WO2010044125A1 - Heatsink and electric power amplifier with the same - Google Patents

Heatsink and electric power amplifier with the same Download PDF

Info

Publication number
WO2010044125A1
WO2010044125A1 PCT/JP2008/002932 JP2008002932W WO2010044125A1 WO 2010044125 A1 WO2010044125 A1 WO 2010044125A1 JP 2008002932 W JP2008002932 W JP 2008002932W WO 2010044125 A1 WO2010044125 A1 WO 2010044125A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sink
substrate
heat pipe
metal
Prior art date
Application number
PCT/JP2008/002932
Other languages
French (fr)
Japanese (ja)
Inventor
小花利一郎
Original Assignee
株式会社アールアンドケー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アールアンドケー filed Critical 株式会社アールアンドケー
Priority to PCT/JP2008/002932 priority Critical patent/WO2010044125A1/en
Publication of WO2010044125A1 publication Critical patent/WO2010044125A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat sink, firstly for long-term reliability, secondly for assembly workability, and thirdly for mass production efficiency, and particularly for a technique for fixing a heat pipe inside a cooling substrate.
  • a heat sink is used as a means to dissipate the heat generated in circuit boards such as communication equipment and power supply devices, to prevent overheating of the circuit board and to maintain normal operation, and to ensure its long-term reliability and long life Yes.
  • a typical heat sink has a plurality of radiating fins and radiating pins at predetermined intervals on one surface of a plate-like cooling substrate (also referred to as “cold plate”, “CP” or “base”). It has an arranged configuration. In use, the circuit board is used in close contact with the other surface of the cooling board.
  • a heat sink configuration is known in which a pair of cooling substrates are arranged to face each other and a heat radiating fin or a heat radiating pin is provided therebetween.
  • any heat sink the principle is adopted in which, after the cooling substrate once receives heat from the circuit board, the heat is transferred to the radiating fins or the radiating pins and radiated to the surrounding air or refrigerant.
  • the required performance of the heat sink is to have thermal conductivity that quickly removes heat from a heat source such as a circuit board, and to efficiently radiate the heat sink by convection of air or liquid refrigerant to the heat sink.
  • the radiating fin or the radiating pin has good radiation characteristics. It is also required that stable heat dissipation characteristics can be maintained over a wide temperature range.
  • the heat radiation fin can be formed thin and the heat radiation pin can be formed thin, the heat radiation surface area of the heat sink (the surface area of the heat sink contributing to heat radiation, mainly the total surface area of the heat radiation fin and the heat radiation pin) can be increased to improve the heat radiation characteristics. it can.
  • the heat radiation surface area of the heat sink the surface area of the heat sink contributing to heat radiation, mainly the total surface area of the heat radiation fin and the heat radiation pin
  • it is necessary to secure a space for caulking on the cooling substrate.
  • Patent Document 1 a configuration has been developed in which a heat pipe is embedded in the cooling substrate so that the conduction heat from the cooling substrate side is made uniform over the entire cooling substrate and the heat radiation fins are efficiently radiated.
  • the heat pipe is fixed by, for example, being inserted into a hole formed in a cooling substrate and then cooled by pouring a low melting point solder material such as molten solder (Patent Document 2).
  • a low melting point solder material such as molten solder
  • the circuit board mounted with the ceramic capacitor has a chip surface temperature at the time of driving up to about 150 ° C., and after a certain period of time has elapsed after driving is stopped, it drops to about 60 ° C. To do.
  • the solder eutectic solder
  • the heat pipe when such a crack occurs, the heat pipe can no longer be reliably fixed inside the cooling substrate. If the solder contracts or cracks occur, an unnecessary gap may be formed between the cooling substrate and the heat pipe, or the heat pipe may drop off. Furthermore, if the gap exists, the thermal conductivity from the cooling substrate side to the heat pipe is greatly deteriorated, which may cause the heat dissipation characteristics of the entire heat sink to be significantly impaired.
  • the present invention has been made in view of the above problems, and in a heat sink provided with a heat pipe, even in an application exposed to a wide range of temperature changes, the heat pipe can be securely fixed to a cooling substrate for a long period of time.
  • An object of the present invention is to provide a heat sink capable of exhibiting excellent heat dissipation characteristics at a low cost.
  • the present invention comprises one or more cooling substrates made of a first metal, and the surface of the cooling substrate is made of a second metal having a higher thermal conductivity than the first metal.
  • a heat sink in which a fin plate is erected and one or more heat pipes are arranged inside the cooling substrate, and at least one cooling substrate is heated from the side surface along the main surface of the cooling substrate.
  • a tapered insertion hole for inserting a pipe is formed, and the insertion hole is provided with a biasing means for biasing the heat pipe along the insertion direction.
  • the heat pipe is cylindrical with respect to the insertion hole.
  • the metal jacket has a structure in which the metal jacket has a slit on the peripheral surface along the longitudinal direction and the thickness gradually decreases along the insertion direction.
  • the peripheral surface of the flops in contact with the inner surface of the metal jacket has a configuration in which the outer surface of the metal jacket is in contact inner wall surface of the insertion hole.
  • the opening of the insertion hole in the side surface is provided with a lid, and an elastic body may be provided as the biasing means between the lid and the heat pipe. it can.
  • a pair of the cooling substrates may be arranged opposite to each other, and a plurality of strip-shaped fin plates may be provided so as to extend over the surface of each substrate.
  • the metal jacket is preferably composed of any one of aluminum, aluminum alloy, copper, copper alloy, nickel, and iron.
  • the fin plate is a belt-like body, a part of which is fixed in surface contact with the surface of the cooling substrate, and the other part is bent up with respect to the surface. it can.
  • the fin plate is a belt-like body, and a plurality of fin plates are arranged at a pitch of 2.5 mm or more and 4 mm or less.
  • the first metal can be aluminum or an aluminum alloy
  • the second metal can be copper or a copper alloy.
  • the fin plate exposed to the outside can be blackened.
  • a plurality of protrusions by burring or embossing can be formed on the portion of the fin plate exposed to the outside.
  • the present invention includes the above-described heat sink of the present invention, a circuit board disposed so as to be thermally coupled to at least one of the cooling boards in the heat sink, and a cooling fan for forcibly air-cooling the fin plate.
  • a power amplifier was used.
  • the heat pipe is inserted into the insertion hole formed in the tapered shape of the cooling substrate while being covered with a predetermined cylindrical metal jacket.
  • the said metal jacket is adjusted so that thickness may reduce along the insertion direction of a heat pipe.
  • the insertion hole is provided with a biasing means for biasing the heat pipe along the insertion direction.
  • a lid can be provided in the opening of the insertion hole on the side surface of the cooling substrate, and an elastic body such as a compression spring can be provided between the lid and the heat pipe. Under the pressure applied by the elastic body, the heat pipe is always elastically biased along the insertion direction together with the metal jacket.
  • the heat pipe and the metal jacket slide slightly by being elastically biased in the insertion direction.
  • a metal jacket receives the pressurizing force from the inner wall of an insertion hole, and closely_contact
  • the heat pipe components thermally expand, so that the heat pipe and the metal jacket slide in the insertion hole against the insertion direction.
  • the heat pipe is in close surface contact with the inner wall of the metal jacket, and the outer surface of the metal jacket is also in close surface contact with the inner wall of the insertion hole.
  • the sliding amount can be adjusted by the pressure applied by the elastic body in any of the above states.
  • the apparatus including the heat sink of the present invention even if a significant temperature range change occurs between the driving state and the stop state, the thermal coupling between the heat pipe and the insertion hole is always maintained. Thereby, in the said apparatus, the outstanding heat dissipation effect will be exhibited over a long period of time.
  • the stress distortion due to the thermal expansion and contraction of the components around the heat pipe is reduced such that the heat pipe can move within a certain range inside the cooling substrate. Therefore, in the present invention, unlike the conventional heat pipe fixing method in which metal bonding is performed using a low melting point soldering material such as solder, there is no problem of occurrence of cracks or dropout of the heat pipe due to metal fatigue. .
  • the heat sink of the present invention does not require a heating step such as a welding method when fixing the heat pipe, and does not require a low melting point brazing material, a special joining device, or a cleaning process for the joining surface. Therefore, the present invention can be realized relatively easily, and the production cost reduction effect is extremely high.
  • the heat sink of this invention may be called a radiator from a viewpoint which has a heat exchange function.
  • FIG. 1 is a diagram illustrating a configuration of a power amplifier according to a first embodiment.
  • 1 is an external view illustrating a configuration of a heat sink according to Embodiment 1.
  • FIG. 3 is a front view of the heat sink according to Embodiment 1.
  • FIG. It is sectional drawing of the 1st board
  • FIG. 1 is a partially transparent diagram showing a configuration of a power amplifier (high frequency broadband power amplifier) 1 which is an application example of the first embodiment of the present invention.
  • the power amplifier 1 is smaller than a conventional product made by extruding a metal material such as aluminum die cast by improving heat dissipation characteristics of the heat sink 10 incorporated therein and thoroughly reducing the size and weight. It has the characteristic that was made. In terms of performance, it has characteristics of a frequency range of 50 kHz to 6000 MHz and an output power of 200 mW to 2000 W, which is not inferior to conventional devices.
  • the power amplifier 1 includes an amplifier circuit board 6A, a DC power supply circuit 6B, a cooling fan, and a heat sink 10 inside a rectangular parallelepiped amplifier housing 54.
  • An intake grill 4 is provided on the front surface of the amplifier housing 54 at a position corresponding to the internal heat sink 10.
  • an operation / display unit 5 is provided for a user to connect an external wiring and confirm an output value.
  • the amplifier circuit board 6A and the DC power supply circuit 6B inside the power amplifier 1 are indicated by a one-dot chain line, and the arrangement position of the heat sink 10 is indicated by a dotted line.
  • the heat sink 10 represents only the outline.
  • the operation / display unit 5 is provided with a power display panel 52, a power switch 53, and a pair of output terminals 50.
  • a power display panel 52 a power display panel 52
  • a power switch 53 a power switch 53
  • a pair of output terminals 50 a pair of output terminals 50.
  • an exhaust grille and a pair of input terminals are provided at the rear of the amplifier housing 54.
  • the intake grille 4 and the exhaust grille are configured by forming a plurality of holes in a pair of side surfaces in the thickness direction of the amplifier casing 54 and covering the holes with a metal mesh from the inside of the amplifier casing 54.
  • Cooling fans 2A, 2B, 3A, and 3B are disposed at positions corresponding to the intake grill 4 and the exhaust grill so that the heat sink 10 can be sandwiched from the front and the back to be forcibly cooled by air.
  • the direct current power supply circuit 6B receives the power of the alternating current power supplied from the outside through the wiring 51, converts this into direct current, and supplies it to the amplification circuit board 6A.
  • the amplifying circuit board 6A obtains the DC power from the DC power supply circuit described above as an input signal (P-in) supplied from the outside through the input terminal, and outputs it as a predetermined magnitude output signal (P-out). Process to output to the outside.
  • This signal amplification processing can be applied to voice to high frequency, microwave and millimeter wave, and ultra-wideband frequencies including light and laser regions.
  • the power supply efficiency E (%) accompanying this amplification processing is given by the following equation ⁇ P ⁇ out / (P ⁇ in + P ⁇ supply) ⁇ ⁇ 100%
  • the power amplifier of the narrow band frequency generally has a power supply efficiency of around 50%, but the power plan of the wide band frequency generally takes a value of 5% to 25%.
  • the power efficiency of the conventional power amplifier is about 15%, for example, the power amplifier 1 of the first embodiment has the same power efficiency. Therefore, in the power amplifier 1, it is considered that about 85% of the supplied power may be generated as heat loss. If this heat is stored as it is around the circuit board, problems such as thermal damage to the electrical elements on the circuit board and an increase in electrical resistance occur, which hinders normal operation of the power amplifier 1.
  • the amplifier circuit board 6A and the heat sink 10 are disposed in close contact with each other in order to effectively release the heat generated in the amplifier circuit board 6A to the outside and realize stable driving.
  • the cooling fans 2A and 2B rotate, so that external air is sucked into the amplifier housing 54 and flows through the gap between the adjacent fin plates 40 in the heat sink 10. During this circulation, the external air is heat-exchanged with the high-temperature fin plate 40 to become high-temperature air.
  • the high-temperature air is discharged to the outside from the exhaust grill provided at the rear of the amplifier housing 54 by the rotation of the exhaust fans 3A and 3B.
  • FIG. 2 is a perspective view showing the configuration of the heat sink 10.
  • FIG. 3 is a front view of the heat sink 10.
  • the heat sink 10 is structurally designed to reduce the amount of heat storage as much as possible, to enhance the heat dissipation characteristics, and to realize a reduction in size and weight.
  • such a configuration has a feature that enables mass production at a lower cost than the conventional one.
  • the heat sink 10 has a rectangular parallelepiped shape as a whole, and includes elements such as a first substrate 20, a second substrate 30, a heat pipe 7, a metal jacket 8, brackets 11 and 12, and a plurality of fin plates 40.
  • the size example may be 464 mm in the X direction length ⁇ 352 mm in the Y direction ⁇ 105 mm height in the Z direction.
  • a plurality (14 each) of heat pipes 7 are embedded in parallel inside each substrate. Then, as shown in FIG. 2, the inner main surfaces 21 and 31 are arranged to face each other with a certain gap therebetween.
  • fin plates 40 in which end portions 42 and 43 in the width direction are ultrasonically bonded to the respective inner main surfaces 21 and 31 have a fixed standing pitch in the Y direction (here, 3 mm pitch). It is attached in parallel.
  • a pair of self-standing brackets 11 and 12 processed into an L-shaped cross section are fixed by a plurality of screws 120 on the side surfaces of the first substrate 20 and the second substrate 30.
  • the end portions of the brackets 11 and 12 positioned on the bottom surface of the heat sink 10 are separately provided with screw holes (not shown). By using this, the heat sinks 10 can be stacked directly or indirectly in multiple stages. Yes.
  • the fin plate 40 is a metal different from the first substrate 20 and the second substrate 30 and is made of a material having a higher melting point and better thermal conductivity than the metal. Specifically, strips (length 464 mm ⁇ width 67 mm, thickness 0.3 mm) made of deoxidized copper or copper alloy can be used. This thickness is set in consideration of securing the strength of the fin plate 40, suppressing heat storage, and heat dissipation characteristics. Other thickness settings are possible, but in that case, the fin plate 40 can be arranged at an extremely high density by using a thin fin plate 40 that can exemplify a range of thickness of at least about 0.1 mm to 3 mm. can do.
  • the copper material has a thermal conductivity about four times that of the aluminum material, and in the present invention, it is used as a heat radiation fin by utilizing its excellent characteristics.
  • the main surface portion 41 of the fin plate 40 is blackened by black plating or surface treatment in order to obtain a heat dissipation (radiation) effect based on the so-called “black body radiation theory”.
  • the main surface portion 41 also has an effect of preventing galvanic corrosion that may occur when a dissimilar metal such as aluminum contacts.
  • the specific configuration of the fin plate 40 includes a main surface portion 41 and both end portions 42 and 43 in the width direction (short direction).
  • the main surface portion 41 has a plurality of protruding portions 44 formed by embossing.
  • the positions of the protrusions 44 between adjacent fin plates 40 are staggered so as to be staggered. This staggered arrangement is formed so that the arrangement of the protruding portions 44 on the fin plate 40 is slightly biased from the end portion 42 toward the end portion 43, and the width of each adjacent fin plate 40 is increased. They can be formed by arranging them upside down in the direction.
  • the projecting portion 44 increases the heat radiating surface area of the fin plate 40 and generates turbulent flow with the air flowing between the adjacent fin plates 40 to enhance the heat radiating effect.
  • the end portions 42 and 43 are bent at a right angle in the same direction with respect to the main surface portion 41, and are ultrasonically welded in a state where each of the end portions 42 and 43 is in surface contact with the first substrate 20 or the second substrate 30. Thereby, the fin plate 40 is firmly erected by both the first substrate 20 and the second substrate 30.
  • the width of the end portions 42 and 43 affects the standing pitch of the fin plate 40, it is preferable to set the width as narrow as possible within a range in which the bonding strength can be secured.
  • the end portions 42 and 43 are set to have a width of 3 mm, so that the standing pitch of the fin plate 40 is set to 3 mm.
  • 114 fin plates 40 are provided side by side while maintaining the pitch.
  • the fins 40 In the ultrasonic welding method, while applying pressure from the outside to the end portions 42 and 43 of the fin plate 40 and applying parallel vibrations to induce atomic diffusion, the fins 40 have a short distance so that an interatomic attractive force acts. A mutual metal atomic bond between the plate 40 and the first substrate 20 and the second substrate 30 is formed. At this time, at the contact interface between the fin plate 40 and the first substrate 20 and the second substrate 30, although slip, plastic deformation, and elastic deformation occur and the temperature rises, the member does not melt. For this reason, bonding can be performed at a temperature as low as 35% to 50% of the melting point of the first substrate 20 and the second substrate 30 (the melting point of aluminum is about 660 ° C.).
  • the electrochemically stable fin plate 40 can be bonded to the first substrate 20 and the second substrate 30.
  • any of a known wedge-reed method and a lateral drive method may be used.
  • the first substrate 20 and the second substrate 30 are cooling substrates (cold plates) having a rectangular main surface.
  • an X-direction length of 464 mm ⁇ Y-direction length of 350 mm and a thickness of 19 mm can be exemplified.
  • the thickness of the substrate is set to be considerably thin. This prevents excessive heat storage in the first substrate 20 and the second substrate 30 and quickly conducts heat from the amplifier circuit substrate 6A to the fin plate 40. It is for letting it radiate.
  • the first substrate 20 and the second substrate 30 are made of aluminum or an aluminum alloy (Al—Cu, Al—Mn, Al—Mg, Al—Mg—Si, Al—Zn—Mg), respectively. Is preferable from the viewpoint of production cost and heat dissipation characteristics.
  • the amplification circuit board 6A which is the main heat source of the power amplifier 1, is disposed in close contact with at least one of the outer main surfaces 22 and 32 of the first substrate 20 and the second substrate 30. And at the time of driving, it takes heat from the circuit board and cools it.
  • the amplification circuit board 6 ⁇ / b> A is disposed in close contact with the outer main surface 32 of the second board 30. It is preferable that the outer surfaces 22 and 32 are in close contact with the amplification circuit board 6A, which is a heat generation source, in a high degree of area with a wide possible area. For this reason, for example, it is preferable to perform a flattening process in order to keep the unevenness to 20 ⁇ m or less.
  • the first substrate 20 and the second substrate 30 are once formed with a thickness of 20 mm, and then the surface treatment is performed by cutting the outer main surface by a thickness of 1 mm.
  • each of the first substrate 20 and the second substrate 30 there are 14 insertion holes 23 and 33 (diameter: 12.8 mm) for heat pipes extending in the X direction parallel to the main surfaces. It is attached for a long time.
  • the sealing bolts 24 and 34 shown in FIG. 2 are provided for the purpose of sealing the opening of the insertion holes 23 and 33 on the upstream side in the heat pipe insertion direction and pressurizing the heat pipe 7 with a pressure spring 9 described later. It is what was done.
  • the insertion hole 23 of the first substrate 20 and the insertion hole 33 of the second substrate 30 are at the same position in the Z direction when the first substrate 20 and the second substrate 30 are opposed to each other. It is penetrated so that it may become an alternate position.
  • the positions of the insertion holes 23 and 33 are indicated by dotted lines inside the sealing bolts 24 and 34.
  • FIG. 4 shown next is a partial cross-sectional view of the first substrate 20 along the xz plane.
  • the first substrate 20 is shown in cross section (shaded portion), and the heat pipe 7, the pressure spring 9, and the sealing bolt 24 are shown in appearance.
  • the configuration shown in the drawing is the same for the second substrate 30, and the sealing bolt 34, the insertion hole 33, the screw groove 330, the upstream end 331 A, the downstream end 331 B, etc. (not shown) are the same. Is provided.
  • the insertion hole 23 is directed from one side surface (end portion 231A on the upstream side in the heat pipe insertion direction) along the thickness direction of the first substrate 20 toward the other side surface (end portion 231B on the downstream side in the heat pipe insertion direction) It is formed in a tapered shape.
  • a screw groove 230 for screwing the sealing bolt 24 is provided in the opening portion close to the end portion 231A.
  • Such an insertion hole 23 can be formed by, for example, extruding a rough overall configuration of the first substrate 20 and then tapering the inner wall of the hole using a high-speed reamer drill.
  • the metal jacket 8 which is adjusted so that the thickness decreases from the upstream side to the downstream side in the insertion direction, is wound in the circumferential direction of the heat pipe 7 in the insertion hole 23. It is inserted so as to be thermally coupled to the inner wall.
  • a sealing bolt 24 is screwed into the end 71A on the upstream side in the insertion direction of the heat pipe 7 via a pressure spring (pressing spring) 9 as a pressing means. Accordingly, the heat pipe 7 is fixed by the pressure spring 9 while being elastically biased toward the downstream side in the insertion direction.
  • the sealing bolt 24 is an example of a means (sealing body) for sealing the insertion hole 23, and is not limited to this.
  • a cap that fits into the upstream end 231A of the insertion hole 23 may be used, or a lid may be joined to the upstream end 231A by welding.
  • the pressure spring 9 is also an example of an urging means (elastic body) using a compression spring, and is not limited to this.
  • a known elastic body such as a leaf spring having a high pressure / volume ratio such as a disc spring may be used.
  • the biasing means is not limited to a configuration in which an elastic body (such as the pressure spring 9) is provided between the sealing bolt 24 and the heat pipe 7.
  • an elastic body such as the pressure spring 9
  • the heat pipe 7 having an outer diameter of 9.5 mm can be used by setting the inner diameter of the insertion hole 23 adjacent to the screw groove 230 to 11 mm and the inner diameter of the downstream end in the insertion direction to 9.8 mm.
  • FIG. 5 is a diagram showing a configuration of the heat pipe 7 to which the metal jacket 8 is attached.
  • the heat pipe 7 is a known heat conduction element, and a wick (metal mesh) and a small amount of hydraulic fluid (pure water) are put into a sealed long copper pipe body 70, and an end portion 71A. , 71B is closed and vacuum sealed.
  • the heat pipe 7 absorbs the latent heat of vaporization at the heat input portion, and the evaporated water solidifies at the heat radiating portion and dissipates the heat, thereby making the temperature of the heat source uniform.
  • the solidified water is collected by the wick capillarity.
  • the heat pipe 7 is used in a so-called horizontal heat mode with respect to the main surfaces of the first substrate 20 and the second substrate 30, and the temperature of the first substrate 20 and the second substrate 30 is made uniform.
  • the product of Sumitomo Metal Co., Ltd. can be utilized, for example.
  • the metal jacket 8 is used for the purpose of thermally coupling the heat pipe 7 to the first substrate 20 at the main surface portion 80 thereof. It consists of the cylindrical body which processed the strip-shaped metal plate excellent in heat conductivity, and is adjusted so that thickness may reduce gradually along a longitudinal direction.
  • 81A and 81B are end portions in the longitudinal direction, 81A represents a thick film end portion, and 81B represents a thin film end portion.
  • both ends in the width direction (short direction) are wound in the circumferential direction of the heat pipe 7.
  • the outer diameter of the entire heat pipe 7 gradually decreases from the one end 81 ⁇ / b> A toward the other end 81 ⁇ / b> B, and has a tapered shape corresponding to the insertion hole 23.
  • the material of the metal jacket 8 is preferably a copper plate or a copper alloy plate from the viewpoint of giving top priority to thermal conductivity.
  • an aluminum plate or an aluminum alloy plate is preferable from the viewpoint of considering the balance between thermal conductivity and production cost.
  • a metal plate made of a known metal material such as iron or nickel can be used.
  • the material thickness of the metal jacket 8 can be arbitrarily set by pressing a metal plate having a constant thickness. It is also possible to squeeze and taper with a reamer. In any case, the change in the thickness of the metal jacket 8 is adjusted to the taper-shaped inner diameter of the insertion hole 23 so that the metal jacket 8 can be in close contact with the inner diameter.
  • a constant gap slit 82 is provided between both ends of the metal jacket 8 in the width direction to ensure escape during thermal expansion.
  • the slit 82 may be a pattern that gradually decreases from the end portions 81A to 81B as shown in FIG. 5, or may have a constant width.
  • the slit 82 may be formed by adjusting the length of the metal jacket 8 along the circumferential direction of the heat pipe 7 to be shorter than the circumferential length of the heat pipe 7. Therefore, the shape of the slit 82 is not limited to the pattern along the longitudinal direction of the heat pipe 7 as shown in FIG. In addition, for example, a pattern formed so that the peripheral surface of the heat pipe 7 runs spirally along the longitudinal direction can be used. In this case, however, it should be noted that the thickness of the metal jacket 8 should be adjusted gradually from the upstream side to the downstream side in the insertion direction.
  • a plurality of metal plates can be wound adjacently along the longitudinal direction of the heat pipe 7. In this case, adjustment is performed so that the thickness of each metal plate gradually decreases from the end 231A toward the end 231B.
  • FIG. 6 is a diagram showing a process of inserting the heat pipe 7 into the insertion hole 23 and fixing it.
  • 14 tapered insertion holes 23 each having a screw groove 230 for bolts are formed in the vicinity of the opening on the side surface in the thickness direction of the first substrate 20 (FIG. 6A).
  • the inner diameter of the insertion direction downstream end 231B in the insertion hole 23 is set to a diameter that the heat pipe 7 cannot pass through. 4 and 6, the opening is provided on the downstream side of the insertion hole 23 in the insertion direction, but this is not essential and may be closed.
  • the metal jacket 8 is inserted into the insertion hole 23 from the upstream end portion 231A in the insertion direction.
  • the direction of the metal jacket 8 is adjusted so that the thick film end 81A faces the upstream end 231A and the thin film end 81B faces the downstream end 231B.
  • the heat pipe 7 is inserted inside the metal jacket 8, and the inner surface of the metal jacket 8 is brought into close surface contact with the peripheral surface of the main body portion 70 of the heat pipe 7 to be wound (FIG. 6B).
  • only the metal jacket 8 is inserted into the insertion hole 23 first, but the metal jacket 8 is wound around the peripheral surface of the heat pipe 7 in advance, and then these are inserted into the insertion hole 23 at the same time. May be.
  • the sealing bolt 24 is screwed into the upstream end 71A of the heat pipe 7 in the insertion direction while the pressure spring 9 is fitted (FIG. 6B). ).
  • the fixing of the heat pipe 7 is completed through the above steps.
  • the main feature of the heat sink 10 is that the heat pipe 7 is not fixed to the first substrate 20 and the second substrate 30 by metal bonding as in the prior art.
  • the heat pipe 7 is disposed inside the tapered insertion holes 23 and 33 so as to be slidable in the longitudinal direction, and the first substrate 20 and the second substrate 30 through the metal jacket 8.
  • the side is always thermally coupled with the side.
  • the heat pipe 7 is pressurized by the pressure spring 9 along the insertion direction (FIG. 4).
  • the metal jacket 8 disposed on the circumferential surface of the heat pipe 7 comes into close contact with the inner wall of the insertion hole 23 (33) and is compressed onto the circumferential surface of the heat pipe 7.
  • the peripheral surface of the heat pipe 7 is thermally coupled closely to the inner wall of the insertion hole 23 (33) via the metal jacket 8.
  • the heat pipe 7 and the metal jacket 8 also thermally expand.
  • the stress due to the thermal expansion acts on the heat pipe 7 and the metal jacket 8 against the insertion direction.
  • the stress due to the thermal expansion is large with respect to the elastic force of the pressure spring 9, the heat pipe 7 and the metal jacket 8 slide against the insertion direction, but the elasticity of the pressure spring 9 compared to the stress.
  • the heat pipe 7 and the metal jacket 8 eventually stop when the stress and the elastic force are balanced.
  • the heat pipe 7 and the metal jacket 8 are thermally contracted and slide along the insertion direction by the elastic force of the pressure spring 9.
  • the elastic force of the pressure spring 9 by considerably increasing the elastic force of the pressure spring 9, the sliding amount of the heat pipe 7 and the metal jacket 8 in a high temperature state can be reduced.
  • the outer surface of the metal jacket 8 is used.
  • the heat pipe 7 is fixed to the inner walls of the insertion holes 23 and 33 by friction through the metal jacket 8.
  • the heat pipe 7 and the metal jacket 8 repeat thermal expansion and contraction to slightly pass the insertion hole 23 (33) along the insertion direction.
  • the heat pipe 7 is pressurized against the inner wall of the insertion hole 23 (33) by the pressure spring 9, the tapered insertion hole 23 (33) and the metal jacket 8, and is stable. Keeping close contact. For this reason, the heat pipe 7 and the first substrate 20 and the second substrate 30 always maintain good thermal coupling.
  • the heat sink 10 of the present invention achieves high reliability and long life at a high level.
  • the heat pipe 7 and the metal jacket 8 can be fixed to each other by ultrasonic welding.
  • the mass of the first substrate 20 and the second substrate 30 can be considerably reduced. According to the inventors' confirmation, it has been found that providing the insertion holes 23 and 33 can reduce the weight of the heat sink by at least 35%.
  • heat pipe arrangement direction it is not necessary to arrange all the heat pipes in the longitudinal direction like the heat sink 10.
  • a plurality of heat pipes can be provided radially from the center of the main surface of one substrate toward the periphery.
  • the heat pipes disposed on each of the first substrate and the second substrate can be disposed so as to intersect (orthogonal) with each other.
  • the fin plate in the present invention is not limited to a strip shape.
  • the belt-like body may be bent to form a curved shape, a polygonal shape, or a corrugated shape, and a plurality of heat radiation pins may be provided instead of the plate.
  • the side surfaces (two side surfaces along the YZ plane in FIG. 2) where the end portions in the longitudinal direction of the fin plate 40 are exposed to the outside are well-known, for example, by bending a metal wire bracingly.
  • a finger plate may be provided.
  • a robust heat sink with a metal ramen structure can be realized. (About the effect of the power amplifier 1 using the heat sink 10)
  • the power amplifier 1 including the heat sink 10 having the above configuration the heat generated in the amplifier circuit board 6A during driving is efficiently cooled by the heat sink 10 disposed so as to be thermally coupled to the amplifier circuit board 6A.
  • the thermal conductivity of a heat sink depends on the material characteristics of its constituent elements. If the contact area with the heat source is constant, the thermal conductivity does not change depending on the shape of the heat sink.
  • the heat dissipation characteristics of the heat sink depend on the size of the heat dissipation surface area (in this case, the contact area with the air to be radiated). Therefore, in order to obtain a small size, light weight, and high performance, the heat sink 10 is disposed as densely as possible without excessively obstructing the air flow between the adjacent fin plates 40 while making the fin plates 40 as thin as possible. It has been devised to ensure a wide contact area with air and to exhibit optimal heat dissipation characteristics.
  • the fin plate 40 is disposed on the inner main surfaces 21 and 31 so as to be in good contact with air at high density. Accordingly, the high-temperature fin plate 40 is heat-exchanged with the air blown from the cooling fans 2A and 2B, and is quickly cooled. By configuring the fin plate 40 with a copper material that is more excellent in thermal conductivity than the aluminum that constitutes the first substrate 20 and the second substrate 30, a high heat dissipation effect with reduced heat storage can be obtained. The hot air is immediately discharged out of the amplifier housing 54 by the cooling fans 3A and 3B.
  • the power amplifier 1 does not cause thermal runaway or heat loss. Moreover, since the heat pipe 7 is well disposed in the heat sink 10 as described above, stable driving is possible for a long period of time.
  • heat sinks used in conventional power amplifiers for example, a plurality of crimping grooves for fin plates are formed by die casting on the upper surface of the cooling substrate, and fin plates are arranged at a pitch of 7 mm in each groove.
  • the average thermal resistance value of the provided configuration can be exemplified as 0.02 ° C./W.
  • the heat dissipation characteristics are remarkably improved by adopting the heat sink 10.
  • the electrolytic capacitor when the electrolytic capacitor is mounted on the amplifier circuit board of the power amplifier, the so-called Arrhenius 10 ° C. rule is applied, and if the driving temperature is lowered by 10 ° C., the element life of the electrolytic capacitor is doubled. In other words, by reducing the operating temperature by 10 ° C. as a comparison value, the use cost of the product can be halved.
  • the device reliability is dramatically improved as compared with the prior art, and a long life can be expected.
  • FIG. 7 shows the structure of the fin plate in the second embodiment.
  • a plurality of openings 44a may be provided on the main surface of the fin plate by piercing holes in one direction by random or constant rules.
  • the plurality of fin plates 40a are provided side by side in the same thickness direction punched by burring.
  • the positions of the openings 44a in each fin plate 40a are randomly formed at positions separated from each other by about 3 mm.
  • each opening part 44a in each fin plate 40a is arrange
  • the pitch is approximately 20% or more and 40% or less (0.6 mm). It is considered that there is an optimum value in the range of 1.2 mm or less.
  • the periphery of the opening 44a is formed into a convex cross section by burring. For this reason, when air is sent to the heat sink provided with the fin plate 40a, the air passing through the opening 44a becomes turbulent around the burr 45 as shown in FIG. Thereby, since the air per unit volume blown with respect to the heat sink contacts the surface of the fin plate 40a for a long time, collision cooling is improved inside the heat sink, and an improvement in heat dissipation characteristics in the fin plate 40a can be expected.
  • FIG. 8A is a front view showing the configuration of the heat sink 10A in the third embodiment.
  • the heat pipe 7 is disposed only on the second substrate 30 on which the amplification circuit substrate 6A, which is a heat source, is densely disposed, and the heat pipe is not disposed on the first substrate.
  • FIG. 8B is a front view showing the configuration of the heat sink 10B in the fourth embodiment.
  • the heat sink of the present invention is not limited to the configuration using two cooling substrates, and only one can be used.
  • the heat sink 10 ⁇ / b> B shown in the drawing shows a configuration in which only one cooling substrate (second substrate 30) is used and the heat pipe 7 is inserted into the second substrate 30.
  • the heat from the amplification circuit board 6A is transmitted to the second board 30 as in the first embodiment, and is quickly transferred to the fin plate 40 by the action of the heat pipe 7, thereby exhibiting a high cooling effect. Is done.
  • the heat sink 10B since the end portion in the width direction (z direction) of the fin plate 40 is exposed and opened to the outside, the structure can be more easily exposed to air, and a high heat radiation effect can be expected.
  • the heat sink 10B is suitable for use such that the strength of the fin plate 40 does not matter so much (for example, directly disposed on the CPU inside the personal computer).
  • the heat sink size in this case is preferably relatively small in view of the strength.
  • the heat sink of the present invention assumes an air cooling type (forced air cooling type) using a cooling fan, but is not limited to this. That is, a method using a liquid refrigerant, such as a known water-cooled type, may be employed.
  • the configuration using a pair of cooling substrates (the first substrate 20 and the second substrate 30) is shown, but the number of cooling substrates used may be more than this.
  • Cooling targets include boards and motors of other devices, other heat sources (such as circuit boards that generate high heat when driving large power amplifiers, power distributors, high-frequency attenuators, etc., generators, brake brakes, light emitters, light projections) Machine, electric motor control device, etc.).
  • thermo conductive sheet silicone grease, or the like can be interposed between them.
  • the metal jacket in the present invention is not limited to a configuration comprising a single metal plate.
  • the metal jacket may be formed by stacking a plurality of metal plates, and may be formed in a tapered shape by reducing the number of metal plates to be stacked from the upstream side to the downstream side in the insertion direction.
  • the heat sink of the present invention can be widely used as a generator, a brake brake, a light emitter, a projector, an electric motor control device, etc., as well as a substrate cooling means for power amplifiers and communication devices.

Abstract

A heatsink has a first substrate (20) having fin plates vertically arranged on its surface. Tapered insertion holes (23) are formed in the first substrate (20), in its side surface extending in its thickness direction. A heat pipe (7) having a tubular metal jacket wrapped around it is inserted into each insertion hole (23), and the insertion hole (23) is sealed by a seal bolt (24) with a pressing spring placed between the heat pipe and the seal bolt. The heat pipes (7) are pressed by the pressing springs (9) and elastically urged to the downstream side in the direction of insertion of the heat pipes (7). The peripheral surfaces of the heat pipes (7) are reliably thermally joined to the first substrate (20) by the tapered insertion holes (23) with the metal jacket (8) in between.

Description

[規則37.2に基づきISAが決定した発明の名称] ヒートシンク及びヒートシンクを備える電力増幅器[Name of invention determined by ISA based on Rule 37.2] Heat sink and power amplifier including heat sink
 本発明は、ヒートシンクに関し、第一に長期信頼性的に、第二に組立作業性的に、第三に量産効率的に、良好に冷却基板の内部にヒートパイプを固定する技術に関する。 The present invention relates to a heat sink, firstly for long-term reliability, secondly for assembly workability, and thirdly for mass production efficiency, and particularly for a technique for fixing a heat pipe inside a cooling substrate.
 通信機器や電源装置等の回路基板で発生する熱を放散させ、回路基板の過熱を防止して正常な動作を維持し、その長期信頼性と長寿命を確保する手段として、ヒートシンクが用いられている。 A heat sink is used as a means to dissipate the heat generated in circuit boards such as communication equipment and power supply devices, to prevent overheating of the circuit board and to maintain normal operation, and to ensure its long-term reliability and long life Yes.
 代表的なヒートシンクは、板状の冷却基板(「コールドプレート」、「C.P.」或いは「基盤」とも称する。)の一方の表面に、複数の放熱フィンや放熱ピンを所定間隔で立てて配設した構成を持つ。使用時には冷却基板の他方の面に、回路基板を密着させて用いられる。その他、冷却基板を一対、対向配置させ、その間に放熱フィン又は放熱ピンを併設させたヒートシンクの構成が知られている。 A typical heat sink has a plurality of radiating fins and radiating pins at predetermined intervals on one surface of a plate-like cooling substrate (also referred to as “cold plate”, “CP” or “base”). It has an arranged configuration. In use, the circuit board is used in close contact with the other surface of the cooling board. In addition, a heat sink configuration is known in which a pair of cooling substrates are arranged to face each other and a heat radiating fin or a heat radiating pin is provided therebetween.
 いずれの構成を持つヒートシンクにおいても、回路基板での発熱を冷却基板がいったん受けたのち、放熱フィン又は放熱ピンに伝熱して、これらの周囲の空気又は冷媒に放熱する原理が採用されている。 In any heat sink, the principle is adopted in which, after the cooling substrate once receives heat from the circuit board, the heat is transferred to the radiating fins or the radiating pins and radiated to the surrounding air or refrigerant.
 ヒートシンクに要求される性能としては、回路基板等の発熱源から迅速に熱を奪う熱伝導性を持つこと、ヒートシンクに対して空気や液体冷媒等を対流させて、効率よくヒートシンクの放熱を行うこと、並びに放熱フィン又は放熱ピンから空気や熱媒体等に効率よく熱交換させるために、放熱フィン又は放熱ピンが良好な輻射特性を有すること、等が挙げられる。また、幅広い温度範囲にわたり、安定した放熱特性を維持できることも要求される。 The required performance of the heat sink is to have thermal conductivity that quickly removes heat from a heat source such as a circuit board, and to efficiently radiate the heat sink by convection of air or liquid refrigerant to the heat sink. In addition, in order to efficiently exchange heat from the radiating fin or the radiating pin to air or a heat medium, the radiating fin or the radiating pin has good radiation characteristics. It is also required that stable heat dissipation characteristics can be maintained over a wide temperature range.
 ヒートシンクの製造方法は、古くはアルミダイキャスト等の金属材料を押し出し加工し、これにより冷却基板と放熱フィン又は放熱ピンとを一体成型する方法がある。近年では金属基板の表面にストライプ状に凹凸を形成し、放熱フィン(フィンプレート)又は放熱ピンの端部をカシメ加工により配設する方法が開発されている(例えば特許文献2、3)。押し出し成型では部材の厚みに制限があるが、後者の製造方法では放熱フィン又は放熱ピンを冷却基板とは別に製造できる。従って放熱フィンを薄く形成でき、放熱ピンは細く形成できるので、ヒートシンクの放熱表面積(放熱に寄与するヒートシンクの表面積。主として放熱フィンや放熱ピンの総表面積)を増やして放熱特性の向上を図ることができる。但し、カシメ加工を行う場合、冷却基板にはカシメ加工を行うためのスペースを確保する必要がある。 In the old days, there is a method of manufacturing a heat sink by extruding a metal material such as aluminum die-casting and integrally molding the cooling substrate and the heat radiation fins or the heat radiation pins. In recent years, a method has been developed in which irregularities are formed in a stripe shape on the surface of a metal substrate, and ends of heat radiation fins (fin plates) or heat radiation pins are disposed by caulking (for example, Patent Documents 2 and 3). In extrusion molding, the thickness of the member is limited, but in the latter manufacturing method, the radiation fins or the radiation pins can be manufactured separately from the cooling substrate. Therefore, since the heat radiation fin can be formed thin and the heat radiation pin can be formed thin, the heat radiation surface area of the heat sink (the surface area of the heat sink contributing to heat radiation, mainly the total surface area of the heat radiation fin and the heat radiation pin) can be increased to improve the heat radiation characteristics. it can. However, when caulking is performed, it is necessary to secure a space for caulking on the cooling substrate.
 ここで冷却基板にヒートパイプを埋設することにより、冷却基板側からの伝導熱を冷却基板全体に均一化して、放熱フィンで効率よく放熱させることをねらった構成も開発されている(特許文献1)。 Here, a configuration has been developed in which a heat pipe is embedded in the cooling substrate so that the conduction heat from the cooling substrate side is made uniform over the entire cooling substrate and the heat radiation fins are efficiently radiated (Patent Document 1). ).
 ヒートパイプは、例えば冷却基板に開けた穴に挿入した後、溶融したハンダなどの低融点ロウ材料を流し込んで冷却することで固定される(特許文献2)。
特開2006-294989号公報 特開2006-278923号公報
The heat pipe is fixed by, for example, being inserted into a hole formed in a cooling substrate and then cooled by pouring a low melting point solder material such as molten solder (Patent Document 2).
JP 2006-294989 A JP 2006-278923 A
 しかしながら、ヒートシンクの使い方によっては、装置から高熱を受ける状態と、装置の駆動停止により冷却される状態とが長期にわたりヒートシンクに繰り返し及ぶ場合がある。この温度変化を頻繁に受けることで、ヒートシンクの構成要素が劣化し、冷却基板の内部にヒートパイプが確実に固定されなくなる問題がある。 However, depending on how the heat sink is used, there may be a case where a state of receiving high heat from the apparatus and a state of being cooled by stopping the operation of the apparatus are repeatedly applied to the heat sink over a long period of time. By frequently receiving this temperature change, there is a problem that the components of the heat sink are deteriorated and the heat pipe is not reliably fixed inside the cooling substrate.
 低融点ロウ材料は、一般に大幅な温度変化を繰り返すと、次第に金属疲労等による割れを生じやすい。具体的に本願発明者らの行った測定によれば、セラミックコンデンサを搭載した回路基板は駆動時のチップ表面温度が150℃程度まで上昇し、駆動停止後一定期間経過後には60℃程度まで低下する。このようなセラミックコンデンサを搭載した回路基板にヒートシンクを配設し、当該回路基板を備える装置を間歇的に運転し続けると、激しい温度変化に伴ってヒートシンク中のハンダ(共晶ハンダ)が比較的早い段階でクラックを生じうることが分かった。 ¡Low melting point brazing materials are generally prone to cracking due to metal fatigue, etc., when repeated with significant temperature changes. Specifically, according to the measurement performed by the inventors of the present application, the circuit board mounted with the ceramic capacitor has a chip surface temperature at the time of driving up to about 150 ° C., and after a certain period of time has elapsed after driving is stopped, it drops to about 60 ° C. To do. When a heat sink is disposed on a circuit board on which such a ceramic capacitor is mounted, and the device including the circuit board is operated intermittently, the solder (eutectic solder) in the heat sink is relatively reduced due to severe temperature changes. It was found that cracks can occur at an early stage.
 ヒートシンクにおいてヒートパイプをハンダで固定する構成では、このようなクラックが生じると、もはや冷却基板の内部にヒートパイプを確実に固定できない。ハンダが収縮したりクラックを生じることにより、冷却基板とヒートパイプとの間に不要な間隙を生じたり、ヒートパイプの脱落を招くおそれがある。さらに、前記間隙が存在すると冷却基板側からヒートパイプへの熱伝導性が大きく劣化し、ヒートシンク全体の放熱特性を著しく損ねる原因ともなり得る。 In the configuration in which the heat pipe is fixed with solder in the heat sink, when such a crack occurs, the heat pipe can no longer be reliably fixed inside the cooling substrate. If the solder contracts or cracks occur, an unnecessary gap may be formed between the cooling substrate and the heat pipe, or the heat pipe may drop off. Furthermore, if the gap exists, the thermal conductivity from the cooling substrate side to the heat pipe is greatly deteriorated, which may cause the heat dissipation characteristics of the entire heat sink to be significantly impaired.
 このように現在では、冷却基板の内部にヒートパイプを配設したヒートシンクにおいて、解決すべき課題が残されている。 Thus, at present, problems to be solved remain in the heat sink in which the heat pipe is arranged inside the cooling substrate.
 本発明は上記課題に鑑みてなされたものであって、ヒートパイプを備えるヒートシンクにおいて、たとえ幅広い温度変化に曝される用途においても、ヒートパイプを確実に冷却基板に固定し続けることにより、長期にわたり優れた放熱特性を発揮することの可能なヒートシンクを低コストで提供することを目的とする。 The present invention has been made in view of the above problems, and in a heat sink provided with a heat pipe, even in an application exposed to a wide range of temperature changes, the heat pipe can be securely fixed to a cooling substrate for a long period of time. An object of the present invention is to provide a heat sink capable of exhibiting excellent heat dissipation characteristics at a low cost.
 上記課題を解決するために、本発明は、第一の金属からなる冷却基板を1または複数備え、当該冷却基板の表面に、第一の金属よりも熱伝導率の高い第二の金属からなるフィンプレートが立設され、当該冷却基板の内部に1本以上のヒートパイプが配設されたヒートシンクであって、少なくとも1の冷却基板には、その側面から当該冷却基板の主面に沿ってヒートパイプを挿入するためのテーパー状の挿入穴が形成され、前記挿入穴には、ヒートパイプを挿入方向に沿って付勢する付勢手段が設けられ、ヒートパイプは前記挿入穴に対し、筒状の金属ジャケットに被覆されて挿入されており、金属ジャケットは、長手方向に沿って周面にスリットを有するとともに、前記挿入方向に沿って厚みが漸減する構成を有することにより、ヒートパイプの周面が金属ジャケットの内面と面接触し、金属ジャケットの外面が挿入穴の内壁と面接触している構成とした。 In order to solve the above problems, the present invention comprises one or more cooling substrates made of a first metal, and the surface of the cooling substrate is made of a second metal having a higher thermal conductivity than the first metal. A heat sink in which a fin plate is erected and one or more heat pipes are arranged inside the cooling substrate, and at least one cooling substrate is heated from the side surface along the main surface of the cooling substrate. A tapered insertion hole for inserting a pipe is formed, and the insertion hole is provided with a biasing means for biasing the heat pipe along the insertion direction. The heat pipe is cylindrical with respect to the insertion hole. The metal jacket has a structure in which the metal jacket has a slit on the peripheral surface along the longitudinal direction and the thickness gradually decreases along the insertion direction. The peripheral surface of the flops in contact with the inner surface of the metal jacket has a configuration in which the outer surface of the metal jacket is in contact inner wall surface of the insertion hole.
 ここで、前記側面における挿入穴の開口部には、蓋体が配設されるとともに、蓋体とヒートパイプの間には前記付勢手段として弾性体が配設されている構成とすることもできる。 Here, the opening of the insertion hole in the side surface is provided with a lid, and an elastic body may be provided as the biasing means between the lid and the heat pipe. it can.
 また、前記冷却基板が一対対向配置され、各々の前記基板表面にわたるように、帯状の複数の前記フィンプレートが立設されている構成とすることもできる。 In addition, a pair of the cooling substrates may be arranged opposite to each other, and a plurality of strip-shaped fin plates may be provided so as to extend over the surface of each substrate.
 前記金属ジャケットは、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、鉄のいずれか1種で構成ことが好適である。 The metal jacket is preferably composed of any one of aluminum, aluminum alloy, copper, copper alloy, nickel, and iron.
 また、フィンプレートは帯状体であり、その一部分が前記冷却基板表面に対して面接触した状態で固定され、他の部分が前記表面に対して折り曲げられて立設されている構成とすることもできる。 Further, the fin plate is a belt-like body, a part of which is fixed in surface contact with the surface of the cooling substrate, and the other part is bent up with respect to the surface. it can.
 ここで、フィンプレートは帯状体であり、複数のフィンプレートが2.5mm以上4mm以下のピッチで併設されていることが好適である。 Here, it is preferable that the fin plate is a belt-like body, and a plurality of fin plates are arranged at a pitch of 2.5 mm or more and 4 mm or less.
 第一の金属はアルミニウム又はアルミニウム合金であり、第二の金属は銅又は銅合金とすることができる。 The first metal can be aluminum or an aluminum alloy, and the second metal can be copper or a copper alloy.
 また、外部に露出するフィンプレートの部分には、黒化処理を施すこともできる。 Also, the fin plate exposed to the outside can be blackened.
 また、外部に露出するフィンプレートの部分には、バーリング加工若しくはエンボス加工による突起部を複数にわたり形成することもできる。 Also, a plurality of protrusions by burring or embossing can be formed on the portion of the fin plate exposed to the outside.
 さらに本発明は、前記した本発明のヒートシンクと、当該ヒートシンクにおける少なくともいずれかの冷却基板に熱結合するように配設された回路基板と、前記フィンプレートを強制空冷するためのクーリングファンとを備える電力増幅器とした。 Furthermore, the present invention includes the above-described heat sink of the present invention, a circuit board disposed so as to be thermally coupled to at least one of the cooling boards in the heat sink, and a cooling fan for forcibly air-cooling the fin plate. A power amplifier was used.
 以上の構成を有する本発明のヒートシンクでは、冷却基板のテーパー状に形成された挿入穴に対し、ヒートパイプが所定の筒状の金属ジャケットで被覆されて挿入される。前記金属ジャケットは、ヒートパイプの挿入方向に沿って厚みが減少するように調整されている。テーパー状の挿入穴とこれに対応する形状を持つ金属ジャケットを用いることで、ヒートパイプの周面は金属ジャケットの内面と密に面接触するとともに、金属ジャケットの外面が挿入穴の内壁と密に面接触する。 In the heat sink of the present invention having the above configuration, the heat pipe is inserted into the insertion hole formed in the tapered shape of the cooling substrate while being covered with a predetermined cylindrical metal jacket. The said metal jacket is adjusted so that thickness may reduce along the insertion direction of a heat pipe. By using a tapered insertion hole and a metal jacket with a corresponding shape, the peripheral surface of the heat pipe is in close contact with the inner surface of the metal jacket, and the outer surface of the metal jacket is in close contact with the inner wall of the insertion hole. Surface contact.
 一方、挿入穴には、ヒートパイプを前記挿入方向に沿って付勢する付勢手段が設けられる。具体的には、冷却基板の側面における挿入穴の開口部に蓋体を配設し、蓋体とヒートパイプの前記との間に圧縮バネ等の弾性体を設けることができる。この弾性体による加圧を受けて、ヒートパイプは常に金属ジャケットとともに挿入方向に沿って弾性付勢される。 On the other hand, the insertion hole is provided with a biasing means for biasing the heat pipe along the insertion direction. Specifically, a lid can be provided in the opening of the insertion hole on the side surface of the cooling substrate, and an elastic body such as a compression spring can be provided between the lid and the heat pipe. Under the pressure applied by the elastic body, the heat pipe is always elastically biased along the insertion direction together with the metal jacket.
 ここで、ヒートシンクが冷却状態にある場合は、ヒートパイプ及び金属ジャケットが前記挿入方向に弾性付勢されることで若干摺動する。これにより、金属ジャケットが挿入穴の内壁からの加圧圧縮力を受け、ヒートパイプの周面に密着する。従ってヒートパイプの周面は、金属ジャケットを介して冷却基板側と密に熱結合される。 Here, when the heat sink is in a cooled state, the heat pipe and the metal jacket slide slightly by being elastically biased in the insertion direction. Thereby, a metal jacket receives the pressurizing force from the inner wall of an insertion hole, and closely_contact | adheres to the surrounding surface of a heat pipe. Accordingly, the peripheral surface of the heat pipe is closely thermally coupled to the cooling substrate side through the metal jacket.
 一方、ヒートシンクが加熱状態にあるときは、当該ヒートシンクの構成要素が熱膨張することにより、ヒートパイプと金属ジャケットは前記挿入方向に逆らって挿入穴中を摺動する。しかしながら、この場合もヒートパイプは金属ジャケットの内壁と密に面接触するとともに、金属ジャケットの外面も挿入穴の内壁と密に面接触する。 On the other hand, when the heat sink is in a heated state, the heat pipe components thermally expand, so that the heat pipe and the metal jacket slide in the insertion hole against the insertion direction. In this case, however, the heat pipe is in close surface contact with the inner wall of the metal jacket, and the outer surface of the metal jacket is also in close surface contact with the inner wall of the insertion hole.
 なお前記摺動する量は、上記したいずれの状態でも、弾性体の加圧力等によって調節できる。 Note that the sliding amount can be adjusted by the pressure applied by the elastic body in any of the above states.
 従って、本発明のヒートシンクを備える装置では、駆動状態と停止状態の間でたとえ大幅な温度範囲の変化を生じたとしても、常にヒートパイプと挿入穴との熱結合が維持される。これにより、当該装置では長期にわたり、優れた放熱効果が発揮されることとなる。 Therefore, in the apparatus including the heat sink of the present invention, even if a significant temperature range change occurs between the driving state and the stop state, the thermal coupling between the heat pipe and the insertion hole is always maintained. Thereby, in the said apparatus, the outstanding heat dissipation effect will be exhibited over a long period of time.
 また、このように本発明のヒートシンクでは、冷却基板内部でヒートパイプが一定範囲で移動できるなど、ヒートパイプ周辺の構成要素の熱膨張及び熱収縮による応力歪みが軽減されている。従って本発明では、従来のようにハンダ等の低融点ロウ材料を用いて金属接合を行うヒートパイプの固定方法と異なり、クラックの発生や金属疲労によるヒートパイプの脱落の問題を生じることが全くない。 Also, as described above, in the heat sink of the present invention, the stress distortion due to the thermal expansion and contraction of the components around the heat pipe is reduced such that the heat pipe can move within a certain range inside the cooling substrate. Therefore, in the present invention, unlike the conventional heat pipe fixing method in which metal bonding is performed using a low melting point soldering material such as solder, there is no problem of occurrence of cracks or dropout of the heat pipe due to metal fatigue. .
 また本発明のヒートシンクでは、ヒートパイプの固定に際して溶接方法のような加熱工程が不要であるほか、低融点ロウ材料や、特別な接合装置、並びに接合面の清浄処理も不要である。従って、比較的容易に本発明を実現することができ、生産コストの低減効果が非常に高い利点も有している。 In addition, the heat sink of the present invention does not require a heating step such as a welding method when fixing the heat pipe, and does not require a low melting point brazing material, a special joining device, or a cleaning process for the joining surface. Therefore, the present invention can be realized relatively easily, and the production cost reduction effect is extremely high.
 なお本発明のヒートシンクは、熱交換機能を有する観点からラジエーターと称されることもある。 In addition, the heat sink of this invention may be called a radiator from a viewpoint which has a heat exchange function.
実施の形態1のパワーアンプの構成を示す図である。1 is a diagram illustrating a configuration of a power amplifier according to a first embodiment. 実施の形態1のヒートシンクの構成を示す外観図である。1 is an external view illustrating a configuration of a heat sink according to Embodiment 1. FIG. 実施の形態1のヒートシンクの正面図である。3 is a front view of the heat sink according to Embodiment 1. FIG. 第一基板中のヒートパイプの配置位置を示す、第一基板の断面図である。It is sectional drawing of the 1st board | substrate which shows the arrangement position of the heat pipe in a 1st board | substrate. ヒートパイプと金属ジャケットの構成を示す斜視図である。It is a perspective view which shows the structure of a heat pipe and a metal jacket. ヒートパイプの配設方法を説明するための図である。It is a figure for demonstrating the arrangement | positioning method of a heat pipe. フィンプレートの別の構成例を説明するための図である。It is a figure for demonstrating another structural example of a fin plate. 別の実施の形態のヒートシンクの構成を示す図である。It is a figure which shows the structure of the heat sink of another embodiment.
符号の説明Explanation of symbols
 1  パワーアンプ(高周波広帯域電力増幅器)
 2A、2B、3A、3B  クーリングファン
 4  吸気グリル
 6A  増幅回路基板
 7  ヒートパイプ
 8  金属ジャケット
 10、10A、10B  ヒートシンク
 11、11A、12、12A  ブラケット
 20  第一基板(コールドプレート)
 21、31  内側主面
 22、32  外側主面
 23、33  ヒートパイプ挿入穴
 24、34  封止ボルト
 30  第二基板(コールドプレート)
 40  フィンプレート
 40a フィンプレート(バーリング加工型)
 41  フィン主面部
 42、43  フィンプレート端部
 44  突起部
 44a  開口部
 45  バリ
 54  アンプ筐体
 70  ヒートパイプ本体部
 71A、71B  ヒートパイプ端部
 80  金属ジャケット主面部
 81A  金属ジャケット端部(厚膜端部)
 81B  金属ジャケット端部(薄膜端部)
 82  スリット
 230、330  ネジ溝
 231A、331A  ヒートパイプ挿入方向上流側端部
 231B、331B  ヒートパイプ挿入方向下流側端部
1 Power amplifier (high frequency broadband power amplifier)
2A, 2B, 3A, 3B Cooling fan 4 Intake grill 6A Amplifying circuit board 7 Heat pipe 8 Metal jacket 10, 10A, 10B Heat sink 11, 11A, 12, 12A Bracket 20 First board (cold plate)
21, 31 Inner main surface 22, 32 Outer main surface 23, 33 Heat pipe insertion hole 24, 34 Sealing bolt 30 Second substrate (cold plate)
40 Fin plate 40a Fin plate (burring type)
41 Fin main surface portion 42, 43 Fin plate end portion 44 Projection portion 44a Opening portion 45 Burr 54 Amplifier housing 70 Heat pipe main body portion 71A, 71B Heat pipe end portion 80 Metal jacket main surface portion 81A Metal jacket end portion (thick film end portion) )
81B metal jacket edge (thin film edge)
82 Slit 230, 330 Thread groove 231A, 331A Heat pipe insertion direction upstream end 231B, 331B Heat pipe insertion direction downstream end
 以下に、本発明の各実施の形態を説明する。当然ながら本発明はこれらの構成に限定されるものでない。本発明の技術的範囲を逸脱しない範囲で適宜変更して実施することができる。 Each embodiment of the present invention will be described below. Of course, the present invention is not limited to these configurations. The present invention can be implemented with appropriate modifications without departing from the technical scope of the present invention.
 <実施の形態1>
(パワーアンプの全体構成)
 図1は、本発明の実施の形態1の一適用例であるパワーアンプ(高周波広帯域電力増幅器)1の構成を示す一部透過図である。当該パワーアンプ1は、これに内蔵されるヒートシンク10の放熱特性の向上と小型軽量化の徹底により、アルミダイキャスト等の金属材料を押し出し加工してなる従来品よりも約1/5以下に小型化された特徴を有する。性能的には、従来機器と遜色のない、周波数範囲50kHz~6000MHz、出力電力200mW~2000Wの特性を有する。
<Embodiment 1>
(Overall configuration of power amplifier)
FIG. 1 is a partially transparent diagram showing a configuration of a power amplifier (high frequency broadband power amplifier) 1 which is an application example of the first embodiment of the present invention. The power amplifier 1 is smaller than a conventional product made by extruding a metal material such as aluminum die cast by improving heat dissipation characteristics of the heat sink 10 incorporated therein and thoroughly reducing the size and weight. It has the characteristic that was made. In terms of performance, it has characteristics of a frequency range of 50 kHz to 6000 MHz and an output power of 200 mW to 2000 W, which is not inferior to conventional devices.
 パワーアンプ1は、直方体状のアンプ筐体54の内部に、増幅回路基板6A、直流電源供給回路6B、クーリングファン、及びヒートシンク10が内蔵されてなる。アンプ筐体54の前面には、内部のヒートシンク10に対応する位置に吸気グリル4が設けられる。また、ユーザーが外部配線を接続し、出力値を確認するための操作・表示部5が配設されている。 The power amplifier 1 includes an amplifier circuit board 6A, a DC power supply circuit 6B, a cooling fan, and a heat sink 10 inside a rectangular parallelepiped amplifier housing 54. An intake grill 4 is provided on the front surface of the amplifier housing 54 at a position corresponding to the internal heat sink 10. In addition, an operation / display unit 5 is provided for a user to connect an external wiring and confirm an output value.
 図1では、パワーアンプ1内部の増幅回路基板6A、直流電源供給回路6Bを一点鎖線で示し、ヒートシンク10の配置位置を点線で示している。配置位置の明瞭化のため、ヒートシンク10はほぼ輪郭のみを表している。 In FIG. 1, the amplifier circuit board 6A and the DC power supply circuit 6B inside the power amplifier 1 are indicated by a one-dot chain line, and the arrangement position of the heat sink 10 is indicated by a dotted line. In order to clarify the arrangement position, the heat sink 10 represents only the outline.
 操作・表示部5には、電力表示パネル52と電源スイッチ53、並びに一対の出力端子50が設けられる。一方、図示しないが、アンプ筐体54の後部には、排気グリルと一対の入力端子が設けられている。 The operation / display unit 5 is provided with a power display panel 52, a power switch 53, and a pair of output terminals 50. On the other hand, although not shown, an exhaust grille and a pair of input terminals are provided at the rear of the amplifier housing 54.
 吸気グリル4及び排気グリルは、アンプ筐体54の一対の厚み方向側面に複数の穴を形成し、これをアンプ筐体54の内部から金属メッシュで覆うことで構成されている。 The intake grille 4 and the exhaust grille are configured by forming a plurality of holes in a pair of side surfaces in the thickness direction of the amplifier casing 54 and covering the holes with a metal mesh from the inside of the amplifier casing 54.
 吸気グリル4及び排気グリルに対応する位置には、ヒートシンク10を前後から挟んでこれを強制空冷できるように、クーリングファン2A、2B、3A、3B(160mm角の直流ファン)が配設される。 Cooling fans 2A, 2B, 3A, and 3B (160 mm square DC fans) are disposed at positions corresponding to the intake grill 4 and the exhaust grill so that the heat sink 10 can be sandwiched from the front and the back to be forcibly cooled by air.
 直流電源供給回路6Bは、配線51を通じて外部から供給された交流電源の電力を受け、これを直流に変換し、増幅回路基板6Aに供給する。 The direct current power supply circuit 6B receives the power of the alternating current power supplied from the outside through the wiring 51, converts this into direct current, and supplies it to the amplification circuit board 6A.
 増幅回路基板6Aは、入力端子を通じて外部より供給される入力信号(P-in)を、上記した直流電源供給回路からの直流電力を得て、所定の大きさの出力信号(P-out)として外部に出力する処理を行う。この信号の増幅処理は、音声から高周波、マイクロ波やミリ波、光やレーザー領域を含む超広帯域周波数に対応可能である。 The amplifying circuit board 6A obtains the DC power from the DC power supply circuit described above as an input signal (P-in) supplied from the outside through the input terminal, and outputs it as a predetermined magnitude output signal (P-out). Process to output to the outside. This signal amplification processing can be applied to voice to high frequency, microwave and millimeter wave, and ultra-wideband frequencies including light and laser regions.
 この増幅処理に伴う電源効率E(%)は、次式
 {P-out/(P-in+P-supply)}×100%
 で与えられる。ここで、狭帯域周波数のパワーアンプは一般的に50%前後の電源効率であるが、これに比べて広帯域周波数のパワー案は一般的に5%から25%の値を取る。従って、仮に従来のパワーアンプの電源効率を例えば約15%程度と考えると、本実施の形態1のパワーアンプ1も同様の電源効率である。よって、当該パワーアンプ1では、供給電力の約85%が熱損失として発生する場合があると考えられる。この熱がそのまま回路基板の周囲に蓄熱されると、回路基板上の電気素子が熱損傷したり、電気抵抗が上昇するなどの問題が生じ、パワーアンプ1の正常な動作の妨げとなる。
The power supply efficiency E (%) accompanying this amplification processing is given by the following equation {P−out / (P−in + P−supply)} × 100%
Given in. Here, the power amplifier of the narrow band frequency generally has a power supply efficiency of around 50%, but the power plan of the wide band frequency generally takes a value of 5% to 25%. Accordingly, assuming that the power efficiency of the conventional power amplifier is about 15%, for example, the power amplifier 1 of the first embodiment has the same power efficiency. Therefore, in the power amplifier 1, it is considered that about 85% of the supplied power may be generated as heat loss. If this heat is stored as it is around the circuit board, problems such as thermal damage to the electrical elements on the circuit board and an increase in electrical resistance occur, which hinders normal operation of the power amplifier 1.
 従ってパワーアンプ1では、増幅回路基板6Aで発生した熱を効果的に外部に放出し、安定した駆動を実現するため、増幅回路基板6Aとヒートシンク10とを密着させて配設している。 Therefore, in the power amplifier 1, the amplifier circuit board 6A and the heat sink 10 are disposed in close contact with each other in order to effectively release the heat generated in the amplifier circuit board 6A to the outside and realize stable driving.
 駆動時には、クーリングファン2A、2Bが回転することで、外部空気がアンプ筐体54の内部に吸気され、ヒートシンク10において隣接するフィンプレート40の間隙を流通する。この流通の際、外部空気は高温のフィンプレート40と熱交換され、高温の空気となる。高温の空気は、排気ファン3A、3Bの回転により、アンプ筐体54後部に設けられた排気グリルより外部へ排出される。 At the time of driving, the cooling fans 2A and 2B rotate, so that external air is sucked into the amplifier housing 54 and flows through the gap between the adjacent fin plates 40 in the heat sink 10. During this circulation, the external air is heat-exchanged with the high-temperature fin plate 40 to become high-temperature air. The high-temperature air is discharged to the outside from the exhaust grill provided at the rear of the amplifier housing 54 by the rotation of the exhaust fans 3A and 3B.
 (ヒートシンクの構成)
 図2は、ヒートシンク10の構成を示す斜視図である。図3はヒートシンク10の正面図である。ヒートシンク10は、可能な限り蓄熱量を低減させるとともに、放熱特性を強化し、且つ、小型軽量化を実現すべく構造設計がなされている。また、このような構成を従来に比べて低コストで量産可能化とした特徴を有している。
(Configuration of heat sink)
FIG. 2 is a perspective view showing the configuration of the heat sink 10. FIG. 3 is a front view of the heat sink 10. The heat sink 10 is structurally designed to reduce the amount of heat storage as much as possible, to enhance the heat dissipation characteristics, and to realize a reduction in size and weight. In addition, such a configuration has a feature that enables mass production at a lower cost than the conventional one.
 ヒートシンク10は、全体としては直方体状をなしており、第一基板20、第二基板30、ヒートパイプ7、金属ジャケット8、ブラケット11、12、及び複数のフィンプレート40等の各要素を有する。サイズ例は、X方向長464mm×Y方向長352mm×Z方向高さ105mmとすることができる。 The heat sink 10 has a rectangular parallelepiped shape as a whole, and includes elements such as a first substrate 20, a second substrate 30, a heat pipe 7, a metal jacket 8, brackets 11 and 12, and a plurality of fin plates 40. The size example may be 464 mm in the X direction length × 352 mm in the Y direction × 105 mm height in the Z direction.
 第一基板20、第二基板30には、各々の基板内部に複数(それぞれ14本)のヒートパイプ7が平行に埋設されている。そして図2のように、互いの内側主面21、31を一定の間隙をおくように対向配置される。前記一定の間隙には、各々の内側主面21、31に対し、幅方向の端部42、43を超音波接合されたフィンプレート40がY方向に一定の立設ピッチ(ここでは3mmピッチ)で平行に併設されている。 In the first substrate 20 and the second substrate 30, a plurality (14 each) of heat pipes 7 are embedded in parallel inside each substrate. Then, as shown in FIG. 2, the inner main surfaces 21 and 31 are arranged to face each other with a certain gap therebetween. In the fixed gap, fin plates 40 in which end portions 42 and 43 in the width direction are ultrasonically bonded to the respective inner main surfaces 21 and 31 have a fixed standing pitch in the Y direction (here, 3 mm pitch). It is attached in parallel.
 この構造を保ちつつ、第一基板20、第二基板30の側面において、L字型断面に加工された一対の自立スタンド用ブラケット11、12が複数のネジ120により固定されている。ヒートシンク10の底面に位置するブラケット11、12の端部には別途、図示しないネジ穴が開けられており、これを利用することでヒートシンク10を直接又は間接に多段積みすることが可能となっている。 While maintaining this structure, a pair of self-standing brackets 11 and 12 processed into an L-shaped cross section are fixed by a plurality of screws 120 on the side surfaces of the first substrate 20 and the second substrate 30. The end portions of the brackets 11 and 12 positioned on the bottom surface of the heat sink 10 are separately provided with screw holes (not shown). By using this, the heat sinks 10 can be stacked directly or indirectly in multiple stages. Yes.
 フィンプレート40は、第一基板20及び第二基板30と異なる金属であって、当該金属よりも高融点で熱伝導性に優れる材料で構成されている。具体的には、脱酸素処理された銅または銅合金製の帯状体(長さ464mm×幅67mm、厚み0.3mm)が利用できる。この厚みは、フィンプレート40の強度確保と蓄熱抑制、並びに放熱特性を考慮して設定されたものである。これ以外の厚み設定も可能であるが、その場合は最低0.1mmから3mm程度の厚みの範囲が例示できる厚みが薄いフィンプレート40を用いることで、当該フィンプレート40を極めて高密度に配設することができる。 The fin plate 40 is a metal different from the first substrate 20 and the second substrate 30 and is made of a material having a higher melting point and better thermal conductivity than the metal. Specifically, strips (length 464 mm × width 67 mm, thickness 0.3 mm) made of deoxidized copper or copper alloy can be used. This thickness is set in consideration of securing the strength of the fin plate 40, suppressing heat storage, and heat dissipation characteristics. Other thickness settings are possible, but in that case, the fin plate 40 can be arranged at an extremely high density by using a thin fin plate 40 that can exemplify a range of thickness of at least about 0.1 mm to 3 mm. can do.
 また、銅材料はアルミニウム材料に比べて約4倍の熱伝導性を有しており、本発明ではその優れた特性を利用して、放熱フィンとして用いている。 Also, the copper material has a thermal conductivity about four times that of the aluminum material, and in the present invention, it is used as a heat radiation fin by utilizing its excellent characteristics.
 フィンプレート40の主面部41には、所謂「黒体放射理論」に基づく放熱(輻射)効果を得るため、黒色メッキや表面処理による黒化処理がなされている。この黒化処理を行うことで、主面部41ではアルミニウム等の異種金属が接触した場合に発生しうるガルバニ腐食の防止効果も奏される。 The main surface portion 41 of the fin plate 40 is blackened by black plating or surface treatment in order to obtain a heat dissipation (radiation) effect based on the so-called “black body radiation theory”. By performing this blackening treatment, the main surface portion 41 also has an effect of preventing galvanic corrosion that may occur when a dissimilar metal such as aluminum contacts.
 フィンプレート40の具体的な構成は、図3に示すように、主面部41と、その幅方向(短手方向)の両端部42、43とで構成される。主面部41は、エンボス加工によって複数の突出部44が形成されている。隣接するフィンプレート40同士の突出部44の位置は、互い違いになるように千鳥状に配置される。この千鳥状の配置は、フィンプレート40上の突出部44の配列を端部42から端部43に向けて若干偏りを持たせるように形成しておき、隣接するフィンプレート40毎に、その幅方向で上下を逆にして配列させることで形成できる。この突出部44は、フィンプレート40の放熱表面積を増大させるとともに、隣接するフィンプレート40の間を流通する空気で乱流を生じさせ、放熱効果を高める作用をなす。端部42、43は、主面部41に対して同方向に直角に折り曲げられ、それぞれが第一基板20又は第二基板30と面接触した状態で、超音波溶接されている。これによりフィンプレート40は、両第一基板20、第二基板30によって強固に立設されている。なお、端部42、43の幅はフィンプレート40の立設ピッチに影響を与えるため、接合強度を確保できる範囲でなるべく幅狭に設定するのが好適である。本実施の形態1では、端部42、43を3mm幅に設定することで、フィンプレート40の立設ピッチを3mmに設定している。ヒートシンク10では、前記立設ピッチを保ちつつ、114枚のフィンプレート40を併設している。 As shown in FIG. 3, the specific configuration of the fin plate 40 includes a main surface portion 41 and both end portions 42 and 43 in the width direction (short direction). The main surface portion 41 has a plurality of protruding portions 44 formed by embossing. The positions of the protrusions 44 between adjacent fin plates 40 are staggered so as to be staggered. This staggered arrangement is formed so that the arrangement of the protruding portions 44 on the fin plate 40 is slightly biased from the end portion 42 toward the end portion 43, and the width of each adjacent fin plate 40 is increased. They can be formed by arranging them upside down in the direction. The projecting portion 44 increases the heat radiating surface area of the fin plate 40 and generates turbulent flow with the air flowing between the adjacent fin plates 40 to enhance the heat radiating effect. The end portions 42 and 43 are bent at a right angle in the same direction with respect to the main surface portion 41, and are ultrasonically welded in a state where each of the end portions 42 and 43 is in surface contact with the first substrate 20 or the second substrate 30. Thereby, the fin plate 40 is firmly erected by both the first substrate 20 and the second substrate 30. In addition, since the width of the end portions 42 and 43 affects the standing pitch of the fin plate 40, it is preferable to set the width as narrow as possible within a range in which the bonding strength can be secured. In Embodiment 1, the end portions 42 and 43 are set to have a width of 3 mm, so that the standing pitch of the fin plate 40 is set to 3 mm. In the heat sink 10, 114 fin plates 40 are provided side by side while maintaining the pitch.
 なお超音波溶接法では、フィンプレート40の端部42,43に外部から圧力を加えつつ、並行振動を与えて原子拡散を誘起させることにより、原子間引力が作用するほどの近距離で、フィンプレート40と第一基板20、第二基板30との相互金属の原子結合を形成させる。この際、フィンプレート40と第一基板20及び第二基板30との接触界面では、互いにスリップ、塑性変形、弾性変形が生じて温度上昇するものの、部材が溶融することはない。このため、第一基板20及び第二基板30の融点(アルミニウムの融点は約660℃)の35%から50%の低温度で接合することができる。 In the ultrasonic welding method, while applying pressure from the outside to the end portions 42 and 43 of the fin plate 40 and applying parallel vibrations to induce atomic diffusion, the fins 40 have a short distance so that an interatomic attractive force acts. A mutual metal atomic bond between the plate 40 and the first substrate 20 and the second substrate 30 is formed. At this time, at the contact interface between the fin plate 40 and the first substrate 20 and the second substrate 30, although slip, plastic deformation, and elastic deformation occur and the temperature rises, the member does not melt. For this reason, bonding can be performed at a temperature as low as 35% to 50% of the melting point of the first substrate 20 and the second substrate 30 (the melting point of aluminum is about 660 ° C.).
 従って、この方法を用いれば、一般的な溶接を行うための加熱工程が不要である。また、低融点ロウ材料や、特別な接合装置、並びに接合面の清浄処理がいずれも不要であるため、生産コストの低減を効果的に図ることが可能である。また超音波溶接は、異種金属同士の接合が比較的容易であるほか、所定の超音波溶接機を用いることで、熟練したオペレーターによらなくても良好にフィンプレート40を第一基板20及び第二基板30に接合できる。このため、製造効率の向上を図る上で適した方法である。 Therefore, if this method is used, a heating step for performing general welding is unnecessary. In addition, since low melting point brazing material, special bonding apparatus, and cleaning process of the bonding surface are unnecessary, it is possible to effectively reduce the production cost. In addition, ultrasonic welding is relatively easy to join dissimilar metals, and by using a predetermined ultrasonic welding machine, the fin plate 40 and the first substrate 20 and the second plate 20 can be satisfactorily used without using a skilled operator. Can be bonded to the two substrates 30. For this reason, it is a method suitable for improving the manufacturing efficiency.
 また、超音波溶接によれば、接合界面において異種金属同士が原子レベルで拡散しているため、異種金属間に電池が形成されて金属部材が電気的に侵食される、いわゆるガルバニ腐食を発生することもない。このため、電気化学的にも安定したフィンプレート40と第一基板20、第二基板30との接合が実現できる。 In addition, according to ultrasonic welding, dissimilar metals diffuse at the atomic level at the joining interface, so that a battery is formed between the dissimilar metals and the metal member is electrically eroded, so-called galvanic corrosion occurs. There is nothing. For this reason, the electrochemically stable fin plate 40 can be bonded to the first substrate 20 and the second substrate 30.
 超音波溶接に用いる超音波溶接機としては、公知のwedge-reed方式、Lateral Drive方式のいずれであってもよい。 As an ultrasonic welding machine used for ultrasonic welding, any of a known wedge-reed method and a lateral drive method may be used.
 第一基板20及び第二基板30は矩形状主面を持つ冷却基板(コールドプレート)である。そのサイズ例としては、X方向長464mm×Y方向長350mm、厚み19mmが例示できる。その基板厚みとしては、相当に薄く設定されているが、これは第一基板20及び第二基板30における過度の蓄熱を防止するとともに、増幅回路基板6Aからの熱をフィンプレート40へ速やかに伝導させて放熱させるためである。 The first substrate 20 and the second substrate 30 are cooling substrates (cold plates) having a rectangular main surface. As an example of the size, an X-direction length of 464 mm × Y-direction length of 350 mm and a thickness of 19 mm can be exemplified. The thickness of the substrate is set to be considerably thin. This prevents excessive heat storage in the first substrate 20 and the second substrate 30 and quickly conducts heat from the amplifier circuit substrate 6A to the fin plate 40. It is for letting it radiate.
 第一基板20及び第二基板30は、アルミニウム又はアルミニウム合金(Al-Cu系、Al-Mn系、Al-Mg系、Al-Mg-Si系、Al-Zn-Mg系)でそれぞれ形成するのが生産コスト及び放熱特性の観点から好適である。 The first substrate 20 and the second substrate 30 are made of aluminum or an aluminum alloy (Al—Cu, Al—Mn, Al—Mg, Al—Mg—Si, Al—Zn—Mg), respectively. Is preferable from the viewpoint of production cost and heat dissipation characteristics.
 このうち第一基板20、第二基板30の外側主面22、32の少なくともいずれかには、パワーアンプ1の主な発熱源である増幅回路基板6Aが密着して配置される。そして、駆動時には回路基板から熱を奪い、冷却させる作用をなす。ここではパワーアンプ1において、第二基板30の外側主面32に対し、増幅回路基板6Aが密着配置される。外側表面22、32には、発熱源である増幅回路基板6Aとできるだけ広い面積で高度に密着させることが好ましい。そのため、例えば凹凸を20μm以下に収めるための平坦化処理を行うことが好適である。 Among these, the amplification circuit board 6A, which is the main heat source of the power amplifier 1, is disposed in close contact with at least one of the outer main surfaces 22 and 32 of the first substrate 20 and the second substrate 30. And at the time of driving, it takes heat from the circuit board and cools it. Here, in the power amplifier 1, the amplification circuit board 6 </ b> A is disposed in close contact with the outer main surface 32 of the second board 30. It is preferable that the outer surfaces 22 and 32 are in close contact with the amplification circuit board 6A, which is a heat generation source, in a high degree of area with a wide possible area. For this reason, for example, it is preferable to perform a flattening process in order to keep the unevenness to 20 μm or less.
 具体的には、第一基板20及び第二基板30を厚み20mmでいったん形成し、その後、外主面の厚さ1mm分を削って表面処理する方法が挙げられる。 Specifically, there is a method in which the first substrate 20 and the second substrate 30 are once formed with a thickness of 20 mm, and then the surface treatment is performed by cutting the outer main surface by a thickness of 1 mm.
 なお、第一基板20及び第二基板30の各々の内部には、各々の主面に平行に、X方向を長手とするヒートパイプ用の挿入穴23、33(直径12.8mm)が14穴にわたり併設されている。図2中に示した封止ボルト24、34は、挿入穴23、33のヒートパイプ挿入方向上流側の開口部を封止するとともに、ヒートパイプ7を後述する圧力バネ9で加圧する目的で設けられたものである。第一基板20の挿入穴23と第二基板30の挿入穴33は、図3に示すように、両第一基板20、第二基板30を対向配置した場合に、Z方向で同じ位置になるのを避け、交互の位置になるように貫通されている。図3では、封止ボルト24,34の内部に点線で挿入穴23,33の位置を示している。 In each of the first substrate 20 and the second substrate 30, there are 14 insertion holes 23 and 33 (diameter: 12.8 mm) for heat pipes extending in the X direction parallel to the main surfaces. It is attached for a long time. The sealing bolts 24 and 34 shown in FIG. 2 are provided for the purpose of sealing the opening of the insertion holes 23 and 33 on the upstream side in the heat pipe insertion direction and pressurizing the heat pipe 7 with a pressure spring 9 described later. It is what was done. As shown in FIG. 3, the insertion hole 23 of the first substrate 20 and the insertion hole 33 of the second substrate 30 are at the same position in the Z direction when the first substrate 20 and the second substrate 30 are opposed to each other. It is penetrated so that it may become an alternate position. In FIG. 3, the positions of the insertion holes 23 and 33 are indicated by dotted lines inside the sealing bolts 24 and 34.
 次に示す図4は、xz面に沿った第一基板20の部分断面図である。説明のため、当図では第一基板20を断面で示し(斜線部)、ヒートパイプ7、圧力バネ9、封止ボルト24は外観を図示している。なお、当図に示される構成は第二基板30においても同様であり、封止ボルト34、挿入穴33、ネジ溝330、上流側端部331A、下流側端部331B等(不図示)が同様に設けられている。 FIG. 4 shown next is a partial cross-sectional view of the first substrate 20 along the xz plane. For the sake of explanation, in the drawing, the first substrate 20 is shown in cross section (shaded portion), and the heat pipe 7, the pressure spring 9, and the sealing bolt 24 are shown in appearance. The configuration shown in the drawing is the same for the second substrate 30, and the sealing bolt 34, the insertion hole 33, the screw groove 330, the upstream end 331 A, the downstream end 331 B, etc. (not shown) are the same. Is provided.
 挿入穴23は、第一基板20の厚み方向に沿った一側面(ヒートパイプ挿入方向上流側の端部231A)から、他方の側面(ヒートパイプ挿入方向下流側の端部231B)に向けて、先細りのテーパー状に形成されている。端部231Aに近接する開口部には、封止ボルト24を螺合するためのネジ溝230が設けられる。 The insertion hole 23 is directed from one side surface (end portion 231A on the upstream side in the heat pipe insertion direction) along the thickness direction of the first substrate 20 toward the other side surface (end portion 231B on the downstream side in the heat pipe insertion direction) It is formed in a tapered shape. A screw groove 230 for screwing the sealing bolt 24 is provided in the opening portion close to the end portion 231A.
 このような挿入穴23は、例えば第一基板20の大まかな全体構成を押出成型した後、高速リーマードリルを用いて穴の内壁をテーパー加工することにより形成できる。 Such an insertion hole 23 can be formed by, for example, extruding a rough overall configuration of the first substrate 20 and then tapering the inner wall of the hole using a high-speed reamer drill.
 一方、ヒートパイプ7は、挿入方向上流側から下流側に向けて厚みが減少するように調節されてなる金属ジャケット8を、ヒートパイプ7の周方向に巻回された状態で、挿入穴23の内壁と熱結合するように挿入されている。ヒートパイプ7の挿入方向上流側の端部71Aには、押圧手段である圧力バネ(押さえバネ)9を介して封止ボルト24が螺合される。これにより、ヒートパイプ7は圧力バネ9によって、挿入方向下流側へ弾性付勢されつつ固定される。 On the other hand, in the heat pipe 7, the metal jacket 8, which is adjusted so that the thickness decreases from the upstream side to the downstream side in the insertion direction, is wound in the circumferential direction of the heat pipe 7 in the insertion hole 23. It is inserted so as to be thermally coupled to the inner wall. A sealing bolt 24 is screwed into the end 71A on the upstream side in the insertion direction of the heat pipe 7 via a pressure spring (pressing spring) 9 as a pressing means. Accordingly, the heat pipe 7 is fixed by the pressure spring 9 while being elastically biased toward the downstream side in the insertion direction.
 なお、封止ボルト24は挿入穴23を封止する手段(封止体)の一例であり、これに限定されない。例えば挿入穴23の上流側端部231Aに嵌合するキャップでも良いし、上流側端部231Aに蓋体を溶接で接合してもよい。 The sealing bolt 24 is an example of a means (sealing body) for sealing the insertion hole 23, and is not limited to this. For example, a cap that fits into the upstream end 231A of the insertion hole 23 may be used, or a lid may be joined to the upstream end 231A by welding.
 また、圧力バネ9も圧縮バネを利用した付勢手段(弾性体)の一例であり、これに限定されない。図4に示したコイルスプリングの他、皿バネ等の圧力/体積比率の高い板バネなど、公知の弾性体を用いても良い。 The pressure spring 9 is also an example of an urging means (elastic body) using a compression spring, and is not limited to this. In addition to the coil spring shown in FIG. 4, a known elastic body such as a leaf spring having a high pressure / volume ratio such as a disc spring may be used.
 さらに、付勢手段は封止ボルト24とヒートパイプ7の間に弾性体(圧力バネ9等)を設けられる構成に限定されない。例えば引っ張りバネを用いて、ヒートパイプ7をその端部71Bの方から挿入穴23の挿入方向に向かって引っ張るようにすることも可能である。 Furthermore, the biasing means is not limited to a configuration in which an elastic body (such as the pressure spring 9) is provided between the sealing bolt 24 and the heat pipe 7. For example, it is possible to pull the heat pipe 7 from the end 71B in the insertion direction of the insertion hole 23 using a tension spring.
 一例として、ネジ溝230に近接する挿入穴23の内径を11mm、挿入方向下流側端部の内径を9.8mmにそれぞれ設定することで、外径9.5mmのヒートパイプ7を利用できる。 For example, the heat pipe 7 having an outer diameter of 9.5 mm can be used by setting the inner diameter of the insertion hole 23 adjacent to the screw groove 230 to 11 mm and the inner diameter of the downstream end in the insertion direction to 9.8 mm.
 図5は、金属ジャケット8を装着したヒートパイプ7の構成を示す図である。 FIG. 5 is a diagram showing a configuration of the heat pipe 7 to which the metal jacket 8 is attached.
 ヒートパイプ7は、公知の熱伝導素子であって、密閉された長尺状の銅製のパイプ本体70の内部に、ウィック(金属メッシュ)と少量の作動液(純水)を入れ、端部71A、71Bを閉じて真空封入した構成を有する。これによりヒートパイプ7では入熱部で蒸発潜熱を吸収し、蒸発した水分が放熱部で凝固するとともに放熱して、発熱源の温度を均一化する作用がなされる。凝固した水分はウィックの毛細管現象で集められる。ヒートパイプ7は、第一基板20、第二基板30の各々の主面に対して、いわゆる水平ヒートモードで使用され、第一基板20及び第二基板30の温度均一化が図られる。なお、市販商品のヒートパイプとしては、例えば住友金属株式会社の製品が利用できる。 The heat pipe 7 is a known heat conduction element, and a wick (metal mesh) and a small amount of hydraulic fluid (pure water) are put into a sealed long copper pipe body 70, and an end portion 71A. , 71B is closed and vacuum sealed. As a result, the heat pipe 7 absorbs the latent heat of vaporization at the heat input portion, and the evaporated water solidifies at the heat radiating portion and dissipates the heat, thereby making the temperature of the heat source uniform. The solidified water is collected by the wick capillarity. The heat pipe 7 is used in a so-called horizontal heat mode with respect to the main surfaces of the first substrate 20 and the second substrate 30, and the temperature of the first substrate 20 and the second substrate 30 is made uniform. In addition, as a heat pipe of a commercial item, the product of Sumitomo Metal Co., Ltd. can be utilized, for example.
 金属ジャケット8は、その主面部80においてヒートパイプ7を第一基板20と熱結合させる目的で使用される。熱伝導性に優れる短冊状の金属板を加工した筒状体からなり、長手方向に沿って厚みが漸減するように調整されている。図5中の81Aと81Bはそれぞれ長手方向端部であって、81Aは厚膜端部、81Bは薄膜端部を表す。一方、幅方向(短手方向)の両端部は、ヒートパイプ7の周方向に巻回されている。これにより、金属ジャケット8を装着したヒートパイプ7では、その全体の外径が一方の端部81Aから他方の端部81Bに向けて漸減し、挿入穴23に対応したテーパー状になっている。 The metal jacket 8 is used for the purpose of thermally coupling the heat pipe 7 to the first substrate 20 at the main surface portion 80 thereof. It consists of the cylindrical body which processed the strip-shaped metal plate excellent in heat conductivity, and is adjusted so that thickness may reduce gradually along a longitudinal direction. In FIG. 5, 81A and 81B are end portions in the longitudinal direction, 81A represents a thick film end portion, and 81B represents a thin film end portion. On the other hand, both ends in the width direction (short direction) are wound in the circumferential direction of the heat pipe 7. Thereby, in the heat pipe 7 to which the metal jacket 8 is attached, the outer diameter of the entire heat pipe 7 gradually decreases from the one end 81 </ b> A toward the other end 81 </ b> B, and has a tapered shape corresponding to the insertion hole 23.
 金属ジャケット8の材料は、熱伝導性を最優先する観点では銅板または銅合金板が望ましい。一方、熱伝導性と生産コストのバランスを考慮する観点ではアルミニウム板又はアルミニウム合金板が好適である。この他、鉄、ニッケル等、公知の金属材料からなる金属板を用いることが可能である。 The material of the metal jacket 8 is preferably a copper plate or a copper alloy plate from the viewpoint of giving top priority to thermal conductivity. On the other hand, an aluminum plate or an aluminum alloy plate is preferable from the viewpoint of considering the balance between thermal conductivity and production cost. In addition, a metal plate made of a known metal material such as iron or nickel can be used.
 金属ジャケット8の材料厚みは、一定厚みの金属板をプレス加工することで、任意に設定することができる。また、リーマーで絞り、テーパー状に仕上げることも可能である。いずれの場合も、金属ジャケット8の厚み変化は、挿入穴23のテーパー状の内径に合わせ、これと良好に密着できるように調節する。 The material thickness of the metal jacket 8 can be arbitrarily set by pressing a metal plate having a constant thickness. It is also possible to squeeze and taper with a reamer. In any case, the change in the thickness of the metal jacket 8 is adjusted to the taper-shaped inner diameter of the insertion hole 23 so that the metal jacket 8 can be in close contact with the inner diameter.
 なお図5に示すように、巻回する際には金属ジャケット8の幅方向両端部の間に、熱膨張時の逃げを確保するための一定間隙スリット82を設けておく。スリット82は、図5のように端部81Aから81Bに向けて次第に小さくなるパターンでも良いし、一定幅としてもよい。 As shown in FIG. 5, when winding, a constant gap slit 82 is provided between both ends of the metal jacket 8 in the width direction to ensure escape during thermal expansion. The slit 82 may be a pattern that gradually decreases from the end portions 81A to 81B as shown in FIG. 5, or may have a constant width.
 このスリット82は、金属ジャケット8のヒートパイプ7の周方向に沿った長さが、ヒートパイプ7の周長よりも短くなるように調節することで形成すればよい。従って、スリット82の形状としては、図5に示すようにヒートパイプ7の長手方向に沿ったパターンに限定されない。この他、例えばヒートパイプ7の周面を長手方向に沿って螺旋状に走るように形成されたパターンとすることもできる。但し、この場合も挿入方向上流側から下流側に向けて、金属ジャケット8の厚みが漸減するように調節すべき点に留意する。 The slit 82 may be formed by adjusting the length of the metal jacket 8 along the circumferential direction of the heat pipe 7 to be shorter than the circumferential length of the heat pipe 7. Therefore, the shape of the slit 82 is not limited to the pattern along the longitudinal direction of the heat pipe 7 as shown in FIG. In addition, for example, a pattern formed so that the peripheral surface of the heat pipe 7 runs spirally along the longitudinal direction can be used. In this case, however, it should be noted that the thickness of the metal jacket 8 should be adjusted gradually from the upstream side to the downstream side in the insertion direction.
 また、ヒートパイプ7の長手方向に沿って、複数の金属板を隣接して巻回することもできる。この場合、端部231Aから端部231Bに向かって、各金属板の厚みが漸減するように調整する。 Also, a plurality of metal plates can be wound adjacently along the longitudinal direction of the heat pipe 7. In this case, adjustment is performed so that the thickness of each metal plate gradually decreases from the end 231A toward the end 231B.
 図6は、ヒートパイプ7を挿入穴23に挿入して固定する工程を示す図である。 FIG. 6 is a diagram showing a process of inserting the heat pipe 7 into the insertion hole 23 and fixing it.
 まず、第一基板20の厚み方向側面における開口部付近に、ボルト用のネジ溝230を持つテーパー状の挿入穴23を、14本にわたって形成する(図6(a))。挿入穴23における挿入方向下流側端部231Bの内径は、ヒートパイプ7が通過不可能な径に設定する。なお図4、図6では、挿入穴23の挿通方向下流側に開口部を設けているが、これは必須ではなく、閉じていても良い。 First, 14 tapered insertion holes 23 each having a screw groove 230 for bolts are formed in the vicinity of the opening on the side surface in the thickness direction of the first substrate 20 (FIG. 6A). The inner diameter of the insertion direction downstream end 231B in the insertion hole 23 is set to a diameter that the heat pipe 7 cannot pass through. 4 and 6, the opening is provided on the downstream side of the insertion hole 23 in the insertion direction, but this is not essential and may be closed.
 次に、挿入方向上流側端部231Aから挿入穴23に金属ジャケット8を挿入する。このとき、上流側端部231Aに厚膜端部81A、下流側端部231Bに薄膜端部81Bがそれぞれ向くように金属ジャケット8の方向を調整する。次に、金属ジャケット8の内部にヒートパイプ7を挿入し、ヒートパイプ7の本体部70の周面に金属ジャケット8の内面を密に面接触させて巻回させる(図6(b))。このとき、金属ジャケット8とヒートパイプ7との間に不要な間隙が発生しないように留意する。なお、当図では挿入穴23に先に金属ジャケット8のみを挿入させているが、予めヒートパイプ7の周面に金属ジャケット8を巻回させておき、その後、これらを同時に挿入穴23に挿入してもよい。 Next, the metal jacket 8 is inserted into the insertion hole 23 from the upstream end portion 231A in the insertion direction. At this time, the direction of the metal jacket 8 is adjusted so that the thick film end 81A faces the upstream end 231A and the thin film end 81B faces the downstream end 231B. Next, the heat pipe 7 is inserted inside the metal jacket 8, and the inner surface of the metal jacket 8 is brought into close surface contact with the peripheral surface of the main body portion 70 of the heat pipe 7 to be wound (FIG. 6B). At this time, care should be taken not to generate an unnecessary gap between the metal jacket 8 and the heat pipe 7. In this figure, only the metal jacket 8 is inserted into the insertion hole 23 first, but the metal jacket 8 is wound around the peripheral surface of the heat pipe 7 in advance, and then these are inserted into the insertion hole 23 at the same time. May be.
 ヒートパイプ7及び金属ジャケット8を挿入した後は、ヒートパイプ7の挿入方向上流側端部71Aに対し、圧力バネ9を嵌着しつつ、封止ボルト24を螺合する(図6(b))。 After inserting the heat pipe 7 and the metal jacket 8, the sealing bolt 24 is screwed into the upstream end 71A of the heat pipe 7 in the insertion direction while the pressure spring 9 is fitted (FIG. 6B). ).
 以上の工程でヒートパイプ7の固定が完了する。 The fixing of the heat pipe 7 is completed through the above steps.
 ここで、ヒートシンク10の主たる特徴は、従来のようにヒートパイプ7を第一基板20及び第二基板30に金属結合で固定していない点にある。ヒートシンク10では、ヒートパイプ7はテーパー状の挿入穴23、33の内部において、その長手方向に摺動可能な状態で配設されつつ、金属ジャケット8を介し、第一基板20及び第二基板30側と常に熱結合されている特徴を持つ。これによりヒートシンク10では、その構成要素の熱膨張及び熱収縮による悪影響(ヒートパイプ固定領域周辺のクラック発生や、ヒートパイプの脱落等の問題)を回避して、長期にわたり、ヒートパイプ7による優れた放熱特性が発揮されるようになっている。 Here, the main feature of the heat sink 10 is that the heat pipe 7 is not fixed to the first substrate 20 and the second substrate 30 by metal bonding as in the prior art. In the heat sink 10, the heat pipe 7 is disposed inside the tapered insertion holes 23 and 33 so as to be slidable in the longitudinal direction, and the first substrate 20 and the second substrate 30 through the metal jacket 8. The side is always thermally coupled with the side. As a result, in the heat sink 10, the adverse effects due to the thermal expansion and contraction of its constituent elements (problems such as generation of cracks around the heat pipe fixing region and falling off of the heat pipe) are avoided, and the heat pipe 7 is excellent over a long period of time. The heat dissipation characteristic is demonstrated.
 具体的にヒートシンク10の内部では、ヒートパイプ7にはその挿入方向に沿って、圧力バネ9による加圧が及ぶ(図4)。そしてヒートパイプ7が挿入方向に摺動すると、ヒートパイプ7周面に配された金属ジャケット8は挿入穴23(33)の内壁と密着し、ヒートパイプ7の周面に圧縮される。これによりヒートパイプ7の周面は、金属ジャケット8を介して、挿入穴23(33)の内壁と密に熱結合する。 Specifically, inside the heat sink 10, the heat pipe 7 is pressurized by the pressure spring 9 along the insertion direction (FIG. 4). When the heat pipe 7 slides in the insertion direction, the metal jacket 8 disposed on the circumferential surface of the heat pipe 7 comes into close contact with the inner wall of the insertion hole 23 (33) and is compressed onto the circumferential surface of the heat pipe 7. As a result, the peripheral surface of the heat pipe 7 is thermally coupled closely to the inner wall of the insertion hole 23 (33) via the metal jacket 8.
 ここで、パワーアンプ1では、駆動時と駆動停止の間に例えば-25℃から+100℃までの温度変化が想定されており、この温度変化がヒートシンク10にも及ぶ。高温状態のパワーアンプ1では、ヒートパイプ7及び金属ジャケット8も熱膨張する。そして、この熱膨張による応力が、挿入方向に逆らってヒートパイプ7及び金属ジャケット8に作用する。ここで、圧力バネ9の弾性力に対して前記熱膨張による応力が大きいうちは、ヒートパイプ7及び金属ジャケット8は挿入方向に逆らって摺動するが、前記応力に比べて圧力バネ9の弾性力が大きくなると、やがてヒートパイプ7及び金属ジャケット8は、前記応力と前記弾性力が釣り合ったところで静止する。 Here, in the power amplifier 1, for example, a temperature change from −25 ° C. to + 100 ° C. is assumed between driving and stopping, and this temperature change reaches the heat sink 10 as well. In the power amplifier 1 in a high temperature state, the heat pipe 7 and the metal jacket 8 also thermally expand. The stress due to the thermal expansion acts on the heat pipe 7 and the metal jacket 8 against the insertion direction. Here, while the stress due to the thermal expansion is large with respect to the elastic force of the pressure spring 9, the heat pipe 7 and the metal jacket 8 slide against the insertion direction, but the elasticity of the pressure spring 9 compared to the stress. When the force increases, the heat pipe 7 and the metal jacket 8 eventually stop when the stress and the elastic force are balanced.
 一方、パワーアンプ1が駆動停止し、ヒートシンク10が冷却状態になると、ヒートパイプ7及び金属ジャケット8は熱収縮し、圧力バネ9の弾性力により挿入方向に沿って摺動する。ここで、圧力バネ9の弾性力を相当に高めておくことで、高温状態におけるヒートパイプ7及び金属ジャケット8の摺動量を小さく押さえることができる。また、金属ジャケット8の外面と挿入穴23、33の内壁との良好な滑性を確保して、ヒートパイプ7及び金属ジャケット8がスムーズな摺動を行えるようにするため、金属ジャケット8の外面又は挿入穴23、33の内壁の少なくともいずれかを研磨処理したり、金属ジャケット8と挿入穴23、33の間にミネラルオイル等の耐熱性油を塗布して摩擦軽減を図ることも有効である。 On the other hand, when the drive of the power amplifier 1 is stopped and the heat sink 10 is cooled, the heat pipe 7 and the metal jacket 8 are thermally contracted and slide along the insertion direction by the elastic force of the pressure spring 9. Here, by considerably increasing the elastic force of the pressure spring 9, the sliding amount of the heat pipe 7 and the metal jacket 8 in a high temperature state can be reduced. In addition, in order to ensure good slipping between the outer surface of the metal jacket 8 and the inner walls of the insertion holes 23 and 33 and to allow the heat pipe 7 and the metal jacket 8 to slide smoothly, the outer surface of the metal jacket 8 is used. Alternatively, it is also effective to reduce friction by polishing at least one of the inner walls of the insertion holes 23 and 33, or applying heat-resistant oil such as mineral oil between the metal jacket 8 and the insertion holes 23 and 33. .
 通常、ヒートパイプ7は金属ジャケット8を介し、摩擦によって挿入穴23,33の内壁に対して固定されている。 Usually, the heat pipe 7 is fixed to the inner walls of the insertion holes 23 and 33 by friction through the metal jacket 8.
 一方、金属ジャケット8の幅方向両端部の間にスリット82を設けることで、金属ジャケット8の熱膨張と熱収縮による体積変化をヒートパイプ7の周方向に逃がすことができる。これにより、ヒートパイプ7の周面に金属ジャケット8の内面が常に密に面接触でき、金属ジャケット8の外面が挿入穴23、33の内壁に密に面接触できる。 On the other hand, by providing the slits 82 between both ends of the metal jacket 8 in the width direction, volume changes due to thermal expansion and contraction of the metal jacket 8 can be released in the circumferential direction of the heat pipe 7. Thereby, the inner surface of the metal jacket 8 can always be in close surface contact with the peripheral surface of the heat pipe 7, and the outer surface of the metal jacket 8 can be in close surface contact with the inner walls of the insertion holes 23 and 33.
 このようなパワーアンプ1の駆動時及び駆動停止の温度変化に伴い、ヒートパイプ7及び金属ジャケット8は熱膨張と熱収縮を繰り返して挿入穴23(33)の内部を前記挿入方向に沿って若干摺動するが、いずれの状態でもヒートパイプ7は圧力バネ9とテーパー状の挿入穴23(33)及び金属ジャケット8によって、挿入穴23(33)の内壁に対して加圧され、安定して密着され続ける。このためヒートパイプ7と第一基板20及び第二基板30とは、常に良好な熱結合が維持されている。 As the temperature of the power amplifier 1 is driven and stopped, the heat pipe 7 and the metal jacket 8 repeat thermal expansion and contraction to slightly pass the insertion hole 23 (33) along the insertion direction. In any state, the heat pipe 7 is pressurized against the inner wall of the insertion hole 23 (33) by the pressure spring 9, the tapered insertion hole 23 (33) and the metal jacket 8, and is stable. Keeping close contact. For this reason, the heat pipe 7 and the first substrate 20 and the second substrate 30 always maintain good thermal coupling.
 本発明ではこのような構成を有するため、従来のようにハンダ等の低融点ロウを用いたヒートパイプの固定方法に比べ、クラックの発生や金属疲労によるヒートパイプの脱落の問題を根本的に回避できる。本発明のヒートシンク10は、従来より飛躍的に高信頼性と長寿命化を高次元で実現したものである。 Since the present invention has such a configuration, the problem of cracking and dropping off of the heat pipe due to metal fatigue is fundamentally avoided as compared with the conventional heat pipe fixing method using solder or other low melting point solder. it can. The heat sink 10 of the present invention achieves high reliability and long life at a high level.
 具体的に本願発明者らの検討によれば、ヒートパイプを低融点ロウ、ハンダ、接着剤、溶接方法のいずれかを用いて冷却基板に固定する構成のヒートシンクを駆動した場合、いずれも5年程度の使用期間中において、ヒートパイプの固定周辺部分にクラックが生じることが分かった。これに対し本願明のヒートシンクでは、同様の期間にわたる使用でも、良好にヒートパイプを固定し続けることができる。 Specifically, according to the study by the inventors of the present application, when a heat sink configured to fix a heat pipe to a cooling substrate using any one of a low melting point solder, solder, an adhesive, and a welding method is driven, all of them are 5 years. It has been found that cracks occur in the fixed peripheral portion of the heat pipe during the period of use. On the other hand, in the heat sink of the present application, it is possible to continue to fix the heat pipe satisfactorily even when used over the same period.
 なお、金属ジャケット8の熱膨張がそれほど問題とならない場合等には、ヒートパイプ7と金属ジャケット8を互いに超音波溶接によって固定することもできる。 In addition, when the thermal expansion of the metal jacket 8 does not matter so much, the heat pipe 7 and the metal jacket 8 can be fixed to each other by ultrasonic welding.
 また、上記のように第一基板20、第二基板30に挿入穴23、33を配設することにより、第一基板20、第二基板30の質量を相当に低減できる。発明者らの確認によれば、挿入穴23、33を設けることで、少なくとも35%のヒートシンクの軽量化が図れることも分かっている。 Further, by arranging the insertion holes 23 and 33 in the first substrate 20 and the second substrate 30 as described above, the mass of the first substrate 20 and the second substrate 30 can be considerably reduced. According to the inventors' confirmation, it has been found that providing the insertion holes 23 and 33 can reduce the weight of the heat sink by at least 35%.
 なお、ヒートパイプの配設方向としては、ヒートシンク10のように全てのヒートパイプの長手方向を揃えて設けなくてもよい。例えば、一の基板の主面中央から周囲に向かって複数のヒートパイプを放射状に設けることも可能である。さらに、第一基板と第二基板の各々に配設したヒートパイプが、互いに交差(直交など)するように配設することもできる。 In addition, as a heat pipe arrangement direction, it is not necessary to arrange all the heat pipes in the longitudinal direction like the heat sink 10. For example, a plurality of heat pipes can be provided radially from the center of the main surface of one substrate toward the periphery. Furthermore, the heat pipes disposed on each of the first substrate and the second substrate can be disposed so as to intersect (orthogonal) with each other.
 また、本発明におけるフィンプレートは、短冊状の形状に限定されない。これ以外にも帯状体を曲げて曲線状又は多角形状、又はコルゲート状に形成するほか、プレートの代わりに複数の放熱ピンを配設することもできる。 Further, the fin plate in the present invention is not limited to a strip shape. In addition to this, the belt-like body may be bent to form a curved shape, a polygonal shape, or a corrugated shape, and a plurality of heat radiation pins may be provided instead of the plate.
 また、ヒートシンク10において、フィンプレート40の長手方向端部が外部に露出している側面(図2におけるYZ平面に沿った2側面)には、例えば筋交いに金属線を曲げ加工してなる公知のフィンガープレートを配設してもよい。このフィンガープレートとブラケット11、12の組み合わせにより、金属ラーメン構造による堅牢なヒートシンクが実現できる。
(ヒートシンク10を用いたパワーアンプ1の効果について)
 以上の構成を有するヒートシンク10が内蔵されたパワーアンプ1では、駆動時に増幅回路基板6Aで発生する熱が、当該増幅回路基板6Aと熱結合するように配設されたヒートシンク10によって効率よく冷却される。
Further, in the heat sink 10, the side surfaces (two side surfaces along the YZ plane in FIG. 2) where the end portions in the longitudinal direction of the fin plate 40 are exposed to the outside are well-known, for example, by bending a metal wire bracingly. A finger plate may be provided. By combining the finger plate and the brackets 11 and 12, a robust heat sink with a metal ramen structure can be realized.
(About the effect of the power amplifier 1 using the heat sink 10)
In the power amplifier 1 including the heat sink 10 having the above configuration, the heat generated in the amplifier circuit board 6A during driving is efficiently cooled by the heat sink 10 disposed so as to be thermally coupled to the amplifier circuit board 6A. The
 また、一般にヒートシンクの熱伝導性はその構成要素の材料特性に依存し、発熱源との接触面積が一定であれば、ヒートシンクの形状によっても熱伝導性は変化しない。一方、ヒートシンクの放熱特性は、その放熱表面積(この場合、放熱対象である空気との接触面積)の大きさに依存する。従って、小型軽量で且つ高性能を得るため、ヒートシンク10ではフィンプレート40をできるだけ薄くしつつ、隣接するフィンプレート40の間の空気の流通を過度に妨げない程度に密に配設することによって、空気との接触面積を広く確保し、最適な放熱特性が発揮されるように工夫されている。 In general, the thermal conductivity of a heat sink depends on the material characteristics of its constituent elements. If the contact area with the heat source is constant, the thermal conductivity does not change depending on the shape of the heat sink. On the other hand, the heat dissipation characteristics of the heat sink depend on the size of the heat dissipation surface area (in this case, the contact area with the air to be radiated). Therefore, in order to obtain a small size, light weight, and high performance, the heat sink 10 is disposed as densely as possible without excessively obstructing the air flow between the adjacent fin plates 40 while making the fin plates 40 as thin as possible. It has been devised to ensure a wide contact area with air and to exhibit optimal heat dissipation characteristics.
 すなわち、増幅回路基板6A上に実装された特定の電気素子から第二基板30に伝熱されると、熱は第二基板30の内部に良好に配設されたヒートパイプ7により内側主面31側に速やかに伝熱される。また、第二基板30は厚みが薄く設定されているので、第二基板30の全体に熱が均一に拡散される。この熱は、内側主面31側に立設された多数のフィンプレート40に高速で伝熱される。 That is, when heat is transferred from the specific electric element mounted on the amplifier circuit board 6A to the second board 30, the heat is transferred to the inner main surface 31 side by the heat pipe 7 that is well disposed inside the second board 30. Heat is transferred quickly. Moreover, since the thickness of the second substrate 30 is set to be thin, heat is uniformly diffused throughout the second substrate 30. This heat is transferred at high speed to a large number of fin plates 40 erected on the inner main surface 31 side.
 フィンプレート40は、内側主面21、31において、高密度且つ空気と良好に接触できるように配設されている。従って、高温のフィンプレート40は、クーリングファン2A、2Bより送風される空気と熱交換され、速やかに冷却される。フィンプレート40を第一基板20及び第二基板30を構成するアルミニウムよりも熱伝導性に優れる銅材料で構成することにより、蓄熱を抑えた高い放熱効果が得られる。高温空気はクーリングファン3A、3Bにより直ちにアンプ筐体54の外部に排出される。 The fin plate 40 is disposed on the inner main surfaces 21 and 31 so as to be in good contact with air at high density. Accordingly, the high-temperature fin plate 40 is heat-exchanged with the air blown from the cooling fans 2A and 2B, and is quickly cooled. By configuring the fin plate 40 with a copper material that is more excellent in thermal conductivity than the aluminum that constitutes the first substrate 20 and the second substrate 30, a high heat dissipation effect with reduced heat storage can be obtained. The hot air is immediately discharged out of the amplifier housing 54 by the cooling fans 3A and 3B.
 この一連の動作によって、パワーアンプ1は熱暴走や熱損失を生じることがない。しかも前述したようにヒートパイプ7がヒートシンク10において良好に配設されているので、安定した駆動が長期にわたり可能となっている。 に よ っ て Through this series of operations, the power amplifier 1 does not cause thermal runaway or heat loss. Moreover, since the heat pipe 7 is well disposed in the heat sink 10 as described above, stable driving is possible for a long period of time.
 具体的には、従来のパワーアンプで使用されているヒートシンク(一例として、冷却基板の上面にダイキャスト加工でフィンプレート用のカシメ溝を複数形成し、各々の溝にフィンプレートを7mmピッチで配設した構成)の平均的な熱抵抗値は0.02℃/Wと例示できる。この場合、環境温度25℃、パワーアンプの消費電力が2800Wである場合、室温に対するパワーアンプの温度上昇は2800(W)×0.02(℃/W)=56(℃)
となる。すなわち、パワーアンプの駆動温度は81(25+56=81)℃にもなり、非常に高温状態となる。
Specifically, heat sinks used in conventional power amplifiers (for example, a plurality of crimping grooves for fin plates are formed by die casting on the upper surface of the cooling substrate, and fin plates are arranged at a pitch of 7 mm in each groove. The average thermal resistance value of the provided configuration can be exemplified as 0.02 ° C./W. In this case, when the environmental temperature is 25 ° C. and the power consumption of the power amplifier is 2800 W, the temperature rise of the power amplifier with respect to room temperature is 2800 (W) × 0.02 (° C./W)=56 (° C.)
It becomes. That is, the driving temperature of the power amplifier is 81 (25 + 56 = 81) ° C., which is a very high temperature state.
 これに対しパワーアンプ1では、ヒートシンク10の採用により放熱特性が格段に向上されている。ヒートシンク10では、熱抵抗が極めて低く(0.0056℃/W)抑えられている。従って、環境温度25℃、パワーアンプ1の消費電力が2800Wである場合、室温に対するパワーアンプの温度上昇は
 2800(W)×0.0056(℃/W)=15.68(℃)
 となる。これによって、パワーアンプ1の駆動温度は、40.68℃程度に抑えられる。これはパワーアンプ1が正常動作において、且つ極めて長期の信頼性を確保するのに十二分な温度である。ここで、パワーアンプの増幅回路基板に電解コンデンサが搭載されている場合は、いわゆるアレニウスの10℃則が適用され、駆動温度が10℃下がれば電解コンデンサの素子寿命は2倍に延長される。これを言い換えると、動作温度を比較値で10℃下げることによって、その製品の利用コストを半分にすることができる。
On the other hand, in the power amplifier 1, the heat dissipation characteristics are remarkably improved by adopting the heat sink 10. In the heat sink 10, the thermal resistance is extremely low (0.0056 ° C./W). Therefore, when the environmental temperature is 25 ° C. and the power consumption of the power amplifier 1 is 2800 W, the temperature rise of the power amplifier with respect to room temperature is 2800 (W) × 0.0056 (° C./W)=15.68 (° C.)
It becomes. As a result, the driving temperature of the power amplifier 1 is suppressed to about 40.68 ° C. This is a temperature sufficient for the power amplifier 1 to operate normally and to ensure extremely long-term reliability. Here, when the electrolytic capacitor is mounted on the amplifier circuit board of the power amplifier, the so-called Arrhenius 10 ° C. rule is applied, and if the driving temperature is lowered by 10 ° C., the element life of the electrolytic capacitor is doubled. In other words, by reducing the operating temperature by 10 ° C. as a comparison value, the use cost of the product can be halved.
 このように本発明では、従来技術に比べて飛躍的に装置信頼性の向上が図られ、長期寿命を期待することができるようになっている。 As described above, according to the present invention, the device reliability is dramatically improved as compared with the prior art, and a long life can be expected.
 <その他の実施の形態>
 以下、本発明のその他の実施の形態について、実施の形態1との差異を中心に説明する。
<Other embodiments>
Hereinafter, other embodiments of the present invention will be described focusing on differences from the first embodiment.
 図7は、実施の形態2におけるフィンプレートの構造を示す。 FIG. 7 shows the structure of the fin plate in the second embodiment.
 フィンプレートの主面には、図7(a)に示すフィンプレート40aのように、バーリング加工によりランダムまたは一定の規則で一方向に穴を開けて、複数の開口部44aを設けてもよい。複数のフィンプレート40aは、バーリング加工で打ち抜いた厚み方向を揃えて併設される。このとき、各フィンプレート40aにおける開口部44aの位置は、互いに3mm程度離間した位置にランダムに形成される。これにより、各々のフィンプレート40aにおける各開口部44aは、フィンプレート40aの厚み方向に沿って、千鳥状に配置される。 As in the fin plate 40a shown in FIG. 7 (a), a plurality of openings 44a may be provided on the main surface of the fin plate by piercing holes in one direction by random or constant rules. The plurality of fin plates 40a are provided side by side in the same thickness direction punched by burring. At this time, the positions of the openings 44a in each fin plate 40a are randomly formed at positions separated from each other by about 3 mm. Thereby, each opening part 44a in each fin plate 40a is arrange | positioned in zigzag form along the thickness direction of the fin plate 40a.
 バリ45の打ち抜き方向に沿った高さについては、主面部41における厚みが約0.3mmのフィンプレート40を3mmピッチで配設した場合、そのピッチのおよそ20%以上40%以下(0.6mm以上1.2mm以下)の範囲に最適値があると考えられる。 Regarding the height along the punching direction of the burrs 45, when fin plates 40 having a thickness of about 0.3 mm on the main surface portion 41 are arranged at a pitch of 3 mm, the pitch is approximately 20% or more and 40% or less (0.6 mm). It is considered that there is an optimum value in the range of 1.2 mm or less.
 このような構成では、バーリング加工により開口部44aの周辺が凸状断面に形成される。このため、フィンプレート40aを配設したヒートシンクに送風すると、図7(b)のように開口部44aを通り抜けた空気が、バリ45の周囲で乱流となる。これにより、ヒートシンクに対して送風された単位体積当たりの空気がフィンプレート40aの表面に長く接触するため、ヒートシンクの内部で衝突冷却が向上し、フィンプレート40aにおける放熱特性の向上が期待できる。 In such a configuration, the periphery of the opening 44a is formed into a convex cross section by burring. For this reason, when air is sent to the heat sink provided with the fin plate 40a, the air passing through the opening 44a becomes turbulent around the burr 45 as shown in FIG. Thereby, since the air per unit volume blown with respect to the heat sink contacts the surface of the fin plate 40a for a long time, collision cooling is improved inside the heat sink, and an improvement in heat dissipation characteristics in the fin plate 40a can be expected.
 また、開口部44aを多数有する構成を取ることにより、フィンプレート40aの機械的強度を向上させることも可能である。 It is also possible to improve the mechanical strength of the fin plate 40a by adopting a configuration having a large number of openings 44a.
 図8(a)は、実施の形態3におけるヒートシンク10Aの構成を示す正面図である。このヒートシンク10Aでは、発熱源である増幅回路基板6Aが密に配設される第二基板30にのみヒートパイプ7を配設し、第一基板にはヒートパイプを配設していない。 FIG. 8A is a front view showing the configuration of the heat sink 10A in the third embodiment. In the heat sink 10A, the heat pipe 7 is disposed only on the second substrate 30 on which the amplification circuit substrate 6A, which is a heat source, is densely disposed, and the heat pipe is not disposed on the first substrate.
 このような構成においても、使用時には増幅回路基板6Aからの熱が効率よく第二基板30に伝達され、ヒートパイプ7の作用によって速やかにフィンプレート40に伝熱され、空気中に放熱されるので、実施の形態1と同様に高い冷却効果が発揮される。さらに、第一基板ではヒートパイプを省いているので、その分、ヒートパイプの材料費や基板の穿孔加工の手間が不要となり、低コストで且つ効率よく生産できる効果が奏される。 Even in such a configuration, heat from the amplification circuit board 6A is efficiently transferred to the second board 30 during use, and is quickly transferred to the fin plate 40 by the action of the heat pipe 7 and radiated into the air. As in the first embodiment, a high cooling effect is exhibited. Further, since the heat pipe is omitted from the first substrate, the material cost of the heat pipe and the labor of perforating the substrate are not required, and the production can be efficiently performed at low cost.
 図8(b)は、実施の形態4におけるヒートシンク10Bの構成を示す正面図である。 FIG. 8B is a front view showing the configuration of the heat sink 10B in the fourth embodiment.
 当図に示すように、本発明のヒートシンクは冷却基板を二枚用いる構成に限定されず、一枚のみを用いることもできる。当図に示すヒートシンク10Bでは、冷却基板(第二基板30)を一枚だけ用い、当該第二基板30の内部にヒートパイプ7を挿入した構成を示す。 As shown in the figure, the heat sink of the present invention is not limited to the configuration using two cooling substrates, and only one can be used. The heat sink 10 </ b> B shown in the drawing shows a configuration in which only one cooling substrate (second substrate 30) is used and the heat pipe 7 is inserted into the second substrate 30.
 このような構成でも、実施の形態1と同様に増幅回路基板6Aからの熱が第二基板30に伝達され、ヒートパイプ7の作用によって速やかにフィンプレート40に伝熱され、高い冷却効果が発揮される。さらに、このヒートシンク10Bではフィンプレート40の幅方向(z方向)端部が外部に露出して開放されているので、一層、空気に触れやすい構造となり高い放熱効果が期待できる。このヒートシンク10Bは、フィンプレート40の強度がそれほど問題とならない利用(例えばパソコン内部でCPU上に直接配設する等)が適している。また、この場合のヒートシンクサイズとしては、その強度を考慮すると比較的小さいことが好適である。 Even in such a configuration, the heat from the amplification circuit board 6A is transmitted to the second board 30 as in the first embodiment, and is quickly transferred to the fin plate 40 by the action of the heat pipe 7, thereby exhibiting a high cooling effect. Is done. Furthermore, in this heat sink 10B, since the end portion in the width direction (z direction) of the fin plate 40 is exposed and opened to the outside, the structure can be more easily exposed to air, and a high heat radiation effect can be expected. The heat sink 10B is suitable for use such that the strength of the fin plate 40 does not matter so much (for example, directly disposed on the CPU inside the personal computer). In addition, the heat sink size in this case is preferably relatively small in view of the strength.
 <その他の事項>
 本発明のヒートシンクは、クーリングファンを用いた空冷式(強制空冷型)を想定しているが、これに限定するものではない。すなわち、公知の水冷式など、液体冷媒を用いた方式を採用してもよい。
<Other matters>
The heat sink of the present invention assumes an air cooling type (forced air cooling type) using a cooling fan, but is not limited to this. That is, a method using a liquid refrigerant, such as a known water-cooled type, may be employed.
 上記実施の形態では、一対の冷却基板(第一基板20及び第二基板30)を用いる構成を示したが、冷却基板の使用枚数はこれ以上であってもよい。例えば3枚以上の冷却基板を一定間隔で配置し、各基板表面間に複数のフィンプレートを超音波溶接法で立設した構成も採り得る。 In the above embodiment, the configuration using a pair of cooling substrates (the first substrate 20 and the second substrate 30) is shown, but the number of cooling substrates used may be more than this. For example, it is possible to adopt a configuration in which three or more cooling substrates are arranged at regular intervals, and a plurality of fin plates are erected between the surfaces of the substrates by ultrasonic welding.
 また、実施の形態1では、パワーアンプ(高周波広帯域電力増幅器)の基板の冷却手段としてヒートシンクを適用する例を示したが、本発明の適用はこれに限定されない。冷却対象はこれ以外の装置の基板やモーター、その他の発熱源(例えば大電力増幅器、電力分配機、高周波アッテネーター等の駆動時に高熱を発する回路基板、発電機、ブレーキ制動機、発光機、投光機、電動機制御装置等)であってもよい。 In the first embodiment, an example in which a heat sink is applied as a means for cooling a substrate of a power amplifier (high frequency broadband power amplifier) has been described. However, the application of the present invention is not limited to this. Cooling targets include boards and motors of other devices, other heat sources (such as circuit boards that generate high heat when driving large power amplifiers, power distributors, high-frequency attenuators, etc., generators, brake brakes, light emitters, light projections) Machine, electric motor control device, etc.).
 CPUなどの素子と本発明のヒートシンクとを良好に熱結合させるために、両者の間に公知の熱伝導性シートやシリコーングリース等を介設することもできる。 In order to satisfactorily thermally couple an element such as a CPU and the heat sink of the present invention, a known thermal conductive sheet, silicone grease, or the like can be interposed between them.
 なお、本発明における金属ジャケットは一枚の金属板からなる構成に限定しない。例えば、金属ジャケットを複数枚の金属板を重ねて構成し、挿入方向上流側から下流側に向けて、重ねる金属板の枚数を減少させることで、テーパー状に形成することも可能である。 It should be noted that the metal jacket in the present invention is not limited to a configuration comprising a single metal plate. For example, the metal jacket may be formed by stacking a plurality of metal plates, and may be formed in a tapered shape by reducing the number of metal plates to be stacked from the upstream side to the downstream side in the insertion direction.
 本発明のヒートシンクは、パワーアンプや通信機器の基板冷却手段の他、発電機、ブレーキ制動機、発光機、投光機、電動機制御装置等として、幅広い利用が可能である。 The heat sink of the present invention can be widely used as a generator, a brake brake, a light emitter, a projector, an electric motor control device, etc., as well as a substrate cooling means for power amplifiers and communication devices.

Claims (10)

  1.  第一の金属からなる冷却基板を1または複数備え、当該冷却基板の表面に、第一の金属よりも熱伝導率の高い第二の金属からなるフィンプレートが立設され、当該冷却基板の内部に1本以上のヒートパイプが配設されたヒートシンクであって、
     少なくとも1の冷却基板には、その側面から当該冷却基板の主面に沿ってヒートパイプを挿入するためのテーパー状の挿入穴が形成され、
     前記挿入穴には、ヒートパイプを挿入方向に沿って付勢する付勢手段が設けられ、
     ヒートパイプは前記挿入穴に対し、筒状の金属ジャケットに被覆されて挿入されており、
     金属ジャケットは、長手方向に沿って周面にスリットを有するとともに、前記挿入方向に沿って厚みが漸減する構成を有することにより、
     ヒートパイプの周面が金属ジャケットの内面と面接触し、金属ジャケットの外面が挿入穴の内壁と面接触している
     ことを特徴とするヒートシンク。
    One or more cooling substrates made of a first metal are provided, and a fin plate made of a second metal having a higher thermal conductivity than the first metal is erected on the surface of the cooling substrate. A heat sink in which one or more heat pipes are disposed,
    At least one cooling substrate is formed with a tapered insertion hole for inserting a heat pipe from the side surface along the main surface of the cooling substrate,
    The insertion hole is provided with a biasing means for biasing the heat pipe along the insertion direction,
    The heat pipe is inserted into the insertion hole while being covered with a cylindrical metal jacket,
    The metal jacket has a configuration in which the thickness gradually decreases along the insertion direction while having slits on the peripheral surface along the longitudinal direction,
    A heat sink, characterized in that the peripheral surface of the heat pipe is in surface contact with the inner surface of the metal jacket, and the outer surface of the metal jacket is in surface contact with the inner wall of the insertion hole.
  2.  前記側面における挿入穴の開口部には、蓋体が配設されるとともに、蓋体とヒートパイプの間には前記付勢手段として弾性体が配設されている
     ことを特徴とする請求項1に記載のヒートシンク。
    The lid is disposed in the opening of the insertion hole in the side surface, and an elastic body is disposed as the biasing means between the lid and the heat pipe. Heat sink described in.
  3.  前記冷却基板が一対対向配置され、各々の前記基板表面にわたるように、帯状の複数の前記フィンプレートが立設されている
     ことを特徴とする請求項1に記載のヒートシンク。
    2. The heat sink according to claim 1, wherein the cooling substrates are disposed in a pair so as to face each other, and the plurality of strip-like fin plates are erected so as to extend over the surfaces of the substrates.
  4.  前記金属ジャケットは、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、鉄のいずれか1種で構成されている
     ことを特徴とする請求項1に記載のヒートシンク。
    The heat sink according to claim 1, wherein the metal jacket is made of any one of aluminum, an aluminum alloy, copper, a copper alloy, nickel, and iron.
  5.  フィンプレートは帯状体であり、その一部分が前記冷却基板表面に対して面接触した状態で固定され、他の部分が前記表面に対して折り曲げられて立設されている
     ことを特徴とする請求項1に記載のヒートシンク。
    The fin plate is a belt-like body, a part of which is fixed in a state of surface contact with the surface of the cooling substrate, and the other part is bent and erected with respect to the surface. The heat sink according to 1.
  6.  フィンプレートは帯状体であり、複数のフィンプレートが2.5mm以上4mm以下のピッチで併設されている
     ことを特徴とする請求項1に記載のヒートシンク。
    The heat sink according to claim 1, wherein the fin plate is a belt-like body, and the plurality of fin plates are arranged at a pitch of 2.5 mm or more and 4 mm or less.
  7.  第一の金属はアルミニウム又はアルミニウム合金であり、
     第二の金属は銅又は銅合金である
     ことを特徴とする請求項1に記載のヒートシンク。
    The first metal is aluminum or an aluminum alloy,
    The heat sink according to claim 1, wherein the second metal is copper or a copper alloy.
  8.  外部に露出するフィンプレートの部分には、黒化処理が施されている
     ことを特徴とする請求項1に記載のヒートシンク。
    The heat sink according to claim 1, wherein a portion of the fin plate exposed to the outside is blackened.
  9.  外部に露出するフィンプレートの部分には、バーリング加工若しくはエンボス加工による突起部が複数にわたり形成されている
     ことを特徴とする請求項1に記載のヒートシンク。
    The heat sink according to claim 1, wherein a plurality of protrusions formed by burring or embossing are formed on a portion of the fin plate exposed to the outside.
  10.  請求項1に記載のヒートシンクと、当該ヒートシンクにおける少なくともいずれかの冷却基板に熱結合するように配設された回路基板と、
     前記フィンプレートを強制空冷するためのクーリングファンとを備える
     ことを特徴とする電力増幅器。
    The heat sink according to claim 1, and a circuit board disposed so as to be thermally coupled to at least one cooling board in the heat sink,
    A power amplifier comprising: a cooling fan for forced air cooling of the fin plate.
PCT/JP2008/002932 2008-10-16 2008-10-16 Heatsink and electric power amplifier with the same WO2010044125A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002932 WO2010044125A1 (en) 2008-10-16 2008-10-16 Heatsink and electric power amplifier with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002932 WO2010044125A1 (en) 2008-10-16 2008-10-16 Heatsink and electric power amplifier with the same

Publications (1)

Publication Number Publication Date
WO2010044125A1 true WO2010044125A1 (en) 2010-04-22

Family

ID=42106303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002932 WO2010044125A1 (en) 2008-10-16 2008-10-16 Heatsink and electric power amplifier with the same

Country Status (1)

Country Link
WO (1) WO2010044125A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451922B (en) * 2011-12-02 2014-09-11 Cooler Master Dev Corp Thermal dissipation module and method of manufacturing the same
US20230314991A1 (en) * 2022-03-29 2023-10-05 Fujifilm Business Innovation Corp. Heating device, heating process apparatus using the same, and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210800A (en) * 1988-06-29 1990-01-16 Fujitsu Ltd Radiator
JPH08105698A (en) * 1994-10-03 1996-04-23 Mitsubishi Cable Ind Ltd Heat pipe cooler and case body
JPH10224068A (en) * 1997-02-07 1998-08-21 Hitachi Cable Ltd Heat-pipe-type heat sink
JP2000018852A (en) * 1998-07-01 2000-01-18 Fujikura Ltd Heat sink with heat pipe and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210800A (en) * 1988-06-29 1990-01-16 Fujitsu Ltd Radiator
JPH08105698A (en) * 1994-10-03 1996-04-23 Mitsubishi Cable Ind Ltd Heat pipe cooler and case body
JPH10224068A (en) * 1997-02-07 1998-08-21 Hitachi Cable Ltd Heat-pipe-type heat sink
JP2000018852A (en) * 1998-07-01 2000-01-18 Fujikura Ltd Heat sink with heat pipe and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451922B (en) * 2011-12-02 2014-09-11 Cooler Master Dev Corp Thermal dissipation module and method of manufacturing the same
US20230314991A1 (en) * 2022-03-29 2023-10-05 Fujifilm Business Innovation Corp. Heating device, heating process apparatus using the same, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP3936308B2 (en) Fin integrated heat sink and method of manufacturing the same
WO2008037134A1 (en) A heat pipe radiator and manufacturing method thereof
JP4819389B2 (en) Backlight unit and liquid crystal display device
JP3847561B2 (en) Heat sink for electronic device parts and method for manufacturing the same
JP2010123881A (en) Cold plate
JP2016066639A (en) Heat sink having fins connected in different methods
JP2002026201A (en) Radiator
WO2010044125A1 (en) Heatsink and electric power amplifier with the same
JP5212125B2 (en) Power device heat sink
JP2004253635A (en) Module component
TWI566670B (en) Heat dissipation device
JP6360722B2 (en) Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member
US20140116670A1 (en) Heat sink and cooling system including the same
JP5226463B2 (en) Heat sink with louver and method of assembling the same
JP2003234443A (en) Heat sink with fin
JP2009124054A (en) Joint structure of heating element and radiating element
JP2009231672A (en) Power semiconductor apparatus
JP2002050723A (en) Heat sink
JP3138517U (en) Heat sink module
JP2008243865A (en) Heat dissipation component and heat dissipation structure
JP6044157B2 (en) Cooling parts
KR20100047083A (en) Heat sink using welding
JP2013229461A (en) Servo amplifier including heat sink with fins having wall thickness and pitch dependent on distance from heat source
KR100665212B1 (en) Heat exchanger
JPH07176653A (en) Cooler and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP