WO2010041883A2 - Vane pump with variable discharge volume - Google Patents

Vane pump with variable discharge volume Download PDF

Info

Publication number
WO2010041883A2
WO2010041883A2 PCT/KR2009/005758 KR2009005758W WO2010041883A2 WO 2010041883 A2 WO2010041883 A2 WO 2010041883A2 KR 2009005758 W KR2009005758 W KR 2009005758W WO 2010041883 A2 WO2010041883 A2 WO 2010041883A2
Authority
WO
WIPO (PCT)
Prior art keywords
cam ring
discharge
compressed
piston
spring
Prior art date
Application number
PCT/KR2009/005758
Other languages
French (fr)
Korean (ko)
Other versions
WO2010041883A3 (en
Inventor
현경열
Original Assignee
Hyun Kyung Yul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyun Kyung Yul filed Critical Hyun Kyung Yul
Priority to CN2009801403863A priority Critical patent/CN102187098A/en
Priority to US13/123,528 priority patent/US20110194962A1/en
Publication of WO2010041883A2 publication Critical patent/WO2010041883A2/en
Publication of WO2010041883A3 publication Critical patent/WO2010041883A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/063Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
    • F04C18/067Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having cam-and-follower type drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/348Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes positively engaging, with circumferential play, an outer rotatable member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/05Speed
    • F04C2270/052Speed angular

Definitions

  • the present invention relates to a variable discharge amount vane pump, and more particularly, to a variable discharge amount vane pump in which the discharge amount is varied by the rotational speed difference between the rotor and the cam ring.
  • the conventional vane pump has a structure in which a cam ring is fixedly installed in the pump housing, and suction side and discharge side plates are respectively installed at both front and rear sides of the cam ring.
  • a compression chamber of a substantially elliptical space in which the compressed medium is compressed is formed inside the cam ring.
  • the rotor supported by the drive shaft is rotatably installed in the compression chamber inside the cam ring, and a plurality of vane grooves are radially formed on the outer circumferential surface of the rotor, and the vane groove is accommodated in the vane groove so as to reciprocate in the radial direction. Is inserted.
  • the end surface of the vane comes into contact with the approximately elliptical inner circumferential surface of the cam ring by centrifugal force, and a compressed medium such as oil is sucked through the suction side side plate and sucked into the compression chamber of the cam ring.
  • the compressed medium to be compressed is compressed by volume reduction inside the cam ring and then discharged through the discharge side plate.
  • an object of the present invention is to provide a variable discharge amount vane pump which can change the discharge amount by rotating and stopping the cam ring in accordance with the change of the discharge pressure, and can improve the discharge efficiency.
  • the pump housing An inner circumferential surface and an outer circumferential surface having an elliptical cross-sectional shape, forming a compression chamber in which a compressed medium is compressed, and a cam ring rotatably received in the pump housing; A rotor radially accommodated on an outer circumferential surface of the vane to rotate in the compression chamber of the cam ring and to compress the compressed medium; Contacting an outer circumferential surface of the cam ring and rotating the cam ring when the discharge pressure of the compressed medium is equal to or greater than a set pressure; It provides a variable discharge amount vane pump comprising a cam ring rotation control unit.
  • the cam ring rotation control section the sliding contact with the outer peripheral surface of the cam ring, the piston reciprocating in accordance with the rotation of the cam ring; If the discharge pressure of the compressed medium is less than the set pressure it is preferable to include a spring for providing an elastic force to the piston so that the cam ring stops rotating.
  • the cam ring may rotate to compress the spring while the piston moves toward the spring.
  • the cylinder rotation control unit may further include a spring adjustment bolt for adjusting the displacement of the spring, thereby varying the elastic force of the spring applied to the piston.
  • a discharge passage for guiding the discharge of the compressed medium compressed in the compression chamber may be formed, and the discharge side side plate may be disposed to face the suction side side plate with the cam ring therebetween.
  • the cam ring is rotated and stopped in response to the change in the discharge pressure, and the discharge amount can be varied by the rotational speed difference between the rotor and the cam ring, and the discharge efficiency can be improved.
  • FIG. 1 is a cross-sectional view of a variable discharge vane pump according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the main part of FIG. 1;
  • FIG. 3 is a perspective view of the combination of FIG.
  • FIGS. 4 and 5 are longitudinal cross-sectional views illustrating the operation of the cam ring and the cam ring rotation control unit of the variable discharge amount vane pump according to the first embodiment of the present invention
  • FIGS. 6 and 7 are longitudinal cross-sectional views showing the operation of the cam ring and the cam ring rotation control unit of the variable discharge amount vane pump according to the second embodiment of the present invention.
  • variable discharge vane pump according to a first embodiment of the present invention.
  • the variable discharge vane pump according to the first embodiment of the present invention includes a pump housing 11, a cam ring 21 rotatably received in the pump housing 11, a rotor 25 for compressing a compressed medium,
  • the cam ring rotation control section 31 controls the rotation of the cam ring 21 to vary the discharge amount of the medium to be compressed.
  • the pump housing 11 has a suction port 13 through which the compressed medium is sucked into the compression chamber 23.
  • the cam ring 21 is rotatably housed in the pump housing 11.
  • the inside of the cam ring 21 forms a compression chamber 23 in which the compressed medium is compressed, and the inner circumferential surface of the cam ring 21 has an elliptical cross section.
  • the vane 29 of the rotor 25 to be described later is in contact with the inner circumferential surface of the cam ring 21.
  • the outer circumferential surface of the cam ring 21 of the variable discharge vane pump according to the present invention has a protrusion 21a having at least one maximum radius of curvature, and the outer circumferential surface of the cam ring 21 has a sliding contact between the piston 33 to be described later. do.
  • the cam ring 21 has an elliptical cross-sectional shape of the inner circumferential surface and the outer circumferential surface.
  • a rotor 25 supported by the drive shaft 5 of the motor (not shown) and compressing the compressed medium is rotatably provided.
  • a plurality of vane grooves 27 are radially formed on the outer circumferential surface of the rotor 25, and the vane grooves 27 are housed in the vane grooves 27 so as to be in contact with the inner circumferential surface of the cam ring 21. Accordingly, the vanes 29 come into contact with the inner circumferential surface of the cam ring 21 and reciprocate in the radial direction of the rotor 25.
  • the cam ring rotation control unit 31 contacts the outer circumferential surface of the cam ring 21 and controls the rotation of the cam ring 21.
  • the cam ring rotation control unit 31 slidably contacts the outer circumferential surface of the cam ring 21 and the cam ring 21 when the discharge pressure of the piston 33 and the compressed medium to be reciprocated according to the rotation of the cam ring 21 is less than the set pressure.
  • Has a spring 35 which provides an elastic force to the piston 33 to stop rotation.
  • one end of the piston 33 is in close contact with the outer circumferential surface of the cam ring 21, and the other end of the piston 33 is supported by the spring 35.
  • the piston 33 compresses and decompresses the spring 35 according to the rotation of the cam ring 21.
  • the spring 35 in this embodiment has a coil shape, and the spring 35 is housed in a spring receiving portion 15 formed in the pump housing 11. One end of the spring 35 supports the piston 33, and the other end of the spring 35 is supported to be accommodated in the spring accommodating portion 15 by the spring support plate 37.
  • the piston 33 moves toward the spring 35 by the rotation of the cam ring 21, and the spring 35 is compressed, and the discharge pressure of the compressed medium is increased. If it is less than the set pressure, the piston 33 presses the outer periphery of the cam ring 21 by the elastic force of the spring 35, and the cam ring 21 rotates and stops.
  • the elastic force of the spring 35 is adjusted by the spring adjustment bolt 39.
  • the spring adjustment bolt 39 is coupled to the spring support plate 37 to adjust the displacement of the spring 35 accommodated in the spring accommodating portion 15 by pressing and releasing the other end of the spring 35, thereby providing a piston ( The elastic force of the spring 35 applied to 33 can be varied.
  • the suction side side plate 51 and the discharge side side plate 55 are disposed to face each other with the cam ring 21 interposed therebetween.
  • the suction side plate 51 is provided on one side of the cam ring 21, and a suction passage 53 is formed to guide suction of the compressed medium to the compression chamber 23.
  • the discharge side plate 55 is provided on the other side of the cam ring 21, and a discharge passage 57 for guiding the discharge of the compressed medium compressed in the compression chamber 23 is formed.
  • reference numeral 61 which is not described, is a discharge guide for guiding the discharge of the compressed medium passing through the discharge side side plate 55 from the compression chamber 23, and the discharge port guide 61 may be divided into two.
  • the nipple 62 is attached to the discharge guide 61.
  • reference numeral 63 which is not described, is a main cover that covers one side of the pump housing 11, and reference numeral 65 is an auxiliary cover that covers the other side of the pump housing 11.
  • reference numeral 67 is a bearing for supporting a thrust load acting on the suction side side plate 51 and the discharge side side plate 55
  • reference numeral 69 is a drive shaft bearing for rotatably supporting the drive shaft 5.
  • reference numeral 71 denotes an airtight packing for maintaining the airtightness inside the pump housing 11, and reference numeral 73 is an O-ring for keeping the airtightness of the main cover 63 and the auxiliary cover 65.
  • variable discharge amount vane pump when the rotor 25 rotates in accordance with the drive of the drive shaft 5, the tip of the vane 29 provided on the rotor 25 is subjected to centrifugal force. It rotates in contact with the inner peripheral surface of the compression chamber 23 of the cam ring 21 by this.
  • the compressed medium is sucked into the compression chamber 23 of the cam ring 21 through the suction passage 53 of the suction side side plate 51 via the suction port 13 and then rotates according to the rotation of the rotor 25. It is compressed by the volume reduction and then discharged through the discharge passage 57 of the discharge side plate 55.
  • the cam ring 21 rotates in the rotational direction of the rotor 25.
  • the discharge pressure is high, the rotational force of the cam ring 21 increases. Done.
  • the cam ring 21 is rotated, as shown in FIG.
  • the piston 33 pressurizing the outer circumferential surface of the cam ring 21 slides along the outer circumferential surface of the cam ring 21 and moves toward the spring 35 to compress the spring 35.
  • the discharge amount compressed and discharged in the compression chamber 23 is varied by the difference in rotation speed between the rotor 25 and the cam ring 21.
  • the rotor 25 and the cam ring 21 rotate at the same rotational speed, the compression of the compressed medium does not occur in the compression chamber 23 of the cam ring 21, and the discharge is stopped.
  • the rotational force of the cam ring 21 is smaller than the friction force between the piston 33 and the outer circumferential surface of the cam ring 21, so that the piston 33 moves toward the spring 35.
  • the piston 33 does not exceed the protrusion 21a having the maximum radius of curvature of the outer circumferential surface of the cam ring 21 so that the cam ring 21 stops rotation.
  • the medium to be compressed is compressed in the compression chamber 23 of the cam ring 21, so that the discharge amount is maximized.
  • the discharge is stopped and the discharge amount becomes zero.
  • the discharge amount is 50%. If the cam ring 21 stops rotating when the rotor 25 rotates 10 times, the discharge amount is 100%.
  • the cam ring 21 rotates or stops rotating according to the set discharge pressure change of the compressed medium, that is, rotates between the rotor 25 and the cam ring 21.
  • the number difference occurs and the discharge amount compressed and discharged in the compression chamber 23 can be varied and the discharge efficiency can be improved.
  • variable discharge vane pump according to a second embodiment of the present invention illustrates a variable discharge vane pump according to a second embodiment of the present invention.
  • the variable discharge amount vane pump according to the second embodiment of the present invention is provided between the piston 33 and the spring 35 to transmit the elastic force of the spring 35 to the piston 33. It further has a rod 41.
  • the piston 33 is installed in the pump housing 11 so as to reciprocate in a transverse direction with respect to the compression direction of the spring 35.
  • the rod 41 is provided between the piston 33 and the spring 35 and is reciprocally housed together with the spring 35 in the spring receiving portion 15 formed in the pump housing 11.
  • a plurality of rollers 43 are mounted on the outer circumferential surface of the rod 41 so as to move up and down while rolling with the inner circumferential surface of the spring receiving portion 15.
  • an inflow passage 17 through which the compressed medium discharged from the compression chamber 23 flows is formed in the spring accommodating portion 15.
  • the rod 41 is elevated in the spring receiving portion 15 by the discharge pressure of the compressed medium discharged from the compression chamber 23, and the inclined portion 41a of the rod 41 is inclined of the piston 33.
  • the piston 33 moves up and down along the portion 33a, the piston 33 approaches and is spaced apart from the compression chamber 23 to rotate and rotate the cam ring 21 in accordance with the discharge pressure change.
  • variable discharge amount vane pump in the variable discharge amount vane pump according to the second embodiment of the present invention, when the rotor 25 rotates, the tip of the vane 29 installed in the rotor 25 has a centrifugal force in the compression chamber of the cam ring 21.
  • the compressed medium rotated in contact with the inner circumferential surface of the 23 and sucked into the compression chamber 23 is compressed by volume reduction as the rotor 25 rotates, and then the discharge passage 57 of the discharge side plate 55 is pressed. It is discharged through.
  • the cam ring 21 rotates in the rotational direction of the rotor 25.
  • the discharge pressure is high, the rotational force of the cam ring 21 increases. Done.
  • a part of the discharged compressed medium flows into the inflow passage 17 formed in the pump housing 11 and acts to lift and lower the rod 41.
  • the rotational force of the cam ring 21 is greater than the friction force between the piston 33 and the outer peripheral surface of the cam ring 21, so that the cam ring 21 rotates, and at the same time the inflow passage ( The rod 41 is pushed upward by the discharge pressure of the to-be-compressed medium flowing into the cylinder 17, and the inclined portion 33a of the piston 33 is in close contact with the inclined portion 41a of the rod 41.
  • the piston 33 pressurizing the outer circumferential surface of the cam ring 21 slides along the outer circumferential surface of the cam ring 21 and moves to the outside of the pump housing 11.
  • the discharge amount compressed and discharged in the compression chamber 23 is varied by the difference in rotation speed between the rotor 25 and the cam ring 21.
  • the rotor 25 and the cam ring 21 rotate at the same rotational speed, the compression of the compressed medium does not occur in the compression chamber 23 of the cam ring 21, and the discharge is stopped.
  • the rotational force of the cam ring 21 is smaller than the friction force between the piston 33 and the outer circumferential surface of the cam ring 21 and at the same time discharge of the compressed medium introduced into the inflow passage 17.
  • the rod 41 is not pushed upward by the pressure, and as shown in FIG. 7, the piston 33 presses the outer circumferential surface of the cam ring 21, and the piston 33 is the maximum of the outer circumferential surface of the cam ring 21.
  • the cam ring 21 stops rotating because it does not exceed the protrusion 21a having the radius of curvature. At this time, when the rotor 25 is rotated, the medium to be compressed is compressed in the compression chamber 23 of the cam ring 21, so that the discharge amount is maximized.
  • the cam ring 21 rotates or stops rotating according to the set discharge pressure change of the compressed medium, that is, rotates between the rotor 25 and the cam ring 21.
  • the number difference occurs and the discharge amount compressed and discharged in the compression chamber 23 can be varied and the discharge efficiency can be improved.
  • an inner circumferential surface and an outer circumferential surface have an elliptical cross-sectional shape, form a compression chamber into which a compressed medium is compressed, and a cam ring rotatably accommodated in a pump housing, and rotate the compression chamber and compress the compressed medium
  • a cam ring rotation control unit 31 for controlling the rotation of the cam ring so that the cam ring rotates when the discharge pressure of the compressed medium is equal to or higher than the set pressure and the cam ring stops rotating when the discharge pressure of the compressed medium is lower than the set pressure.
  • the amount of discharge can be varied by rotating and rotating the cam ring in accordance with the change of the discharge pressure, thereby improving the discharge efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

The present invention deals relates to vane pump with variable discharge volume, comprising: a pump housing; a cam ring having an elliptical cross-section for its inner circumference and outer circumference to form a compression chamber wherein a compression medium is compressed, and is accommodated in said pump housing so that it may rotate; a rotor that is accommodated such that a plurality of vanes may appear frequently on the outer circumference to undergo rotations in the compression chamber of said cam ring and compress said compression medium; and a cam ring rotation controller that contacts the outer circumference of said cam ring, and rotates said cam ring if the discharge pressure of said compression medium is equal to or more than its pressure setting and stops the rotation of said cam ring if the discharge pressure of said compression medium is less than its pressure setting to control rotations of said cam ring. Accordingly, the rotation and stoppage of rotation of the cam ring is accomplished based on changes in the discharge pressure, to enable variation in discharge volumes, and enhancement of discharge efficiency.

Description

가변 토출량 베인 펌프Variable Discharge Vane Pump
본 발명은, 가변 토출량 베인 펌프에 관한 것으로서, 보다 상세하게는, 로터와 캠링의 회전수 차이에 의하여 토출량이 가변되는 가변 토출량 베인 펌프에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable discharge amount vane pump, and more particularly, to a variable discharge amount vane pump in which the discharge amount is varied by the rotational speed difference between the rotor and the cam ring.
종래의 베인 펌프는 펌프하우징의 내부에 캠링이 고정 설치되고, 캠링의 전후 양측에는 흡입측 측판과 토출측 측판이 각각 설치되는 구조를 가진다.The conventional vane pump has a structure in which a cam ring is fixedly installed in the pump housing, and suction side and discharge side plates are respectively installed at both front and rear sides of the cam ring.
또한, 캠링의 내부에는 피압축매체가 압축되는 대략 타원형 공간의 압축실이 형성되어 있다.Further, a compression chamber of a substantially elliptical space in which the compressed medium is compressed is formed inside the cam ring.
캠링 내부의 압축실에는 구동축에 지지된 로터가 회전가능하게 설치되고, 이 로터의 외주면에는 복수의 베인홈이 방사상으로 형성되고, 이 베인홈에는 베인이 출몰가능하게 수용되어 반경방향으로 왕복운동 가능하게 삽입되어 있다.The rotor supported by the drive shaft is rotatably installed in the compression chamber inside the cam ring, and a plurality of vane grooves are radially formed on the outer circumferential surface of the rotor, and the vane groove is accommodated in the vane groove so as to reciprocate in the radial direction. Is inserted.
이와 같이 구성된 종래 베인 펌프는 로터의 회전에 따라 베인의 선단면이 원심력에 의해 캠링의 대략 타원형 내주면과 접하면서 오일과 같은 피압축매체가 흡입측 측판을 통해 흡입되어 캠링의 압축실로 흡입되고, 흡입된 피압축매체는 캠링 내부의 용적 감소에 의해 압축된 후, 토출측 측판을 통하여 배출된다.In the conventional vane pump configured as described above, as the rotor is rotated by the rotor, the end surface of the vane comes into contact with the approximately elliptical inner circumferential surface of the cam ring by centrifugal force, and a compressed medium such as oil is sucked through the suction side side plate and sucked into the compression chamber of the cam ring. The compressed medium to be compressed is compressed by volume reduction inside the cam ring and then discharged through the discharge side plate.
그러나, 종래의 베인 펌프는 펌프하우징에 캠링이 위치 고정된 상태로 설치되어 있으므로, 캠링의 내부에 위치되는 로터와 캠링의 타원형 내부공간 사이, 즉 압축실에 형성되는 흡입영역 및 토출영역이 항시 일정하게 유지되게 된다.However, since the conventional vane pump is installed with the cam ring fixed to the pump housing, the suction area and the discharge area formed in the compression chamber are always constant between the rotor located inside the cam ring and the elliptical inner space of the cam ring. Will remain.
이에, 압력의 변화에 따라 흡입영역 및 토출영역을 가변시킬 수 없는 문제점이 있었다.As a result, there is a problem in that the suction region and the discharge region cannot be changed according to the change in pressure.
따라서, 배제용적이 최대가 되는 고압시에는 과도한 유량을 토출하게 되고 또한 저압시에는 필요 이상으로 유체가 토출되므로, 펌프의 효율이 저하되는 문제점이 있다.Therefore, there is a problem that the efficiency of the pump is lowered because the excessive flow rate is discharged at high pressure and the fluid is discharged more than necessary at low pressure when the exclusion volume is maximized.
따라서, 본 발명의 목적은, 토출 압력의 변화에 따라서 캠링을 회전 및 회전정지시켜서 토출량을 가변할 수 있고, 토출 효율을 향상시킬 수 있는 가변 토출량 베인 펌프를 제공하는 것이다.Accordingly, an object of the present invention is to provide a variable discharge amount vane pump which can change the discharge amount by rotating and stopping the cam ring in accordance with the change of the discharge pressure, and can improve the discharge efficiency.
본 발명에 따라, 펌프하우징과; 내주면과 외주면이 타원형의 단면형상을 가지고 피압축매체가 압축되는 압축실을 형성하며, 상기 펌프하우징에 회전가능하게 수용되는 캠링과; 외주면에 방사상으로 복수의 베인이 출몰가능하게 수용되어, 상기 캠링의 압축실에서 회전하며 상기 피압축매체를 압축하는 로터와; 상기 캠링의 외주면에 접촉하며, 상기 피압축매체의 토출 압력이 설정 압력 이상이면 상기 캠링을 회전시키고 상기 피압축매체의 토출 압력이 설정 압력 미만이면 상기 캠링이 회전정지하도록 상기 캠링의 회전을 제어하는 캠링 회전 제어부를 포함하는 것을 특징으로 하는 가변 토출량 베인 펌프를 제공한다.According to the invention, the pump housing; An inner circumferential surface and an outer circumferential surface having an elliptical cross-sectional shape, forming a compression chamber in which a compressed medium is compressed, and a cam ring rotatably received in the pump housing; A rotor radially accommodated on an outer circumferential surface of the vane to rotate in the compression chamber of the cam ring and to compress the compressed medium; Contacting an outer circumferential surface of the cam ring and rotating the cam ring when the discharge pressure of the compressed medium is equal to or greater than a set pressure; It provides a variable discharge amount vane pump comprising a cam ring rotation control unit.
여기서, 상기 캠링 회전 제어부는, 상기 캠링의 외주면에 슬라이딩가능하게 접촉하며, 상기 캠링의 회전에 따라 왕복운동하는 피스톤과; 상기 피압축매체의 토출 압력이 설정된 압력 미만이면 상기 캠링이 회전정지하도록 상기 피스톤에 탄성력을 제공하는 스프링을 포함하는 것이 바람직하다.Here, the cam ring rotation control section, the sliding contact with the outer peripheral surface of the cam ring, the piston reciprocating in accordance with the rotation of the cam ring; If the discharge pressure of the compressed medium is less than the set pressure it is preferable to include a spring for providing an elastic force to the piston so that the cam ring stops rotating.
상기 피압축매체의 토출 압력이 설정된 압력 이상이면, 상기 캠링은 회전하여 상기 피스톤이 상기 스프링을 향해 이동하며 상기 스프링을 압축시킬 수 있다.When the discharge pressure of the compressed medium is greater than or equal to the set pressure, the cam ring may rotate to compress the spring while the piston moves toward the spring.
상기 실린더 회전 제어부는 상기 스프링의 변위를 조절하는 스프링 조절볼트를 더 포함함으로써, 피스톤에 가해지는 스프링의 탄성력을 가변할 수 있게 된다.The cylinder rotation control unit may further include a spring adjustment bolt for adjusting the displacement of the spring, thereby varying the elastic force of the spring applied to the piston.
상기 피스톤과 상기 스프링 사이에 마련되어, 상기 피압축매체의 토출 압력에 의해 승강하며 상기 스프링의 탄성력을 상기 피스톤에 전달하는 로드를 더 포함하며, 상기 피스톤과 상기 로드가 상호 접촉하는 상기 피스톤과 상기 로드의 각 단부에는 각각 상반되는 경사를 갖는 경사부가 형성될 수 있다.A rod provided between the piston and the spring, the rod lifting and lowering by the discharge pressure of the compressed medium and transmitting an elastic force of the spring to the piston, wherein the piston and the rod are in contact with each other; At each end of the inclined portion may be formed having an inclined opposite.
상기 압축실로 피압축매체의 흡입을 안내하는 흡입통로를 형성하며, 상기 캠링의 일측에 마련되는 흡입측 측판과; 상기 압축실에서 압축된 피압축매체의 토출을 안내하는 토출통로를 형성하며, 상기 캠링을 사이에 두고 상기 흡입측 측판과 대향 배치되는 토출측 측판을 포함할 수 있다.A suction side side plate formed at one side of the cam ring to form a suction passage for guiding suction of the compressed medium into the compression chamber; A discharge passage for guiding the discharge of the compressed medium compressed in the compression chamber may be formed, and the discharge side side plate may be disposed to face the suction side side plate with the cam ring therebetween.
본 발명을 통하여, 토출 압력의 변화에 따라서 캠링을 회전 및 회전정지시켜, 로터와 캠링의 회전수 차이에 의해 토출량을 가변할 수 있고, 토출 효율을 향상시킬 수 있다.Through the present invention, the cam ring is rotated and stopped in response to the change in the discharge pressure, and the discharge amount can be varied by the rotational speed difference between the rotor and the cam ring, and the discharge efficiency can be improved.
도 1은 본 발명의 제1실시예에 따른 가변 토출량 베인 펌프의 단면도,1 is a cross-sectional view of a variable discharge vane pump according to a first embodiment of the present invention;
도 2는 도 1의 요부 분해사시도,2 is an exploded perspective view of the main part of FIG. 1;
도 3은 도 1의 결합사시도,3 is a perspective view of the combination of FIG.
도 4 및 도 5는 본 발명의 제1실시예에 따른 가변 토출량 베인 펌프의 캠링과 캠링 회전 제어부의 작동과정을 도시한 종단면도,4 and 5 are longitudinal cross-sectional views illustrating the operation of the cam ring and the cam ring rotation control unit of the variable discharge amount vane pump according to the first embodiment of the present invention;
도 6 및 도 7은 본 발명의 제2실시예에 따른 가변 토출량 베인 펌프의 캠링과 캠링 회전 제어부의 작동과정을 도시한 종단면도이다.6 and 7 are longitudinal cross-sectional views showing the operation of the cam ring and the cam ring rotation control unit of the variable discharge amount vane pump according to the second embodiment of the present invention.
이하에서는 첨부도면을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서만 설명하기로 한다.Prior to the description, in various embodiments, components having the same configuration will be representatively described in the first embodiment using the same reference numerals, and in other embodiments, only the configuration different from the first embodiment will be described. do.
도 1 내지 도 5에는 본 발명의 제1실시예에 따른 가변 토출량 베인 펌프가 도시되어 있다. 본 발명의 제1실시예에 따른 가변 토출량 베인 펌프는 펌프하우징(11)과, 펌프하우징(11)에 회전가능하게 수용되는 캠링(21)과, 피압축매체를 압축하는 로터(25)와, 캠링(21)의 회전을 제어하여 피압축매체의 토출량을 가변시키는 캠링 회전 제어부(31)를 가진다.1 to 5 illustrate a variable discharge vane pump according to a first embodiment of the present invention. The variable discharge vane pump according to the first embodiment of the present invention includes a pump housing 11, a cam ring 21 rotatably received in the pump housing 11, a rotor 25 for compressing a compressed medium, The cam ring rotation control section 31 controls the rotation of the cam ring 21 to vary the discharge amount of the medium to be compressed.
펌프하우징(11)은 압축실(23)로 피압축매체가 흡입되는 흡입포트(13)가 형성되어 있다.The pump housing 11 has a suction port 13 through which the compressed medium is sucked into the compression chamber 23.
펌프하우징(11)의 내부에는 캠링(21)이 회전가능하게 수용되어 있다. 캠링(21)의 내부는 피압축매체가 압축되는 압축실(23)을 형성하며, 캠링(21)의 내주면은 타원형의 단면형상을 가진다. 캠링(21)의 내주면에는 후술할 로터(25)의 베인(29)이 접촉된다. 또한, 본 발명에 따른 가변 토출량 베인 펌프의 캠링(21)의 외주면은 하나 이상의 최대곡률반경을 갖는 돌기부(21a)가 형성되어 있으며, 캠링(21)의 외주면은 후술할 피스톤(33)이 슬라이딩 접촉한다. 이에, 캠링(21)은 내주면과 외주면이 타원형의 단면형상을 가진다.The cam ring 21 is rotatably housed in the pump housing 11. The inside of the cam ring 21 forms a compression chamber 23 in which the compressed medium is compressed, and the inner circumferential surface of the cam ring 21 has an elliptical cross section. The vane 29 of the rotor 25 to be described later is in contact with the inner circumferential surface of the cam ring 21. In addition, the outer circumferential surface of the cam ring 21 of the variable discharge vane pump according to the present invention has a protrusion 21a having at least one maximum radius of curvature, and the outer circumferential surface of the cam ring 21 has a sliding contact between the piston 33 to be described later. do. Thus, the cam ring 21 has an elliptical cross-sectional shape of the inner circumferential surface and the outer circumferential surface.
캠링(21)의 내부에는, 즉 캠링(21)의 압축실(23)에는 도시 않은 모터의 구동축(5)에 지지되어 피압축매체를 압축하는 로터(25)가 회전가능하게 설치되어 있다. 로터(25)의 외주면에는 복수의 베인홈(27)이 방사상으로 형성되어 있으며, 베인홈(27)에는 캠링(21)의 내주면과 접촉하는 베인(29)이 출몰가능하게 수용되어 있다. 이에, 베인(29)은 캠링(21)의 내주면과 접촉하며 로터(25)의 반경방향으로 왕복운동하게 된다.In the cam ring 21, that is, in the compression chamber 23 of the cam ring 21, a rotor 25 supported by the drive shaft 5 of the motor (not shown) and compressing the compressed medium is rotatably provided. A plurality of vane grooves 27 are radially formed on the outer circumferential surface of the rotor 25, and the vane grooves 27 are housed in the vane grooves 27 so as to be in contact with the inner circumferential surface of the cam ring 21. Accordingly, the vanes 29 come into contact with the inner circumferential surface of the cam ring 21 and reciprocate in the radial direction of the rotor 25.
캠링 회전 제어부(31)는 캠링(21)의 외주면에 접촉하며, 캠링(21)의 회전을 제어한다. 캠링 회전 제어부(31)는 캠링(21)의 외주면에 슬라이딩가능하게 접촉하며 캠링(21)의 회전에 따라 왕복운동하는 피스톤(33)과, 피압축매체의 토출 압력이 설정된 압력 미만이면 캠링(21)이 회전정지하도록 피스톤(33)에 탄성력을 제공하는 스프링(35)을 가진다.The cam ring rotation control unit 31 contacts the outer circumferential surface of the cam ring 21 and controls the rotation of the cam ring 21. The cam ring rotation control unit 31 slidably contacts the outer circumferential surface of the cam ring 21 and the cam ring 21 when the discharge pressure of the piston 33 and the compressed medium to be reciprocated according to the rotation of the cam ring 21 is less than the set pressure. ) Has a spring 35 which provides an elastic force to the piston 33 to stop rotation.
도 4 및 도 5에 도시된 바와 같이, 피스톤(33)의 일단부는 캠링(21)의 외주면에 밀착하고, 피스톤(33)의 타단부는 스프링(35)에 지지되어 있다. 피스톤(33)은 캠링(21)의 회전에 따라 스프링(35)을 압축 및 압축해제한다. 4 and 5, one end of the piston 33 is in close contact with the outer circumferential surface of the cam ring 21, and the other end of the piston 33 is supported by the spring 35. The piston 33 compresses and decompresses the spring 35 according to the rotation of the cam ring 21.
본 실시예에서의 스프링(35)은 코일형상을 가지며, 스프링(35)은 펌프하우징(11)에 형성된 스프링 수용부(15)에 수용되어 있다. 스프링(35)의 일단부는 피스톤(33)을 지지하고, 스프링(35)의 타단부는 스프링 지지플레이트(37)에 의해 스프링 수용부(15)에 수용되도록 지지되어 있다.The spring 35 in this embodiment has a coil shape, and the spring 35 is housed in a spring receiving portion 15 formed in the pump housing 11. One end of the spring 35 supports the piston 33, and the other end of the spring 35 is supported to be accommodated in the spring accommodating portion 15 by the spring support plate 37.
이에, 피압축매체의 토출 압력이 설정된 압력 이상이면, 캠링(21)의 회전에 의해 피스톤(33)이 스프링(35)을 향해 이동하여 스프링(35)은 압축되고, 피압축매체의 토출 압력이 설정된 압력 미만이면, 스프링(35)의 탄성력에 의해 피스톤(33)이 캠링(21)의 외주를 가압하여 캠링(21)이 회전정지한다.Accordingly, when the discharge pressure of the compressed medium is equal to or higher than the set pressure, the piston 33 moves toward the spring 35 by the rotation of the cam ring 21, and the spring 35 is compressed, and the discharge pressure of the compressed medium is increased. If it is less than the set pressure, the piston 33 presses the outer periphery of the cam ring 21 by the elastic force of the spring 35, and the cam ring 21 rotates and stops.
한편, 스프링(35)의 탄성력은 스프링 조절 볼트(39)에 의해 조절된다. 스프링 조절 볼트(39)는 스프링 지지플레이트(37)에 결합되어, 스프링(35)의 타단부를 가압 및 가압해제함으로써 스프링 수용부(15)에 수용된 스프링(35)의 변위를 조절함으로써, 피스톤(33)에 가해지는 스프링(35)의 탄성력을 가변할 수 있게 된다.On the other hand, the elastic force of the spring 35 is adjusted by the spring adjustment bolt 39. The spring adjustment bolt 39 is coupled to the spring support plate 37 to adjust the displacement of the spring 35 accommodated in the spring accommodating portion 15 by pressing and releasing the other end of the spring 35, thereby providing a piston ( The elastic force of the spring 35 applied to 33 can be varied.
또한, 본 발명에 따른 가변 토출량 베인 펌프는, 캠링(21)을 사이에 두고 흡입측 측판(51)과 토출측 측판(55)이 대향 배치되어 있다.In the variable discharge amount vane pump according to the present invention, the suction side side plate 51 and the discharge side side plate 55 are disposed to face each other with the cam ring 21 interposed therebetween.
흡입측 측판(51)은 캠링(21)의 일측에 마련되며, 압축실(23)로 피압축매체의 흡입을 안내하는 흡입통로(53)가 형성되어 있다.The suction side plate 51 is provided on one side of the cam ring 21, and a suction passage 53 is formed to guide suction of the compressed medium to the compression chamber 23.
토출측 측판(55)은 캠링(21)의 타측에 마련되며, 압축실(23)에서 압축된 피압축매체의 토출을 안내하는 토출통로(57)가 형성되어 있다.The discharge side plate 55 is provided on the other side of the cam ring 21, and a discharge passage 57 for guiding the discharge of the compressed medium compressed in the compression chamber 23 is formed.
여기서, 미설명된 참조부호 61은 압축실(23)로부터 토출측 측판(55)을 거친 피압축매체의 토출을 안내하는 토출 가이드이며, 토출구 가이드(61)는 이등분될 수 있다. 토출 가이드(61)에는 니플(62)이 장착되어 있다.Here, reference numeral 61, which is not described, is a discharge guide for guiding the discharge of the compressed medium passing through the discharge side side plate 55 from the compression chamber 23, and the discharge port guide 61 may be divided into two. The nipple 62 is attached to the discharge guide 61.
또한, 미설명된 참조 부호 63은 펌프하우징(11)의 일측을 커버하는 메인 커버이고, 참조 부호 65는 펌프하우징(11)의 타측을 커버하는 보조 커버이다. 그리고, 미설명된 참조부호 67은 흡입측 측판(51) 및 토출측 측판(55)에 각각 작용하는 스러스트 하중을 지지하는 베어링이고, 참조부호 69는 구동축(5)을 회전가능하게 지지하는 구동축 베어링이다. 또한, 미설명된 참조 부호 71은 펌프하우징(11) 내부의 기밀을 유지하는 패킹이고, 참조부호 73은 메인커버(63)와 보조커버(65)의 기밀을 유지하는 오링이다. In addition, reference numeral 63, which is not described, is a main cover that covers one side of the pump housing 11, and reference numeral 65 is an auxiliary cover that covers the other side of the pump housing 11. In addition, reference numeral 67 is a bearing for supporting a thrust load acting on the suction side side plate 51 and the discharge side side plate 55, and reference numeral 69 is a drive shaft bearing for rotatably supporting the drive shaft 5. . In addition, reference numeral 71 denotes an airtight packing for maintaining the airtightness inside the pump housing 11, and reference numeral 73 is an O-ring for keeping the airtightness of the main cover 63 and the auxiliary cover 65.
이러한 구성에 의하여, 본 발명의 제1실시예에 따른 가변 토출량 베인 펌프는 구동축(5)의 구동에 따라 로터(25)가 회전하면, 로터(25)에 설치된 베인(29)의 선단부가 원심력에 의해 캠링(21)의 압축실(23)의 내주면과 접하면서 회전한다.According to this configuration, in the variable discharge amount vane pump according to the first embodiment of the present invention, when the rotor 25 rotates in accordance with the drive of the drive shaft 5, the tip of the vane 29 provided on the rotor 25 is subjected to centrifugal force. It rotates in contact with the inner peripheral surface of the compression chamber 23 of the cam ring 21 by this.
이에, 피압축매체는 흡입포트(13)를 거쳐 흡입측 측판(51)의 흡입통로(53)를 통해 캠링(21)의 압축실(23)로 흡입된 후, 로터(25)의 회전에 따라 용적 감소에 의해 압축되고 나서, 토출측 측판(55)의 토출통로(57)를 통해 토출된다.Accordingly, the compressed medium is sucked into the compression chamber 23 of the cam ring 21 through the suction passage 53 of the suction side side plate 51 via the suction port 13 and then rotates according to the rotation of the rotor 25. It is compressed by the volume reduction and then discharged through the discharge passage 57 of the discharge side plate 55.
한편, 로터(25)가 회전하여 피압축매체가 압축되어 토출됨에 따라, 로터(25)의 회전방향으로 캠링(21)이 회전하게 되고, 특히 토출 압력이 높을수록 캠링(21)의 회전력이 증가하게 된다.On the other hand, as the rotor 25 rotates and the compressed medium is compressed and discharged, the cam ring 21 rotates in the rotational direction of the rotor 25. In particular, as the discharge pressure is high, the rotational force of the cam ring 21 increases. Done.
즉, 피압축매체의 토출 압력이 설정된 압력 이상이면, 캠링(21)의 회전력이 피스톤(33)과 캠링(21) 외주면 사이의 마찰력보다 크게 되어 캠링(21)이 회전하게 되고, 도 4에 도시된 바와 같이 캠링(21)의 외주면을 가압하고 있던 피스톤(33)은 캠링(21)의 외주면을 따라 슬라이딩하며 스프링(35)을 향해 이동하여 스프링(35)을 압축시킨다. 이 때, 로터(25)와 캠링(21) 간의 회전수 차이에 의해 압축실(23)에서 압축되어 토출되는 토출량은 가변된다. 한편, 로터(25)와 캠링(21)이 같은 회전수로 회전하게 되면, 캠링(21)의 압축실(23)에서 피압축매체의 압축이 일어나지 않게 되어 토출이 정지된다.That is, if the discharge pressure of the compressed medium is equal to or greater than the set pressure, the rotational force of the cam ring 21 is greater than the friction force between the piston 33 and the outer peripheral surface of the cam ring 21, the cam ring 21 is rotated, as shown in FIG. As described above, the piston 33 pressurizing the outer circumferential surface of the cam ring 21 slides along the outer circumferential surface of the cam ring 21 and moves toward the spring 35 to compress the spring 35. At this time, the discharge amount compressed and discharged in the compression chamber 23 is varied by the difference in rotation speed between the rotor 25 and the cam ring 21. On the other hand, when the rotor 25 and the cam ring 21 rotate at the same rotational speed, the compression of the compressed medium does not occur in the compression chamber 23 of the cam ring 21, and the discharge is stopped.
반대로, 피압축매체의 토출 압력이 설정된 압력 미만이면, 캠링(21)의 회전력이 피스톤(33)과 캠링(21) 외주면 사이의 마찰력보다 작게 되어, 피스톤(33)이 스프링(35)을 향해 이동하지 않게 되고, 도 5에 도시된 바와 같이 피스톤(33)이 캠링(21) 외주면의 최대곡률반경을 갖는 돌기부(21a)를 넘지 못하여 캠링(21)은 회전정지한다. 이 때, 로터(25)가 회전하게 되면, 피압축매체는 캠링(21)의 압축실(23)에서 압축되어 토출량은 최대로 된다.On the contrary, when the discharge pressure of the compressed medium is less than the set pressure, the rotational force of the cam ring 21 is smaller than the friction force between the piston 33 and the outer circumferential surface of the cam ring 21, so that the piston 33 moves toward the spring 35. As shown in FIG. 5, the piston 33 does not exceed the protrusion 21a having the maximum radius of curvature of the outer circumferential surface of the cam ring 21 so that the cam ring 21 stops rotation. At this time, when the rotor 25 is rotated, the medium to be compressed is compressed in the compression chamber 23 of the cam ring 21, so that the discharge amount is maximized.
이로써, 일 예로 로터(25)가 10번 회전할 때 캠링(21)이 10번 회전하면 토출이 정지되고 토출량이 0이 된다. 로터(25)가 10번 회전할 때 캠링(21)이 5번 회전하면 토출량은 50%가 된다. 로터(25)가 10번 회전할 때 캠링(21)이 회전 정지하면 토출량은 100%가 된다.Thus, for example, when the cam ring 21 rotates 10 times when the rotor 25 rotates 10 times, the discharge is stopped and the discharge amount becomes zero. When the cam ring 21 rotates five times when the rotor 25 rotates ten times, the discharge amount is 50%. If the cam ring 21 stops rotating when the rotor 25 rotates 10 times, the discharge amount is 100%.
따라서, 본 발명의 제1실시예에 따른 가변 토출량 베인 펌프는 피압축매체의 설정된 토출 압력 변화에 따라 캠링(21)이 회전 또는 회전정지하여, 즉 로터(25)와 캠링(21) 사이에 회전수 차이가 발생하여 압축실(23)에서 압축되어 토출되는 토출량을 가변할 수 있고 토출 효율을 향상시킬 있게 된다. Accordingly, in the variable discharge amount vane pump according to the first embodiment of the present invention, the cam ring 21 rotates or stops rotating according to the set discharge pressure change of the compressed medium, that is, rotates between the rotor 25 and the cam ring 21. The number difference occurs and the discharge amount compressed and discharged in the compression chamber 23 can be varied and the discharge efficiency can be improved.
도 5 및 도 6에는 본 발명의 제2실시예에 따른 가변 토출량 베인 펌프가 도시되어 있다. 본 발명의 제2실시예에 따른 가변 토출량 베인 펌프는 전술한 제1실시예와는 달리, 피스톤(33)과 스프링(35) 사이에 마련되어, 스프링(35)의 탄성력을 피스톤(33)에 전달하는 로드(41)를 더 가진다.5 and 6 illustrate a variable discharge vane pump according to a second embodiment of the present invention. Unlike the first embodiment described above, the variable discharge amount vane pump according to the second embodiment of the present invention is provided between the piston 33 and the spring 35 to transmit the elastic force of the spring 35 to the piston 33. It further has a rod 41.
피스톤(33)은 스프링(35)의 압축방향에 대해 가로로 펌프하우징(11)에 왕복이동가능하게 설치되어 있다. 로드(41)는 피스톤(33)과 스프링(35) 사이에 마련되며, 펌프하우징(11)에 형성된 스프링 수용부(15)에 스프링(35)과 함께 왕복이동가능하게 수용되어 있다. 로드(41)의 외주면에는 스프링 수용부(15)의 내주면과 구름운동하며 승강하도록 복수의 롤러(43)가 장착되어 있다.The piston 33 is installed in the pump housing 11 so as to reciprocate in a transverse direction with respect to the compression direction of the spring 35. The rod 41 is provided between the piston 33 and the spring 35 and is reciprocally housed together with the spring 35 in the spring receiving portion 15 formed in the pump housing 11. A plurality of rollers 43 are mounted on the outer circumferential surface of the rod 41 so as to move up and down while rolling with the inner circumferential surface of the spring receiving portion 15.
또한, 스프링 수용부(15)에는 압축실(23)로부터 토출되는 피압축매체가 유입되는 유입유로(17)가 연통 형성되어 있다. In addition, an inflow passage 17 through which the compressed medium discharged from the compression chamber 23 flows is formed in the spring accommodating portion 15.
피스톤(33)과 로드(41)가 상호 접촉하는 피스톤(33)과 로드(41)의 각 단부에는 로드(41)의 왕복이동에 따라 피스톤(33)이 왕복이동하도록 각각 상반된 경사를 갖는 경사부(33a,41a)가 형성되어 있다.At each end of the piston 33 and the rod 41, which the piston 33 and the rod 41 contact each other, inclined portions having opposite inclinations so that the piston 33 reciprocates according to the reciprocating movement of the rod 41; 33a and 41a are formed.
이에, 로드(41)는 압축실(23)로부터 토출되는 피압축매체의 토출 압력에 의해 스프링 수용부(15) 내에서 승강하며 로드(41)의 경사부(41a)가 피스톤(33)의 경사부(33a)를 따라 승강함에 따라 피스톤(33)을 압축실(23)을 향해 접근 및 이격시켜, 토출 압력 변화에 따라 캠링(21)을 회전 및 회전정지시킨다.Accordingly, the rod 41 is elevated in the spring receiving portion 15 by the discharge pressure of the compressed medium discharged from the compression chamber 23, and the inclined portion 41a of the rod 41 is inclined of the piston 33. As the piston 33 moves up and down along the portion 33a, the piston 33 approaches and is spaced apart from the compression chamber 23 to rotate and rotate the cam ring 21 in accordance with the discharge pressure change.
이러한 구성에 의하여, 본 발명의 제2실시예에 따른 가변 토출량 베인 펌프는 로터(25)가 회전하면, 로터(25)에 설치된 베인(29)의 선단부가 원심력에 의해 캠링(21)의 압축실(23)의 내주면과 접하면서 회전하고, 압축실(23)로 흡입된 피압축매체는 로터(25)의 회전에 따라 용적 감소에 의해 압축되고 나서, 토출측 측판(55)의 토출통로(57)를 통해 토출된다.By such a configuration, in the variable discharge amount vane pump according to the second embodiment of the present invention, when the rotor 25 rotates, the tip of the vane 29 installed in the rotor 25 has a centrifugal force in the compression chamber of the cam ring 21. The compressed medium rotated in contact with the inner circumferential surface of the 23 and sucked into the compression chamber 23 is compressed by volume reduction as the rotor 25 rotates, and then the discharge passage 57 of the discharge side plate 55 is pressed. It is discharged through.
한편, 로터(25)가 회전하여 피압축매체가 압축되어 토출됨에 따라, 로터(25)의 회전방향으로 캠링(21)이 회전하게 되고, 특히 토출 압력이 높을수록 캠링(21)의 회전력이 증가하게 된다. 이 때, 토출된 피압축매체의 일부는 펌프하우징(11)에 형성된 유입유로(17)로 유입되어, 로드(41)가 승강하도록 작용한다.On the other hand, as the rotor 25 rotates and the compressed medium is compressed and discharged, the cam ring 21 rotates in the rotational direction of the rotor 25. In particular, as the discharge pressure is high, the rotational force of the cam ring 21 increases. Done. At this time, a part of the discharged compressed medium flows into the inflow passage 17 formed in the pump housing 11 and acts to lift and lower the rod 41.
한편, 피압축매체의 토출 압력이 설정된 압력 이상이면, 캠링(21)의 회전력이 피스톤(33)과 캠링(21) 외주면 사이의 마찰력보다 크게 되어 캠링(21)이 회전하게 되고, 동시에 유입유로(17)로 유입된 피압축매체의 토출 압력에 의해 로드(41)가 상방으로 밀어올려지고, 피스톤(33)의 경사부(33a)는 로드(41)의 경사부(41a)에 밀착하여, 도 6에 도시된 바와 같이 캠링(21)의 외주면을 가압하고 있던 피스톤(33)은 캠링(21)의 외주면을 따라 슬라이딩하며 펌프하우징(11)의 외측으로 이동하게 된다. 이 때, 로터(25)와 캠링(21) 간의 회전수 차이에 의해 압축실(23)에서 압축되어 토출되는 토출량은 가변된다. 한편, 로터(25)와 캠링(21)이 같은 회전수로 회전하게 되면, 캠링(21)의 압축실(23)에서 피압축매체의 압축이 일어나지 않게 되어 토출이 정지된다.On the other hand, if the discharge pressure of the compressed medium is equal to or higher than the set pressure, the rotational force of the cam ring 21 is greater than the friction force between the piston 33 and the outer peripheral surface of the cam ring 21, so that the cam ring 21 rotates, and at the same time the inflow passage ( The rod 41 is pushed upward by the discharge pressure of the to-be-compressed medium flowing into the cylinder 17, and the inclined portion 33a of the piston 33 is in close contact with the inclined portion 41a of the rod 41. As shown in FIG. 6, the piston 33 pressurizing the outer circumferential surface of the cam ring 21 slides along the outer circumferential surface of the cam ring 21 and moves to the outside of the pump housing 11. At this time, the discharge amount compressed and discharged in the compression chamber 23 is varied by the difference in rotation speed between the rotor 25 and the cam ring 21. On the other hand, when the rotor 25 and the cam ring 21 rotate at the same rotational speed, the compression of the compressed medium does not occur in the compression chamber 23 of the cam ring 21, and the discharge is stopped.
피압축매체의 토출 압력이 설정된 압력 미만이면, 캠링(21)의 회전력이 피스톤(33)과 캠링(21) 외주면 사이의 마찰력보다 작게 되고, 동시에 유입유로(17)로 유입된 피압축매체의 토출 압력에 의해 로드(41)가 상방으로 밀어올려지지 않게 되어, 도 7에 도시된 바와 같이 피스톤(33)은 캠링(21)의 외주면을 가압하며, 피스톤(33)이 캠링(21) 외주면의 최대곡률반경을 갖는 돌기부(21a)를 넘지 못하여 캠링(21)은 회전정지한다. 이 때, 로터(25)가 회전하게 되면, 피압축매체는 캠링(21)의 압축실(23)에서 압축되어 토출량은 최대로 된다.If the discharge pressure of the compressed medium is less than the set pressure, the rotational force of the cam ring 21 is smaller than the friction force between the piston 33 and the outer circumferential surface of the cam ring 21 and at the same time discharge of the compressed medium introduced into the inflow passage 17. The rod 41 is not pushed upward by the pressure, and as shown in FIG. 7, the piston 33 presses the outer circumferential surface of the cam ring 21, and the piston 33 is the maximum of the outer circumferential surface of the cam ring 21. The cam ring 21 stops rotating because it does not exceed the protrusion 21a having the radius of curvature. At this time, when the rotor 25 is rotated, the medium to be compressed is compressed in the compression chamber 23 of the cam ring 21, so that the discharge amount is maximized.
따라서, 본 발명의 제2실시예에 따른 가변 토출량 베인 펌프는 피압축매체의 설정된 토출 압력 변화에 따라 캠링(21)이 회전 또는 회전정지하여, 즉 로터(25)와 캠링(21) 사이에 회전수 차이가 발생하여 압축실(23)에서 압축되어 토출되는 토출량을 가변할 수 있고 토출 효율을 향상시킬 있게 된다.Accordingly, in the variable discharge amount vane pump according to the second embodiment of the present invention, the cam ring 21 rotates or stops rotating according to the set discharge pressure change of the compressed medium, that is, rotates between the rotor 25 and the cam ring 21. The number difference occurs and the discharge amount compressed and discharged in the compression chamber 23 can be varied and the discharge efficiency can be improved.
이와 같이, 본 발명에 따르면, 내주면과 외주면이 타원형의 단면형상을 가지며 피압축매체가 압축되는 압축실을 형성하며 펌프하우징에 회전가능하게 수용되는 캠링과, 압축실에서 회전하며 피압축매체를 압축하는 로터와, 피압축매체의 토출 압력이 설정된 압력 이상이면 캠링을 회전시키고 피압축매체의 토출 압력이 설정된 압력 미만이면 캠링이 회전정지하도록 캠링의 회전을 제어하는 캠링 회전 제어부(31)를 마련함으로써, 토출 압력의 변화에 따라서 캠링을 회전 및 회전정지시켜서 토출량을 가변할 수 있고, 토출 효율을 향상시킬 수 있게 된다.As described above, according to the present invention, an inner circumferential surface and an outer circumferential surface have an elliptical cross-sectional shape, form a compression chamber into which a compressed medium is compressed, and a cam ring rotatably accommodated in a pump housing, and rotate the compression chamber and compress the compressed medium And a cam ring rotation control unit 31 for controlling the rotation of the cam ring so that the cam ring rotates when the discharge pressure of the compressed medium is equal to or higher than the set pressure and the cam ring stops rotating when the discharge pressure of the compressed medium is lower than the set pressure. The amount of discharge can be varied by rotating and rotating the cam ring in accordance with the change of the discharge pressure, thereby improving the discharge efficiency.
본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 청구범위에 속한다 하여야 할 것이다.It is apparent to those skilled in the art that the present invention is not limited to the described embodiments, and that various modifications and changes can be made without departing from the spirit and scope of the present invention. Accordingly, such modifications or variations will have to be belong to the claims of the present invention.

Claims (6)

  1. 펌프하우징과;Pump housing;
    내주면과 외주면이 타원형의 단면형상을 가지고 피압축매체가 압축되는 압축실을 형성하며, 상기 펌프하우징에 회전가능하게 수용되는 캠링과;An inner circumferential surface and an outer circumferential surface having an elliptical cross-sectional shape, forming a compression chamber in which a compressed medium is compressed, and a cam ring rotatably received in the pump housing;
    외주면에 방사상으로 복수의 베인이 출몰가능하게 수용되어, 상기 캠링의 압축실에서 회전하며 상기 피압축매체를 압축하는 로터와;A rotor radially accommodated on an outer circumferential surface of the vane to rotate in the compression chamber of the cam ring and to compress the compressed medium;
    상기 캠링의 외주면에 접촉하며, 상기 피압축매체의 토출 압력이 설정된 압력 이상이면 상기 캠링을 회전시키고 상기 피압축매체의 토출 압력이 설정된 압력 미만이면 상기 캠링이 회전정지하도록 상기 캠링의 회전을 제어하는 캠링 회전 제어부를 포함하는 것을 특징으로 하는 가변 토출량 베인 펌프.Contacting an outer circumferential surface of the cam ring and rotating the cam ring when the discharge pressure of the compressed medium is equal to or greater than a set pressure; and controlling the rotation of the cam ring to stop rotation of the cam ring when the discharge pressure of the compressed medium is less than the set pressure. A variable discharge amount vane pump comprising a cam ring rotation control section.
  2. 제1항에 있어서,The method of claim 1,
    상기 캠링 회전 제어부는,The cam ring rotation control unit,
    상기 캠링의 외주면에 슬라이딩가능하게 접촉하며, 상기 캠링의 회전에 따라 왕복운동하는 피스톤과;A piston slidably contacting an outer circumferential surface of the cam ring and reciprocating in accordance with the rotation of the cam ring;
    상기 피압축매체의 토출 압력이 설정된 압력 미만이면 상기 캠링이 회전정지하도록 상기 피스톤에 탄성력을 제공하는 스프링을 포함하는 것을 특징으로 하는 가변 토출량 베인 펌프.And a spring providing an elastic force to the piston so that the cam ring rotates when the discharge pressure of the medium to be compressed is less than a set pressure.
  3. 제2항에 있어서,The method of claim 2,
    상기 피압축매체의 토출 압력이 설정된 압력 이상이면, 상기 캠링은 회전하여 상기 피스톤이 상기 스프링을 향해 이동하며 상기 스프링을 압축시키는 것을 특징으로 하는 가변 토출량 베인 펌프.And when the discharge pressure of the compressed medium is equal to or greater than a set pressure, the cam ring rotates to move the piston toward the spring and compress the spring.
  4. 제2항에 있어서,The method of claim 2,
    상기 실린더 회전 제어부는 상기 스프링의 변위를 조절하는 스프링 조절볼트를 더 포함하는 것을 특징으로 하는 가변 토출량 베인 펌프.The cylinder rotation control unit further comprises a variable discharge vane pump, characterized in that the spring adjustment bolt for adjusting the displacement of the spring.
  5. 제2항에 있어서,The method of claim 2,
    상기 피스톤과 상기 스프링 사이에 마련되어, 상기 피압축매체의 토출 압력에 의해 승강하며 상기 스프링의 탄성력을 상기 피스톤에 전달하는 로드를 더 포함하며,A rod provided between the piston and the spring, the rod lifting and lowering by the discharge pressure of the compressed medium and transmitting the elastic force of the spring to the piston;
    상기 피스톤과 상기 로드가 상호 접촉하는 상기 피스톤과 상기 로드의 각 단부에는 각각 상반되는 경사를 갖는 경사부가 형성되어 있는 것을 특징으로 하는 가변 토출량 베인 펌프.A variable discharge amount vane pump, characterized in that the inclined portions having opposite inclinations are formed at each end of the piston and the rod, the piston and the rod contact each other.
  6. 제1항에 있어서,The method of claim 1,
    상기 압축실로 피압축매체의 흡입을 안내하는 흡입통로를 형성하며, 상기 캠링의 일측에 마련되는 흡입측 측판과;A suction side side plate formed at one side of the cam ring to form a suction passage for guiding suction of the compressed medium into the compression chamber;
    상기 압축실에서 압축된 피압축매체의 토출을 안내하는 토출통로를 형성하며, 상기 캠링을 사이에 두고 상기 흡입측 측판과 대향 배치되는 토출측 측판을 포함하는 것을 특징으로 하는 가변 토출량 베인 펌프.And a discharge side side plate which forms a discharge passage for guiding the discharge of the compressed medium compressed in the compression chamber, and is disposed to face the suction side side plate with the cam ring therebetween.
PCT/KR2009/005758 2008-10-09 2009-10-08 Vane pump with variable discharge volume WO2010041883A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801403863A CN102187098A (en) 2008-10-09 2009-10-08 Vane pump with variable discharge volume
US13/123,528 US20110194962A1 (en) 2008-10-09 2009-10-08 Vane pump with variable discharge volume

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0098984 2008-10-09
KR1020080098984A KR101004867B1 (en) 2008-10-09 2008-10-09 Variable discharge vane pump

Publications (2)

Publication Number Publication Date
WO2010041883A2 true WO2010041883A2 (en) 2010-04-15
WO2010041883A3 WO2010041883A3 (en) 2010-07-29

Family

ID=42101095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005758 WO2010041883A2 (en) 2008-10-09 2009-10-08 Vane pump with variable discharge volume

Country Status (4)

Country Link
US (1) US20110194962A1 (en)
KR (1) KR101004867B1 (en)
CN (1) CN102187098A (en)
WO (1) WO2010041883A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018119346A1 (en) * 2016-12-23 2018-06-28 Borgwarner Inc. Variable output pump
CN107143379A (en) * 2017-07-10 2017-09-08 游涛 Engine
KR101976976B1 (en) * 2018-01-05 2019-05-09 군산대학교산학협력단 Pressure adjustable type fluid pump
CN115324888B (en) * 2021-05-10 2024-06-11 北京汽车动力总成有限公司 Oil pump and car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083448A (en) * 1998-04-23 1999-11-25 요시다 도시오 Variable displacement pump
JP2008002304A (en) * 2006-06-21 2008-01-10 Nachi Fujikoshi Corp Variable displacement vane pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612114A (en) * 1948-04-06 1952-09-30 Thompson Grinder Co Vane pump or motor
US3761206A (en) * 1971-02-02 1973-09-25 Shively Bros Inc Fluid device
JPH07293455A (en) * 1994-04-28 1995-11-07 Toyooki Kogyo Co Ltd Vane pump
KR100432897B1 (en) * 2000-10-11 2004-05-22 주식회사 만도 Vane pump
ATE513126T1 (en) * 2002-07-19 2011-07-15 Eaton Ind Corp CAM RING BEARING FOR FUEL DELIVERY SYSTEM
JP4499694B2 (en) 2006-09-05 2010-07-07 ユニシア ジェーケーシー ステアリングシステム株式会社 Variable displacement pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083448A (en) * 1998-04-23 1999-11-25 요시다 도시오 Variable displacement pump
JP2008002304A (en) * 2006-06-21 2008-01-10 Nachi Fujikoshi Corp Variable displacement vane pump

Also Published As

Publication number Publication date
KR20100039974A (en) 2010-04-19
KR101004867B1 (en) 2010-12-28
US20110194962A1 (en) 2011-08-11
CN102187098A (en) 2011-09-14
WO2010041883A3 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
AU2018204390B2 (en) Axial piston pump
WO2010018944A2 (en) Exhaust check valve of swash plate compressor
KR20120024874A (en) Variable displacement compressor
US4075933A (en) Hydraulic pump or motor
US5538401A (en) Axial piston pump
CN110067714B (en) Axial plunger pump or motor
WO2010041883A2 (en) Vane pump with variable discharge volume
EP3812588B1 (en) Piston pump and piston motor
CA1054854A (en) Bent axis pumps and motors
US20100119383A1 (en) Pump unit comprising a main pump and a charge pump with a variable pump capacity
WO2011062402A2 (en) Compressor
JPH03115782A (en) Radial piston device
US3904318A (en) Fluid energy translating device
US2757612A (en) Axial piston pump
US4232587A (en) Fluid pump
CA2106201A1 (en) Radial pump
US11891997B2 (en) Two-dimensional motor piston pump
CN110067715B (en) Flow distribution slide plate pair and plunger pump or motor comprising same
KR20000031815A (en) Variable capacity swash plate type compressor
WO2012108671A2 (en) Valve plate assembly of compressor
CN1045162A (en) Fluid compression engine
KR20130121328A (en) Swash plate type compressor
CA1210641A (en) Recirculating roller bearing rocker cam support
CN113530784B (en) Novel variable radial plunger pump
CN216198726U (en) Full static pressure floating supporting sliding disc pair and sliding disc type plunger pump comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140386.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819390

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13123528

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1819/KOLNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09819390

Country of ref document: EP

Kind code of ref document: A2