WO2010043780A1 - « procédé économique en énergie pour marquer une zone d'un écran à cristal liquide » - Google Patents

« procédé économique en énergie pour marquer une zone d'un écran à cristal liquide » Download PDF

Info

Publication number
WO2010043780A1
WO2010043780A1 PCT/FR2009/001190 FR2009001190W WO2010043780A1 WO 2010043780 A1 WO2010043780 A1 WO 2010043780A1 FR 2009001190 W FR2009001190 W FR 2009001190W WO 2010043780 A1 WO2010043780 A1 WO 2010043780A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pixel
state
zone
liquid crystal
Prior art date
Application number
PCT/FR2009/001190
Other languages
English (en)
Inventor
Ivan Dozov
François Leblanc
Jean-Denis Laffitte
Stéphane Joly
Philippe Martinot-Lagarde
Jacques Angele
Original Assignee
Nemoptic S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoptic S.A. filed Critical Nemoptic S.A.
Priority to US13/698,987 priority Critical patent/US20130076610A1/en
Publication of WO2010043780A1 publication Critical patent/WO2010043780A1/fr

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • G09G2300/0482Use of memory effects in nematic liquid crystals
    • G09G2300/0486Cholesteric liquid crystals, including chiral-nematic liquid crystals, with transitions between focal conic, planar, and homeotropic states
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/08Cursor circuits

Definitions

  • the invention relates to a method of addressing a liquid crystal display screen and a display device implementing this method.
  • the present invention relates to unstable LCD displays. It is particularly applicable to unstable liquid crystal displays with two stable textures differing by a twist of about 180 °. STATE OF THE ART
  • the most widely used liquid crystal displays use a nematic type liquid crystal. They consist of a layer of liquid crystal placed between two blades. Each blade comprises a substrate, often made of glass, on which a conductive electrode has been deposited, then a so-called anchoring layer, also called an alignment layer.
  • the anchoring layer exerts on the neighboring liquid crystal molecules a return torque which tends to orient them parallel to a direction called easy axis.
  • Anchor layers are often made by a brushed polymer deposit to create the direction of the easy axis. This is most often very close to the direction of brushing.
  • the thickness of the cell thus formed, called d is made constant for example by distributing, between the blades, beads whose diameter is equal to the desired thickness (typically 1 to 6 microns).
  • Monostable liquid crystal devices are known. In the absence of an electric field, the liquid crystal is oriented in a single texture. This texture corresponds to an absolute minimum of the elastic energy of the liquid crystal in the cell, given the anchors on the two blades. Under an electric field, this texture is continuously deformed and its optical properties vary according to the applied voltage.
  • Anchoring layers maintain the direction of the molecules near the blades, which varies little, both in the plane of the substrate (azimuth plane) and in the direction perpendicular to it (direction zenithale): a strong anchoring of the molecules near the blades on the alignment layer corresponds to a strong azimuthal anchoring (maintaining a fixed direction in the plane of the substrate) and a strong zenith anchorage (maintaining a direction close to the plane substrate, that is to say, little or no lifting molecules to the direction perpendicular to the substrate, parallel to the electric field, and whatever the voltage applied).
  • the nematic is recalled by the anchors on the two blades. It returns according to the unique stable texture without applied field.
  • the device is monostable.
  • TN twisted nematic
  • STN supertordus
  • EOB electrically controlled birefringence
  • VAN vertically aligned
  • these displays can be addressed directly (very low resolution), passive multiplex mode (medium resolution) or active mode (high resolution).
  • the addressing signals When the addressing is multiplexed, that is to say carried out line by line, so that the image appears visually stable, the addressing signals must be sent at a frequency of several tens of hertz: as soon as the pixel is no longer energized, it relaxes to the stable state without an applied field.
  • blinking area For example in a given area of the display, called blinking area.
  • This area may be the entire addressed surface of the display or a portion thereof.
  • the flashing here corresponds to obtaining in said zone an image which appears then disappears, then reappears and so on, the disappearance of the image being characterized by a uniform hue on the whole of said zone.
  • a uniform hue is a substantially identical hue for all the pixels of the area, the color of the hue can be any.
  • the monostable displays do not have an image memory, once the signals corresponding to the uniform hue applied, the display has "forgotten” the image previously applied and it is necessary to send again the signals corresponding to said image to redisplay it.
  • the object of the present invention is to improve the performance of liquid crystal display devices.
  • the object of the invention is to make it possible, by the use of new means, to mark part or all of the information displayed on a liquid crystal display, while maintaining a reduced energy consumption compared to that of a standard liquid crystal display.
  • bistable liquid crystal layer decomposing into bistable liquid crystal pixels and, for each pixel, means for applying a signal to this pixel, the applied signal comprising an electric field
  • each bistable liquid crystal pixel having two possible stable states which are stable without an electric field being applied to this pixel, the two stable states corresponding to different visual perceptions for an observer observing the screen, said method being characterized in that it comprises the following steps: A.
  • a signal known as a disturbance signal (Sp) said signal of disturbance being greater than a threshold signal so that each pixel of the zone leaves its initial state, said perturbation signal being less than a switching signal of so that each pixel of the zone having as its initial state one of the stable states does not switch in the other stable state, each pixel of the zone being then in a disturbed state intermediate between the two stable states, then
  • steps A and B are preferably repeated a number of times greater than 1, so as to obtain a blinking visual effect of the zone caused by an alternation of the disturbed state and the initial state for each pixel of the area.
  • two successive iterations of steps A and B are preferably spaced apart by a duration less than a duration of retinal persistence of the observer, so as to obtain a visual effect of static marking of the zone.
  • the method according to the invention may further comprise a displacement of the pixel area on the screen between at least two iterations of steps A and B.
  • the pixels of the layer are preferably arranged in lines of parallel pixels and parallel columns of pixels, the lines being substantially perpendicular to the columns.
  • the perturbation signal applied to a pixel preferably comprises a column signal applied to the column on which this pixel is situated and furthermore preferably comprises a line signal applied to the line on which this pixel is situated, this perturbation signal being of preference proportional or equal to a difference between the column signal and the line signal.
  • the area may comprise a set of adjacent lines or a set of adjacent columns.
  • the area may include an intersection of a set of adjacent lines and a set of adjacent columns.
  • the disturbance signal can be:
  • the disturbance signal may comprise: an electrical signal of constant voltage, or
  • the frequency of the disturbance signal may be between 50 Hz and 500 Hz, or may be greater than 500 Hz.
  • the two stable states preferably comprise a blocking state and an on state, the on state having a luminance (Lib) perceived by the observer greater than the luminance (Lid) of the blocking state, the disturbed state of a pixel initially in the on state having a luminance (Lpb) perceived by the lower observer of at least
  • the disturbance signal may comprise an electrical signal having an RMS value of voltage greater than 1.65 times a Freedericksz voltage of the liquid crystal layer.
  • the disturbance signal is preferably bipolar.
  • FIG. 1 schematically shows a part of a first device embodiment according to the invention comprising a bistable display of the ZBD type and implementing a method according to the invention
  • FIG. 2 schematically shows a part of a second device embodiment according to the invention comprising a bistable display of the BiNem type and implementing a method according to the invention
  • FIG. 3 describes the structure of a screen. multiplexed passive addressing matrix of the first or second embodiment according to the invention
  • FIG. 4 describes an example of two-step addressing of the passive screen of the second device embodiment according to the BiNem invention
  • FIG. 5 shows variations in the luminance of pixels as a function of an RMS voltage of a perturbation signal Sp of frequency 600 Hz applied during the implementation of a method according to the invention
  • FIG. 6 illustrates an exemplary embodiment of the method according to the invention on a bistable display where a set of columns is marked (marking zone);
  • FIG. 6a shows the display at rest with an image previously inscribed on the marking area;
  • FIG. 6b shows the display when an "intermediate” perturbation signal is applied to a part of the columns, the initial textures being further distinguished, the scrambling of the image of the marking zone being partial, the contrast of this image being degraded but its content is always legible;
  • FIG. 6c shows the display when an "erase” disturbance signal is applied, the scrambling of the image in the marked area being total.
  • FIG. 7 illustrates examples of signals applied during the implementation of a method according to the invention, the line signal being connected to ground, the column signal VC being monopolar (positive or negative) and having the form of FIG. a Vblink amplitude window
  • FIG. 8 illustrates another example of signals applied during the implementation of a method according to the invention, the line signal being equal to a mean potential Vm and the column signal consisting of alternation to Vm + Vblink and Vm. -Vblink.
  • FIG. 9 illustrates an example for applying disturbance voltages on the lines and columns according to the invention to strongly deform and only the textures of a rectangular domain.
  • These embodiments include a matrix screen for displaying an image, said screen comprising:
  • bistable liquid crystal molecules decomposing into bistable liquid crystal pixels and, for each pixel, means for applying a signal to this pixel, the applied signal comprising an electric field, these application means being in particular arranged for iteratively applying a disturbance signal Sp according to the invention according to the method according to the invention described hereinafter.
  • Each bistable liquid crystal pixel has two possible stable states. These two stable states are stable without an electric field being applied to this pixel, the two stable states corresponding to different visual perceptions for an observer observing the matrix screen. Each stable state of a pixel corresponds to a given stable texture of liquid crystal molecules at that pixel.
  • the pixels are arranged in parallel pixel lines and parallel pixel columns, the lines being substantially perpendicular to the columns.
  • the liquid crystal of the layer is of the nematic type.
  • the liquid crystal layer is placed between two blades, the assembly constituting a liquid crystal cell.
  • Each blade comprises a substrate, preferably made of glass, on which a conductive electrode has been deposited, followed by a so-called anchoring layer, also called a layer. alignment.
  • the anchoring layer exerts on the neighboring liquid crystal molecules a return torque which tends to orient them parallel to a direction called easy axis.
  • the anchoring layers are preferably made by a brushed polymer deposit to create the direction of the easy axis. This direction of the easy axis is preferably very close to the brushing direction.
  • the thickness of the cell thus formed (that is to say the distance between the blades between which is included the liquid crystal layer), called d, is made constant for example by distributing, between the blades, balls of which the diameter is equal to the desired thickness (typically 1 to 6 ⁇ m).
  • the liquid crystal of the layer is "bistable": this type of liquid crystal operates by switching between two stable states in the absence of an electric field. An external electric field is applied only for the time necessary to switch the texture of the liquid crystal from one state to another. In the absence of an electrical control signal, the display remains in the state obtained. By its operating principle, this type of display consumes energy proportional to the number of image changes. Thus, when the frequency of these changes decreases, the power required for the operation of the display tends to zero.
  • FIG. 1 illustrates, for the first device embodiment according to the invention, two different states of a liquid crystal pixel between two portions of the blades.
  • This first mode uses a flexo-electric effect to switch, that is to say the sign of the applied electric field. This is the pretilt, ie the angle that the liquid crystal molecule close to the surface with it, which varies between two stable values without applied field.
  • This bistability is obtained using a network serving as an alignment layer (see documents [1], [2], [3] and FIG. 1).
  • This technology is called ZBD (Zenithal Bistable Display).
  • One of the alignment layers is constituted by a periodic network allowing the vicinity of the surface of this network two orientations of the liquid crystal molecules, one planar, the other homeotropic.
  • FIG. 1 illustrates, for the first device embodiment according to the invention, two different states of a liquid crystal pixel between two portions of the blades.
  • This first mode uses a flexo-electric effect to switch, that is to say the sign of the
  • FIG. 2 is a section and profile view of a portion of the liquid crystal cell of the second device embodiment according to the invention.
  • This second bistable embodiment uses a surface effect: a break of the zenith anchorage on at least one of the alignment layers. This break allows switching between two textures whose torsions differ by an angle between 150 ° and 180 ° in absolute value.
  • BiNem The operation of this display called BiNem is described in the following paragraph.
  • the BiNem display (documents [4] to [8]) is shown schematically in FIG. 2, and has a general configuration identical to that of the liquid crystal cell of ZBD type which also uses substrates, electrodes, polarizers, liquid crystal .
  • the BiNem display preferably uses two twisted textures that differ by a twist of approximately +/- 180 ° (located in absolute value between 150 ° and 180 °).
  • a preferred but nonlimiting variant consists of a uniform or slightly twisted texture called U (illustrated on the left of FIG. 2) in which the molecules are substantially parallel to one another and of a strongly twisted texture called T (illustrated in FIG. the right of Figure 2).
  • the least twisted U texture has a twist between 0 ° and 20 ° in absolute value.
  • the liquid crystal layer 30 is placed between the two blades 20 and 10, which are respectively called master blade and slave blade.
  • the master blade 20 comprises a substrate 21, an electrode 22 and an anchoring layer 24 forming a strong azimuth and zenith anchorage of the liquid crystal, that is to say an anchorage of the same type as that used in crystal displays. monostable liquid.
  • the slave blade 10 comprises a substrate 11, an electrode 12 and an anchoring layer 14 providing a specific anchorage, corresponding to a weak zenith anchor and a medium or strong azimuthal anchoring of the liquid crystal.
  • the usually transparent electrodes 12 and 22 are typically made of a material called ITO deposited on the substrates 11 and 21. They make it possible to apply an electric field perpendicular to the plates 10 and 20.
  • each of the substrates 1 1 and 21 typically but not exclusively outside the cell makes it possible to associate with each texture an optical state, for example dark for the texture U and clear for the texture T or vice versa , depending on the angles of the two polarizers with respect to the directions of the anchors.
  • Ecass is less than 15V / ⁇ m at room temperature (25 ° C) for the low zenith anchor alignment layers as described in documents [11] and [12].
  • the break voltage Vcass is always at least a few volts, even for very thin liquid crystal cells (l ⁇ m). When the electric field is cut off, the cell moves towards one or other of the bistable U and T textures (see FIG. 2).
  • the hydrodynamic coupling 26 between the master blade 20 and the slave blade 10 creates a sufficient hydrodynamic flow (or flow) near the slave blade to induce the texture T. Otherwise, the texture U is obtained by elastic coupling 28 between the two blades 10 and 20, aided by the possible inclination of the weak anchor.
  • switching of a screen element or pixel of a BiNem-type display will be used to make the molecules of the liquid crystal pass from an initial stable texture (U or T or a coexistence thereof). two textures) towards a final stable texture (U or T or a coexistence of these textures). This name is also valid for the two stable textures of the ZBD type display.
  • the signal applied to the pixel is conventionally made up of several levels.
  • the signal applied to the pixel VP is typically two-stage, but can also be multi-stage [13] or single-stage. If the voltage drop between two stages exceeds a certain absolute value, and that it operates in a sufficiently short time, the "jump" of tension is sufficient for the texture T is obtained. If the jump is not sufficient, or if the transition time is too long, the hydrodynamic flow is insufficient, the texture T becomes impossible, and the texture U is obtained. Addressing modes
  • the 3 addressing modes developed for standard liquid crystal can be used for the BiNem or ZBD display.
  • the most common addressing mode is multiplex passive addressing, but active addressing using thin-film transistors is also possible [14].
  • the display (of type Binem or ZBD) is a matrix screen formed of N x M screen elements called pixels, N being the number of rows of pixels and M the number of columns of pixels , and addressing is done line by line.
  • each pixel is constituted by the intersection of: a band or conductive electrode line 52 deposited on one of the blades and corresponding to a line of pixels, and a band or conductive electrode column 50 deposited on the other blade and corresponding to a column of pixels. These strips 50, 52 perpendicular are deposited on each blade.
  • the area between two adjacent conductive strips carried by the same substrate is called interpixel space.
  • the area consisting of all the pixels is called matrix area.
  • a marking area Zm is a part of this matrix area.
  • the matrix area corresponds to the display area, on which area the image content that is to be displayed is displayed.
  • the aforementioned conductive strips 50, 52 are transformed into tracks which make the connection to the control circuits generating the addressing signal.
  • These control circuits may be located on the substrate or remote.
  • the displays are addressed using components or control circuits that we will call “drivers” located for example on flexible connection elements welded to the screen.
  • the drivers consisting mainly of analog gates controlled by shift registers, make it possible to make the link between the control electronics and the tracks.
  • the conductive electrodes are made of a transparent conductive material called ITO (mixed oxide of Indium and tin). But when the display is refiective, the electrodes located on the opposite side to the observer can be made with an opaque conductive material, for example aluminum.
  • ITO transparent conductive material
  • the addressing is carried out line by line.
  • an electrical signal is applied on this line, which is then called “activated”.
  • activation signal line addressing signal VLn In the case of a standard passive multiplexing, the signal VLn is identical for all the lines, and we will call it VL.
  • the first phase essentially consists of obtaining an anchoring break, ie the homeotropic texture on the line under consideration, for example by applying a voltage VlL> Vcass on the line addressing signal for a duration T1, which constitutes a first level of VL.
  • VlL is between 6V and 30V over the 0 ° - 50 ° temperature range.
  • a signal V2L is applied on the line for a duration T2, which constitutes a second and last level of VL.
  • V2L is between 2 V and 12V over the 0 ° - 50 ° temperature range.
  • the line addressing signal is in this two-stage example, but it can also be single-stage or multi-stage.
  • a variant uses a line signal lower than the breaking voltage, the column signal enabling switching in one or the other of the textures [20]; or, according to a two-step variant, all the pixels are first switched in the same texture, then the column voltage causes the break but only in the pixels to switch in the other texture.
  • This time is typically but not limited to between 10 ⁇ s and 10 ms.
  • This addressing "one-step addressing".
  • the order of activation of the lines (first n-1, then n, then n + 1) defines the scanning direction 46 (see FIG. 3).
  • the addressing time of the display is the time required to address all its lines, so as to display new image content.
  • the document [15] describing the achievement of gray levels provides three variants for obtaining gray levels (FIG. 23 of document [15]) by modifying the parameters of VC.
  • partial addressing it is desired to display new content in only one area of the image, the rest of the image remaining unchanged. In this case, only the lines corresponding to the area where you want to display new content are activated.
  • the entire addressing of the screen (display of a complete image) or of an area of the screen is collectively performed.
  • partial addressing in a given texture, usually T, by simultaneously activating all the lines or a group of lines corresponding to the zone to be addressed, with a signal Vpre.
  • the lines are then addressed one by one, according to the conventional multiplexing method, to display the desired image or area. Only two transitions must then be made, the transition T to T on the one hand, and the transition T to U or to a mixture of U and T on the other hand.
  • the values VC1 to VC5 are the values of VCm applied on the column m in synchronization with the lines 1 to 5, successively activated, so as to obtain the desired final texture on the pixel at the intersection of the activated line and the column. m.
  • a voltage VC in the form of slot In a mode where one seeks to obtain only either U or T, one can choose for example a voltage VC in the form of slot and different variants are possible:
  • VC (U) is the column addressing signal to obtain the U texture.
  • bipolar pulses for the Vpre signal and for the VL signal can be used.
  • the field to be applied, to orient the molecules most often has a threshold.
  • a threshold For example, consider a positive dielectric anisotropy nematic placed in a planar and parallel anchored cell on both blades; without a field, the molecules are parallel to each other and parallel to the slides throughout the cell.
  • An electric field, applied perpendicularly to the blades, begins to orient the molecules only when the voltage is greater than a certain threshold called the Freedericksz VF threshold or Freedericksz VF voltage (document [16]). Below VF, the liquid crystal molecules remain motionless, maintained by the nematic elasticity.
  • the liquid crystal molecules rotate progressively in the direction of the field: first those located in the center of the cell then the others, except those close to the blades, whose alignment is maintained by anchoring.
  • the voltage VF can be expressed according to the following formula:
  • VF ⁇ [Kl l /
  • KI l one of the elastic constants of the liquid crystal ⁇ and its dielectric anisotropy. According to the sign of ⁇ , the molecules tend to orient themselves parallel ( ⁇ > 0) or perpendicular to the applied field ( ⁇ ⁇ 0) .VF is independent of the thickness of the liquid crystal cell and typically varies for crystal mixtures liquid used in displays, between 0.3V and IV.
  • being a function of the frequency of the signal applied to the liquid crystal, the following are called: - VF (static) or VFs the Freedericksz voltage corresponding to a signal applied continuously (that is to say with a zero frequency), and VF (dynamic) or VFd the Freedericksz voltage corresponding to an applied signal of frequency higher than the response frequency of the liquid crystal.
  • VFd is slightly higher than VFs.
  • the threshold When the cells are bent or doped, but still planar, the threshold remains but the threshold voltage can vary up to about 30% compared to the theoretical VF voltage obtained with a planar and parallel anchored cell.
  • a threshold voltage characterized by a threshold voltage, called VO, the value of which remains always relatively close to VF.
  • the invention makes it possible to mark a pixel or an area of a matrix bistable display comprising two stable liquid crystal textures without an applied field, by an original method, which is not applicable on monostable displays.
  • the concept of marking is defined by a visually detectable optical modification of this area relative to the rest of the image. Disturbance signal Sp does not change the information contained in the image previously entered in the marking area
  • An image is previously displayed on the screen by switching each pixel in one of said initial stable states.
  • the method according to the invention implemented by the bistable liquid crystal display comprises the following steps: a) applying to each pixel of a zone Zm of pixels in an initial state corresponding to one of the stable states, and during a first given period of time t1, a signal known as perturbation signal Sp, said perturbation signal being greater than the threshold signal VO so that each pixel of the zone leaves its initial state, said perturbation signal being lower than the signal switching circuit Vcass so that each pixel of the zone having as one of its stable states one of the stable states does not switch in the other stable state, each pixel of the zone then being in a disturbed state intermediate between the two stable states; thus, during said first time t1, a visual disturbance of the image previously entered in the zone Zm is generated; then b) no signal is applied to each pixel of the zone during a second given period of time t2 to let each pixel of the zone return to its initial stable state, then c) the two steps a) and b) are repeated previous, a number of times greater than one, and with
  • the proposed method is to apply, over an entire marking zone Zm comprising a set of pixels to be marked, during the time t1, an electrical signal called disturbance signal Sp having a defined amplitude not comprising a zero continuous range, then no longer apply a signal during time t2.
  • the amplitude of the disturbance signal Sp is: greater than the threshold of Freedericksz VF and the threshold voltage VO, and much lower than the switching thresholds and the breaking voltage Vcass.
  • This disturbance signal Sp distorts the two textures corresponding to the two states of the pixels: their optical properties are modified, the contrast decreases to the value of the disturbance signal for which the zone takes a uniform hue.
  • the disturbance signal Sp is not intended to independently modify each pixel of the zone Zm. There is no individual modification of the pixels of the zone Zm, for example to display a new image with greyscales including new information.
  • the disturbance signal Sp modifies uniformly, that is to say identically, all the pixels of the zone being in a given initial state, said initial state being one of two stable states possible without an applied field: all the pixels initially in the stable steady state have the same disturbed luminescence Lpb, and all the pixels initially in the stable blocking state have the same luminescence disturbed
  • the perturbation signal Sp is identical for all the pixels of the zone Zm, irrespective of their initial stable state.
  • the perturbation signal is identical for all the pixels of the marking zone Zm, in order to obtain a homogeneous perturbation over the entire zone.
  • the disturbance signal whether erasing or intermediate does not modify, in the area, the information contained in the previously registered image.
  • the marking of the screen area is thus achieved by disappearing, during tl, then reappearing during t2, the image in this area.
  • the typical duration of t1 is between 0.1 and a few tens of seconds
  • the typical duration of t2 is between 0.1s and a few minutes, so that the typical duration of tl + t2 is between 0.2s and a few minutes.
  • Effect of disturbance signal Sp change of luminance
  • the two stable states include:
  • a clear state also called a passing state
  • the passing state has a luminance Lib perceived by the observer greater than the luminance Lid of the blocking state.
  • the disturbance signal Sp applied to the marking zone for a period of time t1 has the effect of orienting the liquid crystal molecules in the volume as a function of this applied signal Sp and therefore differently from their initial orientation without an applied field. This new orientation causes a change in luminance from each pixel of the display.
  • the marking zone Zm comprises at least one, and even several pixels initially in the on state before the application of the disturbance signal, and furthermore comprises at least one, and even several, pixels initially in the state. blocking before applying the disturbance signal. We call;
  • Lpb and Lpd are the luminances of the disturbed pixels having stable initial states corresponding to the luminances respectively Lib and Lid. Since the perturbation signal Sp does not record any additional information, for a given perturbation signal, the luminance obtained Lpb is identical for all the pixels initially in the on state and the luminance obtained Lpd is identical for all the pixels initially in the blocking state.
  • FIG. 5 shows the evolution of the luminance ratio Lpb / Lib and the luminance ratio Lpd / Lib as a function of the voltage RMS of the perturbation signal Sp applied.
  • the luminances Lpb and Lpd are both normalized with respect to Lib the luminance of the initial state passing without an applied perturbation signal.
  • the effect of the disturbance signal Sp is threefold.
  • Sp decreases the luminance Lpb of the progressively increasing state as the value of Sp increases, up to a value corresponding to the "equilibrium" state of the liquid crystal molecules under applied field. Any increase in the applied voltage will hardly change the resulting liquid crystal texture.
  • the effective value of the luminance corresponding to this equilibrium state is a function of the position of the polarizers of the cell.
  • Sp increases the luminance Lpd of the blocking state progressively as the value of Sp increases, up to the same value called "equilibrium" luminance Lo.
  • Lpb / Lpd 1
  • a signal Sp such that the previously inscribed image is erased is called the "erasure" disturbance signal Sp.
  • the result of the marking of a zone Zm of the display corresponding to a set of adjacent columns of pixels (columns contiguous to the right of the display), called the marking zone, is shown on the Figures 6a, 6b and 6c.
  • the marking zone a zone Zm of the display corresponding to a set of adjacent columns of pixels (columns contiguous to the right of the display), called the marking zone.
  • a pixel P1 in a stable blocking state is represented in black
  • a pixel P2 in a steady state passing is represented in light gray
  • a pixel P3, P4, P5 and P6 in a disturbed state is represented in more or less dark gray.
  • Figure 6a corresponds to the display in its initial state.
  • the on state corresponds here to the state T and the blocking state to the state U.
  • FIG. 6b shows the image obtained with an interference signal Sp "intermediate", that is to say with a decrease of the luminance of the on state and an increase of the luminance of the blocking state, but without having reached the "equilibrium" luminance in the marking zone.
  • an interference signal Sp "intermediate" that is to say with a decrease of the luminance of the on state and an increase of the luminance of the blocking state, but without having reached the "equilibrium" luminance in the marking zone.
  • the pixel P4 initially in the passing stable state is found in disturbed state different from the disturbed state in which the pixel P3 is initially found in the blocking stable state, these disturbed states of pixels initially in two different stable states corresponding to different visual perceptions for the observer observing the screen.
  • the on state has darkened, the blocking state is significantly less black, but the textures obtained from the starting textures U and T for this "intermediate" value of the perturbation signal are still optically distinct. All pixels initially in the on state are darkened identically, and all the pixels initially in the blocking state are less black in an identical manner.
  • FIG. 6c shows the image obtained with a signal Sp such that the "equilibrium" luminance is reached. For this value, the textures from U and T appear optically identical, the previously registered image is no longer visible, it is erased. Of course and a fortiori, the marking is perfectly noticeable.
  • the perturbation signal Sp is then called the "erase” perturbation signal.
  • Static marking mode or flashing marking mode The Zm zone that one wishes to mark can be in two ways: - either with a disturbance of the image (step a) during the time tl) and an absence of signal of disturbance (step b) during the time 2) such that the periodicity is less than a duration of retinal persistence of the observer, so as to obtain a visual effect of static marking of the zone, what we will call static mode of operation or static marking, this mode being the most economical in energy.
  • the disturbance of the marking zone can be obtained according to two variants:
  • the disturbance signal Sp comprises an electrical signal of constant voltage.
  • a periodic sp interference signal of non-zero frequency Jp For example, a pulse train of sufficiently high frequency will give the zone a homogeneous tint during the disturbance (typically a frequency greater than 50 Hz, ie a period of the perturbation signal pp less than 20 ms). If the frequency is less than 50 Hz, the observer's eye will be able to perceive fluctuations during the perturbation time tl.
  • the two modes are compatible with the desired effect, that is to say a disruption of the image during the time or times tl, then a return to the previously displayed image, during times t2 and after marking.
  • the liquid crystal will more or less follow the applied signal, and the eye will perceive a luminance average corresponding to the different orientations of the liquid crystal.
  • the visual effect obtained which will always be a difference of the luminance with respect to those of the stable states of the previously displayed image, will be a homogeneous shade depending on the shape of the signal applied during the period pp.
  • the liquid crystal For a period pp less than the response time of the liquid crystal, typically a frequency? greater than 500 Hz, it will be oriented according to the RMS (Root Mean Square) value of the periodic signal applied.
  • the behavior of the liquid crystal becomes independent of the shape of the applied signal and its frequency, only the RMS value of the signal counts. In this case too, the disturbance will correspond to a hue homogeneous in time.
  • the perturbation signal applied must have a lower RMS voltage than the break voltage Vcass and greater than the threshold voltage VO of the liquid crystal.
  • Marked area equal to all pixels in a set of rows or columns
  • a first variant of the invention is to mark (statically or flashing) a zone Zm consisting of a set of q adjacent lines (referenced respectively LxI, Lx2, .... Lxq) or a set of q columns adjacent (referenced respectively Cxl, Cx2, ... Cxq), the marking concerning all the pixels of the row or column concerned.
  • the zone Zm comprises a set of adjacent lines or a set of adjacent columns.
  • the static marking or the blinking of a set of columns can be obtained by applying only a column signal on the columns of the flashing zone, the lines being grounded or at a fixed potential. It is possible to apply, as a first option, a column signal VC for example monopolar (positive or negative) in the form of a slot and amplitude
  • Vblink for example equal 2.5 V during the duration tl (case of the continuous signal, for example
  • the line signal VL is for example equal to 0V on all the lines, obtained for example by putting all the lines to ground.
  • the time t2 between two disturbances is for example equal to one second.
  • a variant (not shown in the figures) to avoid storage of the charges in the display is to apply a bipolar signal (+ Vblink hanging half of tl then - Vblink during the other half of tl, or vice versa) .
  • Another variant (not shown in the figures) is to apply + Vblink during tl for a disturbance and the following disturbance a signal -Vblink during tl.
  • a second option is to use a sp frequency signal of non-zero frequency fp, monopolar or bipolar.
  • a bipolar sp interference signal has the advantage of eliminating the disadvantages of a continuous electric polarization that can cause storage of charges in the screen.
  • the obtaining of positive and negative alternations on the pixels of the columns can be obtained by putting the columns belonging to the static marking zone (or of marking flashing) at a mean potential Vm, the column signal consisting of alternating Vm + Vblink and Vm-Vblink.
  • the lines are set to the average potential Vm, if necessary using an optimized and specific Vm generation circuit. It is also necessary to apply Vm also to the columns located outside the marking area (or blinking), so that they do not see the optical disturbances caused by the application of Vm lines.
  • FIG. 6a corresponds to the display in its initial state.
  • the on state corresponds to the state T and the blocking state to the state U.
  • FIG. 6b shows the image obtained with a perturbation signal Sp of RMS value 1.5 V in the marking zone (or flashing).
  • the textures obtained from the starting textures U and T for an RMS value of the applied signal of 1.5V are still optically distinct. This RMS voltage value therefore corresponds here to an "intermediate" Sp perturbation signal.
  • FIG. 6c shows the image obtained with a signal Sp of RMS value 2.5 V.
  • the disturbance signal Sp therefore preferably comprises an electrical signal (VL-VC) having an RMS value of voltage greater than 1.65 times the Freedericksz VF voltage of the liquid crystal layer.
  • Threshold Voltage For a value of Sp less than or equal to what is called the threshold voltage VO of the liquid crystal, the liquid crystal molecules do not react to the applied field. Optically this translates into a luminance of the states passing and dark in field equal to that without field.
  • This threshold voltage is a function of the liquid crystal, the texture in which it is located, the frequency and the signal form factor applied. For the two stable textures used here, the threshold voltage is almost identical.
  • the threshold voltage VO is greater than or equal to the voltage VFs. For the curve of FIG.
  • V5% the value of the maximum voltage applied to a pixel initially in the on state such as this disturbs the luminance of the pixel in question by 5%.
  • V5% is a RJVIS voltage. This voltage V5% is a function of the liquid crystal used, the frequency of the applied signal Sp as well as its form factor, and the time t1 during which the disturbance signal is applied; V5% is greater than or equal to VFs and VO.
  • the disturbed state of this pixel initially in the on state has a luminance Lpb perceived by the lower observer of at least 5%, see 10% or even 20% with respect to the luminance Lib of the initial state passing from this pixel.
  • the Sp signal is a 600Hz frequency signal.
  • V5% 0.8V
  • ie a decrease of Lpb together with an increase of Lpd.
  • the ratio Lpb / Lib 0.85. 0.85 less than 0.95, 0.95 corresponding to a fall of 5% of the initial luminance.
  • the luminance decrease of the on state is greater than 5% when the applied signal has an RMS value equal to
  • the perturbation signal Sp is an "erasure” signal, and almost all the molecules are raised, the textures of the passing and dark states no longer evolve. optically, the luminances Lpb and Lpd of the perturbed states become equal to the equilibrium luminance Lo.
  • This luminance value Lo is a function, inter alia, of the angles of the polarizers used. In the described experimental configuration, this value is equal to 0.52 multiplied by Lib.
  • the marking of the zone is in this case maximum.
  • a second variant of the invention is to mark (statically or flashing) a zone Zm comprising an intersection of a set of N 'adjacent lines and a set of M' adjacent columns.
  • the signal applied to a pixel is the difference between the signal on its line and that on its column.
  • the difficulty compared to the previous case is to optically disturb only the zone situated at the intersection of the excited lines and columns, while the other pixels of the excited lines and columns not belonging to the zone to be marked do not are not disturbed. This result will be obtained by taking advantage of the existence of the threshold voltage of the VO display.
  • a first option is shown in Figure 9.
  • the marked area Zm is black, the strip of excited lines is horizontal and is represented in light gray by hatching, and the strip of excited columns is vertical and is represented in dark gray by hatching.
  • 3 times VO RMS is applied to the excited lines and + V0 RMS to the other lines, 0V RMS to the excited columns, and 2xV0 RMS to the non-excited columns.
  • an RMS voltage VO is applied to the entire screen except for the pixels of the zone to be marked Zm which receive 3 times VO RMS, which is more than enough to obtain a disturbance of the previously inscribed image. Pixels subject to VO, threshold voltage, will not react to this voltage and will remain stable.
  • VO can also be applied to all lines, and VO to non-excited columns and -VO to excited columns.
  • a second option is illustrated in Figure 10.
  • the marked area Zm is black, the strip of excited lines is horizontal and light gray, and the band of excited columns is vertical and dark gray.
  • This second option makes it possible to apply a potential difference only on the excited lines and columns, which is less energy consuming.
  • VO is applied twice to the excited lines and VO to the other lines, 0V to the excited columns, and VO to the non-excited columns.
  • a zero or VO voltage is applied to the pixels outside the flashing zone Zm
  • VO is applied twice to the pixels of the flashing zone Zm.
  • the disturbance signal here is 2 times VO compared to 3 times VO for the previous variant.
  • the perturbation obtained for this second variant is less than that of the first variant if one is in the case where 2 times VO does not make it possible to obtain the total erasure of the image previously inscribed. But a repeated scrambling of the image, even without this one is sufficient to attract the eye which is sensitive to the temporal variation of luminance.
  • a third variant of the invention is to mark (statically or flashing) a mobile marking zone Zm, called "cursor".
  • the method according to the invention then further comprises a displacement of the pixel area Zm on the screen between at least two iterations of steps a) and b):
  • the method according to the invention comprises a displacement of the zone of pixels Zm on the screen after each iteration of the steps a) and b), or
  • the method according to the invention comprises a displacement of the zone of pixels Zm on the screen after a number Q of iteration of the steps a) and b) greater than 1, the zone Zm being preferably marked blinking during the Q iterations during which Zm is stationary.
  • the lines and columns addressed by the disturbance signal Sp will be different each time the position of the "cursor" will have to change.
  • the speed of movement of the cursor will be adapted to obtain a satisfactory tracking of the cursor by the eye of the observer.
  • only the pixels corresponding to the cursor will be addressed, the other pixels continuing to display the image because of the bistability of the screen.
  • the bistable display according to the invention consumes no electric power, whereas a monostable liquid crystal screen according to the state of the prior art consumes a power P because it must refresh its image 50 times a second. If the slider is useful, a monostable liquid crystal display according to the state of the prior art still consumes the same power P, while the bistable display according to the invention must receive the same energy per pixel, but 5 times less often and only on the lines and columns of the cursor.
  • the power required to display a 5 * 5 mm 2 slider in a bistable A4 format screen is:
  • P bistable cursor P classic screen (N '/ N + M' / M) * (5/50) ⁇ P classic screen / 250

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

La présente invention concerne un procédé d'adressage d'un écran matriciel bistable, dans lequel on réitère les deux étapes suivantes : A. on applique sur chaque pixel d'une zone de marquage un signal de perturbation (Sp = VL - VC) pendant un temps t1, ledit signal de perturbation étant supérieur à un signal seuil de sorte que chaque pixel de la zone quitte son état initial stable, ledit signal de perturbation étant inférieur à un signal de commutation de sorte que chaque pixel de la zone ayant comme état initial un des états stables ne bascule pas dans l'autre état stable, chaque pixel de la zone se trouvant alors dans un état perturbé intermédiaire entre les deux états stables, puis B. on n'applique aucun signal à chaque pixel de la zone pendant un temps t2 pour laisser revenir chaque pixel de la zone vers son état stable initial.

Description

« Procédé économique en énergie pour marquer une zone d'un écran à cristal liquide »
DOMAINE DE L'INVENTION L'invention concerne un procédé d'adressage d'un écran d'affichage à cristal liquide et un dispositif d'affichage mettant en œuvre ce procédé.
Plus précisément, la présente invention concerne les afficheurs Instables à cristaux liquides. Elle s'applique en particulier aux afficheurs Instables à cristaux liquides nématiques dont deux textures stables diffèrent par une torsion d'environ 180°. ETAT DE LA TECHNIQUE
Les afficheurs à cristaux liquides les plus répandus utilisent un cristal liquide de type nématique. Ils sont constitués d'une couche de cristal liquide placée entre deux lames. Chaque lame comporte un substrat, souvent en verre, sur lequel ont été déposées une électrode conductrice, puis une couche dite d'ancrage également appelée couche d'alignement. La couche d'ancrage exerce, sur les molécules de cristal liquide voisines, un couple de rappel qui tend à les orienter parallèlement à une direction nommée axe facile. Les couches d'ancrage sont souvent réalisées par un dépôt de polymère brossé pour créer la direction de l'axe facile. Celle-ci est le plus souvent très proche de la direction de brossage. L'épaisseur de la cellule ainsi constituée, dénommée d, est rendue constante par exemple en répartissant, entre les lames, des billes dont le diamètre est égal à l'épaisseur souhaitée (typiquement de 1 à 6 μm).
On connait des dispositifs à base de cristaux liquides monostables. En l'absence de champ électrique, le cristal liquide est orienté selon une seule texture. Cette texture correspond à un minimum absolu de l'énergie élastique du cristal liquide dans la cellule, compte tenu des ancrages sur les deux lames. Sous champ électrique, cette texture est déformée continûment et ses propriétés optiques varient en fonction de la tension appliquée. Des couches d'ancrage dites « couches d'ancrage fort » maintiennent la direction des molécules situées près des lames, qui varie peu, à la fois dans le plan du substrat (plan azimutal) et dans la direction perpendiculaire à celui-ci (direction zénithale): un ancrage fort des molécules près des lames sur la couche d'alignement correspond à un ancrage azimutal fort (maintien d'une direction fixe dans le plan du substrat) et un ancrage zénithal fort (maintien d'une direction proche du plan du substrat, c'est-à-dire pas ou peu de lever des molécules vers la direction perpendiculaire au substrat, parallèle au champ électrique, et ce quelle que soit la tension appliquée).
A la coupure du champ, le nématique est rappelé par les ancrages sur les deux lames. Il revient selon l'unique texture stable sans champ appliqué. Le dispositif est monostable. L'homme de l'art reconnaîtra le mode de fonctionnement des afficheurs nématiques les plus répandus : nématiques tordus (TN), supertordus (STN), à biréfringence électriquement contrôlée (ECB), verticalement alignés (VAN), etc .. Au niveau de l'adressage, ces afficheurs peuvent être adressés directement (très faible résolution), en mode multiplexe passif (résolution moyenne) ou en mode actif (haute résolution). Quand l'adressage est multiplexe, c'est-à-dire effectué ligne par ligne, pour que l'image paraisse stable visuellement, les signaux d'adressage doivent être envoyés à une fréquence de plusieurs dizaines de hertz : dès que le pixel n'est plus sous tension, il relaxe vers l'état stable sans champ appliqué.
Il est possible d'obtenir sur ces afficheurs monostables un effet de clignotement, par exemple dans une zone donnée de l'afficheur, dénommée zone de clignotement. Cette zone peut être l'ensemble de la surface adressée de l'afficheur ou une partie de celle-ci. Le clignotement correspond ici à l'obtention dans ladite zone d'une image qui apparaît puis disparaît, puis réapparaît et ainsi de suite, la disparition de l'image étant caractérisée par une teinte uniforme sur l'ensemble de ladite zone. Une teinte uniforme est une teinte sensiblement identique pour l'ensemble des pixels de la zone, la couleur de la teinte pouvant être quelconque. Pour obtenir cet effet de clignotement, il est nécessaire d'adresser ladite zone de l'afficheur en lui envoyant :
- les signaux correspondant à l'image à afficher pour faire apparaître l'image
- les signaux correspondant à une teinte uniforme sur l'afficheur - à nouveau les signaux correspondant à l'image à afficher pour faire réapparaître l'image.
Les afficheurs monostables ne disposent pas de mémoire d'image, une fois les signaux correspondant à la teinte uniforme appliqués, l'afficheur a « oublié » l'image précédemment appliquée et il est nécessaire d'envoyer à nouveau les signaux correspondant à ladite image pour la réafficher. BUT DE L'INVENTION
Le but de la présente invention est d'améliorer les performances des dispositifs d'affichage à cristal liquide. En particulier l'invention a pour but de permettre, par l'utilisation de nouveaux moyens, le marquage d'une partie ou de l'ensemble de l'information affichée sur un afficheur à cristal liquide, tout en conservant une consommation énergétique réduite par rapport à celle d'un afficheur à cristal liquide standard.
EXPOSE DE L'INVENTION Cet objectif est atteint avec un procédé d'adressage d'un écran matriciel, ledit écran comprenant :
- une couche de cristal liquide bistable se décomposant en pixels de cristal liquide bistable et, pour chaque pixel, des moyens pour appliquer un signal à ce pixel, le signal appliqué comprenant un champ électrique, chaque pixel de cristal liquide bistable ayant deux états stables possibles qui sont stables sans qu'un champ électrique ne soit appliqué à ce pixel, les deux états stables correspondant à des perceptions visuelles différentes pour un observateur observant l'écran, ledit procédé étant caractérisé en ce qu'il comporte les étapes suivantes : A. on applique, à chaque pixel d'une zone de pixels se trouvant dans un état initial correspondant à un des états stables, et pendant un premier laps de temps donné (tl), un signal dit signal de perturbation (Sp), ledit signal de perturbation étant supérieur à un signal seuil de sorte que chaque pixel de la zone quitte son état initial, ledit signal de perturbation étant inférieur à un signal de commutation de sorte que chaque pixel de la zone ayant comme état initial un des états stables ne bascule pas dans l'autre état stable, chaque pixel de la zone se trouvant alors dans un état perturbé intermédiaire entre les deux états stables, puis
B. on n'applique aucun signal à chaque pixel de la zone pendant un deuxième laps de temps donné (t2) pour laisser revenir chaque pixel de la zone vers son état stable initial, puis
C. on réitère les deux étapes A et B précédentes.
Dans une variante, on réitère les étapes A et B de préférence un nombre de fois supérieur à 1 , de manière à obtenir un effet visuel de clignotement de la zone provoqué par une alternance de l'état perturbé et de l'état initial pour chaque pixel de la zone.
Dans une autre variante, deux itérations successives des étapes A et B sont de préférence espacées d'une durée inférieure à une durée de persistance rétinienne de l'observateur, de manière à obtenir un effet visuel de marquage statique de la zone. Le procédé selon l'invention peut comprendre en outre un déplacement de la zone de pixels sur l'écran entre au moins deux itérations des étapes A et B.
Les pixels de la couche sont de préférence disposés en lignes de pixels parallèles et en colonnes de pixels parallèles, les lignes étant sensiblement perpendiculaire aux colonnes. Le signal de perturbation appliqué à un pixel comprend de préférence un signal colonne appliqué à la colonne sur lequel est situé ce pixel et comprend en outre de préférence un signal ligne appliqué à la ligne sur lequel est situé ce pixel, ce signal de perturbation étant de préférence proportionnel ou égal à une différence entre le signal colonne et le signal ligne. Dans une variante, la zone peut comprendre un ensemble de lignes adjacentes ou un ensemble de colonnes adjacentes. Dans une autre variante, la zone peut comprendre une intersection d'un ensemble de lignes adjacentes et d'un ensemble de colonnes adjacentes.
Le signal de perturbation peut être :
- un signal d'effacement pour lequel l'état perturbé d'un pixel initialement dans un des états stables est identique à l'état perturbé d'un autre pixel initialement dans l'autre état stable, les états perturbés de deux pixels initialement dans deux états stables différents correspondant à une même perception visuelle pour l'observateur observant l'écran, ou
- un signal de perturbation intermédiaire pour lequel l'état perturbé d'un pixel initialement dans un des états stables est différent de l'état perturbé d'un autre pixel initialement dans l'autre état stable, les états perturbés de deux pixels initialement dans deux états stables différents correspondant à des perceptions visuelles différentes pour l'observateur observant l'écran.
Le signal de perturbation peut comprendre : - un signal électrique de tension constante, ou
- un signal périodique ; dans ce cas, la fréquence du signal de perturbation peut être comprise entre 50 Hz et 500 Hz, ou peut être supérieure à 500 Hz.
Les deux états stables comprennent de préférence un état bloquant et un état passant, l'état passant ayant une luminance (Lib) perçue par l'observateur supérieure à la luminance (Lid) de l'état bloquant, l'état perturbé d'un pixel initialement dans l'état passant possédant une luminance (Lpb) perçue par l'observateur inférieure d'au moins
5% par rapport à la luminance (Lib) de l'état initial passant de ce pixel. Le signal de perturbation peut comprendre un signal électrique ayant une valeur efficace RMS de tension supérieure à 1 ,65 fois une tension de Freedericksz de la couche de cristal liquide.
Enfin, le signal de perturbation est de préférence bipolaire. BREVE DESCRIPTION DES FIGURES
Les différents objets et caractéristiques de l'invention apparaîtront plus clairement dans la description qui va suivre et dans les figures annexées parmi lesquelles :
- la figure 1 présente schématiquement une partie d'un premier mode de réalisation de dispositif selon l'invention comprenant un afficheur bistable de type ZBD et mettant en œuvre un procédé selon l'invention,
- la figure 2 présente schématiquement une partie d'un deuxième mode de réalisation de dispositif selon l'invention comprenant un afficheur bistable de type BiNem et mettant en œuvre un procédé selon l'invention, - la figure 3 décrit la structure d'un écran matriciel à adressage passif multiplexe du premier ou du deuxième mode de réalisation selon l'invention,
- la figure 4 décrit un exemple d'adressage en deux étapes de l'écran passif du deuxième mode de réalisation de dispositif selon l'invention de type BiNem,
- la figure 5 montre des variations de la luminance de pixels en fonction d'une tension RMS d'un signal de perturbation Sp de fréquence 600 Hz appliqué lors de la mise en œuvre d'un procédé selon l'invention,
- la figure 6 illustre un exemple de réalisation de procédé selon l'invention sur un afficheur bistable où l'on marque un ensemble de colonnes (zone de marquage) ; la figure 6a présente l'afficheur au repos avec une image préalablement inscrite sur la zone de marquage; la figure 6b présente l'afficheur quand un signal de perturbation « intermédiaire » est appliqué sur une partie des colonnes, les textures initiales se distinguant encore, le brouillage de l'image de la zone de marquage étant partiel, le contraste de cette image étant dégradé mais son contenu étant toujours lisible ; la figure 6c présente l'afficheur quand un signal de perturbation « d'effacement » est appliqué, le brouillage de l'image dans la zone marquée étant total.
- la figure 7 illustre des exemples de signaux appliqués lors de la mise en œuvre d'un procédé selon l'invention, le signal ligne étant relié à la masse, le signal colonne VC étant monopolaire (positif ou négatif) et ayant la forme d'un créneau d'amplitude Vblink, - la figure 8 illustre autre exemple de signaux appliqués lors de la mise en œuvre d'un procédé selon l'invention, le signal ligne étant égal à un potentiel moyen Vm et le signal colonne étant constitué d'alternance à Vm +Vblink et Vm-Vblink.
- la figure 9 illustre un exemple pour appliquer selon l'invention des tensions de perturbation sur les lignes et les colonnes pour déformer fortement et uniquement les textures d'un domaine rectangulaire.
- la figure 10 un autre exemple pour appliquer selon l'invention des tensions de perturbation sur les lignes et les colonnes pour déformer plus légèrement que dans le cas de la figure 9 les textures du domaine rectangulaire mais en économisant beaucoup d'énergie.
DESCRIPTION DETAILLEE DE L'INVENTION Dispositif mettant en œuvre le procédé selon l'invention
On va maintenant décrire un premier et un deuxième mode de réalisation de dispositif selon l'invention (aussi appelé afficheur) mettant en œuvre un procédé selon l'invention.
Ces modes de réalisation comprennent un écran matriciel permettant d'afficher une image, ledit écran comprenant :
- une couche de molécules de cristal liquide bistable se décomposant en pixels de cristal liquide bistable et, - pour chaque pixel, des moyens pour appliquer un signal à ce pixel, le signal appliqué comprenant un champ électrique, ces moyens d'application étant notamment agencés pour appliquer de façon itérative un signal de perturbation Sp selon l'invention selon le procédé selon l'invention décrit par la suite.
Chaque pixel de cristal liquide bistable a deux états stables possibles. Ces deux états stables sont stables sans qu'un champ électrique ne soit appliqué à ce pixel, les deux états stables correspondant à des perceptions visuelles différentes pour un observateur observant l'écran matriciel. Chaque état stable d'un pixel correspond à une texture stable donnée de molécules de cristal liquide au niveau de ce pixel.
Les pixels sont disposés en lignes de pixels parallèles et en colonnes de pixels parallèles, les lignes étant sensiblement perpendiculaire aux colonnes.
Le cristal liquide de la couche est de type nématique. La couche de cristal liquide est placée entre deux lames, l'ensemble constituant une cellule de cristal liquide. Chaque lame comporte un substrat, de préférence en verre, sur lequel ont été déposées une électrode conductrice, puis une couche dite d'ancrage également appelée couche d'alignement. La couche d'ancrage exerce, sur les molécules de cristal liquide voisines, un couple de rappel qui tend à les orienter parallèlement à une direction nommée axe facile. Les couches d'ancrage sont de préférence réalisées par un dépôt de polymère brossé pour créer la direction de l'axe facile. Cette direction de l'axe facile est de préférence très proche de la direction de brossage.
L'épaisseur de la cellule ainsi constituée (c'est-à-dire la distance entre les lames entre lesquelles est comprise la couche de cristal liquide), dénommée d, est rendue constante par exemple en répartissant, entre les lames, des billes dont le diamètre est égal à l'épaisseur souhaitée (typiquement de 1 à 6 μm). Le cristal liquide de la couche est « bistable » : ce type de cristal liquide fonctionne par commutation entre deux états stables en l'absence de champ électrique. Un champ électrique externe n'est appliqué que pendant le temps nécessaire pour faire commuter d'un état à l'autre la texture du cristal liquide. En l'absence de signal électrique de commande, l'afficheur reste en l'état obtenu. Par son principe de fonctionnement, ce type d'afficheur consomme une énergie proportionnelle au nombre de changements d'images. Ainsi, quand la fréquence de ces changements diminue, la puissance nécessaire pour le fonctionnement de l'afficheur tend vers zéro. Technologie ZBD et technologie BiNem
La figure 1 illustre, pour le premier mode de réalisation de dispositif selon l'invention, deux états différents d'un pixel de cristal liquide entre deux portions des lames. Ce premier mode utilise un effet flexo-électrique pour commuter, c'est-à-dire le signe du champ électrique appliqué. C'est le prétilt, c'est à dire l'angle que fait la molécule de cristal liquide proche de la surface avec celle-ci, qui varie entre deux valeurs stables sans champ appliqué. Cette bistabilité est obtenue à l'aide d'un réseau faisant office de couche d'alignement (cf documents [1], [2], [3] et figure 1). Cette technologie est dénommée ZBD (Zénithal Bistable Display). Une des couches d'alignement est constituée par un réseau périodique permettant au voisinage de la surface de ce réseau deux orientations des molécules de cristal liquide, l'une planaire, l'autre homéotrope. La figure 2 est une vue de coupe et de profil d'une portion de la cellule de cristal liquide du deuxième mode de réalisation de dispositif selon l'invention. Sur cette figure, on visualise 3 pixels de cristal liquide adjacents. Ce deuxième mode de réalisation bistable utilise un effet de surface : une cassure de l'ancrage zénithal sur au moins une des couches d'alignement. Cette cassure permet la commutation entre deux textures dont les torsions différent d'un angle compris entre 150° et 180° en valeur absolue. Le fonctionnement de cet afficheur dénommé BiNem est décrit dans le paragraphe suivant.
L'afficheur BiNem (documents [4] à [8]) est présenté schématiquement sur la figure 2, et possède une configuration générale identique à celle de la cellule à cristal liquide de type ZBD qui utilise également substrats, électrodes, polariseurs, cristal liquide. L'afficheur BiNem utilise préférentiellement deux textures tordues qui diffèrent par une torsion d'environ +/- 180°, (située en valeur absolue entre 150° et 180°). Une variante préférentielle mais non limitative est constituée d'une texture uniforme ou faiblement tordue dénommée U (illustrée sur la gauche de la figure 2) dans laquelle les molécules sont sensiblement parallèles entre elles, et d'une texture fortement tordue dénommée T (illustrée sur la droite de la figure 2). La texture U la moins tordue possède une torsion comprise entre 0° et 20° en valeur absolue. La couche de cristal liquide 30 est placée entre les deux lames 20 et 10, que l'on appelle respectivement lame maître et lame esclave. La lame maître 20 comporte un substrat 21, une électrode 22 et une couche d'ancrage 24 réalisant un ancrage azimutal et zénithal forts du cristal liquide, c'est-à-dire un ancrage du même type que celui utilisé dans les afficheurs à cristal liquide monostable. La lame esclave 10 comporte un substrat 11, une électrode 12 et une couche d'ancrage 14 réalisant un ancrage spécifique, correspondant à un ancrage zénithal faible et un ancrage azimutal moyen ou fort du cristal liquide. Les électrodes habituellement transparentes 12 et 22 sont typiquement constituées d'un matériau appelé ITO déposé sur les substrats 11 et 21. Elles permettent d'appliquer un champ électrique perpendiculaire aux lames 10 et 20.
L'adjonction de polariseurs sur chacun des substrats 1 1 et 21 typiquement mais non limitativement à l'extérieur de la cellule permet d'associer à chaque texture un état optique, par exemple sombre pour la texture U et clair pour la texture T ou inversement, en fonction des angles des deux polariseurs par rapport aux directions des ancrages.
En fonction du type de polariseur arrière, c'est-à-dire situé de l'autre côté de la couche de cristal liquide par rapport à l'observateur de l'afficheur, on peut obtenir divers modes optiques, transmissif, transflectif ou réflectif (documents [9], [10]). Une configuration utilisant un polariseur unique côté observateur et un miroir diffusant côté opposé est également possible ([18], [19]). Le nématique est chiralisé avec un pas spontané po, choisi proche de quatre fois l'épaisseur d de la cellule, pour égaliser les énergies des deux textures précitées. Le rapport entre l'épaisseur d de la cellule et le pas spontané po, soit d/po, est donc environ égal à 0,25 +/- 0,1. Sans champ, les états T et U sont les états d'énergie minimale : la cellule est bistable.
Sous fort champ électrique, une texture presque homéotrope, dénommée H et illustrée au milieu de la figure 2, est obtenue. Au voisinage de la surface de la lame esclave 10, les molécules lui sont perpendiculaires, l'ancrage zénithal est dit « cassé ». Cette cassure est obtenue grâce à la propriété d'ancrage zénithal faible sur cette lame, qui permet aux molécules proches de la surface de s'extraire de l'attraction de la couche d'alignement dans la direction perpendiculaire au substrat. On appelle tension de cassure Vcass la tension électrique correspondant à la cassure de l'ancrage sur la lame esclave 10. En fait c'est au champ électrique de cassure Ecass = Vcass/d, que sont sensibles les molécules. Typiquement Ecass est inférieur à 15V/μm à température ambiante (25°C) pour les couches d'alignement à ancrage zénithal faible telles que décrites dans les documents [11] et [12]. Les tensions de cassure sont alors : pour d=\μm Vcass < 15V ; pour d=2\ιm Vcass < 30V ; pour d=5μm Vcass < 75V. De plus, la tension de cassure Vcass est toujours d'au moins quelques volts, et ce même pour des cellules à cristal liquide très fines (lμm). A la coupure du champ électrique, la cellule évolue vers l'une ou l'autre des textures bistables U et T (voir figure 2). Lorsque les signaux de commande utilisés induisent un fort écoulement du cristal liquide au voisinage de la lame maître 20, le couplage hydrodynamique 26 entre la lame maître 20 et la lame esclave 10 crée près de la lame esclave un écoulement (ou flux) hydrodynamique suffisant pour induire la texture T. Dans le cas contraire, la texture U est obtenue par couplage élastique 28 entre les deux lames 10 et 20, aidé par l'inclinaison éventuelle de l'ancrage faible.
Dans la suite on désignera par « commutation » d'un élément d'écran ou pixel d'un afficheur de type BiNem le fait de faire passer les molécules du cristal liquide d'une texture stable initiale (U ou T ou une coexistence de ces deux textures) vers une texture stable finale (U ou T ou une coexistence de ces textures). Cette dénomination est également valable pour les deux textures stables de l'afficheur de type ZBD.
Le signal appliqué au pixel est classiquement constitué de plusieurs paliers. Le signal appliqué au pixel VP est classiquement bi-palier, mais peut être également multi-palier [13] ou mono-palier. Si la chute de tension entre deux paliers dépasse une certaine valeur absolue, et qu'elle s'opère en un temps suffisamment court, le «saut» de tension est suffisant pour que la texture T soit obtenue. Si le saut n'est pas suffisant, ou si le temps de transition est trop long, le flux hydrodynamique est insuffisant, la texture T devient impossible, et la texture U est obtenue. Modes d'adressage
Les 3 modes d'adressage développés pour les cristaux liquides standards (direct, multiplexe passif, actif) peuvent être utilisés pour l'afficheur BiNem ou ZBD. Le mode d'adressage le plus commun est l'adressage passif multiplexe, mais un adressage actif à l'aide de transistors en couches minces est également possible [14]. Dans les modes multiplexes actif et passif, l'afficheur (de type Binem ou ZBD) est un écran matriciel formé de N x M éléments d'écran appelés pixels, N étant le nombre de lignes de pixels et M le nombre de colonnes de pixels, et l'adressage s'effectue ligne après ligne.
Dans le mode passif multiplexe, tel qu'illustré sur la figure 3, chaque pixel est constitué par l'intersection : d'une bande ou électrode conductrice ligne 52 déposée sur une des lames et correspondant à une ligne de pixels, et d'une bande ou électrode conductrice colonne 50 déposée sur l'autre lame et correspondant à une colonne de pixels. Ces bandes 50, 52 perpendiculaires sont déposées sur chaque lame. La zone située entre deux bandes conductrices adjacentes portées par un même substrat est appelée espace interpixel. La zone constituée de l'ensemble des pixels est appelée zone matricielle. Une zone de marquage Zm est une partie de cette zone matricielle. Habituellement dans l'état de la technique, la zone matricielle correspond à la zone d'affichage, zone sur laquelle on affiche le contenu de l'image que l'on souhaite visualiser. En dehors de la zone matricielle, les bandes conductrices précitées 50, 52 se transforment en pistes qui réalisent la connexion aux circuits de commande générant le signal d'adressage. Ces circuits de commande peuvent être situés sur le substrat ou déportés. Classiquement, mais non limitativement, les afficheurs sont adressés à l'aide de composants ou circuits de commande que nous appellerons « drivers » situés par exemple sur des éléments de connexion flexibles soudés à l'écran. Les drivers, constitués principalement de portes analogiques commandées par des registres à décalage permettent de faire le lien entre l'électronique de pilotage et les pistes. Pour afficher le pixel P de coordonnées (n, m), n étant le numéro (nombre entier) de la ligne sur lequel est situé ce pixel, m étant le numéro (nombre entier) de la colonne sur lequel est situé ce pixel, on applique un signal d'adressage de ligne VLn sur la ligne n et un signal d'adressage de colonne VCm sur la colonne m. Généralement, les électrodes conductrices sont réalisées avec un matériau conducteur transparent appelé ITO (Oxyde mixte d'Indium et d'Étain). Mais lorsque l'afficheur est réfiectif, les électrodes situées sur le côté opposé à l'observateur peuvent être réalisées avec un matériau conducteur opaque, par exemple en aluminium.
Une des différences importantes à noter entre le mode passif et le mode actif est que dans le mode passif multiplexe, la tension électrique est appliquée par des bandes d'électrodes orthogonales constituant les lignes et les colonnes, dont les intersections constituent les pixels, alors que lors de l'adressage actif, la tension électrique est appliquée aux transistors associés à chacun pixel par des fils fins. Tous les transistors d'une même ligne sont passants lors de l'activation de cette ligne. Pilotage d'un afficheur Binem en mode multiplexe
Lorsque la structure de l'afficheur est matricielle comme décrit précédemment, l'adressage s'effectue ligne par ligne. Lorsque l'on souhaite inscrire une ligne donnée n, un signal électrique est appliqué sur cette ligne qui alors est dite « activée ». Nous appellerons ce signal d'adressage de ligne signal d'activation VLn. Dans le cas d'un multiplexage passif standard, le signal VLn est identique pour toutes les lignes, et nous l'appellerons VL.
Pour le BiNem, en référence à la figure 4, on distingue deux phases pendant l'activation : la première phase consiste essentiellement à obtenir une cassure d'ancrage, c'est à dire la texture homéotrope sur la ligne considérée, en appliquant par exemple une tension VlL > Vcass sur le signal d'adressage de ligne pendant une durée Tl, ce qui constitue un premier palier de VL. Typiquement dans l'état actuel de la technologie BiNem, VlL est compris entre 6V et 30V sur la plage de température 0°- 50°. Pendant la deuxième phase, un signal V2L est appliqué sur la ligne pendant une durée T2, ce qui constitue un deuxième et dernier palier de VL. Typiquement dans l'état actuel de la technologie BiNem, V2L est compris entre 2 V et 12V sur la plage de température 0°- 50°. Le signal d'adressage de ligne est dans cet exemple bi-palier, mais il peut également être mono-palier ou multi-palier. Une variante utilise un signal ligne inférieur à la tension de cassure, le signal colonne permettant la commutation dans l'une ou l'autre des textures [20] ; ou, selon une variante en deux étapes, tous les pixels sont d'abord commutés dans une même texture, ensuite la tension colonne provoque la cassure mais uniquement dans les pixels à commuter dans l'autre texture.
Des signaux électriques dits «data» appelés VC sont appliqués simultanément sur toutes les colonnes. Selon une variante classique, le flanc de descente du signal data VC est synchronisé avec le flanc de descente du deuxième palier du signal d'activation ligne V2L [4]. Selon la valeur de tension, et/ou sa forme, et/ou la durée te du signal VCm appliqué simultanément à chacune des colonnes, la texture U ou T est obtenue dans le pixel correspondant à l'intersection de cette colonne et de la ligne activée. Puis la ligne suivante est à son tour activée, les autres lignes étant non activées et ainsi de suite de la première à la dernière ligne de l'afficheur. Le temps entre la fin d'activation d'une ligne et le début de l'activation de la ligne suivante est appelé temps interligne TL. Ce temps est typiquement mais non limitativement compris entre 10 μs et 10 ms. Nous appellerons cet adressage «adressage en une étape». L'ordre d'activation des lignes (d'abord n-1, puis n, puis n+1) définit le sens de balayage 46 (voir figure 3). Le temps d'adressage de l'afficheur est le temps nécessaire pour adresser toutes ses lignes, de manière à afficher un nouveau contenu d'image.
Le document [15] décrivant la réalisation de niveaux de gris prévoit trois variantes d'obtention de niveaux de gris (figure 23 du document [15]) en modifiant les paramètres de VC. Selon un mode d'utilisation appelé adressage partiel, on souhaite afficher un nouveau contenu dans seulement une zone de l'image, le reste de l'image restant inchangé. Dans ce cas, seules les lignes correspondant à la zone où l'on souhaite afficher un nouveau contenu sont activées.
Selon un mode préférentiel connu mais non limitatif de pilotage, préalablement à l'adressage ligne à ligne, on effectue de manière collective l'adressage complet de l'écran (affichage d'une image complète) ou d'une zone de l'écran (adressage partiel) dans une texture donnée, habituellement T, en activant simultanément toutes les lignes ou un groupe de lignes correspondant à la zone à adresser, avec un signal Vpre. Les lignes sont ensuite adressées une par une, selon la méthode de multiplexage classique, pour afficher l'image ou la zone voulue. Deux transitions seulement doivent alors être réalisées, la transition T vers T d'une part, et la transition T vers U ou vers un mélange de U et de T d'autre part. Cet «adressage en deux étapes» permet de mieux maîtriser la commutation des pixels car ainsi les pixels partent tous d'un état bien défini au début de la deuxième étape. Selon la variante où la tension ligne est inférieure à la tension de cassure, pendant la deuxième étape la tension colonne ne provoque la cassure que pour les pixels dont on souhaite modifier l'état (la texture). A titre d'exemple, le principe d'adressage passif multiplexe de l'afficheur BiNem en deux étapes est illustré figure 4. Le signal d'adressage de colonne appliqué à la colonne m est choisi ici tel que te = T2. Les valeurs VCl à VC5 sont les valeurs de VCm appliquées sur la colonne m en synchronisation avec les lignes 1 à 5, successivement activées, de manière à obtenir la texture finale désirée sur le pixel à l'intersection de la ligne activée et de la colonne m. Dans un mode où l'on cherche à obtenir uniquement soit U soit T, on peut choisir par exemple une tension VC sous forme de créneau et différentes variantes sont possibles:
VC(U) = +Vcol et VC(T) = -Vcol (exemple de la figure 4) VC(U) est le signal d'adressage colonne pour obtenir la texture U. VC(T) est le signal d'adressage colonne pour obtenir la texture T. ou bien: VC(U)= +Vcol et VC(T) = 0, ou inversement. Selon un mode préférentiel connu mais non limitatif de réalisation d'afficheur
BiNem, la direction de brossage des couches d'alignement est orthogonale à la direction des lignes de l'afficheur, ce type d'afficheur est dit « à brossage orthogonal » (document [15]).
Afin d'éviter des effets électrochimiques dans le cristal liquide, des impulsions bipolaires, pour le signal Vpre et pour le signal VL peuvent être utilisées. Tension de seuil VO et tension de Freedericksz VF
Dans les cellules cristal liquide, on constate que le champ à appliquer, pour orienter les molécules, présente le plus souvent un seuil. Par exemple, considérons un nématique d'anisotropie diélectrique positive placé dans une cellule à ancrage planaire et parallèle sur les deux lames ; sans champ, les molécules sont parallèles entre elles et parallèles aux lames dans l'ensemble de la cellule. Un champ électrique, appliqué perpendiculairement aux lames, ne commence à orienter les molécules que lorsque la tension électrique est supérieure à un certain seuil dénommé seuil de Freedericksz VF ou tension de Freedericksz VF (document [16]). En dessous de VF, les molécules de cristal liquide restent immobiles, maintenues par l'élasticité nématique. A partir de VF, au fur et à mesure que la tension augmente, les molécules de cristal liquide tournent progressivement dans la direction du champ : d'abord celles situées au centre de la cellule puis les autres, excepté celles proches des lames, dont l'alignement est maintenu par l'ancrage. La tension VF peut s'exprimer suivant la formule suivante :
VF= π [Kl l/|Δε|)]l/2 où KI l est une des constantes élastiques du cristal liquide et Δε son anisotropie diélectrique. Selon le signe de Δε, les molécules tendent à s'orienter parallèlement (Δε >0) ou perpendiculairement au champ appliqué(Δε <0).VF est indépendante de l'épaisseur de la cellule cristal liquide et varie typiquement, pour les mélanges cristal liquide utilisés dans les afficheurs, entre 0,3V et IV.
Δε étant fonction de la fréquence du signal appliqué au cristal liquide, on appelle : - VF(statique) ou VFs la tension de Freedericksz correspondant à un signal appliqué en continu (c'est-à-dire avec une fréquence nulle), et VF(dynamique) ou VFd la tension de Freedericksz correspondant à un signal appliqué de fréquence supérieure à la fréquence de réponse du cristal liquide. Typiquement VFd est légèrement supérieure à VFs. Lorsque l'inclinaison des molécules sur une lame (prétilt) est élevée, le seuil disparaît. Pour des prétilts intermédiaires, typiquement quelques degrés, le seuil demeure mais il est moins marqué. Lorsque les cellules sont tordues ou dopées, mais toujours planaires, le seuil demeure mais la tension de seuil peut varier jusqu'à environ 30% par rapport à la tension VF théorique obtenue avec une cellule à ancrage planaire et parallèle. Ainsi, pour des textures de cristal liquide différentes de celle utilisées pour la mesure du seuil de Freedericksz, on parle d'effet de seuil, caractérisé par une tension de seuil, dénommée VO, dont la valeur reste toujours relativement proche de VF.
La présence de cet effet de seuil impose une valeur minimale aux signaux de commande des afficheurs nématiques, c'est un de leurs atouts. Elle permet d'éviter que les images affichées soient perturbées par des signaux parasites ; il suffit que ces parasites aient une amplitude inférieure à la tension de seuil. Cette propriété est fondamentale pour le multiplexage. Signal de perturbation Sp appliqué selon l'invention.
L'invention permet de marquer un pixel ou une zone d'un afficheur bistable matriciel comportant deux textures cristal liquide stables sans champ appliqué, par une méthode originale, qui n'est pas applicable sur les afficheurs monostables. La notion de marquage est définie par une modification optique visuellement détectable de cette zone par rapport au reste de l'image. Le signal de perturbation Sp ne modifie pas l'information contenue dans l'image préalablement inscrite dans la zone de marquage
Zm.
Les inventeurs ont montré qu'il était possible de réaliser cette fonction supplémentaire sur ces afficheurs bistables en ne commutant aucun des pixels de l'écran, donc à la fois rapidement et avec une dépense d'énergie minime.
Une image est préalablement affichée sur l'écran par commutation de chaque pixel dans un desdits états stables initiaux.
Le procédé selon l'invention mis en œuvre par l'afficheur à cristal liquide bistable comprend les étapes suivantes : a) on applique, à chaque pixel d'une zone Zm de pixels se trouvant dans un état initial correspondant à un des états stables, et pendant un premier laps de temps donné tl, un signal dit signal de perturbation Sp, ledit signal de perturbation étant supérieur à au signal seuil VO de sorte que chaque pixel de la zone quitte son état initial, ledit signal de perturbation étant inférieur au signal de commutation Vcass de sorte que chaque pixel de la zone ayant comme état initial un des états stables ne bascule pas dans l'autre état stable, chaque pixel de la zone se trouvant alors dans un état perturbé intermédiaire entre les deux états stables ; ainsi, on génère pendant ledit premier temps tl une perturbation visuelle de l'image préalablement inscrite dans la zone Zm; puis b) on n'applique aucun signal à chaque pixel de la zone pendant un deuxième laps de temps donné t2 pour laisser revenir chaque pixel de la zone vers son état stable initial, puis c) on réitère les deux étapes a) et b) précédentes, un nombre de fois supérieur à un, et avec une fréquence de réitération égale à tl + 12.
Ainsi, le procédé proposé est d'appliquer, sur toute une zone de marquage Zm comprenant un ensemble de pixels à marquer, pendant le temps tl, un signal électrique appelé signal de perturbation Sp ayant une amplitude définie ne comprenant pas de plage continue nulle, puis de ne plus appliquer de signal pendant le temps t2.
Le signal électrique de perturbation Sp appliqué, par les moyens d'application, à un pixel comprend : - un signal électrique colonne appliqué à la colonne sur lequel est situé ce pixel, tel qu'un signal d'adressage colonne VC ou VCm adressé tel que décrit précedement, et un signal électrique ligne appliqué à la ligne sur lequel est situé ce pixel, tel qu'un signal d'adressage ligne VL ou VLn adressé tel que décrit précédemment, ce signal de perturbation Sp étant proportionnel ou même égal à une différence entre le signal colonne et le signal ligne : Sp = VL - VC ou bien Sp du pixel (n, m) = VLn - VCm
L'amplitude du signal de perturbation Sp est : supérieure au seuil de Freedericksz VF et à la tension de seuil VO, et nettement inférieure aux seuils de commutation et à la tension de cassure Vcass. Ce signal dit de perturbation Sp déforme les deux textures correspondant aux deux états des pixels : leurs propriétés optiques sont modifiées, le contraste diminue jusqu'à la valeur du signal de perturbation pour laquelle la zone prend une teinte uniforme.
Le signal de perturbation Sp n'a pas pour but de modifier indépendamment chaque pixel de la zone Zm. Il n'y a pas de modification individuelle des pixels de la zone Zm, par exemple pour afficher une nouvelle image avec des niveaux de gris comprenant de nouvelles informations.
Le signal de perturbation Sp modifie uniformément, c'est-à-dire de manière identique, tous les pixels de la zone se trouvant dans un état initial donné, ledit état initial étant l'un des deux états stable possible sans champ appliqué : tous les pixels initialement dans l'état stable passant ont une même luminescence perturbée Lpb, et tous les pixels initialement dans l'état stable bloquant ont une même luminescence perturbée
Lpd. La modification de l'état optique des pixels, réalisée par le signal de perturbation, est la même pour tous les pixels initialement dans le même état stable. Pour chaque état stable initial, quelque soit le pixel dans cet état, l'état perturbé est identique. Il y a donc deux états perturbés dans le cas d'un signal d'effacement intermédiaire, et un seul état perturbé dans le cas d'un signal de perturbation d'effacement.
Le signal de perturbation Sp est identique pour tous les pixels de la zone Zm, quel que soit leur état stable initial. Le signal de perturbation est identique pour l'ensemble des pixels de la zone de marquage Zm, afin d'obtenir une perturbation homogène sur l'ensemble de la zone. Le signal de perturbation, qu'il soit d'effacement ou intermédiaire ne modifie pas, dans la zone, l'information contenue dans l'image préalablement inscrite.
Cependant comme le signal de perturbation est nettement inférieur aux seuils de commutation, l'orientation des molécules près des lames ne change pratiquement pas pendant tl : l'écran garde en mémoire sur les lames l'image initiale. Il suffit d'arrêter le signal de perturbation pour que les pixels reviennent chacun dans leur texture d'équilibre sans champ. L'image précédant la déformation est ainsi reconstituée au début de t2 en quelques millisecondes sans aucune dépense d'énergie. Lors de la perturbation aucune information supplémentaire n'a été inscrite puisque l'effet optique du signal de perturbation est le même pour tous les pixels initialement dans un même état stable, et l'image reconstituée à l'arrêt du signal de perturbation est l'image initiale préalablement inscrite.
Le marquage de la zone d'écran est ainsi réalisé par disparition, pendant tl, puis réapparition, pendant t2, de l'image dans cette zone. La durée typique de tl est comprise entre 0.1 et quelques dizaines de secondes, et la durée typique de t2 est comprise entre 0.1s et quelques minutes, de sorte que la durée typique de tl+ t2 est comprise entre 0.2s et quelques minutes. Effet du signal de perturbation Sp : modification de la luminance
Dans le cas particulier d'un afficheur BiNem, ces deux états stables correspondent aux textures U et T.
De manière générale, les deux états stables comprennent :
- un état clair aussi appelé état passant, et
- un état sombre aussi appelé état bloquant.
Soit Lib la luminance (exprimée en candelas/m2) issue d'un pixel dont la texture correspond à l'état dit clair ou passant (« bright ») de ce pixel, et Lid la luminance (exprimée en candelas/m2) issue d'un pixel dont la texture correspond à l'état sombre ou bloquant (« dark ») de ce pixel. Nous choisirons pour définir les luminances émises par l'afficheur, les luminances mesurées dans la direction perpendiculaire aux substrats. Lorsque l'afficheur est en mode réflectif, la mesure de luminance dépend du type d'éclairage illuminant la cellule. Nous choisirons pour caractériser la luminance de l'afficheur en mode réflectif un éclairage diffus, et l'on recueille la luminance réfléchie au travers de l'afficheur dans la direction perpendiculaire au substrat et obstruant la zone autour du détecteur, de manière à ne pas recueillir dans le détecteur de rayons issu de la réflexion spéculaire de la source d'éclairage sur la face avant (interface air/afficheur) de l'afficheur (en anglais « specular excluded »). Cette méthode de mesure de luminance de l'afficheur en mode réflectif utilisant un éclairage diffus dite « specular excluded » est décrite dans le document [17]. Elle permet d'obtenir une mesure de contraste (rapport entre la luminance de l'état passant et la luminance de l'état bloquant) et une mesure de réflectance (rapport entre la luminance de l'afficheur dans l'état passant et la luminance obtenue en remplaçant l'afficheur par un diffuseur de type Lambertien). La réflectance s'exprime en %.
L'état passant a une luminance Lib perçue par l'observateur supérieure à la luminance Lid de l'état bloquant. Le signal de perturbation Sp appliqué à la zone de marquage pendant un laps de temps tl a pour effet d'orienter les molécules de cristal liquide dans le volume en fonction de ce signal Sp appliqué et donc différemment de leur orientation initiale sans champ appliqué. Cette nouvelle orientation provoque une modification de la luminance issue de chaque pixel de l'afficheur. La zone de marquage Zm comprend au moins un, et même plusieurs pixels se trouvant initialement dans l'état passant avant l'application du signal de perturbation, et comprend en outre au moins un, et même plusieurs pixels se trouvant initialement dans l'état bloquant avant l'application du signal de perturbation. On appel ;
- Lpb la luminance (exprimée en candelas/m2) issue d'un pixel se trouvant dans un état perturbé intermédiaire entre les deux états stables du fait de l'application de signal de perturbation, ce pixel se trouvant initialement dans l'état passant avant l'application du signal de perturbation, et
- Lpd la luminance (exprimée en candelas/m2) issue d'un pixel se trouvant dans un état perturbé intermédiaire entre les deux états stables du fait de l'application de signal de perturbation, ce pixel se trouvant initialement dans l'état bloquant avant l'application du signal de perturbation.
Ainsi, Lpb et Lpd sont les luminances des pixels perturbés ayant des états initiaux stables correspondant aux luminances respectivement Lib et Lid. Comme le signal de perturbation Sp n'inscrit aucune information supplémentaire, pour un signal de perturbation donné, la luminance obtenue Lpb est identique pour tous les pixels initialement dans l'état passant et la luminance obtenue Lpd est identique pour tous les pixels initialement dans l'état bloquant.
Une tension RMS (« Root Mean Square ») est aussi appelée valeur efficace de cette tension. La figure 5 présente l'évolution du rapport de luminances Lpb/Lib et du rapport de luminances Lpd/Lib en fonction de la tension RMS du signal de perturbation Sp appliqué. Sur la figure 5, les luminances Lpb et Lpd sont toutes deux normalisées par rapport à Lib la luminance de l'état initial passant sans signal de perturbation appliqué. Sur cet exemple, l'effet du signal de perturbation Sp est triple. Sp diminue la luminance Lpb de l'état passant progressivement au fur et à mesure que la valeur de Sp augmente, jusqu'à une valeur correspondant à l'état « d'équilibre » des molécules cristal liquide sous champ appliqué. Une quelconque augmentation de la tension appliquée ne modifiera quasiment plus la texture cristal liquide obtenue. La valeur effective de la luminance correspondant à cet état d'équilibre, dénommée luminance « d'équilibre » Lo, est fonction de la position des polariseurs de la cellule.
Sp augmente la luminance Lpd de l'état bloquant progressivement au fur et à mesure que la valeur de Sp augmente, jusqu'à cette même valeur dite luminance « d'équilibre » Lo.
Lorsque cette luminance « d'équilibre » Lo est atteinte, on a Lpb=Lpd=Lo. Le contraste entre état passant et état bloquant Lpb / Lpd est égal à 1 : Lpb / Lpd = 1 c'est-à-dire que l'image préalablement inscrite est totalement effacée. Un signal Sp tel que l'image préalablement inscrite est effacée est appelé signal de perturbation Sp « d'effacement ». Tel qu'illustré sur la figure 6c, en appliquant un signal de perturbation « d'effacement » sur un pixel P6 initialement dans un état passant et sur un pixel P5 initialement dans un état bloquant, le pixel P6 initialement dans l'état stable passant se retrouve dans état perturbé identique à l'état perturbé dans lequel se retrouve le pixel P5 initialement dans l'état stable bloquant, ces états perturbés de pixels initialement dans deux états stables différents correspondant à une même perception visuelle pour l'observateur observant l'écran.
A titre d'exemple non limitatif, le résultat du marquage d'une zone Zm de l'afficheur correspondant à un ensemble jointif de colonnes de pixels (colonnes contiguës à droite de l'afficheur), dénommée zone de marquage, est montré sur les figures 6a, 6b et 6c. Sur ces figures :
- un pixel Pl dans un état stable bloquant est représenté en noir,
- un pixel P2 dans un état stable passant est représenté en gris clair, et
- un pixel P3, P4, P5 et P6 dans un état perturbé est représenté en gris plus ou moins foncé.
La figure 6a correspond à l'afficheur dans son état initial. L'état passant correspond ici à l'état T et l'état bloquant à l'état U. La figure 6b montre l'image obtenue avec un signal de perturbation Sp « intermédiaire », c'est-à-dire avec une diminution de la luminance de l'état passant et une augmentation de la luminance de l'état bloquant, mais sans avoir atteint la luminance « d'équilibre » dans la zone marquage. Tel qu'illustré sur la figure 6b, en appliquant un signal de perturbation « intermédiaire » sur un pixel P4 initialement dans un état passant et sur un pixel P3 initialement dans un état bloquant, le pixel P4 initialement dans l'état stable passant se retrouve dans état perturbé différent de l'état perturbé dans lequel se retrouve le pixel P3 initialement dans l'état stable bloquant, ces états perturbés de pixels initialement dans deux états stables différents correspondant à des perceptions visuelles différentes pour l'observateur observant l'écran. Ainsi, l'état passant s'est assombri, l'état bloquant est nettement moins noir également mais les texture obtenues à partir des textures de départ U et T pour cette valeur « intermédiaire » du signal de perturbation sont encore optiquement distinctes. Tous les pixels initialement dans l'état passant sont assombris de manière identique, et tous les pixels initialement dans l'état bloquant sont moins noirs de manière identique. Bien que toujours visible, l'image a un contraste dégradé et l'œil perçoit parfaitement le marquage de cette zone. Le signal de perturbation modifie la perception visuelle de la zone de marquage sans qu'il y ait de modification de l'information contenue dans ladite zone. La figure 6c montre l'image obtenue avec un signal Sp tel que la luminance « d'équilibre » est atteinte. Pour cette valeur, les textures issues de U et de T paraissent optiquement identiques, l'image préalablement inscrite n'est plus visible, elle est effacée. Bien entendu et à fortiori, le marquage est parfaitement perceptible. Le signal de perturbation Sp est alors dénommé signal de perturbation « d'effacement ».
Mode de marquage statique ou mode de marquage clignotant La zone Zm que l'on souhaite marquer peut l'être de deux manières : - soit avec une perturbation de l'image (étape a) pendant le temps tl) et une absence de signal de perturbation (étape b) pendant le temps 2) telles que la périodicité soit inférieure à une durée de persistance rétinienne de l'observateur, de manière à obtenir un effet visuel de marquage statique de la zone, ce que nous appellerons mode de fonctionnement statique ou marquage statique, ce mode étant le plus économique en énergie. - soit en alternant perturbation de la zone Zm pendant le temps tl et image non perturbée pendant le temps t2, à une fréquence sensible pour l'observateur ; ce mode sera appelé mode clignotant ou marquage clignotant ; le temps tl+t2 sera alors par exemple supérieur à 0,1 seconde ; ainsi, on réitère les étapes a) et b) un nombre de fois supérieur à 1 , de manière à obtenir un effet visuel de clignotement de la zone Zm provoqué par une alternance de l'état perturbé et de l'état initial stable pour chaque pixel de la zone. Fréquence du signal de perturbation
Pendant le ou les temps tl, la perturbation de la zone de marquage peut être obtenue selon deux variantes :
- soit en appliquant un signal de perturbation Sp constitué d'une tension unique continue de durée tl et d'amplitude Vblink inférieure à Vcass mais supérieure à la tension de seuil VO du cristal liquide (fréquence nulle du signal Sp) ; dans ce cas, le signal de perturbation Sp comprend un signal électrique de tension constante. - soit en appliquant, pour éviter une polarisation de la cellule, malgré l'augmentation de consommation d'énergie que cela implique, un signal de perturbation Sp périodique de fréquence non nulle Jp. Par exemple un train d'impulsions de fréquence suffisamment élevée donnera à la zone une teinte homogène pendant la perturbation (typiquement une fréquence supérieure à 50 Hz, soit une période du signal de perturbation pp inférieure à 20ms). Si la fréquence est inférieure à 50 HZ, l'oeil de l'observateur va pouvoir percevoir des fluctuations pendant le temps de perturbation tl.
Les deux modes sont compatibles avec l'effet recherché, c'est-à-dire une perturbation de l'image pendant le ou les temps tl, puis un retour à l'image préalablement affichée, pendant les temps t2 et après le marquage. Pour une période pp comprise entre 20 ms et le temps de réponse du cristal liquide (typiquement quelques ms, soit une fréquence^ entre 50Hz et 500Hz), le cristal liquide va plus ou moins suivre le signal appliqué, et l'œil percevra une luminance moyenne correspondant aux différentes orientations du cristal liquide. L'effet visuel obtenu, qui sera toujours une différence de la luminance par rapport à celles des états stables de l'image préalablement affichée, sera une teinte homogène fonction de la forme du signal appliqué pendant la période pp.
Pour une période pp inférieure au temps de réponse du cristal liquide, typiquement une fréquence^? supérieure à 500 Hz, celui-ci va s'orienter selon la valeur RMS (Root Mean Square) du signal périodique appliqué. Le comportement du cristal liquide devient indépendant de la forme du signal appliqué et de sa fréquence, seule compte la valeur RMS du signal. Dans ce cas également, la perturbation correspondra à une teinte homogène dans le temps. Dans tous les cas, le signal de perturbation appliqué doit avoir une tension RMS inférieure à la tension de cassure Vcass et supérieure à la tension de seuil VO du cristal liquide.
Première variante : zone marquée égale à tous les pixels d'un ensemble de lignes ou de colonnes
Une première variante de l'invention est de marquer (de façon statique ou clignotante) une zone Zm constituée d'un ensemble de q lignes adjacentes (référencées respectivement LxI, Lx2,....Lxq) ou d'un ensemble de q colonnes adjacentes (référencées respectivement Cxl,Cx2,...Cxq), le marquage concernant tous les pixels de la ligne ou de la colonne concernée. Ainsi, la zone Zm comprend un ensemble de lignes adjacentes ou un ensemble de colonnes adjacentes.
Par exemple le marquage statique ou le clignotement d'un ensemble de colonnes peut être obtenu en appliquant uniquement un signal colonne sur les colonnes de la zone de clignotement, les lignes étant à la masse ou à un potentiel fixé. On peut appliquer selon une première option un signal colonne VC par exemple monopolaire (positif ou négatif) ayant la forme d'un créneau et d'amplitude
Vblink , par exemple égal 2,5 V pendant la durée tl (cas du signal continu, par exemple
11=500 ms), tel que décrit figure 7, simultanément sur un ensemble de colonnes excitées.
Le signal ligne VL est par exemple égal à 0V sur toutes les lignes, obtenu par exemple en mettant toutes les lignes à la masse. Le temps t2 entre deux perturbations est par exemple égal à une seconde.
Une variante (non illustrée sur les figures) pour éviter un stockage des charges dans l'afficheur est d'appliquer un signal bipolaire (+Vblink pendnant la moitié de tl puis - Vblink pendant l'autre moitié de tl, ou l'inverse). Une autre variante (non illustrée sur les figures) est d'appliquer + Vblink pendant tl pour une perturbation et à la perturbation suivante un signal -Vblink pendant tl .
En référence à la figure 8, une deuxième option est d'utiliser un signal de perturbation Sp de fréquence non nulle fp, monopolaire ou bipolaire. Un signal de perturbation Sp bipolaire présente l'avantage d'éliminer les inconvénients d'une polarisation électrique continue pouvant provoquer un stockage des charges dans l'écran.
Lorsque les drivers colonnes ne peuvent délivrer qu'un signal colonne positif, l'obtention d'alternances positives et négatives sur les pixels des colonnes peut s'obtenir en mettant les colonnes appartenant à la zone de marquage statique (ou de marquage clignotant) à un potentiel moyen Vm, le signal colonne étant constitué d'alternance à Vm +Vblink et Vm-Vblink. Les lignes sont mises au potentiel moyen Vm, si nécessaire à l'aide d'un circuit de génération de Vm optimisé et spécifique. Il est aussi nécessaire d'appliquer Vm également aux colonnes situées en dehors de la zone de marquage (ou de clignotement), pour que celles-ci ne voient pas les perturbations optiques provoquées par l'application de Vm aux lignes.
Bien entendu les variantes permettant le clignotement d'un ensemble de colonnes sont applicables à un ensemble de lignes. Sensibilité de la perturbation à la tension RMS Le signal de perturbation Sp utilisé sur la figure 6 est un signal colonne monopolaire de fréquence 600 Hz, les lignes étant à la masse. Comme décrit précédemment, la figure 6a correspond à l'afficheur dans son état initial. L'état passant correspond à l'état T et l'état bloquant à l'état U. La figure 6b montre l'image obtenue avec un signal de perturbation Sp de valeur RMS 1,5 V dans la zone de marquage (ou de clignotement). Les textures obtenues à partir des textures de départ U et T pour une valeur RMS du signal appliqué de 1 ,5V sont encore optiquement distinctes. Cette valeur de tension RMS correspond donc ici à un signal de perturbation Sp « intermédiaire ». Bien que toujours visible, l'image a une luminance de l'état passant diminuée, un contraste dégradé et l'oeil perçoit parfaitement le marquage de cette zone. La figure 6c montre l'image obtenue avec un signal Sp de valeur RMS 2,5 V. Pour cette valeur, les textures issues de U et de T paraissent identiques, presque toutes les molécules sont levées par le champ appliqué, l'image n'est plus visible. Cette valeur de tension RMS correspond donc ici à un signal de perturbation Sp « d'effacement ». Bien entendu et à fortiori, le marquage est parfaitement perceptible. Le signal de perturbation Sp comprend donc de préférence un signal électrique (VL -VC) ayant une valeur efficace RMS de tension supérieure à 1 ,65 fois la tension de Freedericksz VF de la couche de cristal liquide. Tension de seuil Pour une valeur de Sp inférieure ou égale à ce qui est appelé la tension de seuil VO du cristal liquide, les molécules de cristal liquide ne réagissent pas au champ appliqué. Optiquement cela se traduit par une luminance des états passant et sombre sous champ égale à celle sans champ. Cette tension de seuil est fonction du cristal liquide, de la texture dans laquelle se trouve celui-ci, de la fréquence et du facteur de forme du signal appliqué. Pour les deux textures stables utilisées ici, la tension de seuil est quasiment identique. La tension de seuil VO est supérieure ou égale à la tension VFs. Pour la courbe de la figures 5, un cristal liquide tel que VFs = 0,6 V a été utilisé, et on constate que les luminances des états passant et bloquant restent constantes environ jusqu'à une tension RMS, qui correspond donc à la tension de seuil VO, proche de VFs soit 0,6 V. Tension V5%
Après de nombreuses investigations, les inventeurs ont montré qu'un marquage était perceptible dès que la luminance Lpb variait au moins de 5% par rapport à sa luminance Lib sans signal appliqué. Lorsqu'une partie de l'afficheur (zone de marquage statique ou clignotant) est soumise à un signal de perturbation Sp pendant un temps donné tl, nous appellerons V5% la valeur de la tension maximale appliquée à un pixel initialement dans l'état passant telle que celle-ci perturbe de 5% la luminance du pixel en question. Au- delà de la fréquence correspondant au temps de réponse du cristal liquide utilisé, V5% est une tension RJVIS. Cette tension V5% est fonction du cristal liquide utilisé, de la fréquence du signal Sp appliqué ainsi que de son facteur de forme, et du temps tl pendant lequel le signal de perturbation est appliqué ; V5% est supérieure ou égale à VFs et à VO.
Ainsi, pour chaque pixel de la zone Zm initialement dans l'état passant et auquel on applique un signal de perturbation Sp, l'état perturbé de ce pixel initialement dans l'état passant possède une luminance Lpb perçue par l'observateur inférieure d'au moins 5%, voir 10% ou même 20% par rapport à la luminance Lib de l'état initial passant de ce pixel. Exemple de la figure 5 Sur l'exemple de la figure 5, le signal Sp est un signal de fréquence 600Hz.
Dans un premier temps, pour des valeurs de Sp telles que la valeur RMS est inférieure à la tension de seuil (ici VO ≈VFs=0,6V), on n'observe aucune altération de l'image affichée.
Puis, à partir d'une valeur RMS de Sp supérieure à la tension de seuil VO, progressivement au fur et à mesure que Sp augmente, les molécules de cristal liquide se lèvent, ce qui a pour conséquence optique une baisse de la luminance Lpb.
Une chute de 5% de la luminance de l'état passant (Lpd/Lib=0,95) correspond à une tension appliquée d'environ V5%= 0,8V, soit à une tension légèrement supérieure à VFs. Pour des valeurs de tension « intermédiaires », on constate une baisse continue du contraste (Lpb/Lpd), c'est-à-dire une diminution de Lpb conjointement à une augmentation de Lpd. Pour une valeur de tension RMS appliquée égale à 1 ,65 fois VFs soit IV, le ratio Lpb/Lib = 0,85. On a bien 0,85 inférieur à 0,95, 0,95 correspondant à une chute de 5% de la luminance initiale. Dans cet exemple la diminution de luminance de l'état passant est supérieure à 5% lorsque le signal appliqué a une valeur RMS égale à
1,65 fois VFs du cristal liquide. Ainsi pour un marquage statique ou clignotant perceptible, une valeur de Sp de 1 ,65 fois VFs est suffisante. Pour un marquage statique ou clignotant plus marqué, on choisira d'appliquer un signal ayant une tension RMS égale à 2,5 fois VFs.
A partir d'une certaine valeur critique Vcri de la tension du signal de perturbation, le signal de perturbation Sp est un signal « d'effacement », et presque toutes les molécules sont levées, les textures des états passant et sombre n'évoluent plus, optiquement les luminances Lpb et Lpd des états perturbés deviennent égales à la luminance d'équilibre Lo. Cette valeur de luminance Lo est fonction entre autres des angles des polariseurs utilisés. Dans la configuration expérimentale décrite, cette valeur est égale à 0,52 multiplié par Lib.
Dans cet exemple, la valeur de tension RMS minimale pour obtenir l'effacement de l'image préalablement inscrite est d'environ 2V = 3,3 fois VFs . Le marquage de la zone est dans ce cas maximal.
Deuxième variante : marquage de l'intersection de N' lignes et M' colonnes d'un écran de N lignes et M colonnes
Une deuxième variante de l'invention est de marquer (de façon statique ou clignotante) une zone Zm comprenant une intersection d'un ensemble de N' lignes adjacentes et d'un ensemble de M' colonnes adjacentes.
On a 1 < N'≤N et 1 < M'≤M. Les lignes ou colonnes dont au moins un pixel appartient à la zone à marquer sont dénommées « excitées ». On choisit ici des lignes et des colonnes jointives c'est-à-dire adjacentes. On peut bien entendu marquer simultanément plusieurs zones de l'afficheur, chaque zone étant au moins égale à un pixel.
Le signal appliqué à un pixel est la différence entre le signal sur sa ligne et celui sur sa colonne. La difficulté par rapport au cas précédent est de ne perturber optiquement que la zone située à l'intersection des lignes et colonnes excitées, tandis que les autres pixels des lignes et colonnes excitées n'appartenant pas à la zone à marquer ne sont pas perturbés. Ce résultat sera obtenu en profitant de l'existence de la tension de seuil de l'afficheur VO.
Une première option est illustrée sur la figure 9. La zone marquée Zm est en noir, la bande de lignes excitées est horizontale et est représentée en gris clair par des hachures, et la bande de colonnes excitées est verticale et est représentée en gris foncé par des hachures. On applique pendant le temps de perturbation tl, 3 fois VO RMS aux lignes excitées et +V0 RMS aux autres lignes, 0V RMS aux colonnes excitées, et 2xV0 RMS aux colonnes non excitées. Ainsi on applique une tension RMS VO à tout l'écran sauf aux pixels de la zone à marquer Zm qui reçoivent 3 fois VO RMS, ce qui est largement suffisant pour obtenir une perturbation de l'image préalablement inscrite. Les pixels soumis à VO, tension de seuil, ne réagiront pas à cette tension et resteront stables.
On peut également appliquer VO à toutes les lignes, et VO aux colonnes non excitées et -VO aux colonnes excitées.
Aucune tension n'est ensuite appliquée sur aucune ligne et colonne pendant le temps t2. Ce mode permet une perturbation très visible, mais il présente l'inconvénient d'appliquer une différence de potentiel sur tout l'afficheur, ce qui consomme environ autant d'énergie qu'un rafraichissement d'image. Il faut remarquer cependant que dans le cas d'un marquage par clignotement, la fréquence du clignotement est environ dix fois plus faible que celle du rafraichissement d'un afficheur classique monostable. Ainsi la puissance consommée par l'invention est dans ce cas dix fois plus faible que celle consommée par un afficheur classique.
Une deuxième option est illustrée sur la figure 10. La zone marquée Zm est en noir, la bande de lignes excitées est horizontale et en gris clair, et la bande de colonnes excitées est verticale et en gris foncé. Cette deuxième option permet de n'appliquer une différence de potentiel que sur les lignes et les colonnes excitées, ce qui est moins consommateur en énergie. On applique 2 fois VO aux lignes excitées et VO aux autres lignes, 0V aux colonnes excitées, et VO aux colonnes non excitées. Ainsi on applique une tension nulle ou VO aux pixels en dehors de la zone de clignotement Zm, et on applique 2 fois VO aux pixels de la zone de clignotement Zm. Le signal de perturbation est ici de 2 fois VO à comparer à 3 fois VO pour la variante précédente. La perturbation obtenue pour cette deuxième variante est moindre que celle de la première variante si on est dans le cas où 2 fois VO ne permet pas d'obtenir l'effacement total de l'image préalablement inscrite. Mais un brouillage répété de l'image, même sans disparition de celle-ci, est suffisant pour attirer l'oeil qui est sensible à la variation temporelle de luminance.
Troisième variante : curseur dynamique
Une troisième variante de l'invention est de marquer (de façon statique ou clignotante) une zone de marquage Zm mobile, appelée « curseur ».
En appliquant les concepts développés ci-dessus, il est possible de mettre en place dans un écran BiNem un curseur dynamique. La zone de marquage Zm comprenant l'ensemble des pixels perturbés est appelée « curseur ». L'ensemble des pixels du curseur Zm sont perturbés de manière à se différencier du reste de l'image affichée sur l'écran, ce curseur Zm se déplaçant d'un point à un autre de l'écran de manière à recréer une fonction « souris » d'un ordinateur. Le procédé selon l'invention comprend alors en outre un déplacement de la zone de pixels Zm sur l'écran entre au moins deux itérations des étapes a) et b):
- dans une première variante, le procédé selon l'invention comprend un déplacement de la zone de pixels Zm sur l'écran après chaque itération des étapes a) et b), ou
- dans une deuxième variante, le procédé selon l'invention comprend un déplacement de la zone de pixels Zm sur l'écran après un nombre Q d'itération des étapes a) et b) supérieur à 1, la zone Zm étant de préférence marquée de façon clignotante pendant les Q itérations pendant lesquelles Zm est immobile.
Les lignes et les colonnes adressées par le signal de perturbation Sp seront différentes à chaque fois que la position du « curseur » devra changer. La rapidité de déplacement du curseur sera adaptée de manière à obtenir un suivi satisfaisant du curseur par l'œil de l'observateur. Bien entendu, pour cette application seuls les pixels correspondant au curseur seront adressés, les autres pixels continuant à afficher l'image du fait de la bistabilité de l'écran.
Pour cette application, l'intérêt de l'invention est évidente. En effet il suffit de marquer la zone du curseur en la déplaçant ou en la faisant clignoter au plus 5 fois par seconde. Si le curseur n'est pas utile, l'afficheur bistable selon l'invention ne consomme aucune puissance électrique, alors qu'un écran à cristaux liquides monostable selon l'état de la technique antérieur consomme une puissance P car il doit rafraichir son image 50 fois par seconde. Si le curseur est utile, un écran à cristaux liquides monostable selon l'état de la technique antérieur consomme toujours la même puissance P, alors que l'afficheur bistable selon l'invention lui doit recevoir la même énergie par pixel, mais 5 fois moins souvent et uniquement sur les lignes et les colonnes du curseur. La puissance nécessaire pour afficher un curseur de 5*5 mm2 dans un écran de format A4 bistable est :
P curseur bistable = P écran classique (N'/N+M'/M)*(5/50) ≈ P écran classique/250
Ainsi, grâce à l'invention proposée, il est possible d'ajouter un curseur à un écran bistable en n'augmentant que marginalement sa consommation.
DOCUMENTS CITES Document [I]: « Grating Aligned Bistable Nematic Device », G.P. Bryan-Brown et al , proceeding SID 1997, p37-40
Document [2]: « Novel bistable liquid crystal displays based on grating alignment »
J.Cliff Jones et al, proceeding of SPIE vol,3955 (2000), p84-93
Document [3] : EP 0744 042 Document[4] : US 6327 017
Document[5] : I.Dozov et al, "Récent improvements of bistable nematic displays switched by anchoring breaking (BiNem)", Proceeding SID 2001, p 224-227
Document[6] :P. Martinot Lagarde et al , SPIE vol. 5003 (2003), p25-34
Document[7]: M.Giocondo, I.Lelidis, I.Dozov, G.Durand, Eur. Phys. J.AP5, 227 (1999) Documentai : I- Dozov, Ph. Martinot-Lagarde, Phys. Rev. E., 58, 7442 (1998).
Documenté] : WO 2005 / 054 940
Document[ 10] : WO 2005 / 054 941
Documenta i] : US 7087 270
Document[12] : US 7067180 Document [13] : US 7173 587
Document [14] : US 10 / 536 419
Document [15] : US 10 / 557 721
Document [16] : The Physics of Liquid Crystals (2nd Ed.), International Séries of
Monographs on Physics, 83, Clarendon, Oxford, 1974 DE GENNES P. G. - PROST J. pl23.
Document [17] : Thierry Leroux, SID 2002, Display Metrology 1 1-1
Document [18] : US 6795 146
Document [19] : US 6831 716
Document [20] : PCT / EP 2008 / 052 082

Claims

REVENDICATIONS
1. Procédé d'adressage d'un écran matriciel, ledit écran comprenant : - une couche de cristal liquide bistable se décomposant en pixels de cristal liquide bistable et, pour chaque pixel, des moyens pour appliquer un signal à ce pixel, le signal appliqué comprenant un champ électrique, chaque pixel de cristal liquide bistable ayant deux états stables possibles qui sont stables sans qu'un champ électrique ne soit appliqué à ce pixel, les deux états stables correspondant à des perceptions visuelles différentes pour un observateur observant l'écran, ledit procédé étant caractérisé en ce qu'il comporte les étapes suivantes :
A. on applique, à chaque pixel d'une zone de pixels se trouvant dans un état initial correspondant à un des états stables, et pendant un premier laps de temps donné (tl), un signal dit signal de perturbation (Sp), ledit signal de perturbation étant supérieur à un signal seuil de sorte que chaque pixel de la zone quitte son état initial, ledit signal de perturbation étant inférieur à un signal de commutation de sorte que chaque pixel de la zone ayant comme état initial un des états stables ne bascule pas dans l'autre état stable, chaque pixel de la zone se trouvant alors dans un état perturbé intermédiaire entre les deux états stables, puis
B. on n'applique aucun signal à chaque pixel de la zone pendant un deuxième laps de temps donné (t2) pour laisser revenir chaque pixel de la zone vers son état stable initial, puis
C. on réitère les deux étapes A et B précédentes.
2. Procédé d'adressage selon la revendication 1, caractérisé en ce que l'on réitère les étapes A et B un nombre de fois supérieur à 1 , de manière à obtenir un effet visuel de clignotement de la zone provoqué par une alternance de l'état perturbé et de l'état initial pour chaque pixel de la zone.
3. Procédé d'adressage selon la revendication 1, caractérisé en ce que les étapes A et B sont itérées avec une périodicité inférieure à une durée de persistance rétinienne de l'observateur, de manière à obtenir un effet visuel de marquage statique de la zone.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un déplacement de la zone de pixels sur l'écran entre au moins deux itérations des étapes A et B.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les pixels sont disposés en lignes de pixels parallèles et en colonnes de pixels parallèles, les lignes étant sensiblement perpendiculaires aux colonnes.
6. Procédé selon la revendication 5, caractérisé en ce que la zone comprend un ensemble de lignes adjacentes ou un ensemble de colonnes adjacentes.
7. Procédé selon la revendication 5, caractérisé en ce que la zone comprend une intersection d'un ensemble de lignes adjacentes et d'un ensemble de colonnes adjacentes.
8. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que le signal de perturbation appliqué à un pixel comprend un signal colonne appliqué à la colonne sur lequel est situé ce pixel et comprend en outre un signal ligne appliqué à la ligne sur lequel est situé ce pixel et est proportionnel à une différence entre le signal colonne et le signal ligne.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal de perturbation est un signal d'effacement pour lequel l'état perturbé d'un pixel initialement dans un des états stables est identique à l'état perturbé d'un autre pixel initialement dans l'autre état stable, les états perturbés de deux pixels initialement dans deux états stables différents correspondant à une même perception visuelle pour l'observateur observant l'écran.
10. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le signal de perturbation est un signal de perturbation intermédiaire pour lequel l'état perturbé d'un pixel initialement dans un des états stables est différent de l'état perturbé d'un autre pixel initialement dans l'autre état stable, les états perturbés de deux pixels initialement dans deux états stables différents correspondant à des perceptions visuelles différentes pour l'observateur observant l'écran.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal de perturbation comprend un signal électrique de tension constante.
12. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le signal de perturbation comprend un signal périodique.
13. Procédé selon la revendication 12, caractérisé en ce que la fréquence du signal de perturbation est comprise entre 50 Hz et 500 Hz.
14. Procédé selon la revendication 12, caractérisé en ce que la fréquence du signal de perturbation est supérieure à 500 Hz.
15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les deux états stables comprennent un état bloquant et un état passant, l'état passant ayant une luminance (Lib) perçue par l'observateur supérieure à la luminance (Lid) de l'état bloquant, l'état perturbé d'un pixel initialement dans l'état passant possédant une luminance (Lpb) perçue par l'observateur inférieure d'au moins 5% par rapport à la luminance (Lib) de l'état initial passant de ce pixel.
16. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal de perturbation comprend un signal électrique ayant une valeur efficace RMS de tension supérieure à 1,65 fois une tension de Freedericksz de la couche de cristal liquide.
17. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal de perturbation est bipolaire.
PCT/FR2009/001190 2008-10-15 2009-10-08 « procédé économique en énergie pour marquer une zone d'un écran à cristal liquide » WO2010043780A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/698,987 US20130076610A1 (en) 2008-10-15 2009-10-08 Energy-saving method for marking an area of a liquid crystal screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08290975.5A EP2178079B1 (fr) 2008-10-15 2008-10-15 Procédé économique en énergie pour marquer une zone d'un écran à cristal liquide
FR08290975.5 2008-10-15

Publications (1)

Publication Number Publication Date
WO2010043780A1 true WO2010043780A1 (fr) 2010-04-22

Family

ID=40352184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001190 WO2010043780A1 (fr) 2008-10-15 2009-10-08 « procédé économique en énergie pour marquer une zone d'un écran à cristal liquide »

Country Status (4)

Country Link
US (1) US20130076610A1 (fr)
EP (1) EP2178079B1 (fr)
TW (1) TW201033985A (fr)
WO (1) WO2010043780A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061042A (en) * 1997-02-06 2000-05-09 Ricoh Company, Ltd. Liquid crystal display device
US6133895A (en) * 1997-06-04 2000-10-17 Kent Displays Incorporated Cumulative drive scheme and method for a liquid crystal display
WO2006136799A1 (fr) * 2005-06-23 2006-12-28 Magink Display Technologies Ltd. Principe de commande vidéo pour un dispositif d'affichage à cristaux liquides cholestériques

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9402492D0 (en) 1994-02-09 1994-03-30 Secr Defence Liquid crystal device alignment
FR2740894B1 (fr) 1995-11-08 1998-01-23 Centre Nat Rech Scient Dispositif d'affichage perfectionne a base de cristaux liquides et a effet bistable
FR2808890B1 (fr) 2000-05-12 2002-08-09 Nemoptic Dispositif bistable d'affichage en reflexion avec contraste inverse
FR2808891B1 (fr) 2000-05-12 2003-07-25 Nemoptic Dispositif bistable d'affichage en reflexion
FR2817977B1 (fr) 2000-12-12 2003-03-07 Nemoptic Procede de realisation d'un dispositif a cristaux liquides perfectionne, et dispositif ainsi obtenu
FR2835644B1 (fr) 2002-02-06 2005-04-29 Nemoptic Procede et dispositif d'adressage d'un ecran cristal liquide bistable
FR2840694B1 (fr) 2002-06-06 2004-08-27 Nemoptic Procede de realisation de dispositifs a cristaux liquides nematiques
FR2863062B1 (fr) 2003-11-28 2006-03-17 Nemoptic Dispositif d'affichage a ecran de type nematique bistable optimisant le noir et procede de definition de ce dispositif
FR2863061B1 (fr) 2003-11-28 2006-02-24 Nemoptic Dispositif d'affichage a ecran de type nematique optimisant le blanc et procede de definition de ce dispositif
US20070279350A1 (en) * 2006-06-02 2007-12-06 Kent Displays Incorporated Method and apparatus for driving bistable liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061042A (en) * 1997-02-06 2000-05-09 Ricoh Company, Ltd. Liquid crystal display device
US6133895A (en) * 1997-06-04 2000-10-17 Kent Displays Incorporated Cumulative drive scheme and method for a liquid crystal display
WO2006136799A1 (fr) * 2005-06-23 2006-12-28 Magink Display Technologies Ltd. Principe de commande vidéo pour un dispositif d'affichage à cristaux liquides cholestériques

Also Published As

Publication number Publication date
US20130076610A1 (en) 2013-03-28
EP2178079B1 (fr) 2014-07-30
EP2178079A1 (fr) 2010-04-21
TW201033985A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US8502763B2 (en) Electronic skin having uniform gray scale reflectivity
US8144074B2 (en) Display element, electronic paper including the same, electronic terminal apparatus including the same, display system including the same, and method of processing image in display element
KR20000069992A (ko) 초기에는 네마틱 상태로 설정된 콜레스테릭 액정 평판 디스플레이의 구동장치 및 구동방법
WO1997017632A1 (fr) Dispositif d&#39;affichage a base de cristaux liquides et a effet bistable
FR2584845A1 (fr) Appareil a cristaux liquides et son procede de commande
FR2558606A1 (fr) Procede de commande d&#39;un dispositif de modulation optique et dispositif de modulation optique pour sa mise en oeuvre
US20100156967A1 (en) Liquid crystal display element, method of driving the element, and electronic paper utilizing the element
US20060055650A1 (en) Method and apparatus for driving reflective bistable cholestric displays
CA2418312C (fr) Procede et dispositif d&#39;adressage d&#39;un ecran cristal liquide bistable
EP0773468B1 (fr) Dispositif d&#39;affichage bistable à base de cristaux liquides nématiques autorisant des teintes de gris
US20100149209A1 (en) Display device and method of driving the same
FR2847704A1 (fr) Procede et dispositif perfectionnes d&#39;affichage a cristal liquide nematique bistable
KR20070056037A (ko) 콜레스테릭 액정 재료를 포컬 코닉 상태로 구동하기 위한구동 방식
US7944425B2 (en) Liquid crystal display element and method of driving the element
CA2260262A1 (fr) Dispositif a cristaux liquides comprenant des moyens d&#39;ancrage sur au moins une plaque de confinement donnant une orientation degeneree
EP2178079B1 (fr) Procédé économique en énergie pour marquer une zone d&#39;un écran à cristal liquide
US20030151580A1 (en) Motion video cholesteric displays
EP2126887B1 (fr) Dispositif afficheur a cristal liquide comprenant des moyens perfectionnes de commutation
EP2153434A1 (fr) Procede d&#39;adressage d&#39;un ecran matriciel a cristal liquide et dispositif appliquant ce procede
FR2584521A1 (fr) Dispositif d&#39;affichage electro-optique a cristal liquide
EP0619030A1 (fr) Dispositif d&#39;affichage a cristaux liquides ferroelectriques
JP4924610B2 (ja) 表示素子、それを備えた電子ペーパー、それを備えた電子端末機器及びそれを備えた表示システム並びに表示素子の画像処理方法
EP2008265A1 (fr) Perfectionnements, aux afficheurs bistables a cristaux liquides nematiques
WO1994009476A1 (fr) Procede de formation selective et de croissance differentielle d&#39;une nouvelle phase solide par voie electrochimique
FR2916296A1 (fr) Procede d&#39;adressage d&#39;un ecran matriciel a cristal liquide et dispositif appliquant ce procede.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09752876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13698987

Country of ref document: US