WO2010028444A1 - Refractory insulating ring - Google Patents

Refractory insulating ring Download PDF

Info

Publication number
WO2010028444A1
WO2010028444A1 PCT/AU2009/001197 AU2009001197W WO2010028444A1 WO 2010028444 A1 WO2010028444 A1 WO 2010028444A1 AU 2009001197 W AU2009001197 W AU 2009001197W WO 2010028444 A1 WO2010028444 A1 WO 2010028444A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
semi
band
annular
ring
Prior art date
Application number
PCT/AU2009/001197
Other languages
French (fr)
Inventor
Keith Burden
Original Assignee
Andreco-Hurll Refractory Services Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008904727A external-priority patent/AU2008904727A0/en
Application filed by Andreco-Hurll Refractory Services Pty Ltd filed Critical Andreco-Hurll Refractory Services Pty Ltd
Publication of WO2010028444A1 publication Critical patent/WO2010028444A1/en
Priority to AU2011201405A priority Critical patent/AU2011201405A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/14Devices for feeding or crust breaking
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Definitions

  • the present invention relates to a refractory insulating ring.
  • the present invention relates to a refractory insulating ring for electrically insulating an alumina point feeder in an aluminium smelter.
  • the chemical composition of alumina consists of aluminium and oxygen.
  • the process of smelting alumina to create aluminium involves separating the aluminium and the oxygen, and is known as the Hall-Heroult process.
  • a carbon lined furnace, or reduction cell is filled with a molten bath of flux, such as cryolite and aluminium fluoride.
  • the alumina dissolves in the molten flux bath and electricity is introduced into the reduction cell through carbon anodes.
  • the electric current flows from the anode into the alumina flux mixture and into a carbon cathode lining of the reduction cell.
  • the electricity causes the alumina to react with the carbon anode, resulting in the production of carbon dioxide and aluminium.
  • liquid aluminium is tapped from the base of the reduction cell, and new alumina is introduced into the molten flux.
  • point feeders are generally used to deliver the alumina into the cryolite bath from above.
  • the point feeder includes an elongate tube through which the alumina flows, and the point feeder can control the flow rate of alumina into the flux bath.
  • the elongate feeder pipe is located in part within a larger outer tube.
  • An insulating ring is located around part of the feeder pipe.
  • the insulating ring must prevent electricity from passing from the feeder tube into the surrounding machinery, which would short circuit the system.
  • the insulating ring limits the transfer of heat from the feeder pipe to the outer tube.
  • a problem with existing insulator rings is that they are manufactured during a casting process around the feeder tube. Accordingly, the replacement of a given insulating ring requires that the feeder tube is removed from the reduction cell, and taken to a refractory casting location. This process can be time consuming, and hence costly to the reduction cell operator.
  • the present invention provides an insulator for an alumina point feeder, said insulator comprising: an annular ring of a refractory material, said ring being defined by first and second generally semi-annular portions, said annular ring having a radially inner region locatable adjacent to a generally cylindrical portion of said point feeder, and a radially outer region; and a band extending circumferentially around the radially outer region, said band securing the first and second generally semi-annular portions to each other.
  • the band is preferably formed from two generally semi-circular strips of mild steel which are connected to each other by welding.
  • a radially inner portion of the band preferably includes one or more circumferentially extending grooves.
  • the refractory material is preferably a castable refractory cement.
  • the radially inner surface of the ring has a circumferentially extending channel adapted to receive a circumferentially extending rib mounted to the point feeder.
  • the present invention provides a method of forming an insulator for an alumina point feeder, said method including the steps of: placing a generally semi-circular steel strip in a mould; pouring a castable refractory cement into the mould, and allowing the cement to harden and form a first semi-annular portion having a radially inner region, and a radially outer region, said strip defining part of the radially outer region; removing the mould; forming a second similar semi-annular portion; locating the radially inner regions of the first and second semi-annular portions around a generally cylindrical portion of said point feeder, to define an insulator ring; and connecting the semi-circular steel strip of the first semi-annular portion to the steel strip of the second semi-annular portion to define a continuous steel band.
  • the step of connecting the steel strips preferably comprises welding.
  • Fig. 1 is a perspective view showing two halves of an insulator
  • Fig. 2 is an end view of a mould for making the insulator of Fig. 1;
  • Fig. 3 is a side view of the mould of Fig. 2;
  • Fig. 4 is a perspective view of the mould of Fig. 2;
  • Fig. 5 is a cross-sectional view of a band of the insulator of Fig. 1;
  • Fig. 6 is a side view of the band of Fig. 5;
  • Fig. 7 is a front view of the band of Fig. 5;
  • Fig. 8 is a partial schematic diagram of a portion of a reduction cell and point feeder.
  • Fig. 9 is a side view of a portion of a point feeder during installation of a new insulator.
  • An insulator 10 for electrically insulating an alumina point feeder 12 in a reduction cell is shown in the drawings.
  • the insulator 10 is shown in isolation on Fig. 1 and is made from a suitable low cement castable refractory. In the reduction cell, the insulator 10 operates at temperatures up to 500 degrees Celsius.
  • the insulator has properties which insulate both electricity and heat.
  • the cast insulator is fired to a temperature of around 500 degrees to remove water from the refractory material, including chemically bonded water.
  • a suitable refractory material has the following composition:
  • An alternative suitable refractory material has the following composition:
  • the insulator 10 is formed by casting in a mould 20 which forms two separate, semi-annular portions 14, 16, which when placed side by side define an annular ring 15.
  • the mould 20 is shown in detail in Figs. 2 to 4.
  • the mould 20 has a first plate 22, and a second plate 24 which are mounted at 90 degrees relative to each other.
  • the mould 20 also includes an inner core 26 mounted to the first plate 24 and an outer shell 28. The refractory material is poured into the mould 20, and fills the space between the core 26 and the shell 28.
  • the core 26 has a projection 29, which creates a corresponding circumferentially channel 17 in the insulator 10.
  • the insulator 10 When the semi-annular insulator halves 14, 16, are arranged as a ring 15, the insulator 10 has a radially inner region 18 and a radially outer region 19.
  • the radially inner region 18 is locatable around a cylindrical portion of the point feeder 12, as shown in Figs. 8 and 9.
  • Figs. 5 to 7 show a band 30 which is located adjacent to the radially outer region 19.
  • the band 30 is formed from mild steel and during formation of the insulator 10, is initially placed into the mould 20, abutting against the shell 28. Accordingly, when each semi-annular half 14, 16 is removed from the mould, the band 30 forms part of the radially outer region 19.
  • insulator 10 When an existing insulator requires replacement, that insulator 10 is removed from the point feeder 12. Two new, semi-annular portions 14, 16 are placed on radially opposing sides of the point feeder 12.
  • each band 30 of the two semi-annular portions 14, 16 are connected to each, other by welding or another suitable means. Accordingly, the bands 30 are used to hold the insulator 10 together around the point feeder 12.
  • the groove 17 is located on a flange 34 formed on the point feeder 12. This prevents the insulator 10 from moving axially relative to the point feeder 12.
  • the point feeder 12 operates within a tube 40, and during operation of the reduction cell, the point feeder 12 may move axially within the tube 40.
  • the insulator 10 electrically insulates the point feeder 12, thereby preventing an electric current from running up the point feeder 12 and passing into the wall of the tube 40. In addition, the insulator 10 also limits the amount of heat which is transmitted to the tube 40, and hence the surrounding parts of the reduction cell.
  • the band 30 has a profile which is generally flat on a radially outer side 32, and the band 30 has circumferentially extending grooves 34, on a radially inner side 36.
  • the grooves 34 assist with bonding of the band 30 to the semi annular portions 14, 16 of refractory material.
  • the band 30 has rounded edges which assist in limiting the amount of shock which is transmitted to the refractory material in the event that the band 30 is impacted by the tube 40 for example.
  • the cross-sectional profile of the insulator 10 axially tapers away through an angle of about 20 degrees in both directions from the central band 30. Accordingly, the band 30 forms the radially, outer most part of the insulator 10. This limits the chance of the refractory material being damaged during use, as the band protects the refractory material from being damaged by the tube 40 within which the insulator 10 is located during operation.
  • a replacement insulator 10 can be fitted to the point feeder 12 relatively quickly, by simply welding the steel bands 30 to each other around the point feeder 12.

Abstract

An insulator (10) for an alumina point feeder (12), the insulator (10) comprising an annular ring (15) of a refractory material. The ring (15) being defined by first and second generally semi-annular portions (14, 16). The annular ring (15) has a radially inner region (18) locatable adjacent to a generally cylindrical portion of the point feeder (12), and a radially outer region (19). The insulator (10) also comprises a band (30) extending circumferentially around the radially outer region (19). The band (30) secures the first and second generally semi-annular portions (14, 16) to each other.

Description

Refractory Insulating Ring
Field of the Invention
The present invention relates to a refractory insulating ring. In particular, the present invention relates to a refractory insulating ring for electrically insulating an alumina point feeder in an aluminium smelter.
Background of the Invention
The chemical composition of alumina consists of aluminium and oxygen. The process of smelting alumina to create aluminium involves separating the aluminium and the oxygen, and is known as the Hall-Heroult process. In this process a carbon lined furnace, or reduction cell is filled with a molten bath of flux, such as cryolite and aluminium fluoride. The alumina dissolves in the molten flux bath and electricity is introduced into the reduction cell through carbon anodes.
The electric current flows from the anode into the alumina flux mixture and into a carbon cathode lining of the reduction cell. The electricity causes the alumina to react with the carbon anode, resulting in the production of carbon dioxide and aluminium. During the smelting process, liquid aluminium is tapped from the base of the reduction cell, and new alumina is introduced into the molten flux.
During the reaction, if the alumina level in the bath falls below a critical level, perfluorocarbon green house gas emissions are generated by fluorine reacting with the carbon anode which is environmentally unfavourable. In order to maintain the alumina content in the cryolite at an optimum level, point feeders are generally used to deliver the alumina into the cryolite bath from above. The point feeder includes an elongate tube through which the alumina flows, and the point feeder can control the flow rate of alumina into the flux bath.
The elongate feeder pipe is located in part within a larger outer tube. An insulating ring is located around part of the feeder pipe. The insulating ring must prevent electricity from passing from the feeder tube into the surrounding machinery, which would short circuit the system. In addition, the insulating ring limits the transfer of heat from the feeder pipe to the outer tube. A problem with existing insulator rings is that they are manufactured during a casting process around the feeder tube. Accordingly, the replacement of a given insulating ring requires that the feeder tube is removed from the reduction cell, and taken to a refractory casting location. This process can be time consuming, and hence costly to the reduction cell operator.
Object of the Invention
It is an object of the present invention to substantially overcome, or at least ameliorate one of the above disadvantages, or to provide a useful alternative.
Summary of the Invention
In a first aspect, the present invention provides an insulator for an alumina point feeder, said insulator comprising: an annular ring of a refractory material, said ring being defined by first and second generally semi-annular portions, said annular ring having a radially inner region locatable adjacent to a generally cylindrical portion of said point feeder, and a radially outer region; and a band extending circumferentially around the radially outer region, said band securing the first and second generally semi-annular portions to each other.
The band is preferably formed from two generally semi-circular strips of mild steel which are connected to each other by welding.
A radially inner portion of the band preferably includes one or more circumferentially extending grooves.
The refractory material is preferably a castable refractory cement.
The radially inner surface of the ring has a circumferentially extending channel adapted to receive a circumferentially extending rib mounted to the point feeder.
In a second aspect, the present invention provides a method of forming an insulator for an alumina point feeder, said method including the steps of: placing a generally semi-circular steel strip in a mould; pouring a castable refractory cement into the mould, and allowing the cement to harden and form a first semi-annular portion having a radially inner region, and a radially outer region, said strip defining part of the radially outer region; removing the mould; forming a second similar semi-annular portion; locating the radially inner regions of the first and second semi-annular portions around a generally cylindrical portion of said point feeder, to define an insulator ring; and connecting the semi-circular steel strip of the first semi-annular portion to the steel strip of the second semi-annular portion to define a continuous steel band.
The step of connecting the steel strips preferably comprises welding.
Brief Description of the Drawings
A preferred embodiment of the invention will now be described by way of specific example with reference to the accompanying drawings, in which:
Fig. 1 is a perspective view showing two halves of an insulator;
Fig. 2 is an end view of a mould for making the insulator of Fig. 1;
Fig. 3 is a side view of the mould of Fig. 2;
Fig. 4 is a perspective view of the mould of Fig. 2;
Fig. 5 is a cross-sectional view of a band of the insulator of Fig. 1;
Fig. 6 is a side view of the band of Fig. 5;
Fig. 7 is a front view of the band of Fig. 5;
Fig. 8 is a partial schematic diagram of a portion of a reduction cell and point feeder; and
Fig. 9 is a side view of a portion of a point feeder during installation of a new insulator.
Detailed Description of the Preferred Embodiments
An insulator 10 for electrically insulating an alumina point feeder 12 in a reduction cell is shown in the drawings. The insulator 10 is shown in isolation on Fig. 1 and is made from a suitable low cement castable refractory. In the reduction cell, the insulator 10 operates at temperatures up to 500 degrees Celsius. The insulator has properties which insulate both electricity and heat.
During manufacture, the cast insulator is fired to a temperature of around 500 degrees to remove water from the refractory material, including chemically bonded water. An example of a suitable refractory material has the following composition:
83% AI2O3
9.8% Siθ2
1.5% Fe2θ3
2.6% TiOz
2.3% CaO
0.2% Alkalies
An alternative suitable refractory material has the following composition:
51% AI2O3
44% Siθ2
0.9% Fe2θ3
1.8% Tiθ2
1.7% CaO
0.3% Alkalies
As shown in Fig. 1, the insulator 10 is formed by casting in a mould 20 which forms two separate, semi-annular portions 14, 16, which when placed side by side define an annular ring 15. The mould 20 is shown in detail in Figs. 2 to 4. The mould 20 has a first plate 22, and a second plate 24 which are mounted at 90 degrees relative to each other. The mould 20 also includes an inner core 26 mounted to the first plate 24 and an outer shell 28. The refractory material is poured into the mould 20, and fills the space between the core 26 and the shell 28.
As shown in Fig. 3, the core 26 has a projection 29, which creates a corresponding circumferentially channel 17 in the insulator 10.
When the semi-annular insulator halves 14, 16, are arranged as a ring 15, the insulator 10 has a radially inner region 18 and a radially outer region 19. The radially inner region 18 is locatable around a cylindrical portion of the point feeder 12, as shown in Figs. 8 and 9.
Figs. 5 to 7 show a band 30 which is located adjacent to the radially outer region 19. The band 30 is formed from mild steel and during formation of the insulator 10, is initially placed into the mould 20, abutting against the shell 28. Accordingly, when each semi-annular half 14, 16 is removed from the mould, the band 30 forms part of the radially outer region 19.
The operation of the insulator 10 will now be described. When an existing insulator requires replacement, that insulator 10 is removed from the point feeder 12. Two new, semi-annular portions 14, 16 are placed on radially opposing sides of the point feeder 12.
The ends of each band 30 of the two semi-annular portions 14, 16 are connected to each, other by welding or another suitable means. Accordingly, the bands 30 are used to hold the insulator 10 together around the point feeder 12. In addition, the groove 17 is located on a flange 34 formed on the point feeder 12. This prevents the insulator 10 from moving axially relative to the point feeder 12. The point feeder 12 operates within a tube 40, and during operation of the reduction cell, the point feeder 12 may move axially within the tube 40.
The insulator 10 electrically insulates the point feeder 12, thereby preventing an electric current from running up the point feeder 12 and passing into the wall of the tube 40. In addition, the insulator 10 also limits the amount of heat which is transmitted to the tube 40, and hence the surrounding parts of the reduction cell.
Referring to Hg. 5, the band 30 has a profile which is generally flat on a radially outer side 32, and the band 30 has circumferentially extending grooves 34, on a radially inner side 36. The grooves 34 assist with bonding of the band 30 to the semi annular portions 14, 16 of refractory material. The band 30 has rounded edges which assist in limiting the amount of shock which is transmitted to the refractory material in the event that the band 30 is impacted by the tube 40 for example.
As shown in Figs. 1 and 9, the cross-sectional profile of the insulator 10 axially tapers away through an angle of about 20 degrees in both directions from the central band 30. Accordingly, the band 30 forms the radially, outer most part of the insulator 10. This limits the chance of the refractory material being damaged during use, as the band protects the refractory material from being damaged by the tube 40 within which the insulator 10 is located during operation. Advantageously, a replacement insulator 10 can be fitted to the point feeder 12 relatively quickly, by simply welding the steel bands 30 to each other around the point feeder 12.
Although the invention has been described with reference to specific examples, it will be appreciated by those skilled in the art that the invention may be embodied in many other forms.

Claims

The claims defining the invention are as follows:
1. An insulator for an alumina point feeder, said insulator comprising: an annular ring of a refractory material, said ring being defined by first and second generally semi-annular portions, said annular ring having a radially inner region locatable adjacent to a generally cylindrical portion of said point feeder, and a radially outer region; and a band extending circumferentially around the radially outer region, said band securing the first and second generally semi-annular portions to each other.
2. The insulator of claim 1, wherein the band is formed from two generally semicircular strips of mild steel which are connected to each other by welding.
3. The insulator of claim 2, wherein a radially inner portion of said band includes one or more circumferentially extending grooves.
4. The insulator of any one of the preceding claims, wherein the refractory material is a castable refractory cement.
5. The insulator of any one of the preceding claims, wherein the radially inner surface of said ring has a circumferentially extending channel adapted to receive a circumferentially extending rib mounted to said point feeder.
6. A method of forming an insulator for an alumina point feeder, said method including the steps of: placing a generally semi-circular steel strip in a mould; pouring a castable refractory cement into the mould, and allowing the cement to harden and form a first semi-annular portion having a radially inner region, and a radially outer region, said strip defining part of the radially outer region; removing the mould; forming a second similar semi-annular portion; locating the radially inner regions of the first and second semi-annular portions around a generally cylindrical portion of said point feeder, to define an insulator ring; and connecting the semi-circular steel strip of the first semi-annular portion to the steel strip of the second semi-annular portion to define a continuous steel band.
7. The method of claim 6, wherein the step of connecting the steel strips comprises welding.
PCT/AU2009/001197 2008-09-11 2009-09-10 Refractory insulating ring WO2010028444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011201405A AU2011201405A1 (en) 2008-09-11 2011-03-28 Beach lifesaving system and method of deployment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2008904727A AU2008904727A0 (en) 2008-09-11 Refractory Insulating Ring
AU2008904727 2008-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2011201405A Division AU2011201405A1 (en) 2008-09-11 2011-03-28 Beach lifesaving system and method of deployment

Publications (1)

Publication Number Publication Date
WO2010028444A1 true WO2010028444A1 (en) 2010-03-18

Family

ID=42004724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2009/001197 WO2010028444A1 (en) 2008-09-11 2009-09-10 Refractory insulating ring

Country Status (1)

Country Link
WO (1) WO2010028444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815545A (en) * 2012-09-03 2012-12-12 长沙凯瑞重工机械有限公司 Discharging pipe of charging car material conveying system and charging car

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045168A (en) * 1989-07-03 1991-09-03 Norsk Hydro A.S. Point feeder for aluminium electrolysis cell
US6245201B1 (en) * 1999-08-03 2001-06-12 John S. Rendall Aluminum smelting pot-cell
US6572757B2 (en) * 1999-04-16 2003-06-03 Moltech Invent S.A. Method for producing aluminum and electrolytic cell with improved alumina feed device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045168A (en) * 1989-07-03 1991-09-03 Norsk Hydro A.S. Point feeder for aluminium electrolysis cell
US6572757B2 (en) * 1999-04-16 2003-06-03 Moltech Invent S.A. Method for producing aluminum and electrolytic cell with improved alumina feed device
US6245201B1 (en) * 1999-08-03 2001-06-12 John S. Rendall Aluminum smelting pot-cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815545A (en) * 2012-09-03 2012-12-12 长沙凯瑞重工机械有限公司 Discharging pipe of charging car material conveying system and charging car

Similar Documents

Publication Publication Date Title
JP5726614B2 (en) Refractory brick cooling structure and method for converter
EA003117B1 (en) Casting mould for manufacturing a cooling element and cooling element made in said mould
CN206887148U (en) A kind of essemer converter furnace bottom
WO2010028444A1 (en) Refractory insulating ring
CN205382196U (en) Zinc -tin vacuum distillation stove
JP5393231B2 (en) Dip tube
CN104797743B (en) For the pad of the aluminium cell with inert anode
JP2013040721A (en) Drying method of lining
US9453679B2 (en) Industrial furnace cover
US4290457A (en) Truncated triangular insulator
JP4830514B2 (en) RH vacuum degassing unit reflux tube brick structure
EP1957681B1 (en) Snorkels for vacuum degassing of steel
EP2211133B1 (en) Tuyere structure of smelting furnace
CN211451852U (en) Ferronickel electric furnace with magnesium-carbon composite furnace lining
CN211620551U (en) Cooling wall device with internal cooling water tank
CA2323619C (en) Wall structure for a metallurgical vessel and blast furnace provided with a wall structure of this nature
JP5483848B2 (en) Dipping pipe for simple refining equipment
CN214666032U (en) Novel composite furnace top of zinc smelting electric furnace
CN203893669U (en) Hearth side wall of oxygen enrichment side-blown converter
CN219713987U (en) Air supply water-cooled wall and top side composite blowing smelting furnace
JPS62158562A (en) Nozzle for low-temperature casting of molten steel
CN103045807B (en) Vacuum circulation degassing insert tube
JP2013129863A (en) Tuyere structure in refining furnace and method for cooling tuyere brick in copper refining furnace
CN220745397U (en) Ladle for smelting industrial silicon
CN214814636U (en) Heat preservation discharging channel for sheet copper strip cast-rolling heat preservation furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812537

Country of ref document: EP

Kind code of ref document: A1