WO2010032796A1 - Composition for forming side wall - Google Patents

Composition for forming side wall Download PDF

Info

Publication number
WO2010032796A1
WO2010032796A1 PCT/JP2009/066277 JP2009066277W WO2010032796A1 WO 2010032796 A1 WO2010032796 A1 WO 2010032796A1 JP 2009066277 W JP2009066277 W JP 2009066277W WO 2010032796 A1 WO2010032796 A1 WO 2010032796A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
methyl
composition
sidewall
ether
Prior art date
Application number
PCT/JP2009/066277
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 丸山
博昭 谷口
康志 境田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2010529793A priority Critical patent/JPWO2010032796A1/en
Publication of WO2010032796A1 publication Critical patent/WO2010032796A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers

Definitions

  • the present invention relates to a composition used for a lithography process in a manufacturing process of a semiconductor device and forming a sidewall in contact with a photoresist pattern.
  • a short-wavelength light such as an ArF excimer laser (wavelength of about 193 nm) is adopted as a light source for exposure to form a photoresist pattern.
  • a so-called sidewall method is known. It is known that the sidewall is formed using a silicon oxide film or the like formed by a CVD apparatus, but a film formed by applying a solution instead of the film formed by the CVD apparatus. Can also be used.
  • Patent Document 1 to Patent Document 4 a sidewall having a predetermined width is formed on the side surface of a photoresist pattern, and then the photoresist pattern is removed to thereby form a fine pattern formed on the sidewall.
  • a forming method has been proposed.
  • the sidewalls described in these conventional documents are formed by applying a composition containing a silicon-containing polymer and an organic solvent on a photoresist pattern to form a silicon-containing polymer layer, and then exposing and baking the photoresist.
  • the silicon-containing polymer has an epoxy group as a crosslinkable functional group
  • examples of the silicon-containing polymer include polysiloxane compounds or polysilsesquioxane compounds.
  • a specific structural unit of the polysiloxane compound or the polysilsesquioxane-based compound is not specified or suggested, and further, the polysiloxane compound or the polysilsesquioxane-based compound is used. Since the compound always contains an oxygen atom in addition to a silicon atom in the main chain, when the polysiloxane compound or the polysilsesquioxane compound has an epoxy group, it is further disadvantageous for increasing the silicon content in the silicon-containing polymer.
  • An object of the present invention is to provide a composition for forming a sidewall which can remarkably improve the coating property with respect to a substrate on which is formed, and the coating property with respect to the photoresist pattern, and has little intermixing with the photoresist pattern.
  • composition for forming a sidewall which is in contact with the surface of the resist underlayer film and the side surface of the photoresist pattern without a gap, has a low dry etching rate with respect to an oxygen-based gas, and has a high dry etching rate with respect to a fluorine-based gas. Is to provide a sidewall.
  • the first aspect of the present invention is: A silicon-containing polymer, and a solvent containing a predetermined organic solvent as a main component,
  • the silicon-containing polymer has a silanol group at its terminal, and the following formula (1a) and formula (1b):
  • R 3 represents a methyl group, an ethyl group or a phenyl group.
  • a composition for forming a sidewall for lithography having a structural unit represented by:
  • the above formula (1a) represents a structural unit in which one organic group and three oxygen atoms are bonded to one silicon atom.
  • the above formula (1b) represents a structural unit in which four oxygen atoms are bonded to one silicon atom.
  • a tetrafunctional silane compound typified by tetraethoxysilane is not used as a raw material monomer, it does not have a structural unit represented by the above formula (1b).
  • the silicon-containing polymer described in this specification is not limited to a polymer, and includes an oligomer. Therefore, the silicon-containing polymer may be either a polymer or an oligomer.
  • the second aspect of the present invention is: A silicon-containing polymer, and a solvent containing a predetermined organic solvent as a main component,
  • the silicon-containing polymer has a silanol group or the silanol group and a hydrogen atom at the terminal, and the following formula (2) and / or the following formula (3):
  • each R 2 independently represents a methyl group, an ethyl group or a phenyl group
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an OH group or a phenyl group.
  • a composition for forming a sidewall for lithography having at least one structural unit represented by
  • the composition for forming a sidewall according to the present invention is excellent in applicability to a substrate on which a photoresist pattern is formed and coverage with respect to the photoresist pattern. Therefore, the composition for forming a sidewall according to the present invention can be easily coated with a photoresist pattern by spin coating. Further, the sidewall formed from the sidewall forming composition according to the present invention is excellent in dry etching characteristics with respect to fluorine-based gas and oxygen-based gas. Furthermore, the composition for forming a sidewall according to the present invention can form a desired sidewall even if the silicon-containing polymer does not have an epoxy group as a functional group capable of crosslinking. Moreover, the baking temperature necessary for forming the sidewall may be a relatively low temperature condition that does not exceed 150 ° C.
  • FIG. 1 is a schematic diagram showing a sidewall forming process.
  • FIG. 2 is a schematic diagram showing a sidewall forming step.
  • Polysilane is a polymer or oligomer whose main chain is composed of Si—Si bonds. Specific examples of the structural unit are shown below. However, the structural unit of polysilane is not limited to these examples.
  • each of R 2 in the above formula (2) or (3) is preferably independently a methyl group or an ethyl group, and R 1 in the above formula (2) is preferably a hydrogen atom or methyl. Group or ethyl group is preferred.
  • the main chain of the polysilane may be either linear or branched.
  • the solvent mainly composed of the organic solvent contained in the composition for forming a sidewall according to the present invention contains the organic solvent in a proportion of more than 50% by mass, for example, 60% by mass to 100% by mass.
  • organic solvents examples include 4-methyl-2-pentanol, 1-butanol, propylene glycol n-propyl ether, propylene glycol n-butyl ether, propylene glycol phenyl ether, dipropylene glycol n-propyl ether, Examples include propylene glycol n-butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether, propylene glycol diacetate, cyclohexanol acetate, and cyclohexanol.
  • An optimal organic solvent may be selected from the organic solvents according to the type of organic photoresist used to form the photoresist pattern.
  • examples of the organic solvent include 4-methyl-2-pentanol, propylene glycol n-butyl ether, propylene glycol phenyl ether.
  • Dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, and cyclohexanol are preferred.
  • auxiliary components of the solvent include, for example, dipropylene glycol methyl ether, tripropylene glycol n-butyl ether, dipropylene glycol methyl ether acetate, 1,3-butylene glycol diacetate, methyl acetate, ethyl acetate, isopropyl acetate, n -Propyl alcohol, n-propyl acetate, butyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, 3 -Methoxy Pentanol, 3-methoxybutyl acetate, 1,3-butylene glycol, triacetin, ethylene glycol monomethyl ether acetate, ethylene
  • the solvent needs to have little intermixing with the photoresist pattern and has good coating properties on the substrate on which the photoresist pattern is formed.
  • An organic solvent having a boiling point of 100 ° C. or less at 1 atm (101.3 kPa) is apt to volatilize during application, and water has a high surface tension and is difficult to apply uniformly. The applicability is not good. However, it is allowed to contain an organic solvent having a boiling point of 100 ° C. or lower as a subcomponent of the solvent.
  • the silicon-containing polymer contained in the composition for forming a sidewall according to the present invention has a silanol group at its end.
  • the presence of a silanol group can be estimated by analyzing the composition using an FT-NIR (Fourier transform near infrared) spectrometer.
  • a surfactant may be further added.
  • the surfactant can further improve the applicability of the coating composition to the substrate.
  • a nonionic surfactant or a fluorosurfactant is used.
  • the sidewall forming composition according to the present invention may further contain an organic acid.
  • the organic acid contributes to improving the storage stability of the composition for forming a sidewall according to the present invention.
  • organic acids include maleic acid, cis-5-norbornene-endo-2,3-dicarboxylic acid, cis-5-norbornene-exo-2,3-dicarboxylic acid, and cis-1,2-cyclohexane.
  • examples thereof include cis-type dicarboxylic acids such as dicarboxylic acids.
  • the ratio of the solid content to the composition is, for example, 1% by mass to 30% by mass.
  • the ratio of the organic acid to the solid content can be, for example, 0.1% by mass to 10% by mass.
  • the ratio of the surfactant to the solid content can be, for example, 0.01% by mass to 2% by mass.
  • the composition for forming a sidewall according to the present invention is applied so as to cover a photoresist pattern formed on a semiconductor substrate, and the photoresist pattern is formed using an organic photoresist.
  • This organic photoresist is either a positive resist or a negative resist, and contains a photoacid generator.
  • a chemically amplified resist that is sensitive to KrF excimer laser, ArF excimer laser, EUV (extreme ultraviolet) can be used.
  • “organic photoresist” is defined as not including a silicon-containing resist based on polysiloxane, polysilane, or the like.
  • the photoresist pattern is preferably formed on the semiconductor substrate via a resist underlayer film in which one layer or two or more layers are laminated.
  • the semiconductor substrate is typically a silicon wafer, but an SOI (Silicon on Insulator) substrate or a compound semiconductor wafer such as gallium arsenide (GaAs), indium phosphide (InP), or gallium phosphide (GaP) is used. May be.
  • An insulating film such as a silicon oxide film, a nitrogen-containing silicon oxide film (SiON film), a carbon-containing silicon oxide film (SiOC film), or a fluorine-containing silicon oxide film (SiOF film) or a low-k film (low dielectric constant film)
  • SiON film nitrogen-containing silicon oxide film
  • SiOC film carbon-containing silicon oxide film
  • SiOF film fluorine-containing silicon oxide film
  • low-k film low dielectric constant film
  • the average molecular weight of the polymer shown in the following synthesis examples of the present specification is a measurement result by gel permeation chromatography (hereinafter abbreviated as GPC).
  • GPC device HLC-8220GPC (manufactured by Tosoh Corporation)
  • GPC column Shodex (registered trademark) KF803L, KF802, KF801 (manufactured by Showa Denko KK) Column temperature: 40 ° C
  • Solvent tetrahydrofuran (THF)
  • Flow rate 1.0 ml / min Standard sample: Polystyrene (manufactured by Showa Denko KK)
  • the average molecular weight of the obtained polymer or oligomer by GPC was a weight average molecular weight of 4500 in terms of standard polystyrene.
  • the average molecular weight of the obtained polymer or oligomer by GPC was a weight average molecular weight of 1400 in terms of standard polystyrene.
  • the average molecular weight of the obtained polymer or oligomer by GPC was a weight average molecular weight of 2100 in terms of standard polystyrene.
  • Example 1 4-Methyl-2-pentanol was added to 25 g of the solution obtained in Synthesis Example 1 to obtain a 4.0 mass% solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • Example 2 To 25 g of the solution obtained in Synthesis Example 1, 0.10 g of maleic acid and 0.02 g of a surfactant (manufactured by DIC Corporation, trade name: Megafac R-30) were added, and 4-methyl-2- Pentanol was added to make a 4.0 mass% solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • a surfactant manufactured by DIC Corporation, trade name: Megafac R-30
  • Example 3> The polysilane compound represented by the above formula (16) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Osaka Gas Chemical Co., Ltd., weight average molecular weight 5900, number average molecular weight 1800, structural unit A and structural unit B are contained in proportions of 33 mol% and 64 mol%, respectively, and at least a silanol group is present at the terminal. Prepared).
  • 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • the polysilane compound used includes a branched structure represented by the above formula (3) described in the present specification. Even in the polysilane compounds used in Examples 4 to 8 described below, it is not hindered to contain a branched structure as in this Example.
  • Example 4 The polysilane compound represented by the above formula (17) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group or a phenyl group, and X represents an OH group, an OH group and a hydrogen atom, respectively).
  • R represents a hydrogen atom, a methyl group, an ethyl group, an OH group or a phenyl group
  • X represents an OH group, an OH group and a hydrogen atom, respectively.
  • 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution.
  • it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • Example 5 The polysilane compound represented by the above formula (16) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Osaka Gas Chemical Co., Ltd., weight average molecular weight 7200, number average molecular weight 1800, structural unit A and structural unit B are contained in proportions of 20 mol% and 80 mol% different from Example 3, respectively)
  • the terminal has at least a silanol group).
  • 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • Example 6> The polysilane compound represented by the above formula (18) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Made by Osaka Gas Chemical Co., Ltd., weight average molecular weight 14000, number average molecular weight 2000, structural unit A, structural unit B and structural unit C in proportions of 35 mol%, 60 mol% and 5 mol%, respectively) And having at least a silanol group at the terminal).
  • R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group
  • X represents an OH group, an OH group, and a hydrogen atom each independently
  • 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • Example 7 The polysilane compound represented by the above formula (18) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Made by Osaka Gas Chemical Co., Ltd., weight average molecular weight 5500, number average molecular weight 1500, structural unit A, structural unit B and structural unit C are 15 mol%, 80 mol%, 5 And at least a silanol group at the terminal).
  • R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group
  • X represents an OH group, an OH group, and a hydrogen atom each independently
  • 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • Example 8> The polysilane compound represented by the above formula (18) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Made by Osaka Gas Chemical Co., Ltd., weight average molecular weight 5500, number average molecular weight 1500, structural unit A, structural unit B, and structural unit C are 15 mol%, 75 different from Example 6 and Example 7, respectively. And at least a silanol group at the terminal).
  • 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
  • the composition for forming a sidewall prepared in Example 1 is spin-coated (1500 rpm, 60 seconds) so as to cover the photoresist pattern 103, and a coating layer 104 is formed as shown in FIG. did. At this time, baking was not performed. Then, as shown in FIG. 1C, the entire surface of the coating layer 104 was exposed to UV irradiation.
  • An ArF excimer laser may be used as a light source used for this exposure.
  • the irradiation energy such as UV is in the range of 10 mJ / cm 2 to 100 mJ / cm 2 , and the irradiation time is, for example, 2 to 60 seconds.
  • the sidewall 105 was formed around the photoresist pattern by baking at 150 ° C. for 60 seconds.
  • the baking temperature is in the range of 80 ° C. to 200 ° C., preferably 80 ° C. to 150 ° C., and needs to be set so that the photoresist pattern 103 is softened and does not reflow.
  • the heating means used for baking is not particularly limited. For example, a hot plate can be used.
  • the coating layer 104 on which the sidewall 105 was not formed was removed using 4-methyl-2-pentanol.
  • 4-methyl-2-pentanol If only the coating layer 104 can be selectively removed, other than 4-methyl-2-pentanol may be used, but propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), PGMEA and PGME are in a ratio of 3: 7. Solvents mixed in proportion and tetramethylammonium hydroxide (TMAH) aqueous solution cannot be used. The state after removal is shown in FIG. Then, residual 4-methyl-2-pentanol was removed by spin drying (3000 rpm, 30 seconds).
  • TMAH tetramethylammonium hydroxide
  • etching gas As an etching gas and performing dry etching on the sidewall 105, the upper portion of the photoresist pattern 103 was exposed as shown in FIG.
  • RIE-10NR manufactured by Samco Co., Ltd.
  • etching was performed to remove the photoresist pattern 103 using O 2 as an etching gas, and the sidewall 105 was left as shown in FIG.
  • RIE-10NR manufactured by Samco Co., Ltd.
  • the portion of the resist underlayer film 102 where the sidewall 105 is not formed may be etched.

Abstract

A composition for forming a side wall, which is suitable for forming a side wall in contact with a photoresist pattern. Specifically disclosed is a composition for forming a side wall for lithography, which contains a silicon-containing polymer, which has a silanol group at an end while containing structural units represented by formula (1a) and formula (1b) (wherein R3 represents an organic group), and a solvent mainly composed of a specific organic solvent. Also specifically disclosed is a composition for forming a side wall for lithography, which contains a silicon-containing polymer, which has a silanol group or alternatively a silanol group and a hydrogen atom at an end while containing at least one structural unit represented by formula (2) and/or formula (3) (wherein R2 and R1 each represents an organic group), and a solvent mainly composed of a specific organic solvent.

Description

サイドウォール形成用組成物Side wall forming composition
 本発明は、半導体装置の製造過程におけるリソグラフィー工程に用いられ、フォトレジストパターンに接してサイドウォールを形成するための組成物に関する。 The present invention relates to a composition used for a lithography process in a manufacturing process of a semiconductor device and forming a sidewall in contact with a photoresist pattern.
 近年、半導体素子の高集積化に伴い、配線などのパターンの微細化が求められている。微細なパターンを形成するために、露光用の光源としてArFエキシマレーザー(波長約193nm)のような短波長光を採用し、フォトレジストパターンを形成することが行われている。 In recent years, with the high integration of semiconductor elements, the miniaturization of patterns such as wiring has been demanded. In order to form a fine pattern, a short-wavelength light such as an ArF excimer laser (wavelength of about 193 nm) is adopted as a light source for exposure to form a photoresist pattern.
 フォトレジストパターンのアスペクト比(高さ/幅)が大きくなるほど、パターン倒れが発生しやすくなる。パターン倒れを防ぐためには、レジストの膜厚を薄くする必要がある。しかしながら、膜厚の薄いレジストから形成されるフォトレジストパターンは、当該フォトレジストパターンをマスクとして被加工膜をドライエッチングする際に、消失してしまうおそれがある。 As the aspect ratio (height / width) of the photoresist pattern increases, pattern collapse tends to occur. In order to prevent pattern collapse, it is necessary to reduce the film thickness of the resist. However, a photoresist pattern formed from a thin resist may be lost when the film to be processed is dry-etched using the photoresist pattern as a mask.
 そこで、近年、微細なパターンを形成する方法として、ダブルパターニング又はダブル露光と称する各種リソグラフィープロセスが検討されている。その一種として、いわゆるサイドウォール法が知られている。サイドウォールは、CVD装置で成膜された酸化珪素膜等を用いて形成されることが知られているが、CVD装置で成膜された膜に代えて、溶液を塗布して形成される膜を用いることもできる。 Therefore, in recent years, various lithography processes called double patterning or double exposure have been studied as a method for forming a fine pattern. As one type, a so-called sidewall method is known. It is known that the sidewall is formed using a silicon oxide film or the like formed by a CVD apparatus, but a film formed by applying a solution instead of the film formed by the CVD apparatus. Can also be used.
 ところで、特許文献1乃至特許文献4には、フォトレジストパターンの側面に所定の幅を有するサイドウォールを形成し、その後当該フォトレジストパターンを除去することにより、サイドウォールで形成された微細なパターンの形成方法が提案されている。これらの従来文献に記載されているサイドウォールは、フォトレジストパターン上にシリコン含有ポリマー及び有機溶媒を含む組成物を塗布してシリコン含有ポリマー層を形成し、そして露光及びベークを行うことで当該フォトレジストパターンと当該シリコン含有ポリマー層との界面に架橋結合層を形成し、その後架橋結合が形成されていないシリコン含有ポリマー層を除去し、前記架橋結合層をエッチバックして前記フォトレジストパターンの上部を露出させる工程を経て形成される。 By the way, in Patent Document 1 to Patent Document 4, a sidewall having a predetermined width is formed on the side surface of a photoresist pattern, and then the photoresist pattern is removed to thereby form a fine pattern formed on the sidewall. A forming method has been proposed. The sidewalls described in these conventional documents are formed by applying a composition containing a silicon-containing polymer and an organic solvent on a photoresist pattern to form a silicon-containing polymer layer, and then exposing and baking the photoresist. Forming a cross-linked layer at the interface between the resist pattern and the silicon-containing polymer layer, then removing the silicon-containing polymer layer where the cross-linked bond is not formed, and etching back the cross-linked layer to form an upper portion of the photoresist pattern; It is formed through a step of exposing the.
 これらの従来文献には、前記シリコン含有ポリマーは、架橋結合可能な作用基としてエポキシ基を有することが記載され、前記シリコン含有ポリマーとして、ポリシロキサン化合物又はポリシルセスキオキサン系化合物が例示されている。しかしながら、これらの従来文献には、前記ポリシロキサン化合物又は前記ポリシルセスキオキサン系化合物の具体的な構造単位は明示及び示唆されておらず、さらに、前記ポリシロキサン化合物又はポリシルセスキオキサン系化合物は、主鎖に珪素原子以外に必ず酸素原子を含むため、ポリシロキサン化合物又はポリシルセスキオキサン系化合物が、エポキシ基を有する場合はさらに、シリコン含有ポリマーにおけるシリコン含有率を高めるのに不利である。
 また、これらの従来文献には、シリコン分子含有量がポリマー総重量に対し40重量%以上含まれる場合、フォトレジストパターン上にシリコン含有ポリマー層を均一に塗布するのが困難である旨記載されている。しかしながら、塗布性の改善について、シリコン含有量を調整すること以外、何ら検討されていない。
These conventional documents describe that the silicon-containing polymer has an epoxy group as a crosslinkable functional group, and examples of the silicon-containing polymer include polysiloxane compounds or polysilsesquioxane compounds. Yes. However, in these conventional documents, a specific structural unit of the polysiloxane compound or the polysilsesquioxane-based compound is not specified or suggested, and further, the polysiloxane compound or the polysilsesquioxane-based compound is used. Since the compound always contains an oxygen atom in addition to a silicon atom in the main chain, when the polysiloxane compound or the polysilsesquioxane compound has an epoxy group, it is further disadvantageous for increasing the silicon content in the silicon-containing polymer. It is.
In addition, these conventional documents indicate that it is difficult to uniformly apply a silicon-containing polymer layer on a photoresist pattern when the silicon molecule content is 40% by weight or more based on the total polymer weight. Yes. However, no investigation has been made on the improvement of applicability except for adjusting the silicon content.
特開2008-72101号公報JP 2008-72101A 特開2008-72097号公報JP 2008-72097 A 米国特許出願公開第2008/0064213号明細書US Patent Application Publication No. 2008/0064213 米国特許出願公開第2008/0063986号明細書US Patent Application Publication No. 2008/0063986
 そこで、本発明は、上記の事情に基づいてなされたものであり、その解決しようとする課題は、珪素含有重合体が架橋結合可能な作用基としてエポキシ基を有さなくても、フォトレジストパターンが形成された基板に対する塗布性、及び当該フォトレジストパターンに対する被覆性を著しく改善でき且つ当該フォトレジストパターンとのインターミキシングが少ないサイドウォール形成用組成物を提供することである。さらに、レジスト下層膜の表面及びフォトレジストパターンの側面に空隙なしに接し且つ酸素系ガスに対するドライエッチング速度が小さく、フッ素系ガスに対するドライエッチング速度が大きい、当該サイドウォール形成用組成物から形成されるサイドウォールを提供することである。 Therefore, the present invention has been made based on the above circumstances, and the problem to be solved is a photoresist pattern even when the silicon-containing polymer does not have an epoxy group as a crosslinkable functional group. An object of the present invention is to provide a composition for forming a sidewall which can remarkably improve the coating property with respect to a substrate on which is formed, and the coating property with respect to the photoresist pattern, and has little intermixing with the photoresist pattern. Further, it is formed from the composition for forming a sidewall, which is in contact with the surface of the resist underlayer film and the side surface of the photoresist pattern without a gap, has a low dry etching rate with respect to an oxygen-based gas, and has a high dry etching rate with respect to a fluorine-based gas. Is to provide a sidewall.
 本発明者らは、上記の課題を解決するべく鋭意研究を行った結果、本発明を見出した。
 すなわち、本発明の第1の態様は、
 珪素含有重合体、及び所定の有機溶媒を主成分とする溶剤を含み、
前記珪素含有重合体は、その末端にシラノール基を有するとともに、下記式(1a)及び式(1b):
Figure JPOXMLDOC01-appb-C000003
(式中、Rはメチル基、エチル基又はフェニル基を表す。)
で表される構造単位を有する、リソグラフィー用サイドウォール形成用組成物である。
The present inventors have found the present invention as a result of intensive studies to solve the above problems.
That is, the first aspect of the present invention is:
A silicon-containing polymer, and a solvent containing a predetermined organic solvent as a main component,
The silicon-containing polymer has a silanol group at its terminal, and the following formula (1a) and formula (1b):
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 3 represents a methyl group, an ethyl group or a phenyl group.)
A composition for forming a sidewall for lithography, having a structural unit represented by:
 上記式(1a)は、珪素原子1個につき1つの有機基と3つの酸素原子が結合した構造単位を表す。一方、上記式(1b)は、珪素原子1個につき4つの酸素原子が結合した構造単位を表す。但し、原料モノマーとして、テトラエトキシシランに代表される4官能シラン化合物を用いない場合、上記式(1b)で表される構造単位を有さない。 The above formula (1a) represents a structural unit in which one organic group and three oxygen atoms are bonded to one silicon atom. On the other hand, the above formula (1b) represents a structural unit in which four oxygen atoms are bonded to one silicon atom. However, when a tetrafunctional silane compound typified by tetraethoxysilane is not used as a raw material monomer, it does not have a structural unit represented by the above formula (1b).
 なお、本明細書に記載された珪素含有重合体は、ポリマーに限定されるものではなく、オリゴマーも含まれる。したがって、上記珪素含有重合体は、ポリマー又はオリゴマーのいずれであってもよい。 In addition, the silicon-containing polymer described in this specification is not limited to a polymer, and includes an oligomer. Therefore, the silicon-containing polymer may be either a polymer or an oligomer.
 本発明の第2の態様は、
 珪素含有重合体、及び所定の有機溶媒を主成分とする溶剤を含み、
前記珪素含有重合体は、その末端にシラノール基又は該シラノール基と水素原子を有するとともに、下記式(2)及び/又は下記式(3):
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、それぞれ独立に、メチル基、エチル基又はフェニル基を表し、Rは水素原子、メチル基、エチル基、OH基又はフェニル基を表す。)
で表される構造単位を少なくとも1種有する、リソグラフィー用サイドウォール形成用組成物である。
The second aspect of the present invention is:
A silicon-containing polymer, and a solvent containing a predetermined organic solvent as a main component,
The silicon-containing polymer has a silanol group or the silanol group and a hydrogen atom at the terminal, and the following formula (2) and / or the following formula (3):
Figure JPOXMLDOC01-appb-C000004
(In the formula, each R 2 independently represents a methyl group, an ethyl group or a phenyl group, and R 1 represents a hydrogen atom, a methyl group, an ethyl group, an OH group or a phenyl group.)
A composition for forming a sidewall for lithography, having at least one structural unit represented by
 本発明に係るサイドウォール形成用組成物は、フォトレジストパターンが形成された基板に対する塗布性、及び当該フォトレジストパターンに対する被覆性に優れる。したがって、本発明に係るサイドウォール形成用組成物は、スピンコート法により、容易にフォトレジストパターンを被覆して塗布することができる。
 また、本発明に係るサイドウォール形成用組成物から形成されるサイドウォールは、フッ素系ガス及び酸素系ガスに対するドライエッチング特性に優れる。
 さらに、本発明に係るサイドウォール形成用組成物は、珪素含有重合体が架橋結合可能な作用基としてエポキシ基を有さなくても、所望のサイドウォールを形成することが可能である。しかも、サイドウォール形成に必要なベーク温度は、150℃を超えない比較的低温条件でよい。
The composition for forming a sidewall according to the present invention is excellent in applicability to a substrate on which a photoresist pattern is formed and coverage with respect to the photoresist pattern. Therefore, the composition for forming a sidewall according to the present invention can be easily coated with a photoresist pattern by spin coating.
Further, the sidewall formed from the sidewall forming composition according to the present invention is excellent in dry etching characteristics with respect to fluorine-based gas and oxygen-based gas.
Furthermore, the composition for forming a sidewall according to the present invention can form a desired sidewall even if the silicon-containing polymer does not have an epoxy group as a functional group capable of crosslinking. Moreover, the baking temperature necessary for forming the sidewall may be a relatively low temperature condition that does not exceed 150 ° C.
図1は、サイドウォール形成工程を示す模式図である。FIG. 1 is a schematic diagram showing a sidewall forming process. 図2は、サイドウォール形成工程を示す模式図である。FIG. 2 is a schematic diagram showing a sidewall forming step.
 ポリシランとは、その主鎖がSi-Si結合からなるポリマー又はオリゴマーであり、その構造単位の具体例を以下に示す。ただし、ポリシランの構造単位はこれらの例に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000005
Polysilane is a polymer or oligomer whose main chain is composed of Si—Si bonds. Specific examples of the structural unit are shown below. However, the structural unit of polysilane is not limited to these examples.
Figure JPOXMLDOC01-appb-C000005
 ポリシランの珪素含有率を高めるためには、上記式(2)又は上記式(3)におけるRとしてそれぞれ独立にメチル基又はエチル基が好ましく、上記式(2)におけるRとして水素原子、メチル基又はエチル基が好ましい。前記ポリシランの主鎖は直鎖型、分岐型のいずれであってもよい。 In order to increase the silicon content of polysilane, each of R 2 in the above formula (2) or (3) is preferably independently a methyl group or an ethyl group, and R 1 in the above formula (2) is preferably a hydrogen atom or methyl. Group or ethyl group is preferred. The main chain of the polysilane may be either linear or branched.
 本発明に係るサイドウォール形成用組成物に含まれる有機溶媒を主成分とする溶剤は、当該有機溶媒を、50質量%を超える、例えば、60質量%~100質量%の割合で含む。 The solvent mainly composed of the organic solvent contained in the composition for forming a sidewall according to the present invention contains the organic solvent in a proportion of more than 50% by mass, for example, 60% by mass to 100% by mass.
 このような有機溶媒としては、例えば、4-メチル-2-ペンタノール、1-ブタノール、プロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコールジアセテート、シクロヘキサノールアセテート、及びシクロヘキサノールが挙げられる。
 前記有機溶媒の中から、フォトレジストパターンを形成するために使用する有機フォトレジストの種類に応じて、最適な有機溶媒を選択すればよい。
Examples of such organic solvents include 4-methyl-2-pentanol, 1-butanol, propylene glycol n-propyl ether, propylene glycol n-butyl ether, propylene glycol phenyl ether, dipropylene glycol n-propyl ether, Examples include propylene glycol n-butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether, propylene glycol diacetate, cyclohexanol acetate, and cyclohexanol.
An optimal organic solvent may be selected from the organic solvents according to the type of organic photoresist used to form the photoresist pattern.
 前記有機フォトレジストとして、例えば、住友化学(株)製、商品名:PAR855を用いる場合、上記有機溶媒としては、例えば、4-メチル-2-ペンタノール、プロピレングリコールn-ブチルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、及びシクロヘキサノールが好ましい。 For example, when using the product name: PAR855 manufactured by Sumitomo Chemical Co., Ltd. as the organic photoresist, examples of the organic solvent include 4-methyl-2-pentanol, propylene glycol n-butyl ether, propylene glycol phenyl ether. Dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, and cyclohexanol are preferred.
 その他、溶剤の副成分としては、例えば、ジプロピレングリコールメチルエーテル、トリプロピレングリコールn-ブチルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,3-ブチレングリコールジアセテート、メチルアセテート、エチルアセテート、イソプロピルアセテート、n-プロピルアルコール、n-プロピルアセテート、ブチルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブタノール、3-メトキシブチルアセテート、1,3-ブチレングリコール、トリアセチン、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、乳酸エチル、及びシクロヘキサノンが挙げられる。 Other auxiliary components of the solvent include, for example, dipropylene glycol methyl ether, tripropylene glycol n-butyl ether, dipropylene glycol methyl ether acetate, 1,3-butylene glycol diacetate, methyl acetate, ethyl acetate, isopropyl acetate, n -Propyl alcohol, n-propyl acetate, butyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, 3 -Methoxy Pentanol, 3-methoxybutyl acetate, 1,3-butylene glycol, triacetin, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethyl lactate, and cyclohexanone.
 前記溶剤は、フォトレジストパターンとのインターミキシングがほとんどなく、しかもフォトレジストパターンが形成された基板に対する塗布性が良好なことが必要である。1気圧(101.3kPa)での沸点が100℃以下の有機溶媒は塗布時に揮発しやすく、また水は表面張力が高く均一に塗布しにくいので、溶剤の主成分としてこれらを用いる場合は基板に対する塗布性が良好とはいえない。しかしながら、前記溶剤の副成分として、前記沸点が100℃以下の有機溶媒を含むことは許容される。 The solvent needs to have little intermixing with the photoresist pattern and has good coating properties on the substrate on which the photoresist pattern is formed. An organic solvent having a boiling point of 100 ° C. or less at 1 atm (101.3 kPa) is apt to volatilize during application, and water has a high surface tension and is difficult to apply uniformly. The applicability is not good. However, it is allowed to contain an organic solvent having a boiling point of 100 ° C. or lower as a subcomponent of the solvent.
 本発明に係るサイドウォール形成用組成物に含まれる珪素含有重合体は、その末端にシラノール基を有する。FT-NIR(フーリエ変換近赤外)分光装置を用いて当該組成物を分析することで、シラノール基の存在を推定することができる。 The silicon-containing polymer contained in the composition for forming a sidewall according to the present invention has a silanol group at its end. The presence of a silanol group can be estimated by analyzing the composition using an FT-NIR (Fourier transform near infrared) spectrometer.
 本発明に係るサイドウォール形成用組成物はさらに、界面活性剤が添加されていてもよい。界面活性剤は、基板に対するコーティング組成物の塗布性をさらに向上させることができ、例えば、ノニオン系界面活性剤、フッ素系界面活性剤が用いられる。 In the composition for forming a sidewall according to the present invention, a surfactant may be further added. The surfactant can further improve the applicability of the coating composition to the substrate. For example, a nonionic surfactant or a fluorosurfactant is used.
 また、本発明に係るサイドウォール形成用組成物はさらに、有機酸が添加されていてもよい。有機酸は、本発明に係るサイドウォール形成用組成物の保存安定性向上に寄与する。
 このような有機酸としては、例えば、マレイン酸、シス-5-ノルボルネン-エンド-2,3-ジカルボン酸、シス-5-ノルボルネン-エキソ-2,3-ジカルボン酸、シス-1,2-シクロヘキサンジカルボン酸などのシス型ジカルボン酸が挙げられる。
Further, the sidewall forming composition according to the present invention may further contain an organic acid. The organic acid contributes to improving the storage stability of the composition for forming a sidewall according to the present invention.
Examples of such organic acids include maleic acid, cis-5-norbornene-endo-2,3-dicarboxylic acid, cis-5-norbornene-exo-2,3-dicarboxylic acid, and cis-1,2-cyclohexane. Examples thereof include cis-type dicarboxylic acids such as dicarboxylic acids.
 本発明に係るサイドウォール形成用組成物から溶剤を除いた成分を固形分とみなすと、当該組成物に対する固形分の割合は、例えば、1質量%~30質量%である。また、固形分に対する有機酸の割合は、例えば、0.1質量%~10質量%とすることができる。さらに、固形分に対する界面活性剤の割合は、例えば、0.01質量%~2質量%とすることができる。 When the component excluding the solvent from the composition for forming a sidewall according to the present invention is regarded as a solid content, the ratio of the solid content to the composition is, for example, 1% by mass to 30% by mass. Further, the ratio of the organic acid to the solid content can be, for example, 0.1% by mass to 10% by mass. Furthermore, the ratio of the surfactant to the solid content can be, for example, 0.01% by mass to 2% by mass.
 本発明に係るサイドウォール形成用組成物は、半導体基板上に形成されたフォトレジストパターンを被覆するように塗布され、当該フォトレジストパターンは、有機フォトレジストを用いて形成される。この有機フォトレジストは、ポジ型レジスト、ネガ型レジストのいずれかであり、光酸発生剤を含むものである。KrFエキシマレーザー、ArFエキシマレーザー、EUV(極端紫外線)に感光する化学増幅型レジストを用いることができる。本明細書では、“有機フォトレジスト”は、ポリシロキサン、ポリシランなどをベースポリマーとする珪素含有レジストを含まない、と定義する。フォトレジストパターンは、1層又は2層以上積層されたレジスト下層膜を介して、半導体基板上に形成するのが好ましい。 The composition for forming a sidewall according to the present invention is applied so as to cover a photoresist pattern formed on a semiconductor substrate, and the photoresist pattern is formed using an organic photoresist. This organic photoresist is either a positive resist or a negative resist, and contains a photoacid generator. A chemically amplified resist that is sensitive to KrF excimer laser, ArF excimer laser, EUV (extreme ultraviolet) can be used. In this specification, “organic photoresist” is defined as not including a silicon-containing resist based on polysiloxane, polysilane, or the like. The photoresist pattern is preferably formed on the semiconductor substrate via a resist underlayer film in which one layer or two or more layers are laminated.
 前記半導体基板は、代表的にはシリコンウエハーであるが、SOI(Silicon on Insulator)基板、又は砒化ガリウム(GaAs)、リン化インジウム(InP)、リン化ガリウム(GaP)などの化合物半導体ウエハーを用いてもよい。酸化珪素膜、窒素含有酸化珪素膜(SiON膜)、炭素含有酸化珪素膜(SiOC膜)、フッ素含有酸化珪素膜(SiOF膜)などの絶縁膜又はlow-k膜(低比誘電率膜)が形成された半導体基板を用いてもよい。 The semiconductor substrate is typically a silicon wafer, but an SOI (Silicon on Insulator) substrate or a compound semiconductor wafer such as gallium arsenide (GaAs), indium phosphide (InP), or gallium phosphide (GaP) is used. May be. An insulating film such as a silicon oxide film, a nitrogen-containing silicon oxide film (SiON film), a carbon-containing silicon oxide film (SiOC film), or a fluorine-containing silicon oxide film (SiOF film) or a low-k film (low dielectric constant film) A formed semiconductor substrate may be used.
 以下、本発明について実施例によって具体的に説明する。ただし、本発明は下記実施例の記載に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the description of the following examples.
 本明細書の下記合成例に示すポリマーの平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称する。)による測定結果である。
 使用する装置、条件等は次のとおりである。
GPC装置:HLC-8220GPC(東ソー(株)製)
GPCカラム:Shodex(登録商標)KF803L,KF802,KF801(昭和電工(株)製)
カラム温度:40℃
溶媒:テトラヒドロフラン(THF)
流量:1.0ml/分
標準試料:ポリスチレン(昭和電工(株)製)
The average molecular weight of the polymer shown in the following synthesis examples of the present specification is a measurement result by gel permeation chromatography (hereinafter abbreviated as GPC).
The equipment and conditions used are as follows.
GPC device: HLC-8220GPC (manufactured by Tosoh Corporation)
GPC column: Shodex (registered trademark) KF803L, KF802, KF801 (manufactured by Showa Denko KK)
Column temperature: 40 ° C
Solvent: tetrahydrofuran (THF)
Flow rate: 1.0 ml / min Standard sample: Polystyrene (manufactured by Showa Denko KK)
<合成例1>
 テトラエトキシシラン20.31g、フェニルトリメトキシシラン1.49g、メチルトリエトキシシラン8.02g及びエタノール33.34gを100mlのフラスコに入れて溶解させ、そこに、イオン交換水9.83gに塩酸0.03gを溶解させた水溶液を室温で滴下し攪拌した。その後、2時間還流させ、得られた反応溶液を室温まで冷却した。その後、反応溶液に4-メチル-2-ペンタノール100gを加え、反応副生物であるメタノール及びエタノール、並びに水、塩酸を減圧留去し、加水分解縮合物溶液を得た。得られたポリマー又はオリゴマーのGPCによる平均分子量は、標準ポリスチレン換算で重量平均分子量5500であった。
<Synthesis Example 1>
20.31 g of tetraethoxysilane, 1.49 g of phenyltrimethoxysilane, 8.02 g of methyltriethoxysilane and 33.34 g of ethanol are placed in a 100 ml flask and dissolved therein. An aqueous solution in which 03 g was dissolved was dropped at room temperature and stirred. Thereafter, the mixture was refluxed for 2 hours, and the resulting reaction solution was cooled to room temperature. Thereafter, 100 g of 4-methyl-2-pentanol was added to the reaction solution, and methanol and ethanol as reaction by-products, water and hydrochloric acid were distilled off under reduced pressure to obtain a hydrolysis-condensation product solution. The average molecular weight by GPC of the obtained polymer or oligomer was a weight average molecular weight of 5500 in terms of standard polystyrene.
<合成例2>
 テトラエトキシシラン76.76g、フェニルトリメトキシシラン8.12g及び4-メチル-2-ペンタノール84.88gを300mlのフラスコに入れて溶解させ、そこに、イオン交換水28.75gにマレイン酸1.49gを溶解させた水溶液を室温で滴下し攪拌した。その後、100℃で1時間反応させ、得られた反応溶液を室温まで冷却した。その後、反応溶液にプロピレングリコールモノメチルエーテルアセテート200gを加え、反応副生物であるメタノール及びエタノール、並びに水を減圧留去し、加水分解縮合物溶液を得た。得られたポリマー又はオリゴマーのGPCによる平均分子量は、標準ポリスチレン換算で重量平均分子量4500であった。
<Synthesis Example 2>
76.76 g of tetraethoxysilane, 8.12 g of phenyltrimethoxysilane and 84.88 g of 4-methyl-2-pentanol were dissolved in a 300 ml flask, and 1.80 g of maleic acid was added to 28.75 g of ion-exchanged water. An aqueous solution in which 49 g was dissolved was dropped at room temperature and stirred. Then, it was made to react at 100 degreeC for 1 hour, and the obtained reaction solution was cooled to room temperature. Thereafter, 200 g of propylene glycol monomethyl ether acetate was added to the reaction solution, and methanol and ethanol and water as reaction by-products were distilled off under reduced pressure to obtain a hydrolysis-condensation product solution. The average molecular weight of the obtained polymer or oligomer by GPC was a weight average molecular weight of 4500 in terms of standard polystyrene.
<合成例3>
 テトラエトキシシラン35.66g、メチルトリエトキシシラン17.85g及びエタノール80.27gを300mlのフラスコに入れて溶解させ、そこに、0.01モル/L塩酸水溶液16.99gを室温で滴下し攪拌した。その後、4時間還流させ、得られた反応溶液を室温まで冷却した。その後、反応溶液に4-メチル-2-ペンタノール100gを加え、反応副生物であるエタノール、及び上記塩酸水溶液に由来する水、塩酸を減圧留去し、加水分解縮合物溶液を得た。得られたポリマー又はオリゴマーのGPCによる平均分子量は、標準ポリスチレン換算で重量平均分子量1400であった。
<Synthesis Example 3>
35.66 g of tetraethoxysilane, 17.85 g of methyltriethoxysilane, and 80.27 g of ethanol were dissolved in a 300 ml flask, and 0.0199 g of 0.01 mol / L hydrochloric acid aqueous solution was added dropwise thereto at room temperature and stirred. . Thereafter, the mixture was refluxed for 4 hours, and the resulting reaction solution was cooled to room temperature. Thereafter, 100 g of 4-methyl-2-pentanol was added to the reaction solution, and the reaction by-product ethanol, water and hydrochloric acid derived from the hydrochloric acid aqueous solution were distilled off under reduced pressure to obtain a hydrolysis condensate solution. The average molecular weight of the obtained polymer or oligomer by GPC was a weight average molecular weight of 1400 in terms of standard polystyrene.
<合成例4>
 テトラエトキシシラン30.31g、メチルトリエトキシシラン35.42g及びエタノール98.59gを300mlのフラスコに入れて溶解させ、そこに、0.01モル/L塩酸水溶液21.44gを室温で滴下し攪拌した。その後、4時間還流させ、得られた反応溶液を室温まで冷却した。その後、反応溶液に4-メチル-2-ペンタノール100gを加え、反応副生物であるエタノール、及び上記塩酸水溶液に由来する水、塩酸を減圧留去し、加水分解縮合物溶液を得た。得られたポリマー又はオリゴマーのGPCによる平均分子量は、標準ポリスチレン換算で重量平均分子量1800であった。
<Synthesis Example 4>
30.31 g of tetraethoxysilane, 35.42 g of methyltriethoxysilane and 98.59 g of ethanol were dissolved in a 300 ml flask, and 21.44 g of 0.01 mol / L hydrochloric acid aqueous solution was added dropwise thereto at room temperature and stirred. . Thereafter, the mixture was refluxed for 4 hours, and the resulting reaction solution was cooled to room temperature. Thereafter, 100 g of 4-methyl-2-pentanol was added to the reaction solution, and the reaction by-product ethanol, water and hydrochloric acid derived from the hydrochloric acid aqueous solution were distilled off under reduced pressure to obtain a hydrolysis condensate solution. The average molecular weight by GPC of the obtained polymer or oligomer was 1800 in terms of standard polystyrene.
<合成例5>
 テトラエトキシシラン14.26g、メチルトリエトキシシラン38.88g及びエタノール79.73gを300mlのフラスコに入れて溶解させ、そこに、0.01モル/L塩酸水溶液17.78gを室温で滴下し攪拌した。その後、4時間還流させ、得られた反応溶液を室温まで冷却した。その後、反応溶液に4-メチル-2-ペンタノール100gを加え、反応副生物であるエタノール、及び上記塩酸水溶液に由来する水、塩酸を減圧留去し、加水分解縮合物溶液を得た。得られたポリマー又はオリゴマーのGPCによる平均分子量は、標準ポリスチレン換算で重量平均分子量2100であった。
<Synthesis Example 5>
14.26 g of tetraethoxysilane, 38.88 g of methyltriethoxysilane and 79.73 g of ethanol were dissolved in a 300 ml flask, and 17.78 g of 0.01 mol / L hydrochloric acid aqueous solution was added dropwise thereto at room temperature and stirred. . Thereafter, the mixture was refluxed for 4 hours, and the resulting reaction solution was cooled to room temperature. Thereafter, 100 g of 4-methyl-2-pentanol was added to the reaction solution, and the reaction by-product ethanol, water and hydrochloric acid derived from the hydrochloric acid aqueous solution were distilled off under reduced pressure to obtain a hydrolysis condensate solution. The average molecular weight of the obtained polymer or oligomer by GPC was a weight average molecular weight of 2100 in terms of standard polystyrene.
<実施例1>
 合成例1にて得られた溶液25gに、4-メチル-2-ペンタノールを加え4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 1>
4-Methyl-2-pentanol was added to 25 g of the solution obtained in Synthesis Example 1 to obtain a 4.0 mass% solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
<実施例2>
 合成例1にて得られた溶液25gに、マレイン酸0.10g、界面活性剤(DIC(株)製、商品名:メガファックR-30)0.02gを加え、さらに4-メチル-2-ペンタノールを加えて4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 2>
To 25 g of the solution obtained in Synthesis Example 1, 0.10 g of maleic acid and 0.02 g of a surfactant (manufactured by DIC Corporation, trade name: Megafac R-30) were added, and 4-methyl-2- Pentanol was added to make a 4.0 mass% solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
<実施例3>
Figure JPOXMLDOC01-appb-C000006
 上記式(16)で表されるポリシラン化合物(式中、Rはそれぞれ独立に水素原子、メチル基、エチル基、OH基又はフェニル基を表し、Xはそれぞれ独立にOH基又はOH基と水素原子を表す。)(大阪ガスケミカル(株)製、重量平均分子量5900、数平均分子量1800、構造単位A及び構造単位Bをそれぞれ33モル%、64モル%の割合で含有し、末端に少なくともシラノール基を有する。)を用意した。このポリシラン化合物を濃度20質量%で含む4-メチル-2-ペンタノール溶液165.0gに、さらに4-メチル-2-ペンタノールを加えて4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 3>
Figure JPOXMLDOC01-appb-C000006
The polysilane compound represented by the above formula (16) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Osaka Gas Chemical Co., Ltd., weight average molecular weight 5900, number average molecular weight 1800, structural unit A and structural unit B are contained in proportions of 33 mol% and 64 mol%, respectively, and at least a silanol group is present at the terminal. Prepared). 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
 本実施例では、使用するポリシラン化合物が、本明細書に記載の上記式(3)で表されるような分岐状の構造を含むことを妨げない。以下に記載する実施例4乃至実施例8で用いるポリシラン化合物においても、本実施例と同様に分岐状の構造を含むことは妨げられない。 In this example, it is not prevented that the polysilane compound used includes a branched structure represented by the above formula (3) described in the present specification. Even in the polysilane compounds used in Examples 4 to 8 described below, it is not hindered to contain a branched structure as in this Example.
<実施例4>
Figure JPOXMLDOC01-appb-C000007
 上記式(17)で表されるポリシラン化合物(式中、Rは水素原子、メチル基、エチル基、OH基又はフェニル基を表し、Xはそれぞれ独立にOH基又はOH基と水素原子を表す。)(大阪ガスケミカル(株)製、重量平均分子量5900、数平均分子量1500、末端に少なくともシラノール基を有する。)を用意した。このポリシラン化合物を濃度20質量%で含む4-メチル-2-ペンタノール溶液165.0gに、さらに4-メチル-2-ペンタノールを加えて4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 4>
Figure JPOXMLDOC01-appb-C000007
The polysilane compound represented by the above formula (17) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group or a phenyl group, and X represents an OH group, an OH group and a hydrogen atom, respectively). (Osaka Gas Chemical Co., Ltd., weight average molecular weight 5900, number average molecular weight 1500, having at least a silanol group at the terminal). 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
<実施例5>
Figure JPOXMLDOC01-appb-C000008
 上記式(16)で表されるポリシラン化合物(式中、Rはそれぞれ独立に水素原子、メチル基、エチル基、OH基又はフェニル基を表し、Xはそれぞれ独立にOH基又はOH基と水素原子を表す。)(大阪ガスケミカル(株)製、重量平均分子量7200、数平均分子量1800、構造単位A及び構造単位Bをそれぞれ実施例3と異なる20モル%、80モル%の割合で含有し、末端に少なくともシラノール基を有する。)を用意した。このポリシラン化合物を濃度20質量%で含む4-メチル-2-ペンタノール溶液165.0gに、さらに4-メチル-2-ペンタノールを加えて4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 5>
Figure JPOXMLDOC01-appb-C000008
The polysilane compound represented by the above formula (16) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Osaka Gas Chemical Co., Ltd., weight average molecular weight 7200, number average molecular weight 1800, structural unit A and structural unit B are contained in proportions of 20 mol% and 80 mol% different from Example 3, respectively) The terminal has at least a silanol group). 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
<実施例6>
Figure JPOXMLDOC01-appb-C000009
 上記式(18)で表されるポリシラン化合物(式中、Rはそれぞれ独立に水素原子、メチル基、エチル基、OH基又はフェニル基を表し、Xはそれぞれ独立にOH基又はOH基と水素原子を表す。)(大阪ガスケミカル(株)製、重量平均分子量14000、数平均分子量2000、構造単位A、構造単位B及び構造単位Cをそれぞれ35モル%、60モル%、5モル%の割合で含有し、末端に少なくともシラノール基を有する。)を用意した。このポリシラン化合物を濃度20質量%で含む4-メチル-2-ペンタノール溶液165.0gに、さらに4-メチル-2-ペンタノールを加えて4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 6>
Figure JPOXMLDOC01-appb-C000009
The polysilane compound represented by the above formula (18) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Made by Osaka Gas Chemical Co., Ltd., weight average molecular weight 14000, number average molecular weight 2000, structural unit A, structural unit B and structural unit C in proportions of 35 mol%, 60 mol% and 5 mol%, respectively) And having at least a silanol group at the terminal). 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
<実施例7>
Figure JPOXMLDOC01-appb-C000010
 上記式(18)で表されるポリシラン化合物(式中、Rはそれぞれ独立に水素原子、メチル基、エチル基、OH基又はフェニル基を表し、Xはそれぞれ独立にOH基又はOH基と水素原子を表す。)(大阪ガスケミカル(株)製、重量平均分子量5500、数平均分子量1500、構造単位A、構造単位B及び構造単位Cをそれぞれ実施例6と異なる15モル%、80モル%、5モル%の割合で含有し、末端に少なくともシラノール基を有する。)を用意した。このポリシラン化合物を濃度20質量%で含む4-メチル-2-ペンタノール溶液165.0gに、さらに4-メチル-2-ペンタノールを加えて4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 7>
Figure JPOXMLDOC01-appb-C000010
The polysilane compound represented by the above formula (18) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Made by Osaka Gas Chemical Co., Ltd., weight average molecular weight 5500, number average molecular weight 1500, structural unit A, structural unit B and structural unit C are 15 mol%, 80 mol%, 5 And at least a silanol group at the terminal). 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
<実施例8>
Figure JPOXMLDOC01-appb-C000011
 上記式(18)で表されるポリシラン化合物(式中、Rはそれぞれ独立に水素原子、メチル基、エチル基、OH基又はフェニル基を表し、Xはそれぞれ独立にOH基又はOH基と水素原子を表す。)(大阪ガスケミカル(株)製、重量平均分子量5500、数平均分子量1500、構造単位A、構造単位B及び構造単位Cをそれぞれ実施例6及び実施例7と異なる15モル%、75モル%、10モル%の割合で含有し、末端に少なくともシラノール基を有する。)を用意した。このポリシラン化合物を濃度20質量%で含む4-メチル-2-ペンタノール溶液165.0gに、さらに4-メチル-2-ペンタノールを加えて4.0質量%溶液とした。そして、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過し、サイドウォール形成用組成物(溶液)を調製した。
<Example 8>
Figure JPOXMLDOC01-appb-C000011
The polysilane compound represented by the above formula (18) (wherein R represents a hydrogen atom, a methyl group, an ethyl group, an OH group, or a phenyl group, and X represents an OH group, an OH group, and a hydrogen atom each independently) (Made by Osaka Gas Chemical Co., Ltd., weight average molecular weight 5500, number average molecular weight 1500, structural unit A, structural unit B, and structural unit C are 15 mol%, 75 different from Example 6 and Example 7, respectively. And at least a silanol group at the terminal). 4-methyl-2-pentanol was further added to 165.0 g of a 4-methyl-2-pentanol solution containing this polysilane compound at a concentration of 20% by mass to obtain a 4.0% by mass solution. And it filtered using the polyethylene micro filter with the hole diameter of 0.02 micrometer, and prepared the composition (solution) for sidewall formation.
[ドライエッチング速度]
 シリコンウエハー上に、実施例1及び実施例3で調製したサイドウォール形成用組成物(溶液)を用いて、それぞれ形成されたサイドウォール相当膜、及び有機フォトレジスト(住友化学(株)製、商品名:PAR855)を用いて形成されたフォトレジスト膜に対し、エッチングガスとしてCF又はOを使用してドライエッチングを行い、ドライエッチング速度を測定した。ドライエッチングに用いた装置はRIE-10NR(サムコ(株)製)である。このサイドウォール相当膜は、上記サイドウォール形成用組成物(溶液)をスピンコートし、その後150℃で60秒間ベークを行うことにより形成した。そして、上記フォトレジスト膜のドライエッチング速度に対する上記サイドウォール相当膜のドライエッチング速度の比(サイドウォール相当膜/フォトレジスト膜)を求めた結果を表1に示す。
[Dry etching rate]
Sidewall-equivalent films and organic photoresists (manufactured by Sumitomo Chemical Co., Ltd.) manufactured using the sidewall-forming compositions (solutions) prepared in Example 1 and Example 3 on a silicon wafer The photoresist film formed using the name: PAR855) was dry etched using CF 4 or O 2 as an etching gas, and the dry etching rate was measured. The apparatus used for dry etching is RIE-10NR (manufactured by Samco Corp.). This sidewall-corresponding film was formed by spin-coating the above-described sidewall-forming composition (solution) and then baking at 150 ° C. for 60 seconds. Table 1 shows the results of determining the ratio of the dry etching rate of the sidewall equivalent film to the dry etching rate of the photoresist film (sidewall equivalent film / photoresist film).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[本発明に係るサイドウォール形成組成物の使用例]
 シリコンウエハー101上に、下記式(19):
Figure JPOXMLDOC01-appb-C000013
で表される単位構造を有する共重合体、架橋剤(日本サイテックインダストリーズ(株)製、商品名:POWDERLINK(登録商標)1174)及びピリジニウム-p-トルエンスルホン酸を含む組成物を用いてレジスト下層膜102を形成し、その上に、有機フォトレジスト(住友化学(株)製、商品名:PAR855)を用いて、図1(A)に示すようにフォトレジストパターン103を形成した。ターゲットCD(Critical Dimension)は80nm、L/S=80/240であり、露光の際、光源としてArFエキシマレーザーを用いた。このフォトレジストパターン103には、光酸発生剤が含まれている。
[Usage example of side wall forming composition according to the present invention]
On the silicon wafer 101, the following formula (19):
Figure JPOXMLDOC01-appb-C000013
A resist underlayer using a composition comprising a copolymer having a unit structure represented by formula (II), a crosslinking agent (trade name: POWDERLINK (registered trademark) 1174 manufactured by Nippon Cytec Industries, Ltd.) and pyridinium-p-toluenesulfonic acid A film 102 was formed, and a photoresist pattern 103 was formed thereon using an organic photoresist (manufactured by Sumitomo Chemical Co., Ltd., trade name: PAR855) as shown in FIG. The target CD (Critical Dimension) is 80 nm and L / S = 80/240, and an ArF excimer laser was used as a light source during exposure. This photoresist pattern 103 contains a photoacid generator.
 次に、実施例1で調製したサイドウォール形成用組成物を、フォトレジストパターン103を被覆するようにスピンコート(1500rpm、60秒)し、図1(B)に示すように塗布層104を形成した。このとき、ベークは行わなかった。それから、図1(C)に示すように、塗布層104の全面にUV照射する露光を行った。この露光の際に用いる光源として、ArFエキシマレーザーを用いてもよい。UV等の照射エネルギーは10mJ/cm~100mJ/cmの範囲であり、照射時間は例えば2秒~60秒間である。その後、150℃で60秒間ベークすることによって、フォトレジストパターンの周囲にサイドウォール105を形成した。ベーク温度は、80℃~200℃、好ましくは80℃~150℃の範囲であって、フォトレジストパターン103が軟化してリフローしないように設定する必要がある。ベークの際に用いる加熱手段は特に限定されないが、例えばホットプレートを用いることができる。 Next, the composition for forming a sidewall prepared in Example 1 is spin-coated (1500 rpm, 60 seconds) so as to cover the photoresist pattern 103, and a coating layer 104 is formed as shown in FIG. did. At this time, baking was not performed. Then, as shown in FIG. 1C, the entire surface of the coating layer 104 was exposed to UV irradiation. An ArF excimer laser may be used as a light source used for this exposure. The irradiation energy such as UV is in the range of 10 mJ / cm 2 to 100 mJ / cm 2 , and the irradiation time is, for example, 2 to 60 seconds. Thereafter, the sidewall 105 was formed around the photoresist pattern by baking at 150 ° C. for 60 seconds. The baking temperature is in the range of 80 ° C. to 200 ° C., preferably 80 ° C. to 150 ° C., and needs to be set so that the photoresist pattern 103 is softened and does not reflow. The heating means used for baking is not particularly limited. For example, a hot plate can be used.
 その後、サイドウォール105が形成されなかった塗布層104を、4-メチル-2-ペンタノールを用いて除去した。塗布層104のみを選択的に除去可能ならば4-メチル-2-ペンタノール以外でもよいが、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、PGMEAとPGMEを3:7の割合で混合した溶剤、テトラメチルアンモニウムハイドロキサイド(TMAH)水溶液は使用できない。除去後の状態を図2(A)に示す。それから、スピンドライ(3000rpm、30秒)により、残留4-メチル-2-ペンタノールを除去した。 Thereafter, the coating layer 104 on which the sidewall 105 was not formed was removed using 4-methyl-2-pentanol. If only the coating layer 104 can be selectively removed, other than 4-methyl-2-pentanol may be used, but propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), PGMEA and PGME are in a ratio of 3: 7. Solvents mixed in proportion and tetramethylammonium hydroxide (TMAH) aqueous solution cannot be used. The state after removal is shown in FIG. Then, residual 4-methyl-2-pentanol was removed by spin drying (3000 rpm, 30 seconds).
 さらに、エッチングガスとしてCFを用い、サイドウォール105に対してドライエッチングを行うことによって、図2(B)に示すように、フォトレジストパターン103の上部を露呈させた。ドライエッチング装置は、RIE-10NR(サムコ(株)製)を用いた。このドライエッチングの際、レジスト下層膜102の表面が露呈している部分、すなわちフォトレジストパターン103及びサイドウォール105が形成されていない部分がエッチングされてもよい。 Furthermore, by using CF 4 as an etching gas and performing dry etching on the sidewall 105, the upper portion of the photoresist pattern 103 was exposed as shown in FIG. As a dry etching apparatus, RIE-10NR (manufactured by Samco Co., Ltd.) was used. In this dry etching, a portion where the surface of the resist underlayer film 102 is exposed, that is, a portion where the photoresist pattern 103 and the sidewall 105 are not formed may be etched.
 最後に、エッチングガスとしてOを用い、フォトレジストパターン103を除去するためにドライエッチングを行い、図2(C)に示すようにサイドウォール105を残存させた。ドライエッチング装置は、RIE-10NR(サムコ(株)製)を用いた。このドライエッチングの際、レジスト下層膜102表面のサイドウォール105が形成されていない部分がエッチングされてもよい。 Finally, dry etching was performed to remove the photoresist pattern 103 using O 2 as an etching gas, and the sidewall 105 was left as shown in FIG. As a dry etching apparatus, RIE-10NR (manufactured by Samco Co., Ltd.) was used. During this dry etching, the portion of the resist underlayer film 102 where the sidewall 105 is not formed may be etched.
 101:シリコンウエハー
 102:レジスト下層膜
 103:フォトレジストパターン
 104:塗布層
 105:サイドウォール
101: Silicon wafer 102: Resist underlayer film 103: Photoresist pattern 104: Coating layer 105: Side wall

Claims (4)

  1.  珪素含有重合体、及び有機溶媒を主成分とする溶剤を含み、
    前記珪素含有重合体は、その末端にシラノール基を有するとともに、下記式(1a)及び式(1b):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはメチル基、エチル基又はフェニル基を表す。)
    で表される構造単位を有し、
     前記有機溶媒が、4-メチル-2-ペンタノール、プロピレングリコールn-ブチルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、シクロヘキサノール、1-ブタノール、プロピレングリコールn-プロピルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート及びシクロヘキサノールアセテートからなる群から選択される少なくとも1種である、
    リソグラフィー用サイドウォール形成用組成物。
    Including a silicon-containing polymer and a solvent mainly composed of an organic solvent,
    The silicon-containing polymer has a silanol group at its terminal, and the following formula (1a) and formula (1b):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 3 represents a methyl group, an ethyl group or a phenyl group.)
    Having a structural unit represented by
    The organic solvent is 4-methyl-2-pentanol, propylene glycol n-butyl ether, propylene glycol phenyl ether, dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, cyclohexanol, 1 -At least one selected from the group consisting of butanol, propylene glycol n-propyl ether, dipropylene glycol dimethyl ether, propylene glycol diacetate and cyclohexanol acetate;
    A composition for forming a sidewall for lithography.
  2.  珪素含有重合体、及び有機溶媒を主成分とする溶剤を含み、
    前記珪素含有重合体は、その末端にシラノール基又は該シラノール基と水素原子を有するとともに、下記式(2)及び/又は下記式(3):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、それぞれ独立に、メチル基、エチル基又はフェニル基を表し、Rは水素原子、メチル基、エチル基、OH基又はフェニル基を表す。)
    で表される構造単位を少なくとも1種有し、
     前記有機溶媒が、4-メチル-2-ペンタノール、プロピレングリコールn-ブチルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、シクロヘキサノール、1-ブタノール、プロピレングリコールn-プロピルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート及びシクロヘキサノールアセテートからなる群から選択される少なくとも1種である、
    リソグラフィー用サイドウォール形成用組成物。
    Including a silicon-containing polymer and a solvent mainly composed of an organic solvent,
    The silicon-containing polymer has a silanol group or the silanol group and a hydrogen atom at the terminal, and the following formula (2) and / or the following formula (3):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, each R 2 independently represents a methyl group, an ethyl group or a phenyl group, and R 1 represents a hydrogen atom, a methyl group, an ethyl group, an OH group or a phenyl group.)
    Having at least one structural unit represented by
    The organic solvent is 4-methyl-2-pentanol, propylene glycol n-butyl ether, propylene glycol phenyl ether, dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, cyclohexanol, 1 -At least one selected from the group consisting of butanol, propylene glycol n-propyl ether, dipropylene glycol dimethyl ether, propylene glycol diacetate and cyclohexanol acetate;
    A composition for forming a sidewall for lithography.
  3.  さらに有機酸を含む、請求項1又は請求項2に記載のリソグラフィー用サイドウォール形成用組成物。 The composition for forming a sidewall for lithography according to claim 1 or 2, further comprising an organic acid.
  4.  さらに界面活性剤を含む、請求項1乃至請求項3のいずれか一項に記載のリソグラフィー用サイドウォール形成用組成物。 The composition for forming a sidewall for lithography according to any one of claims 1 to 3, further comprising a surfactant.
PCT/JP2009/066277 2008-09-19 2009-09-17 Composition for forming side wall WO2010032796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529793A JPWO2010032796A1 (en) 2008-09-19 2009-09-17 Side wall forming composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008240372 2008-09-19
JP2008-240372 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032796A1 true WO2010032796A1 (en) 2010-03-25

Family

ID=42039618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066277 WO2010032796A1 (en) 2008-09-19 2009-09-17 Composition for forming side wall

Country Status (3)

Country Link
JP (1) JPWO2010032796A1 (en)
TW (1) TW201026754A (en)
WO (1) WO2010032796A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169894A (en) * 2009-01-22 2010-08-05 Tokyo Ohka Kogyo Co Ltd Coating pattern forming method, material for forming resist coating film, and pattern forming method
JP2010256626A (en) * 2009-04-24 2010-11-11 Shin-Etsu Chemical Co Ltd Patterning process
JP2012252083A (en) * 2011-06-01 2012-12-20 Az Electronic Materials Ip Ltd Fine pattern mask and method for manufacturing the same, and method for forming fine pattern using fine pattern mask
JP2012533907A (en) * 2009-07-23 2012-12-27 ダウ コーニング コーポレーション Double patterning method and material
JP2013536463A (en) * 2010-07-28 2013-09-19 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Composition for coating on a photoresist pattern
JP2014071408A (en) * 2012-10-01 2014-04-21 Shin Etsu Chem Co Ltd Pattern forming method
JP2014178711A (en) * 2014-06-16 2014-09-25 Tokyo Ohka Kogyo Co Ltd Material for forming resist coating film
JP2016071345A (en) * 2014-09-26 2016-05-09 東京応化工業株式会社 Method for forming resist pattern, resist pattern splitting agent, split pattern improving agent, and resist pattern split material
WO2018043305A1 (en) * 2016-09-01 2018-03-08 Jsr株式会社 Base material surface selective modification method and composition
JP2019049747A (en) * 2014-07-08 2019-03-28 東京エレクトロン株式会社 Negative tone developer compatible photoresist composition and methods of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228129B2 (en) * 2012-12-12 2017-11-08 株式会社ダイセル Solvent or solvent composition for organic transistor production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092154A (en) * 1999-09-24 2001-04-06 Toshiba Corp Method for forming pattern
JP2008072101A (en) * 2006-09-12 2008-03-27 Hynix Semiconductor Inc Method for forming fine pattern of semiconductor device
JP2008287176A (en) * 2007-05-21 2008-11-27 Jsr Corp Resin composition for pattern reverse and method for forming reversed pattern
WO2009096371A1 (en) * 2008-01-28 2009-08-06 Az Electronic Materials (Japan) K.K. Fine pattern mask, method for producing the same, and method for forming fine pattern using the mask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092154A (en) * 1999-09-24 2001-04-06 Toshiba Corp Method for forming pattern
JP2008072101A (en) * 2006-09-12 2008-03-27 Hynix Semiconductor Inc Method for forming fine pattern of semiconductor device
JP2008287176A (en) * 2007-05-21 2008-11-27 Jsr Corp Resin composition for pattern reverse and method for forming reversed pattern
WO2009096371A1 (en) * 2008-01-28 2009-08-06 Az Electronic Materials (Japan) K.K. Fine pattern mask, method for producing the same, and method for forming fine pattern using the mask

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169894A (en) * 2009-01-22 2010-08-05 Tokyo Ohka Kogyo Co Ltd Coating pattern forming method, material for forming resist coating film, and pattern forming method
JP2010256626A (en) * 2009-04-24 2010-11-11 Shin-Etsu Chemical Co Ltd Patterning process
JP2012533907A (en) * 2009-07-23 2012-12-27 ダウ コーニング コーポレーション Double patterning method and material
JP2013536463A (en) * 2010-07-28 2013-09-19 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Composition for coating on a photoresist pattern
JP2012252083A (en) * 2011-06-01 2012-12-20 Az Electronic Materials Ip Ltd Fine pattern mask and method for manufacturing the same, and method for forming fine pattern using fine pattern mask
JP2014071408A (en) * 2012-10-01 2014-04-21 Shin Etsu Chem Co Ltd Pattern forming method
JP2014178711A (en) * 2014-06-16 2014-09-25 Tokyo Ohka Kogyo Co Ltd Material for forming resist coating film
JP2019049747A (en) * 2014-07-08 2019-03-28 東京エレクトロン株式会社 Negative tone developer compatible photoresist composition and methods of use
JP2016071345A (en) * 2014-09-26 2016-05-09 東京応化工業株式会社 Method for forming resist pattern, resist pattern splitting agent, split pattern improving agent, and resist pattern split material
WO2018043305A1 (en) * 2016-09-01 2018-03-08 Jsr株式会社 Base material surface selective modification method and composition
JPWO2018043305A1 (en) * 2016-09-01 2019-06-24 Jsr株式会社 Method and composition for selective modification of substrate surface

Also Published As

Publication number Publication date
JPWO2010032796A1 (en) 2012-02-16
TW201026754A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
WO2010032796A1 (en) Composition for forming side wall
KR102132509B1 (en) Stable metal compounds as hardmasks and filling materials, their compositions and methods of use
JP5397636B2 (en) Coating composition and pattern forming method
TWI312443B (en) Antireflective film-forming composition, method for manufacturing the same, and antireflective film and pattern formation method using the same
US8697330B2 (en) Composition for forming a silicon-containing antireflection film, substrate having the silicon-containing antireflection film from the composition and patterning process using the same
EP2426558B1 (en) Silicon-containing film-forming composition, silicon-containing film-formed substrate, and patterning process
KR102367238B1 (en) Metal hardmask composition and method of forming micropatterns on semiconductor substrates
US9069133B2 (en) Anti-reflective coating for photolithography and methods of preparation thereof
JP5021984B2 (en) Anti-reflective hard mask composition
US8642246B2 (en) Compositions, coatings and films for tri-layer patterning applications and methods of preparation thereof
US8263312B2 (en) Antireflective coating material
KR101316200B1 (en) Silicon-Containing Film-Forming Composition, Silicon-Containing Film, Silicon-Containing Film-Bearing Substrate, and Patterning Method
WO2006030641A1 (en) Composition for forming antireflective film and wiring forming method using same
WO2006126406A1 (en) Polysilane compound-containing lower layer film forming composition for lithography
WO2003044078A9 (en) Anti-reflective coatings for photolithography and methods of preparation thereof
JP2013241617A (en) Processable inorganic and organic polymer formulations, methods of production and uses thereof
KR20090004717A (en) Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
US20210397092A1 (en) Resist underlayer film material, patterning process, and method for forming resist underlayer film
TWI380129B (en) High etch resistant hardmask composition having antireflective properties, method for forming patterned material layer using the hardmask composition and semiconductor integrated circuit device produced using the method
TWI833908B (en) Spin-on compositions comprising an inorganic oxide component and an alkynyloxy substituted spin-on carbon component useful as hard masks and filling materials with improved shelf life

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814640

Country of ref document: EP

Kind code of ref document: A1