WO2010027184A2 - Waste gas removal system using low-pressure and atmospheric pressure plasma - Google Patents

Waste gas removal system using low-pressure and atmospheric pressure plasma Download PDF

Info

Publication number
WO2010027184A2
WO2010027184A2 PCT/KR2009/004928 KR2009004928W WO2010027184A2 WO 2010027184 A2 WO2010027184 A2 WO 2010027184A2 KR 2009004928 W KR2009004928 W KR 2009004928W WO 2010027184 A2 WO2010027184 A2 WO 2010027184A2
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
low pressure
removal system
waste gas
Prior art date
Application number
PCT/KR2009/004928
Other languages
French (fr)
Korean (ko)
Other versions
WO2010027184A3 (en
Inventor
김익년
김홍진
장홍기
지영연
Original Assignee
트리플코어스코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 트리플코어스코리아 filed Critical 트리플코어스코리아
Publication of WO2010027184A2 publication Critical patent/WO2010027184A2/en
Publication of WO2010027184A3 publication Critical patent/WO2010027184A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Definitions

  • the present invention relates to a waste gas removal system using plasma, and more particularly, in order to remove harmful air pollutants emitted from means such as fans and pumps in various electronic industries including the semiconductor industry, plasma is sequentially operated at low pressure and atmospheric pressure.
  • the present invention relates to a waste gas removal system using low pressure and atmospheric pressure plasma to remove harmful gases.
  • the plasma may be generated in vacuum or at atmospheric pressure, and may be classified into a high temperature plasma having an average temperature of several tens of degrees and a high degree of ionization, and a low temperature plasma having an average temperature slightly higher than room temperature and having a low degree of ionization.
  • CF 4 , SF 6 , CHF 3 , C 2 F are mainly used to etch silicon oxide, silicon nitride and polycrystalline silicon.
  • Fluorine gases such as 6 , SiF 4 , F 2 , HF, NF 3 , and Cl 2 , HCl, BCl 3 , SiCL 4 , CCl 4 , CHCl 3, etc., used to etch aluminum and silicon.
  • Silane, N 2 and NH 3 are often used in the chamber.
  • PFC or ClF 3 is used to clean the chamber, which can generate SiF 4 .
  • gases are toxic, corrosive, and oxidative, and when released as they are, there is a risk of causing a lot of problems for the human body, the global environment, and the production facilities themselves.
  • Such gases are injected into a semiconductor manufacturing apparatus and used after etching, CVD, or the like, and are discharged.
  • the exhaust gas contains a very small amount of unreacted gas.
  • the exhaust gas containing the unreacted gas has been discharged to the atmosphere as it is, but due to the above-mentioned problem, the gas scrubber is used to treat the gas discharged from the semiconductor manufacturing process, etc. There is a trend to minimize the impact.
  • a gas scrubber generally refers to a device for processing a gas discharged from a semiconductor or liquid crystal manufacturing process.
  • the gas scrubber is largely a primary gas scrubber that is directly attached to the rear of each device and a secondary gas that is installed next to the primary gas scrubber. It is divided into scrubbers.
  • primary gas scrubbers are largely classified into dry gas scrubbers, combustion gas scrubbers, and wet gas scrubbers, but recently, modified products such as combustion and wet or a mixture of combustion and dry are also produced.
  • a gas scrubber generally widely used is a wet gas scrubber that purifies and cools by spraying water on a gas passing through a chamber.
  • Wet gas scrubber has the advantage of being easy to manufacture and large capacity in a simple process and simple structure, but insoluble gas is impossible to process and inadequate for the treatment of ignitable gas containing a hydrogen group.
  • insoluble gas is impossible to process and inadequate for the treatment of ignitable gas containing a hydrogen group.
  • the operation and maintenance costs are increased, which is not economical.
  • Combustion gas scrubbers are classified into a direct combustion method through which exhaust gas passes through a burner of a hydrogen burner and an indirect combustion method through which exhaust gas passes through a high temperature chamber formed by a heat source.
  • these combustible gas scrubbers are excellent in the treatment efficiency of flammable gases, but are not suitable for the treatment of non-degradable harmful gases due to insufficient temperature to decompose stable substances such as PFC, and by-products as secondary harmful substances.
  • the conventional mixed gas scrubber has a problem that the inner diameter of the burning chamber is small and the length is long, so that a sufficient combustion temperature can be obtained.
  • an object of the present invention is to provide a low pressure and atmospheric pressure plasma decomposition system for decomposing and removing unreacted process gas into an atmospheric pressure plasma.
  • One preferred embodiment of the waste gas removal system using a low pressure and atmospheric plasma according to the present invention for achieving the above object is a rotary pump through the turbo pump from the process chamber in a process line consisting of a vacuum process chamber, a turbo pump, a rotary pump Low pressure plasma means for installing and processing the unreacted process gas flowing into the turbo pump and the rotary pump, and the gas treated by the low pressure plasma means discharged to the atmosphere through the rotary pump once again at atmospheric pressure Atmospheric pressure plasma means for removing and the unreacted process gas is characterized by consisting of a conventional wet scrubber to scrub through the low pressure and atmospheric pressure plasma means of the water-soluble stable by-products by wet scrubbing.
  • the low pressure plasma means is composed of a pupil cathode plasma having holes of several ⁇ m to several mm and the atmospheric pressure plasma means is composed of an electromagnetic plasma generated at a frequency of 2400-2450 MHz.
  • the pupil cathode plasma is provided with a plurality of pupil cathodes.
  • the electromagnetic plasma is a high frequency oscillator for oscillating high frequency, a power supply unit for supplying power to the high frequency oscillator, a waveguide for transmitting high frequency oscillated in the high frequency oscillator, a high frequency transmitted through the waveguide and injected from the outside Discharge tube into which the vortex gas is introduced, discharge tube support on which the discharge tube is installed, high frequency plasma generated by the high frequency transmitted to the discharge tube through the waveguide, a noxious gas injection unit for injecting harmful gas into the plasmas, and a normal wet type And a connection pipe connected to the scrubber and providing the plasma flame outlet.
  • the waste gas removal system using low pressure and atmospheric pressure plasma according to the present invention is completely processed by treating the unreacted process gas discharged from the process chamber with low pressure plasma and the unreacted process gas treated with the low pressure plasma once more with atmospheric pressure plasma. It has the effect of providing a system for removal.
  • FIG. 2 is a view for explaining the configuration of a low pressure plasma according to an embodiment of the present invention.
  • 5 to 6 are cross-sectional views showing one embodiment of various electrode structures of the pupil cathode plasma of the present invention.
  • FIG. 7 is a cross-sectional view of a plurality of pupil cathode plasma reactors installed in accordance with the present invention.
  • FIG. 8 is a longitudinal sectional view of a pupil cathode plasma reactor equipped with a plurality of holes according to the present invention
  • FIG. 9 is a cross-sectional view showing a module of a pupil cathode plasma reactor having a plurality of holes installed in a connection pipe according to the present invention.
  • FIG. 10 is a cross-sectional view illustrating in detail the configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing another configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing an example of the harmful gas injection unit of FIG.
  • low pressure plasma 40 a plurality of holes
  • unreacted process gas of fluorinated series that is not reacted in the vacuum chamber 10 is discharged to the atmosphere through the turbo pump 20 and the rotary pump 50.
  • a low pressure state lower than atmospheric pressure is maintained between the turbo pump 20 and the rotary pump 50, and the low pressure plasma 30 of the present invention is installed between the two pumps.
  • the unreacted process gas treated in the low pressure plasma 30 is introduced into the atmospheric pressure plasma 60 of the present invention through the rotary pump 50 operated by purging nitrogen gas.
  • the unreacted process gas is introduced into the atmospheric pressure plasma 60 together with the nitrogen gas.
  • the water-soluble byproduct gas generated from the treated unreacted process gas is introduced into a conventional wet scrubber 90 and treated.
  • Florin (F) is combined with hydrogen (H) and converted to hydrofluoric acid (HF), which is easy to dissolve in water.
  • FIG 2 is a view for explaining the configuration of the low pressure plasma 30 according to the embodiment of the present invention.
  • the low pressure plasma 30 in the present invention is a hollow cathode plasma.
  • 2 (a) and 2 (b) show a basic pupil cathode plasma electrode arrangement.
  • the dielectric 36 is sandwiched between the electrodes 32 and 34 in a sandwich form, and the dielectric 36 and the electrodes 32 and 34 are provided with holes 38 to have an array of pupils.
  • the size of the hole is preferably several ⁇ m to several mm.
  • the electrodes 32 and 34 may be made of a conductive metal such as copper, aluminum, stainless steel, or tungsten, and the dielectric 36 may be made of alumina, quartz, tempered glass, or polymer.
  • the pupil cathode plasma of the present invention is used to locally increase the intensity of the electric field when a potential difference is applied between the two electrodes 32 and 34, and free electrons in the strong electric field region of the two electrodes. Energy is amplified by the Avalanche process.
  • the horizontal axis pd represents a product of the pressure p in torr and the electrode distance d in cm
  • the vertical axis represents a breakdown voltage value according to the value of pd.
  • the breakdown voltage increases linearly with pd. This is because the probability of one electron ionizing is very high for the relatively increasing pressure and the large electrode distance.
  • the breakdown voltage increases rapidly as pd decreases.
  • the probability of ionization collisions is very limited and a very strong electric field is required for the amplification of the required electrons.
  • the maximum ionization capacity of the electrons shows a certain pd value at which the breakdown voltage is minimum.
  • FIG. 4 is a graph of the distance between electrodes according to pressure for a pd value corresponding to a minimum dielectric breakdown voltage.
  • the distance between the strong electric field and the electrode must be small in order for the discharge to be initiated through breakdown at high pressure. Therefore, as shown in FIG. 4, an interelectrode distance of several hundred ⁇ m is required.
  • discharges at low pressure can be obtained even at distances between electrodes of several mm.
  • This not only can generate the pupil cathode plasma at a relatively low pressure between the turbo pump 20 and the rotary pump 50, but can also easily generate the pupil cathode plasma by controlling the distance between the electrodes and the size of the hole. Means that.
  • 5 to 6 are cross-sectional views showing one embodiment of various electrode structures of the pupil cathode plasma of the present invention.
  • D is the distance of the upper electrode 34 in the pupil cathode structure composed of the dielectric 36, the electrodes 32, 34, d is the lower electrode 32 and the dielectric ( In Fig. 36).
  • the unreacted process gas in the present invention is configured to enter the lower electrode 32 and exit the upper electrode 34.
  • various structures of the holes 38 may be applied to the pupil cathode plasma of the present invention to have a value of d / D ⁇ 1 or d / D ⁇ 1.
  • the structure of the various holes 38 in FIGS. 5 and 6 may have various nonlinear electric field distributions in the holes 38 to insulate and decompose unreacted gas.
  • the electric field distribution has a fan-shaped nonlinear electric field distribution like a discharge ladder from the lower electrode 32 to the upper electrode 34.
  • FIG. 6 (a) FIG. Has an electric field distribution of opposite shape.
  • Figure 7 is a view showing a cross-sectional view of a plurality of pupil cathode plasma reactor installed in accordance with the present invention.
  • a pupil cathode plasma structure having a plurality of holes 40 and various electrode structures of FIGS. 5 and 6 may be applied.
  • a pupil cathode plasma having a plurality of holes 40 of FIG. 7 may be installed in a connection pipe connecting the turbo pump 20 and the rotary pump 50 to correspond to the flow of unreacted gas having a large cross-sectional area.
  • FIG. 8 is a view showing a longitudinal cross-sectional view of a pupil cathode plasma reactor with a plurality of holes according to the present invention.
  • the pupil cathode plasma reactor 100 having a plurality of holes may be formed in a square or circle according to the shape of the cross-sectional area of the connection pipe connecting the turbopump 20 and the rotary pump 50.
  • the distance between the hole and the hole is preferably in a range that does not affect the discharge between each other, and more preferably in the range of 0.1 mm to 10 mm.
  • FIG. 9 is a cross-sectional view showing a module of a pupil cathode plasma reactor having a plurality of holes installed in a connection pipe according to the present invention.
  • the module 200 of the pupil cathode plasma reactor having a plurality of holes includes a connection portion 22 connecting to the turbo pump 20, a pupil cathode plasma reactor 100 having a plurality of holes, and a plurality of holes. It consists of an installation tube 24, which is provided with a pupil cathode plasma reactor 100 provided with two holes, and a connection portion 52 that connects to the turbo pump 50.
  • the unreacted gas 12 is introduced into the rotary pump 50 as gas 54 that is decomposed and treated by the pupil cathode plasma while passing through a plurality of holes of the reactor 100, and discharged into the atmosphere.
  • the module 200 may be easily installed between the turbopump 20 and the rotary pump 50 in the process line.
  • the pupil cathode plasma mentioned in FIGS. 2 to 9 is preferably generated by a direct current and may be generated by an alternating current of 60 Hz to 10 GHz.
  • FIG. 10 is a cross-sectional view illustrating in detail the configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
  • the electromagnetic plasma reactor 300 of the present invention includes a power supply unit 5, a high frequency oscillator 15, a discharge tube 140, a waveguide 125, a discharge tube support 156, and a vortex gas injection unit 158. ), An additional gas supply unit 164 and a fuel supply support 160.
  • the power supply unit 5 supplies power to the high frequency oscillator 15.
  • the frequency band is preferably 2400 MHz to 2500 MHz, and the high frequency oscillator 15 at that time is called a magnetron.
  • the voltage from the power supply 5 is preferably -3.0 to -4.5 kV.
  • the high frequency wave 154 oscillated from the high frequency oscillator 15 flows into the waveguide 125.
  • a discharge tube 140 having a central axis at a position 1/4 g ( g is a wavelength in the waveguide) from the end 152 of the waveguide 125 is installed perpendicular to the waveguide 125 and is made of quartz or tempered glass. It may be made of a dielectric that can transmit high frequency, such as ceramic, alumina, and the like.
  • the discharge tube 140 is supported by the discharge tube supporter 156 and provided with vortex gas injection holes 158a and 158b for injecting vortex gas into the discharge tube 140.
  • the vortex gas injection holes 158a and 158b may be installed in plural to have equal intervals.
  • the vortex gas injected from the vortex gas injection holes 158a and 158b forms a vortex through the inner wall of the discharge tube support 156 and the discharge tube 140 and forms oxygen, nitrogen, air, an inert gas, a hydrocarbon gas, and a mixed gas thereof. It may be configured to act as a plasma gas and at the same time stabilizes the plasma generated in the discharge tube 140 and serves to prevent damage to the discharge tube 140 from high-temperature plasma radiant heat.
  • the additional gas may be supplied from the additional gas supply unit 164 installed on the support 160 to the high frequency plasma 110 to help plasma chemical reaction.
  • a hydrocarbon gas as an additional gas, it is possible to make a high-temperature large-capacity plasma flame 120 consisting of a plasma and a fuel flame.
  • steam, oxygen, hydrogen gas may be injected as an additional gas, the harmful gas composed of nitrogen gas and unreacted process gas when decomposing the harmful gas of the florin compound injected from the harmful gas injection unit 170,
  • the additional gas with hydrogen (H) converts the noxious gas into hydrofluoric acid (HF), which can be easily processed through plasma chemical reactions.
  • connection block 162 may be installed at an upper end of the support 160 to facilitate connection with a conventional wet scrubber.
  • FIG. 11 is a cross-sectional view showing another configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
  • the harmful gas discharged from the rotary pump 50 is injected into the harmful gas injection units 134a and 134b through the connection pipes 132a and 132b.
  • the lower end of the discharge tube support 156 is blocked by the blocking film 190.
  • a plurality of harmful gas connectors may be installed.
  • the noxious gas injected into the noxious gas injection units 134a and 134b serves as a vortex gas that rotates and flows.
  • the harmful gas is converted into plasma by-products while passing through the electromagnetic plasma and introduced into the wet scrubber 90 connected to the plasma gas exhaust pipe 180.
  • FIG. 12 is a cross-sectional view showing an example of the harmful gas injection unit of FIG.
  • a plurality of harmful gas injection units 134a, 134b, 134c, and 134d may be installed at equal intervals in the tangential direction with the inner wall of the discharge tube support 156.
  • the installation of a plurality of the noxious gas injection units 134a, 134b, 134c, and 134d makes the noxious gas as a vortex gas to rotate uniformly, thereby increasing the noxious gas treatment efficiency by the electromagnetic wave plasma as well as stabilizing the plasma.
  • the installation angle of the harmful gas injection unit (134a, 134b, 134c, 134d) may be made in the range of 0 to 90 degrees in the upward direction.
  • the present invention relates to a waste gas removal system using low pressure and atmospheric pressure plasma that removes harmful gases discharged from a vacuum chamber with atmospheric pressure electromagnetic plasma, and provides an air pollution harmful gas discharged from various electronic industries including the semiconductor industry. There is a possibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Treating Waste Gases (AREA)
  • Plasma Technology (AREA)

Abstract

The present invention relates to a waste gas removal system for removal of harmful atmosphere-polluting gases emitted by various electronics industries including the semiconductor industry. More particularly, it provides a waste gas removal system using low-pressure plasma and plasma at atmospheric pressure whereby harmful gas emitted from a vacuum chamber is first treated with low-pressure hollow-cathode discharge plasma. The harmful gas thus treated is passed one more time through electromagnetic plasma at atmospheric pressure, thereby completely removing it.

Description

저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템Waste gas removal system using low pressure and atmospheric pressure plasma
본 발명은 플라즈마를 이용한 폐가스 제거 시스템에 관한 것으로, 더욱 상세하게는 반도체 산업을 포함한 각종 전자산업에서 팬 및 펌프 등의 수단으로부터 배출되는 대기오염 유해가스를 제거하기 위해 저압 및 대기압에서 순차적으로 플라즈마를 지나게 함으로써 유해가스를 제거하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템에 관한 것이다.The present invention relates to a waste gas removal system using plasma, and more particularly, in order to remove harmful air pollutants emitted from means such as fans and pumps in various electronic industries including the semiconductor industry, plasma is sequentially operated at low pressure and atmospheric pressure. The present invention relates to a waste gas removal system using low pressure and atmospheric pressure plasma to remove harmful gases.
플라즈마로 발생되는 높은 반응성의 화학종들을 이용하여 금속이나 고분자 등의 표면 처리, 실리콘 웨이퍼, 글래스 등 다양한 유전체 식각, 플라즈마 화학기상증착 기술은 잘 알려져 있다. 공정의 미세화, 저온화의 필요성에 따라 공업적으로 활발히 이용되고 있는 것은 주로 대기압 저온 플라즈마로, 반도체공정에서의 식각 및 증착, 금속이나 고분자의 표면처리, 신물질의 합성 등에 유용하게 이용되고 있다. The use of highly reactive chemical species generated by plasma, surface treatment of metals and polymers, various dielectric etching such as silicon wafer, glass, plasma chemical vapor deposition techniques are well known. Industrially active in accordance with the necessity of miniaturization and low temperature process is mainly atmospheric pressure low temperature plasma, it is useful for etching and deposition in the semiconductor process, surface treatment of metals and polymers, synthesis of new materials.
플라즈마는 진공 또는 대기압에서 발생될 수 있으며, 그 온도에 따라 평균온도가 수만 도에 달하고 이온화 정도가 높은 고온 플라즈마와 평균온도가 상온보다 약간 높고 이온화 정도가 미약한 저온 플라즈마로 구분할 수 있다. The plasma may be generated in vacuum or at atmospheric pressure, and may be classified into a high temperature plasma having an average temperature of several tens of degrees and a high degree of ionization, and a low temperature plasma having an average temperature slightly higher than room temperature and having a low degree of ionization.
각종 반도체 디바이스의 제조나 근래 급격하게 발전된 액정의 제조에 있어서 사용 후 배출되는 가스는 독성이나 가연성이 있어 인체에 미치는 영향이 크고 또한 지구 온난화에 크게 영향을 미치기 때문에 이러한 유해가스를 최대한 처리한 후 배출시킬 필요가 있다. 근래에 반도체 디바이스의 제조공정에서 사용되는 가스를 그 공정별로 살펴보면 다음과 같다. In the manufacture of various semiconductor devices or in the manufacture of liquid crystals, which have been rapidly developed in recent years, the gases emitted after use are toxic or flammable and have a great effect on the human body and greatly affect global warming. I need to. Recently, the gas used in the manufacturing process of a semiconductor device is described by the process as follows.
먼저, 에칭(etching) 공정에서는 주로 실리콘 옥사이드(silicon oxide), 실리콘 니트라이드(silicon nitride) 및 폴리 크리스탈린 실시콘(polycrystalline silicon)을 에칭하는데 사용되는 CF4, SF6, CHF3, C2F6, SiF4, F2, HF, NF3 등의 플루오린 가스(fluorine gas)들과, 알루미늄과 실리콘을 에칭하는데 사용되는 Cl2, HCl, BCl3, SiCL4, CCl4, CHCl3 등의 클로라인 가스(chlorine gas)들과, 트렌치에칭(trench-etch) 또는 Cl2 와 함께 알루미늄의 에칭공정에 사용되는 HBr, Br2 등의 브로마인 가스(bromine gas)들이 있고, 다음 화학증착(CVD, Chemical Vapor Deposition)공정에서는 흔히 Silane, N2 및 NH3가 챔버내에 투입되어 사용된다. First, in the etching process, CF 4 , SF 6 , CHF 3 , C 2 F are mainly used to etch silicon oxide, silicon nitride and polycrystalline silicon. Fluorine gases such as 6 , SiF 4 , F 2 , HF, NF 3 , and Cl 2 , HCl, BCl 3 , SiCL 4 , CCl 4 , CHCl 3, etc., used to etch aluminum and silicon. There are chlorine gases, bromine gases such as HBr and Br 2 used in trench-etch or etching of aluminum together with Cl 2 , followed by CVD In the chemical vapor deposition process, Silane, N 2 and NH 3 are often used in the chamber.
특히 PECVD 공정에서는 챔버 내를 세정하기 위해 PFC 또는 ClF3가 사용되며 이 때 SiF4를 생성할 수 있다. 이러한 가스들은 유독성, 부식성, 산화성이 강하여 그대로 배출될 경우에는 인체, 지구 환경은 물론 생산설비 자체에도 많은 문제점을 일으킬 염려가 있다.Particularly in the PECVD process, PFC or ClF 3 is used to clean the chamber, which can generate SiF 4 . These gases are toxic, corrosive, and oxidative, and when released as they are, there is a risk of causing a lot of problems for the human body, the global environment, and the production facilities themselves.
상기와 같은 가스들은 반도체 제조장치내에 주입되어 에칭이나 CVD 공정 등에 사용된 후에 배출되는데, 그 배기가스에는 미반응 가스가 극소량 함유되어 있다. Such gases are injected into a semiconductor manufacturing apparatus and used after etching, CVD, or the like, and are discharged. The exhaust gas contains a very small amount of unreacted gas.
종래에는 이러한 미반응 가스가 함유되어 있는 배기가스를 그대로 대기 중으로 배출해 왔으나, 전술한 문제로 인해 현재에는 가스 스크러버를 사용하여 반도체 제조공정 등에서 배출되는 가스를 처리함으로써 인체에 미치는 영향이나 지구 온난화에 미치는 영향을 최소화하려는 추세에 있다. Conventionally, the exhaust gas containing the unreacted gas has been discharged to the atmosphere as it is, but due to the above-mentioned problem, the gas scrubber is used to treat the gas discharged from the semiconductor manufacturing process, etc. There is a trend to minimize the impact.
가스 스크러버는 일반적으로 반도체나 액정의 제조공정에서 배출되는 가스를 처리하는 장치를 말하며 이러한 가스 스크러버는 크게 각 장치의 바로 후단에 붙는 1차 가스 스크러버 그리고 1차 가스 스크러버의 다음에 설치되는 2차 가스 스크러버로 구분된다. A gas scrubber generally refers to a device for processing a gas discharged from a semiconductor or liquid crystal manufacturing process. The gas scrubber is largely a primary gas scrubber that is directly attached to the rear of each device and a secondary gas that is installed next to the primary gas scrubber. It is divided into scrubbers.
나아가 1차 가스 스크러버는 크게 건식 가스 스크러버, 연소식 가스 스크러버, 습식 가스 스크러버로 구분되지만, 근래에는 연소식과 습식 또는 연소식과 건식을 혼합한 형태 등 변형된 제품도 생산되고 있다. Furthermore, primary gas scrubbers are largely classified into dry gas scrubbers, combustion gas scrubbers, and wet gas scrubbers, but recently, modified products such as combustion and wet or a mixture of combustion and dry are also produced.
종래에 일반적으로 널리 사용되는 가스 스크러버는 챔버를 통과하는 가스에 물을 분사시켜 정화 및 냉각을 행하는 습식 가스 스크러버이다. BACKGROUND ART A gas scrubber generally widely used is a wet gas scrubber that purifies and cools by spraying water on a gas passing through a chamber.
습식 가스 스크러버는 단순한 공정과 간단한 구조로 제작이 용이하고 대용량화 할 수 있는 장점이 있으나, 불용성 가스는 처리가 불가능하고 수소기를 포함하는 발화성 가스의 처리에 부적합한 단점이 있다. 또한 많은 양의 폐수를 발생시켜 별도의 폐수 처리 설비를 필요로 하기 때문에 운전 및 유지 비용이 상승되어 경제적이지 못하다. Wet gas scrubber has the advantage of being easy to manufacture and large capacity in a simple process and simple structure, but insoluble gas is impossible to process and inadequate for the treatment of ignitable gas containing a hydrogen group. In addition, since a large amount of wastewater is generated and a separate wastewater treatment facility is required, the operation and maintenance costs are increased, which is not economical.
연소식 가스 스크러버는 수소버너의 버너속에 배기 가스를 통과시키는 직접연소방식과 열원에 의해 형성된 고온의 챔버에 배기 가스를 통과시키는 간접연소방식으로 구분된다. 그러나 이러한 연소식 가스 스크러버는 발화성 가스의 처리 효율은 우수하나 PFC 등의 안정한 물질을 분해하기에는 온도가 충분하지 않아 난분해성 유해가스의 처리에는 부적합하고, 2차 유해물질인 부생성물(by-product)의 처리를 위한 추가적인 세정 공정도 필요로 하는 문제점이 있다. Combustion gas scrubbers are classified into a direct combustion method through which exhaust gas passes through a burner of a hydrogen burner and an indirect combustion method through which exhaust gas passes through a high temperature chamber formed by a heat source. However, these combustible gas scrubbers are excellent in the treatment efficiency of flammable gases, but are not suitable for the treatment of non-degradable harmful gases due to insufficient temperature to decompose stable substances such as PFC, and by-products as secondary harmful substances. There is also a need for an additional cleaning process for the treatment of.
근래에는 경제성, 안정성 및 효율성 등의 이유로 연소식과 습식을 병용한 가스 스크러버가 사용되고 있다. 그러나, 종래의 혼합형 가스 스크러버는 그 버닝 챔버의 내경이 작고 길이가 길어야만 충분한 연소온도를 얻을 수 있기 때문에 설치면적을 많이 차지하고 고온의 가스가 오랜 시간 버닝챔버에 머물러 부식에 매우 취약한 문제점이 있었다. Recently, a gas scrubber using a combination of a combustion type and a wet type has been used for reasons of economy, stability, and efficiency. However, the conventional mixed gas scrubber has a problem that the inner diameter of the burning chamber is small and the length is long, so that a sufficient combustion temperature can be obtained.
그리고 고온의 버닝챔버를 통과한 가스와 물이 접촉되는 부분의 구조적 결함으로 파우더가 쌓여 유지, 보수의 비용이 많이 소요되고 주공정의 가동 중단으로 생산성을 저하시키는 문제점이 있었다.In addition, due to structural defects in the gas and water contact parts passing through the high-temperature burning chamber, powder is accumulated and the cost of maintenance and repair is high.
본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로서, 반도체 산업을 포함한 각종 전자산업에서 공정 후 미반응 공정가스가 진공펌프를 통해 대기로 배출되며 대기로 배출되기 전, 저압 플라즈마로, 대기로 배출 후, 대기압 플라즈마로 미반응된 공정가스를 분해 제거하는 저압 및 대기압 플라즈마 분해 시스템을 제공함에 목적이 있다.The present invention has been made to solve the above problems, in the various electronics industry, including the semiconductor industry, after the unreacted process gas is discharged to the atmosphere through a vacuum pump and discharged to the atmosphere, low pressure plasma, discharged to Afterwards, an object of the present invention is to provide a low pressure and atmospheric pressure plasma decomposition system for decomposing and removing unreacted process gas into an atmospheric pressure plasma.
또한 상기 저압 플라즈마와 상기 대기압 플라즈마로 구성되는 하이브리드 반도체 폐가스 분해 시스템을 제공함에 목적이 있다. It is also an object of the present invention to provide a hybrid semiconductor waste gas decomposition system composed of the low pressure plasma and the atmospheric pressure plasma.
또한 상기 플라즈마 시스템으로 반도체 산업을 포함한 각종 산업에서 펌프 및 팬 등의 수단에 의해 대기로 배출되는 유해가스를 통과시켜 제거하는 가스 스크러버를 제공하는데 목적이 있다.In addition, it is an object of the present invention to provide a gas scrubber for removing the harmful gases passing through the plasma system to the atmosphere by means such as a pump and a fan in various industries including the semiconductor industry.
상기한 목적을 달성하는 본 발명에 따른 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템의 바람직한 일 실시예는, 진공 공정 챔버, 터보 펌프, 로터리 펌프로 구성된 공정 라인에서 상기 공정 챔버로부터 터보 펌프를 통해 로터리 펌프로 유입되는 상기 미반응 공정가스를 상기 터보 펌프와 상기 로터리 펌프 사이에 설치되어 처리하는 저압 플라즈마 수단과, 상기 로터리 펌프를 통해 대기로 배출되는 저압 플라즈마 수단으로 처리된 가스를 다시 한번 대기압 상태에서 완벽하게 제거하는 대기압 플라즈마 수단과, 상기 미반응된 공정가스가 상기 저압 및 대기압 플라즈마 수단을 거치면서 수용성의 안정한 부산물을 습식으로 스크러빙하여 처리하는 통상의 습식 스크러버로 구성되는 것을 특징으로 한다. One preferred embodiment of the waste gas removal system using a low pressure and atmospheric plasma according to the present invention for achieving the above object is a rotary pump through the turbo pump from the process chamber in a process line consisting of a vacuum process chamber, a turbo pump, a rotary pump Low pressure plasma means for installing and processing the unreacted process gas flowing into the turbo pump and the rotary pump, and the gas treated by the low pressure plasma means discharged to the atmosphere through the rotary pump once again at atmospheric pressure Atmospheric pressure plasma means for removing and the unreacted process gas is characterized by consisting of a conventional wet scrubber to scrub through the low pressure and atmospheric pressure plasma means of the water-soluble stable by-products by wet scrubbing.
바람직하게는, 상기 저압 플라즈마 수단은 수 μm내지 수 mm의 구멍을 가진 동공음극 플라즈마로 구성되며 상기 대기압 플라즈마 수단은 2400-2450 MHz의 주파수로 발생되는 전자파 플라즈마로 구성된다.Preferably, the low pressure plasma means is composed of a pupil cathode plasma having holes of several μm to several mm and the atmospheric pressure plasma means is composed of an electromagnetic plasma generated at a frequency of 2400-2450 MHz.
또한 바람직하게는, 상기 동공음극 플라즈마는 다수개의 동공음극이 구비된다.Also preferably, the pupil cathode plasma is provided with a plurality of pupil cathodes.
또한 바람직하게는, 상기 전자파 플라즈마는 고주파를 발진하는 고주파 발진기, 상기 고주파 발진기에 전력을 공급하는 전원공급부, 상기 고주파 발진기에서 발진된 고주파를 전송하는 도파관, 상기 도파관을 통해 전송된 고주파 및 외부로부터 주입된 와류가스가 유입되는 방전관, 상기 방전관이 설치되는 방전관 지지체, 상기 도파관을 통해 상기 방전관으로 전송된 고주파에 의해 발생된 고주파 플라즈마, 상기 플라즈마들로 유해가스를 주입하는 유해가스 주입부 및 통상의 습식 스크러버와 연결됨과 동시에 상기 플라즈마 화염출구를 제공하는 연결관을 포함하는 것을 특징으로 한다.Also, preferably, the electromagnetic plasma is a high frequency oscillator for oscillating high frequency, a power supply unit for supplying power to the high frequency oscillator, a waveguide for transmitting high frequency oscillated in the high frequency oscillator, a high frequency transmitted through the waveguide and injected from the outside Discharge tube into which the vortex gas is introduced, discharge tube support on which the discharge tube is installed, high frequency plasma generated by the high frequency transmitted to the discharge tube through the waveguide, a noxious gas injection unit for injecting harmful gas into the plasmas, and a normal wet type And a connection pipe connected to the scrubber and providing the plasma flame outlet.
본 발명에 의한 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템은 공정챔버로부터 배출되는 미반응된 공정가스를 저압 플라즈마로, 상기 저압 플라즈마로 처리된 상기 미반응 공정가스를 대기압 플라즈마로 한 번 더 처리함으로서 완벽히 제거하는 시스템을 제공해주는 효과가 있다.The waste gas removal system using low pressure and atmospheric pressure plasma according to the present invention is completely processed by treating the unreacted process gas discharged from the process chamber with low pressure plasma and the unreacted process gas treated with the low pressure plasma once more with atmospheric pressure plasma. It has the effect of providing a system for removal.
또한 반도체 공정에서 배출되는 상기 미반응된 공정가스를 제거하는 저압 및 대기압 플라즈마로 구성된 하이브리드 플라즈마 시스템을 제공해주는 효과가 있다.In addition, there is an effect of providing a hybrid plasma system consisting of a low pressure and atmospheric pressure plasma to remove the unreacted process gas discharged from the semiconductor process.
도 1은 본 발명의 저압 및 대기압 플라즈마의 공정에서의 적용을 보여주는 도면.1 shows the application of the low pressure and atmospheric pressure plasma processes of the present invention.
도 2는 본 발명의 실시예에 따른 저압 플라즈마의 구성을 설명하는 도면.2 is a view for explaining the configuration of a low pressure plasma according to an embodiment of the present invention.
도 3은 몇몇 일반적인 가스들에 대한 파센 곡선(Paschen curve)을 보여주는 도면. 3 shows a Paschen curve for some common gases.
도 4는 일정한 pd 값에서 압력(p)의 함수로서 전극간 거리를 보여주는 도면.4 shows the distance between electrodes as a function of pressure p at a constant pd value.
도 5 내지 도 6은 본 발명의 동공음극 플라즈마의 다양한 전극구조의 일 실시예를 보여주는 단면도.5 to 6 are cross-sectional views showing one embodiment of various electrode structures of the pupil cathode plasma of the present invention.
도 7은 본 발명에 따른 다수개가 설치된 동공음극 플라즈마 반응기의 횡단면도를 보여주는 도면.7 is a cross-sectional view of a plurality of pupil cathode plasma reactors installed in accordance with the present invention.
도 8은 본 발명에 따른 다수개의 홀이 구비된 동공음극 플라즈마 반응기의 종단면도를 보여주는 도면.8 is a longitudinal sectional view of a pupil cathode plasma reactor equipped with a plurality of holes according to the present invention;
도 9는 본 발명에 따른 연결관에 설치된 다수개의 홀이 구비된 동공음극 플라즈마 반응기의 모듈을 보여주는 단면도.9 is a cross-sectional view showing a module of a pupil cathode plasma reactor having a plurality of holes installed in a connection pipe according to the present invention.
도 10은 본 발명의 실시예에 따른 전자파 플라즈마 반응기의 구성을 상세히 설명하는 단면도.10 is a cross-sectional view illustrating in detail the configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 전자파 플라즈마 반응기의 다른 구성을 보여주는 단면도.11 is a cross-sectional view showing another configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
도 12는 도 11의 유해가스 주입부의 일예를 보여주는 단면도. 12 is a cross-sectional view showing an example of the harmful gas injection unit of FIG.
*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
10: 진공 챔버 20: 터보펌프10: vacuum chamber 20: turbopump
30: 저압 플라즈마40: 다수개의 홀30: low pressure plasma 40: a plurality of holes
50: 로터리 펌프 60: 대기압 플라즈마50: rotary pump 60: atmospheric pressure plasma
90: 습식 스크러버100: 동공음극 플라즈마 반응기90: wet scrubber 100: pupil cathode plasma reactor
200: 동공음극 플라즈마 모듈 300: 전자파 플라즈마 반응기200: pupil cathode plasma module 300: electromagnetic plasma reactor
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 저압 및 대기압 플라즈마의 공정에서의 적용을 보여주는 도면이다.1 shows the application of the low pressure and atmospheric pressure plasma processes of the invention.
도 1을 참조하면, 진공 챔버(10)에서 반응하지 않게 배출되는 불화계열의 미반응 공정가스는 터보 펌프(20)와 로터리 펌프(50)를 통해 대기로 배출된다. Referring to FIG. 1, unreacted process gas of fluorinated series that is not reacted in the vacuum chamber 10 is discharged to the atmosphere through the turbo pump 20 and the rotary pump 50.
상기 터보 펌프(20)와 상기 로터리 펌프(50) 사이는 대기압 보다 낮은 저압상태가 유지되고 있으며 두 펌프 사이에 본 발명의 저압 플라즈마(30)가 설치된다. A low pressure state lower than atmospheric pressure is maintained between the turbo pump 20 and the rotary pump 50, and the low pressure plasma 30 of the present invention is installed between the two pumps.
상기 저압 플라즈마(30)에서 처리된 상기 미반응 공정가스는 질소가스의 퍼징에 의해 작동되는 상기 로터리 펌프(50)를 지나 본 발명의 대기압 플라즈마(60)로 유입된다. The unreacted process gas treated in the low pressure plasma 30 is introduced into the atmospheric pressure plasma 60 of the present invention through the rotary pump 50 operated by purging nitrogen gas.
이때에 미반응 공정가스는 질소가스와 함께 상기 대기압 플라즈마(60)로 유입된다. 처리된 상기 미반응 공정가스로부터 발생하는 수용성의 부산물 가스는 통상의 습식 스크러버(90)로 유입되어 처리되어진다. 예를 들어, 플로린(F)은 수소(H)와 결합하여 물에 용해하기 쉬운 불산(HF)로 변환된다.At this time, the unreacted process gas is introduced into the atmospheric pressure plasma 60 together with the nitrogen gas. The water-soluble byproduct gas generated from the treated unreacted process gas is introduced into a conventional wet scrubber 90 and treated. For example, Florin (F) is combined with hydrogen (H) and converted to hydrofluoric acid (HF), which is easy to dissolve in water.
도 2는 본 발명의 실시예에 따른 저압 플라즈마(30)의 구성을 설명하는 도면이다.2 is a view for explaining the configuration of the low pressure plasma 30 according to the embodiment of the present invention.
도 2를 참조하면, 본 발명에서 저압 플라즈마(30)는 동공음극(Hollow cathode) 플라즈마이다. 도 2(a)와 도 2(b)는 기본적인 동공음극 플라즈마 전극배열을 보여주고 있다. Referring to FIG. 2, the low pressure plasma 30 in the present invention is a hollow cathode plasma. 2 (a) and 2 (b) show a basic pupil cathode plasma electrode arrangement.
도 2에서 유전체(36)는 샌드위치 형태로 전극(32,34) 사이에 설치되며 동공의 배열을 갖도록 상기 유전체(36)와 상기 전극(32,34)은 홀(38)이 구비되어 진다. 기본적으로 상기 홀의 크기는 수 μm내지 수 mm가 바람직하다. In FIG. 2, the dielectric 36 is sandwiched between the electrodes 32 and 34 in a sandwich form, and the dielectric 36 and the electrodes 32 and 34 are provided with holes 38 to have an array of pupils. Basically, the size of the hole is preferably several μm to several mm.
상기 전극(32,34)은 구리, 알루미늄, 스텐인레스 스틸, 텅스텐 등의 전도성 금속으로 이루어지며 상기 유전체(36)는 알루미나, 석영, 강화유리, 폴리머 등으로 구성될 수 있다. The electrodes 32 and 34 may be made of a conductive metal such as copper, aluminum, stainless steel, or tungsten, and the dielectric 36 may be made of alumina, quartz, tempered glass, or polymer.
본 발명의 동공음극 플라즈마는 상기 두 전극(32,34) 사이에 전위차가 가해질 때, 국부적으로 전기장(Electric field)의 세기를 증대시키기 위해 사용되며 두 전극의 강한 전기장 영역에서 자유전자(Free electron)들은 사태(Avalanche) 공정에 의해 에너지가 증폭된다. The pupil cathode plasma of the present invention is used to locally increase the intensity of the electric field when a potential difference is applied between the two electrodes 32 and 34, and free electrons in the strong electric field region of the two electrodes. Energy is amplified by the Avalanche process.
외부에서 가해지는 전기장의 세기가 문턱 값(Threshold value)을 넘을 때, 전하의 수가 기하급수적으로 증가하게 되어 비로소 방전이 점화(Breakdown)된다. When the intensity of an externally applied electric field exceeds a threshold value, the number of charges increases exponentially until the discharge is broken down.
또한 2차 전자(Secondary electron)가 음극 표면으로부터 방출되고 더 높은 외부 전압이 인가되면, 입자들을 이온화시키기 위한 외부 전기장이 전류의 유지를 위해 더 이상 필요 없게 되는 스스로 유지되는 방전(Self-sustained discharge)이 발생하게 된다.In addition, when secondary electrons are emitted from the cathode surface and a higher external voltage is applied, a self-sustained discharge in which an external electric field for ionizing the particles is no longer needed for the maintenance of current. This will occur.
도 3은 몇몇 일반적인 가스들에 대한 파센 곡선(Paschen curve)을 보여주는 도면이다. 3 shows a Paschen curve for some common gases.
도 3을 참조하면, 횡축의 pd는 torr 단위의 압력(p)과 cm 단위의 전극 거리(d)의 곱을 나타내며 종축은 pd의 값에 따른 절연파괴전압(Breakdown voltage) 값은 나타내고 있다. Referring to FIG. 3, the horizontal axis pd represents a product of the pressure p in torr and the electrode distance d in cm, and the vertical axis represents a breakdown voltage value according to the value of pd.
상기 파센 곡선의 오른쪽 영역에서 절연파괴전압은 pd와 함께 선형적으로 증가한다. 이는 상대적으로 증가되는 압력과 큰 전극간 거리에 대해 하나의 전자가 이온화할 수 있는 확률이 매우 크기 때문이다. In the region to the right of the Paschen curve, the breakdown voltage increases linearly with pd. This is because the probability of one electron ionizing is very high for the relatively increasing pressure and the large electrode distance.
파센 곡선의 왼쪽 영역에서 절연파괴전압은 pd가 감소함에 따라 급속적으로 증가한다. 작은 pd에 대해 이온화 충돌 확률이 매우 제한적이며 필요한 전자의 증폭을 위해서는 매우 강한 전기장이 필요하다. 반면에 전자들의 이온화 능력이 최대가 되면서 절연파괴전압이 최소가 되는 어떤 pd 값을 보여주고 있다. In the region to the left of the Paschen curve, the breakdown voltage increases rapidly as pd decreases. For small pds the probability of ionization collisions is very limited and a very strong electric field is required for the amplification of the required electrons. On the other hand, the maximum ionization capacity of the electrons shows a certain pd value at which the breakdown voltage is minimum.
도 4는 일정한 pd 값에서 압력(p)의 함수로서 전극간 거리를 보여주는 도면이다.4 shows the distance between electrodes as a function of pressure p at a constant pd value.
도 4를 참조하면, 도 4는 최소의 절연파괴전압에 상응하는 pd 값에 대해 압력에 따른 전극간 거리의 그래프이다. Referring to FIG. 4, FIG. 4 is a graph of the distance between electrodes according to pressure for a pd value corresponding to a minimum dielectric breakdown voltage.
우선, 높은 압력에서 절연파괴를 통해 방전이 개시되기 위해서는 강한 전기장과 전극간 거리가 작아야 한다. 그러므로 도 4에서 보듯이 수백 μm의 전극간 거리가 필요하다. First, the distance between the strong electric field and the electrode must be small in order for the discharge to be initiated through breakdown at high pressure. Therefore, as shown in FIG. 4, an interelectrode distance of several hundred μm is required.
반대로, 낮은 압력에서 방전은 수 mm의 전극간 거리에서도 얻어질 수 있다. 이는 상기 터보 펌프(20)와 로터리 펌프(50) 사이의 상대적으로 낮은 압력에서 동공음극 플라즈마를 발생시킬 수 있을 뿐만 아니라, 전극간 거리와 홀의 크기를 제어함으로서 용이하게 동공음극 플라즈마를 발생시킬 수 있다는 것을 의미한다. Conversely, discharges at low pressure can be obtained even at distances between electrodes of several mm. This not only can generate the pupil cathode plasma at a relatively low pressure between the turbo pump 20 and the rotary pump 50, but can also easily generate the pupil cathode plasma by controlling the distance between the electrodes and the size of the hole. Means that.
도 5 내지 도 6은 본 발명의 동공음극 플라즈마의 다양한 전극구조의 일 실시예를 보여주는 단면도이다.5 to 6 are cross-sectional views showing one embodiment of various electrode structures of the pupil cathode plasma of the present invention.
도 5 내지 도 6에서, D는 유전체(36), 전극(32,34)으로 구성된 동공음극 구조에서 상(上)전극(34)의 거리, d는 하(下)전극(32)과 유전체(36)에서 좁은 거리를 나타낸다. 본 발명에서 미반응된 공정가스는 하전극(32)으로 들어가 상전극(34)으로 나오도록 구성된다. 5 to 6, D is the distance of the upper electrode 34 in the pupil cathode structure composed of the dielectric 36, the electrodes 32, 34, d is the lower electrode 32 and the dielectric ( In Fig. 36). The unreacted process gas in the present invention is configured to enter the lower electrode 32 and exit the upper electrode 34.
도 5와 도 6에서 보듯이 d/D < 1 또는 d/D < 1의 값을 갖도록 다양한 홀(38)의 구조를 본 발명의 동공음극 플라즈마에 적용할 수 있다. As shown in FIGS. 5 and 6, various structures of the holes 38 may be applied to the pupil cathode plasma of the present invention to have a value of d / D <1 or d / D <1.
도 5와 도 6에서의 다양한 홀(38)의 구조는 상기 홀(38) 내에서 다양한 비선형적 전기장의 분포를 갖도록 하여 미반응가스를 절연파괴시켜 분해시킬 수 있는 것이다. The structure of the various holes 38 in FIGS. 5 and 6 may have various nonlinear electric field distributions in the holes 38 to insulate and decompose unreacted gas.
예를 들어, 도 5(a)에서 전기장의 분포는 하전극(32)에서 상전극(34)으로 방전 사다리와 같은 부채꼴 모양의 비선형적 전기장 분포를 가지며 도 6(a)에서는 도 5(a)의 반대 모양의 전기장 분포를 갖는다. For example, in FIG. 5 (a), the electric field distribution has a fan-shaped nonlinear electric field distribution like a discharge ladder from the lower electrode 32 to the upper electrode 34. In FIG. 6 (a), FIG. Has an electric field distribution of opposite shape.
도 7은 본 발명에 따른 다수개가 설치된 동공음극 플라즈마 반응기의 횡단면도를 보여주는 도면이다.Figure 7 is a view showing a cross-sectional view of a plurality of pupil cathode plasma reactor installed in accordance with the present invention.
도 7을 참조하면, 다수개의 홀(40)이 구비된 동공음극 플라즈마 구조이며 도 5와 도 6의 다양한 전극구조가 적용됨은 물론이다. 도 7의 다수개의 홀(40)이 구비된 동공음극 플라즈마는 터보펌프(20)와 로터리 펌프(50)를 연결하는 연결관 내에 설치되어 넓은 단면적의 미반응 가스의 흐름에 대응할 수 있다. Referring to FIG. 7, a pupil cathode plasma structure having a plurality of holes 40 and various electrode structures of FIGS. 5 and 6 may be applied. A pupil cathode plasma having a plurality of holes 40 of FIG. 7 may be installed in a connection pipe connecting the turbo pump 20 and the rotary pump 50 to correspond to the flow of unreacted gas having a large cross-sectional area.
도 8은 본 발명에 따른 다수개의 홀이 구비된 동공음극 플라즈마 반응기의 종단면도를 보여주는 도면이다.8 is a view showing a longitudinal cross-sectional view of a pupil cathode plasma reactor with a plurality of holes according to the present invention.
도 8을 참조하면, 다수개의 홀이 구비된 동공음극 플라즈마 반응기(100)는 터보펌프(20)와 로터리 펌프(50)를 연결하는 연결관의 단면적의 모양에 따라 사각형 내지 원으로 구성될 수 있다. 또한 홀과 홀의 거리는 상호간의 방전에 영향을 주지 않은 범위가 바람직하며 더욱 바람직하게는 0.1 mm 내지 10 mm 범위의 거리가 되도록 한다.Referring to FIG. 8, the pupil cathode plasma reactor 100 having a plurality of holes may be formed in a square or circle according to the shape of the cross-sectional area of the connection pipe connecting the turbopump 20 and the rotary pump 50. . In addition, the distance between the hole and the hole is preferably in a range that does not affect the discharge between each other, and more preferably in the range of 0.1 mm to 10 mm.
도 9는 본 발명에 따른 연결관에 설치된 다수개의 홀이 구비된 동공음극 플라즈마 반응기의 모듈을 보여주는 단면도이다.9 is a cross-sectional view showing a module of a pupil cathode plasma reactor having a plurality of holes installed in a connection pipe according to the present invention.
도 9를 참조하면, 다수개의 홀이 구비된 동공음극 플라즈마 반응기의 모듈(200)은 터보 펌프(20)와 연결하는 연결부(22), 다수개의 홀이 구비된 동공음극 플라즈마 반응기(100), 다수개의 홀이 구비된 동공음극 플라즈마 반응기(100)가 설치되는 설치관(24), 터보 펌프(50)와 연결하는 연결부(52)로 구성된다. Referring to FIG. 9, the module 200 of the pupil cathode plasma reactor having a plurality of holes includes a connection portion 22 connecting to the turbo pump 20, a pupil cathode plasma reactor 100 having a plurality of holes, and a plurality of holes. It consists of an installation tube 24, which is provided with a pupil cathode plasma reactor 100 provided with two holes, and a connection portion 52 that connects to the turbo pump 50.
미반응된 가스(12)는 반응기(100)의 다수개의 홀을 통과하면서 동공음극 플라즈마에 의해 분해되어 처리된 가스(54)로서 로터리 펌프(50)로 유입되어 대기로 배출된다. 상기 모듈(200)을 이용하여 용이하게 공정라인에서 터보펌프(20)와 로터리 펌프(50) 사이에 설치될 수 있다. The unreacted gas 12 is introduced into the rotary pump 50 as gas 54 that is decomposed and treated by the pupil cathode plasma while passing through a plurality of holes of the reactor 100, and discharged into the atmosphere. The module 200 may be easily installed between the turbopump 20 and the rotary pump 50 in the process line.
도 2 내지 도 9에서 언급된 동공음극 플라즈마는 직류에 의해 발생되는 것이 바람직하며 60 Hz ~ 10 GHz의 교류에 의해 발생될 수 있음은 물론이다.The pupil cathode plasma mentioned in FIGS. 2 to 9 is preferably generated by a direct current and may be generated by an alternating current of 60 Hz to 10 GHz.
도 10은 본 발명의 실시예에 따른 전자파 플라즈마 반응기의 구성을 상세히 설명하는 단면도이다. 10 is a cross-sectional view illustrating in detail the configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
도 10을 참조하면, 본 발명의 전자파 플라즈마 반응기(300)는 전원 공급부(5), 고주파 발진기(15), 방전관(140), 도파관(125), 방전관 지지체(156), 와류가스 주입부(158), 추가가스 공급부(164) 및 연료공급 지지체(160)를 포함한다. Referring to FIG. 10, the electromagnetic plasma reactor 300 of the present invention includes a power supply unit 5, a high frequency oscillator 15, a discharge tube 140, a waveguide 125, a discharge tube support 156, and a vortex gas injection unit 158. ), An additional gas supply unit 164 and a fuel supply support 160.
전원 공급부(5)는 고주파 발진기(15)에 전원을 공급한다. 예를 들어, 상기 고주파 발진기(15)가 마이크로웨이브를 발진할 때는 그 주파수 영역대가 2400 MHz 내지 2500 MHz가 바람직하며 그때의 고주파 발진기(15)를 마그네트론이라 한다. 마그네트론에 전원을 공급할 때, 상기 전원공급부(5)로부터의 전압은 -3.0 ~ -4.5 kV가 바람직하다. The power supply unit 5 supplies power to the high frequency oscillator 15. For example, when the high frequency oscillator 15 oscillates the microwave, the frequency band is preferably 2400 MHz to 2500 MHz, and the high frequency oscillator 15 at that time is called a magnetron. When supplying power to the magnetron, the voltage from the power supply 5 is preferably -3.0 to -4.5 kV.
상기 고주파 발진기(15)로부터 발진되는 고주파(154)는 도파관(125)으로 유입된다. The high frequency wave 154 oscillated from the high frequency oscillator 15 flows into the waveguide 125.
상기 도파관(125)의 종단(152)으로부터 1/4g (g는 도파관 내의 파장) 떨어진 위치에 중심축을 갖는 방전관(140)은 상기 도파관(125)에 수직하게 설치되며 그 재질은 석영, 강화유리, 세라믹, 알루미나 등 고주파가 투과할 수 있는 유전체로 구성될 수 있다. A discharge tube 140 having a central axis at a position 1/4 g ( g is a wavelength in the waveguide) from the end 152 of the waveguide 125 is installed perpendicular to the waveguide 125 and is made of quartz or tempered glass. It may be made of a dielectric that can transmit high frequency, such as ceramic, alumina, and the like.
상기 방전관(140)은 방전관 지지체(156)에 의해 지지되며 방전관(140)으로 와류가스를 주입할 수 있는 와류가스 주입구(158a,158b)가 설치된다. 상기 와류가스 주입구(158a,158b)는 등간격을 가지도록 다수개로 설치될 수 있음은 물론이다. The discharge tube 140 is supported by the discharge tube supporter 156 and provided with vortex gas injection holes 158a and 158b for injecting vortex gas into the discharge tube 140. Of course, the vortex gas injection holes 158a and 158b may be installed in plural to have equal intervals.
상기 와류가스 주입구(158a,158b)로부터 주입되는 와류가스는 상기 방전관 지지체(156)와 상기 방전관(140)의 내벽을 타고 와류를 형성하며 산소, 질소, 공기, 비활성 가스, 탄화수소 가스 및 그 혼합가스로 구성될 수 있으며 플라즈마 가스로서 역할을 하는 동시에 상기 방전관(140) 내에 발생되는 플라즈마를 안정화시켜주며 고온의 플라즈마 복사열로부터 방전관(140)의 손상을 방지해주는 역할을 한다. The vortex gas injected from the vortex gas injection holes 158a and 158b forms a vortex through the inner wall of the discharge tube support 156 and the discharge tube 140 and forms oxygen, nitrogen, air, an inert gas, a hydrocarbon gas, and a mixed gas thereof. It may be configured to act as a plasma gas and at the same time stabilizes the plasma generated in the discharge tube 140 and serves to prevent damage to the discharge tube 140 from high-temperature plasma radiant heat.
상기 고주파 플라즈마(110)에 지지체(160)에 설치되는 추가가스 공급부(164)로부터 추가가스를 공급하여 플라즈마 화학반응에 도움을 줄 수 있다. 예를 들어, 추가가스로서 탄화수소 가스를 공급할 경우, 플라즈마와 연료화염으로 구성되는 고온 대용량의 플라즈마 화염(120)을 만들 수 있다. The additional gas may be supplied from the additional gas supply unit 164 installed on the support 160 to the high frequency plasma 110 to help plasma chemical reaction. For example, when supplying a hydrocarbon gas as an additional gas, it is possible to make a high-temperature large-capacity plasma flame 120 consisting of a plasma and a fuel flame.
물론, 수증기, 산소, 수소 가스를 추가가스로 주입할 수 있으며, 질소가스와 미반응 공정가스로 구성되는 유해가스는 유해가스 주입부(170)로부터 주입되는 플로린 화합물의 유해가스를 분해 할 경우, 수소(H)가 붙은 추가가스는 유해가스를 플라즈마 화학반응을 통해 쉽게 처리될 수 있는 불산(HF)으로 변환한다. Of course, steam, oxygen, hydrogen gas may be injected as an additional gas, the harmful gas composed of nitrogen gas and unreacted process gas when decomposing the harmful gas of the florin compound injected from the harmful gas injection unit 170, The additional gas with hydrogen (H) converts the noxious gas into hydrofluoric acid (HF), which can be easily processed through plasma chemical reactions.
또한 상기 지지체(160) 상단에는 일예로서 통상의 습식 스크러버과 연결이 용이하도록 연결블록(162)이 설치될 수 있다. In addition, the connection block 162 may be installed at an upper end of the support 160 to facilitate connection with a conventional wet scrubber.
도 11은 본 발명의 실시예에 따른 전자파 플라즈마 반응기의 다른 구성을 보여주는 단면도이다. 11 is a cross-sectional view showing another configuration of the electromagnetic plasma reactor according to the embodiment of the present invention.
도 11을 참조하면, 로터리 펌프(50)로부터 방출되는 유해가스는 연결관(132a,132b)을 통해 유해가스 주입부(134a,134b)로 주입된다. 본 실시예에서 방전관 지지체(156)의 하단부는 차단막(190)에 의해 막혀진다. 여기에서 유해가스 연결관은 다수개가 설치될 수 있음은 물론이다. Referring to FIG. 11, the harmful gas discharged from the rotary pump 50 is injected into the harmful gas injection units 134a and 134b through the connection pipes 132a and 132b. In this embodiment, the lower end of the discharge tube support 156 is blocked by the blocking film 190. Here, of course, a plurality of harmful gas connectors may be installed.
상기 유해가스 주입부(134a,134b)로 주입되는 유해가스는 회전유동하는 와류가스의 역할을 한다. 상기 유해가스는 전자파 플라즈마를 통과하게 되면서 플라즈마 부산물로 변환되고 플라즈마 가스 배기관(180)과 연결된 습식 스크러버(90)로 유입된다. The noxious gas injected into the noxious gas injection units 134a and 134b serves as a vortex gas that rotates and flows. The harmful gas is converted into plasma by-products while passing through the electromagnetic plasma and introduced into the wet scrubber 90 connected to the plasma gas exhaust pipe 180.
도 12는 도 11의 유해가스 주입부의 일예를 보여주는 단면도이다. 12 is a cross-sectional view showing an example of the harmful gas injection unit of FIG.
도 12를 참조하면, 유해가스 주입부(134a,134b,134c,134d)는 방전관 지지체(156)의 내벽과 접선방향으로 등간격을 이루어 다수개가 설치될 수 있다. 상기 유해가스 주입부(134a,134b,134c,134d)의 다수개의 설치는 와류가스로서의 유해가스를 균일하게 회전유동하도록 만들어주어 플라즈마 안정화뿐만 아니라 전자파 플라즈마에 의한 유해가스 처리효율을 증가시켜준다. 또한 상기 유해가스 주입부(134a,134b,134c,134d)의 설치 각도가 상 방향으로 0에서 90도 범위로 이루어질 수 있음은 물론이다. Referring to FIG. 12, a plurality of harmful gas injection units 134a, 134b, 134c, and 134d may be installed at equal intervals in the tangential direction with the inner wall of the discharge tube support 156. The installation of a plurality of the noxious gas injection units 134a, 134b, 134c, and 134d makes the noxious gas as a vortex gas to rotate uniformly, thereby increasing the noxious gas treatment efficiency by the electromagnetic wave plasma as well as stabilizing the plasma. In addition, the installation angle of the harmful gas injection unit (134a, 134b, 134c, 134d) may be made in the range of 0 to 90 degrees in the upward direction.
본 발명은 진공 챔버로부터 배출되는 유해가스를 대기압 전자파 플라즈마로 제거하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템에 관한 것으로, 반도체 산업을 포함한 각종 전자 산업으로부터 배출되는 대기오염 유해가스를 제공하는 점에서 산업상 이용가능성이 있다.The present invention relates to a waste gas removal system using low pressure and atmospheric pressure plasma that removes harmful gases discharged from a vacuum chamber with atmospheric pressure electromagnetic plasma, and provides an air pollution harmful gas discharged from various electronic industries including the semiconductor industry. There is a possibility.

Claims (15)

  1. 반도체 공정 챔버로부터 진공 펌프를 통해 배출되는 미반응 공정가스를 제거하는 시스템에 있어서,A system for removing unreacted process gas discharged through a vacuum pump from a semiconductor process chamber,
    저압에서 상기 미반응 공정가스를 제거하는 저압 플라즈마;A low pressure plasma for removing the unreacted process gas at low pressure;
    상기 저압 플라즈마에서 처리된 미반응 가스를 대기압에서 제거하는 대기압 플라즈마; 및An atmospheric pressure plasma for removing unreacted gas treated in the low pressure plasma at atmospheric pressure; And
    상기 대기압 플라즈마와 연결되는 통상의 습식 스크러버로 구성되는 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.Waste gas removal system using a low pressure and atmospheric plasma, characterized in that consisting of a conventional wet scrubber connected to the atmospheric plasma.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 저압 플라즈마가 동공음극 플라즈마인 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.And a low pressure and atmospheric pressure plasma, wherein the low pressure plasma is a pupil cathode plasma.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 미반응 공정가스는 플로린을 포함하는 가스인 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.The unreacted process gas is a waste gas removal system using a low pressure and atmospheric plasma, characterized in that the gas containing florin.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 대기압 플라즈마가 전자파 플라즈마인 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.Waste gas removal system using a low pressure and atmospheric pressure plasma, characterized in that the atmospheric pressure plasma plasma.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 동공음극 플라즈마의 홀 직경이 1 μm에서 5 mm인 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.Waste gas removal system using low-pressure and the atmospheric pressure plasma, characterized in that the hole diameter of the pupil of the plasma cathode at 1 μ m 5 mm.
  6. 제 2 항에 있어서, The method of claim 2,
    상기 동공음극 플라즈마의 전극간 거리가 1 μm에서 10 mm인 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.Waste gas removal system using low-pressure and the atmospheric pressure plasma, characterized in that the distance between electrodes of the cathode plasma pupil of from 1 μ m 10 mm.
  7. 제 2 항에 있어서,The method of claim 2,
    상기 동공음극 플라즈마는 10-6 에서 760 Torr의 범위에서 발생되는 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.The pupil cathode plasma is a waste gas removal system using a low pressure and atmospheric pressure plasma, characterized in that generated in the range of 10 -6 to 760 Torr.
  8. 제 2 항에 있어서,The method of claim 2,
    상기 동공음극 플라즈마는 다수개의 홀이 설치되는 어레이(Array) 형태인 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.The pupil cathode plasma is a waste gas removal system using a low pressure and atmospheric plasma, characterized in that the array (Array) form a plurality of holes are installed.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 동공음극 플라즈마 어레이가 관(Pipe) 내에 설치되고 상기 관의 양단에는 연결부가 구비되어 진공라인에 용이하게 설치되도록 모듈화 되는 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.The pupil cathode plasma array is installed in a pipe (Pipe) and both ends of the pipe is provided with a connection unit is characterized in that the modular gas so that it is easily installed in a vacuum line.
  10. 제 4항에 있어서, 전자파 플라즈마는,The method of claim 4, wherein the electromagnetic plasma,
    고주파를 발진하는 전자파 발진기; An electromagnetic wave oscillator for oscillating high frequency;
    상기 전자파 발진기에 전력을 공급하는 전원공급부; A power supply unit supplying power to the electromagnetic wave oscillator;
    상기 전자파 발진기에서 발진된 고주파를 전송하는 도파관; A waveguide for transmitting a high frequency wave oscillated by the electromagnetic wave oscillator;
    상기 도파관을 통해 전송된 전자파 및 외부로부터 주입된 와류가스가 유입되는 방전관; A discharge tube into which electromagnetic waves transmitted through the waveguide and vortex gas injected from the outside are introduced;
    상기 방전관이 설치되는 방전관 지지체;와 A discharge tube support body on which the discharge tube is installed; and
    상기 도파관을 통해 상기 방전관으로 전송된 전자파에 의해 발생된 전자파 플라즈마에 추가가스를 공급하는 추가가스 공급부;를 포함하는 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.And an additional gas supply unit for supplying additional gas to the electromagnetic plasma generated by the electromagnetic wave transmitted through the waveguide to the discharge tube.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 고주파 발진기의 주파수 영역대가 2400 ~ 2500 MHz인 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.A waste gas removal system using low pressure and atmospheric pressure plasma, characterized in that the frequency band of the high frequency oscillator is 2400 ~ 2500 MHz.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 와류가스는 공기, 산소, 질소, 비활성가스 및 탄화수소가스 중 선택된 적어도 하나 이상의 가스로 이루어진 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.The vortex gas is a waste gas removal system using a low pressure and atmospheric plasma, characterized in that consisting of at least one gas selected from air, oxygen, nitrogen, inert gas and hydrocarbon gas.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 추가가스 공급부로부터 공급되는 가스가 탄화수소, 수증기, 산소, 및 비활성 가스 중 선택된 적어도 하나 이상의 가스로 이루어진 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.The gas supplied from the additional gas supply unit is a waste gas removal system using a low pressure and atmospheric plasma, characterized in that consisting of at least one gas selected from hydrocarbon, water vapor, oxygen, and inert gas.
  14. 제 10 항에 있어서,The method of claim 10,
    상기 방전관 지지체에 유해가스 주입구가 설치되는 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.Waste gas removal system using a low pressure and atmospheric pressure plasma, characterized in that the harmful gas inlet is installed on the discharge tube support.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 유해가스 주입구가 등간격으로 다수개가 구비되는 것을 특징으로 하는 저압 및 대기압 플라즈마를 이용한 폐가스 제거 시스템.Waste gas removal system using a low pressure and atmospheric pressure plasma, characterized in that the plurality of harmful gas inlet is provided at equal intervals.
PCT/KR2009/004928 2008-09-02 2009-09-02 Waste gas removal system using low-pressure and atmospheric pressure plasma WO2010027184A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080086283A KR101026457B1 (en) 2008-09-02 2008-09-02 System for eliminating waste gases by making us of plasmas at low and high pressure
KR10-2008-0086283 2008-09-02

Publications (2)

Publication Number Publication Date
WO2010027184A2 true WO2010027184A2 (en) 2010-03-11
WO2010027184A3 WO2010027184A3 (en) 2010-07-08

Family

ID=41797641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004928 WO2010027184A2 (en) 2008-09-02 2009-09-02 Waste gas removal system using low-pressure and atmospheric pressure plasma

Country Status (3)

Country Link
KR (1) KR101026457B1 (en)
TW (1) TWI372653B (en)
WO (1) WO2010027184A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504669B2 (en) * 2017-05-29 2022-11-22 Kanken Techno Co., Ltd. Method for exhaust gas abatement under reduced pressure and apparatus therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120032204A (en) * 2010-09-28 2012-04-05 (주)트리플코어스코리아 Microwave generator and driving method thereof, and system for eliminating waste gases
KR101230513B1 (en) 2010-12-27 2013-02-06 (주)엘오티베큠 Treatment apparatus for discharging fluid
GB2513300B (en) * 2013-04-04 2017-10-11 Edwards Ltd Vacuum pumping and abatement system
CN106165062A (en) * 2014-04-16 2016-11-23 清洁要素技术有限公司 Process the plasma reactor of the waste gas that process apparatus occurs
WO2015160057A1 (en) * 2014-04-16 2015-10-22 주식회사 클린팩터스 Plasma reactor for treating exhaust gas generated from processing facility
KR101609474B1 (en) 2014-10-14 2016-04-05 (주)트리플코어스코리아 System and method for treating gas from chemical vapor deposition apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149741A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Device and method for treating waste gas containing volatile organic substance
KR20030043404A (en) * 2001-11-28 2003-06-02 주식회사 성광엔비텍 Method for removal of volatile organic compounds and odor using non-thermal plasma and apparatus thereof
KR20060095594A (en) * 2005-02-28 2006-09-01 엄환섭 Plasma scrubber for elimination of waste cleaning gases emitted from semiconductor industries
KR20080032089A (en) * 2005-07-12 2008-04-14 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method for plasma treatment of gas effluents
WO2008093442A1 (en) * 2007-01-30 2008-08-07 Kanken Techno Co., Ltd. Gas processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070035565A (en) * 2004-07-13 2007-03-30 레르 리뀌드, 소시에떼 아노님 아 디렉또와르 에 꽁세예 드 쉬르베양스 뿌르 레뛰드 에 렉스쁠로아따시옹 데 프로세데 죠르쥬 끌로드 Atmospheric-pressure plasma treatment of gaseous effluents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149741A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Device and method for treating waste gas containing volatile organic substance
KR20030043404A (en) * 2001-11-28 2003-06-02 주식회사 성광엔비텍 Method for removal of volatile organic compounds and odor using non-thermal plasma and apparatus thereof
KR20060095594A (en) * 2005-02-28 2006-09-01 엄환섭 Plasma scrubber for elimination of waste cleaning gases emitted from semiconductor industries
KR20080032089A (en) * 2005-07-12 2008-04-14 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method for plasma treatment of gas effluents
WO2008093442A1 (en) * 2007-01-30 2008-08-07 Kanken Techno Co., Ltd. Gas processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504669B2 (en) * 2017-05-29 2022-11-22 Kanken Techno Co., Ltd. Method for exhaust gas abatement under reduced pressure and apparatus therefor

Also Published As

Publication number Publication date
KR20100027383A (en) 2010-03-11
TWI372653B (en) 2012-09-21
KR101026457B1 (en) 2011-03-31
TW201021902A (en) 2010-06-16
WO2010027184A3 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
WO2010027184A2 (en) Waste gas removal system using low-pressure and atmospheric pressure plasma
WO2010005201A2 (en) Plasma reactor for decomposing waste gas and gas scrubber using same
CN106062925B (en) Hall effect enhanced capacitively coupled plasma source, abatement system and vacuum processing system
CN1917932B (en) Method and apparatus for treating a fluorocompound-containing gas stream
US6888040B1 (en) Method and apparatus for abatement of reaction products from a vacuum processing chamber
CN101297062B (en) Plasma reactor
KR100658374B1 (en) Plasma scrubber for elimination of waste cleaning gases emitted from semiconductor industries
WO2012091406A2 (en) Apparatus for processing exhaust fluid
KR100945038B1 (en) Plasma reactor and plasma scrubber using the same
KR20110041874A (en) Plasma reactor for abatement of hazardous material and driving method thereof
JP2003210940A (en) Dielectric barrier discharge apparatus and module
US6576573B2 (en) Atmospheric pressure plasma enhanced abatement of semiconductor process effluent species
US20090301298A1 (en) Apparatus for Treating a Gas Stream
KR101642129B1 (en) Plasma reactor for eco_frindly processing
KR20190127244A (en) Apparatus for treating waste gas
WO2020235873A1 (en) Apparatus for preventing powder deposition in exhaust pipe for semiconductor manufacturing facility, exhaust equipment comprising same, and method for preventing powder deposition in exhaust pipe by using same
KR100818561B1 (en) Method for eliminating process by-pruducts in the piping and apparatus for porforming the method
KR20160116522A (en) Low pressure process equipment with arc plasma reactor
KR20170050616A (en) Plasma pre-treatment reactor
WO2017111535A1 (en) High density microwave plasma apparatus
TW201900264A (en) Decompression and detoxification method for exhaust gas and device thereof
WO2023121016A1 (en) Eco-friendly treatment system and treatment method for industrial discharge process gas using swirling method
KR20030080447A (en) Gas scrubber
KR20190109210A (en) Method for operating the hybrid scrubber while deposition process and cleaning process are interlocked
KR20190037512A (en) Apparatus for treating waste gas in semiconductor fabricating process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811683

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811683

Country of ref document: EP

Kind code of ref document: A2