the light emitting layer is not particularly limited, but from the viewpoint of the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 200 nm, and more preferably in the range of 5 nm to 100 nm.
 本発明の有機EL素子の発光層には、発光ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましく、該発光ドーパントとして後述するリン光発光性ドーパントを含有することが好ましい。 The light emitting layer of the organic EL device of the present invention preferably contains at least one of a light emitting host compound and a light emitting dopant as a guest material, and preferably contains a phosphorescent light emitting dopant described later as the light emitting dopant.
 また、本発明の有機EL素子の発光層として、発光ホスト化合物と3種以上の発光ドーパントを含有することも好ましい態様の一例として挙げることができる。 Moreover, as a light emitting layer of the organic EL device of the present invention, it can be mentioned as an example of a preferable embodiment that a light emitting host compound and three or more kinds of light emitting dopants are contained.
 以下に発光層に含まれるホスト化合物(発光ホスト等ともいう)と発光ドーパント(発光ドーパント化合物ともいう)について説明する。 Hereinafter, a host compound (also referred to as a light emitting host) and a light emitting dopant (also referred to as a light emitting dopant compound) included in the light emitting layer will be described.
 (ホスト化合物)
 本発明に係るホスト化合物について説明する。
(Host compound)
The host compound according to the present invention will be described.
 ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。 Here, the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1.
 好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、層中での質量比が20%以上であることが好ましい。 Preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the mass ratio in a layer is 20% or more among the compounds contained in a light emitting layer.
 本発明に係る前記一般式(1)で表される化合物は、本発明に係るホスト化合物としても好ましく用いられる。 The compound represented by the general formula (1) according to the present invention is also preferably used as the host compound according to the present invention.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。 As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
 また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 In addition, by using a plurality of light emitting dopants described later, it becomes possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 また、本発明に用いられる発光ホストとしては、従来公知の低分子量化合物でも、繰り返し単位をもつ高分子量化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子量化合物(蒸着重合性発光ホスト)でもよい。 The light emitting host used in the present invention may be a conventionally known low molecular weight compound or a high molecular weight compound having a repeating unit, and a low molecular weight compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerization property). Light emitting host).
 併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。 As the known host compound that may be used in combination, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。 Specific examples of known host compounds include compounds described in the following documents.
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。 JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002 -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
 以下、本発明の有機EL素子の発光層のホスト化合物として併用してもよい化合物の具体例を挙げるが、本発明はこれらに限定されない。 Hereinafter, specific examples of compounds that may be used in combination as the host compound of the light emitting layer of the organic EL device of the present invention will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 (発光ドーパント)
 本発明に係る発光ドーパントについて説明する。
(Luminescent dopant)
The light emitting dopant according to the present invention will be described.
 本発明の有機EL素子はリン光発光性であるため、本発明に係る発光ドーパントとしては、少なくともリン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を含有するものである。 Since the organic EL device of the present invention is phosphorescent, it contains at least a phosphorescent dopant (also referred to as phosphorescent emitter, phosphorescent compound, phosphorescent compound, etc.) as the luminescent dopant according to the present invention. To do.
 (リン光発光性ドーパント)
 本発明に係るリン光発光性ドーパントについて説明する。
(Phosphorescent dopant)
The phosphorescent dopant according to the present invention will be described.
 本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield. The phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitting dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
 リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こりリン光発光性ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. Energy transfer type to obtain light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and the phosphorescent dopant In any case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
 リン光発光性ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element.
 本発明に係るリン光発光性ドーパントとしては、好ましくは元素の周期表で8族~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex). System compounds), rare earth complexes, and most preferred are iridium compounds.
 本発明に係るリン光発光性ドーパントとしては、上記一般式(A)で表される化合物が好ましく用いられる。 As the phosphorescent dopant according to the present invention, a compound represented by the above general formula (A) is preferably used.
 《一般式(A)で表されるリン光発光性ドーパント》
 本発明に係る一般式(A)で表されるリン光発光性ドーパントについて説明する。
<< phosphorescent dopant represented by formula (A) >>
The phosphorescent dopant represented by the general formula (A) according to the present invention will be described.
 一般式(A)において、Q1で表される5員または6員の芳香環としては、ベンゼン環、オキサゾール環、イソオキサゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ジアジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。 In the general formula (A), the 5-membered or 6-membered aromatic ring represented by Q1 includes a benzene ring, an oxazole ring, an isoxazole ring, a thiophene ring, a furan ring, a pyrrole ring, a pyridine ring, a pyridazine ring, and a pyrimidine ring. , Pyrazine ring, diazine ring, triazine ring, imidazole ring, pyrazole ring, triazole ring and the like.
 上記の環は、更に縮合環を形成してもよく、また、置換基を有していても良い。 The above ring may further form a condensed ring and may have a substituent.
 一般式(A)において、Arで表される芳香族炭化水素基、芳香族複素環基は、各々、一般式(2)のAで表される-N(R1)-、A11~A18で、各々表される-C(R2)-において、R1、R2で各々表される置換基の例として挙げられている芳香族炭化水素基、芳香族複素環基と各々同義である。 In the general formula (A), the aromatic hydrocarbon group and the aromatic heterocyclic group represented by Ar are respectively -N (R1)-represented by A in the general formula (2), and A11 to A18. -C (R2)-represented by each has the same meaning as the aromatic hydrocarbon group and aromatic heterocyclic group mentioned as examples of the substituent represented by R1 and R2.
 一般式(A)において、R3、R4で各々表される置換基は、一般式(2)のAで表される-N(R1)-、A11~A18で、各々表される-C(R2)-において、R1、R2で各々表される置換基と同義である。 In the general formula (A), the substituents represented by R3 and R4 are each represented by —N (R1) — represented by A in the general formula (2) and —C (R2) represented by A11 to A18. )-Has the same meaning as the substituents represented by R1 and R2.
 一般式(A)において、副配位子Lとしては、オキシカルボン酸、オキシアルデヒド及びその誘導体(例えば、サリチルアルデヒダト、オキシアセトフェノナト等)、ジオキシ化合物(例えば、ビフェノラト等)、ジケトン類(例えば、アセチルアセトナト、ジベンゾイルメタナト、ジエチルマロナト、エチルアセトアセタト等)、オキシキノン類(例えば、ピロメコナト、オキシナフトキノナト、オキシアントラキノナト等)、トロポロン類(例えば、トロポナト、ヒノキチオラト等)、N-オキシド化合物、アミノカルボン酸及び類似化合物(例えば、グリシナト、アラニナト、アントラニラト、ピコリナト等)、ヒドロキシルアミン類(例えば、アミノフェノラト、エタノールアミナト、メルカプトエチルアミナト等)、オキシン類(例えば、8-オキシキノリナト等)、アルジミン類(例えば、サリチルアルジミナト等)、オキシオキシム類(例えば、ベンゾインオキシマト、サリチルアルドキシマト等)、オキシアゾ化合物(例えば、オキシアゾベンゾナト、フェニルアゾナフトラト等)、ニトロソナフトール類(例えば、β-ニトロソ-α-ナフトラト等)、トリアゼン類(例えば、ジアゾアミノベンゼナト等)、ビウレット類(例えば、ビウレタト、ポリペプチド基等)、ホルマゼン類及びジチゾン類(例えば、ジフェニルカルバゾナト、ジフェニルチオカルバゾナト等)、ピグアニド類(例えば、ピグアニダト等)、グリオキシム類(例えば、ジメチルグリオキシマト等)等が挙げられる。 In the general formula (A), as the secondary ligand L, oxycarboxylic acid, oxyaldehyde and derivatives thereof (for example, salicylaldehyde, oxyacetophenonate, etc.), dioxy compounds (for example, biphenolate, etc.), diketones ( For example, acetylacetonato, dibenzoylmethanato, diethylmalonate, ethylacetoacetate, etc.), oxyquinones (eg, pyromeconato, oxynaphthoquinato, oxyanthraquinato, etc.), tropolones (eg, troponato, hinokitiolato, etc.) N-oxide compounds, aminocarboxylic acids and similar compounds (eg, glycinato, alaninato, anthranilate, picolinato, etc.), hydroxylamines (eg, aminophenolato, ethanolaminato, mercaptoethylaminato, etc.), oxins For example, 8-oxyquinolinato, etc.), aldimines (eg, salicylaldiminato, etc.), oximes (eg, benzoinoxymato, salicylaldoximato, etc.), oxyazo compounds (eg, oxyazobenzonate, phenylazonaphtholato) ), Nitrosonaphthols (eg, β-nitroso-α-naphtholato, etc.), triazenes (eg, diazoaminobenzenato, etc.), biurets (eg, biuretate, polypeptide group, etc.), formazenes, and dithizones ( For example, diphenylcarbazonate, diphenylthiocarbazonate, etc.), piguanides (for example, piguanidate, etc.), glyoximes (for example, dimethylglyoximato, etc.) and the like can be mentioned.
 また、種々の公知の配位子を用いてもよく、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer-Verlag社 H.Yersin著 1987年発行、「有機金属化学-基礎と応用-」 裳華房社 山本明夫著 1982年発行 等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロ環配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子なと)が挙げられる。 Various known ligands may also be used. For example, “Photochemistry and Photophysics of Coordination Compounds” Springer-Verlag H. Yersin published in 1987, “Organometallic Chemistry-Fundamentals and Applications-”, Lihuabosha, Yamamoto Akio, published in 1982, etc. (including halogen ligands (preferably chlorine ligands), etc. Nitrogen heterocyclic ligands (for example, bipyridyl, phenanthroline, etc.) and diketone ligands).
 以下、リン光発光性ドーパントとして、本発明に係る一般式(A)で表される化合物の具体例を示すが、本発明はこれらに限定されない。 Hereinafter, specific examples of the compound represented by the general formula (A) according to the present invention will be shown as the phosphorescent dopant, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 また、以下、本発明の有機EL素子の発光層の形成に用いても良い発光ドーパントの具体例を挙げるが、本発明はこれらに限定されない。 Hereinafter, specific examples of the light emitting dopant that may be used for forming the light emitting layer of the organic EL device of the present invention will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 《電荷注入層:電子注入層、正孔注入層》
 本発明に係る電荷注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Charge injection layer: electron injection layer, hole injection layer >>
The charge injection layer according to the present invention is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, between the anode and the light emitting layer or the hole transport layer, and the cathode and the light emitting layer or the electron transport layer. It may be present between.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属の化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. It is done. The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
 また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。 Moreover, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention, if necessary.
 本発明に係る有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer of the organic EL device according to the present invention is preferably provided adjacent to the light emitting layer.
 正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。 The hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound described above.
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。 In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode.
 更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。 Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
 イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。 The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
 (1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。 (1) Using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA The ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
 (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。 (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm~100nmであり、更に好ましくは5nm~30nmである。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
 《電荷輸送層:電子輸送層、正孔輸送層》
 本発明に係る電荷輸送層としては、電子輸送層、正孔輸送層等が挙げられる。
<< Charge transport layer: electron transport layer, hole transport layer >>
Examples of the charge transport layer according to the present invention include an electron transport layer and a hole transport layer.
 以下、本発明に係る電子輸送層、正孔輸送層について詳細に説明する。 Hereinafter, the electron transport layer and the hole transport layer according to the present invention will be described in detail.
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれでもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子を得る観点からこれらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used from the viewpoint of obtaining a light emitting element with higher efficiency.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
 正孔輸送層の膜厚については、5nm~5μmの範囲であることが好ましく、更に好ましくは、5nm~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The thickness of the hole transport layer is preferably in the range of 5 nm to 5 μm, more preferably 5 nm to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 以下、本発明の有機EL素子の正孔輸送層の形成に好ましく用いられる化合物の具体例を挙げるが、本発明はこれらに限定されない。 Hereinafter, although the specific example of the compound preferably used for formation of the positive hole transport layer of the organic EL element of this invention is given, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
 上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。 In the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
 更に、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu , Ca, Sn, Ga, or Pb can also be used as an electron transport material.
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
 また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an n-type electron transport layer doped with impurities as a guest material. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製する観点から好ましく用いられる。 In the present invention, it is preferable to use such an electron transport layer having a high n property from the viewpoint of producing a device with lower power consumption.
 以下、本発明の白色有機EL素子の電子輸送層の形成に好ましく併用される化合物(電子輸送材料)の具体例を挙げるが、本発明はこれらに限定されない。 Hereinafter, specific examples of the compound (electron transport material) preferably used in combination with the formation of the electron transport layer of the white organic EL device of the present invention will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。 Alternatively, when a material that can be applied such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.
 更に、膜厚は材料にもよるが、10nm~1000nmの範囲が好ましく、更に好ましくは10nm~200nmの範囲である。 Furthermore, the film thickness is preferably in the range of 10 nm to 1000 nm, more preferably in the range of 10 nm to 200 nm, although it depends on the material.
 《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
"cathode"
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 本発明では、これらの電極物質(導電性材料ともいう)を導電性ペーストとして用いて湿式法により薄膜を形成させ陰極を作製する。 In the present invention, these electrode substances (also referred to as conductive materials) are used as a conductive paste to form a thin film by a wet method to produce a cathode.
 陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は、10nm~5μmの範囲が好ましく、更に好ましくは、50nm~200nmの範囲で選ばれる。 The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is preferably in the range of 10 nm to 5 μm, more preferably in the range of 50 nm to 200 nm.
 尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。 In addition, in order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is improved, which is convenient.
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
 《基板》
 本発明に係る有機EL素子に用いることのできる基板(以下、基体、基材、支持基板、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
"substrate"
As a substrate (hereinafter also referred to as a base, a base material, a support substrate, a support, etc.) that can be used in the organic EL device according to the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. Or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc.
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・MPa)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, an inorganic film, an organic film, or a hybrid film of both may be formed. Water vapor permeability measured by a method in accordance with JIS K 7129-1992 (25 ± 0.5 ° C., It is preferably a barrier film having a relative humidity (90 ± 2)% RH) of 0.01 g / (m 2 · 24 h) or less, and further, oxygen permeation measured by a method according to JIS K 7126-1987. A high barrier property film having a degree of 10 −3 ml / (m 2 · 24 h · MPa) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシ法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method. A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明に係る有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。 The external extraction efficiency at room temperature of light emission of the organic EL device according to the present invention is preferably 1% or more, more preferably 5% or more.
 ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
 《封止》
 本発明に用いられる有機EL素子の封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means of the organic EL element used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。 In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
 更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m/24h以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m/24h)以下のものであることが好ましい。 Furthermore, the polymer film, measured oxygen permeability by the method based on JIS K 7126-1987 is 1 × 10 -3 ml / m 2 / 24h or less, as measured by the method based on JIS K 7129-1992 water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is preferably that of 1 × 10 -3 g / (m 2 / 24h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 尚、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機層を挟み基板と対向する側の電極の外側に該電極と有機層を被覆し、基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。 It is also possible to suitably form an inorganic or organic layer as a sealing film by covering the electrode and the organic layer on the outer side of the electrode facing the substrate with the organic layer interposed therebetween, and in contact with the substrate. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
 更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシ法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 《保護膜、保護板》
 有機層を挟み基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%~20%程度の光しか取り出せないことが一般的に言われている。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
 これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。 This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method of improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an organic EL element (Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (Japanese Patent Laid-Open No. 62-172691), and lowering the refractive index between the substrate and the light emitter than the substrate. A method of introducing a flat layer having a structure (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) No. 283751) That.
 本発明においては、これらの方法を本発明に係る有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device according to the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた有機EL素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an organic EL device having higher luminance or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。 When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the efficiency of taking out the light from the transparent electrode to the outside increases as the refractive index of the medium decreases.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率が1.5以下が好ましく、更に好ましくは1.35以下である。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of 1.5 or less, more preferably 1.35 or less.
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
 この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
 回折格子を導入する位置としては、前述のように、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。 As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。 At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明に係る有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工する、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL device according to the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or in combination with a so-called condensing sheet, for example, with respect to a specific direction, for example, the light emitting surface By condensing in the front direction, the luminance in a specific direction can be increased.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm.
 これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。 If it is smaller than this, the effect of diffraction occurs and the color is changed.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
 プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, in order to control the light emission angle from the light emitting element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
 また、本発明に係る有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度が、X=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。 Further, when the organic EL element according to the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is measured when the front luminance at 2 ° viewing angle is measured by the above method. , X = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
 《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を具備したものである。
<Display device>
The display device of the present invention will be described. The display device of the present invention comprises the organic EL element of the present invention.
 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。 The display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described. In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法等が挙げられる。 When patterning only the light emitting layer, the method is not limited, but preferred examples include vapor deposition, ink jet, spin coating, and printing.
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。 The configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。 Moreover, the manufacturing method of an organic EL element is as having shown in the one aspect | mode of manufacture of the organic EL element of said this invention.
 得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。尚、印加する交流の波形は任意でよい。 When a DC voltage is applied to the obtained multicolor display device, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。 The multicolor display device can be used as a display device, a display, and various light sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。 Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。 Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。 The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal. The image information is sequentially emitted to scan the image and display the image information on the display unit A.
 図2は表示部Aの模式図である。 FIG. 2 is a schematic diagram of the display unit A.
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。 The display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate. The main members of the display unit A will be described below.
 図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。 In the figure, the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。 The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 A full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。 Next, the light emission process of the pixel will be described.
 図3は画素の模式図である。 FIG. 3 is a schematic diagram of a pixel.
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 That is, the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。 Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。 FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。 When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。 In the passive matrix method, there is no active element in the pixel 3, and the manufacturing cost can be reduced.
 《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
《Lighting device》
The lighting device of the present invention will be described. The illuminating device of this invention has the said organic EL element.
 本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。 The organic EL element of the present invention may be used as an organic EL element having a resonator structure. The purpose of use of the organic EL element having such a resonator structure is as follows. The light source of a machine, the light source of an optical communication processing machine, the light source of a photosensor, etc. are mentioned, However, It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
 また、本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。 Moreover, the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
 また複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material as excitation light. Any of those combined with a dye material that emits light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of light-emitting dopants may be mixed.
 発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。 It is only necessary to provide a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, etc., and simply arrange them separately by coating with the mask. Since other layers are common, patterning of the mask or the like is not necessary. In addition, for example, an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is also improved.
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。 According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 There is no restriction | limiting in particular as a luminescent material used for a light emitting layer, For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known luminescent materials may be selected and combined to whiten.
 《本発明の照明装置の一態様》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
<< One Embodiment of Lighting Device of the Present Invention >>
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。 The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 μm is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material. LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and an illumination device as shown in FIGS. Can be formed.
 図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。 FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 6 shows a cross-sectional view of the lighting device. In FIG. 6, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。また、実施例で使用の化合物の構造式を下記に示す。 Hereinafter, although an example explains the present invention, the present invention is not limited to these. The structural formulas of the compounds used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 実施例1
 《塗布液調製時の溶液安定性》
 本発明の有機エレクトロルミネッセンス素子の電子輸送層の構成材料として用いられる材料である、Alq、BCP、PBD、BAlq及び本発明の一般式(1)に係る化合物(11種)について塗布液調製時の溶液安定性を評価した。
Example 1
《Solution stability during preparation of coating solution》
When preparing the coating solution for Alq 3 , BCP, PBD, BAlq and the compound (11 types) according to the general formula (1) of the present invention, which are materials used as the constituent material of the electron transport layer of the organic electroluminescence device of the present invention. The solution stability of was evaluated.
 試験試料及び溶媒の組み合わせは、表1に示す。 The combinations of test samples and solvents are shown in Table 1.
 尚、溶媒の選択は、非極性脂肪族炭化水素、非極性芳香族炭化水素、極性非プロトン性、極性プロトン性、フッ素系等の溶媒分類から表1に示した一般的な溶媒5種類を選択して行った。 The solvent is selected from five general solvents shown in Table 1 based on the solvent classification such as nonpolar aliphatic hydrocarbon, nonpolar aromatic hydrocarbon, polar aprotic, polar protic, and fluorine. I went there.
 10mgの試験試料を量り、1mlの溶媒を加え、マグネチックスターラにて室温で撹拌した。30分攪拌した後、目視にて不溶分が確認できる場合には、50℃、30分間加熱撹拌した。 10 mg test sample was weighed, 1 ml of solvent was added, and the mixture was stirred at room temperature with a magnetic stirrer. After stirring for 30 minutes, when an insoluble matter could be visually confirmed, the mixture was heated and stirred at 50 ° C. for 30 minutes.
 再び目視で確認し、不溶分が確認できる場合には、還流条件下で最長2時間を限度として溶解するまで加熱撹拌を行った。 When visually inspecting again and insoluble matter could be confirmed, the mixture was heated and stirred under dissolution under reflux conditions until the maximum was dissolved for 2 hours.
 以上の条件で溶解したものに関して、電子輸送材料としての溶液安定性評価を行った。 The solution stability as an electron transport material was evaluated for those dissolved under the above conditions.
 評価条件は、25℃、24時間静置前後、HPLC(高速液体クロマトグラフィ)による純度測定を行った。 Evaluation conditions were purity measurement by HPLC (High Performance Liquid Chromatography) before and after standing at 25 ° C. for 24 hours.
 測定装置名:高速液体クロマトグラフ LC-2000Plusシリーズ(日本分光株式会社製)
 カラム  :ジーエルサイエンス株式会社 イナートシル SIL-100A(4.6Φx250mm)
 測定条件 :トルエン/シクロヘキサン混合溶媒系(50/50~30/70)
 評価は下記のようなランク評価で行った。
Measuring device name: High-performance liquid chromatograph LC-2000Plus series (manufactured by JASCO Corporation)
Column: GL Science Co., Ltd. Inert Sil SIL-100A (4.6Φx250mm)
Measurement conditions: Toluene / cyclohexane mixed solvent system (50/50 to 30/70)
Evaluation was performed by the following rank evaluation.
 ○:変化率(P24/P0)が1%未満である
 △:変化率(P24/P0)が1%以上5%未満
 ×:変化率(P24/P0)が5%以上
 尚、P0は初期の純度を表し、P24は24時間後の純度を表す。
○: Change rate (P24 / P0) is less than 1% Δ: Change rate (P24 / P0) is 1% or more and less than 5% ×: Change rate (P24 / P0) is 5% or more It represents purity, and P24 represents the purity after 24 hours.
 得られた結果を表1に示す。 Table 1 shows the obtained results.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表1から、本発明に係る一般式(1)で表される化合物を用いて調製された溶液は、非常に優れた溶液安定性を示すことがわかる。 Table 1 shows that the solution prepared using the compound represented by the general formula (1) according to the present invention exhibits very excellent solution stability.
 特に、試料番号1~11の化合物は、複数種の溶媒系に溶解し、且つ、高い溶液安定性を示すことから、汎用性も高く、湿式方式の成膜材料として非常に優れていることがわかった。 In particular, the compounds of Sample Nos. 1 to 11 are highly versatile and very excellent as wet-type film-forming materials because they are dissolved in a plurality of solvent systems and exhibit high solution stability. all right.
 一方、電子輸送材料として従来良く知られているAlq、BAlq等、アルミニウム錯体は溶液での安定性が非常に悪いことがわかる。 On the other hand, it can be seen that aluminum complexes such as Alq 3 and BAlq, which are well known as electron transport materials, have very poor stability in solution.
 実施例2
 《有機EL素子1-1の製造》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 2
<< Manufacture of organic EL element 1-1 >>
Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. Then, the film was formed by spin coating and then dried at 200 ° C. for 1 hour to provide a 30 nm-thick hole transport layer.
 この正孔輸送層上に、40mgのBH-16と2mgのID-4を脱水メシチレン2.5mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜した。150℃で1時間加熱乾燥し、膜厚40nmの発光層を設けた。 On this hole transport layer, a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 150 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
 この発光層上に、30mgのHS-69と3mgのフッ化セシウムを脱水1,1,1-3,3,3-ヘキサフルオロイソプロパノール6mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜した。120℃で1時間加熱乾燥し、膜厚20nmの電子輸送層を設けた。 A solution prepared by dissolving 30 mg of HS-69 and 3 mg of cesium fluoride in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was spun on this light emitting layer under conditions of 1000 rpm and 30 seconds. A film was formed by a coating method. Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
 更に、銀ナノ粒子ペースト分散液(三ツ星ベルト社製 MDot-SL)20mlをインクジェットヘッド(エプソン社製;MJ800C)を用いて吐出・パターニングした後、窒素下で120℃、5分焼成し、厚さ110nmの銀陰極を形成し、有機EL素子1-1を製造した。 Further, 20 ml of silver nanoparticle paste dispersion (Mitsuboshi Belting Co., Ltd., MDot-SL) was ejected and patterned using an inkjet head (Epson Co., Ltd .; MJ800C), and then baked at 120 ° C. for 5 minutes under nitrogen. A 110 nm silver cathode was formed to produce an organic EL device 1-1.
 《有機EL素子1-2及び有機EL素子1-3の製造と評価》
 有機EL素子1-1の製造において、電子輸送層に用いたHS-69の替わりに非共役系高分子電子輸送材料であるPoly-1を用いた以外は全く同様にして、有機EL素子1-2を、また、発光層上に電子輸送層を設けることなしに直接陰極を形成する以外は全く同様にして、有機EL素子1-3を製造した。
<< Manufacture and Evaluation of Organic EL Element 1-2 and Organic EL Element 1-3 >>
In the production of the organic EL element 1-1, the organic EL element 1- 1 was produced in the same manner except that Poly-1 which is a non-conjugated polymer electron transporting material was used instead of HS-69 used for the electron transport layer. 2 and the organic EL device 1-3 was produced in the same manner except that the cathode was directly formed without providing the electron transport layer on the light emitting layer.
 後述する有機EL素子の評価方法を用いて、有機EL素子1-1における外部量子効率(発光効率ともいう)、発光寿命、駆動電圧をそれぞれ100として相対評価を行ったところ、有機EL素子1-2における外部量子効率、発光寿命、駆動電圧はそれぞれ、105、60、95、有機EL素子1-3における外部量子効率、発光寿命、駆動電圧は、各々80、1、170となり、電子輸送層を有する有機EL素子1-1、1-2はいずれも、電子輸送層を有さない有機EL素子1-3に比して優れた性能を示し、リン光発光性の有機EL素子において、電子輸送層が重要な役割を有していることが明らかである。 Using an organic EL element evaluation method, which will be described later, relative evaluation was performed with the external quantum efficiency (also referred to as light emission efficiency), the light emission lifetime, and the drive voltage of the organic EL element 1-1 being 100, respectively. The external quantum efficiency, light emission lifetime, and drive voltage of 2 are 105, 60, and 95, respectively, and the external quantum efficiency, light emission lifetime, and drive voltage of the organic EL element 1-3 are 80, 1, 170, respectively. Each of the organic EL elements 1-1 and 1-2 having an excellent performance as compared with the organic EL element 1-3 having no electron transporting layer has an electron transporting property in the phosphorescent organic EL element. It is clear that the layer has an important role.
 実施例3
 《有機EL素子2-1の製造》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 3
<< Manufacture of organic EL element 2-1 >>
Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第一正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. Then, the film was formed by spin coating and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 30 nm.
 5mgのHT-24と10mgのHT-26を脱水トルエン3mlに溶解し、この溶液を用いて1000、30秒の条件下、スピンコート法により成膜した。 5 mg of HT-24 and 10 mg of HT-26 were dissolved in 3 ml of dehydrated toluene, and a film was formed by spin coating using this solution under conditions of 1000 and 30 seconds.
 窒素下、15秒間UVを照射(100W UVA、200mJ)し、光重合・架橋を行い、更に、120℃、10分間加熱乾燥し、重合性基を重合させることにより不溶化処理を行い、膜厚20nmの第二正孔輸送層を形成した。 UV irradiation (100 W UVA, 200 mJ) for 15 seconds under nitrogen, photopolymerization / crosslinking, and further heat drying at 120 ° C. for 10 minutes to effect insolubilization by polymerizing polymerizable groups, resulting in a film thickness of 20 nm The second hole transport layer was formed.
 この第二正孔輸送層上に、40mgのBH-16と2mgのID-4を脱水メシチレン2.5mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜し、150℃で1時間加熱乾燥し、膜厚40nmの発光層を設けた。 On this second hole transport layer, a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed into a film by spin coating under conditions of 1000 rpm and 30 seconds. Heat-dried at 1 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
 この発光層上に、30mgのHS-70を脱水1,1,1-3,3,3-ヘキサフルオロイソプロパノール6mlに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により成膜し、120℃で1時間加熱乾燥し、膜厚20nmの電子輸送層を設けた。 On this light emitting layer, a solution prepared by dissolving 30 mg of HS-70 in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
 20mgのフッ化カリウムを1mlのメタノールに溶解した溶液を上記電子輸送層上に滴下し、最初100rpm、10秒、その後直ちに3000rpm、30秒の条件でスピンコートを行い、該電子輸送層中にフッ化カリウムの浸漬を行った。 A solution prepared by dissolving 20 mg of potassium fluoride in 1 ml of methanol is dropped on the electron transport layer, spin coating is initially performed at 100 rpm for 10 seconds, and then immediately at 3000 rpm for 30 seconds. Potassium halide immersion was performed.
 更に、銀ナノ粒子ペースト分散液(三ツ星ベルト社製 MDot-SL)20mlをインクジェットヘッド(エプソン社製;MJ800C)を用いて吐出・パターニングした後、窒素下で120℃、5分焼成し、厚さ110nmの銀陰極を形成し、有機EL素子2-3を製造した。 Further, 20 ml of silver nanoparticle paste dispersion (Mitsuboshi Belting Co., Ltd., MDot-SL) was ejected and patterned using an inkjet head (Epson Co., Ltd .; MJ800C), and then baked at 120 ° C. for 5 minutes under nitrogen. A 110 nm silver cathode was formed to produce an organic EL device 2-3.
 《有機EL素子2-2~2-4の製造》
 有機EL素子2-1の製造において、発光層に使用した発光ドーパントと、電子輸送層を、表2に示したように変更した以外は全く同様にして、有機EL素子2-2~2-4を各々製造した。
<< Manufacture of organic EL elements 2-2 to 2-4 >>
In the production of the organic EL element 2-1, the organic EL elements 2-2 to 2-4 were exactly the same except that the light emitting dopant used in the light emitting layer and the electron transport layer were changed as shown in Table 2. Each was manufactured.
 《有機EL素子2-1~2-4の評価》
 得られた有機EL素子2-1~2-4の評価に際しては、製造後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5、図6に示すような照明装置を形成し、外部取り出し量子効率、発光寿命、駆動電圧を評価した。また、各々の評価項目における条件を以下に示す。
<< Evaluation of organic EL elements 2-1 to 2-4 >>
When evaluating the obtained organic EL elements 2-1 to 2-4, the non-light-emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed to form an illumination device as shown in FIGS. 5 and 6, and the external extraction quantum efficiency, light emission lifetime, and driving voltage were evaluated. Moreover, the conditions in each evaluation item are shown below.
 《外部取りだし量子効率》
 有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放射輝度計CS-1000(ミノルタ製)を用いた。
《External extraction quantum efficiency》
For the organic EL element, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied at 23 ° C. in a dry nitrogen gas atmosphere. For the measurement, a spectral radiance meter CS-1000 (manufactured by Minolta) was used.
 《発光寿命》
 23℃、乾燥窒素ガス雰囲気下で2.5mA/cmの一定電流で駆動した時に、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。尚、測定には同様に、分光放射輝度計CS-1000(ミノルタ製)を用いた。
<Luminescent life>
When driving at a constant current of 2.5 mA / cm 2 in a dry nitrogen gas atmosphere at 23 ° C., the time required for the luminance to drop to half of the luminance immediately after the start of light emission (initial luminance) was measured. The half-life time (τ 0.5 ) was used as an index of life. Similarly, a spectral radiance meter CS-1000 (manufactured by Minolta) was used for the measurement.
 《駆動電圧》
 温度23℃、乾燥窒素ガス雰囲気下で発光開始の電圧を測定した。尚、発光開始の電圧は、輝度50cd/m以上となったときの電圧値を測定した。輝度の測定には分光放射輝度計CS-1000(ミノルタ製)を用いた。
<Drive voltage>
The voltage at the start of light emission was measured at a temperature of 23 ° C. in a dry nitrogen gas atmosphere. In addition, the voltage value at the time of the brightness | luminance starting voltage measuring 50 cd / m < 2 > or more was measured. A spectral radiance meter CS-1000 (manufactured by Minolta) was used for the measurement of luminance.
 得られた結果を表2に示す。尚、有機EL素子2-4の外部量子効率、発光寿命、駆動電圧をそれぞれ100として相対評価を行い、その結果を表2示す。 Table 2 shows the results obtained. In addition, relative evaluation was performed by setting the external quantum efficiency, light emission lifetime, and driving voltage of the organic EL element 2-4 to 100, and Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表2から、リン光発光を利用した有機EL素子2-1と蛍光発光を利用した有機EL素子2-3を比べると、その素子性能の差は明らかであり、本発明の素子構成においてもリン光発光素子の優位性は明解である。 From Table 2, when the organic EL element 2-1 using phosphorescence emission is compared with the organic EL element 2-3 using fluorescence emission, the difference in element performance is clear. The superiority of the light emitting device is clear.
 更に詳細に結果を解析すると、有機EL素子2-1と2-2で比較すると、電子輸送層の有無が有機EL素子の物性に大きく影響していることがわかる。 Further analysis of the results shows that the presence or absence of the electron transport layer greatly affects the physical properties of the organic EL element when compared between the organic EL elements 2-1 and 2-2.
 更に、蛍光発光性ドーパントを用いた2-3(電子輸送層有り)と2-4(電子輸送層無し)では、電子輸送層を設けたことにより得られる本発明の効果(高い外部取り出し量子効率、長発光寿命及び低駆動電圧)が、リン光発光性ドーパントを用いた場合よりも低いことから、リン光発光を利用した有機EL素子においては、電子輸送層が不可欠な存在であることが明白である。 Furthermore, in 2-3 (with an electron transport layer) and 2-4 (without an electron transport layer) using a fluorescent luminescent dopant, the effect of the present invention obtained by providing an electron transport layer (high external extraction quantum efficiency) It is clear that the electron transport layer is indispensable in the organic EL device using phosphorescence emission since the long emission lifetime and the low driving voltage are lower than those using the phosphorescence emission dopant. It is.
 実施例4
 《有機EL素子3-8の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 4
<< Preparation of organic EL element 3-8 >>
Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. Then, the film was formed by spin coating and then dried at 200 ° C. for 1 hour to provide a 30 nm-thick hole transport layer.
 この正孔輸送層上に、40mgのBH-16と2mgのID-4を脱水メシチレン2.5mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜した。150℃で1時間加熱乾燥し、膜厚40nmの発光層を設けた。 On this hole transport layer, a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 150 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
 この発光層上に、30mgのHS-42を脱水1,1,1-3,3,3-ヘキサフルオロイソプロパノール6mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜した。120℃で1時間加熱乾燥し、膜厚20nmの電子輸送層を設けた。 On this light emitting layer, a solution prepared by dissolving 30 mg of HS-42 in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was formed by spin coating at 1000 rpm for 30 seconds. . Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
 更に、200mgのフッ化ナトリウムを5mlのメタノールに溶解し、凝集しないようにゆっくりと、銀ナノ粒子ペースト分散液(三ツ星ベルト社製 MDot-SL)20mlに加え、アルカリ金属の化合物を有する導電性化合物分散液を調整した。 Furthermore, 200 mg of sodium fluoride is dissolved in 5 ml of methanol, and slowly added to 20 ml of silver nanoparticle paste dispersion (MDot-SL manufactured by Mitsuboshi Belting Co., Ltd.) so as not to aggregate, and a conductive compound having an alkali metal compound The dispersion was adjusted.
 上記分散液をインクジェットヘッド(エプソン社製;MJ800C)を用いて吐出・パターニングした後、窒素下で120℃、5分焼成し、厚さ110nmの銀陰極を形成し、有機EL素子3-8を製造した。 The above dispersion was discharged and patterned using an inkjet head (manufactured by Epson; MJ800C), and then baked at 120 ° C. for 5 minutes under nitrogen to form a silver cathode having a thickness of 110 nm. Manufactured.
 《有機EL素子3-1~3-7及び3-9~3-24の製造》
 有機EL素子3-8において、表3に示したように電子輸送層の構成材料(電子輸送材料ともいう)を変更した以外は同様にして、有機EL素子3-1~3-7及び3-9~3-24を各々製造した。
<< Manufacture of organic EL elements 3-1 to 3-7 and 3-9 to 3-24 >>
In the organic EL element 3-8, the organic EL elements 3-1 to 3-7 and 3 were changed in the same manner except that the constituent material of the electron transport layer (also referred to as electron transport material) was changed as shown in Table 3. 9 to 3-24 were produced respectively.
 製造時、有機EL素子3-22、3-24の製造においては、電子輸送層の塗布時に下層の発光層が流出し、素子を製造することができなかった。 At the time of manufacture, in the manufacture of the organic EL elements 3-22 and 3-24, the lower light-emitting layer flowed out when the electron transport layer was applied, and the element could not be manufactured.
 また、有機EL素子3-23においては、実施例1の試料No.12で示したようにET-8(BAlq)の溶液安定性が著しく悪く、素子を製造できなかった。 In addition, in the organic EL element 3-23, the sample No. As shown in FIG. 12, the solution stability of ET-8 (BAlq) was extremely poor, and the device could not be manufactured.
 《有機EL素子3-1~3-24の評価》
 実施例2に記載の素子の評価方法と全く同様にして、有機EL素子3-1~3-24の素子評価を行った。
<< Evaluation of organic EL elements 3-1 to 3-24 >>
In the same manner as the device evaluation method described in Example 2, device evaluation of the organic EL devices 3-1 to 3-24 was performed.
 評価においては、有機EL素子3-21の外部量子効率、発光寿命、駆動電圧をそれぞれ100として相対評価を行い、その結果を表3に示した。 In the evaluation, relative evaluation was performed with the external quantum efficiency, the light emission lifetime, and the driving voltage of the organic EL element 3-21 as 100, and the results are shown in Table 3.
 尚、素子が製造できなかった有機EL素子3-22、3-23、3-24に関しては評価を行わなかった。 Note that evaluation was not performed on the organic EL elements 3-22, 3-23, and 3-24, which could not be manufactured.
 得られた結果を下記の表3に示す。 The results obtained are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 表3から、本発明に係る一般式(1)で表される化合物を電子輸送材料として電子輸送層に含有させた本発明の有機EL素子は、外部取り出し量子効率が高く、発光寿命も長く、且つ、低駆動電圧であることが明かである。 From Table 3, the organic EL device of the present invention in which the compound represented by the general formula (1) according to the present invention is contained in the electron transport layer as an electron transport material has a high external extraction quantum efficiency and a long emission lifetime. It is also clear that the driving voltage is low.
 一方、電子輸送材料として従来良く知られているBAlqは溶液での安定性が非常に悪いため、湿式法では、電子輸送層が形成できていないことがわかる。 On the other hand, since BAlq, which has been well known as an electron transport material, has very poor stability in solution, it can be seen that an electron transport layer cannot be formed by the wet method.
 実施例5
 《有機EL素子4-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 5
<< Preparation of organic EL element 4-1 >>
Patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate as a positive electrode on a 100 mm × 100 mm × 1.1 mm glass substrate was formed, and then this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. Then, the film was formed by spin coating and then dried at 200 ° C. for 1 hour to provide a 30 nm-thick hole transport layer.
 この正孔輸送層上に、40mgのBH-16と2mgのID-4を脱水メシチレン2.5mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜した。150℃で1時間加熱乾燥し、膜厚40nmの発光層を設けた。 On this hole transport layer, a solution prepared by dissolving 40 mg of BH-16 and 2 mg of ID-4 in 2.5 ml of dehydrated mesitylene was formed by spin coating at 1000 rpm for 30 seconds. Heat-dried at 150 degreeC for 1 hour, and provided the light emitting layer with a film thickness of 40 nm.
 この発光層上に、30mgのHS-42を脱水1,1,1-3,3,3-ヘキサフルオロイソプロパノール6mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜した。120℃で1時間加熱乾燥し、膜厚20nmの電子輸送層を設けた。 On this light emitting layer, a solution prepared by dissolving 30 mg of HS-42 in 6 ml of dehydrated 1,1,1-3,3,3-hexafluoroisopropanol was formed by spin coating at 1000 rpm for 30 seconds. . Heat-dried at 120 ° C. for 1 hour to provide an electron transport layer having a thickness of 20 nm.
 GaInSn(Ga:In:Snが62質量%:25質量%:13質量%)の液体合金中に上記で得られたGaIn(Ga:Inが15質量%:85質量%)合金を20質量%浸漬して6時間静置した後、攪拌しペースト状とし、更に120℃で10分間撹拌し、低融点金属ペーストを調製した。 20% by mass of the GaIn (Ga: In 15% by mass: 85% by mass) alloy obtained above in a liquid alloy of GaInSn (Ga: In: Sn 62% by mass: 25% by mass: 13% by mass) The mixture was allowed to stand for 6 hours and then stirred to form a paste, and further stirred at 120 ° C. for 10 minutes to prepare a low melting point metal paste.
 得られたペーストをディスペンサーにセットし、100℃に加温しながら吐出・パターニングを行い、陰極を形成し、有機EL素子4-1を製造した。 The obtained paste was set in a dispenser, discharged and patterned while being heated to 100 ° C., a cathode was formed, and an organic EL element 4-1 was manufactured.
 《有機EL素子4-2の製造》
 有機EL素子4-1の製造において、発光層上に電子輸送層を設けることなしに直接陰極を形成する以外は全く同様にして、有機EL素子4-2を製造した。
<< Manufacture of organic EL element 4-2 >>
In the production of the organic EL element 4-1, the organic EL element 4-2 was produced in exactly the same manner except that the cathode was directly formed without providing the electron transport layer on the light emitting layer.
 得られた有機EL素子の評価は、実施例2に記載と同様にして行った。 Evaluation of the obtained organic EL element was performed in the same manner as described in Example 2.
 有機EL素子4-1の外部量子効率、発光寿命、駆動電圧を各々100として相対評価を行ったところ、電子輸送層が欠落している有機EL素子4-2の外部量子効率、発光寿命、駆動電圧は、各々69、5、200となり、リン光発光性の有機EL素子における電子輸送層の重要性が明確になった。 Relative evaluation was performed by setting the external quantum efficiency, light emission lifetime, and drive voltage of the organic EL element 4-1 to 100. The external quantum efficiency, light emission lifetime, and drive of the organic EL element 4-2 lacking the electron transport layer were obtained. The voltages were 69, 5, and 200, respectively, and the importance of the electron transport layer in the phosphorescent organic EL device became clear.
 実施例6
 《フルカラー表示装置の作製》
 (青色発光有機EL素子)
 実施例2に記載の有機EL素子2-1を用いた。
Example 6
<Production of full-color display device>
(Blue light emitting organic EL device)
The organic EL element 2-1 described in Example 2 was used.
 (緑色発光有機EL素子)
 実施例2で製造した有機EL素子2-1において、ID-4をPD-1に変更した以外は同様にして、緑色発光有機EL素子2-1Gを作製した。
(Green light-emitting organic EL device)
A green light-emitting organic EL element 2-1G was produced in the same manner as in the organic EL element 2-1 produced in Example 2, except that ID-4 was changed to PD-1.
 (赤色発光有機EL素子)
 実施例2で製造した有機EL素子2-1において、ID-4をPD-10に変更した以外は同様にして、赤色発光有機EL素子2-1Rを作製した。
(Red light emitting organic EL device)
A red light-emitting organic EL element 2-1R was produced in the same manner as in the organic EL element 2-1 produced in Example 2, except that ID-4 was changed to PD-10.
 上記の赤色、緑色及び青色発光有機EL素子を、同一基板上に並置し、図1に記載の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図2には、作製した前記表示装置の表示部Aの模式図のみを示した。 The red, green and blue light-emitting organic EL elements are juxtaposed on the same substrate to produce an active matrix type full-color display device having the form shown in FIG. 1, and FIG. 2 shows the display of the produced display device. Only the schematic diagram of part A is shown.
 即ち、同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。 That is, a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) The scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions ( Details are not shown).
 前記複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data.
 この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。 In this way, a full color display device was produced by juxtaposing the red, green, and blue pixels appropriately.
 該フルカラー表示装置を駆動することにより、低駆動電圧で、外部量子効率(発光効率ともいう)が高く、且つ、発光寿命の長いフルカラー動画表示が得られることを確認することができた。 It was confirmed that by driving the full-color display device, it was possible to obtain a full-color moving image display having a high external quantum efficiency (also referred to as light emission efficiency) and a long light emission lifetime at a low drive voltage.
 実施例7
 《白色発光照明装置の作製》
 実施例2の有機EL素子2-1の製造において、ID-4をPD-1、PD-10、ID-4に変更した以外は同様して、白色発光有機EL素子2-1Wを製造した。
Example 7
《Preparation of white light emitting lighting device》
A white light-emitting organic EL element 2-1W was manufactured in the same manner as in the manufacture of the organic EL element 2-1 of Example 2, except that ID-4 was changed to PD-1, PD-10, and ID-4.
 得られた有機EL素子2-1Wを同様に、非発光面をガラスケースで覆い、照明装置とした。照明装置は、低駆動電圧で、外部量子効率(発光効率ともいう)が高く、且つ、発光寿命の長い白色光を発する薄型の白色発光照明装置として使用することができた。 Similarly, the obtained organic EL element 2-1W was covered with a glass case on the non-light emitting surface to obtain a lighting device. The lighting device can be used as a thin white light emitting lighting device that emits white light having a low driving voltage, high external quantum efficiency (also referred to as light emission efficiency), and a long light emission lifetime.
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスタ
 12 駆動トランジスタ
 13 コンデンサ
 A 表示部
 B 制御部
 107 透明電極付きガラス基板
 106 有機EL層
 105 陰極
 102 ガラスカバー
 108 窒素ガス
 109 捕水剤
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor A Display part B Control part 107 Glass substrate with a transparent electrode 106 Organic EL layer 105 Cathode 102 Glass cover 108 Nitrogen gas 109 Water catcher

Claims (18)

  1. 陽極と陰極の間に挟持された有機層を有するリン光発光性の有機EL素子において、
     該有機層の構成層として該陰極に隣接する電子輸送層を有し、該電子輸送層が、湿式法により成膜される工程を経て形成され、低分子量化合物または非共役系高分子量化合物を含有し、且つ、該陰極が導電性ペーストを用いて湿式法により成膜される工程を経て形成されたことを特徴とする有機エレクトロルミネッセンス素子。
    In a phosphorescent organic EL device having an organic layer sandwiched between an anode and a cathode,
    It has an electron transport layer adjacent to the cathode as a constituent layer of the organic layer, and the electron transport layer is formed through a step of forming a film by a wet method and contains a low molecular weight compound or a non-conjugated high molecular weight compound An organic electroluminescence device, wherein the cathode is formed through a step of forming a film by a wet method using a conductive paste.
  2. 前記低分子量化合物が下記一般式(1)で表される化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
     一般式(1)
     Qm-Ln
    〔式中、Lは縮合した芳香族複素環を表し、Qは芳香族炭化水素環または芳香族複素環を表し、であり、n、mは、各々1~3の整数である。nが2以上の時は、Lは互いに異なっていても良く、mが2以上の時は、Qは互いに異なっていても良い。〕
    The organic electroluminescence device according to claim 1, wherein the low molecular weight compound is a compound represented by the following general formula (1).
    General formula (1)
    Qm-Ln
    [In the formula, L represents a condensed aromatic heterocyclic ring, Q represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and n and m each represent an integer of 1 to 3. L may be different from each other when n is 2 or more, and Q may be different from each other when m is 2 or more. ]
  3. 前記一般式(1)で表される化合物のLが下記一般式(2)で表される部分構造を有することを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    〔式中、Aは、-O-、-S-または-N(R1)-を表し、A11~A18は、各々窒素原子または-C(R2)-を表す。R1、R2は、各々結合手、水素原子または置換基を表す。但し、-C(R2)-が複数の場合、各々の-C(R2)-は同じでも異なっていても良い。〕
    The organic electroluminescence device according to claim 2, wherein L of the compound represented by the general formula (1) has a partial structure represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, A represents —O—, —S— or —N (R1) —, and A11 to A18 each represents a nitrogen atom or —C (R2) —. R1 and R2 each represent a bond, a hydrogen atom or a substituent. However, when there are a plurality of —C (R2) —, each —C (R2) — may be the same or different. ]
  4. 前記一般式(1)で表される化合物が部分構造として少なくとも一つのピリジン環を有することを特徴とする請求項2または3に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 2 or 3, wherein the compound represented by the general formula (1) has at least one pyridine ring as a partial structure.
  5. 前記導電性ペーストが、導電性化合物分散液及び低融点金属化合物から選択される少なくとも1つを含有することを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 5. The organic electroluminescence device according to claim 1, wherein the conductive paste contains at least one selected from a conductive compound dispersion and a low melting point metal compound.
  6. 前記導電性化合物分散液が金属ナノ粒子分散液であることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 5, wherein the conductive compound dispersion is a metal nanoparticle dispersion.
  7. 前記電子輸送層と前記陰極の界面に、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。 7. The alkali metal, alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound is contained at the interface between the electron transport layer and the cathode. The organic electroluminescent element of description.
  8. 前記導電性ペーストが、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする請求項1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。 8. The organic electro according to claim 1, wherein the conductive paste contains an alkali metal, an alkaline earth metal, a compound of the alkali metal, or a compound of the alkaline earth metal. Luminescence element.
  9. 前記電子輸送層が、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子。 9. The organic electro layer according to claim 1, wherein the electron transport layer contains an alkali metal, an alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound. Luminescence element.
  10. 構成層としてリン光発光性の発光層を有し、該発光層は電子輸送層と隣接し、且つ、前記発光層は、少なくともリン光発光性ドーパントと発光ホストを含有し、該リン光発光性ドーパントが下記一般式(A)で表される化合物であることを特徴とする請求項1~9のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002

    〔式中、Q1は5員または6員の芳香環を表す。Arは芳香族炭化水素基または芳香族複素環基を表し、R3、R4は水素原子または置換基を表す。kは2または3の整数を示し、イリジウムの価数を満足するようにm個の副配位子Lを有する。〕
    A phosphorescent light-emitting layer as a constituent layer, the light-emitting layer is adjacent to the electron transport layer, and the light-emitting layer contains at least a phosphorescent dopant and a light-emitting host; 10. The organic electroluminescent device according to claim 1, wherein the dopant is a compound represented by the following general formula (A).
    Figure JPOXMLDOC01-appb-C000002

    [Wherein, Q1 represents a 5-membered or 6-membered aromatic ring. Ar represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and R3 and R4 represent a hydrogen atom or a substituent. k represents an integer of 2 or 3, and has m secondary ligands L so as to satisfy the valence of iridium. ]
  11. 前記リン光発光性の発光層が、前記一般式(1)で表される化合物を発光ホストとして含有することを特徴とする請求項10に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 10, wherein the phosphorescent light-emitting layer contains the compound represented by the general formula (1) as a light-emitting host.
  12. 請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を製造するにあたり、電子輸送層を湿式法により塗布・成膜される工程、次いで、陰極を導電性ペーストを用いて湿式法により塗布・成膜する工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。 A process for coating and forming an electron transport layer by a wet method in manufacturing the organic electroluminescent device according to any one of claims 1 to 11, and then forming a cathode by a wet method using a conductive paste. The manufacturing method of the organic electroluminescent element characterized by having the process of apply | coating and film-forming.
  13. 前記導電性ペーストが、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有することを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子の製造方法。 13. The method of manufacturing an organic electroluminescence element according to claim 12, wherein the conductive paste contains an alkali metal, an alkaline earth metal, a compound of the alkali metal, or a compound of the alkaline earth metal.
  14. 前記一般式(1)で表される化合物及び、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物との混合溶液または混合分散液を用いて湿式法により成膜して電子輸送層を形成する工程、次いで、陰極を導電性ペーストを用いて湿式法により成膜する工程を有することを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子の製造方法。 A film is formed by a wet method using a mixed solution or mixed dispersion of the compound represented by the general formula (1) and an alkali metal, alkaline earth metal, the alkali metal compound, or the alkaline earth metal compound. The method for producing an organic electroluminescence element according to claim 12, further comprising a step of forming an electron transporting layer, and then a step of forming a cathode by a wet process using a conductive paste.
  15. 前記一般式(1)で表される化合物を含有する塗布液または分散液を用いて湿式法により成膜して電子輸送層を形成する工程、次いで、アルカリ金属、アルカリ土類金属、該アルカリ金属の化合物または該アルカリ土類金属の化合物を含有する溶液または分散液を該電子輸送層に含浸させる工程の後に、陰極を導電性ペーストを用いて湿式法により成膜する工程を有することを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子の製造方法。 A step of forming an electron transport layer by forming a film by a wet method using a coating liquid or dispersion containing the compound represented by the general formula (1), then alkali metal, alkaline earth metal, and the alkali metal And a step of impregnating the electron transport layer with a solution or dispersion containing the above compound or the alkaline earth metal compound, followed by a step of forming a cathode by a wet method using a conductive paste. The manufacturing method of the organic electroluminescent element of Claim 12 to do.
  16. 請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする白色有機エレクトロルミネッセンス素子。 A white organic electroluminescence device comprising the organic electroluminescence device according to any one of claims 1 to 11.
  17. 請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子または請求項16に記載の白色有機エレクトロルミネッセンス素子を具備したことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 11 or the white organic electroluminescence element according to claim 16.
  18. 請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子または請求項16に記載の白色有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。 An illumination device comprising the organic electroluminescence element according to any one of claims 1 to 11 or the white organic electroluminescence element according to claim 16.
PCT/JP2009/066910 2008-10-15 2009-09-29 Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device WO2010044342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010533870A JPWO2010044342A1 (en) 2008-10-15 2009-09-29 ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008266141 2008-10-15
JP2008-266141 2008-10-15

Publications (1)

Publication Number Publication Date
WO2010044342A1 true WO2010044342A1 (en) 2010-04-22

Family

ID=42106507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066910 WO2010044342A1 (en) 2008-10-15 2009-09-29 Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device

Country Status (2)

Country Link
JP (1) JPWO2010044342A1 (en)
WO (1) WO2010044342A1 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051404A1 (en) 2009-10-28 2011-05-05 Basf Se Heteroleptic carbene complexes and use thereof in organic electronics
WO2011073149A1 (en) 2009-12-14 2011-06-23 Basf Se Metal complexes comprising diazabenzimidazol carbene-ligands and the use thereof in oleds
WO2011148909A1 (en) * 2010-05-24 2011-12-01 出光興産株式会社 Organic electroluminescent element
JP2011256143A (en) * 2010-06-10 2011-12-22 Fujifilm Corp Carbazole-based compound having specific structure, and charge transport material and organic electroluminescent element using the same
WO2012033063A1 (en) * 2010-09-08 2012-03-15 富士フイルム株式会社 Organic electroluminescent element and compound
WO2012124622A1 (en) * 2011-03-14 2012-09-20 東レ株式会社 Light-emitting element material and light-emitting element
JP2013016469A (en) * 2011-06-09 2013-01-24 Semiconductor Energy Lab Co Ltd Lighting device and manufacturing method of the same
EP2415769A4 (en) * 2010-04-20 2013-02-13 Idemitsu Kosan Co Bis-carbazole derivative, material for organic electroluminescent element and organic electroluminescent element using same
WO2013039073A1 (en) * 2011-09-15 2013-03-21 出光興産株式会社 Aromatic amine derivative and organic electroluminescence element using same
WO2013046635A1 (en) * 2011-09-28 2013-04-04 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element produced using same
JP2013102006A (en) * 2011-11-08 2013-05-23 Konica Minolta Holdings Inc Organic el element
WO2013077352A1 (en) * 2011-11-22 2013-05-30 出光興産株式会社 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
JP2013533604A (en) * 2010-05-03 2013-08-22 チェイル インダストリーズ インコーポレイテッド Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
WO2013146117A1 (en) * 2012-03-26 2013-10-03 東レ株式会社 Material for luminescent element, and luminescent element
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
JP2014511861A (en) * 2011-04-08 2014-05-19 ユニバーサル ディスプレイ コーポレイション Substituted oligoazacarbazoles for light-emitting diodes
KR20140065863A (en) * 2012-11-22 2014-05-30 엘지디스플레이 주식회사 Blue phophorescene compounds and organic light emitting diode devices using the same
KR20140074205A (en) 2012-11-30 2014-06-17 삼성디스플레이 주식회사 Hole transport material for organic electroluminescent device and organic electroluminescent device
US8803134B2 (en) 2011-02-07 2014-08-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
JP2015097215A (en) * 2015-01-21 2015-05-21 コニカミノルタ株式会社 Organic electroluminescence element
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
US9172047B2 (en) 2012-11-30 2015-10-27 Samsung Display Co., Ltd. Hole transport material for organic electroluminescence device and organic electroluminescence device using the same
US20150357580A1 (en) * 2014-06-06 2015-12-10 Samsung Display Co., Ltd. Carbazole derivative and organic electroluminescent device
EP2799226A4 (en) * 2011-12-27 2016-01-20 Konica Minolta Inc Transparent electrode, electronic device, organic electroluminescence element, and method for manufacturing organic electroluminescence elements
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
US9266851B2 (en) 2009-10-16 2016-02-23 Idemitsu Kosan Co., Ltd. Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP2677561A4 (en) * 2011-02-16 2016-06-29 Konica Minolta Inc Organic electroluminescent element, lighting device, and display device
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
CN107108589A (en) * 2014-12-23 2017-08-29 默克专利有限公司 Carbazole with two dibenzofurans or dibenzothiophenes substituent
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US9847501B2 (en) 2011-11-22 2017-12-19 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
TWI612043B (en) * 2012-09-07 2018-01-21 出光興產股份有限公司 Novel aromatic heterocyclic derivative, material for organic electroluminescence device, material solution for organic electroluminescence device, and organic electroluminescence device
EP2734510B1 (en) * 2011-07-22 2018-11-07 Massachusetts Institute of Technology Activators of class i histone deacetlyases (hdacs) and uses thereof
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
JP2019515434A (en) * 2016-04-29 2019-06-06 住友化学株式会社 Electroluminescent device
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
CN110437208A (en) * 2019-08-27 2019-11-12 镇江博润新材料有限公司 A kind of bis- carbazole benzene class phosphorescent light body material of 1,3-, its synthetic method and its application
JP2020035897A (en) * 2018-08-30 2020-03-05 エルジー ディスプレイ カンパニー リミテッド Coating-type organic electroluminescent device
JP2020178100A (en) * 2019-04-22 2020-10-29 住友化学株式会社 Light-emitting device
US11084806B2 (en) 2016-07-12 2021-08-10 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device, and display device
US11158817B2 (en) 2017-01-05 2021-10-26 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US11264574B2 (en) 2016-07-29 2022-03-01 Samsung Sdi Co., Ltd. Composition for organic optoelectronic element, organic optoelectronic element, and display device
US11678572B2 (en) 2016-06-29 2023-06-13 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
US11706975B2 (en) 2016-06-29 2023-07-18 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100482A (en) * 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element
JP2003272861A (en) * 2002-03-12 2003-09-26 Konica Corp Organic electroluminescence element and display device using the same
WO2004028217A1 (en) * 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
JP2005079064A (en) * 2003-09-03 2005-03-24 Seiko Epson Corp Organic el device, manufacturing method of the same, and electronic apparatus
JP2006144112A (en) * 2004-10-20 2006-06-08 Dainippon Printing Co Ltd Ga-BASE ALLOY AND ORGANIC FUNCTION ELEMENT USING THE SAME
JP2007080657A (en) * 2005-09-14 2007-03-29 Konica Minolta Holdings Inc Nonaqueous dispersion solution, organic electroluminescent element, manufacturing method of organic electroluminescent element, display device, and illumination device
JP2007165231A (en) * 2005-12-16 2007-06-28 Konica Minolta Holdings Inc Coating dispersion liquid for organic electroluminescent element, nonaqueous coating dispersion liquid for organic electroluminescent element, organic electroluminescent element, display device, and lighting system
WO2007148649A1 (en) * 2006-06-21 2007-12-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, process for producing organic electroluminescent device, illuminator, and display
JP2008166687A (en) * 2006-07-04 2008-07-17 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100482A (en) * 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element
JP2003272861A (en) * 2002-03-12 2003-09-26 Konica Corp Organic electroluminescence element and display device using the same
WO2004028217A1 (en) * 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
JP2005079064A (en) * 2003-09-03 2005-03-24 Seiko Epson Corp Organic el device, manufacturing method of the same, and electronic apparatus
JP2006144112A (en) * 2004-10-20 2006-06-08 Dainippon Printing Co Ltd Ga-BASE ALLOY AND ORGANIC FUNCTION ELEMENT USING THE SAME
JP2007080657A (en) * 2005-09-14 2007-03-29 Konica Minolta Holdings Inc Nonaqueous dispersion solution, organic electroluminescent element, manufacturing method of organic electroluminescent element, display device, and illumination device
JP2007165231A (en) * 2005-12-16 2007-06-28 Konica Minolta Holdings Inc Coating dispersion liquid for organic electroluminescent element, nonaqueous coating dispersion liquid for organic electroluminescent element, organic electroluminescent element, display device, and lighting system
WO2007148649A1 (en) * 2006-06-21 2007-12-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, process for producing organic electroluminescent device, illuminator, and display
JP2008166687A (en) * 2006-07-04 2008-07-17 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic apparatus

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266851B2 (en) 2009-10-16 2016-02-23 Idemitsu Kosan Co., Ltd. Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
WO2011051404A1 (en) 2009-10-28 2011-05-05 Basf Se Heteroleptic carbene complexes and use thereof in organic electronics
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
WO2011073149A1 (en) 2009-12-14 2011-06-23 Basf Se Metal complexes comprising diazabenzimidazol carbene-ligands and the use thereof in oleds
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US8652654B2 (en) 2010-04-20 2014-02-18 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8877352B2 (en) 2010-04-20 2014-11-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8940414B2 (en) 2010-04-20 2015-01-27 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8865323B2 (en) 2010-04-20 2014-10-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US10193077B2 (en) 2010-04-20 2019-01-29 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
EP2415769A4 (en) * 2010-04-20 2013-02-13 Idemitsu Kosan Co Bis-carbazole derivative, material for organic electroluminescent element and organic electroluminescent element using same
EP2423209A4 (en) * 2010-04-20 2013-02-13 Idemitsu Kosan Co Bis-carbazole derivative, material for organic electroluminescent element and organic electroluminescent element using same
JP2013533604A (en) * 2010-05-03 2013-08-22 チェイル インダストリーズ インコーポレイテッド Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US9543530B2 (en) 2010-05-03 2017-01-10 Cheil Industries, Inc. Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2011148909A1 (en) * 2010-05-24 2011-12-01 出光興産株式会社 Organic electroluminescent element
US8710493B2 (en) 2010-05-24 2014-04-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
JPWO2011148909A1 (en) * 2010-05-24 2013-07-25 出光興産株式会社 Organic electroluminescence device
JP2011256143A (en) * 2010-06-10 2011-12-22 Fujifilm Corp Carbazole-based compound having specific structure, and charge transport material and organic electroluminescent element using the same
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
US10944061B2 (en) 2010-09-08 2021-03-09 Udc Ireland Limited Organic electroluminescent element and compound
WO2012033063A1 (en) * 2010-09-08 2012-03-15 富士フイルム株式会社 Organic electroluminescent element and compound
JP2012080063A (en) * 2010-09-08 2012-04-19 Fujifilm Corp Organic electroluminescent element and compound
US20130270530A1 (en) * 2010-09-08 2013-10-17 Udc Ireland Limited Organic electroluminescent element and compound
US8803134B2 (en) 2011-02-07 2014-08-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10230057B2 (en) 2011-02-07 2019-03-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US11271171B2 (en) 2011-02-07 2022-03-08 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9818958B2 (en) 2011-02-07 2017-11-14 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US9923154B2 (en) 2011-02-16 2018-03-20 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
EP2677561A4 (en) * 2011-02-16 2016-06-29 Konica Minolta Inc Organic electroluminescent element, lighting device, and display device
US9537107B2 (en) 2011-03-14 2017-01-03 Toray Industries, Inc. Light emitting device material and light emitting device
JP6051864B2 (en) * 2011-03-14 2016-12-27 東レ株式会社 Light emitting device material and light emitting device
WO2012124622A1 (en) * 2011-03-14 2012-09-20 東レ株式会社 Light-emitting element material and light-emitting element
JP2014511861A (en) * 2011-04-08 2014-05-19 ユニバーサル ディスプレイ コーポレイション Substituted oligoazacarbazoles for light-emitting diodes
JP2013016469A (en) * 2011-06-09 2013-01-24 Semiconductor Energy Lab Co Ltd Lighting device and manufacturing method of the same
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
US10167277B2 (en) 2011-07-22 2019-01-01 Massachusetts Institute Of Technology Activators of class I histone deacetlyases (HDACs) and uses thereof
EP2734510B1 (en) * 2011-07-22 2018-11-07 Massachusetts Institute of Technology Activators of class i histone deacetlyases (hdacs) and uses thereof
US11084803B2 (en) 2011-07-22 2021-08-10 Massachusetts Institute Of Technology Activators of class I histone deacetylases (HDACs) and uses thereof
WO2013039073A1 (en) * 2011-09-15 2013-03-21 出光興産株式会社 Aromatic amine derivative and organic electroluminescence element using same
US9634255B2 (en) 2011-09-15 2017-04-25 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence element using same
JPWO2013046635A1 (en) * 2011-09-28 2015-03-26 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
WO2013046635A1 (en) * 2011-09-28 2013-04-04 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element produced using same
US9991447B2 (en) 2011-09-28 2018-06-05 Idemitsu Korea Co., Ltd. Material for organic electroluminescent element, and organic electroluminescent element produced using same
JP2013102006A (en) * 2011-11-08 2013-05-23 Konica Minolta Holdings Inc Organic el element
US9893296B2 (en) 2011-11-22 2018-02-13 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
WO2013077352A1 (en) * 2011-11-22 2013-05-30 出光興産株式会社 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
KR102046775B1 (en) * 2011-11-22 2019-11-20 이데미쓰 고산 가부시키가이샤 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
CN107342368A (en) * 2011-11-22 2017-11-10 出光兴产株式会社 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
KR102025031B1 (en) * 2011-11-22 2019-11-14 이데미쓰 고산 가부시키가이샤 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US10418563B2 (en) 2011-11-22 2019-09-17 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
CN107342368B (en) * 2011-11-22 2019-05-28 出光兴产株式会社 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US10199580B2 (en) 2011-11-22 2019-02-05 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
CN103380508A (en) * 2011-11-22 2013-10-30 出光兴产株式会社 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US9847501B2 (en) 2011-11-22 2017-12-19 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
CN107501244A (en) * 2011-11-22 2017-12-22 出光兴产株式会社 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
JPWO2013077352A1 (en) * 2011-11-22 2015-04-27 出光興産株式会社 Aromatic heterocyclic derivative, material for organic electroluminescence device, and organic electroluminescence device
US9209406B2 (en) 2011-11-22 2015-12-08 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
KR20180049266A (en) * 2011-11-22 2018-05-10 이데미쓰 고산 가부시키가이샤 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US11374176B2 (en) 2011-11-22 2022-06-28 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
KR20180008922A (en) * 2011-11-22 2018-01-24 이데미쓰 고산 가부시키가이샤 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
EP2799226A4 (en) * 2011-12-27 2016-01-20 Konica Minolta Inc Transparent electrode, electronic device, organic electroluminescence element, and method for manufacturing organic electroluminescence elements
KR20140148368A (en) 2012-03-26 2014-12-31 도레이 카부시키가이샤 Material for luminescent element, and luminescent element
WO2013146117A1 (en) * 2012-03-26 2013-10-03 東レ株式会社 Material for luminescent element, and luminescent element
JPWO2013146117A1 (en) * 2012-03-26 2015-12-10 東レ株式会社 Light emitting device material and light emitting device
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
EP3133079A1 (en) 2012-07-19 2017-02-22 UDC Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
TWI612043B (en) * 2012-09-07 2018-01-21 出光興產股份有限公司 Novel aromatic heterocyclic derivative, material for organic electroluminescence device, material solution for organic electroluminescence device, and organic electroluminescence device
US9865822B2 (en) 2012-11-22 2018-01-09 Lg Display Co., Ltd. Blue phosphorescence compound and organic light emitting diode using the same
CN103833738A (en) * 2012-11-22 2014-06-04 乐金显示有限公司 Blue phosphorescence compound and organic light emitting diode using the same
KR20140065863A (en) * 2012-11-22 2014-05-30 엘지디스플레이 주식회사 Blue phophorescene compounds and organic light emitting diode devices using the same
KR102022524B1 (en) * 2012-11-22 2019-09-18 엘지디스플레이 주식회사 Blue phophorescene compounds and organic light emitting diode devices using the same
US9172047B2 (en) 2012-11-30 2015-10-27 Samsung Display Co., Ltd. Hole transport material for organic electroluminescence device and organic electroluminescence device using the same
KR20140074205A (en) 2012-11-30 2014-06-17 삼성디스플레이 주식회사 Hole transport material for organic electroluminescent device and organic electroluminescent device
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
EP3608329A1 (en) 2013-07-02 2020-02-12 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3266789A1 (en) 2013-07-02 2018-01-10 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
US20150357580A1 (en) * 2014-06-06 2015-12-10 Samsung Display Co., Ltd. Carbazole derivative and organic electroluminescent device
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
CN107108589B (en) * 2014-12-23 2021-01-01 默克专利有限公司 Carbazoles having two dibenzofuran or dibenzothiophene substituents
CN107108589A (en) * 2014-12-23 2017-08-29 默克专利有限公司 Carbazole with two dibenzofurans or dibenzothiophenes substituent
JP2015097215A (en) * 2015-01-21 2015-05-21 コニカミノルタ株式会社 Organic electroluminescence element
WO2016125110A1 (en) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bisimidazolodiazocines
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
JP7012662B2 (en) 2016-04-29 2022-01-28 住友化学株式会社 Electroluminescence device
JP2019515434A (en) * 2016-04-29 2019-06-06 住友化学株式会社 Electroluminescent device
US11678572B2 (en) 2016-06-29 2023-06-13 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
US11706975B2 (en) 2016-06-29 2023-07-18 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
US11084806B2 (en) 2016-07-12 2021-08-10 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device, and display device
US11264574B2 (en) 2016-07-29 2022-03-01 Samsung Sdi Co., Ltd. Composition for organic optoelectronic element, organic optoelectronic element, and display device
US11158817B2 (en) 2017-01-05 2021-10-26 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
JP7169126B2 (en) 2018-08-30 2022-11-10 エルジー ディスプレイ カンパニー リミテッド Coating type organic electroluminescence device
JP2020035897A (en) * 2018-08-30 2020-03-05 エルジー ディスプレイ カンパニー リミテッド Coating-type organic electroluminescent device
JP2020178100A (en) * 2019-04-22 2020-10-29 住友化学株式会社 Light-emitting device
CN110437208A (en) * 2019-08-27 2019-11-12 镇江博润新材料有限公司 A kind of bis- carbazole benzene class phosphorescent light body material of 1,3-, its synthetic method and its application

Also Published As

Publication number Publication date
JPWO2010044342A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5493333B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2010044342A1 (en) Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device
JP5697856B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5742586B2 (en) Organic electroluminescence element, lighting device and display device
WO2010001830A1 (en) White light-emitting organic electroluminescent element, illuminating device and display device
JP6056884B2 (en) Method for manufacturing organic electroluminescence device
JP5862117B2 (en) Organic electroluminescence element, lighting device and display device
JP2014045101A (en) Organic electroluminescent element, lighting device, and display device
WO2012173079A1 (en) Organic electroluminescence element, illumination device, and display device
WO2011052250A1 (en) Organic electroluminescent element, organic electroluminescent element material, display device, and lighting device
JP6160485B2 (en) Organic electroluminescence element, lighting device and display device
JP5636630B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5218185B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP5707873B2 (en) Organic electroluminescence element, lighting device and display device
JP5556602B2 (en) Material for organic electronics element, organic electronics element, lighting device and display device
WO2013042460A1 (en) Organic electroluminescent element, lighting device and display device
JP2012222269A (en) Organic electroluminescent element, method for manufacturing the same, lighting device, and display device
JP2011014711A (en) Organic electroluminescent element, manufacturing method thereof, illuminating device and display device
JP6468314B2 (en) Organic electroluminescence element, lighting device and display device
JP6160685B2 (en) Organic electroluminescence element, lighting device and display device
JP6056909B2 (en) Organic electroluminescence device
JP6070758B2 (en) Organic electroluminescence element, lighting device and display device
JP5833201B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5761388B2 (en) Organic electroluminescence device
JP5603195B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT ITS MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533870

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820520

Country of ref document: EP

Kind code of ref document: A1