WO2010026794A1 - Ti粒子分散マグネシウム基複合材料およびその製造方法 - Google Patents

Ti粒子分散マグネシウム基複合材料およびその製造方法 Download PDF

Info

Publication number
WO2010026794A1
WO2010026794A1 PCT/JP2009/055027 JP2009055027W WO2010026794A1 WO 2010026794 A1 WO2010026794 A1 WO 2010026794A1 JP 2009055027 W JP2009055027 W JP 2009055027W WO 2010026794 A1 WO2010026794 A1 WO 2010026794A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
composite material
dispersed
titanium
particle
Prior art date
Application number
PCT/JP2009/055027
Other languages
English (en)
French (fr)
Inventor
勝義 近藤
金子 貫太郎
Original Assignee
株式会社栗本鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社栗本鐵工所 filed Critical 株式会社栗本鐵工所
Priority to US13/060,084 priority Critical patent/US20110142710A1/en
Priority to CN2009801141589A priority patent/CN102016093A/zh
Priority to EP09811323A priority patent/EP2327809A1/en
Publication of WO2010026794A1 publication Critical patent/WO2010026794A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5184Casting and working

Definitions

  • the present invention relates to magnesium alloys, and in particular, titanium (Ti) particle-dispersed magnesium-based composites that can be used in a wide range of fields such as home appliances, automobile parts, and aircraft parts by improving both strength and ductility. It relates to a material and a method of manufacturing the same.
  • magnesium (Mg) has the smallest specific gravity among industrial metal materials, it is expected to be used for parts and members such as motorcycles, automobiles and aircrafts, for which there is a strong need for weight reduction. However, since the strength is not sufficient as compared with conventional industrial materials such as steel materials and aluminum alloys, the use of magnesium alloys is currently limited.
  • Titanium (Ti) is considered as an effective second phase to be dispersed.
  • stiffness Mg: 45 GPa
  • Ti 105 GPa
  • hardness Mg: 35-45 Hv (Vickers hardness)
  • Ti 110-120 Hv
  • titanium particles as a dispersion reinforcing material in a magnesium base.
  • Non-Patent Document 1 As a technology relating to Ti particle-dispersed magnesium composite material that has been reported so far, for example, as Non-Patent Document 1, the Japan Institute of Metals Research Abstract (Mar. 26, 2008) p. 355, no. 464 (Kataoka, Hokusu: Influence of microstructure on mechanical properties of Ti particle-dispersed Mg-based composite material), as Non-Patent Document 2, Proceedings of the Light Metals Society of Japan (May 11, 2008) p. 13, No. 7 (Hokkaido, Kataoka, Komazu: Influence of addition of titanium particles on mechanical properties of magnesium), Non-Patent Document 3 as a summary of powder powder metallurgy lectures (June 6, 2007) p. 148, no. No.
  • Non-Patent Document 4 as powder and powder metallurgy, Vol. 55, No. 4 (2008), p. 244 (Hananami, Fujita, Motoe, Ohara, Igarashi, Kondo: Development of magnesium composite material by bulk mechanical alloying method), Non-Patent Document 5 as light metal, volume 54, 11 (2004), p. 522-526 (Sato, Watanabe, Miura, Miura: development of titanium particle-dispersed magnesium based functionally graded material by centrifugal solid phase method).
  • Non-Patent Document 1 and Non-Patent Document 2 pure titanium particles are dispersed on the surface of a pure magnesium plate and heated and pressed in a state where the pure magnesium plate is placed thereon, the titanium particles are made pure magnesium plate. It is disclosed that a Ti particle dispersed magnesium base composite material in which titanium particles are arranged in a plane direction of a plate is prepared by preparing a composite material in a sandwiched state, and further heating and pressing this composite material in layers. There is.
  • Non-Patent Document 3 and Non-Patent Document 4 after hot-extrusion processing is carried out after continuously applying strong plastic processing while mixing magnesium alloy powder and pure titanium powder and filling in a mold. It is disclosed to produce a Ti particle-dispersed magnesium based composite material.
  • the heating temperature is set to a temperature sufficiently lower than the melting point of magnesium, and the composite material is manufactured in a complete solid phase temperature range without melting.
  • the ductility break elongation
  • Non-Patent Document 5 centrifugal force is applied to a molten metal of magnesium or magnesium alloy (AZ91D) containing titanium particles present as a solid phase, and the difference is caused by the difference in centrifugal force due to the density difference between dispersed particles and molten metal.
  • a manufacturing method is described that uses compositional movement control to control compositional grading. Since the specific gravity of titanium is at least twice the specific gravity of magnesium, it is difficult to uniformly disperse titanium particles in a molten magnesium or magnesium alloy by the centrifugal solid phase method disclosed in Non-Patent Document 5 .
  • this document states that "It is difficult to disperse titanium particles by this method.” Furthermore, in this document, when the titanium particles are introduced into the melt of a magnesium alloy (AZ91D) containing aluminum and the centrifugal solid phase method is applied, the aluminum concentration is extremely high in the titanium particle aggregation portion. And, it is described that a region in which aluminum is solid-solved also exists in the outer peripheral portion of the titanium particles. The reason for this is that, in this document, "the initial melt with high aluminum concentration may have penetrated between the titanium particles by capillary action, and may have been involved in its aggregation and sintering. Thus, the AZ91D alloy containing aluminum The use of the centrifugal solid phase method was found to be problematic in view of the melt composition.
  • AZ91D magnesium alloy
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to achieve excellent properties by uniformly dispersing titanium particles in a magnesium base and improving the interfacial adhesion between titanium and magnesium. It is an object of the present invention to provide a Ti particle-dispersed magnesium-based composite material having a high strength.
  • the Ti particle-dispersed magnesium matrix composite material according to the present invention is obtained by uniformly dispersing titanium particles in a magnesium matrix, and titanium-aluminum is formed at the interface between titanium particles dispersed in a magnesium alloy matrix and the matrix. It is characterized by having a compound layer.
  • the Ti particle-dispersed magnesium-based composite material is obtained by subjecting a cast material obtained by solidifying a molten metal containing magnesium, aluminum and titanium particles to hot plastic working.
  • the Ti particle-dispersed magnesium-based composite material is obtained by machining a cast material obtained by solidifying a molten metal containing magnesium, aluminum and titanium particles into a powder.
  • the Ti particle-dispersed magnesium-based composite material is a powder obtained by solidifying a molten metal containing magnesium, aluminum and titanium particles into a powder by an atomizing method.
  • the Ti particle-dispersed magnesium-based composite material is a sintered and solidified body of a mixed powder of a magnesium alloy powder containing aluminum and titanium particles.
  • the Ti-particle-dispersed magnesium-based composite material may be obtained by subjecting the sintered and solidified body to hot plastic working.
  • the method for producing a Ti particle-dispersed magnesium-based composite material comprises the steps of: injecting titanium particles into a melt containing magnesium and aluminum; and uniformly dispersing titanium particles in the melt Stirring the molten metal, and solidifying the molten metal to obtain a composite material having a titanium-aluminum compound layer at an interface between a magnesium base and titanium particles dispersed in the base.
  • the step of obtaining the composite material includes solidifying the molten metal to obtain a cast material having a titanium-aluminum compound layer at an interface between a magnesium base and titanium particles dispersed in the base. Applying hot plastic working to the cast material.
  • the step of obtaining the composite material comprises solidifying the molten metal to obtain a cast material having a titanium-aluminum compound layer at an interface between a magnesium base and titanium particles dispersed in the base. And machining the cast material into a powder form.
  • the step of obtaining the composite material includes solidifying the molten metal into a powder by atomization.
  • the method for producing a Ti particle-dispersed magnesium-based composite material comprises the steps of mixing a magnesium alloy powder containing aluminum and titanium particles, and using the mixed powder as the liquid phase generation temperature of the magnesium alloy powder. And holding at a high temperature to sinter and solidify, forming a titanium-aluminum compound layer at the interface between the titanium particles and the base of magnesium.
  • the manufacturing method according to one embodiment further includes the step of subjecting the sintered body to hot plastic working.
  • the inventors of the present application have made use of the diffusion phenomenon of aluminum (Al) contained in a Mg alloy in order to develop a titanium particle-dispersed magnesium-based composite material capable of improving the interfacial bonding strength between titanium and magnesium.
  • Al aluminum
  • FIG. 1 A film having a thickness of about 2 ⁇ m is formed on the Ti plate side from the bonding interface, and the film has no voids in either of the AZ80 magnesium alloy and the pure Ti plate and has good adhesion.
  • FIG. 1 A film having a thickness of about 2 ⁇ m is formed on the Ti plate side from the bonding interface, and the film has no voids in either of the AZ80 magnesium alloy and the pure Ti plate and has good adhesion.
  • the above-mentioned film having a thickness of about 2 ⁇ m is a layer which is made of a Ti—Al component and which is formed by the reaction of an Al component contained in AZ80 with a Ti plate. By forming such a reaction layer, it is possible to obtain a good adhesion interface having a strong bonding force with both the magnesium alloy side and the Ti particle side.
  • the adhesion between Mg and Ti is not sufficient because heating and sintering are performed at a solid phase temperature below the melting point of Mg, and as a result, the strength and ductility in the composite material It is thought that no improvement was obtained.
  • a composite material in which titanium particles are uniformly dispersed in a magnesium base can be manufactured by a conventional casting method, die casting method or the like.
  • the cast materials can be machined such as cutting and crushing to form powders.
  • titanium particles are uniformly dispersed in the matrix of magnesium.
  • a magnesium-based composite powder in which titanium particles are uniformly dispersed in a magnesium base can also be obtained by solidifying a melt of a Mg—Al alloy in which titanium particles are uniformly dispersed by an atomizing method.
  • the atomizing method is a method of producing powder by injecting high pressure water or high pressure gas to a molten metal flow (spraying method). Also in this case, titanium particles are uniformly dispersed inside the obtained powder, and a Ti—Al based compound layer is formed at the interface between the Ti particles and the magnesium alloy base, and has good interfacial bonding strength. .
  • a magnesium base composite material is obtained by casting method or die casting method, or titanium particles are made uniform.
  • the titanium particles and the magnesium in the base have a void due to the excellent wettability and the high reactivity between Al and Ti. Not bond well with good bonding interface.
  • a Ti particle-dispersed magnesium-based composite material produced by casting or die casting After heating a Ti particle-dispersed magnesium-based composite material produced by casting or die casting to a predetermined temperature, the material is subjected to hot plastic working such as hot extrusion, hot rolling, forging, etc. Thus, the grains of the base are refined and the strength of the composite material is further improved.
  • Ti particle dispersed magnesium base composite powder manufactured by machining process such as cutting from cast material, or Ti particle dispersed magnesium base composite powder obtained by injecting high pressure water or high pressure gas to molten metal flow is compacted and solidified. Powdered compacts and sintered / solidified bodies are prepared, and if necessary, the composite powders are joined together metallurgically by subjecting them to hot plastic working such as hot extrusion, hot rolling, forging etc. Alternatively, it is possible to create a sintered Ti particle-dispersed magnesium-based composite material.
  • titanium particles of an appropriate amount were charged into the molten Mg-Al alloy, but as another embodiment, it is also possible to obtain a Ti particle-dispersed magnesium based composite material by the following method is there.
  • a magnesium alloy powder containing aluminum and titanium particles are mixed, and the mixed powder is held at a predetermined temperature to sinter and solidify.
  • the important thing here is to keep the mixed powder at a temperature higher than the liquid phase generation temperature of the magnesium alloy powder.
  • the magnesium and titanium particles constituting the base intervene the titanium-aluminum compound layer at the interface, and good wettability and It is strongly bonded with excellent interfacial bonding strength.
  • the strength of the composite material is further improved by subjecting the sintered and solidified body to hot plastic working.
  • the titanium-aluminum compound layer formed at the interface between magnesium and titanium particles constituting the base body may completely surround the titanium particles, or the surface of the titanium particles It may be partially covered.
  • AZ61 (Mg-5.9% Al-1.1% Zn) magnesium alloy block and titanium powder with an average particle size of 29.8 ⁇ m as starting materials, and heat the magnesium alloy block to 700 ° C in a carbon crucible
  • 5 mass% of the above-mentioned titanium particles were added in the total weight ratio. Thereafter, in order to prevent segregation of titanium particles and settling to the bottom, the molten metal was sufficiently uniformly stirred for 30 minutes, and then the molten material was cast into a water-cooled mold to produce a cast material.
  • the uniform stirring treatment is performed for 30 minutes, the diffraction peak of the Al 3 Ti intermetallic compound is detected, but the peak of the above compound is not detected in the stirring treatment material for 10 minutes. That is, when the stirring time is not sufficient, the diffusion reaction between the Al component in the magnesium alloy and the titanium particles does not proceed, as a result, it becomes difficult to form the Ti—Al compound layer which is the feature of the present invention. Therefore, it is desirable that the uniform stirring process be performed for 30 minutes or more after the titanium particles are charged into the molten magnesium alloy.
  • Pure magnesium powder and Al-Mn alloy powder were prepared, and the two powders were blended so as to have an AZ61 alloy composition (Mg-6% Al-1% Zn) as a whole.
  • the mixed powder was compacted and solidified by a hydraulic press, and the molded and solidified body was charged into a carbon crucible and heated and held at 700 ° C. to produce a molten AZ61 magnesium alloy.
  • the titanium particles described above were added to the molten metal so that the total weight ratio was 10 mass%. Thereafter, in order to prevent segregation of titanium particles and settling to the bottom, the molten metal was uniformly stirred for 30 minutes, and then the molten material was cast into a water-cooled mold to produce a cast material.
  • a bulk sample of AZ91D magnesium alloy (Mg-9.1% Al-1.1% Zn-0.2% Mn) and titanium powder with an average particle diameter of 29.8 ⁇ m are prepared as starting materials, and AZ91D magnesium alloy ingot is prepared.
  • a billet for extrusion with a diameter of 45 mm is produced by machining from the above-described Ti particle-dispersed AZ91D cast billet, and the billet is heated and held at 350 ° C. for 5 minutes in an argon gas atmosphere, and hot extrusion processing immediately (extrusion ratio: 37) ) To produce a round bar extruded material with a diameter of 7 mm.
  • the tensile test piece was extract
  • the tensile strength and yield strength of the AZ91D cast billet extruded material to which 3 mass% of titanium particles are added are significantly increased as compared with the material obtained by extruding the AZ91D cast billet containing no titanium particles, and on the other hand, the elongation at break There is no major decline. Further, in the Ti particle-dispersed AZ91D composite material according to the present invention, the formation of TiAl 3 intermetallic compound is confirmed from the result of X-ray diffraction, and there is no void at the titanium particle / AZ91D base interface, and a good bonding interface is formed.
  • a Ti-Al based compound is formed on the surface of the titanium particles without aggregation / segregation of the titanium particles, The bonding strength between the titanium particles and the base is improved, and as a result, the strength of the magnesium-based composite material can be improved.
  • Ti-6Al-4V alloy powder average particle diameter: 22.8 ⁇ m
  • titanium alloy particles are aggregated and It is uniformly dispersed in the base without segregation, and the formation of a TiAl 3 intermetallic compound is confirmed at the interface between the titanium alloy powder and the AZ91D base, and there is no void at the interface, and a good bonding state Was found to have
  • the tensile strength in the case of adding 3 mass% of Ti-6Al-4V alloy powder is 414 MPa, and it is possible to confirm the increase in strength more than the composite material in which 3 mass% of pure titanium particles are added.
  • the hardness and strength of the titanium particles dispersed in the magnesium alloy base are further increased, so that the strength of the magnesium composite is further improved.
  • a bulk sample of AZ91D magnesium alloy (Mg-9.1% Al-1.1% Zn-0.2% Mn) and titanium powder with an average particle diameter of 29.8 ⁇ m are prepared as starting materials, and AZ91D magnesium alloy ingot is prepared.
  • a chip with a total length of about 1 to 4 mm is produced from this Ti particle-dispersed AZ91D cast billet by cutting, this chip is filled in a SKD11 die, and a pressing force of 600 MPa is applied by a hydraulic press to make a 45 mm diameter powder.
  • a molded billet was produced.
  • the green compact billet was heated and held at 350 ° C. for 5 minutes in an argon gas atmosphere, and immediately subjected to hot extrusion (extrusion ratio: 37) to produce a round bar extruded material with a diameter of 7 mm.
  • the tensile test piece was extract
  • an AZ91D magnesium cast billet to which titanium particles were not added was produced under the same conditions as above, and similarly, chips having a total length of about 1 to 4 mm were produced by cutting.
  • the mixed powder is compacted with a hydraulic press in the same manner as above, and passed through a 350 ° C. heating process It was extruded.
  • the tensile test was similarly performed on the obtained extruded material at normal temperature. The tensile test results are shown in Table 2.
  • the heating temperature was as low as 350 ° C.
  • the Al component contained in AZ91D did not react with the titanium particles, and as a result, no Ti—Al based compound was formed on the surface of the titanium particles.
  • a sufficiently high bonding strength can not be obtained at the interface between the titanium particles and the base material, and as a result, both the tensile strength and the yield strength decrease compared to the strength characteristics of the extruded material of only AZ91D shown in Example 3. And the elongation at break also decreased.
  • a Ti—Al based compound is formed on the surface of the titanium particles without aggregation / segregation of the titanium particles, and titanium
  • the bonding strength between the particles and the base is improved, and as a result, the strength of the magnesium-based composite material can be improved.
  • the present invention can be advantageously used as a Ti particle-dispersed magnesium-based composite material having excellent strength and a method for producing the same.

Abstract

 Ti粒子分散マグネシウム基複合材料は、マグネシウムの素地中にチタン粒子を均一に分散させたものであり、マグネシウム合金素地中に分散したチタン粒子と素地との界面にチタン-アルミニウム化合物層を有していることを特徴とする。

Description

Ti粒子分散マグネシウム基複合材料およびその製造方法
 本発明は、マグネシウム合金に関するものであり、特に、強度と延性の両方を向上することにより、家電製品、自動車用部品、航空機用部材など幅広い分野で使用可能なチタン(Ti)粒子分散マグネシウム基複合材料およびその製造方法に関するものである。
 マグネシウム(Mg)は工業用金属材料のなかで最も比重が小さいことから、軽量化ニーズが強い二輪車、自動車、航空機などの部品や部材への利用が期待されている。しかしながら、鉄鋼材料やアルミニウム合金などの従来の工業用材料と比較すると強度が十分でないので、マグネシウム合金の利用は限定されているのが現状である。
 このような課題を解決すべく、マグネシウムよりも高強度で高硬度の特性を有する粒子やファイバーなどを第2相として分散する複合材料の開発が進められている。分散する有効な第2相としてチタン(Ti)が考えられる。剛性を比較すると、Mg:45GPa、Ti:105GPaであり、硬さを比較すると、Mg:35~45Hv(ビッカース硬さ)、Ti:110~120Hvであることから、チタン粒子をマグネシウム素地中に分散することにより、マグネシウム基複合材料の強度および硬度を向上できる効果が期待できる。
 また従来の複合材料では、酸化物、炭化物、窒化物などのセラミックス系粒子やセラミックス系ファイバーの分散が主流であったが、これらの粒子やファイバーはいずれも高い剛性および硬度を有するものの、延性に乏しいために、それらがマグネシウム合金に分散した際に複合材料そのものの延性(例えば、破断伸び)を低下させる。これに対して、チタンは金属であり、それ自体が延性に優れることから、チタン粒子をマグネシウムに添加・分散した際に複合材料の延性を低下させる問題はない。
 他方、マグネシウムは耐腐食性に劣るといった問題がある。これはマグネシウムが卑なる特性を有しており、例えば、標準電極電位Es(水素HをゼロVとする)が-2.356Vと小さい。このようなマグネシウムの中に例えば、鉄(Fe:Es=-0.44V)や銅(Cu:Es=+0.34V)が少量含まれると、Mg-FeおよびMg-Cu間の電位差によってガルバニック腐食現象が進行する。これに対してチタンの標準電極電位は-1.75Vであり、Mgへの添加元素であるアルミニウム(Al:Es=-1.676V)と比較しても、Mgとの電位差はより小さい。すなわち、チタンをマグネシウムに分散することによる腐食現象への影響は小さいといえる。
 以上のことから、マグネシウム素地中への分散強化材としてチタン粒子を用いることは、有効であると考えられる。
 これまでに報告されているTi粒子分散マグネシウム複合材料に関する技術として、例えば、非特許文献1として、日本金属学会講演概要(2008年3月26日)p.355、No.464(片岡、北薗:Ti粒子分散Mg基複合材料の機械的特性に及ぼす微細組織の影響)、非特許文献2として、軽金属学会講演概要(2008年5月11日)p.13、No.7(北薗、片岡、駒津:マグネシウムの機械的特性に及ぼすチタン粒子添加の影響)、非特許文献3として、粉体粉末冶金講演概要集(2007年6月6日)p.148、No.2-51A(榎並、藤田、大原、五十嵐:バルクメカニカルアロイング法によるマグネシウム複合材料の開発)、非特許文献4として、粉体および粉末冶金、第55巻、第4号(2008)、p.244(榎並、藤田、本江、大原、五十嵐、近藤:バルクメカニカルアロイング法によるマグネシウム複合材料の開発)、非特許文献5として、軽金属、第54巻、第11号(2004)、p.522-526(佐藤、渡辺、三浦、三浦:遠心力固相法によるチタン粒子分散マグネシウム基傾斜機能材料の開発)などがある。
 非特許文献1および非特許文献2においては、純マグネシウム板の表面に純チタン粒子を散布し、その上に純マグネシウム板を載せた状態で加熱および加圧することにより、チタン粒子を純マグネシウム板で挟みこんだ状態の複合材料を作製し、さらにこの複合材料を重ねて加熱および加圧することにより、チタン粒子が板の平面方向に配列したTi粒子分散マグネシウム基複合材料を作製することが開示されている。
 非特許文献3および非特許文献4には、マグネシウム合金粉末と純チタン粉末とを混合し、金型内に充填した状態で強塑性加工を連続的に付与した後、熱間押出加工を施すことにより、Ti粒子分散マグネシウム基複合材料を作製することが開示されている。
 上記の非特許文献1~4のいずれの場合においても、加熱温度はマグネシウムの融点を十分に下回る温度とし、溶融することなく完全な固相温度域において複合材料を作製している。それぞれの複合材料に関する引張試験の結果において、Ti粒子を添加しない材料と比較して約5~10%の強度増加が確認されたものの、延性(破断伸び)は約20~30%低下している。これはマグネシウムとチタンとが化合物を形成しないため、両者の接合界面強度が十分でないことから、強度向上は十分でなく、反面、界面が応力集中部となり延性低下が生じたものと認められる。
 以上のように、チタン粒子分散マグネシウム基複合材料において強度と延性の両者を顕著に向上させるには、Mg-Tiの界面における密着性を向上させる必要がある。
 非特許文献5には、固相として存在するチタン粒子を含むマグネシウムまたはマグネシウム合金(AZ91D)の溶湯中に遠心力を印加し、分散粒子と溶湯との密度差に起因する遠心力の差により生じる移動速度差を用いて組成傾斜を制御する製造方法が記載されている。チタンの比重はマグネシウムの比重の2倍以上であるので、非特許文献5に開示された遠心力固相法によって、チタン粒子をマグネシウムまたはマグネシウム合金の溶湯中に均一に分散させることは困難である。実際に、この文献には、「この手法によってチタン粒子を分散させることは困難であることがわかった。」と記載されている。さらに、この文献には、アルミニウムを含むマグネシウム合金(AZ91D)の溶湯中にチタン粒子を投入して遠心力固相法を適用した場合、チタン粒子凝集部にアルミニウム濃度が非常に多くなっていること、およびチタン粒子の外周部にアルミニウムが固溶した領域も存在していたことが記載されている。その理由として、この文献には、「高アルミニウム濃度の初期融液が毛管現象によってチタン粒子間に浸透し、その凝集・焼結に関与した可能性がある。このように、アルミニウムを含むAZ91D合金に遠心力固相法を用いることは、融液組成から考えて問題があることが判明した。」と記載されている。
 本発明は、上記の課題を解決するためになされたものであり、その目的は、マグネシウム素地中にチタン粒子を均一に分散させるとともに、チタンとマグネシウムとの界面密着性を向上させることによって、優れた強度を持つTi粒子分散マグネシウム基複合材料を提供することである。
 本発明に従ったTi粒子分散マグネシウム基複合材料は、マグネシウムの素地中にチタン粒子を均一に分散させたものであって、マグネシウム合金素地中に分散したチタン粒子と素地との界面にチタン-アルミニウム化合物層を有していることを特徴とする。
 一つの実施形態では、当該Ti粒子分散マグネシウム基複合材料は、マグネシウムとアルミニウムとチタン粒子とを含む溶湯を凝固させて得られる鋳造材に対して熱間塑性加工を施すことによって得られる。
 他の実施形態では、当該Ti粒子分散マグネシウム基複合材料は、マグネシウムとアルミニウムとチタン粒子とを含む溶湯を凝固させて得られる鋳造材を粉末となるように機械加工することによって得られる。
 さらに他の実施形態では、当該Ti粒子分散マグネシウム基複合材料は、マグネシウムとアルミニウムとチタン粒子とを含む溶湯をアトマイズ法によって粉末状に凝固させた粉体である。
 さらに他の実施形態では、当該Ti粒子分散マグネシウム基複合材料は、アルミニウムを含むマグネシウム合金粉末と、チタン粒子との混合粉末の焼結固化体である。この場合、焼結固化体に対して熱間塑性加工を施すことによってTi粒子分散マグネシウム基複合材料を得るようにしてもよい。
 一つの局面において、本発明に従ったTi粒子分散マグネシウム基複合材料の製造方法は、マグネシウムおよびアルミニウムを含む溶湯中にチタン粒子を投入する工程と、チタン粒子が溶湯内で均一に分散するように溶湯を撹拌する工程と、溶湯を凝固させて、マグネシウムの素地と、素地中に分散するチタン粒子との界面にチタン-アルミニウム化合物層が存在する複合材料を得る工程とを備える。
 一つの実施形態では、複合材料を得る工程は、溶湯を凝固させて、マグネシウムの素地と、素地中に分散するチタン粒子との界面にチタン-アルミニウム化合物層が存在する鋳造材を得ることと、鋳造材に対して熱間塑性加工を施すこととを含む。
 他の実施形態では、複合材料を得る工程は、溶湯を凝固させて、マグネシウムの素地と、素地中に分散するチタン粒子との界面にチタン-アルミニウム化合物層が存在する鋳造材を得ることと、鋳造材に対して機械加工を施して粉末状にすることとを含む。
 さらに他の実施形態では、複合材料を得る工程は、溶湯をアトマイズ法によって粉末状に凝固させることを含む。
 他の局面において、本発明に従ったTi粒子分散マグネシウム基複合材料の製造方法は、アルミニウムを含むマグネシウム合金粉末とチタン粒子とを混合する工程と、混合粉末をマグネシウム合金粉末の液相発生温度よりも高い温度に保持して焼結固化し、チタン粒子とマグネシウムの素地との界面にチタン-アルミニウム化合物層を形成する工程とを備える。
 一つの実施形態に係る製造方法は、焼結体に対して熱間塑性加工を施す工程をさらに備える。
 上記本発明の各構成の技術的意義または作用効果については、以下の項目で詳細に説明する。
アルミニウムを含むマグネシウム合金と純チタンとの濡れ性を評価するための図である。 AZ80合金とチタン板との界面をエネルギー分散型分析走査型電子顕微鏡で観察した写真である。 AZ80合金とチタン板との界面近傍の分析結果を示す図である。 マグネシウム素地とチタン粒子との接合界面を観察した写真である。 Ti粒子分散マグネシウム基複合材料のSEM-EDS分析結果を示す写真である。 化合物の生成状況を表すX線回折結果を示す図である。 Ti粒子分散マグネシウム基複合材料のSEM-EDS分析結果を示す写真である。 ビレット内部の組織の観察結果を示す写真である。
 本願の発明者らは、チタンとマグネシウムとの界面接合強度の向上を可能としたチタン粒子分散マグネシウム基複合材料を開発するために、Mg合金に含まれるアルミニウム(Al)の拡散現象を利用した界面でのTi-Al系化合物層の生成に着目した。
 (1)Alを含むマグネシウム合金と純チタンの濡れ性
 本願の発明者らは、Alを含むマグネシウム合金液滴と純チタン板との濡れ性を調べた。具体的には、高真空状態において溶融したAZ80(Mg-8%Al-0.5%Mn)マグネシウム合金の液滴(800℃に保持)を酸化マグネシウム(MgO)製ノズル先端から純チタン板表面に静的に配置し、800℃における純Mgと純Tiとの濡れ性を連続撮影して評価した。
 図1に示すようにTi板表面に接触した時点(t=0秒)での濡れ角は約118°となり、時間の経過と共に濡れ角は減少して35分後には約40°に達した。一般に濡れ角が90°を下回ると濡れ現象が生じたと判断し、その値が0°に近づくに連れて濡れ性が向上する。マグネシウムとの濡れ性が良好と言われる炭化チタニウム(TiC)は、900℃において濡れ角が約33°(参考文献:A. Contrerasaら;Scripta Materialia, 48 (2003) 1625-1630)であることを考えると、8mass%のAl成分を含むAZ80マグネシウム合金と純Tiとの濡れ性は良好である。
 濡れ性の評価後に、試験片上で凝固後のAZ80合金とチタン板との界面をエネルギー分散型分析走査型電子顕微鏡(SEM-EDS)で観察した。その結果を図2に示す。接合界面からTi板側に厚さ約2μmの皮膜が形成されており、その皮膜はAZ80マグネシウム合金および純Ti板のいずれにおいても空隙はなく良好な密着性を有している。その界面近傍を分析した結果を図3に示す。
 上記の厚さ2μm程度の皮膜はTi-Al成分からなり、AZ80に含まれるAl成分とTi板との反応によって形成された層である。このような反応層を形成することで、マグネシウム合金側とTi粒子側の双方と強い結合力を有した良好な密着界面を得ることができる。
 比較のために、従来技術(非特許文献1~4)で報告されているような複合材料、すなわちマグネシウム粉末の固相温度で純チタン粉末と純マグネシウム粉末との混合粉末を加熱および加圧した複合材料を作製し、両者の接合界面を観察した。その結果を図4に示す。複合材料を作製するにあたり、温度を520度とし、純マグネシウムの融点(650度)よりも低く設定して完全固相状態とした。矢印で示すようにTi粒子とMg素地との界面には、多数の隙間・空隙が観察されており、密着性が十分でないことがわかる。したがって、従来技術で開示されている製造方法においては、Mgの融点を下回る固相温度で加熱・焼結するためMgとTiとの密着性が十分でなく、その結果、複合材料における強度および延性の向上が得られなかったと考えられる。
 (2)Ti粒子分散Mg-Al系溶湯を用いた複合材料
 本発明者らは、上記の結果に基づき、マグネシウム素地とTi粒子との界面接合強度を向上させるために、アルミニウム成分を含むマグネシウム合金を素地用原料とし、そのマグネシウム合金の融点よりも高い温度にマグネシウム合金溶湯を保持し、その中にTi粒子を添加した。チタン粒子が溶湯中で均一に分散するように溶湯を十分に攪拌した後に、溶湯を凝固させた。このような製法で作製したTi粒子分散マグネシウム基複合材料においては、良好な濡れ性およびAlとチタンとの反応性を発揮して、素地を構成するマグネシウムとチタン粒子とが、その界面にチタン-アルミニウム化合物層を介在させて優れた界面接合強度を持って強固に結合している。
 チタン粒子をマグネシウム素地中に均一に分散させた複合材料は、従来の鋳造法やダイキャスト法などで製造することが可能である。また、それらの鋳造材に対して切削加工や粉砕加工などの機械加工を施して粉末状にすることができる。このようにして得られたマグネシウム基複合粉末においては、チタン粒子がマグネシウムの素地中に均一に分散している。
 チタン粒子をマグネシウム素地中に均一に分散させたマグネシウム基複合粉末は、チタン粒子を均一に分散させているMg-Al合金の溶湯をアトマイズ法によって凝固させることによっても得られる。アトマイズ法は、溶湯流に対して高圧水あるいは高圧ガスを噴射すること(噴霧法)により、粉末を作製する手法である。この場合においても得られた粉末の内部にはチタン粒子が均一に分散し、かつTi粒子とマグネシウム合金素地の界面には、Ti-Al系化合物層が生成しており良好な界面接合強度を有する。
 以上のように、Al成分を含むマグネシウム合金溶湯中にチタン粒子を添加し、十分に均一攪拌処理を施した後、鋳造法あるいはダイキャスト法によりマグネシウム基複合材料とする場合、あるいはチタン粒子を均一に分散させているMg-Al合金溶湯をアトマイズ法によって直接粉末化する場合のいずれにおいても、チタン粒子と素地のマグネシウムとは、優れた濡れ性とAl-Ti間の高い反応性とによって空隙のない良好な接合界面を有して強固に結合する。
 鋳造法またはダイキャスト法で作製したTi粒子分散マグネシウム基複合素材を所定の温度に加熱した後に、この素材に対して熱間押出加工、熱間圧延加工、鍛造加工などの熱間塑性加工を施すことで、素地の結晶粒は微細化して複合材料の強度は更に向上する。
 また鋳造材から切削加工等の機械加工によって作製したTi粒子分散マグネシウム基複合粉末、または溶湯流に高圧水や高圧ガスを噴射して得られたTi粒子分散マグネシウム基複合粉末を圧粉固化して圧粉成形体や焼結固化体を作製し、必要に応じて引き続いて熱間押出加工、熱間圧延加工、鍛造加工などの熱間塑性加工を施すことにより、複合粉末同士を冶金的に結合または焼結したTi粒子分散マグネシウム基複合材料を創製することが可能である。
 上記の実施形態では、Mg-Al合金溶湯中に適正量のチタン粒子を投入するものであったが、他の実施形態として、次の製法によってTi粒子分散マグネシウム基複合材料を得ることも可能である。この実施形態では、アルミニウムを含むマグネシウム合金粉末とチタン粒子とを混合し、この混合粉末を所定の温度に保持して焼結固化する。ここで重要なことは、混合粉末をマグネシウム合金粉末の液相発生温度よりも高い温度に保持することである。このような高い温度に保持することにより、焼結後の焼結固化体中では、素地を構成するマグネシウムとチタン粒子とが、界面にチタン-アルミニウム化合物層を介在させて、良好な濡れ性および優れた界面接合強度を持って強固に結合したものとなる。この焼結固化体に対して熱間塑性加工を施すことによって、複合材料の強度は更に向上する。
 なお、上記の各実施形態において、素地を構成するマグネシウムとチタン粒子との界面に形成されるチタン-アルミニウム化合物層は、チタン粒子を完全に取り囲むものであっても良いし、チタン粒子の表面を部分的に覆うものであってもよい。
 AZ61(Mg-5.9%Al-1.1%Zn)マグネシウム合金塊と平均粒子径29.8μmのチタン粉末とを出発原料として準備し、マグネシウム合金塊をカーボン坩堝内で700℃に加熱して溶解し、その溶湯中に上記のチタン粒子を全体の重量比率で5mass%添加した。その後、チタン粒子の偏析および底部への沈降を防ぐために、溶湯を30分間十分に均一攪拌処理した後、水冷金型へ溶湯を鋳込むことで鋳造素材を作製した。
 得られた鋳造素材についてSEM-EDS分析を行った結果を図5に示す。チタン粒子と素地との界面には空隙は存在せず、良好な密着性を有していることが認められる。また元素分析の結果、チタン粒子の表面にアルミニウム(Al)成分は層状に存在しており、Ti-Al化合物層がチタン粒子とAZ61素地との界面に形成されていることがわかる。この反応層によりチタン粒子と素地との良好な密着性が得られている。
 なお、溶湯中にチタン粉末を添加し、均一攪拌処理する際、その処理時間を10分とした場合の複合材料について、上記の複合材料と共にX線回折を行い、化合物の生成状況を観察した。その結果を図6に示す。
 均一攪拌処理を30分間行った場合には、AlTiの金属間化合物の回折ピークが検出されるが、10分間の攪拌処理材では上記の化合物のピークは検出されない。つまり、攪拌時間が十分でない場合には、マグネシウム合金中のAl成分とチタン粒子との拡散反応が進行せず、その結果、本発明の特徴であるTi-Al化合物層の生成が困難となる。したがって、マグネシウム合金溶湯中にチタン粒子を投入した後、均一攪拌処理は30分以上行うことが望ましい。
 純マグネシウム粉末とAl-Mn合金粉末を準備し、全体としてAZ61合金組成(Mg-6%Al-1%Zn)となるように両者の粉末を配合した。この混合粉末を油圧プレスで圧粉固化し、その成形固化体をカーボン坩堝内に投入して700℃にて加熱・保持することでAZ61マグネシウム合金溶湯を作製した。その溶湯中に上記のチタン粒子を全体の重量比率で10mass%となるように添加した。その後、チタン粒子の偏析および底部への沈降を防ぐために溶湯の均一攪拌処理を30分間施した後、水冷金型へ溶湯を鋳込むことで鋳造素材を作製した。
 得られた鋳造材料についてSEM-EDS分析を行った結果を図7に示す。チタン粒子を10mass%添加したが、粒子の顕著な凝集・偏析組織は見られず、チタン粒子は素地中に均一に分散したことが認められる。またチタン粒子と素地との界面には空隙は存在せず、良好な密着性を有していることがわかる。さらに元素分析の結果、チタン粒子の表面を取り囲むようにアルミニウム(Al)成分は層状に存在しており、Ti-Al化合物層がチタン粒子とAZ61素地との界面に形成されていることがわかる。この反応層によりチタン粒子と素地との良好な密着性が得られている。
 AZ91Dマグネシウム合金(Mg-9.1%Al-1.1%Zn-0.2%Mn)の塊状試料と、平均粒子径29.8μmのチタン粉末とを出発原料として準備し、AZ91Dマグネシウム合金塊をカーボン坩堝内で720℃に加熱して溶解し、その溶湯中に上記のチタン粒子を全体の重量比率で3mass%添加した。その後、チタン粒子の偏析および底部への沈降を防ぐために溶湯の均一攪拌処理を40分間施した後、円筒状金型に鋳込んで直径60mmのビレットを作製した。
 ビレット内部の組織を観察した結果を図8に示す。素地には、微細なMg17Al12化合物(β相)が均一に分散しており、チタン粒子も同様に凝集・偏析することなく素地中に均一に分散している。
 上記のTi粒子分散AZ91D鋳込みビレットから機械加工により直径45mmの押出用ビレットを作製し、ビレットをアルゴンガス雰囲気中で350℃にて5分間加熱・保持し、直ちに熱間押出加工(押出比:37)を施して直径7mmの丸棒押出材を作製した。得られた押出材から引張試験片を採取し、常温にて引張試験を行った。
 比較として、チタン粒子を添加しないAZ91Dマグネシウム鋳込みビレットを上記と同一条件下で作製し、同様に機械加工により直径45mmの押出用ビレットを作製して押出加工を施した。得られた押出材についても同様に常温にて引張試験を行った。引張試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 チタン粒子を含まないAZ91D鋳造ビレットを押出加工した材料と比較して、3mass%のチタン粒子を添加したAZ91D鋳造ビレット押出材における引張強さおよび耐力は顕著に増加しており、他方、破断伸びについては大きな低下は見られない。また本発明によるTi粒子分散AZ91D複合材料においては、X線回折結果よりTiAl金属間化合物の生成を確認し、またチタン粒子とAZ91D素地界面において空隙は無く良好な接合界面を形成している。
 以上の結果から、本発明によるTi粒子分散Mg-Al系複合材料においては、チタン粒子の凝集・偏析を伴うことなく、チタン粒子の表面にはTi-Al系化合物が生成し、それを介してチタン粒子と素地との接合強度が向上し、その結果、マグネシウム基複合材料の強度向上が可能となる。
 なお、チタン粒子に代り、より高い硬度を有するTi-6Al-4V合金粉末(平均粒子径22.8μm)を用いてTi粒子分散マグネシウム基複合材料を製造した場合においても、チタン合金粒子は凝集・偏析することなく素地中に均一に分散し、チタン合金粉末とAZ91D素地との界面には、TiAl金属間化合物の生成が確認されており、界面には空隙は存在せずに良好な結合状態を有することが認められた。Ti-6Al-4V合金粉末を3mass%添加した場合の引張強さは414MPaとなり、純チタン粒子を3mass%添加した複合材料よりも更に強度増加を確認できた。このようにマグネシウム合金素地中に分散するチタン粒子の硬度・強度がより増加することでマグネシウム複合材料の強度も更に向上する。
 AZ91Dマグネシウム合金(Mg-9.1%Al-1.1%Zn-0.2%Mn)の塊状試料と、平均粒子径29.8μmのチタン粉末とを出発原料として準備し、AZ91Dマグネシウム合金塊をカーボン坩堝内で720℃に加熱して溶解し、その溶湯中に上記のチタン粒子を全体の重量比率で3mass%添加した。その後、チタン粒子の偏析および底部への沈降を防ぐために溶湯の均一攪拌処理を40分間施した後、円筒状金型に鋳込んで直径60mmのビレットを作製した。
 このTi粒子分散AZ91D鋳込みビレットから切削加工により全長1~4mm程度の切粉を作製し、この切粉をSKD11製金型に充填して油圧プレス機により加圧力600MPaを付与して直径45mmの粉末成形体ビレットを作製した。圧粉成形ビレットをアルゴンガス雰囲気中で350℃にて5分間加熱・保持し、直ちに熱間押出加工(押出比:37)を施して直径7mmの丸棒押出材を作製した。得られた押出材から引張試験片を採取し、常温にて引張試験を行った。
 比較として、チタン粒子を添加しないAZ91Dマグネシウム鋳込みビレットを上記と同一条件下で作製し、同様に切削加工により全長1~4mm程度の切粉を作製した。このAZ91D切削粉末にチタン粒子を3mass%配合し、乾式ボールミルにて1時間の混合処理を施した後、上記と同様に油圧プレス機により混合粉末を圧粉成形して350℃の加熱工程を経て押出加工を施した。得られた押出材についても同様に常温にて引張試験を行った。引張試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 比較材においては、加熱温度が350℃と低いため、AZ91Dに含まれるAl成分がチタン粒子と反応しない結果、チタン粒子の表面にはTi-Al系化合物の生成が見られなかった。これによりチタン粒子と素地との界面において十分高い接合強度が得られず、その結果、実施例3に示したAZ91Dのみの押出材の強度特性と比較して、引張強さ・耐力共に低下しており、また破断伸びも減少した。
 一方、本発明によるTi粒子分散AZ91D複合粉末から作製した押出材においては、実施例3に示した本発明例と同様に、チタン粒子を含まないAZ91D鋳造ビレットを押出加工した材料と比較して、引張強さおよび耐力は顕著に増加しており、他方、破断伸びについては大きな低下は見られない。また本発明によるTi粒子分散AZ91D複合材料においては、X線回折結果よりTiAl金属間化合物の生成を確認し、またチタン粒子とAZ91D素地とは、界面において空隙は無く、良好な接合界面を形成している。
 以上の結果から、本発明によるTi粒子分散Mg-Al系複合材料においては、チタン粒子の凝集・偏析を伴うことなく、チタン粒子の表面にTi-Al系化合物が生成し、それを介してチタン粒子と素地との接合強度が向上し、その結果、マグネシウム基複合材料の強度向上が可能となる。
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 この発明は、優れた強度を有するTi粒子分散マグネシウム基複合材料およびその製造方法として、有利に利用され得る。

Claims (12)

  1. マグネシウムの素地中にチタン粒子を均一に分散させたTi粒子分散マグネシウム基複合材料において、
     前記マグネシウム合金素地中に分散した前記チタン粒子と素地との界面にチタン-アルミニウム化合物層を有していることを特徴とする、Ti粒子分散マグネシウム基複合材料。
  2. 当該Ti粒子分散マグネシウム基複合材料は、マグネシウムとアルミニウムとチタン粒子とを含む溶湯を凝固させて得られる鋳造材に対して熱間塑性加工を施すことによって得られる、請求項1に記載のTi粒子分散マグネシウム基複合材料。
  3. 当該Ti粒子分散マグネシウム基複合材料は、マグネシウムとアルミニウムとチタン粒子とを含む溶湯を凝固させて得られる鋳造材を粉末となるように機械加工することによって得られる、請求項1に記載のTi粒子分散マグネシウム基複合材料。
  4. 当該Ti粒子分散マグネシウム基複合材料は、マグネシウムとアルミニウムとチタン粒子とを含む溶湯をアトマイズ法によって粉末状に凝固させた粉体である、請求項1に記載のTi粒子分散マグネシウム基複合材料。
  5. 当該Ti粒子分散マグネシウム基複合材料は、アルミニウムを含むマグネシウム合金粉末と、チタン粒子との混合粉末の焼結固化体である、請求項1に記載のTi粒子分散マグネシウム基複合材料。
  6. 当該Ti粒子分散マグネシウム基複合材料は、前記焼結固化体に対して熱間塑性加工を施すことによって得られる、請求項5に記載のTi粒子分散マグネシウム基複合材料。
  7. マグネシウムおよびアルミニウムを含む溶湯中にチタン粒子を投入する工程と、
     前記チタン粒子が前記溶湯内で均一に分散するように前記溶湯を撹拌する工程と、
     前記溶湯を凝固させて、マグネシウムの素地と、素地中に分散するチタン粒子との界面にチタン-アルミニウム化合物層が存在する複合材料を得る工程とを備える、Ti粒子分散マグネシウム基複合材料の製造方法。
  8. 前記複合材料を得る工程は、前記溶湯を凝固させて、マグネシウムの素地と、素地中に分散するチタン粒子との界面にチタン-アルミニウム化合物層が存在する鋳造材を得ることと、前記鋳造材に対して熱間塑性加工を施すこととを含む、請求項7に記載のTi粒子分散マグネシウム基複合材料の製造方法。
  9. 前記複合材料を得る工程は、前記溶湯を凝固させて、マグネシウムの素地と、素地中に分散するチタン粒子との界面にチタン-アルミニウム化合物層が存在する鋳造材を得ることと、前記鋳造材に対して機械加工を施して粉末状にすることとを含む、請求項7に記載のTi粒子分散マグネシウム基複合材料の製造方法。
  10. 前記複合材料を得る工程は、前記溶湯をアトマイズ法によって粉末状に凝固させることを含む、請求項7に記載のTi粒子分散マグネシウム基複合材料の製造方法。
  11. アルミニウムを含むマグネシウム合金粉末とチタン粒子とを混合する工程と、
     前記混合粉末を前記マグネシウム合金粉末の液相発生温度よりも高い温度に保持して焼結固化し、前記チタン粒子とマグネシウムの素地との界面にチタン-アルミニウム化合物層を形成する工程とを備える、Ti粒子分散マグネシウム基複合材料の製造方法。
  12. 前記焼結体に対して熱間塑性加工を施す工程をさらに備える、請求項11に記載のTi粒子分散マグネシウム基複合材料の製造方法。
PCT/JP2009/055027 2008-09-03 2009-03-16 Ti粒子分散マグネシウム基複合材料およびその製造方法 WO2010026794A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/060,084 US20110142710A1 (en) 2008-09-03 2009-03-16 Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL, AND MANUFACTURING METHOD THEREOF
CN2009801141589A CN102016093A (zh) 2008-09-03 2009-03-16 Ti粒子分散镁基复合材料及其制造方法
EP09811323A EP2327809A1 (en) 2008-09-03 2009-03-16 Magnesium-based composite material having ti particles dispersed therein, and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008226261A JP4451913B2 (ja) 2008-09-03 2008-09-03 Ti粒子分散マグネシウム基複合材料の製造方法
JP2008-226261 2008-09-03

Publications (1)

Publication Number Publication Date
WO2010026794A1 true WO2010026794A1 (ja) 2010-03-11

Family

ID=41796969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055027 WO2010026794A1 (ja) 2008-09-03 2009-03-16 Ti粒子分散マグネシウム基複合材料およびその製造方法

Country Status (6)

Country Link
US (1) US20110142710A1 (ja)
EP (1) EP2327809A1 (ja)
JP (1) JP4451913B2 (ja)
KR (1) KR20100092969A (ja)
CN (1) CN102016093A (ja)
WO (1) WO2010026794A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467958A (zh) * 2018-03-26 2018-08-31 湖北工业大学 锑化镁晶须-硅化镁颗粒复合增强镁基复合材料的制备方法
CN112775436A (zh) * 2020-12-22 2021-05-11 西安交通大学 一种促进钛合金增材制造过程生成等轴晶的制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950334B (zh) * 2018-08-10 2020-07-14 中南大学 一种具有连续共晶结构的镁铝合金及其制备方法
US11565318B2 (en) * 2019-09-03 2023-01-31 Ut-Battelle, Llc Reactive matrix infiltration of powder preforms
CN113174519B (zh) * 2021-03-23 2022-04-29 山东科技大学 一种超细钒颗粒强化细晶镁基复合材料及其制备方法
CN114959391B (zh) * 2022-05-30 2023-01-06 广东省科学院新材料研究所 一种钛颗粒增强镁基复合材料及其制备方法
CN115852181B (zh) * 2022-11-28 2023-09-01 重庆大学 一种微米级钛颗粒增强镁基复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129329A (ja) * 1988-11-08 1990-05-17 Katsuhiro Nishiyama マグネシウム―チタン系焼結合金およびその製造方法
JPH05214477A (ja) * 1992-01-31 1993-08-24 Suzuki Motor Corp 複合材料とその製造方法
JPH10102163A (ja) * 1996-09-24 1998-04-21 Hiroshima Pref Gov 金属間化合物強化マグネシウム基複合材料及びその製造方法
JP2002105575A (ja) * 2000-09-28 2002-04-10 Hokkaido Technology Licence Office Co Ltd 塑性加工用マグネシウム基合金複合材料および塑性加工用薄板材料の製造方法
JP2008163361A (ja) * 2006-12-27 2008-07-17 Mitsubishi Alum Co Ltd 均一微細な結晶粒を有するマグネシウム合金薄板の製造方法
JP2008195978A (ja) * 2007-02-09 2008-08-28 Topy Ind Ltd マグネシウム基複合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129329A (ja) * 1988-11-08 1990-05-17 Katsuhiro Nishiyama マグネシウム―チタン系焼結合金およびその製造方法
JPH05214477A (ja) * 1992-01-31 1993-08-24 Suzuki Motor Corp 複合材料とその製造方法
JPH10102163A (ja) * 1996-09-24 1998-04-21 Hiroshima Pref Gov 金属間化合物強化マグネシウム基複合材料及びその製造方法
JP2002105575A (ja) * 2000-09-28 2002-04-10 Hokkaido Technology Licence Office Co Ltd 塑性加工用マグネシウム基合金複合材料および塑性加工用薄板材料の製造方法
JP2008163361A (ja) * 2006-12-27 2008-07-17 Mitsubishi Alum Co Ltd 均一微細な結晶粒を有するマグネシウム合金薄板の製造方法
JP2008195978A (ja) * 2007-02-09 2008-08-28 Topy Ind Ltd マグネシウム基複合材料

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. CONTRERASA ET AL., SCRIPTA MATERIALIA, vol. 48, 2003, pages 1625 - 1630
ABSTRACTS OF SPRING MEETING OF JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, 6 June 2007 (2007-06-06), pages 148
COLLECTED ABSTRACTS OF THE 2008 SPRING MEETING OF THE JAPAN INSTITUTE OF METALS, 11 May 2008 (2008-05-11), pages 13
COLLECTED ABSTRACTS OF THE 2008 SPRING MEETING OF THE JAPAN INSTITUTE OF METALS, no. 464, 26 March 2008 (2008-03-26), pages 355
JOURNAL OF JAPAN INSTITUTE OF LIGHT METALS, vol. 54, no. 11, 2004, pages 522 - 526
JOURNAL OF JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, vol. 55, no. 4, 2008, pages 244
TOSHIYUKI NISHIO ET AL.: "Magnesium Gokin Funmatsu o Riyo shita MMC-zai no Seikei Oyobi Kikaiteki Seishitsu", JAPANESE FOUNDRY ENGINEERING SOCIETY, REPORTS OF THE JFS MEETING, pages 71, XP008142875 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467958A (zh) * 2018-03-26 2018-08-31 湖北工业大学 锑化镁晶须-硅化镁颗粒复合增强镁基复合材料的制备方法
CN112775436A (zh) * 2020-12-22 2021-05-11 西安交通大学 一种促进钛合金增材制造过程生成等轴晶的制造方法
CN112775436B (zh) * 2020-12-22 2022-05-03 西安交通大学 一种促进钛合金增材制造过程生成等轴晶的制造方法

Also Published As

Publication number Publication date
CN102016093A (zh) 2011-04-13
US20110142710A1 (en) 2011-06-16
KR20100092969A (ko) 2010-08-23
JP2010059481A (ja) 2010-03-18
JP4451913B2 (ja) 2010-04-14
EP2327809A1 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
Sudha et al. Mechanical properties, characterization and wear behavior of powder metallurgy composites-a review
US9869006B2 (en) Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof
WO2010026794A1 (ja) Ti粒子分散マグネシウム基複合材料およびその製造方法
KR20190067930A (ko) 미세한 공융-형 구조를 갖는 알루미늄 합금 제품, 및 이를 제조하는 방법
Satish et al. Preparation of magnesium metal matrix composites by powder metallurgy process
Ozkaya et al. Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling
Moustafa et al. Hot forging and hot pressing of AlSi powder compared to conventional powder metallurgy route
CN100432267C (zh) 一种高强镁基复合材料及其制备方法
JP4397425B1 (ja) Ti粒子分散マグネシウム基複合材料の製造方法
Wu et al. Microstructure and tensile properties of aluminum powder metallurgy alloy prepared by a novel low-pressure sintering
Burke et al. Sintering fundamentals of magnesium powders
Dolata Interaction of Al-Si alloys with SiC/C ceramic particles and their influence on microstructure of composites
Bhaskar Raju et al. Mechanical and Tribological Behaviour of Aluminium Metal Matrix Composites using Powder Metallurgy Technique—A Review.
Zhao et al. A novel method for improving the microstructure and the properties of Al-Si-Cu alloys prepared using rapid solidification/powder metallurgy
Youseffi et al. PM processing of elemental and prealloyed 6061 aluminium alloy with and without common lubricants and sintering aids
Kumar et al. A review on properties of Al-B4C composite of different routes
Leszczyńska-Madej et al. Microstructure characterization of SiC reinforced aluminium and Al4Cu alloy matrix composites
CN114892045A (zh) 原位自组装核壳结构增强铝基复合材料及其制备方法
Gewfiel et al. The effects of graphite and SiC formation on mechanical and wear properties of aluminum-graphite (Al/Gr) composites
DE102014002583B3 (de) Verfahren zur Herstellung eines verschleißbeständigen Leichtmetall-Bauteils
Zulkoffli et al. Fabrication of AZ61/SIC composites by powder metallurgy process
Saravanan et al. Processing of aluminium metal matrix composites-a review
Li et al. Effect of SiCp volume fraction on the microstructure and tensile properties of SiCp/2024 Al-based composites prepared by powder thixoforming
Hunt Jr New directions in aluminum-based P/M materials for automotive applications
Meignanamoorthy et al. Microstructure and properties of high strength Al-Fe-Cu-Si-Zn alloy (AA8079) produced by mechanical alloying and powder metallurgy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114158.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107015578

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13060084

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009811323

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE