WO2010026723A1 - Wheel bearing apparatus - Google Patents

Wheel bearing apparatus Download PDF

Info

Publication number
WO2010026723A1
WO2010026723A1 PCT/JP2009/004208 JP2009004208W WO2010026723A1 WO 2010026723 A1 WO2010026723 A1 WO 2010026723A1 JP 2009004208 W JP2009004208 W JP 2009004208W WO 2010026723 A1 WO2010026723 A1 WO 2010026723A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
wheel bearing
standard
bearing device
hrc
Prior art date
Application number
PCT/JP2009/004208
Other languages
French (fr)
Japanese (ja)
Inventor
芳野康平
平井功
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008224476A external-priority patent/JP2010058574A/en
Priority claimed from JP2008258343A external-priority patent/JP2010089530A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2010026723A1 publication Critical patent/WO2010026723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0094Hubs one or more of the bearing races are formed by the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/001Hubs with roller-bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0036Hubs for driven wheels comprising homokinetic joints
    • B60B27/0042Hubs for driven wheels comprising homokinetic joints characterised by the fixation of the homokinetic joint to the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a bearing device for a wheel that has been improved in strength for passenger cars, freight cars, and the like.
  • the high frequency heat treatment described above may not be adopted depending on the part shape of the part to be processed.
  • the pilot part that guides the brake and the wheel protrudes from the side surface of the base part of the wheel mounting flange, the radius of curvature of the corner between the flange and the pilot part is small, and the pilot part is circled through the notch.
  • the shape is a claw distributed in the circumferential direction. In the case of such a shape, if high-frequency heat treatment is performed, a problem arises in that part of the component becomes locally too hot and melts, and therefore high-frequency heat treatment cannot be performed.
  • a part of the hub that is hot (the root part of the wheel mounting flange, the bolt hole seat surface of the flange, the pilot part) Proposes a method of obtaining a non-standard structure that increases the hardness of the part by cooling the inner peripheral side part, the serration of the inner diameter surface or the spline formation part) with a refrigerant and self-recovery or recuperation holding (For example, Patent Documents 4 to 9).
  • a method for increasing the hardness there is a method (for example, Patent Document 10) in which a hardened layer is obtained by turning the inner surface of the hub pilot portion.
  • the refrigerant also extends to portions other than the portion that is desired to be a non-standard structure, and other thin portions such as an undesired portion and a hub pilot portion. Will harden and become difficult to cut in later turning.
  • the hub pilot part which is a thin part, the whole is hardened to 30 to 35 HRC, and the life of the turning blade is reduced.
  • An object of the present invention is to limit the hardness of at least one of a wheel mounting flange and a vehicle body mounting flange, which are parts where strength and fatigue strength are desired against high stress and repeated stress, to a limited extent. It is possible to provide a wheel bearing device that is capable of suppressing a decrease in productivity due to an increase in processes.
  • a wheel bearing device includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and a component that constitutes all or part of the inner member or the outer member.
  • a wheel bearing device having at least one of a wheel mounting flange and a vehicle body mounting flange, and the component having the one flange is a hot forged product of steel, and this component is a base material.
  • the portion is a standard structure, has a non-standard structure on the surface of the one flange, and the non-standard structure is a structure obtained by laser quenching.
  • the wheel mounting flange and the vehicle body mounting flange When the automobile turns, for example, at least one of the wheel mounting flange and the vehicle body mounting flange repeatedly bends with a large amplitude, and high stress is repeatedly generated at the root of the flange. With respect to such repeated high stress, if the surface of the one flange is the non-standard structure, the strength and fatigue strength are improved by refining the structure and increasing the hardness, and the surface of the one flange It is possible to prevent cracks from occurring.
  • the portion of the non-standard structure is finer than the base material portion made of the standard structure and has a hardness equal to or higher than that of the base material.
  • the fatigue strength of the non-standard structure is improved, and it can withstand high stress amplitude compared to the wheel mounting flange and the vehicle body mounting flange made of only the standard structure. That is, the strength is increased and the life can be extended. Therefore, it can be reduced in size and weight as compared with a wheel bearing device having a normal standard structure. Accordingly, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost. Further, since the wheel bearing device is light, the weight of the automobile can be reduced, and the fuel consumption can be improved.
  • the part of the non-standard structure is obtained by laser quenching, it is possible to prevent a part of the pilot part or the like from becoming too hot, and solve problems such as part of the part being melted.
  • the surface of the one flange can be heat-treated while being limited by laser quenching, it is possible to maintain the deflection accuracy and the like of the one flange with high accuracy.
  • the entire part having the one flange most of the part other than the surface of the one flange is not cured, and grinding processing after the heat treatment can be easily and quickly performed. Therefore, the number of processing steps can be reduced and the cycle time per product can be improved as compared with the conventional one. In other words, it is possible to suppress a decrease in productivity due to an increase in the number of processes compared to the conventional one.
  • the life of a grinding wheel or the like can be extended, and the manufacturing cost can be reduced.
  • the portion of the non-standard structure may be a root portion of the one flange.
  • the root portion means not only the side surface of the one flange but also the portion near the one flange.
  • the portion of the non-standard structure may be a side surface of the one flange opposite to the wheel mounting surface or the vehicle body mounting surface.
  • the root portion does not necessarily have to be a non-standard tissue portion. Also in this case, the strength and fatigue strength are improved with respect to the repeatedly generated high stress.
  • the non-standard texture portion may be both side surfaces or the entire surface of the one flange.
  • Brake discs are usually mounted on the wheel mounting surface of the wheel mounting flange, but due to the finer structure and increased hardness of the wheel mounting flange, the surface of the flange is worn by fretting with the brake disc. Is suppressed from worsening. Therefore, deterioration of the brake feeling, for example, judder or kickback can be suppressed.
  • the inner member may be a hub and an inner ring fitted to the outer periphery of the shaft portion of the hub, and the component having the wheel mounting flange may be the hub.
  • the hub in this case may be a hub that is independent of the finished product of a double-row bearing, for example.
  • the non-standard structure which is a structure obtained by laser hardening, is one of a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, a tempered martensite structure, or at least two of these structures It may be a mixed tissue. Any of the above-mentioned fine ferrite / pearlite structure, upper bainite structure, lower bainite structure, tempered martensite structure, or at least a non-standard structure such as a mixed structure of two or more of these structures is standard. Compared with the base material portion made of the structure, the structure is fine and the hardness is equal to or higher than that.
  • Such refinement and increased hardness increase the fatigue strength of the non-standard structure, and the stress amplitude is higher than that of wheel mounting flanges, body mounting flanges, and hubs made of only standard structures. Endurance, that is, high strength and long life. Therefore, it can be reduced in size and weight as compared with a wheel bearing device having a normal standard structure. Accordingly, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost. Further, since the wheel bearing device is light, the weight of the automobile can be reduced, and the fuel consumption can be improved.
  • the hardness of the non-standard structure portion may be 20 HRC or more and 40 HRC or less, and the hardness of the standard structure of the base material portion may be 13 HRC or more and 25 HRC or less.
  • the toughness is excellent.
  • the hardness of the portion of the non-standard structure is set to 20 HRC or more and 40 HRC or less by high temperature tempering.
  • the lower limit of the hardness of the non-standard structure is preferably 20 HRC or more, preferably 25 HRC or more, which is about the center of the base material hardness, in order to improve fatigue strength by increasing the hardness.
  • the material used for the hub is carbon steel (C content 0.4 to 0.8%), but in the case of S53C or the like, the hardness of the standard structure portion is 13 to 25 HRC. In the case of performing cold working such as caulking, or taking into account the portion into which the hub bolt is press-fitted, it is preferable that the maximum is 25 HRC.
  • the hardness of the non-standard structure portion may be 40 HRC or more, and the hardness of the standard structure of the base material portion may be 13 HRC or more and 25 HRC or less.
  • the hardness of the non-standard structure is 40 HRC or more, strength such as rigidity and fatigue strength can be improved.
  • the hardness of the non-standard structure is less than 20 HRC, the strength and fatigue strength are insufficient, and the toughness is excellent in the range of 20 HRC or more and 40 HRC or less.
  • the strength is inferior.
  • the depth of the non-standard tissue is preferably 0.1 mm or more and 1.5 mm or less. When the depth of the non-standard tissue is less than 0.1 mm, the non-standard tissue is too thin and the effect cannot be expected.
  • the laser irradiation time becomes long to obtain a deep non-standard tissue, so that the part other than the irradiation range is heated and the irradiation range is not easily cooled after irradiation. Problems such as a decrease in hardness, deterioration of the structure, and deterioration of accuracy such as vibration of the wheel mounting flange are likely to occur.
  • the non-standard structure that is a structure obtained by laser quenching may be a structure obtained by quenching using YAG laser light.
  • the wavelength of the laser beam can be shortened, the permeability is excellent, and the workpiece can be processed deeply.
  • the non-standard structure that is a structure obtained by laser quenching may be a structure obtained by quenching using a semiconductor laser beam. Since the semiconductor laser has high energy conversion efficiency, a large-scale cooling mechanism is unnecessary, and a mirror system is not required.
  • the wavelength of the semiconductor laser light is visible light
  • the intensity distribution of the laser beam can be rectangular, large area quenching can be performed efficiently. Therefore, it is possible to further shorten the time required for laser quenching per workpiece, and to reduce the number of man-hours, as compared with the case using the YAG laser beam or the infrared laser beam.
  • the laser output can be reduced as compared with YAG laser light or the like, the energy cost can be reduced.
  • the non-standard structure is a structure obtained by quenching using a semiconductor laser beam
  • a wheel bearing device includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and the inner member includes a hub having a wheel mounting flange and a shaft of the hub.
  • the hub has a through hole through which the stem portion of the joint member of the constant velocity joint is inserted, and the stem portion is formed on the inner diameter surface of the through hole.
  • the serration or spline that meshes with the provided serration or spline, and the base material portion of the hub is a standard structure obtained by hot forging of a steel material, and the serration or spline on the inner diameter surface of the through hole of the hub
  • the formed part may be a part of a non-standard structure, and the non-standard structure may be a structure obtained by laser quenching.
  • the following effects can be obtained. Since the serrations or splines on the hub's inner surface are toothed, the troughs may become highly stressed due to the moment load acting on the hub when the car is turning, etc. By repeated deformation and displacement, the serration teeth of the hub and the constant velocity joint are worn and worn. However, if the inner surface where the serrations or splines of the hub are formed with the non-standard structure against such high stresses that occur repeatedly, the strength and fatigue strength are reduced due to the refinement of the structure and the increase in hardness. And cracking from the serration or spline root is suppressed.
  • the operation of crack generation ⁇ increase in displacement of the stress generation site ⁇ vibration extension of crack ⁇ damage of the hub is suppressed, and the life is extended. Therefore, it can be reduced in size and weight as compared with a wheel bearing device having a normal standard structure. Accordingly, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost. Further, since the wheel bearing device is light, the weight of the automobile can be reduced, and the fuel consumption can be improved. Furthermore, since the hardness is increased by the non-standard structure, abrasion of serrations or splines is prevented. For this reason, it is possible to prevent the teeth from being worn and the driving force from being transmitted.
  • the part of the non-standard structure is obtained by laser quenching in particular, so that it is possible to prevent a part of the hub from becoming too hot locally and solve problems such as melting away. Also, only the inner diameter surface of the through hole, which is the target location in the hub, can be locally heat treated by laser quenching to increase the hardness, so that the wheel mounting flange runout accuracy etc. can be maintained with high accuracy. Is possible. If the non-standard texture portion is limited to the inner diameter surface of the through hole, unlike the case where the entire hub surface is non-standard texture, workability such as machinability and caulking properties is reduced. Is minimized.
  • the hub and the inner ring may have raceways in each row.
  • the hub may have no raceway surface, and the inner ring may have a double row raceway surface, that is, the hub may be a hub of a component independent of a finished bearing composed of double row bearings.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 3rd Embodiment of this invention
  • (B) is a fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 4th Embodiment of this invention
  • (B) is a fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 5th Embodiment of this invention
  • (B) is a fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 6th Embodiment of this invention
  • (B) is a fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 7th Embodiment of this invention
  • (B) is a fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 8th Embodiment of this invention
  • (B) is a fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 9th Embodiment of this invention
  • (B) is the fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 10th Embodiment of this invention
  • (B) is a fragmentary sectional view of the modification.
  • (A) is sectional drawing of the wheel bearing apparatus which concerns on 11th Embodiment of this invention
  • (B) is sectional drawing of the modification. It is sectional drawing of the wheel bearing apparatus which concerns on 12th Embodiment of this invention. It is sectional drawing of the hub of the bearing apparatus for wheels. It is a figure showing the example which carries out the laser hardening of the principal part of the hub
  • (A) is sectional drawing which cut
  • (B) is the principal part of the hub on a radial plane. It is sectional drawing seen by cut
  • FIG. 1 shows an example of a wheel bearing device, and this example is applied to a third generation type driving wheel support.
  • This wheel bearing device has an inner member 1 and an outer member 2 that are rotatable with respect to each other via a double row of rolling elements 3, and the rolling elements 3 are held by a cage 4 for each row.
  • double row refers to two or more rows and may be three or more rows, but in the illustrated example, it is two rows.
  • the inner member 1 and the outer member 2 have double-row raceway surfaces 6 and 7 and raceway surfaces 8 and 9, respectively.
  • This wheel bearing device is a double-row angular contact ball bearing type, the rolling elements 3 are formed of balls, and the raceway surfaces 6 and 7 are formed so that the contact angles are outward. Both ends of the bearing space between the inner member 1 and the outer member 2 are sealed with seals 10 and 11.
  • the outer member 2 is composed of a single integral part, and a vehicle body mounting flange 12 is provided at an arbitrary position in the width direction.
  • the outer diameter surface portion of the outer member 2 closer to the inboard side than the vehicle body mounting flange 12 is a surface to which a knuckle (not shown) serving as a suspension device of the vehicle body is fitted.
  • the side closer to the outer side in the vehicle width direction when attached to the vehicle body is referred to as the outboard side
  • the side closer to the center in the vehicle width direction is referred to as the inboard side.
  • vehicle body mounting holes 13 including bolt insertion holes or screw holes are provided.
  • the inner member 1 is composed of two parts, a hub 14 and an inner ring 15 fitted to the outer periphery of the inboard side end of the shaft portion 14 a of the hub 14.
  • the hub 14 and the inner ring 15 are formed with the raceway surfaces 6 and 7 on the inner member 1 side.
  • An inner ring fitting surface 16 having a step and a small diameter is provided at the inboard side end on the outer periphery of the shaft portion 14 a of the hub 14, and the inner ring 15 is fitted to the inner ring fitting surface 16.
  • a through hole 21 through which a stem portion (not shown) of the outer ring of the constant velocity joint is inserted is provided at the center of the hub 14.
  • the hub 14 has a wheel mounting flange 17 on the outer periphery of the end on the outboard side of the shaft portion 14a.
  • a hub bolt is inserted into each bolt press-fitting hole 18 provided at a plurality of locations in the circumferential direction of the wheel mounting flange 17. 19 is attached in the press-fit state.
  • An annular pilot portion 20 concentric with the hub 14 protrudes from the base portion on the outboard side of the wheel mounting flange 17 of the hub 14.
  • the pilot portion 20 includes a brake pilot 20a serving as a portion for guiding a brake disc that is attached to the side surface on the outboard side of the wheel mounting flange 17, and a wheel pilot 20b that protrudes further to the outboard side than the brake pilot 20a. Consists of.
  • the pilot unit 20 may be divided into a plurality of portions provided with notches at a plurality of locations in the circumferential direction.
  • the hub 14 does not have the through hole 21 in the example of FIG. 4A and 4B
  • the inner ring 15 is a caulking portion in which the inboard side end of the shaft portion 14a of the hub 14 is caulked to the outer diameter side. It is fixed to the hub 14 in the axial direction by 14b.
  • the hub 14, the inner ring 15, and the outer member 2, which are parts constituting the inner member 1, are all hot forged steel materials.
  • the surface of the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30.
  • the base material portion of the hub 14 has a standard structure.
  • the non-standard structure of the non-standard structure portion 30 is a structure obtained by laser quenching, for example, one of a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, and a tempered martensite structure, Alternatively, at least two of these tissues are mixed.
  • the non-standard tissue portion 30 is a tissue obtained by laser hardening even when not specifically described.
  • the manufacturing process of the hub 14 is performed, for example, in the order of forging ⁇ turning ⁇ laser quenching ⁇ high frequency quenching of the raceway surface ⁇ tempering ⁇ grinding ⁇ assembly. That is, the material of the hub 14 is made into a forged finished product by hot forging, and the forged finished product is turned.
  • the steel material used as the material is carbon steel having a C content of 0.4 wt% or more and 0.8 wt% or less, such as S53C. However, the steel material used as a raw material is not limited to S53C.
  • the surface of the base portion on the outboard side of the wheel mounting flange 17 subjected to the turning process is hardened by laser hardening.
  • laser quenching involves quenching and hardening the surface layer of the target location by irradiating the location where the high-energy laser beam is desired to be cured, followed by self-cooling after heating.
  • a YAG laser beam is used as the laser beam, and the surface layer on the processed surface is cured without being melted by adjusting its output, defocus amount L1, feed speed, and oscillation mode.
  • the oscillation form of the laser light there are a system for continuously oscillating the laser light and a system for intermittently oscillating the laser light.
  • the defocus amount L1 is a value that focuses the focus f1 of the condenser lens on the surface S1 of the portion to be cured and separates the laser head nozzle LN from the surface S1 of the portion to be cured. In this way, the laser head nozzle LN is separated from the portion to be cured, and the laser light condensed by the lens or the like is irradiated on the surface S1 of the portion to be cured with the focus f1 slightly removed. In this case, the spot diameter of the laser beam on the surface S1 of the portion to be cured becomes larger than when the surface S1 is irradiated with the focal point f1 of the laser beam, and heat is applied substantially uniformly to a relatively wide surface of the portion to be cured. be able to. Therefore, the time required for laser quenching per workpiece can be shortened, and the number of man-hours can be reduced.
  • the wavelength of the laser light can be as short as 1.06 ⁇ m, for example, and it has excellent permeability and can be processed deeply.
  • the wavelength of the laser beam is not limited to 1.06 ⁇ m.
  • the laser beam generated by the YAG laser oscillator may be guided to the laser head nozzle LN by an optical fiber cable (not shown).
  • is, for example, 5 degrees
  • is, for example, 5 degrees
  • the laser head nozzle LN may be attached to the tip of a robot arm (not shown). The moving speed can be adjusted by moving the robot arm relative to the portion to be cured. Note that laser hardening may be performed by moving the workpiece relative to the fixed laser head nozzle LN. It is also possible to apply an excimer laser as an alternative to the YAG laser. It is also possible to apply a semiconductor laser as an alternative to the YAG laser. When using a semiconductor laser beam, a laser beam having a wavelength of, for example, 808 nm can be used. However, the oscillation wavelength is not necessarily limited to 808 nm. It is also possible to laser quench one workpiece using semiconductor lasers with different oscillation wavelengths.
  • the wavelength of the semiconductor laser light is visible light, the reflectance on the processed surface is low, and there is an advantage that laser processing is possible even at low output.
  • the intensity distribution of the laser beam can be rectangular, large area quenching can be performed efficiently. Therefore, it is possible to further shorten the time required for laser quenching per workpiece, and to reduce the number of man-hours, as compared with the case using the YAG laser beam or the infrared laser beam.
  • the laser output can be reduced as compared with YAG laser light or the like, the energy cost can be reduced.
  • the non-standard structure is a structure obtained by quenching using a semiconductor laser beam
  • Laser hardening can be performed by using a mirror system including at least one of a microlens array, a condensing lens, a beam splitter, and the like together with a semiconductor laser.
  • a workpiece is laser-quenched using such a mirror system, the energy loss of laser light can be reduced.
  • a moving mechanism for moving the laser head nozzle or the like relative to the workpiece can be omitted. In this case, the facility cost can be reduced.
  • the surface hardness of the hardened range (non-standard tissue portion 30) is set to 40 HRC or more.
  • the base material portion of the hub 14 is a standard structure portion, and the hardness of the base material portion is 13 to 25 HRC. If the hardness of the non-standard structure is less than 20 HRC, the strength and fatigue strength are insufficient, and the toughness is excellent in the range of 20 to 40 HRC. However, the strength and fatigue strength such as rigidity are higher than those exceeding 40 HRC. Inferior. Thereafter, induction hardening of the raceway surface 6 and the inner ring fitting surface 16 is performed and tempered. Thereafter, the raceway surface 6 and the like are ground, and the hub 14 that has been ground is assembled to the wheel bearing device.
  • the order of laser hardening and induction hardening may be reversed.
  • the non-standard tissue portion 30 has a short distance between the seal land 5 and the raceway surfaces 6, 8, and 9, it is preferable to perform laser hardening after induction hardening. If the seal land 5 or the raceway surfaces 6, 8, 9 and the non-standard tissue portion 30 are close to each other, if laser quenching is performed first, the heat generated by the induction hardening of the seal land 5, the raceway surfaces 6, 8, 9, etc. performed later However, the laser hardened part is tempered at a high temperature, and the hardness of the laser hardened part may be lowered.
  • the hardness of the laser-quenched portion can be ensured by performing induction hardening with a wide heat-affected range first and laser hardening with a narrow heat-affected range later. Tempering is performed by heating with a laser beam whose output, defocus amount, and feed rate are adjusted, whether the hub 14 is put into a heating furnace for overall heating or high-frequency heating. It may be tempered.
  • the hub 14, which is a part having the wheel mounting flange 17, is a hot forged product of steel, and the hub 14 has a standard structure as a base material portion, and the outboard of the wheel mounting flange 17 that is a part of the hub 14. Since the surface portion 30 of the side root portion has a non-standard structure, and the non-standard structure is a structure obtained by laser quenching, strength and fatigue strength are desired for high stress and repeated stress. The strength and fatigue strength of the base portion on the outboard side of the wheel mounting flange 17 that is a portion can be improved.
  • the surface portion 30 of the base portion on the outboard side of the wheel mounting flange 17 is a non-standard structure, and the non-standard structure includes fine ferrite / pearlite structure, upper bainite structure, lower bainite structure,
  • the strength of the root portion on the outboard side of the wheel mounting flange 17 is improved and the life is extended. Is obtained. That is, when the automobile turns, for example, a large-amplitude flexure is repeatedly generated in the wheel mounting flange 17, and high stress is repeatedly generated in the root portion of the flange 17 on the outboard side.
  • the structure is larger than the base material portion made of the standard structure. It is fine and has a hardness equal to or higher than that, and the fatigue strength is improved by refining the structure and increasing the hardness. Therefore, compared with a wheel mounting flange made of only a normal standard structure, the strength is increased, it can withstand a high stress amplitude, and cracks are suppressed from occurring at the root portion on the outboard side of the wheel mounting flange 17. Can extend the life. That is, the action of crack generation ⁇ increased displacement of the wheel mounting flange 17 ⁇ increased vibration of the vehicle ⁇ damage of the wheel bearing device is suppressed and the life is extended.
  • the non-standard tissue portion 30 is obtained in particular by laser quenching. If the portion of the non-standard structure is obtained by conventional high-frequency heat treatment, there may be a problem that a part of the pilot portion becomes too hot locally and melts.
  • the surface portion 17 a on the outboard side of the wheel mounting flange 17 The laser head nozzle LN is moved over the corner portion 17b and the outer peripheral surface 20aa of the pilot portion 20, and at least one of the laser beam output, the defocus amount L1, and the oscillation mode is changed. Thereby, it is possible to prevent a part of the pilot unit 20 from becoming too hot and solve problems such as melting away.
  • the non-standard texture portion is obtained by conventional high-frequency heat treatment or shot peening, most of the wheel mounting flange 17 is heat-treated and the vibration of the wheel mounting flange 17 due to thermal strain or the like. Accuracy degradation can occur.
  • only the non-standard texture portion 30 of the wheel mounting flange 17 can be heat-treated by being limited by laser quenching. Therefore, it is possible to maintain the deflection accuracy of the wheel mounting flange 17 with high accuracy. Therefore, the deflection accuracy of the brake disc attached to the side surface on the outboard side of the wheel mounting flange 17 can be maintained with high accuracy.
  • the entire hub 14 When the entire hub 14 is tempered so as to increase the fatigue strength, the workability of the entire hub 14 is reduced due to the increased hardness.
  • the non-standard portion 30 of the wheel mounting flange 17 is used. Only limited laser quenching. For this reason, deterioration of workability such as machinability can be minimized.
  • FIG. 3 shows a second embodiment of the present invention. This embodiment is obtained by increasing the number of non-standard tissue portions 30 in the first embodiment described with reference to FIGS. 1 and 2A, 2B.
  • the entire range of both side surfaces of the wheel mounting flange 17 of the hub 14 and the range extending from the side surface on the outboard side of the wheel mounting flange 17 to the outer peripheral surface of the brake pilot 20a at the root portion thereof are non-standard. It is a part 30 of the organization. Further, the entire side surface on the outboard side, which is the side surface opposite to the side surface on the vehicle body mounting side of the vehicle body mounting flange 12 in the outer member 2, and the outer member 2 on the outboard side from the vehicle body mounting flange 12.
  • These non-standard tissue portions 30 are portions where the non-standard tissue is obtained by laser quenching as in the case of the hub 14.
  • the non-standard organization is the same as each example given in the first embodiment.
  • Other configurations are the same as those of the first embodiment.
  • the entire side surfaces of the wheel mounting flange 17 are the non-standard structure portions 30, so that the entire wheel mounting flange 17 is strengthened and the life is further increased.
  • a brake disk (not shown) is attached to the side surface of the wheel mounting flange 17 on the outboard side which is the wheel mounting surface, but the structure of the surface of the wheel mounting flange 17 is refined and the hardness is increased. Further, it is possible to prevent the surface accuracy from being deteriorated due to wear of the flange surface by fretting with the brake disk. Therefore, deterioration of the brake feeling, for example, judder or kickback can be suppressed.
  • the non-standard tissue portion 30 is provided on the entire base portion of the vehicle body mounting flange 12 and the side surface on the outboard side. The strength of 30 and fatigue strength are improved, it can withstand high stress amplitude, and the life can be extended. Therefore, the wheel bearing device can be further reduced in size and weight, the input weight for manufacturing the product can be reduced, and the cost can be reduced.
  • the non-standard tissue portion 30 of each part may be selectively provided with any one or a plurality of portions 30 in any combination.
  • the wheel bearing device in the first embodiment of FIG. 1 is used for supporting a driven wheel.
  • the hub 14 does not have the through hole 21 in the first embodiment of FIG.
  • the inner ring 15 is fixed in the axial direction with respect to the hub 14 by a caulking portion 14b in which the inboard side end of the shaft portion 14a of the hub 14 is caulked to the outer diameter side.
  • the non-standard tissue portion 30 is only the surface of the root portion on the outboard side of the wheel mounting flange 17. Also good.
  • FIG. 3 (A) as in the example of FIGS.
  • the effect of providing the non-standard tissue portion 30 is the same as the example of FIG.
  • the caulking portion 14b is hardened when the non-standard structure portion 30 is obtained by laser quenching. It is not an obstacle to the caulking work.
  • FIGS. 5A, 5B to 12A, 12B show fourth to eleventh embodiments of the present invention, respectively.
  • (A) and (B) show examples in which the portions where the non-standard tissue portions 30 are provided are different.
  • strength and fatigue strength can be improved by refining the structure and increasing the hardness, and the life can be extended, or fretting wear can be achieved by increasing the hardness. Can be reduced.
  • the matters other than those specifically described are the same as those in the first embodiment described with reference to FIGS. 1 and 2A and 2B.
  • the non-standard tissue portions 30 of each portion are selected as one or a plurality of portions 30 in any combination. It may be provided.
  • the wheel bearing device is a tapered roller bearing type for supporting a driving wheel.
  • the inner member 1 includes a hub 14 and the hub 14.
  • the inner ring 15 of the double row fitted to the outer periphery of the shaft portion 14a.
  • the inner ring 15 is provided for each row.
  • the outer member 2 is composed of a single component.
  • FIG. 4B shows an example in which the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30.
  • both the side surfaces of the wheel mounting flange 17 and the side surfaces of the outer member 2 on the side opposite to the vehicle body mounting side of the vehicle body mounting flange 12 are the same as in the example of FIGS.
  • a portion 30 extending from the side surface on the board side to the outer diameter surface and a root portion on the side surface on the inboard side of the vehicle body mounting flange 12 are provided with a non-standard tissue portion 30.
  • the wheel bearing device of the example of FIGS. 5 (A) and 5 (B) is used for supporting the driven wheel, and the hub 14 penetrates the center.
  • the hole 21 is not provided.
  • the inner ring 15 is fixed to the hub 14 by a caulking portion 14 b of the hub 14.
  • Other configurations are the same as those of the example of FIGS.
  • the wheel bearing device of the sixth embodiment shown in FIGS. 7 (A) and 7 (B) is of an angular ball bearing type for supporting a driving wheel
  • the inner member 1 includes a hub 14 and the hub 14.
  • the inner ring 15 of the double row fitted to the outer periphery of the shaft portion 14a.
  • the inner ring 15 is provided for each row, and the inner ring 15 on the inboard side may have a larger thickness and axial dimension than the inner ring 15 on the outboard side.
  • the inner ring 15 is fixed to the hub 14 in the axial direction by a caulking portion 14 b provided on the hub 14.
  • the outer member 2 is composed of one integral part, and the outer diameter surface is a cylindrical surface throughout, and does not have the vehicle body mounting flange 12 in the example of FIG.
  • FIG. 4B shows an example in which the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30.
  • both side surfaces of the wheel mounting flange 17 and the outer diameter surface of the outer member 2 are non-standard tissue portions 30.
  • a knuckle (not shown) for fixing the outer member 2 and the outer member 2 Fretting wear on the fitting surface is suppressed by the high hardness of the non-standard texture portion 30 on the outer diameter surface.
  • the wheel bearing device in the example of FIGS. 7A and 7B is used for supporting a driven wheel, and the hub 14 penetrates the center.
  • the hole 21 is not provided.
  • Other configurations are the same as those in the example of FIGS.
  • the wheel bearing device of the eighth embodiment shown in FIGS. 9 (A) and 9 (B) is similar to the wheel bearing device of FIGS. 7 (A) and 7 (B). It consists of a double row of inner rings 15 fitted to the outer periphery of the shaft portion 14 a of the hub 14.
  • the outer member 2 is composed of one integral part and does not have the vehicle body mounting flange 12.
  • the two inner rings 15 are the same size, and the inner ring 15 is fixed in the axial direction to the hub 14 by a constant velocity joint (not shown) coupled to the hub 14 without caulking. Is called.
  • the portion 30 to be a non-standard organization is the same as the example of FIGS. 7 (A) and 7 (B).
  • the wheel bearing device of the ninth embodiment shown in FIGS. 10A and 10B is of the second generation type inner ring rotating type, and the outer member 2 has a body mounting flange 12.
  • the inner member 1 includes a double row of inner rings 15 and a hub (not shown) for fitting the inner rings 15 to the outer periphery of the shaft portion.
  • the hub has a wheel mounting flange as in the example of FIGS. 9 (A) and 9 (B).
  • the portion extending from the side surface on the outboard side which is the side surface on the side opposite to the vehicle body mounting side of the vehicle body mounting flange 12 of the outer member 2, and the inboard of the vehicle body mounting flange 12
  • a non-standard tissue portion 30 is provided at the root of the side surface.
  • a non-standard tissue portion 30 is provided at the base portion on the inboard side of the vehicle body mounting flange 12.
  • the hub (not shown) with which the inner ring 15 is fitted is non-standard at the base part on the outboard side of the wheel mounting flange 17 or both side surfaces, as in the examples of FIGS. 9 (A) and 9 (B).
  • a tissue portion 30 may be provided.
  • the wheel bearing device is of the fourth generation type, and the inner member 1 is the hub 14 and one joint member of the constant velocity joint 31.
  • the outer race 32 is a joint outer ring 32, and the raceway surfaces 6, 7 of each row are formed on the hub 14 and the joint outer race 32.
  • the outer member 2 is made of one component and has a vehicle body mounting flange 12.
  • FIG. 4B shows an example in which the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30.
  • 6A shows both side surfaces of the wheel mounting flange 17 and portions extending from the side surface on the outboard side, which is the side surface of the outer member 2 opposite to the vehicle body mounting side of the vehicle body mounting flange 12, to the outer diameter surface, and This is an example in which a non-standard tissue portion 30 is formed at the root portion of the side surface on the inboard side of the vehicle body mounting flange 12.
  • the wheel bearing device according to the eleventh embodiment shown in FIGS. 12A and 12B is of the second generation type outer ring rotating type, and the inner member 1 is composed of double rows of inner rings 15.
  • the outer member 2 has a wheel mounting flange 17 and a pilot portion 20.
  • FIG. 5B is an example in which the base portion on the outboard side of the wheel mounting flange 17 of the outer member 2 is a non-standard tissue portion 30.
  • FIG. 3A shows an example in which both side surfaces of the wheel mounting flange 17 and the outer diameter surface of the outer member 2 are non-standard tissue portions 30.
  • the non-standard tissue portion 30 is partially provided on the surface of the parts constituting the inner member 1 or the outer member 2.
  • the entire surface of the parts constituting the member 2, such as the hub 14 and the outer member 2 may be used as the non-standard tissue portion 30.
  • the material of the outer member 2 shown in FIG. 13 is carbon steel having a C content of 0.4 wt% or more and 0.8 wt% or less, such as S53C.
  • the steel material used as a raw material is not limited to S53C.
  • An inner ring fitting surface 16 having a step and a small diameter is provided at an end on the inboard side of the outer periphery of the shaft portion 14a of the hub 14 of this embodiment, and the inner ring 15 has a shimiro on the inner ring fitting surface 16. Press-fit in the state.
  • the material of the inner ring 15 is, for example, high carbon chrome bearing steel such as SUJ2. However, the steel material used as a raw material is not limited to SUJ2.
  • a through hole 21 is provided through which the stem portion 32 a of the outer ring serving as one joint member 32 of the constant velocity joint 31 is inserted.
  • the stem portion 32a is formed of a serration shaft, and the inner surface of the through hole 21 is provided with a serration 21a that meshes with the serration of the stem portion 32a except for the vicinity of the end on the inboard side.
  • the stem portion 32a may be a spline shaft, and the spline SP may be provided instead of the serration 21a of the hub 14.
  • the opening peripheral edge of the through-hole 21 on the end surface of the hub 14 on the outboard side becomes a seat surface 35 with which a nut 33 screwed on the male screw portion at the tip of the stem portion 32a or a washer 34 laid under the nut 33 is in contact.
  • the step surface 32 b of the joint member 32 is pressed against the end surface of the inner ring 15, and the wheel bearing device and the constant velocity joint 31 are coupled.
  • the seat surface 35 of the hub 14 is a bottom surface of the counterbore portion 36.
  • a concave portion 37 is provided on the inner surface side of the pilot portion 20 on the end surface on the outboard side of the hub 14, and the counterbore portion 36 is provided on the bottom portion of the concave portion 37. Due to the formation of the recess 37, the pilot portion 20 has a cylindrical shape.
  • the inner surface of the recess 37 is a forged skin or a turning surface, and the inner surface, that is, the bottom surface and the peripheral surface of the countersink portion 36 are turned surfaces.
  • the counterbore part 36 is not limited to a deeply formed part as shown in the drawing, but may be a part having a depth to the extent that the forged skin portion is cut away.
  • the hub 14, inner ring 15, and outer member 2, which are parts constituting the inner member 1, are all hot forged products of steel materials.
  • the hub 14 is a serration 21 a on the inner diameter surface of the through hole 21.
  • the surface portion of the portion provided with is a non-standard tissue portion 30.
  • the base material portion of the hub 14 has a standard structure.
  • the following operational effects can be obtained in addition to the effects of the first embodiment described above. Since the serrations 21a are formed on the inner diameter surface of the hub 14 in a tooth shape, the trough portion may become highly stressed due to a moment load acting on the hub 14 when the vehicle is turning, etc. Due to repeated fine deformation / displacement, the teeth of the serrations 21a of the hub 14 and the constant velocity joint 31 are rubbed and worn.
  • the structure refinement and hardness are improved by the increase, and the occurrence of cracks from the roots of the serrations 21a is suppressed. That is, the action of crack generation ⁇ increase in displacement of the stress generation site ⁇ extension of crack ⁇ breakage of the hub is suppressed and the life is extended.
  • the serration 21a is prevented from being worn. For this reason, it is possible to prevent the teeth from being worn and the driving force from being transmitted.
  • the non-standard tissue portion 30 is obtained in particular by laser quenching. If the portion of the non-standard structure is obtained by conventional high-frequency heat treatment, the formation portion of the serration 21a on the inner diameter surface of the hub 14 has a tooth shape, so that part of the serration 21a is locally hot. Problems such as melting out too much can occur.
  • the laser head nozzle LN faces the serration 21a. When the position is moved relatively to or near these positions, at least one of the output of the laser beam, the defocus amount, and the oscillation mode is changed. Thereby, it is possible to prevent the serrations 21a from becoming too high, and solve problems such as the serrations 21a being melted.
  • the non-standard texture portion is obtained by conventional high-frequency heat treatment, most of the wheel mounting flange 17 is heat-treated, and the deflection accuracy of the wheel mounting flange 17 is deteriorated due to thermal strain or the like. Can occur.
  • only the inner diameter surface of the target through-hole 21 in the hub 14 can be heat-treated by being limited by laser quenching, so that the deflection accuracy of the wheel mounting flange 17 can be improved. High accuracy can be maintained. Therefore, the deflection accuracy of the brake disc attached to the side surface on the outboard side of the wheel mounting flange 17 can be maintained with high accuracy.
  • the entire hub 14 when the entire hub 14 is tempered to increase the fatigue strength, the workability of the entire hub 14 is reduced due to the increased hardness.
  • only the target portion of the wheel mounting flange 17 is provided. Is made into a non-standard tissue portion 30 by laser quenching limitedly. Therefore, only the inner diameter surface of the through-hole 21 having a non-standard structure can be limited in hardness. Unlike the case where the entire surface of the hub 14 is made of a non-standard structure, deterioration of workability such as machinability and caulking properties can be minimized.
  • the hub 14 other than the inner diameter surface of the through hole 21 is not hardened, and grinding after the heat treatment can be easily and quickly performed. Therefore, the number of processing steps can be reduced and the cycle time per product can be improved as compared with the conventional one. In other words, it is possible to suppress a decrease in productivity due to an increase in the number of processes compared to the conventional one. In addition, the life of a grinding wheel or the like can be extended, and the manufacturing cost can be reduced. Further, unlike shot peening, an optical fiber cable or the like can be easily passed through the through hole 21 even if the inner diameter of the through hole 21 of the hub 14 is narrow. Accordingly, it is possible to irradiate a predetermined portion of the inner diameter surface of the through hole 21 with laser light.
  • the formation portion of the serration 21a is a non-standard tissue portion 30, and the non-standard tissue is a tissue obtained by laser quenching. Strengthening and fatigue strength are improved by extending the structure of the non-standard structure portion 30 and increasing the hardness, thereby extending the life. Further, the wear of the serration 21a is reduced by increasing the hardness of the portion where the serration 21a is formed.
  • the matters other than those specifically described are the same as those in the twelfth embodiment described with reference to FIGS. 13 to 15A and 15B.
  • the thirteenth embodiment shown in FIG. 16 corresponds to the fourth embodiment shown in FIG.
  • the wheel bearing device of this embodiment is of a tapered roller bearing type for driving wheel support, and the inner member 1 is a double row in which the hub 14 and the outer periphery of the shaft portion 14a of the hub 14 are fitted. Of the inner ring 15. The inner ring 15 is provided for each row.
  • the outer member 2 is composed of a single component and has a vehicle body mounting flange 12. According to this embodiment, there exists an effect similar to the wheel bearing apparatus of 12th Embodiment shown in FIG.
  • the fourteenth embodiment shown in FIG. 17 corresponds to the eighth embodiment shown in FIG.
  • the wheel bearing device of this embodiment is of an angular ball bearing type for driving wheel support, and the inner member 1 is connected to the hub 14 in the same manner as the wheel bearing device of the thirteenth embodiment shown in FIG. And a double row of inner rings 15 fitted to the outer periphery of the shaft portion 14a of the hub 14.
  • the outer member 2 is composed of one integral part, and does not have the vehicle body mounting flange 12 in the example of FIG. 13 and has a cylindrical surface throughout.
  • the material of the outer member 2 of this embodiment is, for example, high carbon chrome bearing steel such as SUJ2. However, the steel material used as a raw material is not limited to SUJ2.
  • the two inner rings 15 have the same size. According to this embodiment, there exists an effect similar to the wheel bearing apparatus of 12th Embodiment shown in FIG.
  • the inner member 1 includes a hub 14 and a double-row inner ring 15 fitted to the outer periphery of the shaft portion 14 a of the hub 14.
  • the inner ring 15 is provided for each row, and the inner ring 15 on the inboard side is larger in thickness and axial dimension than the inner ring 15 on the outboard side.
  • the inner ring 15 is fixed to the hub 14 in the axial direction by a caulking portion 14 b provided on the hub 14.
  • the outer member 2 is composed of one integral part, and the outer diameter surface is a cylindrical surface throughout, and does not have the vehicle body mounting flange 12 in the example of FIG.
  • the wheel bearing device according to the embodiment of FIG. 6 also has the same effects as the wheel bearing device of the twelfth embodiment shown in FIG.
  • a wheel bearing device includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and the inner member includes a hub having a wheel mounting flange and the hub.
  • the hub comprises at least one inner ring fitted to the outer periphery of the shaft portion, and the hub has a through-hole through which the stem portion of the joint member of the constant velocity joint is inserted at the center portion, and the stem portion is formed on the inner diameter surface of the through-hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided is a wheel bearing apparatus that permits a limited increase in hardness of a wheel mounting flange, which is the portion where strength and fatigue strength to resist high stress and repetitive stress are desired, and that limits lowered productivity caused by the number of steps. A hub (14) that has a wheel mounting flange (17) is a hot forged component made of a steel material. In the hub (14), the base material has a standard structure, there is a non-standard structure on the surface of the wheel mounting flange (17), and the non-standard structure is a structure obtained by laser hardening.

Description

車輪用軸受装置Wheel bearing device 関連出願Related applications
 本願は2008年9月2日出願の特願2008-224476および2008年10月3日出願の特願2008-258343の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2008-224476 filed on September 2, 2008 and Japanese Patent Application No. 2008-258343 filed on October 3, 2008, which is incorporated herein by reference in its entirety. Cite it as an eggplant.
 この発明は、乗用車用や貨物車用等の高強度化を図った車輪用軸受装置に関する。 The present invention relates to a bearing device for a wheel that has been improved in strength for passenger cars, freight cars, and the like.
 車輪用軸受装置において、ハブの車輪取付用フランジの付け根部などは、車両の急旋回時に応力が大きくなる。そのため、損傷対策として疲れ強さを向上させる対策として、上記フランジの付け根部などに、高周波熱処理を施す方法(例えば特許文献1)や、ショットピーニングを行う方法がある(例えば特許文献2)。 In the wheel bearing device, stress at the base of the hub wheel mounting flange of the hub increases when the vehicle turns suddenly. Therefore, as measures for improving fatigue strength as measures against damage, there are a method of performing high-frequency heat treatment (for example, Patent Document 1) and a method of performing shot peening (for example, Patent Document 2) on the root portion of the flange.
 上記した高周波熱処理は、処理を施す部分の部品形状によっては採用できない場合がある。例えば、車輪取付用フランジの付け根部の側面には、ブレーキやホイールを案内するパイロット部が突出していて、フランジとパイロット部間の隅の曲率半径が小さかったり、またパイロット部が切欠を介して円周方向に分散した爪状となっている場合等がある。このような形状の場合、高周波熱処理を行うと、部品の一部が局部的に高温になり過ぎて溶け落ちるなどの問題が生じるため、高周波熱処理を行なえない。 The high frequency heat treatment described above may not be adopted depending on the part shape of the part to be processed. For example, the pilot part that guides the brake and the wheel protrudes from the side surface of the base part of the wheel mounting flange, the radius of curvature of the corner between the flange and the pilot part is small, and the pilot part is circled through the notch. In some cases, the shape is a claw distributed in the circumferential direction. In the case of such a shape, if high-frequency heat treatment is performed, a problem arises in that part of the component becomes locally too hot and melts, and therefore high-frequency heat treatment cannot be performed.
 また、高周波熱処理やショットピーニングなどでは、熱ひずみ等によってフランジの振れ精度劣化を生じることがある。
 疲労強度を上げるために、部品全体を調質し、硬度アップをする方法(例えば特許文献3)もあるが、硬度アップにより全体の加工性(例えば、被削性や、加締め加工などの冷間加工性)が低下し、ハブボルトの食い込み性低下によるスリップトルクの低下等が生じることがある。
In addition, in high-frequency heat treatment or shot peening, the deflection accuracy of the flange may be deteriorated due to thermal strain or the like.
In order to increase the fatigue strength, there is a method of tempering the entire part and increasing the hardness (for example, Patent Document 3). However, the entire workability (for example, machinability and cooling such as caulking) is improved by increasing the hardness. May cause a decrease in slip torque due to a decrease in the biting property of the hub bolt.
 そこで,本発明者等は、前記ハブの熱間鍛造の工程中、あるいは工程の最後において、赤熱中のハブの一部(車輪取付用フランジの付け根部、同フランジのボルト孔座面、パイロット部の内周側部分、内径面のセレーションまたはスプラインの形成部分等)を冷媒で冷却し、自己復熱や復熱保持焼戻しすることで、その部分に硬度アップとなる非標準組織を得る方法を提案している(例えば特許文献4~9)。なお、硬度アップの方法として、ハブパイロット部の内径面を旋削して硬化層を得る方法(例えば特許文献10)もある。 Therefore, the present inventors, during the hot forging process of the hub, or at the end of the process, a part of the hub that is hot (the root part of the wheel mounting flange, the bolt hole seat surface of the flange, the pilot part) Proposes a method of obtaining a non-standard structure that increases the hardness of the part by cooling the inner peripheral side part, the serration of the inner diameter surface or the spline formation part) with a refrigerant and self-recovery or recuperation holding (For example, Patent Documents 4 to 9). In addition, as a method for increasing the hardness, there is a method (for example, Patent Document 10) in which a hardened layer is obtained by turning the inner surface of the hub pilot portion.
特開2004-182127号公報JP 2004-182127 A 特開2005-145313号公報JP 2005-145313 A 特開2005-003061号公報JP 2005-003061 A 特開2007-022464号公報JP 2007-022464 A 特開2007-038899号公報JP 2007-038899 A 特開2007-038804号公報JP 2007-038804 A 特開2007-038803号公報JP 2007-038803 A 特開2007-038805号公報JP 2007-038805 A 特開2007-051749号公報JP 2007-051749 A 特開2005-145313号公報JP 2005-145313 A
 しかし、鍛造熱を利用する特許文献4~9に開示の技術の場合、非標準組織としたい部分以外の部分にも冷媒が及ぶことで、目的としない部分やハブパイロット部などの他の薄肉部が硬化し、後の旋削加工で削りにくくなるなどの問題が発生する。例えば、薄肉部であるハブパイロット部では、全体が30~35HRCに硬化し、旋削刃具の寿命が低下する。 However, in the case of the techniques disclosed in Patent Documents 4 to 9 that use forging heat, the refrigerant also extends to portions other than the portion that is desired to be a non-standard structure, and other thin portions such as an undesired portion and a hub pilot portion. Will harden and become difficult to cut in later turning. For example, in the hub pilot part which is a thin part, the whole is hardened to 30 to 35 HRC, and the life of the turning blade is reduced.
 この発明の目的は、高応力や繰り返し応力に対して、強度や疲れ強さが望まれる部分である車輪取付用フランジおよび車体取付用フランジのうち少なくとも一方のフランジを限定的に硬度アップさせることができ、かつ工程増による生産性の低下が抑えられる車輪用軸受装置を提供することである。 An object of the present invention is to limit the hardness of at least one of a wheel mounting flange and a vehicle body mounting flange, which are parts where strength and fatigue strength are desired against high stress and repeated stress, to a limited extent. It is possible to provide a wheel bearing device that is capable of suppressing a decrease in productivity due to an increase in processes.
 この発明にかかる車輪用軸受装置は、複列の転動体を介して互いに回転自在な内方部材および外方部材を有し、これら内方部材または外方部材の全体または一部を構成する部品が、車輪取付用フランジおよび車体取付用フランジのうち少なくとも一方のフランジを有する車輪用軸受装置であって、前記一方のフランジを有する部品が鋼材の熱間鍛造品であり、この部品は、母材部分が標準組織であって、前記一方のフランジの表面に非標準組織を有し、前記非標準組織が、レーザ焼入れにより得られた組織である。 A wheel bearing device according to the present invention includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and a component that constitutes all or part of the inner member or the outer member. Is a wheel bearing device having at least one of a wheel mounting flange and a vehicle body mounting flange, and the component having the one flange is a hot forged product of steel, and this component is a base material. The portion is a standard structure, has a non-standard structure on the surface of the one flange, and the non-standard structure is a structure obtained by laser quenching.
 自動車の旋回時等には、車輪取付用フランジおよび車体取付用フランジのうち少なくとも一方のフランジに大きな振幅の撓みが繰り返し生じ、このフランジの根元部には高応力が繰り返し発生する。このような繰り返し発生する高応力に対して、前記一方のフランジの表面が前記の非標準組織であると、組織微細化や硬度アップによって強度や疲れ強さが向上し、前記一方のフランジの表面に亀裂が発生することが抑制される。
 上記非標準組織の部分は、標準組織からなる母材部分に比べて組織が微細であり、また硬度が同等以上のものとなる。このような組織微細化や硬度アップにより、非標準組織の部分の疲れ強さが向上し、通常の標準組織のみからなる車輪取付用フランジおよび車体取付用フランジに比べて、高い応力振幅に耐え、つまり高強度化され、長寿命化できる。そのため、通常の標準組織の車輪用軸受装置に比べて、小型化、および軽量化が図れる。したがって、車輪用軸受装置の製品製作の投入重量が削減されて、コストの削減が図れ、安価に提供することが可能となる。また、車輪用軸受装置が軽量となるため、自動車の軽量化が図れ、燃費の改善が可能となる。
When the automobile turns, for example, at least one of the wheel mounting flange and the vehicle body mounting flange repeatedly bends with a large amplitude, and high stress is repeatedly generated at the root of the flange. With respect to such repeated high stress, if the surface of the one flange is the non-standard structure, the strength and fatigue strength are improved by refining the structure and increasing the hardness, and the surface of the one flange It is possible to prevent cracks from occurring.
The portion of the non-standard structure is finer than the base material portion made of the standard structure and has a hardness equal to or higher than that of the base material. By reducing the size of the structure and increasing the hardness, the fatigue strength of the non-standard structure is improved, and it can withstand high stress amplitude compared to the wheel mounting flange and the vehicle body mounting flange made of only the standard structure. That is, the strength is increased and the life can be extended. Therefore, it can be reduced in size and weight as compared with a wheel bearing device having a normal standard structure. Accordingly, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost. Further, since the wheel bearing device is light, the weight of the automobile can be reduced, and the fuel consumption can be improved.
 前記非標準組織の部分は、レーザ焼入れにより得られるため、パイロット部等の一部が高温になり過ぎることを未然に防止し、部品の一部が溶け落ちる等の問題を解消し得る。また、前記一方のフランジのうち表面だけを、レーザ焼入れにより限定して熱処理することができるため、前記一方のフランジの振れ精度等を高精度に維持することが可能となる。前記一方のフランジを有する部品全体のうち、前記一方のフランジの表面以外の大部分は、硬化せず、熱処理後の研削加工等を容易に且つ迅速に行うことができる。それ故、従来のものより、加工工数の低減を図り、製品1個あたりのサイクルタイムの向上を図ることが可能となる。換言すれば、従来のものより、工程増による生産性の低下を抑えることができる。また、研削砥石等の寿命を延ばし、製造コストの低減を図ることができる。 Since the part of the non-standard structure is obtained by laser quenching, it is possible to prevent a part of the pilot part or the like from becoming too hot, and solve problems such as part of the part being melted. In addition, since only the surface of the one flange can be heat-treated while being limited by laser quenching, it is possible to maintain the deflection accuracy and the like of the one flange with high accuracy. Of the entire part having the one flange, most of the part other than the surface of the one flange is not cured, and grinding processing after the heat treatment can be easily and quickly performed. Therefore, the number of processing steps can be reduced and the cycle time per product can be improved as compared with the conventional one. In other words, it is possible to suppress a decrease in productivity due to an increase in the number of processes compared to the conventional one. In addition, the life of a grinding wheel or the like can be extended, and the manufacturing cost can be reduced.
 この発明の車輪用軸受装置において、前記非標準組織の部分が、前記一方のフランジの根元部であっても良い。ここで言う根元部は、前記一方のフランジの側面だけでなく、前記一方のフランジの付近の部分を含む意味である。
 自動車の旋回時等には、少なくとも一方のフランジに大きな振幅の撓みが繰り返し生じ、この一方のフランジの根元部には高応力が繰り返し発生する。このような繰り返し発生する高応力に対して、前記一方のフランジの根元部が前記の非標準組織であると、組織微細化や硬度アップによって強度や疲れ強さが向上し、前記一方のフランジの根元部に亀裂が発生することが抑制される。
In the wheel bearing device of the present invention, the portion of the non-standard structure may be a root portion of the one flange. Here, the root portion means not only the side surface of the one flange but also the portion near the one flange.
When the automobile turns, for example, at least one flange is repeatedly bent with a large amplitude, and a high stress is repeatedly generated at the base of the one flange. When the root portion of the one flange is the non-standard structure with respect to the high stress that repeatedly occurs, the strength and fatigue strength are improved by refining the structure and increasing the hardness. Generation of cracks at the root is suppressed.
 この発明の車輪用軸受装置において、前記非標準組織の部分が、前記一方のフランジの車輪取付面または車体取付面と反対側の側面であっても良い。車輪取付用フランジにおける車輪取付面と反対側の側面、または車体取付用フランジの車体取付面と反対側の側面については、根元部を必ずしも非標準組織の部分としなくても良い。この場合も、繰り返し発生する高応力に対して、強度や疲れ強さが向上する。 In the wheel bearing device of the present invention, the portion of the non-standard structure may be a side surface of the one flange opposite to the wheel mounting surface or the vehicle body mounting surface. For the side surface of the wheel mounting flange opposite to the wheel mounting surface or the side surface of the vehicle body mounting flange opposite to the vehicle body mounting surface, the root portion does not necessarily have to be a non-standard tissue portion. Also in this case, the strength and fatigue strength are improved with respect to the repeatedly generated high stress.
 また、この発明の車輪用軸受装置において、前記非標準組織の部分が、前記一方のフランジの両側面または全面であっても良い。車輪取付用フランジの車輪取付面には、通常、ブレーキディスクが重ねて取付けられるが、車輪取付用フランジの組織微細化や硬度アップにより、ブレーキディスクとのフレッティングによりフランジ面が摩耗して面精度が悪化することが抑えられる。そのため、ブレーキの使用感の悪化、例えばジャダーやキックバック等も抑えられる。車体取付用フランジの両側面または全面を前記非標準組織とした場合は、このフランジとナックル等の接触面におけるフレッティング摩耗が、前記非標準組織の組織微細化や硬度アップにより抑えられる。 Further, in the wheel bearing device of the present invention, the non-standard texture portion may be both side surfaces or the entire surface of the one flange. Brake discs are usually mounted on the wheel mounting surface of the wheel mounting flange, but due to the finer structure and increased hardness of the wheel mounting flange, the surface of the flange is worn by fretting with the brake disc. Is suppressed from worsening. Therefore, deterioration of the brake feeling, for example, judder or kickback can be suppressed. In the case where both side surfaces or the entire surface of the flange for mounting the vehicle body has the non-standard structure, fretting wear on the contact surface such as the flange and the knuckle can be suppressed by refining the structure and increasing the hardness of the non-standard structure.
 この発明において、前記内方部材が、ハブと、このハブの軸部の外周に嵌合した内輪とでなり、前記車輪取付用フランジを有する部品が前記ハブであっても良い。この場合のハブは、例えば複列軸受からなる軸受の完成品とは独立した部品のハブであっても良い。 In this invention, the inner member may be a hub and an inner ring fitted to the outer periphery of the shaft portion of the hub, and the component having the wheel mounting flange may be the hub. The hub in this case may be a hub that is independent of the finished product of a double-row bearing, for example.
 レーザ焼入れにより得られた組織である非標準組織が、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織であっても良い。
 上記微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織等の非標準組織の部分は、標準組織からなる母材部分に比べて組織が微細であり、また硬度が同等以上のものとなる。このような組織微細化や硬度アップにより、非標準組織の部分の疲れ強さが向上し、通常の標準組織のみからなる車輪取付用フランジ、車体取付用フランジ、およびハブに比べて、高い応力振幅に耐え、つまり高強度化され、長寿命化できる。そのため、通常の標準組織の車輪用軸受装置に比べて、小型化、および軽量化が図れる。したがって、車輪用軸受装置の製品製作の投入重量が削減されて、コストの削減が図れ、安価に提供することが可能となる。また、車輪用軸受装置が軽量となるため、自動車の軽量化が図れ、燃費の改善が可能となる。
The non-standard structure, which is a structure obtained by laser hardening, is one of a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, a tempered martensite structure, or at least two of these structures It may be a mixed tissue.
Any of the above-mentioned fine ferrite / pearlite structure, upper bainite structure, lower bainite structure, tempered martensite structure, or at least a non-standard structure such as a mixed structure of two or more of these structures is standard. Compared with the base material portion made of the structure, the structure is fine and the hardness is equal to or higher than that. Such refinement and increased hardness increase the fatigue strength of the non-standard structure, and the stress amplitude is higher than that of wheel mounting flanges, body mounting flanges, and hubs made of only standard structures. Endurance, that is, high strength and long life. Therefore, it can be reduced in size and weight as compared with a wheel bearing device having a normal standard structure. Accordingly, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost. Further, since the wheel bearing device is light, the weight of the automobile can be reduced, and the fuel consumption can be improved.
 前記非標準組織の部分の硬度が20HRC以上40HRC以下であり、母材部分の標準組織の硬度が13HRC以上25HRC以下であっても良い。非標準組織の部分の硬度を20HRC以上40HRC以下とした場合は、靱性が優れたものとなる。この場合、高温焼き戻しにより、非標準組織の部分の硬度が20HRC以上40HRC以下となるようにする。
 前記非標準組織の部分の硬度の下限は、硬度アップによる疲れ強さ向上のために、母材硬度の中央程度の値となる20HRC以上、できれば25HRC以上とすることが好ましい。ハブの使用材料は炭素鋼(C量0.4~0.8%)等であるが、S53C等の場合、標準組織部分の硬度は13~25HRCとなる。加締等の冷間加工を行う場合や、ハブボルトを圧入する部分等を考慮すると、最大で25HRCとすることが好ましい。
The hardness of the non-standard structure portion may be 20 HRC or more and 40 HRC or less, and the hardness of the standard structure of the base material portion may be 13 HRC or more and 25 HRC or less. When the hardness of the portion of the non-standard structure is 20 HRC or more and 40 HRC or less, the toughness is excellent. In this case, the hardness of the portion of the non-standard structure is set to 20 HRC or more and 40 HRC or less by high temperature tempering.
The lower limit of the hardness of the non-standard structure is preferably 20 HRC or more, preferably 25 HRC or more, which is about the center of the base material hardness, in order to improve fatigue strength by increasing the hardness. The material used for the hub is carbon steel (C content 0.4 to 0.8%), but in the case of S53C or the like, the hardness of the standard structure portion is 13 to 25 HRC. In the case of performing cold working such as caulking, or taking into account the portion into which the hub bolt is press-fitted, it is preferable that the maximum is 25 HRC.
 前記非標準組織の部分の硬度が40HRC以上であり、母材部分の標準組織の硬度が13HRC以上25HRC以下であっても良い。非標準組織の硬度が40HRC以上とした場合、剛性等の強度、および疲れ強さを向上させることができる。
 なお、非標準組織の硬度が20HRC未満であると、強度および疲れ強さが不足し、20HRC以上40HRC以下の範囲では、靱性が優れるが、40HRCを超える場合に比べて、剛性等の強度および疲れ強さは劣る。
 前記非標準組織の深さは、0.1mm以上1.5mm以下とするのが良い。非標準組織の深さが0.1mm未満の場合では非標準組織が薄すぎ、効果が見込めない。また、非標準組織の深さを1.5mmより大きくすると、深く非標準組織を得るにはレーザ照射時間が長くなるため、照射範囲以外の部分も加熱され、照射後に照射範囲が急冷されにくくなり、硬度低下や組織の悪化、車輪取付フランジの振れ等の精度悪化、等の問題が生じやすくなる。
The hardness of the non-standard structure portion may be 40 HRC or more, and the hardness of the standard structure of the base material portion may be 13 HRC or more and 25 HRC or less. When the hardness of the non-standard structure is 40 HRC or more, strength such as rigidity and fatigue strength can be improved.
In addition, if the hardness of the non-standard structure is less than 20 HRC, the strength and fatigue strength are insufficient, and the toughness is excellent in the range of 20 HRC or more and 40 HRC or less. The strength is inferior.
The depth of the non-standard tissue is preferably 0.1 mm or more and 1.5 mm or less. When the depth of the non-standard tissue is less than 0.1 mm, the non-standard tissue is too thin and the effect cannot be expected. In addition, if the depth of the non-standard tissue is larger than 1.5 mm, the laser irradiation time becomes long to obtain a deep non-standard tissue, so that the part other than the irradiation range is heated and the irradiation range is not easily cooled after irradiation. Problems such as a decrease in hardness, deterioration of the structure, and deterioration of accuracy such as vibration of the wheel mounting flange are likely to occur.
 この発明の上記各構成の車輪用軸受装置において、レーザ焼入れにより得られた組織である非標準組織が、YAGレーザ光を使用した焼入れにより得られた組織であっても良い。YAGレーザ光によると、レーザ光の波長を短いものとできて、浸透性に優れ、被加工物深く加工することができる。
 また、レーザ焼入れにより得られた組織である非標準組織が、半導体レーザ光を使用した焼入れにより得られた組織であっても良い。半導体レーザは、エネルギー変換効率が高いため大規模な冷却機構が不要であること、ミラー系が不要であること等の理由から、装置を小型化できる。さらに、半導体レーザ光の波長は可視光であるため、加工面での反射率が低く、低出力でもレーザ加工が可能となる利点もある。また、レーザ光の強度分布を矩形状とできるため、大面積の焼入れを効率よく行うことができる。それ故、前記YAGレーザ光や赤外線レーザ光を用いるものよりも、被加工物1個あたりのレーザ焼入れに要する時間短縮を、さらに図ることが可能となり、工数低減を図ることが可能となる。しかも、YAGレーザ光等よりもレーザ出力の低減を図ることができるため、エネルギーコストの低減を図ることができる。また、非標準組織が、半導体レーザ光を使用した焼入れにより得られた組織である場合、レーザ光の吸収を上げるための吸収剤を被加工物に塗布する必要がなくなり、その分、工数低減を図ることが可能となる。なお、半導体レーザと共にミラー系を用いてレーザ焼入れすることも可能である。
In the wheel bearing device having the above-described configurations according to the present invention, the non-standard structure that is a structure obtained by laser quenching may be a structure obtained by quenching using YAG laser light. According to the YAG laser beam, the wavelength of the laser beam can be shortened, the permeability is excellent, and the workpiece can be processed deeply.
Further, the non-standard structure that is a structure obtained by laser quenching may be a structure obtained by quenching using a semiconductor laser beam. Since the semiconductor laser has high energy conversion efficiency, a large-scale cooling mechanism is unnecessary, and a mirror system is not required. Further, since the wavelength of the semiconductor laser light is visible light, there is an advantage that the laser processing is possible even at a low output since the reflectance on the processing surface is low. In addition, since the intensity distribution of the laser beam can be rectangular, large area quenching can be performed efficiently. Therefore, it is possible to further shorten the time required for laser quenching per workpiece, and to reduce the number of man-hours, as compared with the case using the YAG laser beam or the infrared laser beam. In addition, since the laser output can be reduced as compared with YAG laser light or the like, the energy cost can be reduced. In addition, when the non-standard structure is a structure obtained by quenching using a semiconductor laser beam, it is not necessary to apply an absorbent for increasing the absorption of the laser beam to the workpiece, thereby reducing the number of steps. It becomes possible to plan. It is also possible to perform laser hardening using a mirror system together with a semiconductor laser.
 この発明の車輪用軸受装置は、複列の転動体を介して互いに回転自在な内方部材および外方部材を有し、前記内方部材が、車輪取付用フランジを有するハブおよびこのハブの軸部の外周に嵌合した少なくとも1つの内輪からなり、前記ハブが中心部に、等速ジョイントの継手部材のステム部を挿通させる貫通孔を有し、この貫通孔の内径面に前記ステム部に設けられたセレーションまたはスプラインと噛み合うセレーションまたはスプラインを有し、前記ハブの母材部分が鋼材の熱間鍛造で得られた標準組織であり、前記ハブの前記貫通孔の内径面における前記セレーションまたはスプラインの形成部分が非標準組織の部分とされ、前記非標準組織が、レーザ焼入れにより得られた組織であっても良い。 A wheel bearing device according to the present invention includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and the inner member includes a hub having a wheel mounting flange and a shaft of the hub. The hub has a through hole through which the stem portion of the joint member of the constant velocity joint is inserted, and the stem portion is formed on the inner diameter surface of the through hole. The serration or spline that meshes with the provided serration or spline, and the base material portion of the hub is a standard structure obtained by hot forging of a steel material, and the serration or spline on the inner diameter surface of the through hole of the hub The formed part may be a part of a non-standard structure, and the non-standard structure may be a structure obtained by laser quenching.
 この構成の車輪用軸受装置によると、次の作用が得られる。ハブの内径面のセレーションまたはスプラインの形成箇所は、歯状となっているため、自動車の旋回時などにハブに作用するモーメント荷重等により、谷の部分が高応力となることがあり、また微細な変形・変位の繰り返しにより、ハブと等速ジョイントのセレーションの歯が擦れることにより摩耗する。
 しかし、このような繰り返し発生する高応力に対して、ハブのセレーションまたはスプラインの形成された内径面が、前記非標準組織とされていると、組織微細化や硬度アップによって強度や疲れ強さが向上し、セレーションまたはスプラインの歯谷から亀裂が発生することが抑制される。つまり、亀裂発生→応力発生部位の変位増加→亀裂の振動伸展→ハブの損傷、という作用が抑えられて、長寿命化される。そのため、通常の標準組織の車輪用軸受装置に比べて、小型化、および軽量化が図れる。したがって、車輪用軸受装置の製品製作の投入重量が削減されて、コストの削減が図れ、安価に提供することが可能となる。また、車輪用軸受装置が軽量となるため、自動車の軽量化が図れ、燃費の改善が可能となる。
 さらには、上記非標準組織による硬度アップのため、セレーションまたはスプラインの摩耗が防止される。そのため、歯が摩減し、駆動力が伝達できなくなることが抑制される。
According to the wheel bearing device having this configuration, the following effects can be obtained. Since the serrations or splines on the hub's inner surface are toothed, the troughs may become highly stressed due to the moment load acting on the hub when the car is turning, etc. By repeated deformation and displacement, the serration teeth of the hub and the constant velocity joint are worn and worn.
However, if the inner surface where the serrations or splines of the hub are formed with the non-standard structure against such high stresses that occur repeatedly, the strength and fatigue strength are reduced due to the refinement of the structure and the increase in hardness. And cracking from the serration or spline root is suppressed. That is, the operation of crack generation → increase in displacement of the stress generation site → vibration extension of crack → damage of the hub is suppressed, and the life is extended. Therefore, it can be reduced in size and weight as compared with a wheel bearing device having a normal standard structure. Accordingly, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost. Further, since the wheel bearing device is light, the weight of the automobile can be reduced, and the fuel consumption can be improved.
Furthermore, since the hardness is increased by the non-standard structure, abrasion of serrations or splines is prevented. For this reason, it is possible to prevent the teeth from being worn and the driving force from being transmitted.
 前記非標準組織の部分は、特に、レーザ焼入れにより得られるため、ハブの一部が局部的に高温になり過ぎることを未然に防止し、溶け落ちる等の問題を解決し得る。また、ハブのうち目的の箇所である貫通孔の内径面だけを、レーザ焼入れにより局部的に熱処理し、硬度アップすることができるため、車輪取付用フランジの振れ精度等を高精度に維持することが可能となる。前記非標準組織とする部分を、貫通孔の内径面だけという限られた範囲にすると、ハブ全体の表面を非標準組織とする場合と異なり、被削性や加締性等の加工性の低下が最小限に抑えられる。 The part of the non-standard structure is obtained by laser quenching in particular, so that it is possible to prevent a part of the hub from becoming too hot locally and solve problems such as melting away. Also, only the inner diameter surface of the through hole, which is the target location in the hub, can be locally heat treated by laser quenching to increase the hardness, so that the wheel mounting flange runout accuracy etc. can be maintained with high accuracy. Is possible. If the non-standard texture portion is limited to the inner diameter surface of the through hole, unlike the case where the entire hub surface is non-standard texture, workability such as machinability and caulking properties is reduced. Is minimized.
 したがって、ハブ全体のうち貫通孔の内径面以外の大部分は硬化せず、熱処理後の研削加工等を容易に且つ迅速に行うことができる。それ故、従来のものより、加工工数の低減を図り、製品1個あたりのサイクルタイムの向上を図ることが可能となる。換言すれば、従来のものより、工程増による生産性の低下を抑えることができる。また、研削砥石等の寿命を延ばし、製造コストの低減を図ることができる。また、ショットピーニングと異なり、ハブの貫通孔の内径が狭くても光ファイバケーブル等を貫通孔に容易に通すことができる。したがって、貫通孔の内径面の所定箇所にレーザ光を照射させることが可能となる。 Therefore, most of the entire hub other than the inner diameter surface of the through hole is not hardened, and grinding processing after the heat treatment can be easily and quickly performed. Therefore, the number of processing steps can be reduced and the cycle time per product can be improved as compared with the conventional one. In other words, it is possible to suppress a decrease in productivity due to an increase in the number of processes compared to the conventional one. In addition, the life of a grinding wheel or the like can be extended, and the manufacturing cost can be reduced. Further, unlike shot peening, an optical fiber cable or the like can be easily passed through the through hole even if the inner diameter of the through hole of the hub is narrow. Therefore, it becomes possible to irradiate a predetermined place on the inner diameter surface of the through hole with the laser beam.
 前記ハブおよび内輪に各列の軌道面を有するものであっても良い。また、前記ハブが軌道面を有せず、前記内輪が複列の軌道面を有するもの、つまりハブが、複列軸受からなる軸受の完成品とは独立した部品のハブであっても良い。 The hub and the inner ring may have raceways in each row. The hub may have no raceway surface, and the inner ring may have a double row raceway surface, that is, the hub may be a hub of a component independent of a finished bearing composed of double row bearings.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付のクレームによって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
この発明の第1実施形態に係る車輪用軸受装置を示す断面図である。 同車輪用軸受装置のハブを示し、(A)は同ハブの断面図、(B)は同ハブの車輪取付用フランジの要部をレーザ焼入れする例を表す図である。 この発明の第2実施形態に係る車輪用軸受装置の部分断面図である。 (A)はこの発明の第3実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第4実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第5実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第6実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第7実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第8実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第9実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第10実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の部分断面図である。 (A)はこの発明の第11実施形態に係る車輪用軸受装置の断面図、(B)はその変形例の断面図である。 この発明の第12の実施形態に係る車輪用軸受装置の断面図である。 同車輪用軸受装置のハブの断面図である。 同ハブの要部をレーザ焼入れする例を表す図であり、(A)は同ハブの要部をアキシアル平面で切断して視た断面図、(B)は同ハブの要部をラジアル平面で切断して視た断面図である。 この発明の第13の実施形態に係る車輪用軸受装置の断面図である。 この発明の第14の実施形態に係る車輪用軸受装置の断面図である。 この発明の第15の実施形態に係る車輪用軸受装置の断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are merely for illustration and description and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part number in a plurality of drawings indicates the same part.
It is sectional drawing which shows the wheel bearing apparatus which concerns on 1st Embodiment of this invention. The hub of the wheel bearing device is shown, (A) is a cross-sectional view of the hub, and (B) is a diagram showing an example of laser quenching the main part of the wheel mounting flange of the hub. It is a fragmentary sectional view of the bearing device for wheels concerning a 2nd embodiment of this invention. (A) is sectional drawing of the wheel bearing apparatus which concerns on 3rd Embodiment of this invention, (B) is a fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 4th Embodiment of this invention, (B) is a fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 5th Embodiment of this invention, (B) is a fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 6th Embodiment of this invention, (B) is a fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 7th Embodiment of this invention, (B) is a fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 8th Embodiment of this invention, (B) is a fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 9th Embodiment of this invention, (B) is the fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 10th Embodiment of this invention, (B) is a fragmentary sectional view of the modification. (A) is sectional drawing of the wheel bearing apparatus which concerns on 11th Embodiment of this invention, (B) is sectional drawing of the modification. It is sectional drawing of the wheel bearing apparatus which concerns on 12th Embodiment of this invention. It is sectional drawing of the hub of the bearing apparatus for wheels. It is a figure showing the example which carries out the laser hardening of the principal part of the hub, (A) is sectional drawing which cut | disconnected the principal part of the hub, and it looked at the axial plane, (B) is the principal part of the hub on a radial plane. It is sectional drawing seen by cut | disconnecting. It is sectional drawing of the wheel bearing apparatus which concerns on 13th Embodiment of this invention. It is sectional drawing of the wheel bearing apparatus which concerns on 14th Embodiment of this invention. It is sectional drawing of the wheel bearing apparatus which concerns on 15th Embodiment of this invention.
 この発明の第1実施形態を図1および図2(A),(B)と共に説明する。図1は車輪用軸受装置の一例を示しており、この例は第3世代型の駆動輪支持用に適用するものである。この車輪用軸受装置は、複列の転動体3を介して互いに回転自在な内方部材1および外方部材2を有し、転動体3は各列毎に保持器4により保持されている。ここで言う複列とは、2列以上のことを言い、3列以上であっても良いが、図示の例では2列とされている。内方部材1および外方部材2は、それぞれ複列の軌道面6,7および軌道面8,9を有している。この車輪用軸受装置は、複列アンギュラ玉軸受型とされていて、転動体3はボールからなり、軌道面6,7は、接触角が外向きとなるように形成されている。内方部材1と外方部材2との間の軸受空間の両端は、シール10,11により密封されている。 A first embodiment of the present invention will be described with reference to FIGS. 1 and 2A and 2B. FIG. 1 shows an example of a wheel bearing device, and this example is applied to a third generation type driving wheel support. This wheel bearing device has an inner member 1 and an outer member 2 that are rotatable with respect to each other via a double row of rolling elements 3, and the rolling elements 3 are held by a cage 4 for each row. The term “double row” as used herein refers to two or more rows and may be three or more rows, but in the illustrated example, it is two rows. The inner member 1 and the outer member 2 have double- row raceway surfaces 6 and 7 and raceway surfaces 8 and 9, respectively. This wheel bearing device is a double-row angular contact ball bearing type, the rolling elements 3 are formed of balls, and the raceway surfaces 6 and 7 are formed so that the contact angles are outward. Both ends of the bearing space between the inner member 1 and the outer member 2 are sealed with seals 10 and 11.
 外方部材2は、全体が一体の一つの部品からなり、幅方向の任意の位置に車体取付用フランジ12が設けられている。外方部材2の車体取付用フランジ12よりもインボード側の外径面部分は、車体の懸架装置となるナックル(図示せず)が嵌合する面となる。なお、この明細書で、車体に取付けた状態で車幅方向の外側寄りとなる側をアウトボード側と呼び、車幅方向の中央寄りとなる側をインボード側と呼ぶ。車体取付用フランジ12の円周方向の複数箇所には、ボルト挿通孔またはねじ孔からなる車体取付孔13が設けられている。 The outer member 2 is composed of a single integral part, and a vehicle body mounting flange 12 is provided at an arbitrary position in the width direction. The outer diameter surface portion of the outer member 2 closer to the inboard side than the vehicle body mounting flange 12 is a surface to which a knuckle (not shown) serving as a suspension device of the vehicle body is fitted. In this specification, the side closer to the outer side in the vehicle width direction when attached to the vehicle body is referred to as the outboard side, and the side closer to the center in the vehicle width direction is referred to as the inboard side. At a plurality of locations in the circumferential direction of the vehicle body mounting flange 12, vehicle body mounting holes 13 including bolt insertion holes or screw holes are provided.
 内方部材1は、ハブ14と、このハブ14の軸部14aのインボード側端の外周に嵌合した内輪15との2つの部品で構成される。これらハブ14および内輪15に、内方部材1側の上記各軌道面6,7がそれぞれ形成されている。ハブ14の軸部14aの外周におけるインボード側端には、段差を持って小径となる内輪嵌合面16が設けられ、この内輪嵌合面16に内輪15が嵌合している。ハブ14の中心部には、等速ジョイントの外輪のステム部(図示せず)を挿通させる貫通孔21が設けられている。 The inner member 1 is composed of two parts, a hub 14 and an inner ring 15 fitted to the outer periphery of the inboard side end of the shaft portion 14 a of the hub 14. The hub 14 and the inner ring 15 are formed with the raceway surfaces 6 and 7 on the inner member 1 side. An inner ring fitting surface 16 having a step and a small diameter is provided at the inboard side end on the outer periphery of the shaft portion 14 a of the hub 14, and the inner ring 15 is fitted to the inner ring fitting surface 16. A through hole 21 through which a stem portion (not shown) of the outer ring of the constant velocity joint is inserted is provided at the center of the hub 14.
 ハブ14は、軸部14aのアウトボード側端の外周に車輪取付用フランジ17を有しており、この車輪取付用フランジ17の円周方向複数箇所に設けられた各ボルト圧入孔18に、ハブボルト19が圧入状態に取付けられている。
 ハブ14の車輪取付用フランジ17のアウトボード側の根元部からは、ハブ14と同心の円環状のパイロット部20が突出している。パイロット部20は、車輪取付用フランジ17のアウトボード側の側面に重ねて取付けられるブレーキディスクを案内する部分となるブレーキパイロット20aと、このブレーキパイロット20aよりもアウトボード側に突出するホイールパイロット20bとからなる。なお、パイロット部20は、円周方向複数箇所に切欠が設けられて複数個に分割されたものであっても良い。
The hub 14 has a wheel mounting flange 17 on the outer periphery of the end on the outboard side of the shaft portion 14a. A hub bolt is inserted into each bolt press-fitting hole 18 provided at a plurality of locations in the circumferential direction of the wheel mounting flange 17. 19 is attached in the press-fit state.
An annular pilot portion 20 concentric with the hub 14 protrudes from the base portion on the outboard side of the wheel mounting flange 17 of the hub 14. The pilot portion 20 includes a brake pilot 20a serving as a portion for guiding a brake disc that is attached to the side surface on the outboard side of the wheel mounting flange 17, and a wheel pilot 20b that protrudes further to the outboard side than the brake pilot 20a. Consists of. The pilot unit 20 may be divided into a plurality of portions provided with notches at a plurality of locations in the circumferential direction.
 なお、従動輪用の車輪用軸受装置では、例えば図4(A),(B)に示すように、ハブ14は図1の例における貫通孔21を有しないものとされる。また、図4(A),(B)の例の従動輪用の車輪用軸受装置では、内輪15は、ハブ14の軸部14aのインボード側端を外径側へ加締めた加締部14bによって、ハブ14に対して軸方向に固定されている。 In the wheel bearing device for driven wheels, for example, as shown in FIGS. 4A and 4B, the hub 14 does not have the through hole 21 in the example of FIG. 4A and 4B, in the wheel bearing device for a driven wheel, the inner ring 15 is a caulking portion in which the inboard side end of the shaft portion 14a of the hub 14 is caulked to the outer diameter side. It is fixed to the hub 14 in the axial direction by 14b.
 図1,図2(A),図4(A),(B)において、内方部材1を構成する部品であるハブ14、内輪15、および外方部材2は、いずれも鋼材の熱間鍛造品であり、このうち、ハブ14の車輪取付用フランジ17のアウトボード側の根元部における表面が、非標準組織部分30とされている。ハブ14の母材部分は標準組織である。非標準組織部分30の非標準組織は、レーザ焼入れすることで得られた組織であり、例えば、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織とされる。なお、後の各実施形態においても、非標準組織の部分30は、特に説明しない場合においても、レーザ焼入れすることで得られた組織である。 In FIGS. 1, 2A, 4A, and 4B, the hub 14, the inner ring 15, and the outer member 2, which are parts constituting the inner member 1, are all hot forged steel materials. Of these, the surface of the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30. The base material portion of the hub 14 has a standard structure. The non-standard structure of the non-standard structure portion 30 is a structure obtained by laser quenching, for example, one of a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, and a tempered martensite structure, Alternatively, at least two of these tissues are mixed. In each of the following embodiments, the non-standard tissue portion 30 is a tissue obtained by laser hardening even when not specifically described.
 ハブ14の製造工程は、例えば、鍛造→旋削→レーザ焼入れ→軌道面等高周波焼入れ→焼戻し→研削→組立の順序で行なわれる。
 すなわち、ハブ14の素材は熱間鍛造により鍛造仕上がり品とされ、この鍛造仕上がり品に旋削加工が施される。前記素材となる鋼材は、例えばS53C等のC量が0.4wt%以上0.8wt%以下の炭素鋼である。ただし、素材となる鋼材はS53Cに限定されるものではない。前記旋削加工が施された車輪取付用フランジ17のアウトボード側の根元部における表面がレーザ焼入れにより硬化される。
The manufacturing process of the hub 14 is performed, for example, in the order of forging → turning → laser quenching → high frequency quenching of the raceway surface → tempering → grinding → assembly.
That is, the material of the hub 14 is made into a forged finished product by hot forging, and the forged finished product is turned. The steel material used as the material is carbon steel having a C content of 0.4 wt% or more and 0.8 wt% or less, such as S53C. However, the steel material used as a raw material is not limited to S53C. The surface of the base portion on the outboard side of the wheel mounting flange 17 subjected to the turning process is hardened by laser hardening.
 図2(B)に示すように、レーザ焼入れは、高エネルギーのレーザ光を硬化させたい箇所に照射し、加熱後自己急冷することで、対象箇所の表層を焼入れ硬化するものである。ここでは、レーザ光としてYAGレーザ光が使用され、その出力、デフォーカス量L1、送り速度、発振形態を調整することで、加工面表層を溶融させることなく硬化させるようにしている。レーザ光の前記発振形態としては、レーザ光を連続的に発振させる方式と、レーザ光を断続的に発振させる方式とがある。前記デフォーカス量L1は、硬化対象箇所の表面S1に集光レンズの焦点f1を合わせ、その硬化対象箇所の表面S1からレーザヘッドノズルLNを離間させる値である。このようにレーザヘッドノズルLNを硬化対象箇所から離間させて、レンズ等で集光したレーザ光を、焦点f1をやや外して硬化対象箇所の表面S1に照射している。この場合、レーザ光の焦点f1で表面S1に照射させる場合に比べて、硬化対象箇所の表面S1におけるレーザ光のスポット径が大きくなり、硬化対象箇所の比較的広い面に略均一に入熱させることができる。それ故、被加工物1個あたりのレーザ焼入れに要する時間短縮を図り、工数低減を図ることが可能となる。 As shown in FIG. 2 (B), laser quenching involves quenching and hardening the surface layer of the target location by irradiating the location where the high-energy laser beam is desired to be cured, followed by self-cooling after heating. Here, a YAG laser beam is used as the laser beam, and the surface layer on the processed surface is cured without being melted by adjusting its output, defocus amount L1, feed speed, and oscillation mode. As the oscillation form of the laser light, there are a system for continuously oscillating the laser light and a system for intermittently oscillating the laser light. The defocus amount L1 is a value that focuses the focus f1 of the condenser lens on the surface S1 of the portion to be cured and separates the laser head nozzle LN from the surface S1 of the portion to be cured. In this way, the laser head nozzle LN is separated from the portion to be cured, and the laser light condensed by the lens or the like is irradiated on the surface S1 of the portion to be cured with the focus f1 slightly removed. In this case, the spot diameter of the laser beam on the surface S1 of the portion to be cured becomes larger than when the surface S1 is irradiated with the focal point f1 of the laser beam, and heat is applied substantially uniformly to a relatively wide surface of the portion to be cured. be able to. Therefore, the time required for laser quenching per workpiece can be shortened, and the number of man-hours can be reduced.
 YAGレーザ光を使用する場合、レーザ光の波長を、例えば1.06μmと短いものとできて、浸透性に優れ、被加工物深く加工することができる。ただし、レーザ光の波長は1.06μmに限定されるものではない。また、YAGレーザ発振器により生成されたレーザ光を図示外の光ファイバケーブルによって、レーザヘッドノズルLNに誘導しても良い。この場合において、レーザヘッドノズルLNを進行方向L2に対して所定角度α(αは例えば5度)つけた状態に配置することが望ましい。この場合、光ファイバケーブルから出射したレーザ光が金属表面で反射し、反射光が前記光ファイバケーブルに再入射することを防止することができる。したがって、光ファイバケーブルを保護することが可能となる。 When YAG laser light is used, the wavelength of the laser light can be as short as 1.06 μm, for example, and it has excellent permeability and can be processed deeply. However, the wavelength of the laser beam is not limited to 1.06 μm. Further, the laser beam generated by the YAG laser oscillator may be guided to the laser head nozzle LN by an optical fiber cable (not shown). In this case, it is desirable to arrange the laser head nozzle LN at a predetermined angle α (α is, for example, 5 degrees) with respect to the traveling direction L2. In this case, it is possible to prevent the laser light emitted from the optical fiber cable from being reflected by the metal surface and the reflected light from reentering the optical fiber cable. Therefore, the optical fiber cable can be protected.
 また、レーザ光の送り速度を調整する際、例えば、前記レーザヘッドノズルLNを図示外のロボットアームの先端に取付けても良い。このロボットアームを硬化対象箇所に対して相対的に移動させてこの移動速度を調整することが可能である。なお、固定式のレーザヘッドノズルLNに対して、被加工物を相対的に移動させてレーザ焼入れしても良い。前記YAGレーザの代替手段としてエキシマレーザを適用することも可能である。
 前記YAGレーザの代替手段として半導体レーザを適用することも可能である。半導体レーザ光を使用する場合は、レーザ光の波長として例えば808nmのものを使用することができる。ただし、発振波長は必ずしも808nmに限定されるものではない。また、異なる発振波長の半導体レーザを用いて一つの被加工物をレーザ焼入れすることも可能である。
 半導体レーザ光の波長は可視光であるため、加工面での反射率が低く、低出力でもレーザ加工が可能となる利点もある。また、レーザ光の強度分布を矩形状とできるため、大面積の焼入れを効率よく行うことができる。それ故、前記YAGレーザ光や赤外線レーザ光を用いるものよりも、被加工物1個あたりのレーザ焼入れに要する時間短縮を、さらに図ることが可能となり、工数低減を図ることが可能となる。しかも、YAGレーザ光等よりもレーザ出力の低減を図ることができるため、エネルギーコストの低減を図ることができる。また、非標準組織が、半導体レーザ光を使用した焼入れにより得られた組織である場合、レーザ光の吸収を上げるための吸収剤を被加工物に塗布する必要がなくなり、その分、工数低減を図ることが可能となる。
 半導体レーザと共に、マイクロレンズアレイ、集光レンズ、及びビームスプリッター等の少なくともいずれか一つを含むミラー系を用いてレーザ焼入れすることも可能である。このようなミラー系を用いて被加工物をレーザ焼入れする場合、レーザ光のエネルギーロスを低減することができる。しかも、ミラー系を制御して所定の加工面を順次レーザ焼入れする場合、被加工物に対しレーザヘッドノズル等を相対的に移動させる移動機構等を省略することができる。この場合、設備費用の低減を図ることが可能となる。
Further, when adjusting the laser beam feeding speed, for example, the laser head nozzle LN may be attached to the tip of a robot arm (not shown). The moving speed can be adjusted by moving the robot arm relative to the portion to be cured. Note that laser hardening may be performed by moving the workpiece relative to the fixed laser head nozzle LN. It is also possible to apply an excimer laser as an alternative to the YAG laser.
It is also possible to apply a semiconductor laser as an alternative to the YAG laser. When using a semiconductor laser beam, a laser beam having a wavelength of, for example, 808 nm can be used. However, the oscillation wavelength is not necessarily limited to 808 nm. It is also possible to laser quench one workpiece using semiconductor lasers with different oscillation wavelengths.
Since the wavelength of the semiconductor laser light is visible light, the reflectance on the processed surface is low, and there is an advantage that laser processing is possible even at low output. In addition, since the intensity distribution of the laser beam can be rectangular, large area quenching can be performed efficiently. Therefore, it is possible to further shorten the time required for laser quenching per workpiece, and to reduce the number of man-hours, as compared with the case using the YAG laser beam or the infrared laser beam. In addition, since the laser output can be reduced as compared with YAG laser light or the like, the energy cost can be reduced. In addition, when the non-standard structure is a structure obtained by quenching using a semiconductor laser beam, it is not necessary to apply an absorbent for increasing the absorption of the laser beam to the workpiece, thereby reducing the number of steps. It becomes possible to plan.
Laser hardening can be performed by using a mirror system including at least one of a microlens array, a condensing lens, a beam splitter, and the like together with a semiconductor laser. When a workpiece is laser-quenched using such a mirror system, the energy loss of laser light can be reduced. In addition, when a predetermined machining surface is sequentially laser-quenched by controlling the mirror system, a moving mechanism for moving the laser head nozzle or the like relative to the workpiece can be omitted. In this case, the facility cost can be reduced.
 このレーザ焼入れでは、前記車輪取付用フランジ17のアウトボード側の根元部の強度および疲れ強さを向上させる場合は、硬化範囲(非標準組織部分30)の表面硬度が40HRC以上となるようにされる。靱性が必要となる場合は、高温焼戻しにより硬化範囲の表面硬度が20~40HRCとなるようにするのが望ましい。なお、ハブ14の母材部分は標準組織部分であり、この母材部分の硬度は13~25HRCとされる。非標準組織の硬度が20HRC未満であると、強度および疲れ強さが不足し、20~40HRCの範囲では、靱性が優れるが、40HRCを超える場合に比べて、剛性等の強度および疲れ強さは劣る。
 この後、軌道面6や内輪嵌合面16の高周波焼入れが行なわれ、焼戻しされる。この後、軌道面6などの研削が行なわれ、研削の完了したハブ14が車輪用軸受装置に組み立てられる。
In this laser hardening, when the strength and fatigue strength of the base portion on the outboard side of the wheel mounting flange 17 are improved, the surface hardness of the hardened range (non-standard tissue portion 30) is set to 40 HRC or more. The When toughness is required, it is desirable that the surface hardness of the cured range be 20 to 40 HRC by high temperature tempering. The base material portion of the hub 14 is a standard structure portion, and the hardness of the base material portion is 13 to 25 HRC. If the hardness of the non-standard structure is less than 20 HRC, the strength and fatigue strength are insufficient, and the toughness is excellent in the range of 20 to 40 HRC. However, the strength and fatigue strength such as rigidity are higher than those exceeding 40 HRC. Inferior.
Thereafter, induction hardening of the raceway surface 6 and the inner ring fitting surface 16 is performed and tempered. Thereafter, the raceway surface 6 and the like are ground, and the hub 14 that has been ground is assembled to the wheel bearing device.
 なお、上記ハブ14の製造工程において、レーザ焼入れと高周波焼入れの順序は逆であっても良い。特に、非標準組織部分30が、シールランド5や軌道面6,8,9の距離が近いものでは、高周波焼入れの後にレーザ焼入れを行うのがよい。シールランド5や軌道面6,8,9と非標準組織部分30の距離が近いと、レーザ焼入れを先に行うと、後に行なうシールランド5や軌道面6,8,9等の高周波焼入れによる熱がレーザ焼入れ部を高温で焼戻すこととなり、レーザ焼入れ部の硬度が低下することがある。そのため、熱影響範囲の広い高周波焼入れを先に行い、熱影響範囲の狭いレーザ焼入れを後に行うことで、レーザ焼入れ部の硬度を確保することができる。また、焼戻しは、ハブ14を加熱炉に入れて全体加熱を行うものであっても、高周波加熱によるものであっても、出力、デフォーカス量、送り速度を調整したレーザ光による加熱で部分的に焼戻しするものであっても良い。 In the manufacturing process of the hub 14, the order of laser hardening and induction hardening may be reversed. In particular, when the non-standard tissue portion 30 has a short distance between the seal land 5 and the raceway surfaces 6, 8, and 9, it is preferable to perform laser hardening after induction hardening. If the seal land 5 or the raceway surfaces 6, 8, 9 and the non-standard tissue portion 30 are close to each other, if laser quenching is performed first, the heat generated by the induction hardening of the seal land 5, the raceway surfaces 6, 8, 9, etc. performed later However, the laser hardened part is tempered at a high temperature, and the hardness of the laser hardened part may be lowered. For this reason, the hardness of the laser-quenched portion can be ensured by performing induction hardening with a wide heat-affected range first and laser hardening with a narrow heat-affected range later. Tempering is performed by heating with a laser beam whose output, defocus amount, and feed rate are adjusted, whether the hub 14 is put into a heating furnace for overall heating or high-frequency heating. It may be tempered.
 この構成の車輪用軸受装置によると、次の作用効果が得られる。車輪取付用フランジ17を有する部品であるハブ14が鋼材の熱間鍛造品であり、このハブ14は、母材部分が標準組織であって、その一部である車輪取付用フランジ17のアウトボード側の根元部の表面部分30に非標準組織を有し、その非標準組織が、レーザ焼入れにより得られた組織であるため、高応力や繰り返し応力に対して、強度や疲れ強さが望まれる部分である車輪取付用フランジ17のアウトボード側の根元部の強度や疲れ強さを向上させることができる。しかも、車輪取付用フランジ17のアウトボード側の根元部だけを限定的に硬度アップできるので、他の部分が硬化して、後の旋削加工で削りにくくなるなどの問題が発生せず、工程増による生産性の低下が抑えられる。 車輪 According to the wheel bearing device of this configuration, the following effects can be obtained. The hub 14, which is a part having the wheel mounting flange 17, is a hot forged product of steel, and the hub 14 has a standard structure as a base material portion, and the outboard of the wheel mounting flange 17 that is a part of the hub 14. Since the surface portion 30 of the side root portion has a non-standard structure, and the non-standard structure is a structure obtained by laser quenching, strength and fatigue strength are desired for high stress and repeated stress. The strength and fatigue strength of the base portion on the outboard side of the wheel mounting flange 17 that is a portion can be improved. In addition, since only the base portion on the outboard side of the wheel mounting flange 17 can be limitedly increased in hardness, other portions are hardened and problems such as difficulty in cutting by subsequent turning operations do not occur, and the number of processes increases. The decrease in productivity due to is suppressed.
 特に、この実施形態では、車輪取付用フランジ17のアウトボード側の根元部の表面部分30を非標準組織とし、その非標準組織を、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織とした場合は、車輪取付用フランジ17のアウトボード側の根元部の強度が向上し、長寿命化が得られる。すなわち、自動車の旋回時等には、車輪取付用フランジ17に大きな振幅の撓みが繰り返し生じ、このフランジ17のアウトボード側の根元部には高応力が繰り返し発生する。このような繰り返し発生する高応力に対して、車輪取付用フランジ17のアウトボード側の根元部の表面部分30が前記の非標準組織であると、標準組織からなる母材部分に比べて組織が微細であり、また硬度が同等以上のものとなり、これらの組織微細化や硬度アップによって疲れ強さが向上する。そのため、通常の標準組織のみからなる車輪取付用フランジに比べて、高強度化されて、高い応力振幅に耐え、車輪取付用フランジ17のアウトボード側の根元部に亀裂が発生することが抑制され、長寿命化できる。つまり、亀裂発生→車輪取付用フランジ17の変位増加→車両の振動増加→車輪用軸受装置の損傷、という作用が抑えられ、長寿命化される。 In particular, in this embodiment, the surface portion 30 of the base portion on the outboard side of the wheel mounting flange 17 is a non-standard structure, and the non-standard structure includes fine ferrite / pearlite structure, upper bainite structure, lower bainite structure, When one of the return martensite structures or at least two mixed structures of these structures is used, the strength of the root portion on the outboard side of the wheel mounting flange 17 is improved and the life is extended. Is obtained. That is, when the automobile turns, for example, a large-amplitude flexure is repeatedly generated in the wheel mounting flange 17, and high stress is repeatedly generated in the root portion of the flange 17 on the outboard side. When the surface portion 30 of the base portion on the outboard side of the wheel mounting flange 17 is the above-mentioned non-standard structure with respect to such high stress that repeatedly occurs, the structure is larger than the base material portion made of the standard structure. It is fine and has a hardness equal to or higher than that, and the fatigue strength is improved by refining the structure and increasing the hardness. Therefore, compared with a wheel mounting flange made of only a normal standard structure, the strength is increased, it can withstand a high stress amplitude, and cracks are suppressed from occurring at the root portion on the outboard side of the wheel mounting flange 17. Can extend the life. That is, the action of crack generation → increased displacement of the wheel mounting flange 17 → increased vibration of the vehicle → damage of the wheel bearing device is suppressed and the life is extended.
 そのため、通常の標準組織の車輪用軸受装置に比べて、小型化、および軽量化が図れ、したがって、車輪用軸受装置の製品製作の投入重量が削減されて、コストの削減が図れ、安価に提供することが可能となる。 As a result, it is possible to reduce the size and weight compared to the wheel bearing device of the normal standard structure, thus reducing the input weight of the product manufacturing of the wheel bearing device, reducing the cost, and providing it at a low cost. It becomes possible to do.
 前記非標準組織の部分30は、特に、レーザ焼入れにより得られる。非標準組織の部分が従来の高周波熱処理により得られたものであると、パイロット部の一部等が局部的に高温になり過ぎて溶け落ちる等の問題が生じ得る。これに対して、本実施形態のものでは、非標準組織の部分30をレーザ焼入れする際、例えば、図2(B)に示すように、車輪取付用フランジ17のアウトボード側の表面部17a、隅部17b、パイロット部20の外周面20aaにわたって、レーザヘッドノズルLNを移動させると共に、レーザ光の出力、デフォーカス量L1、および、発振形態の少なくともいずれか一つを変化させる。これにより、パイロット部20の一部分等が高温になり過ぎることを未然に防止し、溶け落ちる等の問題を解消し得る。 The non-standard tissue portion 30 is obtained in particular by laser quenching. If the portion of the non-standard structure is obtained by conventional high-frequency heat treatment, there may be a problem that a part of the pilot portion becomes too hot locally and melts. On the other hand, in the present embodiment, when laser quenching the non-standard tissue portion 30, for example, as shown in FIG. 2B, the surface portion 17 a on the outboard side of the wheel mounting flange 17, The laser head nozzle LN is moved over the corner portion 17b and the outer peripheral surface 20aa of the pilot portion 20, and at least one of the laser beam output, the defocus amount L1, and the oscillation mode is changed. Thereby, it is possible to prevent a part of the pilot unit 20 from becoming too hot and solve problems such as melting away.
 また、非標準組織の部分が従来の高周波熱処理やショットピーニングにより得られたものであると、車輪取付用フランジ17の大部分が熱処理等されてしまい、熱ひずみ等によって車輪取付用フランジ17の振れ精度劣化を生じることがあり得る。これに対して、本実施形態のものでは、車輪取付用フランジ17のうち非標準組織の部分30だけを、レーザ焼入れにより限定して熱処理することができる。したがって、車輪取付用フランジ17の振れ精度を高精度に維持することが可能となる。それ故、この車輪取付用フランジ17のアウトボード側の側面に重ねて取付けられるブレーキディスクの振れ精度をも高精度に維持することができる。 In addition, if the non-standard texture portion is obtained by conventional high-frequency heat treatment or shot peening, most of the wheel mounting flange 17 is heat-treated and the vibration of the wheel mounting flange 17 due to thermal strain or the like. Accuracy degradation can occur. On the other hand, in the present embodiment, only the non-standard texture portion 30 of the wheel mounting flange 17 can be heat-treated by being limited by laser quenching. Therefore, it is possible to maintain the deflection accuracy of the wheel mounting flange 17 with high accuracy. Therefore, the deflection accuracy of the brake disc attached to the side surface on the outboard side of the wheel mounting flange 17 can be maintained with high accuracy.
 従来の、疲労強度を上げるべくハブ14全体を調質すると、硬度アップによりハブ14全体の加工性が低下するが、本実施形態のものでは、車輪取付用フランジ17のうち非標準組織の部分30だけを限定的にレーザ焼入れしている。このため、被削性などの加工性の低下が最小限に抑えられる。 When the entire hub 14 is tempered so as to increase the fatigue strength, the workability of the entire hub 14 is reduced due to the increased hardness. However, in the present embodiment, the non-standard portion 30 of the wheel mounting flange 17 is used. Only limited laser quenching. For this reason, deterioration of workability such as machinability can be minimized.
 図3は、この発明における第2実施形態を示す。この実施形態は、図1および図2(A),(B)と共に説明した第1実施形態において、非標準組織とする部分30を増やしたものである。この実施形態では、ハブ14の車輪取付用フランジ17の両側面の全体と、この車輪取付用フランジ17のアウトボード側の側面からその根元部におけるブレーキパイロット20aの外周面に渡る範囲を、非標準組織の部分30としている。
 また、外方部材2における車体取付用フランジ12の車体取付側の側面とは反対側の側面であるアウトボード側の側面の全体と、車体取付用フランジ12よりもアウトボード側における外方部材2の外径面の全体とに渡る範囲を、非標準組織の部分30としている。さらに、車体取付用フランジ12の車体取付側の側面であるインボード側の側面における根元部の表面を、非標準組織の部分30としている。
FIG. 3 shows a second embodiment of the present invention. This embodiment is obtained by increasing the number of non-standard tissue portions 30 in the first embodiment described with reference to FIGS. 1 and 2A, 2B. In this embodiment, the entire range of both side surfaces of the wheel mounting flange 17 of the hub 14 and the range extending from the side surface on the outboard side of the wheel mounting flange 17 to the outer peripheral surface of the brake pilot 20a at the root portion thereof are non-standard. It is a part 30 of the organization.
Further, the entire side surface on the outboard side, which is the side surface opposite to the side surface on the vehicle body mounting side of the vehicle body mounting flange 12 in the outer member 2, and the outer member 2 on the outboard side from the vehicle body mounting flange 12. The range extending over the entire outer diameter surface of the non-standard tissue portion 30. Furthermore, the surface of the root portion on the side surface on the inboard side that is the side surface on the vehicle body mounting side of the vehicle body mounting flange 12 is a non-standard tissue portion 30.
 これらの非標準組織の部分30は、ハブ14の場合と同様に、レーザ焼入れすることで、前記非標準組織を得た部分である。非標準組織は、第1実施形態で挙げた各例と同じである。その他の構成は第1実施形態と同じである。 These non-standard tissue portions 30 are portions where the non-standard tissue is obtained by laser quenching as in the case of the hub 14. The non-standard organization is the same as each example given in the first embodiment. Other configurations are the same as those of the first embodiment.
 この構成の場合、車輪取付用フランジ17の両側面の全体を非標準組織の部分30としたため、車輪取付用フランジ17の全体が高強度化され、より一層長寿命化される。また、車輪取付用フランジ17の車輪取付面となるアウトボード側の側面には、ブレーキディスク(図示せず)が重ねて取付けられるが、車輪取付用フランジ17の表面の組織微細化や硬度アップにより、ブレーキディスクとのフレッティングによりフランジ面が摩耗して面精度が悪化することが抑えられる。そのため、ブレーキの使用感の悪化、例えばジャダーやキックバック等も抑えられる。 In the case of this configuration, the entire side surfaces of the wheel mounting flange 17 are the non-standard structure portions 30, so that the entire wheel mounting flange 17 is strengthened and the life is further increased. In addition, a brake disk (not shown) is attached to the side surface of the wheel mounting flange 17 on the outboard side which is the wheel mounting surface, but the structure of the surface of the wheel mounting flange 17 is refined and the hardness is increased. Further, it is possible to prevent the surface accuracy from being deteriorated due to wear of the flange surface by fretting with the brake disk. Therefore, deterioration of the brake feeling, for example, judder or kickback can be suppressed.
 外方部材2の車体取付用フランジ12においても、自動車の旋回時等には大きな振幅の撓みが繰り返し生じ、このフランジ12の根元部には高応力が繰り返し発生する。しかし、この実施形態では、車体取付用フランジ12の根元部やアウトボード側の側面の全体に非標準組織の部分30を設けているため、その組織微細化や硬度アップにより、非標準組織の部分30の強度や疲れ強さが向上し、高い応力振幅に耐え、長寿命化できる。そのため、車輪用軸受装置のより一層の小型,軽量化が図れ、製品製作の投入重量が削減されて、コストの削減が図れる。
 なお、この実施形態において、各部の非標準組織の部分30は、いずれか一つ、または任意の組み合わせとなる複数の部分30を選択的に設けても良い。
Also in the vehicle body mounting flange 12 of the outer member 2, a large amplitude of flexure is repeatedly generated during turning of the automobile, and high stress is repeatedly generated at the root portion of the flange 12. However, in this embodiment, the non-standard tissue portion 30 is provided on the entire base portion of the vehicle body mounting flange 12 and the side surface on the outboard side. The strength of 30 and fatigue strength are improved, it can withstand high stress amplitude, and the life can be extended. Therefore, the wheel bearing device can be further reduced in size and weight, the input weight for manufacturing the product can be reduced, and the cost can be reduced.
In this embodiment, the non-standard tissue portion 30 of each part may be selectively provided with any one or a plurality of portions 30 in any combination.
 図4(A),(B)に示す第3実施形態は、図1の第1実施形態における車輪用軸受装置を、従動輪支持用としたものである。この実施形態では、前述したように、ハブ14が、図1の第1実施形態における貫通孔21を有しないものとされる。また、内輪15は、ハブ14の軸部14aのインボード側端を外径側へ加締めた加締部14bによって、ハブ14に対して軸方向に固定されている。
 図4(A),(B)の第3実施形態において、非標準組織の部分30は、同図(B)に示すように、車輪取付用フランジ17のアウトボード側の根元部の表面だけとしても良い。また、同図(A)のように、図3(A),(B)の例と同じく、車輪取付用フランジ17の両側の側面の全面や、外方部材2における図3(A),(B)の例と同様の各部に非標準組織となる部分30を設けても良い。
 非標準組織の部分30を設けたことによる効果は、図1の例と同じである。また、図4(A),(B)の例のような加締部14bを有する車輪用軸受装置の場合、レーザ焼入れにより非標準組織の部分30を得るようにすると、加締部14bが硬化されず、加締作業の障害とならない。
In the third embodiment shown in FIGS. 4A and 4B, the wheel bearing device in the first embodiment of FIG. 1 is used for supporting a driven wheel. In this embodiment, as described above, the hub 14 does not have the through hole 21 in the first embodiment of FIG. The inner ring 15 is fixed in the axial direction with respect to the hub 14 by a caulking portion 14b in which the inboard side end of the shaft portion 14a of the hub 14 is caulked to the outer diameter side.
In the third embodiment shown in FIGS. 4A and 4B, as shown in FIG. 4B, the non-standard tissue portion 30 is only the surface of the root portion on the outboard side of the wheel mounting flange 17. Also good. Further, as shown in FIG. 3 (A), as in the example of FIGS. 3 (A) and 3 (B), the entire side surface on both sides of the wheel mounting flange 17 and the outer member 2 shown in FIGS. You may provide the part 30 used as a non-standard structure | tissue in each part similar to the example of B).
The effect of providing the non-standard tissue portion 30 is the same as the example of FIG. Further, in the case of the wheel bearing device having the caulking portion 14b as in the examples of FIGS. 4A and 4B, the caulking portion 14b is hardened when the non-standard structure portion 30 is obtained by laser quenching. It is not an obstacle to the caulking work.
 図5(A),(B)ないし図12(A),(B)は、それぞれこの発明の第4ないし第11実施形態を示す。各図において、(A),(B)は、それぞれ非標準組織の部分30を設ける箇所が異なる例を示す。これらの各実施形態においても、非標準組織の部分30を設けることで、その組織微細化や硬度アップにより、強度や疲れ強さが向上し、長寿命化できる、あるいは硬度アップによりフレッティング摩耗等が軽減されるという効果が得られる。
 なお、これらの各実施形態において、特に説明した事項の他は、図1および図2(A),(B)と共に説明した第1実施形態と同じである。また、これらの各実施形態において、非標準組織とした部分30が複数箇所にある場合、各部の非標準組織の部分30は、いずれか一つ、または任意の組み合わせとなる複数の部分30を選択的に設けても良い。
FIGS. 5A, 5B to 12A, 12B show fourth to eleventh embodiments of the present invention, respectively. In each figure, (A) and (B) show examples in which the portions where the non-standard tissue portions 30 are provided are different. Also in each of these embodiments, by providing the non-standard structure portion 30, strength and fatigue strength can be improved by refining the structure and increasing the hardness, and the life can be extended, or fretting wear can be achieved by increasing the hardness. Can be reduced.
In each of these embodiments, the matters other than those specifically described are the same as those in the first embodiment described with reference to FIGS. 1 and 2A and 2B. Moreover, in each of these embodiments, when there are a plurality of non-standard tissue portions 30 in a plurality of locations, the non-standard tissue portions 30 of each portion are selected as one or a plurality of portions 30 in any combination. It may be provided.
 図5(A),(B)に示す第4実施形態の車輪用軸受装置は、駆動輪支持用の円すいころ軸受型のものであって、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。内輪15は各列毎に設けられている。外方部材2は、一つの1体の部品からなる。
 同図(B)は、ハブ14の車輪取付用フランジ17のアウトボード側の根元部を非標準組織の部分30とした例である。同図(A)は、図3(A),(B)の例と同じく、車輪取付用フランジ17の両側面、外方部材2における車体取付用フランジ12の反車体取付側の側面であるアウトボード側の側面から外径面に渡る部分、および車体取付用フランジ12のインボード側の側面における根元部に、非標準組織の部分30が設けてある。
The wheel bearing device according to the fourth embodiment shown in FIGS. 5A and 5B is a tapered roller bearing type for supporting a driving wheel. The inner member 1 includes a hub 14 and the hub 14. The inner ring 15 of the double row fitted to the outer periphery of the shaft portion 14a. The inner ring 15 is provided for each row. The outer member 2 is composed of a single component.
FIG. 4B shows an example in which the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30. 3A and FIG. 3B, both the side surfaces of the wheel mounting flange 17 and the side surfaces of the outer member 2 on the side opposite to the vehicle body mounting side of the vehicle body mounting flange 12 are the same as in the example of FIGS. A portion 30 extending from the side surface on the board side to the outer diameter surface and a root portion on the side surface on the inboard side of the vehicle body mounting flange 12 are provided with a non-standard tissue portion 30.
 図6(A),(B)に示す第5実施形態は、図5(A),(B)の例の車輪用軸受装置を従動輪支持用としたものであり、ハブ14は中央の貫通孔21を有しないものとされている。また、内輪15は、ハブ14の加締部14bによってハブ14に固定されている。その他の構成は、図5(A),(B)の例と同じである。 In the fifth embodiment shown in FIGS. 6 (A) and 6 (B), the wheel bearing device of the example of FIGS. 5 (A) and 5 (B) is used for supporting the driven wheel, and the hub 14 penetrates the center. The hole 21 is not provided. Further, the inner ring 15 is fixed to the hub 14 by a caulking portion 14 b of the hub 14. Other configurations are the same as those of the example of FIGS.
 図7(A),(B)に示す第6実施形態の車輪用軸受装置は、駆動輪支持用のアンギュラ玉軸受型のものであって、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。内輪15は各列毎に設けられていて、インボード側の内輪15の方が、アウトボード側の内輪15よりも、厚さおよび軸方向寸法が大きいものでも良い。また、内輪15は、ハブ14に設けられた加締部14bでハブ14に軸方向に固定されている。外方部材2は、一つの一体の部品からなり、外径面は全体に渡って円筒状面とされ、図1の例における車体取付用フランジ12は有していない。
 同図(B)は、ハブ14の車輪取付用フランジ17のアウトボード側の根元部を非標準組織の部分30とした例である。同図(A)は、車輪取付用フランジ17の両側面と、外方部材2における外径面を、非標準組織の部分30としている。
 同図(A)のように、外方部材2における外径面を、非標準組織の部分30とした場合は、外方部材2を固定するナックル(図示せず)と外方部材2との嵌合面におけるフレッティング摩耗が、外径面の非標準組織の部分30の硬度が高いことによって抑えられる。
The wheel bearing device of the sixth embodiment shown in FIGS. 7 (A) and 7 (B) is of an angular ball bearing type for supporting a driving wheel, and the inner member 1 includes a hub 14 and the hub 14. The inner ring 15 of the double row fitted to the outer periphery of the shaft portion 14a. The inner ring 15 is provided for each row, and the inner ring 15 on the inboard side may have a larger thickness and axial dimension than the inner ring 15 on the outboard side. The inner ring 15 is fixed to the hub 14 in the axial direction by a caulking portion 14 b provided on the hub 14. The outer member 2 is composed of one integral part, and the outer diameter surface is a cylindrical surface throughout, and does not have the vehicle body mounting flange 12 in the example of FIG.
FIG. 4B shows an example in which the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30. In FIG. 4A, both side surfaces of the wheel mounting flange 17 and the outer diameter surface of the outer member 2 are non-standard tissue portions 30.
When the outer diameter surface of the outer member 2 is a non-standard tissue portion 30 as shown in FIG. 5A, a knuckle (not shown) for fixing the outer member 2 and the outer member 2 Fretting wear on the fitting surface is suppressed by the high hardness of the non-standard texture portion 30 on the outer diameter surface.
 図8(A),(B)に示す第7実施形態は、図7(A),(B)の例の車輪用軸受装置を従動輪支持用としたものであり、ハブ14は中央の貫通孔21を有しないものとされている。その他の構成は図7(A),(B)の例と同じである。 In the seventh embodiment shown in FIGS. 8A and 8B, the wheel bearing device in the example of FIGS. 7A and 7B is used for supporting a driven wheel, and the hub 14 penetrates the center. The hole 21 is not provided. Other configurations are the same as those in the example of FIGS.
 図9(A),(B)に示す第8実施形態の車輪用軸受装置は、図7(A),(B)の車輪用軸受装置と同じく、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。外方部材2は一つの一体の部品からなるものであって、車体取付用フランジ12を有しないものとされている。この例では、2個の内輪15は同じ大きさとされ、内輪15のハブ14に対する軸方向の固定は、加締によらずに、ハブ14に結合される等速ジョイント(図示せず)で行われる。非標準組織とする部分30は、図7(A),(B)の例と同じである。 The wheel bearing device of the eighth embodiment shown in FIGS. 9 (A) and 9 (B) is similar to the wheel bearing device of FIGS. 7 (A) and 7 (B). It consists of a double row of inner rings 15 fitted to the outer periphery of the shaft portion 14 a of the hub 14. The outer member 2 is composed of one integral part and does not have the vehicle body mounting flange 12. In this example, the two inner rings 15 are the same size, and the inner ring 15 is fixed in the axial direction to the hub 14 by a constant velocity joint (not shown) coupled to the hub 14 without caulking. Is called. The portion 30 to be a non-standard organization is the same as the example of FIGS. 7 (A) and 7 (B).
 図10(A),(B)に示す第9実施形態の車輪用軸受装置は、第2世代型の内輪回転タイプのものであり、外方部材2が車体取付用フランジ12を有するものとされ、内方部材1は、複列の内輪15と、この内輪15を軸部の外周に嵌合させるハブ(図示せず)とでなる。ハブは、図9(A),(B)の例と同様に車輪取付用フランジを有するものである。
 同図(A)の例では、外方部材2の車体取付用フランジ12の反車体取付側の側面であるアウトボード側の側面から外径面に渡る部分、および車体取付用フランジ12のインボード側の側面における根元部に非標準組織の部分30が設けられている。
 同図(B)の例では、車体取付用フランジ12のインボード側の根元部に非標準組織の部分30が設けられている。
 なお、内輪15を嵌合させるハブ(図示せず)は、図9(A),(B)等の例と同じく、車輪取付用フランジ17のアウトボード側の根元部、または両側面に非標準組織の部分30を設けても良い。
The wheel bearing device of the ninth embodiment shown in FIGS. 10A and 10B is of the second generation type inner ring rotating type, and the outer member 2 has a body mounting flange 12. The inner member 1 includes a double row of inner rings 15 and a hub (not shown) for fitting the inner rings 15 to the outer periphery of the shaft portion. The hub has a wheel mounting flange as in the example of FIGS. 9 (A) and 9 (B).
In the example of FIG. 3A, the portion extending from the side surface on the outboard side, which is the side surface on the side opposite to the vehicle body mounting side of the vehicle body mounting flange 12 of the outer member 2, and the inboard of the vehicle body mounting flange 12 A non-standard tissue portion 30 is provided at the root of the side surface.
In the example of FIG. 5B, a non-standard tissue portion 30 is provided at the base portion on the inboard side of the vehicle body mounting flange 12.
In addition, the hub (not shown) with which the inner ring 15 is fitted is non-standard at the base part on the outboard side of the wheel mounting flange 17 or both side surfaces, as in the examples of FIGS. 9 (A) and 9 (B). A tissue portion 30 may be provided.
 図11(A),(B)に示す第10実施形態の車輪用軸受装置は、第4世代型のものであり、内方部材1が、ハブ14と、等速ジョイント31の一方の継手部材である継手外輪32とで構成され、ハブ14および継手外輪32に各列の軌道面6,7が形成されている。外方部材2は一つの部品からなり、車体取付用フランジ12を有している。
 同図(B)は、ハブ14の車輪取付用フランジ17のアウトボード側の根元部を非標準組織の部分30とした例である。同図(A)は、車輪取付用フランジ17の両側面と、外方部材2における車体取付用フランジ12の反車体取付側の側面であるアウトボード側の側面から外径面に渡る部分、および車体取付用フランジ12のインボード側の側面における根元部に非標準組織の部分30とした例である。
The wheel bearing device according to the tenth embodiment shown in FIGS. 11A and 11B is of the fourth generation type, and the inner member 1 is the hub 14 and one joint member of the constant velocity joint 31. The outer race 32 is a joint outer ring 32, and the raceway surfaces 6, 7 of each row are formed on the hub 14 and the joint outer race 32. The outer member 2 is made of one component and has a vehicle body mounting flange 12.
FIG. 4B shows an example in which the base portion on the outboard side of the wheel mounting flange 17 of the hub 14 is a non-standard tissue portion 30. FIG. 6A shows both side surfaces of the wheel mounting flange 17 and portions extending from the side surface on the outboard side, which is the side surface of the outer member 2 opposite to the vehicle body mounting side of the vehicle body mounting flange 12, to the outer diameter surface, and This is an example in which a non-standard tissue portion 30 is formed at the root portion of the side surface on the inboard side of the vehicle body mounting flange 12.
 図12(A),(B)に示す第11実施形態の車輪用軸受装置は、第2世代型の外輪回転タイプのものであり、内方部材1は複列の内輪15からなる。外方部材2は、車輪取付用フランジ17およびパイロット部20を有している。
 同図(B)は、外方部材2の車輪取付用フランジ17のアウトボード側の根元部を非標準組織の部分30とした例である。同図(A)は、車輪取付用フランジ17の両側面と、外方部材2における外径面を、非標準組織の部分30とした例である。
The wheel bearing device according to the eleventh embodiment shown in FIGS. 12A and 12B is of the second generation type outer ring rotating type, and the inner member 1 is composed of double rows of inner rings 15. The outer member 2 has a wheel mounting flange 17 and a pilot portion 20.
FIG. 5B is an example in which the base portion on the outboard side of the wheel mounting flange 17 of the outer member 2 is a non-standard tissue portion 30. FIG. 3A shows an example in which both side surfaces of the wheel mounting flange 17 and the outer diameter surface of the outer member 2 are non-standard tissue portions 30.
 なお、前記各実施形態は、いずれも内方部材1または外方部材2を構成する部品の表面に部分的に非標準組織の部分30を設けるようにしたが、これら内方部材1または外方部材2を構成する部品、例えばハブ14や、外方部材2等の表面の全体を非標準組織の部分30としても良い。 In each of the above-described embodiments, the non-standard tissue portion 30 is partially provided on the surface of the parts constituting the inner member 1 or the outer member 2. The entire surface of the parts constituting the member 2, such as the hub 14 and the outer member 2, may be used as the non-standard tissue portion 30.
 この発明の第12ないし第15実施形態を図13ないし図18と共に説明する。
 以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 第12ないし第15実施形態は、車輪取付用フランジ17のアウトボード側の根元部における表面が、非標準組織部分30とされた構成に加え、ハブ14の貫通孔21の内径面におけるセレーション21aまたはスプラインSPを設けた箇所の表面部も、非標準組織部分30とされている。
Twelfth to fifteenth embodiments of the present invention will be described with reference to FIGS.
In the following description, the same reference numerals are given to portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping description may be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
In the twelfth to fifteenth embodiments, in addition to the configuration in which the surface of the base portion on the outboard side of the wheel mounting flange 17 is a non-standard tissue portion 30, serrations 21a on the inner diameter surface of the through hole 21 of the hub 14 or The surface portion where the spline SP is provided is also a non-standard tissue portion 30.
 第12実施形態では、図13に示す外方部材2の素材は、例えばS53C等のC量が0.4wt%以上0.8wt%以下の炭素鋼である。ただし、素材となる鋼材はS53Cに限定されるものではない。 In the twelfth embodiment, the material of the outer member 2 shown in FIG. 13 is carbon steel having a C content of 0.4 wt% or more and 0.8 wt% or less, such as S53C. However, the steel material used as a raw material is not limited to S53C.
 この実施形態のハブ14の軸部14aの外周におけるインボード側端には、段差を持って小径となる内輪嵌合面16が設けられ、この内輪嵌合面16に内輪15がシメシロを有した状態で圧入嵌合している。また、内輪15の素材は、例えばSUJ2等の高炭素クロム軸受鋼である。ただし、素材となる鋼材はSUJ2に限定されるものではない。 An inner ring fitting surface 16 having a step and a small diameter is provided at an end on the inboard side of the outer periphery of the shaft portion 14a of the hub 14 of this embodiment, and the inner ring 15 has a shimiro on the inner ring fitting surface 16. Press-fit in the state. The material of the inner ring 15 is, for example, high carbon chrome bearing steel such as SUJ2. However, the steel material used as a raw material is not limited to SUJ2.
 ハブ14の中心部には、等速ジョイント31の片方の継手部材32となる外輪のステム部32aを挿通させる貫通孔21が設けられている。ステム部32aは、セレーション軸からなり、貫通孔21の内径面は、インボード側端の付近等を除き、ステム部32aのセレーションと噛み合うセレーション21aが設けられている。なお、ステム部32aをスプライン軸とし、ハブ14のセレーション21aの代わりにスプラインSPを設けても良い。
 ハブ14のアウトボード側の端面における前記貫通孔21の開口周縁は、前記ステム部32aの先端の雄ねじ部に螺着したナット33またはその下に敷かれる座金34が接する座面35となる。ナット33の締め付けによって、継手部材32の段面32bが内輪15の端面に押し付けられ、車輪用軸受装置と等速ジョイント31との結合が行われる。
At the center of the hub 14, a through hole 21 is provided through which the stem portion 32 a of the outer ring serving as one joint member 32 of the constant velocity joint 31 is inserted. The stem portion 32a is formed of a serration shaft, and the inner surface of the through hole 21 is provided with a serration 21a that meshes with the serration of the stem portion 32a except for the vicinity of the end on the inboard side. The stem portion 32a may be a spline shaft, and the spline SP may be provided instead of the serration 21a of the hub 14.
The opening peripheral edge of the through-hole 21 on the end surface of the hub 14 on the outboard side becomes a seat surface 35 with which a nut 33 screwed on the male screw portion at the tip of the stem portion 32a or a washer 34 laid under the nut 33 is in contact. By tightening the nut 33, the step surface 32 b of the joint member 32 is pressed against the end surface of the inner ring 15, and the wheel bearing device and the constant velocity joint 31 are coupled.
 ハブ14の前記座面35は、座繰り部36の底面からなる。ハブ14のアウトボード側の端面には、パイロット部20よりも内径側に凹部37が設けられていて、前記座繰り部36は、この凹部37の底部に設けられている。凹部37の形成により、前記パイロット部20は円筒状となっている。
 凹部37の内面は、鍛造肌又は旋削加工面であり、座繰り部36の内面つまり底面および周面は、旋削加工面とされている。座繰り部36は、図示のような深く形成したものに限らず、鍛造肌の部分が削られた程度の深さのものであっても良い。
The seat surface 35 of the hub 14 is a bottom surface of the counterbore portion 36. A concave portion 37 is provided on the inner surface side of the pilot portion 20 on the end surface on the outboard side of the hub 14, and the counterbore portion 36 is provided on the bottom portion of the concave portion 37. Due to the formation of the recess 37, the pilot portion 20 has a cylindrical shape.
The inner surface of the recess 37 is a forged skin or a turning surface, and the inner surface, that is, the bottom surface and the peripheral surface of the countersink portion 36 are turned surfaces. The counterbore part 36 is not limited to a deeply formed part as shown in the drawing, but may be a part having a depth to the extent that the forged skin portion is cut away.
 内方部材1を構成する部品であるハブ14、内輪15、および外方部材2は、いずれも鋼材の熱間鍛造品であり、このうち、ハブ14は、貫通孔21の内径面におけるセレーション21aを設けた箇所の表面部が、非標準組織の部分30とされている。ハブ14の母材部分は標準組織である。 The hub 14, inner ring 15, and outer member 2, which are parts constituting the inner member 1, are all hot forged products of steel materials. Among these, the hub 14 is a serration 21 a on the inner diameter surface of the through hole 21. The surface portion of the portion provided with is a non-standard tissue portion 30. The base material portion of the hub 14 has a standard structure.
 この構成の車輪用軸受装置によると、上述の第1実施形態の効果に加えて、次の作用効果が得られる。ハブ14の内径面のセレーション21aの形成箇所は、歯状となっているため、自動車の旋回時などにハブ14に作用するモーメント荷重等により、谷の部分が高応力となることがあり、また微細な変形・変位の繰り返しにより、ハブ14と等速ジョイント31のセレーション21aの歯が擦れることにより摩耗する。 According to the wheel bearing device having this configuration, the following operational effects can be obtained in addition to the effects of the first embodiment described above. Since the serrations 21a are formed on the inner diameter surface of the hub 14 in a tooth shape, the trough portion may become highly stressed due to a moment load acting on the hub 14 when the vehicle is turning, etc. Due to repeated fine deformation / displacement, the teeth of the serrations 21a of the hub 14 and the constant velocity joint 31 are rubbed and worn.
 しかし、このような繰り返し発生する高応力に対して、図14に明示するハブ14のセレーション21aの形成された内径面が、前記非標準組織の部分30とされていると、組織微細化や硬度アップによって強度や疲れ強さが向上し、セレーション21aの歯谷から亀裂が発生することが抑制される。つまり、亀裂発生→応力発生部位の変位増加→亀裂の伸展→ハブの破損、という作用が抑えられて、長寿命化される。 However, if the inner diameter surface on which the serrations 21a of the hub 14 shown in FIG. 14 are formed as the non-standard tissue portion 30 with respect to such high stress repeatedly generated, the structure refinement and hardness The strength and fatigue strength are improved by the increase, and the occurrence of cracks from the roots of the serrations 21a is suppressed. That is, the action of crack generation → increase in displacement of the stress generation site → extension of crack → breakage of the hub is suppressed and the life is extended.
 また、上記非標準組織による硬度アップのため、セレーション21aの摩耗が防止される。そのため、歯が摩減し、駆動力が伝達できなくなることが抑制される。 Also, since the hardness is increased by the non-standard structure, the serration 21a is prevented from being worn. For this reason, it is possible to prevent the teeth from being worn and the driving force from being transmitted.
 前記非標準組織の部分30は、特に、レーザ焼入れにより得られる。非標準組織の部分が従来の高周波熱処理により得られたものであると、ハブ14の内径面のセレーション21aの形成箇所は、歯状となっているため、セレーション21aの一部が局部的に高温になり過ぎて溶け落ちる等の問題が生じ得る。これに対して、本実施形態のものでは、非標準組織の部分30をレーザ焼入れする際、例えば、図15(A),(B)に示すように、レーザヘッドノズルLNを、セレーション21aに臨む位置またはこれらの位置付近に相対的に移動させたとき、レーザ光の出力、デフォーカス量、および、発振形態の少なくともいずれか一つを変化させる。これにより、セレーション21aが高温になり過ぎることを未然に防止し、これらセレーション21aが溶け落ちる等の問題を解消し得る。 The non-standard tissue portion 30 is obtained in particular by laser quenching. If the portion of the non-standard structure is obtained by conventional high-frequency heat treatment, the formation portion of the serration 21a on the inner diameter surface of the hub 14 has a tooth shape, so that part of the serration 21a is locally hot. Problems such as melting out too much can occur. On the other hand, in the present embodiment, when laser quenching the non-standard tissue portion 30, for example, as shown in FIGS. 15A and 15B, the laser head nozzle LN faces the serration 21a. When the position is moved relatively to or near these positions, at least one of the output of the laser beam, the defocus amount, and the oscillation mode is changed. Thereby, it is possible to prevent the serrations 21a from becoming too high, and solve problems such as the serrations 21a being melted.
 また、非標準組織の部分が従来の高周波熱処理により得られたものであると、車輪取付用フランジ17の大部分が熱処理等されてしまい、熱ひずみ等によって車輪取付用フランジ17の振れ精度劣化を生じることがあり得る。これに対して、本実施形態のものでは、ハブ14のうち目的の貫通孔21の内径面だけを、レーザ焼入れにより限定して熱処理することができるため、車輪取付用フランジ17の振れ精度等を高精度に維持することが可能となる。それ故、この車輪取付用フランジ17のアウトボード側の側面に重ねて取付けられるブレーキディスクの振れ精度をも高精度に維持することができる。 Further, if the non-standard texture portion is obtained by conventional high-frequency heat treatment, most of the wheel mounting flange 17 is heat-treated, and the deflection accuracy of the wheel mounting flange 17 is deteriorated due to thermal strain or the like. Can occur. On the other hand, in the present embodiment, only the inner diameter surface of the target through-hole 21 in the hub 14 can be heat-treated by being limited by laser quenching, so that the deflection accuracy of the wheel mounting flange 17 can be improved. High accuracy can be maintained. Therefore, the deflection accuracy of the brake disc attached to the side surface on the outboard side of the wheel mounting flange 17 can be maintained with high accuracy.
 また、従来の、疲労強度を上げるべくハブ14全体を調質すると、硬度アップによりハブ14全体の加工性が低下するが、本実施形態のものでは、車輪取付用フランジ17のうち目的の部分だけを限定的にレーザ焼入れし非標準組織の部分30としている。したがって、非標準組織とされた貫通孔21の内径面だけを限定的に硬度アップすることができる。ハブ14全体の表面を非標準組織とする場合と異なり、被削性や加締性等の加工性の低下が最小限に抑えられる。 Further, when the entire hub 14 is tempered to increase the fatigue strength, the workability of the entire hub 14 is reduced due to the increased hardness. However, in the present embodiment, only the target portion of the wheel mounting flange 17 is provided. Is made into a non-standard tissue portion 30 by laser quenching limitedly. Therefore, only the inner diameter surface of the through-hole 21 having a non-standard structure can be limited in hardness. Unlike the case where the entire surface of the hub 14 is made of a non-standard structure, deterioration of workability such as machinability and caulking properties can be minimized.
 したがって、ハブ14全体のうち貫通孔21の内径面以外の大部分は、硬化せず、熱処理後の研削加工等を容易に且つ迅速に行うことができる。それ故、従来のものより、加工工数の低減を図り、製品1個あたりのサイクルタイムの向上を図ることが可能となる。換言すれば、従来のものより、工程増による生産性の低下を抑えることができる。また、研削砥石等の寿命を延ばし、製造コストの低減を図ることができる。また、ショットピーニングと異なり、ハブ14の貫通孔21の内径が狭くても光ファイバケーブル等を貫通孔21に容易に通すことができる。したがって、貫通孔21の内径面の所定箇所にレーザ光を照射させることが可能となる。 Therefore, most of the hub 14 other than the inner diameter surface of the through hole 21 is not hardened, and grinding after the heat treatment can be easily and quickly performed. Therefore, the number of processing steps can be reduced and the cycle time per product can be improved as compared with the conventional one. In other words, it is possible to suppress a decrease in productivity due to an increase in the number of processes compared to the conventional one. In addition, the life of a grinding wheel or the like can be extended, and the manufacturing cost can be reduced. Further, unlike shot peening, an optical fiber cable or the like can be easily passed through the through hole 21 even if the inner diameter of the through hole 21 of the hub 14 is narrow. Accordingly, it is possible to irradiate a predetermined portion of the inner diameter surface of the through hole 21 with laser light.
 図16ないし図18のそれぞれに示された第13~第15実施形態においても、ハブ14の車輪取付用フランジ17のアウトボード側の根元部における表面、およびハブ14の貫通孔21の内径面におけるセレーション21aの形成部分を非標準組織の部分30とし、前記非標準組織はレーザ焼入れにより得られた組織としている。非標準組織の部分30の組織微細化や硬度アップにより、強度や疲れ強さが向上し、長寿命化できる。また、セレーション21aの形成部分の硬度アップによりセレーション21aの摩耗等が軽減される。
 なお、これらの各実施形態において、特に説明した事項の他は、図13ないし図15(A),(B)と共に説明した第12実施形態と同じである。
Also in the thirteenth to fifteenth embodiments shown in FIGS. 16 to 18, the surface of the hub mounting flange 17 of the hub 14 at the base portion on the outboard side and the inner diameter surface of the through hole 21 of the hub 14. The formation portion of the serration 21a is a non-standard tissue portion 30, and the non-standard tissue is a tissue obtained by laser quenching. Strengthening and fatigue strength are improved by extending the structure of the non-standard structure portion 30 and increasing the hardness, thereby extending the life. Further, the wear of the serration 21a is reduced by increasing the hardness of the portion where the serration 21a is formed.
In addition, in each of these embodiments, the matters other than those specifically described are the same as those in the twelfth embodiment described with reference to FIGS. 13 to 15A and 15B.
 図16に示す第13実施形態は、図5(B)に示す前記第4実施形態に対応するものである。この実施形態の車輪用軸受装置は、駆動輪支持用の円すいころ軸受型のものであって、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。内輪15は各列毎に設けられている。外方部材2は、一つの1体の部品からなり、車体取付用フランジ12を有している。この実施形態によると、図13に示す第12実施形態の車輪用軸受装置と同様の作用効果を奏する。 The thirteenth embodiment shown in FIG. 16 corresponds to the fourth embodiment shown in FIG. The wheel bearing device of this embodiment is of a tapered roller bearing type for driving wheel support, and the inner member 1 is a double row in which the hub 14 and the outer periphery of the shaft portion 14a of the hub 14 are fitted. Of the inner ring 15. The inner ring 15 is provided for each row. The outer member 2 is composed of a single component and has a vehicle body mounting flange 12. According to this embodiment, there exists an effect similar to the wheel bearing apparatus of 12th Embodiment shown in FIG.
 図17に示す第14実施形態は、図9(B)に示す前記第8実施形態に対応するものである。この実施形態の車輪用軸受装置は、駆動輪支持用のアンギュラ玉軸受型のものであって、図16に示す第13実施形態の車輪用軸受装置と同じく、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。外方部材2は一つの一体の部品からなるものであって、図13の例の車体取付用フランジ12を有せず、全体に渡って円筒面状とされている。この実施形態の外方部材2の素材は、例えばSUJ2等の高炭素クロム軸受鋼である。ただし、素材となる鋼材はSUJ2に限定されるものではない。この例では、2個の内輪15は同じ大きさとされている。この実施形態によると、図13に示す第12実施形態の車輪用軸受装置と同様の作用効果を奏する。 The fourteenth embodiment shown in FIG. 17 corresponds to the eighth embodiment shown in FIG. The wheel bearing device of this embodiment is of an angular ball bearing type for driving wheel support, and the inner member 1 is connected to the hub 14 in the same manner as the wheel bearing device of the thirteenth embodiment shown in FIG. And a double row of inner rings 15 fitted to the outer periphery of the shaft portion 14a of the hub 14. The outer member 2 is composed of one integral part, and does not have the vehicle body mounting flange 12 in the example of FIG. 13 and has a cylindrical surface throughout. The material of the outer member 2 of this embodiment is, for example, high carbon chrome bearing steel such as SUJ2. However, the steel material used as a raw material is not limited to SUJ2. In this example, the two inner rings 15 have the same size. According to this embodiment, there exists an effect similar to the wheel bearing apparatus of 12th Embodiment shown in FIG.
 図18に示す第15実施形態は、図7(B)に示す前記第6実施形態に対応するものである。この実施形態の車輪用軸受装置は、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。内輪15は各列毎に設けられていて、インボード側の内輪15の方が、アウトボード側の内輪15よりも、厚さおよび軸方向寸法が大きいものとされている。内輪15は、ハブ14に設けられた加締部14bでハブ14に軸方向に固定されている。外方部材2は、一つの一体の部品からなり、外径面は全体に渡って円筒状面とされ、図13の例における車体取付用フランジ12は有していない。この図6の実施形態に係る車輪用軸受装置においても、図13に示す第12実施形態の車輪用軸受装置と同様の作用効果を奏する。 The fifteenth embodiment shown in FIG. 18 corresponds to the sixth embodiment shown in FIG. In the wheel bearing device of this embodiment, the inner member 1 includes a hub 14 and a double-row inner ring 15 fitted to the outer periphery of the shaft portion 14 a of the hub 14. The inner ring 15 is provided for each row, and the inner ring 15 on the inboard side is larger in thickness and axial dimension than the inner ring 15 on the outboard side. The inner ring 15 is fixed to the hub 14 in the axial direction by a caulking portion 14 b provided on the hub 14. The outer member 2 is composed of one integral part, and the outer diameter surface is a cylindrical surface throughout, and does not have the vehicle body mounting flange 12 in the example of FIG. The wheel bearing device according to the embodiment of FIG. 6 also has the same effects as the wheel bearing device of the twelfth embodiment shown in FIG.
 図13~図18に示す第12~第15実施形態では、車輪取付用フランジ17の表面に非標準組織30を有することを要件として説明したが、これを要件としない応用態様として、つぎの態様1がある。
 [態様1]
 態様1にかかる車輪用軸受装置は、複列の転動体を介して互いに回転自在な内方部材および外方部材を有し、前記内方部材が、車輪取付用フランジを有するハブおよびこのハブの軸部の外周に嵌合した少なくとも1つの内輪からなり、前記ハブが中心部に、等速ジョイントの継手部材のステム部を挿通させる貫通孔を有し、この貫通孔の内径面に前記ステム部に設けられたセレーションまたはスプラインと噛み合うセレーションまたはスプラインを有する車輪用軸受装置であって、、前記ハブの母材部分が鋼材の熱間鍛造で得られた標準組織であり、前記ハブの前記貫通孔の内径面における前記セレーションまたはスプラインの形成部分が非標準組織の部分とされ、前記非標準組織が、レーザ焼入れにより得られた組織である。
In the twelfth to fifteenth embodiments shown in FIGS. 13 to 18, it has been described that the non-standard structure 30 is provided on the surface of the wheel mounting flange 17. However, as an application mode that does not require this, the following mode is used. There is one.
[Aspect 1]
A wheel bearing device according to aspect 1 includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and the inner member includes a hub having a wheel mounting flange and the hub. The hub comprises at least one inner ring fitted to the outer periphery of the shaft portion, and the hub has a through-hole through which the stem portion of the joint member of the constant velocity joint is inserted at the center portion, and the stem portion is formed on the inner diameter surface of the through-hole. A bearing device for a wheel having serrations or splines meshing with serrations or splines provided in the hub, wherein the base material portion of the hub is a standard structure obtained by hot forging of a steel material, and the through hole of the hub A portion where the serration or spline is formed on the inner diameter surface is a non-standard tissue portion, and the non-standard tissue is a tissue obtained by laser quenching.
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1…内方部材
2…外方部材(部品)
3…転動体
6~9…軌道面
12…車体取付用フランジ
14…ハブ(部品)
14a…軸部
15…内輪(部品)
17…車輪取付用フランジ
30…非標準組織となる部分
31…等速ジョイント
32…継手部材
32a…ステム部
SP…スプライン
1 ... inner member 2 ... outer member (component)
3 ... rolling elements 6 to 9 ... raceway surface 12 ... body mounting flange 14 ... hub (component)
14a ... Shaft 15 ... Inner ring (parts)
17 ... Wheel mounting flange 30 ... Non-standard part 31 ... Constant velocity joint 32 ... Joint member 32a ... Stem part SP ... Spline

Claims (15)

  1.  複列の転動体を介して互いに回転自在な内方部材および外方部材を有し、これら内方部材または外方部材の全体または一部を構成する部品が、車輪取付用フランジおよび車体取付用フランジのうち少なくとも一方のフランジを有する車輪用軸受装置であって、
     前記一方のフランジを有する部品が鋼材の熱間鍛造品であり、この部品は、母材部分が標準組織であって、前記一方のフランジの表面に非標準組織を有し、前記非標準組織が、レーザ焼入れにより得られた組織である車輪用軸受装置。
    An inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and the parts that constitute all or part of the inner member or the outer member are a wheel mounting flange and a vehicle body mounting A wheel bearing device having at least one of the flanges,
    The part having the one flange is a hot forged product of steel, and this part has a base material portion having a standard structure, and has a non-standard structure on the surface of the one flange. A wheel bearing device, which is a structure obtained by laser hardening.
  2.  請求項1において、前記非標準組織の部分が、前記一方のフランジの根元部である車輪用軸受装置。 The wheel bearing device according to claim 1, wherein the portion of the non-standard structure is a root portion of the one flange.
  3.  請求項1において、前記非標準組織の部分が、前記一方のフランジの車輪取付面または車体取付面と反対側の側面である車輪用軸受装置。 2. The wheel bearing device according to claim 1, wherein the portion of the non-standard structure is a side surface of the one flange opposite to a wheel mounting surface or a vehicle body mounting surface.
  4.  請求項1において、前記非標準組織の部分が、前記一方のフランジの両側面または全面である車輪用軸受装置。 The wheel bearing device according to claim 1, wherein the portion of the non-standard structure is the both side surfaces or the entire surface of the one flange.
  5.  請求項1において、前記内方部材が、ハブと、このハブの軸部の外周に嵌合した内輪とでなり、前記車輪取付用フランジを有する部品が前記ハブである車輪用軸受装置。 2. The wheel bearing device according to claim 1, wherein the inner member is a hub and an inner ring fitted to an outer periphery of a shaft portion of the hub, and the component having the wheel mounting flange is the hub.
  6.  請求項1において、レーザ焼入れにより得られた組織である非標準組織が、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マンテルサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織である車輪用軸受装置。 In Claim 1, the non-standard structure which is a structure obtained by laser quenching is one of a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, a tempered mantelsite structure, or at least of these structures. A wheel bearing device which is a mixed structure of two or more of them.
  7.  請求項1において、前記非標準組織の部分の硬度が20HRC以上40HRC以下であり、母材部分の標準組織の硬度が13HRC以上25HRC以下である車輪用軸受装置。 2. The wheel bearing device according to claim 1, wherein the hardness of the portion of the non-standard structure is 20 HRC or more and 40 HRC or less, and the hardness of the standard structure of the base material portion is 13 HRC or more and 25 HRC or less.
  8.  請求項1において、前記非標準組織の部分の硬度が40HRC以上であり、母材部分の標準組織の硬度が13HRC以上25HRC以下である車輪用軸受装置。 The wheel bearing device according to claim 1, wherein the hardness of the non-standard structure portion is 40 HRC or more and the hardness of the standard structure of the base material portion is 13 HRC or more and 25 HRC or less.
  9.  請求項1において、レーザ焼入れにより得られた組織である非標準組織が、YAGレーザ光または半導体レーザ光を使用した焼入れにより得られた組織である車輪用軸受装置。 The wheel bearing device according to claim 1, wherein the non-standard structure, which is a structure obtained by laser quenching, is a structure obtained by quenching using YAG laser light or semiconductor laser light.
  10.  請求項1において、前記内方部材が、車輪取付用フランジを有するハブおよびこのハブの軸部の外周に嵌合した少なくとも1つの内輪からなり、前記ハブが中心部に、等速ジョイントの継手部材のステム部を挿通させる貫通孔を有し、この貫通孔の内径面に前記ステム部に設けられたセレーションまたはスプラインと噛み合うセレーションまたはスプラインを有し、
     前記ハブの母材部分が鋼材の熱間鍛造で得られた標準組織であり、前記ハブの前記貫通孔の内径面における前記セレーションまたはスプラインの形成部分が非標準組織の部分とされ、前記非標準組織が、レーザ焼入れにより得られた組織である車輪用軸受装置。
    2. The joint member of a constant velocity joint according to claim 1, wherein the inner member includes a hub having a wheel mounting flange and at least one inner ring fitted to an outer periphery of a shaft portion of the hub. Having a serration or spline that meshes with the serration or spline provided in the stem portion on the inner diameter surface of the through-hole.
    The base material portion of the hub is a standard structure obtained by hot forging of a steel material, and the serration or spline formation portion on the inner diameter surface of the through hole of the hub is a non-standard structure portion, and the non-standard structure The wheel bearing apparatus whose structure is a structure | tissue obtained by laser hardening.
  11. [規則91に基づく訂正 04.01.2010] 
     請求項10において、前記ハブの貫通孔におけるレーザ焼入れにより得られた組織である非標準組織が、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織である車輪用軸受装置。
    [Correction 04.01.2010 based on Rule 91]
    In claim 10, the non-standard structure that is a structure obtained by laser quenching in the through hole of the hub is any one of a fine ferrite pearlite structure, an upper bainite structure, a lower bainite structure, a tempered martensite structure, Or the bearing apparatus for wheels which is a mixed structure | tissue of two or more types of these structures | tissues at least.
  12.  請求項11において、前記ハブおよび内輪に各列の軌道面を有するものである車輪用軸受装置。 12. The wheel bearing device according to claim 11, wherein each of the hub and the inner ring has a row of raceways.
  13.  請求項11において、前記ハブが軌道面を有せず、前記内輪が複列の軌道面を有するものである車輪用軸受装置。 12. The wheel bearing device according to claim 11, wherein the hub does not have a raceway surface and the inner ring has a double row raceway surface.
  14.  請求項11において、前記非標準組織の部分の硬度が20HRC以上40HRC以下であり、母材部分の標準組織の硬度が13HRC以上25HRC以下である車輪用軸受装置。 12. The wheel bearing device according to claim 11, wherein the hardness of the non-standard structure portion is 20 HRC or more and 40 HRC or less, and the hardness of the standard structure of the base material portion is 13 HRC or more and 25 HRC or less.
  15.  請求項11において、前記非標準組織の部分の硬度が40HRC以上であり、母材部分の標準組織の硬度が13HRC以上25HRC以下である車輪用軸受装置。 12. The wheel bearing device according to claim 11, wherein the hardness of the non-standard structure portion is 40 HRC or more, and the hardness of the standard structure of the base material portion is 13 HRC or more and 25 HRC or less.
PCT/JP2009/004208 2008-09-02 2009-08-28 Wheel bearing apparatus WO2010026723A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-224476 2008-09-02
JP2008224476A JP2010058574A (en) 2008-09-02 2008-09-02 Bearing device for wheels
JP2008-258343 2008-10-03
JP2008258343A JP2010089530A (en) 2008-10-03 2008-10-03 Wheel bearing apparatus

Publications (1)

Publication Number Publication Date
WO2010026723A1 true WO2010026723A1 (en) 2010-03-11

Family

ID=41796909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004208 WO2010026723A1 (en) 2008-09-02 2009-08-28 Wheel bearing apparatus

Country Status (1)

Country Link
WO (1) WO2010026723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961603B2 (en) 2013-11-25 2021-03-30 Magna International Inc. Structural component including a tempered transition zone

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129703A (en) * 1997-08-28 1999-05-18 Nippon Seiko Kk Rolling bearing unit for wheel supporting
JP2001294011A (en) * 2000-04-12 2001-10-23 Ntn Corp Wheel bearing device
JP2002087008A (en) * 2000-09-20 2002-03-26 Ntn Corp Wheel bearing system
JP2006083417A (en) * 2004-09-15 2006-03-30 Kyushu Institute Of Technology Surface modification method for iron alloy-made mechanism parts
JP2007024273A (en) * 2005-07-20 2007-02-01 Ntn Corp Method of manufacturing bearing device for wheel
JP2007022464A (en) * 2005-07-20 2007-02-01 Ntn Corp Bearing device for wheels
JP2007050767A (en) * 2005-08-18 2007-03-01 Ntn Corp Bearing device for wheel
JP2007063606A (en) * 2005-08-30 2007-03-15 Osaka Univ Quenching method and quenching apparatus using semiconductor laser beam
JP2009262769A (en) * 2008-04-25 2009-11-12 Ntn Corp Bearing device for wheels

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129703A (en) * 1997-08-28 1999-05-18 Nippon Seiko Kk Rolling bearing unit for wheel supporting
JP2001294011A (en) * 2000-04-12 2001-10-23 Ntn Corp Wheel bearing device
JP2002087008A (en) * 2000-09-20 2002-03-26 Ntn Corp Wheel bearing system
JP2006083417A (en) * 2004-09-15 2006-03-30 Kyushu Institute Of Technology Surface modification method for iron alloy-made mechanism parts
JP2007024273A (en) * 2005-07-20 2007-02-01 Ntn Corp Method of manufacturing bearing device for wheel
JP2007022464A (en) * 2005-07-20 2007-02-01 Ntn Corp Bearing device for wheels
JP2007050767A (en) * 2005-08-18 2007-03-01 Ntn Corp Bearing device for wheel
JP2007063606A (en) * 2005-08-30 2007-03-15 Osaka Univ Quenching method and quenching apparatus using semiconductor laser beam
JP2009262769A (en) * 2008-04-25 2009-11-12 Ntn Corp Bearing device for wheels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961603B2 (en) 2013-11-25 2021-03-30 Magna International Inc. Structural component including a tempered transition zone

Similar Documents

Publication Publication Date Title
CN100443755C (en) Bearing apparatus for a wheel of vehicle
JP2007024273A (en) Method of manufacturing bearing device for wheel
CN101636282B (en) Wheel support bearing assembly and method of making the same
JP5121246B2 (en) Wheel bearing device and manufacturing method thereof
JP5019727B2 (en) Wheel bearing device
JP4076818B2 (en) Constant velocity universal joint
JP2010096253A (en) Bearing device for wheel
JP4536086B2 (en) Wheel bearing device and manufacturing method thereof
JP2010058575A (en) Bearing device for wheels
WO2010026723A1 (en) Wheel bearing apparatus
JP2008169941A (en) Wheel bearing device
JP2005145313A (en) Rolling bearing unit for supporting vehicle wheel
JP2010006198A (en) Bearing device for wheel
JP2012180091A (en) Bearing device for wheel
JP2009262769A (en) Bearing device for wheels
US7909517B2 (en) Wheel support bearing assembly and manufacturing method thereof
JP2009191902A (en) Wheel bearing device
JP2010058574A (en) Bearing device for wheels
JP2010089530A (en) Wheel bearing apparatus
JP2010089669A (en) Wheel bearing device
JP5105723B2 (en) Wheel bearing device
JP2012189217A (en) Wheel bearing device
JP2012020676A (en) Wheel bearing device
JP2010058576A (en) Bearing device for wheels
EP2113394B1 (en) Bearing for wheel and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811253

Country of ref document: EP

Kind code of ref document: A1