WO2010024321A1 - 排気リサイクルシステム - Google Patents

排気リサイクルシステム Download PDF

Info

Publication number
WO2010024321A1
WO2010024321A1 PCT/JP2009/064940 JP2009064940W WO2010024321A1 WO 2010024321 A1 WO2010024321 A1 WO 2010024321A1 JP 2009064940 W JP2009064940 W JP 2009064940W WO 2010024321 A1 WO2010024321 A1 WO 2010024321A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
exhaust gas
duct
activated carbon
voc
Prior art date
Application number
PCT/JP2009/064940
Other languages
English (en)
French (fr)
Inventor
伴成 長瀬
久司 斉藤
正宏 中尾
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008222826A external-priority patent/JP2010051935A/ja
Priority claimed from JP2008222772A external-priority patent/JP4881925B2/ja
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/059,846 priority Critical patent/US20110132197A1/en
Publication of WO2010024321A1 publication Critical patent/WO2010024321A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/025Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0258Other waste gases from painting equipments or paint drying installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/401Further details for adsorption processes and devices using a single bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • B05B14/49Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths specially adapted for solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/30Sorption devices using carbon, e.g. coke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas recycle system, and more specifically, burns and removes volatile organic compounds (hereinafter also referred to as VOC) contained in exhaust gas discharged from a predetermined zone, and recycles purified air from which VOC has been removed.
  • VOC volatile organic compounds
  • the present invention relates to an exhaust gas recycling system that can be used.
  • the present invention also relates to an activated carbon filter device that can be applied to, for example, the above exhaust gas recycling system.
  • VOC contained in exhaust gas is concentrated and recovered and used as combustion air for an internal combustion engine. Further, it is integrated with the power generation system or the cogeneration system, for example, by driving a generator by an internal combustion engine. According to this system, while aiming at processing of VOC, running cost can be significantly reduced and energy saving can be realized.
  • VOC contained in exhaust gas is adsorbed and concentrated by an adsorption device including zeolite or the like.
  • exhaustion is removed and exhaust_gas
  • the VOC adsorbed and concentrated by the adsorption device is desorbed by the regenerator and used as combustion air for the internal combustion engine.
  • this method has a problem that when the concentration of VOC contained in the exhaust gas is high, the adsorption device cannot sufficiently remove the VOC in the exhaust gas and the exhaust gas cannot be purified. Further, when the VOC concentration contained in the exhaust gas is low, the amount of VOC adsorbed by the adsorption device decreases, and there is a problem that the combustion air supplied to the internal combustion engine becomes insufficient.
  • the present invention has been made in view of the above problems, and an object thereof is to efficiently burn and remove VOC in exhaust exhausted from a predetermined zone and to recycle purified air after VOC removal. It is to provide an exhaust gas recycling system that can be used. Another object of the present invention is to provide a technique capable of stabilizing the concentration of volatile organic compounds contained in the exhaust gas supplied to the adsorption device.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that the above object can be achieved by an exhaust gas recycling system having the following configuration, and the present invention has been completed. Further, the inventors have found that the above object can be achieved by supplying exhaust gas discharged from a predetermined zone where VOC is generated to an adsorption device via an activated carbon filter device, and have completed the present invention. Specifically, the present invention provides the following.
  • the exhaust gas recycling system is a predetermined zone for exhausting exhaust gas containing a volatile organic compound, an adsorption device for adsorbing a volatile organic compound in the exhaust gas exhausted from the predetermined zone, and adsorbing to the adsorption device.
  • a purified air recycling device for separating the purified volatile organic compound from the adsorption device to become a combustion fuel for the combustion device, and for leading purified air that has passed through the adsorption device and purified to the predetermined zone again. It is characterized by providing.
  • the exhaust gas recycling system uses an adsorption device that adsorbs VOCs in exhaust gas discharged from a predetermined zone, and separates the VOCs adsorbed by the adsorption device into combustion fuel for the combustion device. And a purified air recycling apparatus for guiding purified air that has been purified by passing through to a predetermined zone again.
  • the purified air from which the VOC has been removed by the adsorption device can be recycled to a predetermined zone, and the VOC adsorbed by the adsorption device can be efficiently burned and removed by the combustion device, thereby suppressing the release of VOC and saving energy. Can be achieved.
  • the exhaust gas recycle system according to claim 2 is the exhaust gas recycle system according to claim 1, wherein the adsorption device adsorbs a volatile organic compound, a separation part that desorbs the adsorbed volatile organic compound, and the A switching mechanism capable of switching between the adsorbing unit and the separation unit, and the purified air recycling device supplies the separation unit with a high-temperature gas generated when the volatile organic compound is burned and removed by the combustion device. Thus, the volatile organic compound adsorbed on the adsorption device is released.
  • the adsorption device includes the adsorption unit that adsorbs the VOC, the separation unit that removes the adsorbed VOC, and the switching mechanism that can switch between the adsorption unit and the separation unit.
  • the purified air recycling apparatus is configured to release the VOC adsorbed by the adsorption device by supplying a high temperature gas generated when the VOC is burned and removed by the combustion device to the separation unit.
  • the VOC adsorbed by the adsorption unit is separated by the high-temperature gas supplied from the combustion device and efficiently guided to the combustion device as the adsorption unit is switched to the separation unit by the switching mechanism. For this reason, efficient combustion removal of VOC becomes possible, high temperature gas can be used effectively, and it can contribute to energy saving.
  • the exhaust gas recycle system according to claim 3 is the exhaust gas recycle system according to claim 1 or 2, wherein the exhaust gas recycle system removes the high-temperature gas generated when the volatile organic compound is burned and removed by the combustion device in the predetermined zone. It is further provided with a high-temperature gas recycle device that guides to and recycles.
  • the exhaust gas recycling system is further provided with a high-temperature gas recycling device that guides and recycles high-temperature gas generated when the VOC is burned and removed by the combustion device to a predetermined zone.
  • the exhaust gas recycle system according to claim 4 is the exhaust gas recycle system according to claims 1 to 3, wherein the purified air recycling device guides the purified air to the predetermined zone for recycling, and A damper device provided with a valve switching device provided at a branch portion of the first exhaust duct for branching from the first main duct to release the purified air to the atmosphere, and the first main duct and the first exhaust duct And.
  • the exhaust gas recycle system according to claim 5 is the exhaust gas recycle system according to claim 4, wherein the valve switching device includes an on-off valve that opens and closes a flow path of the first main duct, and a flow path of the first exhaust duct.
  • An exhaust valve that opens and closes, and when the open / close valve closes the flow path of the first main duct, the exhaust valve opens the flow path of the first exhaust duct, and the open / close valve opens the flow of the first main duct.
  • the exhaust gas recycle system according to claim 6 is the exhaust gas recycle system according to any one of claims 3 to 5, wherein the high temperature gas recycling device includes a second main duct for guiding the high temperature gas to the predetermined zone for recycling. , Provided at a branch portion between the second main duct and the second exhaust duct for branching from the second main duct to release the high-temperature gas to the atmosphere, and comprising a valve switching device. And a damper device.
  • the exhaust gas recycle system according to claim 7 is the exhaust gas recycle system according to claim 6, wherein the valve switching device includes an on-off valve that opens and closes a flow path of the second main duct, and a flow path of the second exhaust duct.
  • An exhaust valve that opens and closes, and when the open / close valve closes the flow path of the second main duct, the exhaust valve opens the flow path of the second exhaust duct, and the open / close valve flows through the second main duct.
  • the purified air recycling apparatus includes a first main duct, a first exhaust duct, and a first valve switching device disposed at a branch portion of the first main duct and the first exhaust duct. And a damper device.
  • the high-temperature gas recycling device includes a second main duct, a second exhaust duct, and a second damper device including a second valve switching device disposed at a branch portion of the second main duct and the second exhaust duct. Constructed including.
  • the main duct simply means the first main duct and the second main duct
  • the exhaust duct simply means the first exhaust duct and the second exhaust duct, and simply the valve switching device.
  • a damper device means a first damper device and a second damper device.
  • the valve switching device includes an on-off valve, an exhaust valve, and switching means.
  • the on-off valve opens and closes the flow path of the main duct.
  • the exhaust valve opens and closes the flow path of the exhaust duct.
  • the switching means is configured such that when the on-off valve closes the flow path of the main duct, the exhaust valve opens the flow path of the exhaust duct, and when the on-off valve opens the flow path of the main duct, the exhaust valve Close the road.
  • the switching means operates by detecting the concentration of the VOC of the purified air discharged from the adsorption device, and detects the temperature of the hot gas discharged from the combustion device.
  • the fact that the purified air or the high-temperature gas flows and the purified air or the high-temperature gas is recycled to the predetermined zone in the main duct is actually the first main duct through which the purified air flows and the second main through which the high-temperature gas flows.
  • the exhaust gas recycling system is equipped with a duct.
  • the first main duct and the second main duct are preferably connected after passing through the valve switching device so that the purified air and the high-temperature gas merge and return to the predetermined zone.
  • the exhaust duct is branched from the main duct, and purifying air or high-temperature gas is released to the atmosphere that the first exhaust duct branched from the first main duct and the second exhaust duct branched from the second main duct. This means that the exhaust gas recycling system is equipped.
  • the first damper device includes a first valve switching device disposed at a branch portion between the first main duct and the first exhaust duct, and the second damper device is disposed at a branch portion between the second main duct and the second exhaust duct.
  • the second valve switching device is provided.
  • the first valve switching device and the second valve switching device can function (activate) independently of each other.
  • the first valve switching device and the second valve switching device have the same configuration, the first valve switching device and the second valve switching device are treated as the same.
  • a partition plate called a damper is arranged inside a duct, and the air volume in the duct is adjusted by changing the inclination angle of the damper. That is, if the damper is arranged so as to be orthogonal to the direction of the wind flow inside the duct, the air volume in the duct is minimized, and if the damper is arranged in the duct parallel to the direction of the wind flow, The airflow is maximized, and the airflow in the duct can be adjusted between the minimum and maximum by changing the angle of inclination of the damper.
  • the open / close valve opens the flow path of the main duct, and the exhaust valve closes the flow path of the exhaust duct, so the main duct forms a closed circuit through which purified air and high-temperature gas are guided to a predetermined zone is doing.
  • the switching means When the VOC concentration of the purified air exhausted from the adsorption device is detected and exceeds a predetermined value, the switching means is activated, the on / off valve closes the flow path of the main duct, and the exhaust valve opens the flow path of the exhaust duct. Can return to value. Also, when the temperature of the hot gas discharged from the combustion device is detected and exceeds a predetermined value, the switching means is activated, the open / close valve closes the main duct flow path, and the exhaust valve opens the exhaust duct flow path. Can return to normal values.
  • valve switching device is configured such that when one damper closes one duct, the other damper opens the other duct, and when one damper opens one duct, the other damper opens the other duct.
  • the damper has the other duct closed and has a mechanical interlock function that allows reversible operation, thus ensuring the reliability of the recycling system.
  • the damper device When recycling the purified air, the damper device according to the present invention detects the VOC concentration in the purified air, and in the case of an inappropriate detection value, releases the purified air to the atmosphere. Recycle this purified air. Therefore, a certain level of clean air can always be recycled. Further, the air balance can be kept within a certain range by controlling the switching means so as to exhaust a certain air volume.
  • the damper device when the high temperature gas generated by the combustion device is recycled to the predetermined zone, the temperature of the high temperature gas discharged from the combustion device is detected and the switching means is operated. For example, when the combustion apparatus starts up, the high-temperature gas has not reached a predetermined temperature, so this high-temperature gas is automatically released to the atmosphere. On the other hand, when the hot gas reaches a predetermined temperature, the hot gas is recycled to the predetermined zone.
  • the damper device according to the present invention makes it possible to recover heat (thermal recycling) of the high-temperature gas discharged from the combustion device at a predetermined temperature.
  • the exhaust gas recycle system according to claim 8 is the exhaust gas recycle system according to any one of claims 3 to 7, wherein the exhaust gas recycle system includes an inner pipe through which a high-temperature gas recycled by the high-temperature gas recycle device circulates, The pipe is surrounded by a gap, and the gap is provided with a double pipe structure including an outer pipe through which purified air recycled by the purified air recycling apparatus is circulated.
  • an exhaust gas recycling system includes a double-pipe structure comprising an inner pipe through which high-temperature gas flows and an outer pipe that surrounds the inner pipe with a gap and through which purified air flows. Constructed including. For this reason, while high temperature gas distribute
  • the exhaust gas recycle system according to claim 9 is the exhaust gas recycle system according to any one of claims 3 to 8, further comprising an exhaust gas recycle system control device, wherein the purified air and the high temperature gas are introduced into the exhaust gas recycle system control device.
  • a static pressure adjusting chamber a fresh air supply mechanism that is provided in the static pressure adjusting chamber and supplies fresh air to the predetermined zone, and a high-temperature gas concentration in the static pressure adjusting chamber that is provided in the static pressure adjusting chamber.
  • a high temperature gas concentration sensor for measuring the predetermined zone by driving the fresh air supply mechanism based on the high temperature gas concentration measured by the high temperature gas concentration sensor and adjusting the pressure in the static pressure adjustment chamber.
  • an exhaust gas recycle control mechanism for controlling the amount of fresh air supplied to and the amount of purified air recycled.
  • the exhaust gas recycle system includes the exhaust gas recycle system control device. Further, the exhaust gas recycle system control device measures the high pressure gas concentration in the static pressure adjustment chamber, the fresh air supply mechanism for supplying fresh air to the predetermined zone, and the static pressure adjustment chamber into which the purified air and the high temperature gas are introduced. Based on the high-temperature gas concentration sensor and the high-temperature gas concentration measured by the high-temperature gas concentration sensor, the amount of fresh air supplied to the predetermined zone by driving the fresh air supply mechanism and adjusting the pressure in the static pressure adjustment chamber And an exhaust gas recycle control mechanism for controlling the amount of purified air to be recycled.
  • the exhaust gas recycle system capable of recycling purified air and high temperature gas generated by combustion purification of VOC contained in exhaust gas discharged from a predetermined zone, the amount of purified air to be recycled according to the high temperature gas concentration And it becomes possible to control the amount of high-temperature gas. As a result, a safe and stable exhaust recycling system can be recycled.
  • the activated carbon filter device of the present invention has a filter device body through which exhaust gas discharged from a predetermined zone in which a volatile organic compound is generated, and the filter device body is in the exhaust gas discharged from the predetermined zone. Part of the volatile compound contained is adsorbed and retained, and when the concentration of the volatile compound contained in the exhaust gas is low, a part of the adsorbed and retained volatile compound is released.
  • An activated carbon cartridge having a function is provided.
  • VOC volatile organic compound
  • the concentration of VOC contained in the exhaust gas introduced into the activated carbon filter device can be maintained within a predetermined range.
  • the concentration of VOC contained in the exhaust gas supplied to the adsorption device can be stabilized.
  • the filter device main body includes a casing disposed in a flow path of the exhaust discharged from the predetermined zone, and a plurality of layers arranged in a multistage manner at predetermined intervals in the height direction inside the casing. And a plurality of partition plates that are respectively disposed between two adjacent activated carbon cartridges and are inclined downward in the exhaust flow direction.
  • a plurality of activated carbon cartridges are stacked in multiple stages at predetermined intervals in the height direction, and a partition plate is provided between two adjacent activated carbon cartridges.
  • the exhaust discharged from the predetermined zone and introduced into the activated carbon filter device first enters a plurality of gaps respectively formed between two activated carbon cartridges adjacent in the height direction.
  • partition plates that are inclined downward in the flow direction are arranged, so that the exhaust gas that has entered these gaps is guided to the partition plates and arranged below the partition plates. It is introduced from the upper surface side of the activated carbon cartridge and discharged from the lower surface side of the activated carbon cartridge. Accordingly, the contact area between the exhaust gas passing through the activated carbon filter device and the activated carbon cartridge can be widened, so that the adsorption efficiency of the VOC by the activated carbon cartridge can be improved.
  • VOC has a higher specific gravity than air. Therefore, in the present invention, the partition plate is inclined downward in the exhaust flow direction. As a result, the exhaust gas is guided to the partition plate and passes from the upper surface to the bottom surface of the activated carbon cartridge disposed below the partition plate. Therefore, VOC having a larger specific gravity than air can be effectively adsorbed and held on the activated carbon cartridge.
  • the casing includes a first main body portion disposed substantially perpendicular to the introduction direction of the exhaust gas at a central portion in the width direction of the flow path, and downstream from both widthwise end portions of the first main body portion. And a pair of second main body portions disposed substantially perpendicular to the first main body portion, and outwardly extending from respective tip portions of the pair of second main body portions, and the pair of second main body portions. It is preferable to include a pair of third main body portions disposed substantially perpendicular to the main body portions.
  • the casing is configured to include the first main body portion, the second main body portion, and the third main body portion.
  • the exhaust gas introduced into the activated carbon filter device enters the first main body portion and the third main body portion from the first main body portion and the third main body portion that are disposed substantially perpendicular to the introduction direction of the exhaust gas. It enters also from the 2nd main-body part arrange
  • a plurality of the filter device main bodies are arranged at predetermined intervals.
  • a plurality of filter device bodies are arranged. Therefore, since the retention capacity of the VOC by the activated carbon filter device can be increased, the concentration of VOC contained in the exhaust gas supplied to the adsorption device can be further stabilized.
  • the plurality of activated carbon cartridges are preferably configured to be detachable from the housing.
  • each of the plurality of activated carbon cartridges is configured to be detachable from the casing. Therefore, since only the activated carbon cartridge that needs to be replaced among the plurality of activated carbon cartridges can be replaced, the activated carbon filter device can be easily maintained.
  • an adjustment mechanism for adjusting the flow rate of the exhaust gas is provided on the bottom surface of the plurality of activated carbon cartridges.
  • the adjustment mechanism for adjusting the circulation amount of the exhaust gas is provided on the bottom surface of the activated carbon cartridge. Therefore, by adjusting the adjustment mechanism, it is possible to adjust the discharge amount of the VOC that is adsorbed and held on the activated carbon cartridge. Therefore, the concentration of VOC contained in the exhaust gas supplied to the adsorption device can be further stabilized.
  • an exhaust gas recycle system capable of efficiently burning and removing VOCs in exhaust gas discharged from a predetermined zone and recycling purified air after VOC removal. For this reason, reduction of VOC emission amount and energy saving can be achieved.
  • the activated carbon filter device of the present invention the concentration of VOC contained in the exhaust gas supplied to the adsorption device can be stabilized.
  • FIGS. 3A to 3C are diagrams schematically showing the cleaning means in the first cleaning unit and the second cleaning unit, respectively. It is a top view which shows the structure of an activated carbon filter apparatus.
  • FIG. 5 is a sectional view taken along line XX in FIG. 4.
  • FIG. 6A is a plan view of the activated carbon cartridge, and FIG. 6B is a bottom view. It is a bottom view of the activated carbon cartridge which provided the adjustment mechanism in the bottom face part. It is a front view of a damper device.
  • FIG. 13 is a cross-sectional view taken along line YY in FIG. 12. It is a figure which shows the structure of a recycling system control apparatus.
  • the exhaust gas recycling system of the present invention is applied to a painting facility for painting an automobile body.
  • “application” includes “painting”, “printing”, and “coating”.
  • the “paints” include paints used for painting and inks used for printing.
  • FIG. 1 is a diagram showing a configuration of a painting facility 100 as a coating facility of the present invention.
  • the painting facility 100 is a facility for painting a car body of an automobile as an object to be coated, and is included in a painting system 110 as a coating system for painting the car body, and exhaust exhausted from the painting system 110.
  • VOC removal system 120 for burning and removing VOCs, purified air purified by the VOC removal system 120 and high-temperature gas generated at the time of combustion are guided to the coating system 110 for recycling and high-temperature gas recycling A recycling system 130 including the apparatus.
  • the coating system 110 includes a plurality of coating zones 111 as predetermined zones arranged along the conveyance direction of the vehicle body, an air supply device 112 that supplies air to the plurality of coating zones 111 by air conditioning, and is air-conditioned.
  • An air supply path 113 through which air flows and a drying furnace 114 for drying an object to be coated that has been coated in a plurality of coating zones 111 are provided.
  • the air supply device 112 includes an air conditioner (not shown) that air-conditions fresh air and recycle gas supplied by a recycle system control device 800, which will be described later, an air supply fan (not shown) that sends out the conditioned air, Is provided.
  • the supplied air is diffused to reduce the speed, the pressure is increased, and the lower surface of the static pressure chamber 111A is temporarily closed, and the air is directed downward.
  • An upper flow straightening plate 111B that is discharged downward, a painting chamber 111C located below the upper flow straightening plate 111B, a painting robot 111D that is disposed in the painting chamber 111C and paints an object to be coated, and an exhaust A supply path 115.
  • the object to be coated is painted by the painting robot 111D.
  • the air in the painting zone 111 includes VOC, paint mist, paint scum and the like generated during painting.
  • fresh air and recycle gas supplied by a recycle system control device 800 described later are mixed, air-conditioned by an air conditioner, and supplied to each of the plurality of coating zones 111 through an air supply path 113 by an air supply fan.
  • the air supplied from the air supply device 112 is discharged from the plurality of painting zones 111 to the exhaust supply path 115 by an exhaust fan (not shown).
  • the VOC removal system 120 includes a filter device 400 through which the exhaust gas discharged from the coating system 110 passes, an activated carbon filter device 500 provided downstream of the filter device 400 and through which the exhaust gas that has passed through the filter device 400 passes, and the activated carbon filter.
  • An adsorption device 200 that is provided downstream of the device 500 and adsorbs VOC contained in exhaust gas that has passed through the activated carbon filter device 500, and a regenerative combustion device 300 as a combustion device that combusts and removes VOC adsorbed by the adsorption device 200.
  • the filter device 400 is disposed on the flow path of the exhaust discharged from the coating system 110, and removes paint mist, paint debris, and the like contained in the exhaust discharged from the plurality of coating zones 111 and the drying furnace 114.
  • the activated carbon filter device 500 is provided on the downstream side of the activated carbon filter device 500 by adsorbing a part of the VOC contained in the exhaust discharged from the coating system 110 and gradually releasing the adsorbed part of the VOC.
  • the VOC concentration in the exhaust gas supplied to the adsorption device 200 is adjusted. Specifically, when the concentration of VOC contained in the exhaust gas is high, the activated carbon filter device 500 adsorbs a part thereof. Further, when the concentration of VOC contained in the exhaust gas passing through the activated carbon filter device 500 is low, a part of the VOC adsorbed by the activated carbon filter device 500 is released.
  • the activated carbon filter device 500 has an effect of removing a substance that hinders the VOC adsorption ability of zeolite used in the adsorption device 200 described later.
  • the adsorption device 200 has a cylindrical shape and includes zeolite as a VOC adsorbent.
  • the exhaust gas that has passed through the activated carbon filter device 500 passes through the adsorption device 200, so that VOC is adsorbed and removed.
  • the adsorbed VOC is concentrated by the adsorption device 200.
  • Two adsorption devices 200 are arranged in parallel with respect to the flow path of the exhaust, and besides being used at the same time, for example, the main and sub can be used properly.
  • the adsorption device 200 includes an adsorption unit that adsorbs the VOC, a separation unit that removes the adsorbed VOC, and a switching mechanism that can switch between the adsorption unit and the separation unit. For this reason, in the adsorption device 200, VOC is adsorbed in the adsorption part through which the exhaust gas that has passed through the activated carbon filter device 500 passes. The VOC is detached at a separation part through which a high-temperature gas generated in the heat storage combustion apparatus 300 described later passes through a first high-temperature gas supply path 310 provided in a purified air recycling apparatus described later.
  • the adsorption device 200 includes a motor as a switching mechanism, and can be rotated around an axis about the flow direction of the exhaust by the motor. Switching between the adsorption unit and the separation unit is performed by this rotation.
  • the purified air purified by passing through the adsorption device 200 is guided to the coating system 110 by the recycling system 130. Further, the VOC separated from the adsorption device 200 is supplied to a heat storage combustion device 300 described later through a VOC supply path 320 provided in a purified air recycling device described later.
  • the heat storage combustion apparatus 300 burns and removes the VOC that has been adsorbed and concentrated by the adsorption apparatus 200. As described above, the VOC adsorbed and concentrated by the adsorption device 200 is separated and introduced into the heat storage combustion device 300 by the high-temperature gas supplied through the first high-temperature gas supply path 310.
  • the heat storage combustion apparatus 300 is a three-column heat storage combustion apparatus, and a large amount of VOC is efficiently pyrolyzed.
  • the VOC supplied to the heat storage combustion apparatus 300 is pyrolyzed at a high temperature of about 800 ° C. or higher and converted into water and carbon dioxide.
  • a part of the high-temperature gas (waste heat) generated when the VOC is burned and removed is used to detach the VOC adsorbed by the adsorption device 200.
  • a part of the high-temperature gas is guided to the coating system 110 by a recycling system 130 described later.
  • the recycle system 130 separates the VOC adsorbed by the adsorption device 200 to become the combustion fuel of the heat storage combustion device 300, and purifies purified air that passes the adsorption device 200 and purifies purified air again to the coating zone 111.
  • a high-temperature gas recycling device that guides and recycles the high-temperature gas generated when the VOC is burned and removed by the heat storage combustion device 300 to the coating zone 111.
  • the purified air recycling apparatus includes a first main duct 735 for guiding the purified air to the painting zone 111 for recycling, and a first exhaust duct 736 for branching from the first main duct 735 to release the purified air to the atmosphere.
  • the high-temperature gas recycling apparatus has a second main duct 723 for guiding the high-temperature gas to the coating zone 111 for recycling, and a second exhaust duct 726 for branching from the second main duct 723 to release the high-temperature gas to the atmosphere.
  • a second damper device 620 provided at a branch portion between the second main duct 723 and the second exhaust duct 726 and provided with a second valve switching device.
  • the VOC removal system 120 has not sufficiently removed VOC. Therefore, the first damper device 610 and the second damper device 620 are opened to release purified air and high-temperature gas to the atmosphere, and recycling is not performed.
  • the recycling system 130 surrounds the inner pipe 720 through which a high-temperature gas recycled by the high-temperature gas recycling apparatus flows, and the inner pipe 720 with a gap therebetween.
  • a double pipe structure 710 including an outer pipe 730 through which air is circulated is provided.
  • the outer tube 730 is provided so as to surround the inner tube 720, and the outer tube 730 and the inner tube 720 form a double tube structure 710.
  • High temperature gas flows through the inner pipe 720 via the second main duct 723.
  • Purified air flows through the outer pipe 730 through the first main duct 735.
  • the purified air flowing through the outer pipe 730 is warmed by the high-temperature gas flowing through the inner pipe 720.
  • high-temperature gas (waste heat) generated in the heat storage combustion device 300 is effectively used as a means for warming the purified air to a predetermined temperature required when the purified air is supplied to the coating system 110, thereby achieving energy saving. Is done.
  • a part of the high temperature gas generated in the heat storage combustion apparatus 300 is used for heat insulation of the outer pipe 730 through the supply pipe 738. For this reason, especially in winter, the temperature reduction of the purified air flowing through the outer pipe 730 is suppressed.
  • the recycling system 130 includes a recycling system control device 800 that controls the amount of purified air and the amount of high-temperature gas recycled by the recycling system 130.
  • the recycling system control device 800 controls the amount of purified air and the amount of high-temperature gas recycled to the coating system 110 based on the high-temperature gas concentration, and consequently the amount of fresh air supplied to the coating system 110.
  • the exhaust discharged from the coating system 110 is guided again to the coating system 110 by the recycling system 130 after the paint mist, paint scum, and VOC are removed by the VOC removal system 120. Recycled. Therefore, the exhaust from which the VOC has been removed by the adsorption device 200 can be recycled, and the VOC that has been adsorbed and concentrated by the adsorption device 200 can be efficiently burned and removed by the heat storage combustion device 300, so that the release of VOC can be suppressed. Energy saving can be achieved.
  • the high-temperature gas (waste heat) generated when the VOC is burned and removed by the heat storage combustion apparatus 300 can be led to the coating system 110 through the inner pipe 720 as a high-temperature gas recycling apparatus and recycled, the energy saving effect can be further improved. Further, since the high-temperature gas (waste heat) generated from the heat storage combustion apparatus 300 used for VOC removal is used for warming up the purified air to be recycled, energy saving is further improved.
  • movement of the coating equipment 100 whole of this embodiment is as above, the detail is demonstrated in detail below for every structure.
  • FIG. 2 is a diagram illustrating a configuration of the filter device 400.
  • the filter device 400 is disposed on the flow path of the exhaust discharged from the coating system 110, and paint mist and paint debris contained in the exhaust discharged from the plurality of coating zones 111 and the drying furnace 114. Etc. are removed.
  • the filter device 400 supports the exhaust introduction part 410, the exhaust lead-out part 420, the endless filter 430 disposed so as to cover the exhaust introduction part 410 and the exhaust lead-out part 420, and the filter 430 in a rotatable manner.
  • a plurality of rollers 440 a first cleaning unit 450 and a second cleaning unit 460 for cleaning the filter 430, and a filter drying unit for drying the filter 430 cleaned by the first cleaning unit 450 and the second cleaning unit 460
  • a first filter drying unit 470 and a second filter drying unit 480 A first filter drying unit 470 and a second filter drying unit 480.
  • the exhaust introduction part 410 and the exhaust lead-out part 420 are provided facing each other.
  • the endless filter 430 is supported by the plurality of rollers 440 and is disposed between the exhaust introduction part 410 and the exhaust lead-out part 420.
  • the filter 430 is disposed so as to be substantially perpendicular to the exhaust flow path at a position covering the exhaust introduction section 410 and a position covering the exhaust lead-out section 420.
  • At least one of the plurality of rollers 440 is connected to a motor (not shown). Then, by driving this motor, the roller 440 rotates, and the filter 430 supported by the roller 440 rotates at a constant speed in a predetermined direction (a direction in FIG. 2).
  • the first cleaning unit 450 is provided downstream of the exhaust introduction unit 410 and upstream of the exhaust lead-out unit 420.
  • the first cleaning unit 450 includes a static elimination blow bar 451 as a charge removing unit, an active hydrogen water injection unit 452 as a cleaning liquid spray unit, an air blow unit 453 as a gas spray unit, and a gas blown by the air blow unit 453.
  • An exhaust port 454 for discharging, and a fine vibration generating device 455 as filter vibration means for finely vibrating the filter 430 in the first cleaning unit 450 are provided.
  • the static elimination blow bar 451 is disposed on the outer surface side and the inner surface side of the filter 430, and blows a gas containing electric charges on the outer surface side and the inner surface side of the filter 430. As a result, the charged filter 430, paint mist, and paint residue are removed.
  • the active hydrogen water injection device 452 is disposed on the downstream side of the static elimination blow bar 451.
  • the active hydrogen water injection device 452 is disposed on the outer surface side and the inner surface side of the filter 430 and sprays active hydrogen water containing hydroxyl ions as a cleaning liquid onto the filter 430. This makes it possible to easily separate the paint mist and paint residue adhering to the filter 430 from the filter 430.
  • the air blow device 453 is disposed on the downstream side of the active hydrogen water injection device 452.
  • the air blowing device 453 is disposed on the inner surface side of the filter 430 and blows air from the inner surface side of the filter 430 toward the outer surface side.
  • the paint mist and paint residue adhering to the filter 430 are removed from the filter 430.
  • the paint mist and paint dust removed from the filter 430 are discharged from the exhaust port 454 together with the air blown by the air blowing device 453.
  • One roller 440a of the plurality of rollers 440 is disposed between the active hydrogen water injection device 462 and the air blow device 463.
  • the fine vibration generator 455 is attached to the roller 440a. By driving the fine vibration generator 455, the filter 430 vibrates slightly in the first cleaning unit 450.
  • the second cleaning unit 460 is provided on the downstream side of the exhaust lead-out unit 420 and on the upstream side of the exhaust introduction unit 410.
  • the configuration of the second cleaning unit 460 is the same as the configuration of the first cleaning unit 450 except that the arrangement of the air blowing device 463 is different.
  • the second cleaning unit 460 includes a static elimination blow bar 461, an active hydrogen water injection device 462, an air blow device 463, an exhaust port 464 (not shown), and a slight vibration generator 465.
  • the air blow device 463 is disposed on the inner surface side and the outer surface side of the filter 430. Air is blown from the air blow device 463 disposed on the inner surface side of the filter 430 toward the outer surface side from the inner surface side of the filter 430, and from the air blow device 463 disposed on the outer surface side of the filter 430, the filter 430. Air is blown from the outer surface side toward the inner surface side.
  • the first filter drying unit 470 is provided on the downstream side of the first cleaning unit 450 and adjacent to the first cleaning unit 450, and the second filter drying unit 480 is on the downstream side of the second cleaning unit 460. It is provided adjacent to the second cleaning unit 460.
  • the first filter drying unit 470 and the second filter drying unit 480 are respectively supplied with purified air that has been warmed and passed through the adsorption device 200 through the purified air supply path 210 and passed through the adsorption device 200.
  • the filter 430 cleaned by the first cleaning unit 450 and the filter 430 cleaned by the second cleaning unit 460 are dried.
  • the filter device 400 described above operates as follows. First, when a motor (not shown) is driven, a roller connected to the motor among the plurality of rollers 440 rotates, and the filter 430 supported by the plurality of rollers 440 rotates at a constant speed in a predetermined direction. To do. In this state, the exhaust discharged from the coating system 110 is introduced from the exhaust introduction unit 410. The exhaust gas introduced from the exhaust gas introduction unit 410 first passes through a portion of the endless filter 430 that covers the exhaust gas introduction unit 410 from the outer surface side of the filter 430 toward the inner surface side. As a result, the paint mist and paint debris contained in the exhaust are collected mainly by adhering to the outer surface side of the filter 430.
  • the exhaust gas that has passed through the portion of the filter 430 that covers the exhaust introduction portion 410 then passes through the portion of the endless filter 430 that covers the exhaust outlet portion 420 from the inner surface side of the filter 430 toward the outer surface side.
  • the paint mist and paint dust that have not been collected by the portion of the filter 430 located at the exhaust introduction portion 410 adhere to the inner surface side of the filter 430 mainly in the portion covering the exhaust lead-out portion 420 of the filter 430 and are collected. Is done.
  • the filter 430 rotates and moves in a predetermined direction at a constant speed
  • the paint mist and the coating dust adhering to the portion of the filter 430 that covered the exhaust introduction portion 410 are downstream of the exhaust introduction portion 410. It is removed by the first cleaning unit 450 provided in the.
  • the paint mist and the coating dust adhering to the portion of the filter 430 covering the exhaust outlet 420 are removed by the second cleaning unit 460 provided on the downstream side of the exhaust outlet 420.
  • FIGS. 3A to 3C are diagrams schematically showing each cleaning means in the first cleaning unit 450 and the second cleaning unit 460, respectively.
  • A indicates a gas containing electric charge
  • B indicates a paint mist or paint residue
  • C indicates active hydrogen water.
  • the charge-containing gas A is blown to the outer surface side and the inner surface side of the filter 430 by the charge removal blow bar 451. Thereby, the electrification of the charged filter 430, the paint mist, and the coating residue B is removed.
  • the active hydrogen water C containing hydroxyl ions is sprayed on the filter 430 by the active hydrogen water injection device 452.
  • the paint mist and paint residue B adhering to the filter 430 can be easily separated from the filter 430.
  • a fine vibration generator 455 is disposed between the active hydrogen water injection device 462 and the air blow device 463, and the filter 430 is slightly vibrated in the first cleaning unit 450 by driving the fine vibration generator 455. To do. As a result, the paint mist and paint residue adhering to the filter 430 are easily peeled off from the filter 430.
  • the paint mist and the paint debris are removed from the filter 430 in the same process as the first cleaning unit 450.
  • the filter 430 from which the paint mist and paint debris have been removed by the first cleaning unit 450 is dried by the first filter drying unit 470.
  • Purified air that has been warmed when passing through the adsorption device 200 is introduced into the first filter drying unit 470.
  • the filter 430 from which the paint mist and paint debris have been removed by the second cleaning unit 460 is dried by the second filter drying unit 480.
  • the second filter drying unit 480 is also supplied with purified air that has been warmed through the adsorption device 200 and has become low humidity.
  • the filter 430 dried by the first filter drying unit 470 moves downstream, and removes paint mist and paint residue remaining in the exhaust gas introduced from the exhaust gas introduction unit 410 at a portion covering the exhaust gas derivation unit 420.
  • the filter 430 dried by the second filter drying unit 480 moves downstream, and removes paint mist and paint debris contained in the exhaust discharged from the coating system 110 at a portion covering the exhaust introduction unit 410.
  • the filter device 400 described above has the following effects.
  • An endless filter 430 is disposed so as to cover the exhaust introduction part 410 and the exhaust lead part 420, and a first cleaning part 450 is provided on the downstream side of the exhaust introduction part 410, and a second is provided on the downstream side of the exhaust lead part 420.
  • a cleaning unit 460 was provided.
  • the paint mist and paint debris removed at the part covering the exhaust introduction part 410 of the filter 430 and adhering to the filter 430 are removed from the filter 430 by the first cleaning part 450 and cover the exhaust lead-out part 420 of the filter 430.
  • the paint mist and paint dust removed by the above and attached to the filter 430 are removed from the filter 430 by the second cleaning unit 460.
  • first cleaning unit 450 and the second cleaning unit 460 each include a static elimination blow bar 451, an active hydrogen water injection device 452, and an air blow device 453. Therefore, the cleaning effect of the filter 430 in the first cleaning unit 450 and the second cleaning unit 460 is improved, and the paint mist and paint residue adhering to the filter 430 can be effectively removed.
  • first cleaning unit 450 and the second cleaning unit 460 are configured to include fine vibration generators 455 and 465 that slightly vibrate the filter 430, respectively. Therefore, in the first cleaning unit 450 and the second cleaning unit 460, the paint mist and the coating dust adhering to the filter 430 are easily separated from the filter 430.
  • the first filter drying unit 470 is provided on the downstream side of the first cleaning unit 450
  • the second filter drying unit 480 is provided on the downstream side of the second cleaning unit 460. Accordingly, the filter 430 cleaned by the first cleaning unit 450 and the second cleaning unit 460 is dried and disposed in the exhaust introduction unit 410 and the exhaust extraction unit 420. Therefore, the effect of removing the paint mist and paint scum by the filter device 400 can be stabilized.
  • the purified air that passed through the adsorption device 200 was introduced into each of the first filter drying unit 470 and the second filter drying unit 480.
  • the purified air that has been warmed and reduced in humidity by passing through the adsorption device 200 is used for drying the filter 430, so that the purified air can be used effectively.
  • the filter apparatus used for the coating equipment 100 of this embodiment is not limited to the said embodiment,
  • transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.
  • the active hydrogen water injection device 452 is used as the cleaning liquid spraying unit and the active hydrogen water is used as the cleaning liquid.
  • the present invention is not limited thereto, and a surfactant may be used as the cleaning liquid.
  • FIG. 4 is a plan view showing the configuration of the activated carbon filter device 500.
  • FIG. 5 is a sectional view taken along line XX of FIG. As described above, the activated carbon filter device 500 adjusts the VOC concentration in the exhaust gas supplied to the adsorption device 200 provided on the downstream side of the activated carbon filter device 500.
  • the activated carbon filter device 500 is provided on the downstream side of the filter device 400, and includes two filter device main bodies 510 disposed in an exhaust passage 590 that has passed through the filter device 400.
  • the two filter device main bodies 510 are arranged at a predetermined interval on the upstream side and the downstream side of the flow path 590.
  • the filter device main body 510 includes a housing 520, a plurality of activated carbon cartridges 530 disposed inside the housing 520, and a plurality of partition plates 540 disposed inside the housing 520.
  • the plurality of activated carbon cartridges 530 are housed inside the housing 520 in a multi-layered manner with a predetermined interval in the height direction. More specifically, each of the plurality of activated carbon cartridges 530 has a substantially rectangular parallelepiped shape, and is arranged in a plurality of rows in the width direction of the housing 520 and in a plurality of stages in the height direction of the housing 520. Has been.
  • the plurality of partition plates 540 are respectively disposed in gaps formed between two activated carbon cartridges 530 adjacent in the height direction.
  • the plurality of partition plates 540 are inclined downward in the exhaust flow direction.
  • the flow direction of the exhaust indicates the direction in which the exhaust passes when the exhaust passes through the housing 520.
  • the housing 520 includes a first main body portion 521, a pair of second main body portions 522, and a pair of third main body portions 523.
  • the first main body 521 is disposed substantially perpendicularly to the exhaust introduction direction (a direction in FIG. 4) at the center in the width direction of the exhaust passage 590 that has passed through the filter device 400.
  • the pair of second main body portions 522 extends from both ends in the width direction of the first main body portion 521 to the downstream side of the flow path 590 and is disposed substantially perpendicular to the first main body portion 521.
  • the pair of third main body portions 523 extends outward from the distal end portions of the pair of second main body portions 522 and is disposed substantially vertically on each of the pair of second main body portions 522.
  • FIG. 6A is a plan view of the activated carbon cartridge 530
  • FIG. 6B is a bottom view of the activated carbon cartridge 530
  • FIG. 7 is a bottom view of the activated carbon cartridge 530 provided with the adjusting mechanism 531 on the bottom surface.
  • the activated carbon cartridge 530 is formed by filling activated carbon 535 into a cartridge main body 534 having a bottom surface portion and a side surface portion made of a net-like member.
  • a handle 536 is provided on the cartridge main body 534.
  • an adjustment mechanism 531 for adjusting the flow rate of exhaust gas passing through the activated carbon cartridge 530 is provided on the bottom surface of a predetermined activated carbon cartridge 530 among the plurality of activated carbon cartridges 530. .
  • the adjusting mechanism 531 includes two substantially plate-like members 532 and 533, and the two plate-like members 532 and 533 cover the bottom surface of the activated carbon cartridge 530.
  • One plate-like member 532 of the two plate-like members 532 and 533 is configured to be slidable to the other plate-like member 533 side, and activated carbon is slid by sliding the one plate-like member 532.
  • the open area of the bottom surface of the cartridge 530 can be adjusted.
  • the plurality of activated carbon cartridges 530 are configured to be detachable from the housing 520.
  • the plurality of activated carbon cartridges 530 accommodated and arranged in the first main body portion 521 and the pair of third main body portions 523 are configured to be attachable to and detachable from the casing 520 from the upstream side (FIG. 5). 2).
  • the plurality of activated carbon cartridges 530 accommodated and disposed in the pair of second main body portions 522 are configured to be attachable to and detachable from the housing 520 from the outside (side wall side of the flow path 590).
  • the exhaust gas introduced from the exhaust gas introduction unit 410 first reaches the filter device main body 510 disposed on the upstream side. Then, it enters a plurality of gaps formed between two activated carbon cartridges 530 adjacent to each other in the height direction inside the housing 520. In each of the plurality of gaps, partition plates 540 that are inclined downward in the flow direction are arranged. Therefore, the exhaust gas that has entered these gaps is guided to the partition plate 540 and below the partition plate 540.
  • the activated carbon cartridge 530 is introduced from the upper surface side and discharged from the activated carbon cartridge 530 bottom surface side.
  • An adjustment mechanism 531 is provided on the bottom surface of a predetermined activated carbon cartridge 530 among the plurality of activated carbon cartridges 530.
  • the exhaust gas passes through the activated carbon cartridge 530 whose bottom surface portion is covered when the bottom surface portion is covered with the two plate-like members 532 and 533. Therefore, the VOC adsorbed and held on the activated carbon cartridge 530 is not released into the exhaust.
  • the exhaust can pass through the opened portion of the bottom surface portion.
  • the activated carbon cartridge 530 provided with the adjusting mechanism 531 on the bottom surface, the activated carbon cartridge 530 is adjusted by opening and closing the two plate members 532 and 533 to adjust the area of the opened portion of the bottom surface. The amount of VOC released by being held by 530 can be adjusted.
  • Exhaust gas that has reached the filter device main body 510 enters from the first main body portion 521 and the pair of third main body portions 523 constituting the housing 520 along the flow direction of the introduced exhaust gas (a direction in FIG. 4). And pass through the activated carbon cartridge 530.
  • the exhaust gas enters the direction (b direction in FIG. 4) substantially orthogonal to the flow direction of the introduced exhaust gas and passes through the activated carbon cartridge 530.
  • the exhaust gas passes through the filter device main body 510 disposed on the downstream side in the same manner as when passing through the filter device main body 510 disposed on the upstream side. .
  • the exhaust gas that has passed through the filter device main body 510 disposed on the downstream side is then supplied to the adsorption device 200.
  • the activated carbon filter device 500 described above has the following effects.
  • a plurality of activated carbon cartridges 530 are stacked in multiple stages at predetermined intervals in the height direction, and partition plates 540 are provided between two adjacent activated carbon cartridges 530, respectively.
  • the exhaust gas discharged from the filter device 400 and introduced into the activated carbon filter device 500 is introduced to the partition plate 540 and introduced from the upper surface side of the activated carbon cartridge 530 disposed below the partition plate 540.
  • the cartridge 530 is discharged from the bottom side. Therefore, a part of the VOC contained in the exhaust is adsorbed and held by the activated carbon cartridge 530, so even if the exhaust containing the high-concentration VOC is exhausted, the exhaust is supplied to the adsorption device 200.
  • the concentration of VOC contained in can be reduced.
  • concentration of VOC contained in the exhaust gas introduced into the activated carbon filter device 500 is low, a part of the VOC adsorbed and temporarily held by the activated carbon cartridge 530 is released and supplied to the adsorption device 200. Is done. Therefore, even when the concentration of VOC contained in the exhaust gas introduced into the activated carbon filter device 500 is low, the concentration of VOC contained in the exhaust gas supplied to the adsorption device 200 can be maintained within a predetermined range. Thus, the concentration of VOC contained in the exhaust gas supplied to the adsorption device 200 can be stabilized.
  • the contact area between the exhaust gas passing through the activated carbon filter device 500 and the activated carbon cartridge 530 can be increased, the adsorption efficiency of VOC by the activated carbon cartridge 530 can be improved.
  • the partition plate 540 was inclined downward in the exhaust flow direction. As a result, the exhaust gas is guided to the partition plate 540 and passes from the upper surface to the bottom surface of the activated carbon cartridge 530 disposed below the partition plate 540. Therefore, VOC having a larger specific gravity than air can be effectively adsorbed and held on the activated carbon cartridge 530.
  • the housing 520 includes a first main body 521, a second main body 522, and a third main body 523.
  • the exhaust gas introduced into the activated carbon filter device 500 enters from the first main body portion 521 and the third main body portion 523 arranged substantially perpendicular to the flow direction of the exhaust gas, and the first main body portion 521 and the first main body portion 521 and the first main body portion 521. It also enters from a second main body portion 522 that is disposed substantially perpendicular to the three main body portions 523. Therefore, since the exhaust gas introduced into the activated carbon filter device 500 enters from multiple directions, the speed at which the exhaust gas passes through the activated carbon filter device 500 can be reduced, and the VOC adsorption efficiency can be improved.
  • two filter device main bodies 510 are arranged in the exhaust flow direction. Thereby, since the retention capacity of the VOC by the activated carbon filter device 500 can be increased, the concentration of VOC contained in the exhaust gas supplied to the adsorption device 200 can be further stabilized.
  • each of the plurality of activated carbon cartridges 530 is configured to be detachable from the housing 520. Thereby, since only the activated carbon cartridge 530 which needs replacement
  • an adjustment mechanism 531 for adjusting the flow rate of the exhaust gas is provided on the bottom surface of a predetermined activated carbon cartridge 530 among the plurality of activated carbon cartridges 530. Thereby, by adjusting the adjusting mechanism 531, the amount of VOC released by being adsorbed and held on the activated carbon cartridge 530 can be adjusted. Therefore, the concentration of VOC contained in the exhaust gas supplied to the adsorption device 200 can be further stabilized.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
  • two filter device main bodies 510 are arranged in the flow path 590.
  • the present invention is not limited to this, and only one filter device main body 510 may be arranged, or three or more filter device main bodies may be provided. 510 may be arranged.
  • the activated carbon cartridges 530 are arranged in a plurality of rows in the width direction of the housing 520, but the present invention is not limited to this. That is, the length of the activated carbon cartridge in the width direction may be configured to be substantially the same as the length of the casing in the width direction, and the activated carbon cartridge may be stacked in multiple stages in the height direction of the casing.
  • the activated carbon cartridge 530 of the present invention is applied to a painting facility for painting a car body of an automobile.
  • the present invention is not limited to this. That is, the activated carbon cartridge 530 of the present invention may be applied to a painting facility that paints home appliances such as a refrigerator or a washing machine, or may be applied to a printing facility that transfers ink to a medium such as paper.
  • damper device Next, the damper device will be described. Since the first damper device 610 and the second damper device 620 have the same configuration, the first damper device 610 will be described as a representative.
  • the first damper device 610 includes an on-off valve 611, an exhaust valve 612, and a switching means 613.
  • the on-off valve 611 opens and closes the flow path of the first main duct 735.
  • the exhaust valve 612 opens and closes the flow path of the first exhaust duct 736.
  • the switching means 613 opens the flow path of the first exhaust duct 736 when the open / close valve 611 closes the flow path of the first main duct 735.
  • the exhaust valve 612 closes the flow path of the first exhaust duct 736.
  • the switching means 613 operates by detecting the concentration of VOC in the purified air discharged from the adsorption device 200 and operates by detecting the temperature of the hot gas discharged from the heat storage combustion device 300. .
  • the switching means 613 operates by detecting the VOC concentration of the purified air discharged from the adsorption device 200 or by detecting the temperature of the hot gas discharged from the heat storage combustion device 300. May be.
  • the on-off valve 611 has a first insulator crank 611a.
  • the on-off valve 611 can be rotated.
  • the exhaust valve 612 has a second insulator crank 612a. The exhaust valve 612 can be rotated by rotating one end of the second insulator crank 612a.
  • the switching unit 613 includes a rotation shaft 614, a rotation unit 615 (see FIGS. 9 and 10), a swing disk 616, a first link bar 617, and a second link bar 618. ing.
  • the rotation shaft 614 crosses the first main duct 735 in a direction substantially orthogonal to the flow direction of the purified air in the first main duct 735 (or the high-temperature gas in the second main duct 723).
  • the rotation means 615 is disposed outside the first main duct 735 and rotates the rotation shaft 614 (see FIGS. 9 and 10).
  • the swing disk 616 is attached coaxially with the rotation shaft 614.
  • the oscillating disk 616 has rotational coupling points C1 and C2 at two points on the circumference that are opened at a predetermined angle from the center.
  • one end of the first link rod 617 is rotationally coupled to one rotational coupling point C1, and the other end is rotationally coupled to one end of the first insulator crank 611a.
  • One end of the second link rod 618 is rotationally coupled to the other rotational coupling point C2, and the other end is rotationally coupled to one end of the second lever crank 612a.
  • the first lever crank 611a, the first link rod 617, and the swinging disc 616 constitute a first lever crank mechanism K1.
  • the first lever crank mechanism K1 is established when the link (which corresponds to the partition wall of the first main duct 735 in the embodiment of the present invention) that forms a pair with the first lever crank 611a that is the shortest link is a fixed link. ing.
  • the first lever crank mechanism K1 reciprocates the swing disk 616 at a predetermined angle, the motion is transmitted to the first link rod 617, and the first lever crank 611a can be swung. That is, the on-off valve 611 can be tilted to a predetermined angle.
  • the second lever crank 612a, the second link bar 618, and the swinging disk 616 constitute a second lever crank mechanism K2.
  • the second lever crank mechanism K2 is established when the link (which corresponds to the partition wall of the first main duct 735 in the embodiment of the present invention) that forms a pair with the second lever crank 612a that is the shortest link is a fixed link. ing.
  • the second lever crank mechanism K2 reciprocates the swing disk 616 at a predetermined angle, the movement is transmitted to the second link rod 618, and the second lever crank 612a can be swung. That is, the exhaust valve 612 can be tilted to a predetermined angle.
  • the first insulator crank 611a is disposed in a direction substantially orthogonal to the flow direction of the purified air in the first main duct 735 (or the high-temperature gas in the second main duct 723). Opens the first main duct 735.
  • the second insulator crank 612a is arranged in a direction parallel to the flow direction of the purified air in the first exhaust duct 736 (or the high temperature gas in the second main duct 723), and the exhaust valve 612 closes the first exhaust duct 736. Yes.
  • the oscillating disk 616 has two rotational coupling points C1 and C2 provided at equal intervals. Since the lengths of the first link rod 617 and the second link rod 618 are fixed, for example, one end of the second link rod 618 is replaced with another rotational coupling point C2 to open the exhaust valve 612. You can fine-tune the rate.
  • the first damper device 610 has an on-off valve 611, an exhaust valve 612, and an oscillating disk 616 divided into four parts.
  • the first lever crank mechanism K1 and the second lever crank mechanism K2 are divided into four.
  • the on-off valve 611, the exhaust valve 612, and the swinging disc 616 are separately arranged, so that the opening ratio of the on-off valve 611 and the exhaust valve 612 can be further finely adjusted.
  • the rotation means 615 includes a servo motor 615 m whose output shaft is connected to one end of the rotation shaft 614.
  • a hydraulic servo motor is used for the servo motor 615m, a mechanical damper device that ensures the reliability of the recycling system 130 can be realized.
  • a constant amount of gas can always be exhausted to prevent disturbance of the air balance in the coating zone 111 (see FIG. 1).
  • the rotating means 615 includes a positioning air cylinder 615c that can change the stroke of the piston rod 615r.
  • One end of the rotation shaft 614 has a crank rod 614 c that rotates the rotation shaft 614.
  • tip part of piston rod 615r which advances / retreats is connected with the front-end
  • the stroke of the piston rod 615r is converted into the rotation angle of the swing disk 616.
  • an air cylinder as an actuator for driving the swing disk 616, a mechanical damper device can be realized.
  • the positioning air cylinder has an advantage that the stroke of the piston rod can be subdivided.
  • the on-off valve 611 opens the flow paths of the first main duct 735 and the second main duct 723, and the exhaust valve 612 is the first exhaust duct. 736, since the flow path of the second exhaust duct 726 is closed, the first main duct 735 and the second main duct 723 constitute a closed circuit in which the purified air and the high-temperature gas return to the plurality of coating zones 111, 111. ing.
  • the switching means 613 when the VOC concentration of the purified air discharged from the adsorption device 200 is detected by the detector S1 and becomes equal to or higher than a predetermined value, the switching means 613 is operated, and the on-off valve 611 is the first.
  • the flow path of the main duct 735 is closed, and the exhaust valve 612 can return to the normal value by opening the flow path of the first exhaust duct 736.
  • the detector S1 is not limited to the illustrated location but is disposed at an appropriate location where the interlock function operates.
  • the temperature of the hot gas discharged from the heat storage combustion device 300 is detected by the detector S2, and when the temperature exceeds a predetermined value, the switching means 613 is activated, and the on-off valve 611 is turned on.
  • the flow path of the two main ducts 723 is closed, and the exhaust valve 612 can return to the normal value by opening the flow path of the second exhaust duct 726.
  • the detector S2 is not limited to the illustrated location but is disposed at an appropriate location where the interlock function operates.
  • the other damper when one damper closes one duct, the other damper opens the other duct, and when one damper opens one duct, The other damper closes the other duct and has a mechanical interlock function that allows reversible operation, so that the reliability of the recycling system 130 is guaranteed.
  • the first damper device 610 returns the VOC in the purified air when returning the purified air of the adsorption device 200 to the plurality of coating zones 111 and 111 via an air conditioner (not shown).
  • this purified air is released to the atmosphere, and in the case of an appropriate detection value, this purified air is sent to the air conditioner. Therefore, a certain level of clean air can always be recycled.
  • the switching means 613 so as to exhaust a constant air volume, the air balance of the painting zone 111 can be kept within a certain range.
  • the second damper device 620 is discharged from the heat storage combustion device 300 when returning the high temperature gas generated by the heat storage combustion device 300 to the plurality of coating zones 111, 111.
  • the switching means 613 is activated when the temperature of the hot gas is detected. For example, when the heat storage combustion apparatus 300 starts up, since the high temperature gas has not reached a predetermined temperature, the high temperature gas is automatically released to the atmosphere. On the other hand, when the high temperature gas reaches a predetermined temperature, the high temperature gas is returned to the plurality of coating zones 111 and 111 for recycling.
  • the second damper device 620 can recover heat (thermal recycling) of the high-temperature gas discharged from the heat storage combustion device 300 at a predetermined temperature.
  • the damper device when one damper closes one duct, the other damper opens the other duct, and one damper When the other duct is open, the other damper closes the other duct and has a mechanical interlock function that allows reversible operation, and the reliability of the recycling system 130 is guaranteed.
  • the mechanical damper device is realized. In general, mechanical damper devices are considered to have fewer malfunctions than electrically controlled damper devices.
  • damper device used in the painting facility of the present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.
  • the recycling system 130 guides the purified air that has passed through the adsorption device 200 and the high-temperature gas generated when the VOC is burned and removed by the heat storage combustion device 300 to the coating system 110 for recycling.
  • the recycle system 130 includes an inner pipe 720 through which a high-temperature gas recycled by the high-temperature gas recycle apparatus circulates, and surrounds the inner pipe 720 with a gap therebetween. And a double pipe structure 710 including an outer pipe 730 through which purified air recycled is distributed.
  • the outer tube 730 is provided so as to surround the inner tube 720, and the outer tube 730 and the inner tube 720 form a double tube structure 710.
  • High temperature gas flows through the inner pipe 720 via the second main duct 723.
  • Purified air flows through the outer pipe 730 through the first main duct 735.
  • the inner pipe 720 communicates with the heat storage combustion apparatus 300, and high-temperature gas from the heat storage combustion apparatus 300 circulates inside the inner pipe 720.
  • the outer pipe 730 is an extension of the first main duct 735 communicating with the adsorption device 200, and the purified air that has passed through the first main duct 735 flows through the gap 728. In this way, since the high temperature gas is isolated from the outside air through the purified air, the rapid cooling of the high temperature gas by the outside air (that is, a large loss of heat energy) is suppressed, and the heat energy is deprived from the high temperature gas. Minutes, the purified air is heated.
  • a third tube may be disposed between the inner tube 720 and the outer tube 730 or outside the outer tube 730.
  • the installation range of the double pipe structure 710 is not particularly limited, and may be appropriately set according to the positional relationship between the adsorption device 200 and the heat storage combustion device 300.
  • the double-pipe structure 710 in the present embodiment is provided until just before a recycle system control device 800 described later, and thereby, the low temperature of the high temperature gas and the purified air is suppressed to the maximum. Further, the double pipe structure 710 is provided from the vicinity of the heat storage combustion device 300 to the downstream side so that the length of the second main duct 723 can be shortened to suppress the low temperature of the high temperature gas.
  • FIG. 11 is an overall perspective view of the double-pipe structure 710 in FIG. 1, and FIG. 12 is a plan view of FIG.
  • the interior 729 of the inner pipe 720 is communicated with the heat storage combustion device 300 via the second main duct 723 as a communication pipe that penetrates the outer pipe 730, Hot gas that has passed through the duct 723 is supplied to the interior 729.
  • the 2nd main duct 723 is arrange
  • the structure in which the inner pipe 720 communicates with the heat storage combustion apparatus 300 is not limited to this.
  • the inner pipe extends to the base end of the outer pipe, and further extends from the base end of the outer pipe to the heat storage combustion apparatus 300.
  • the structure may be different.
  • the base end 721 of the inner tube 720 of the present embodiment is provided with a tapered portion 722 that decreases in diameter toward the counterflow direction of the purified air (upstream side of the outer tube 730). Thereby, the collision of the purified air flowing from the upstream side with the base end 721 is alleviated, and the flow of the purified air is smoothed.
  • the tapered portion 722 may be integrated with the inner tube 720 or may be a separate body, and the inside of the tapered portion 722 may or may not communicate with the interior 729 of the inner tube 720. Also good.
  • the taper portion 722 is provided at the base end 721.
  • the taper that reduces the diameter of the second main duct 723 into the outer pipe 730 in the counterflow direction of the purified air. A part may be provided. This also facilitates the flow of the purified air.
  • the taper part 722 of this embodiment is a quadrangular pyramid shape, as long as it reduces in diameter toward the anti-flow direction of purified air, it may be arbitrary shapes.
  • a design change that increases the inner diameter of the outer tube 730 at the installation position of the double-pipe structure 710, a sufficient space through which the purified air can flow can be secured, and the flow of the purified air can be made smooth. .
  • the first damper device 610 is provided in the middle of the first main duct 735, specifically upstream of the taper portion 722, and the suction device according to the opening and closing of the first damper device 610.
  • the purified air from 200 flows through the outer pipe 730 or is discharged from the first exhaust duct 736 to the outside air.
  • a second damper device 620 is provided in the middle of the second main duct 723, and according to the opening and closing of the second damper device 620, the gas from the heat storage combustion device 300 is supplied to the interior 729, The air is discharged from the second exhaust duct 726 to the outside air.
  • the occurrence of an accident can be prevented by releasing it to the outside air.
  • the thermal decomposition temperature in the heat storage combustion device 300 does not reach a certain temperature, such as when the heat storage combustion device 300 is started up, the VOC removal system 120 has not sufficiently removed VOC. Therefore, the first damper device 610 and the second damper device 620 are opened to release purified air and high-temperature gas to the atmosphere, and recycling is not performed.
  • FIG. 13 is a cross-sectional view taken along line YY of FIG.
  • the outer tube 730 of the present embodiment includes a tubular first heat insulating member 731 disposed on the inner side (provided around the first main duct 735 in the present embodiment), and an outer side.
  • a tubular second heat insulating member 733 disposed between the first heat insulating member 731 and the second heat insulating member 733, and a space 734 extending along the axial direction of the outer tube 730 (vertical direction in FIG. 13).
  • the empty space 734 communicates with the heat storage combustion device 300 via a supply pipe 738 serving as a supply means, and the supply tube 738 supplies the hot gas from the heat storage combustion device 300 to the empty space 734.
  • the purified air flowing through 728 is isolated from the outside air, and as a result, cooling of the purified air by the outside air is suppressed.
  • the high temperature gas flowing through the void 734 is sandwiched between the first heat insulating member 731 and the second heat insulating member 733, the temperature of the purified air can be lowered and the accompanying reduction in the temperature of the high temperature gas in the interior 729 can be effectively suppressed. .
  • the high-temperature gas flowing through the space 734 is eventually released from the end 739 of the space 734 to the outside air.
  • the length of the supply pipe 738 is shortened so that the cooling of the hot gas supplied to the space 734 can be suppressed, and it is provided from the vicinity of the heat storage combustion apparatus 300 to the downstream side.
  • the supply pipe 738 is provided in the upstream space 734, the high-temperature gas flowing through the space 734 flows in the same direction as the purified air.
  • the present invention is not limited to this. Absent.
  • the space 734 is formed in the whole circumference
  • the third heat insulating member 737 is provided on the outer periphery of the second heat insulating member 733, and the low temperature of the high temperature gas flowing through the space 734 is further suppressed.
  • the 1st heat insulation member 731 and the 2nd heat insulation member 733 of this embodiment are comprised with the aluminum heat insulation sheet
  • the 1st main duct 735 is comprised with an Altite steel plate
  • the 3rd heat insulation member 737 is comprised with the rock wool.
  • the purified air that has circulated through 728 and the high-temperature gas that has circulated through the interior 729 are introduced into the recycle system control device 800. These gases are mixed with fresh air introduced from the air damper device 810, heated to a desired temperature by a gas burner 840 as necessary, and then led to the coating system 110 for recycling. become.
  • the recycle system control device 800 controls the amount of recycle gas (purified air and high temperature gas) recycled by the recycle system 130, and specifically, the high temperature detected by the CO 2 sensor 820 as a high temperature gas concentration sensor. Based on the gas concentration, the amount of fresh air, the amount of purified air, and the amount of high-temperature gas supplied to the coating system 110 are controlled by adjusting the opening of the air damper device 810 and changing the internal pressure of the recycle system control device 800. . As a result, the amount of recycled gas (purified air and high-temperature gas) can be controlled in accordance with the high-temperature gas concentration in the recycled gas (purified air and high-temperature gas), so that safe and stable recycling operation of the painting facility 100 is possible. become.
  • the above recycling system 130 has the following effects. Hot gas is circulated through the interior 729 of the inner tube 720, while purified air is circulated through the gap 728 between the inner tube 720 and the outer tube 730. As a result, since the high temperature gas is isolated from the outside air through the purified air, the rapid cooling of the high temperature gas by the outside air (that is, a large loss of heat energy) is suppressed, and the heat energy is deprived from the high temperature gas, The purified air will be heated. Therefore, the purified air and the high temperature gas can be efficiently recycled.
  • the second main duct 723 is connected regardless of the positional relationship between the heat storage combustion device 300 and the adsorption device 200. It can be designed relatively short. Thereby, the low temperature of high temperature gas is suppressed and purified air and high temperature gas can be recycled more efficiently.
  • the tapered portion 722 is provided at the base end 721 of the inner pipe 720, the collision of the purified air flowing from the upstream side with the base end 721 is alleviated. Thereby, since the circulation of the purified air is facilitated without any special design change, the purification air can be more efficiently recycled.
  • the purified air is isolated from the outside air, so that the cooling of the purified air by the outside air is suppressed. Further, since the void 734 is formed so as to be interposed between the first heat insulating member 731 and the second heat insulating member 733, the low temperature of the high temperature gas flowing through the void 734 is suppressed. As a result, the temperature of the purified air and the accompanying lowering of the temperature of the high-temperature gas in the interior 729 are further suppressed, so that the purification air and the high-temperature gas can be recycled more efficiently.
  • FIG. 14 is a diagram illustrating a configuration of the recycling system control apparatus 800.
  • the recycle system control device 800 controls the amount of recycle gas (purified air and high temperature gas) recycled by the recycle system 130.
  • the recycle system control device 800 includes a static pressure adjustment chamber 850 having an inlet 860 for introducing purified air recycled by the recycle system 130 described above, and air as a fresh air supply mechanism that supplies fresh air to the coating system 110.
  • the air damper device 810 includes a motor 812 and a plurality of multiblade dampers 811 whose opening degree can be adjusted by the motor 812.
  • the opening degree of the multiblade damper 811 is adjusted by a control signal from the ECU 830.
  • ECU830 is connected to the CO 2 sensor 820, the detection signal of the CO 2 sensor 820 is supplied to ECU830.
  • the ECU 830 shapes an input signal waveform from the CO 2 sensor 820, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, and a central processing unit ( Hereinafter referred to as a CPU).
  • the ECU 830 includes a storage circuit that stores various calculation programs executed by the CPU, calculation results, and the like, and an output circuit that outputs a control signal to the air damper device 810.
  • a gas burner 840 for warming the introduced fresh air and purified air, partition filter 871, 872, an air supply fan 880 for guiding the air to the coating system 110, and a supply air Airways 891 and 892 are provided.
  • the operation of the above recycling system control apparatus 800 will be described. First, purified air is introduced into the static pressure adjusting chamber 850 from the inlet 860 by the above-described recycling system 130. The high temperature gas concentration in the static pressure adjustment chamber 850 is detected by the CO 2 sensor 820, and the detection signal is supplied to the ECU 830. Next, a control signal is output from the ECU 830 to the air damper device 810, and the opening degree of the multiblade damper 811 is adjusted based on the detected high-temperature gas concentration.
  • the multiblade damper 811 When the multiblade damper 811 is fully opened, a large amount of fresh air is introduced into the static pressure adjustment chamber 850 and the negative pressure in the static pressure adjustment chamber 850 becomes low. Decrease significantly. On the contrary, when the multiblade damper 811 is fully closed, the negative pressure in the static pressure adjusting chamber 850 is increased, and thus the state is 100% recycled. For this reason, when the hot gas concentration detected by the CO 2 sensor 820 exceeds the set value, the opening of the multi-blade damper 811 is increased to increase the amount of fresh air introduced, thereby increasing the amount of fresh air introduced. The amount of purified air to be recycled and the amount of hot gas can be reduced.
  • the opening of the multi-blade damper 811 is reduced to reduce the amount of fresh air introduced, thereby reducing the inside of the static pressure adjustment chamber 850.
  • the amount of purified air to be recycled and the amount of hot gas can be increased by increasing the negative pressure.
  • the fresh air introduced from the air damper device 810 and the purified air introduced from the inlet 860 are mixed in the static pressure adjustment chamber 850 and heated by the gas burner 840.
  • the air heated by the gas burner 840 passes through the partition filters 871 and 872, and then is guided to the coating system 110 by the supply fan 880 through the supply passages 891 and 892.
  • a static pressure adjustment chamber 850 having an introduction port 860 for introducing purified air recycled by the recycling system 130, the recycling system control device 800 of the painting facility 100 that can purify and recycle exhaust gas (VOC) generated by painting.
  • a fresh air supply mechanism for supplying fresh air to the coating system 110, a CO 2 sensor 820 as a high temperature gas concentration sensor for measuring a high temperature gas concentration in the static pressure adjustment chamber 850, and a CO 2 sensor 820.
  • the amount of fresh air supplied to the coating system 110, the amount of purified air to be recycled, and the amount of high-temperature gas are adjusted by driving the fresh air supply mechanism based on the high-temperature gas concentration and adjusting the pressure in the static pressure adjustment chamber 850.
  • the fresh air supply mechanism was comprised with the air damper apparatus 810 which can adjust an opening degree.
  • the opening degree of the air damper device 810 is adjusted based on the hot gas concentration measured by the CO 2 sensor, and the amount of fresh air supplied to the coating system 110, the amount of purified air to be recycled, and the amount of hot gas are reduced. This makes it possible to control easily and reliably.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
  • the multiblade damper 811 is used as the air damper device 810 corresponding to the fresh air supply mechanism, but a rotary damper or the like may be used.
  • this invention was applied to the coating equipment 100 which coats the vehicle body of a motor vehicle, it is not restricted to this. That is, the present invention may be applied to a painting facility that paints home appliances such as a refrigerator and a washing machine, or may be applied to a printing facility that transfers ink to a medium such as paper.
  • Coating equipment 110 Coating system 111 Coating zone (predetermined zone) DESCRIPTION OF SYMBOLS 120 VOC removal system 130 Recycling system 200 Adsorber 300 Heat storage combustion apparatus 400 Filter apparatus 410 Exhaust introduction part 420 Exhaust exhaust part 430 Filter 440 Roller 450 1st washing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

所定ゾーンから排出された排気中のVOCを効率的に燃焼除去するとともに、VOC除去後の浄化空気をリサイクルすることが可能な排気リサイクルシステムを提供する。また、吸着装置に供給される排気中に含まれるVOCの濃度を安定化できる技術を提供する。 VOCを含む排気を排出する塗装ゾーン111と、塗装ゾーン111から排出された排気中のVOCを吸着する吸着装置200と、吸着装置200に吸着されたVOCを、吸着装置200から離脱させて蓄熱燃焼装置300の燃焼燃料とするとともに、吸着装置200を通過して浄化された浄化空気を塗装ゾーン111へ再び導く浄化空気リサイクル装置と、を備える排気リサイクルシステムである。また、VOCが発生する塗装ゾーン111から排出された排気が通過するフィルタ装置本体510を有し、フィルタ装置本体510は、塗装ゾーン111から排出された排気中に含まれるVOCのうちの一部を吸着して保持すると共に、該排気中に含まれるVOCの濃度が低い場合には、吸着されて保持されたVOCの一部を放出する機能を有する活性炭カートリッジ530を備える。

Description

排気リサイクルシステム
 本発明は、排気リサイクルシステムに関し、より詳しくは、所定ゾーンから排出された排気中に含まれる揮発性有機化合物(以下、VOCともいう)を燃焼除去するとともに、VOCが除去された浄化空気をリサイクルすることが可能な排気リサイクルシステムに関する。
 また、例えば上記の排気リサイクルシステムにも適用可能な活性炭フィルタ装置に関する。
 工場等で発生するVOCを含む排気の処理システムとして、例えば特許文献1に開示されているシステムが挙げられる。このシステムでは、排気中に含まれるVOCは濃縮して回収され、内燃機関の燃焼用空気として利用される。また、内燃機関により発電機を駆動する等して、発電システムと一体化若しくはコージェネレーションシステムと一体化される。このシステムによれば、VOCの処理を目的としながら、ランニングコストを大幅に削減でき、省エネルギー化を実現できるとされている。
特開2007-177779号公報
 一方、排気中に含まれるVOCの処理システムとして、排気中に含まれるVOCを濃縮して回収した後に燃焼除去するシステムが知られている。しかしながら、この燃焼法を利用したシステムでは、VOC除去後の浄化空気は、大気放出されているのが現状である。VOC除去後の浄化空気は、通常、ある程度高温であることから、省エネルギー化の観点により、浄化空気の有効利用が求められている。
 また、特許文献1で提案された手法では、排気中に含まれるVOCは、ゼオライト等を含んで構成される吸着装置により吸着されて濃縮される。これにより、排気中に含まれるVOCは除去されて、排気は清浄化される。また、吸着装置で吸着されて濃縮されたVOCは、再生装置で脱着されて内燃機関の燃焼用空気として用いられる。
 しかしながら、この手法では、排気中に含まれるVOC濃度が高い場合には、吸着装置が排気中のVOCを十分に除去できず、排気を清浄化できないという問題があった。
 また、排気中に含まれるVOC濃度が低い場合には、吸着装置で吸着されるVOCの量が減少するため、内燃機関に供給する燃焼用空気が不足してしまうという問題があった。
 本発明は以上のような課題に鑑みてなされたものであり、その目的は、所定ゾーンから排出された排気中のVOCを効率的に燃焼除去するとともに、VOC除去後の浄化空気をリサイクルすることが可能な排気リサイクルシステムを提供することにある。
 また、吸着装置に供給される排気中に含まれる揮発性有機化合物の濃度を安定化できる技術を提供することにある。
 本発明者らは上記課題を解決するために鋭意研究を重ねた。その結果、以下のような構成を備える排気リサイクルシステムによれば、上記目的を達成できることを見出し、本発明を完成するに至った。
 また、VOCが発生する所定ゾーンから排出される排気を、活性炭フィルタ装置を介して吸着装置に供給することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
 具体的には、本発明は以下のようなものを提供する。
 請求項1記載の排気リサイクルシステムは、揮発性有機化合物を含む排気を排出する所定ゾーンと、前記所定ゾーンから排出された排気中の揮発性有機化合物を吸着する吸着装置と、前記吸着装置に吸着された揮発性有機化合物を、前記吸着装置から離脱させて燃焼装置の燃焼燃料とするとともに、前記吸着装置を通過して浄化された浄化空気を前記所定ゾーンへ再び導く浄化空気リサイクル装置と、を備えることを特徴とする。
 この発明によれば、排気リサイクルシステムを、所定ゾーンから排出された排気中のVOCを吸着する吸着装置と、吸着装置に吸着されたVOCを離脱させて燃焼装置の燃焼燃料とするとともに、吸着装置を通過して浄化された浄化空気を所定ゾーンへ再び導く浄化空気リサイクル装置と、を含んで構成した。
 これにより、吸着装置によりVOCが除去された浄化空気を所定ゾーンへリサイクルできるとともに、吸着装置に吸着されたVOCを燃焼装置で効率的に燃焼除去できるため、VOCの放出を抑制でき、省エネルギー化を達成できる。
 請求項2記載の排気リサイクルシステムは、請求項1記載の排気リサイクルシステムにおいて、前記吸着装置は、揮発性有機化合物を吸着する吸着部と、吸着した揮発性有機化合物を離脱させる離脱部と、前記吸着部と前記離脱部との切替えが可能な切替え機構と、を備え、前記浄化空気リサイクル装置は、前記燃焼装置で揮発性有機化合物を燃焼除去する際に生じる高温ガスを前記離脱部に供給することにより、前記吸着装置に吸着された揮発性有機化合物を離脱させることを特徴とする。
 この発明によれば、吸着装置を、VOCを吸着する吸着部と、吸着したVOCを離脱させる離脱部と、吸着部と離脱部との切替えが可能な切替え機構と、を含んで構成した。また、浄化空気リサイクル装置を、燃焼装置でVOCを燃焼除去する際に生じる高温ガスを離脱部に供給することにより、吸着装置に吸着されたVOCを離脱させる構成とした。
 これにより、吸着部に吸着されたVOCは、切替え機構により吸着部が離脱部に切り替えられるに伴い、燃焼装置から供給される高温ガスによって離脱し、燃焼装置へと効率的に導かれる。このため、VOCの効率的な燃焼除去が可能となるうえ、高温ガスを有効利用でき、省エネルギー化に寄与できる。
 請求項3記載の排気リサイクルシステムは、請求項1又は2記載の排気リサイクルシステムにおいて、前記排気リサイクルシステムは、前記燃焼装置で揮発性有機化合物を燃焼除去する際に生じる高温ガスを、前記所定ゾーンへ導いてリサイクルする高温ガスリサイクル装置を更に備えることを特徴とする。
 従来、蓄熱燃焼法等の燃焼法を利用したシステムでは、VOCを燃焼除去する際に発生する高温ガス(廃熱)は、大気放出されていた。そこで、この発明によれば、排気リサイクルシステムを、燃焼装置でVOCを燃焼除去する際に生じる高温ガスを所定ゾーンへ導いてリサイクルする高温ガスリサイクル装置を更に備える構成とした。
 これにより、燃焼装置でVOCを燃焼除去する際に発生する高温ガスをリサイクルできるため、大きな省エネルギー効果が得られる。
 請求項4記載の排気リサイクルシステムは、請求項1から3記載の排気リサイクルシステムにおいて、前記浄化空気リサイクル装置は、前記浄化空気を前記所定ゾーンに導いてリサイクルするための第1主ダクトと、前記第1主ダクトから分岐して前記浄化空気を大気に放出するための第1排気ダクトと、前記第1主ダクトと前記第1排気ダクトとの分岐部に設けられ、弁切換装置を備えるダンパ装置と、を備えることを特徴とする。
 請求項5記載の排気リサイクルシステムは、請求項4記載の排気リサイクルシステムにおいて、前記弁切換装置は、前記第1主ダクトの流路を開閉する開閉弁と、前記第1排気ダクトの流路を開閉する排気弁と、前記開閉弁が前記第1主ダクトの流路を閉じているときは前記排気弁が前記第1排気ダクトの流路を開き、前記開閉弁が前記第1主ダクトの流路を開いているときは前記排気弁が前記第1排気ダクトの流路を閉じる切換手段と、を備え、前記切換手段は、前記浄化空気中の揮発性有機化合物の濃度が検出されて作動するとともに、前記燃焼装置から排出される前記高温ガスの温度が検出されて作動することを特徴とする。
 請求項6記載の排気リサイクルシステムは、請求項3から5いずれか記載の排気リサイクルシステムにおいて、前記高温ガスリサイクル装置は、前記高温ガスを前記所定ゾーンに導いてリサイクルするための第2主ダクトと、前記第2主ダクトから分岐して前記高温ガスを大気に放出するための第2排気ダクトと、前記第2主ダクトと前記第2排気ダクトとの分岐部に設けられ、弁切換装置を備えるダンパ装置と、を備えることを特徴とする。
 請求項7記載の排気リサイクルシステムは、請求項6記載の排気リサイクルシステムにおいて、前記弁切換装置は、前記第2主ダクトの流路を開閉する開閉弁と、前記第2排気ダクトの流路を開閉する排気弁と、前記開閉弁が前記第2主ダクトの流路を閉じているときは前記排気弁が前記第2排気ダクトの流路を開き、前記開閉弁が前記第2主ダクトの流路を開いているときは前記排気弁が前記第2排気ダクトの流路を閉じる切換手段と、を備え、前記切換手段は、前記浄化空気中の揮発性有機化合物の濃度が検出されて作動するとともに、前記燃焼装置から排出される前記高温ガスの温度が検出されて作動することを特徴とする。
 これらの発明によれば、浄化空気リサイクル装置を、第1主ダクトと、第1排気ダクト、これら第1主ダクト及び第1排気ダクトの分岐部に配置された第1弁切換装置を備える第1ダンパ装置と、を含んで構成した。また、高温ガスリサイクル装置を、第2主ダクトと、第2排気ダクト、これら第2主ダクト及び第2排気ダクトの分岐部に配置された第2弁切換装置を備える第2ダンパ装置と、を含んで構成した。
 以下、説明の便宜のため、単に主ダクトといえば第1主ダクト及び第2主ダクトを意味し、単に排気ダクトといえば第1排気ダクト及び第2排気ダクトを意味し、単に弁切換装置といえば第1弁切換装置及び第2弁切換装置を意味し、単にダンパ装置といえば第1ダンパ装置及び第2ダンパ装置を意味する。
 これにより、浄化空気又は高温ガスが主ダクトを流通し、浄化空気又は高温ガスが所定ゾーンへとリサイクルされる。また、排気ダクトは主ダクトから分岐しており、浄化空気又は高温ガスは排気ダクトを流通して大気に放出される。このため、浄化空気及び高温ガスを安全且つ確実に所定ゾーンへとリサイクルできる。
 これらの発明では、弁切換装置は、開閉弁、排気弁、及び切換手段を備えている。開閉弁は、主ダクトの流路を開閉する。排気弁は、排気ダクトの流路を開閉する。切換手段は、開閉弁が主ダクトの流路を閉じているときは排気弁が排気ダクトの流路を開き、開閉弁が主ダクトの流路を開いているときは排気弁が排気ダクトの流路を閉じる。
 切換手段は、吸着装置から排出される浄化空気のVOCの濃度が検出されて作動するとともに、燃焼装置から排出される高温ガスの温度が検出されて作動する。
 ここで、主ダクトは浄化空気又は高温ガスが流通して浄化空気又は高温ガスを所定ゾーンへリサイクルするとは、実態として、浄化空気が流通する第1主ダクトと、高温ガスが流通する第2主ダクトと、を排気リサイクルシステムが備えていることを意味する。第1主ダクトと第2主ダクトは、弁切換装置を通過後は接続されて浄化空気及び高温ガスが合流し、所定ゾーンに帰還させることが好ましい。
 同様に、排気ダクトは主ダクトから分岐しており、浄化空気又は高温ガスを大気に放出するとは、第1主ダクトから分岐する第1排気ダクトと、第2主ダクトから分岐する第2排気ダクトと、を排気リサイクルシステムが備えていることを意味する。
 第1ダンパ装置は、第1主ダクトと第1排気ダクトの分岐部に配置される第1弁切換装置を備え、第2ダンパ装置は、第2主ダクトと第2排気ダクトの分岐部に配置される第2弁切換装置を備えている。第1弁切換装置と第2弁切換装置とは、互いに独立して機能(作動)できる。一方、第1弁切換装置と第2弁切換装置とは、構成を同一としているので、第1弁切換装置と第2弁切換装置とを同じものとして取り扱う。
 一般に、ダンパ制御は、ダンパと呼ばれる仕切り板をダクトの内部に配置して、ダンパの傾斜角度を変えてダクト内の風量を調整する。即ち、ダクトの内部に風が流れる方向と直交するようにダンパを配置すれば、ダクト内の風量は最小になり、ダクトの内部に風が流れる方向と平行にダンパを配置すれば、ダクト内の風量は最大になり、ダンパの傾斜角度を変えてダクト内の風量を最小から最大の間に調整できる。
 通常は、開閉弁が主ダクトの流路を開いており、排気弁が排気ダクトの流路を閉じているので、主ダクトは、浄化空気及び高温ガスが所定ゾーンへと導かれる閉回路を構成している。
 吸着装置から排出される浄化空気のVOC濃度が検出されて所定値以上になると、切換手段が作動し、開閉弁が主ダクトの流路を閉じ、排気弁が排気ダクトの流路を開いて正常値に復帰できる。また、燃焼装置から排出される高温ガスの温度が検出されて、所定値以上になると切換手段が作動し、開閉弁が主ダクトの流路を閉じて、排気弁が排気ダクトの流路を開いて正常値に復帰できる。
 ここで、弁切換装置は、一方のダンパが一方のダクトを閉じているときは、他方のダンパが他方のダクトを開いており、一方のダンパが一方のダクトを開いているときは、他方のダンパが他方のダクトを閉じている、可逆的な動作が許可される機械的なインターロック機能を有しており、リサイクルシステムの確実性が保証される。
 この発明によるダンパ装置は、浄化空気をリサイクルするに当たり、浄化空気中のVOC濃度を検出して、不適当な検出値の場合には、この浄化空気を大気に放出し、適切な検出値の場合は、この浄化空気をリサイクルする。従って、常に一定レベルのクリーンエアーをリサイクルできる。また、一定の風量を排気するように切換手段を制御することにより、エアバランスを一定の範囲に収めることができる。
 また、この発明によるダンパ装置は、燃焼装置が発生する高温ガスを所定ゾーンへとリサイクルするに当たり、燃焼装置から排出される高温ガスの温度が検出されて切換手段が作動する。例えば、燃焼装置立ち上がり時は、高温ガスが所定の温度に到達していないので、この高温ガスを大気に自動放出される。一方、高温ガスが所定の温度に到達した時点から、この高温ガスを所定ゾーンへリサイクルする。
 このように、この発明によるダンパ装置は、燃焼装置から排出される高温ガスを所定の温度で熱回収(サーマルリサイクル)することを可能とする。
 請求項8記載の排気リサイクルシステムは、請求項3から7いずれか記載の排気リサイクルシステムにおいて、前記排気リサイクルシステムは、前記高温ガスリサイクル装置によりリサイクルされる高温ガスが流通する内管と、この内管を隙間をあけて包囲し、前記隙間に、前記浄化空気リサイクル装置によりリサイクルされる浄化空気が流通される外管と、からなる二重管構造体を備えることを特徴とする。
 この発明によれば、排気リサイクルシステムを、高温ガスが流通する内管と、この内管を隙間をあけて包囲し前記隙間に浄化空気が流通される外管と、からなる二重管構造体を含んで構成した。このため、高温ガスは内管の内部を流通する一方、浄化空気は内管と外管との隙間に流通する。
 これにより、高温ガスは浄化空気を介して外気から隔離されるため、外気による高温ガスの急冷(つまり、熱エネルギの大損失)が抑制されるとともに、高温ガスから熱エネルギーが奪われた分、浄化空気が昇温されることになる。即ち、浄化空気及び高温ガスを効率的にリサイクルできる。
 請求項9記載の排気リサイクルシステムは、請求項3から8いずれか記載の排気リサイクルシステムにおいて、排気リサイクルシステム制御装置を備え、前記排気リサイクルシステム制御装置は、前記浄化空気及び前記高温ガスが導入される静圧調整室と、前記静圧調整室に設けられ、前記所定ゾーンへ新鮮な空気を供給する新鮮空気供給機構と、前記静圧調整室に設けられ、前記静圧調整室内の高温ガス濃度を計測する高温ガス濃度センサと、前記高温ガス濃度センサにより計測された高温ガス濃度に基づいて、前記新鮮空気供給機構を駆動させて前記静圧調整室内の圧力を調整することにより、前記所定ゾーンへ供給される新鮮空気量及びリサイクルされる浄化空気量を制御する排気リサイクル制御機構と、を備えることを特徴とする。
 この発明によれば、排気リサイクルシステムを、排気リサイクルシステム制御装置を含んで構成した。また、排気リサイクルシステム制御装置を、浄化空気及び高温ガスが導入される静圧調整室と、所定ゾーンへ新鮮な空気を供給する新鮮空気供給機構と、静圧調整室内の高温ガス濃度を計測する高温ガス濃度センサと、高温ガス濃度センサにより計測された高温ガス濃度に基づいて、新鮮空気供給機構を駆動させて静圧調整室内の圧力を調整することにより、所定ゾーンへ供給される新鮮空気量及びリサイクルされる浄化空気量を制御する排気リサイクル制御機構と、を含んで構成した。
 これにより、所定ゾーンから排出される排気中に含まれるVOCを燃焼浄化して生ずる浄化空気及び高温ガスをリサイクルすることが可能な排気リサイクルシステムにおいて、高温ガス濃度に応じて、リサイクルする浄化空気量及び高温ガス量を制御することが可能となる。ひいては、安全且つ安定的な排気リサイクルシステムのリサイクル運転が可能となる。
 また、本発明の活性炭フィルタ装置は、揮発性有機化合物が発生する所定ゾーンから排出された排気が通過するフィルタ装置本体を有し、前記フィルタ装置本体は、前記所定ゾーンから排出された排気中に含まれる揮発性化合物のうちの一部を吸着して保持すると共に、該排気中に含まれる揮発性化合物の濃度が低い場合には、吸着されて保持された揮発性化合物の一部を放出する機能を有する活性炭カートリッジを備える。
 この発明によれば、排気中に含まれる揮発性有機化合物(以下、VOC)のうちの一部は、活性炭カートリッジに吸着されて保持される。よって、高濃度のVOCを含む排気が排出された場合でも、活性炭フィルタ装置がVOCの一部を吸着して保持するので、吸着装置に供給される排気中に含まれるVOCの濃度を低減できる。
 また、活性炭フィルタ装置に導入される排気中に含まれるVOCの濃度が低い場合には、活性炭カートリッジに吸着されて保持されたVOCの一部が放出されて吸着装置に供給される。よって、活性炭フィルタ装置に導入される排気中に含まれるVOCの濃度が低い場合でも、吸着装置に供給される排気中に含まれるVOCの濃度を所定の範囲に維持できる。
 このように、この発明によれば、吸着装置に供給される排気中に含まれるVOCの濃度を安定化できる。
 また、前記フィルタ装置本体は、前記所定ゾーンから排出された排気の流路に配置される筐体と、前記筐体の内部に、高さ方向に所定間隔をあけて多段に積層配置された複数の活性炭カートリッジと、隣り合う2つの前記活性炭カートリッジの間にそれぞれ配置され前記排気の流れ方向に向けて下方に傾斜した複数の仕切り板と、を備えることが好ましい。
 この発明によれば、複数の活性炭カートリッジを高さ方向に所定間隔をあけて多段に積層配置し、隣り合う2つの活性炭カートリッジの間にそれぞれ仕切り板を設けた。
 ここで、所定ゾーンから排出されて活性炭フィルタ装置に導入された排気は、先ず、高さ方向に隣り合う2つの活性炭カートリッジの間にそれぞれ形成された複数の隙間に進入する。これら複数の隙間には、それぞれ流れ方向に向けて下方に傾斜した仕切り板が配置されているので、これらの隙間に進入した排気は、仕切り板に導かれてこの仕切り板の下方に配置された活性炭カートリッジの上面側から導入され、この活性炭カートリッジの底面側から排出される。これにより、活性炭フィルタ装置を通過する排気と活性炭カートリッジとの接触面積を広くできるので、活性炭カートリッジによるVOCの吸着効率を向上できる。
 また、VOCは、空気よりも比重が大きい。
 そこで、本発明では、仕切り板を、排気の流れ方向に向けて下方に傾斜させた。これにより、排気は、仕切り板に導かれて、この仕切り板の下方に配置された活性炭カートリッジの上面から底面に向けて通過する。よって、空気よりも比重の大きいVOCを活性炭カートリッジに効果的に吸着して保持できる。
 また、前記筐体は、前記流路の幅方向中央部に、該排気の導入方向に対して略垂直に配置される第1本体部と、前記第1本体部の幅方向の両端部から下流側に延び、且つ、該第1本体部に略垂直に配置される一対の第2本体部と、前記一対の第2本体部それぞれの先端部から外方に延び、且つ、該一対の第2本体部それぞれに略垂直に配置される一対の第3本体部と、を備えることが好ましい。
 この発明によれば、筐体を、第1本体部と、第2本体部と、第3本体部とを含んで構成した。これにより、活性炭フィルタ装置に導入された排気は、排気の導入方向に対して略垂直に配置される第1本体部及び第3本体部から進入すると共に、第1本体部及び第3本体部に略垂直に配置される第2本体部からも進入する。よって、活性炭フィルタ装置に導入された排気が多方向から進入するので、排気が活性炭フィルタ装置を通過する速度を低下でき、VOCの吸着効率を向上できる。
 また、前記フィルタ装置本体が所定間隔をあけて複数配置されていることが好ましい。
 この発明によれば、フィルタ装置本体を複数配置した。これにより、活性炭フィルタ装置によるVOCの保持容量を増加できるので、吸着装置に供給する排気中に含まれるVOC濃度をより安定化できる。
 また、前記複数の活性炭カートリッジは、前記筐体に着脱自在に構成されていることが好ましい。
 この発明によれば、複数の活性炭カートリッジそれぞれを筐体に着脱自在に構成した。よって、複数の活性炭カートリッジのうち交換を要する活性炭カートリッジのみを交換できるので、活性炭フィルタ装置のメンテナンスを容易に行える。
 また、前記複数の活性炭カートリッジの底面部には、前記排気の流通量を調節する調節機構が設けられていることが好ましい。
 この発明によれば、活性炭カートリッジの底面部に、排気の流通量を調節する調節機構を設けた。これにより、調節機構を調整することで、活性炭カートリッジに吸着して保持されたVOCの放出量を調整できる。よって、吸着装置に供給する排気中に含まれるVOCの濃度をより安定化できる。
 本発明によれば、所定ゾーンから排出された排気中のVOCを効率的に燃焼除去するとともに、VOC除去後の浄化空気をリサイクルすることが可能な排気リサイクルシステムを提供できる。このため、VOC排出量の削減、及び省エネルギー化を達成できる。
 また、本発明の活性炭フィルタ装置によれば、吸着装置に供給される排気中に含まれるVOCの濃度を安定化できる。
本発明の塗装設備の構成を示す図である。 フィルタ装置の構成を示す図である。 図3(a)~図3(c)は、それぞれ、第1洗浄部及び第2洗浄部での各洗浄手段を模式的に示した図である。 活性炭フィルタ装置の構成を示す平面図である。 図4のX-X線断面図である。 図6(a)は、活性炭カートリッジの平面図であり、図6(b)は、底面図である。 底面部に調節機構が設けられた活性炭カートリッジの底面図である。 ダンパ装置の正面図である。 ダンパ装置の斜視図であり、ダンパ装置の駆動にサーボモータを用いている態様を示す図である。 ダンパ装置の斜視図であり、ダンパ装置の駆動にエアシリンダを用いている態様を示す図である。 二重管構造体の全体斜視図である。 図11の平面図である。 図12のY-Y線断面図である。 リサイクルシステム制御装置の構成を示す図である。
 以下、本発明の排気リサイクルシステムの好ましい一実施形態を図面に基づいて説明する。本実施形態は、本発明の排気リサイクルシステムを、自動車車体の塗装を行う塗装設備に適用したものである。
 尚、本発明において、「塗布」とは、「塗装」、「印刷」、「コーティング」を含む。
 また、「塗料類」とは、塗装に用いられる塗料及び印刷に用いられるインクを含む。
[全体構成]
 図1は、本発明の塗布設備としての塗装設備100の構成を示す図である。
 塗装設備100は、被塗布物としての自動車の車体の塗装を行う設備であり、車体に対して塗装を施す塗布システムとしての塗装システム110と、この塗装システム110から排出された排気中に含まれるVOCを燃焼除去するVOC除去システム120と、このVOC除去システム120によって浄化された浄化空気及び燃焼の際に生ずる高温ガスを塗装システム110へと導いてリサイクルするための浄化空気リサイクル装置及び高温ガスリサイクル装置を備えるリサイクルシステム130と、を備える。
 塗装システム110は、車体の搬送方向に沿って配置された所定ゾーンとしての複数の塗装ゾーン111と、これら複数の塗装ゾーン111に、空気を空調して供給する空気供給装置112と、空調された空気が流通する空気供給路113と、複数の塗装ゾーン111で塗装が施された被塗装物を乾燥する乾燥炉114と、を備える。
 空気供給装置112は、後述するリサイクルシステム制御装置800により供給される新鮮空気及びリサイクルガスを空調する空調機(図示せず)と、空調された空気を送り出す給気ファン(図示せず)と、を備える。
 塗装ゾーン111の内部には、空気供給路113に臨み、供給された空気を拡散させて速度を下げ、圧力を高める静圧室111Aと、この静圧室111Aの下面を一旦塞ぎ、空気を下向きの流れにして下方へ吐出させる上部整流板111Bと、この上部整流板111Bの下方に位置する塗装室111Cと、この塗装室111C内に配置され、被塗装物を塗装する塗装ロボット111Dと、排気供給路115と、を備える。
 塗装ゾーン111では、被塗装物に対して、塗装ロボット111Dにより塗装が施される。これにより、塗装ゾーン111内の空気には、塗装の際に発生したVOCや塗料ミストや塗料かす等が含まれることとなる。
 空気供給装置112では、後述するリサイクルシステム制御装置800により供給される新鮮空気及びリサイクルガスが混合されて空調機により空調され、給気ファンにより空気供給路113を通じて複数の塗装ゾーン111それぞれに供給される。
 空気供給装置112から供給された空気は、排気ファン(図示せず)によって複数の塗装ゾーン111から排気供給路115に排出される。
 VOC除去システム120は、塗装システム110から排出された排気が通過するフィルタ装置400と、このフィルタ装置400の下流に設けられフィルタ装置400を通過した排気が通過する活性炭フィルタ装置500と、この活性炭フィルタ装置500の下流に設けられ活性炭フィルタ装置500を通過した排気中に含まれるVOCを吸着する吸着装置200と、この吸着装置200で吸着されたVOCを燃焼除去する燃焼装置としての蓄熱燃焼装置300と、を備える。
 フィルタ装置400は、塗装システム110から排出された排気の流路上に配置されており、複数の塗装ゾーン111及び乾燥炉114から排出された排気中に含まれる塗料ミストや塗装かす等を除去する。
 活性炭フィルタ装置500は、塗装システム110から排出された排気中に含まれるVOCの一部を吸着し、この吸着したVOCの一部を徐々に放出することにより、活性炭フィルタ装置500の下流側に設けられた吸着装置200に供給される排気中のVOC濃度を調整する。
 具体的には、活性炭フィルタ装置500は、排気中に含まれるVOCの濃度が高い場合には、その一部を吸着する。また、活性炭フィルタ装置500に吸着されたVOCは、活性炭フィルタ装置500を通過する排気中に含まれるVOCの濃度が低い場合には、その一部を放出する。これにより、塗装ゾーン111で塗装が一時的に行われていないときであっても、後述する蓄熱燃焼装置300へのVOCの供給が途絶えることがない。
 また、活性炭フィルタ装置500は、後述する吸着装置200で使用されるゼオライトのVOC吸着能を妨げる物質を除去する効果を有する。
 吸着装置200は、円筒状であり、VOC吸着剤としてのゼオライトを含んで構成される。活性炭フィルタ装置500を通過した排気は、この吸着装置200を通過することで、VOCが吸着されて除去される。吸着されたVOCは、この吸着装置200により濃縮される。
 吸着装置200は、排気の流路に対して並列に2つ配置されており、同時に使用される他、例えばメインとサブのような使い分けが可能となっている。
 また、吸着装置200は、VOCを吸着する吸着部と、吸着したVOCを離脱させる離脱部と、吸着部と離脱部との切替えが可能な切替え機構と、を備える。このため、吸着装置200では、上述の活性炭フィルタ装置500を通過した排気が通過する吸着部にてVOCが吸着される。後述する蓄熱燃焼装置300で発生する高温ガスが、後述する浄化空気リサイクル装置が備える第1高温ガス供給路310を介して通過する離脱部にてVOCは離脱される。吸着装置200は、切替え機構としてのモータを備え、このモータにより排気の流通方向を軸として軸回りに回転可能となっており、この回転により吸着部と離脱部との切替えが行われる。
 吸着装置200を通過して浄化された浄化空気は、リサイクルシステム130により塗装システム110へと導かれる。また、吸着装置200から離脱したVOCは、後述する浄化空気リサイクル装置が備えるVOC供給路320を通じて、後述する蓄熱燃焼装置300に供給される。
 蓄熱燃焼装置300は、吸着装置200で吸着されて濃縮されたVOCを燃焼除去する。上述の通り、蓄熱燃焼装置300には、吸着装置200に吸着されて濃縮されたVOCが、第1高温ガス供給路310を通じて供給される高温ガスによって離脱されて導入される。蓄熱燃焼装置300は、3塔式の蓄熱燃焼装置であり、大量のVOCが効率的に熱分解処理される。蓄熱燃焼装置300に供給されたVOCは、およそ800℃以上の高温で熱分解処理され、水と炭酸ガスとに変換される。
 上述の通り、吸着装置200に吸着されたVOCの離脱には、VOCの燃焼除去の際に発生する高温ガス(廃熱)の一部が利用される。また、この高温ガスの一部は、後述するリサイクルシステム130により塗装システム110へと導かれる。
 リサイクルシステム130は、吸着装置200に吸着されたVOCを離脱させて蓄熱燃焼装置300の燃焼燃料とするとともに、吸着装置200を通過して浄化された浄化空気を塗装ゾーン111へ再び導く浄化空気リサイクル装置と、蓄熱燃焼装置300でVOCを燃焼除去する際に生じる高温ガスを塗装ゾーン111へ導いてリサイクルする高温ガスリサイクル装置と、を備える。
 浄化空気リサイクル装置は、浄化空気を塗装ゾーン111に導いてリサイクルするための第1主ダクト735と、第1主ダクト735から分岐して浄化空気を大気に放出するための第1排気ダクト736と、第1主ダクト735と前記第1排気ダクト736との分岐部に設けられ、第1弁切換装置を備える第1ダンパ装置610と、を備えている。高温ガスリサイクル装置は、高温ガスを塗装ゾーン111に導いてリサイクルするための第2主ダクト723と、第2主ダクト723から分岐して高温ガスを大気に放出するための第2排気ダクト726と、第2主ダクト723と第2排気ダクト726との分岐部に設けられ、第2弁切換装置を備える第2ダンパ装置620と、を備えている。
 これにより、何らかの異常事態の際に、浄化空気及び高温ガスを確実に大気放出することができる。例えば、蓄熱燃焼装置300の立上げ時等、蓄熱燃焼装置300内での熱分解処理温度が一定温度に達していない場合には、VOC除去システム120によるVOCの除去が十分に行われてはいないため、第1ダンパ装置610、第2ダンパ装置620を開いて浄化空気及び高温ガスを大気放出し、リサイクルは実行されない。
 また、リサイクルシステム130は、高温ガスリサイクル装置によりリサイクルされる高温ガスが流通する内管720と、この内管720を隙間をあけて包囲し、前記隙間に、浄化空気リサイクル装置によりリサイクルされる浄化空気が流通される外管730と、からなる二重管構造体710を備えている。
 外管730は、内管720を包囲するように設けられており、これら外管730と内管720とにより、二重管構造体710が形成されている。内管720には、第2主ダクト723を介して高温ガスが流通する。外管730には、第1主ダクト735を介して浄化空気が流通する。外管730内を流通する浄化空気は、内管720内を流通する高温ガスにより暖められる。即ち、塗装システム110に浄化空気を供給する際に必要とされる所定の温度まで浄化空気を暖める手段として、蓄熱燃焼装置300で発生した高温ガス(廃熱)が有効利用され、省エネルギー化が達成される。
 また、蓄熱燃焼装置300で発生した高温ガスの一部は、供給管738を通じて、外管730の断熱に利用される。このため、特に冬季において、外管730内を流通する浄化空気の低温化が抑制される。
 また、リサイクルシステム130は、このリサイクルシステム130によりリサイクルされる浄化空気量及び高温ガス量を制御するリサイクルシステム制御装置800を備える。このリサイクルシステム制御装置800により、高温ガス濃度に基づいて、塗装システム110にリサイクルされる浄化空気量及び高温ガス量が制御され、ひいては塗装システム110に供給される新鮮空気量が制御される。
 以上の塗装設備100によれば、塗装システム110から排出された排気は、VOC除去システム120により塗料ミスト、塗料かす、VOCが除去された後に、リサイクルシステム130によって、再度塗装システム110へと導かれてリサイクルされる。よって、吸着装置200によりVOCが除去された排気をリサイクルできるとともに、この吸着装置200により吸着されて濃縮されたVOCを蓄熱燃焼装置300で効率的に燃焼除去できるため、VOCの放出を抑制でき、省エネルギー化を達成できる。
 また、蓄熱燃焼装置300でVOCを燃焼除去する際に発生する高温ガス(廃熱)も高温ガスリサイクル装置としての内管720を通じて塗装システム110に導いてリサイクルできるため、省エネルギー効果をより向上できる。
 また、VOCの除去に用いられる蓄熱燃焼装置300から発生する高温ガス(廃熱)が、リサイクルされる浄化空気の暖気に利用されるため、省エネルギー化が更に向上する。
 なお、本実施形態の塗装設備100全体の動作は以上の通りであるが、その詳細については構成ごとに、以下に詳細に説明する。
[フィルタ装置]
 次に、フィルタ装置400について説明する。
 図2は、フィルタ装置400の構成を示す図である。
 フィルタ装置400は、上述したように、塗装システム110から排出された排気の流路上に配置されており、複数の塗装ゾーン111及び乾燥炉114から排出された排気中に含まれる塗料ミストや塗装かす等を除去する。
 フィルタ装置400は、排気導入部410と、排気導出部420と、これら排気導入部410及び排気導出部420それぞれを覆うように配置される無端状のフィルタ430と、フィルタ430を回転可能に支持する複数のローラ440と、フィルタ430を洗浄する第1洗浄部450及び第2洗浄部460と、これら第1洗浄部450及び第2洗浄部460で洗浄されたフィルタ430を乾燥するフィルタ乾燥部としての第1フィルタ乾燥部470及び第2フィルタ乾燥部480と、を備える。
 排気導入部410と排気導出部420とは、互いに対向して設けられている。
 無端状のフィルタ430は、複数のローラ440に支持されて排気導入部410と排気導出部420との間に配置されている。フィルタ430は、排気導入部410を覆う位置及び排気導出部420を覆う位置において、排気の流路に対して略直角となるように配置されている。
 複数のローラ440のうちの少なくとも1つのローラ440は、モータ(図示せず)に接続されている。そして、このモータを駆動することによりローラ440が回転して、ローラ440に支持されているフィルタ430は、所定方向(図2中a方向)に一定の速度で回転移動する。
 第1洗浄部450は、排気導入部410の下流側であって排気導出部420の上流側に設けられている。
 第1洗浄部450は、帯電除去手段としての除電ブローバー451と、洗浄液噴霧手段としての活性水素水噴射装置452と、気体吹き付け手段としてのエアブロー装置453と、このエアブロー装置453により吹き付けられた気体を排出する排気口454と、第1洗浄部450においてフィルタ430を微振動させるフィルタ振動手段としての微振動発生装置455と、を備える。
 除電ブローバー451は、フィルタ430の外面側及び内面側に配置され、電荷を含む気体をフィルタ430の外面側及び内面側に吹き付ける。これにより、帯電したフィルタ430や塗料ミストや塗装かすの帯電は除去される。
 活性水素水噴射装置452は、除電ブローバー451の下流側に配置される。活性水素水噴射装置452は、フィルタ430の外面側及び内面側に配置され、洗浄液としてのヒドロキシルイオンを含む活性水素水をフィルタ430に噴霧する。これにより、フィルタ430に付着した塗料ミストや塗装かすを、フィルタ430から容易に分離可能とする。
 エアブロー装置453は、活性水素水噴射装置452の下流側に配置される。エアブロー装置453は、フィルタ430の内面側に配置され、フィルタ430の内面側から外面側に向けて空気を吹き付ける。これにより、フィルタ430に付着した塗料ミストや塗装かすをフィルタ430から除去する。
 フィルタ430から除去された塗料ミストや塗装かすは、エアブロー装置453により吹き付けられた空気とともに排気口454から排出される。
 活性水素水噴射装置462とエアブロー装置463との間には、複数のローラ440のうちの1つのローラ440aが配置されている。
 微振動発生装置455は、ローラ440aに取り付けられている。この微振動発生装置455を駆動することで、フィルタ430は第1洗浄部450において微振動する。
 第2洗浄部460は、排気導出部420の下流側であって排気導入部410の上流側に設けられている。
 第2洗浄部460の構成は、エアブロー装置463の配置が異なる他は、第1洗浄部450と同様の構成である。具体的には、第2洗浄部460は、除電ブローバー461と、活性水素水噴射装置462と、エアブロー装置463と、排気口464(図示せず)と、微振動発生装置465と、を備える。
 第2洗浄部460では、エアブロー装置463は、フィルタ430の内面側及び外面側に配置されている。そして、フィルタ430の内面側に配置されたエアブロー装置463からは、フィルタ430の内面側から外面側に向けて空気が吹き付けられ、フィルタ430の外面側に配置されたエアブロー装置463からは、フィルタ430の外面側から内面側に向けて空気が吹き付けられる。
 第1フィルタ乾燥部470は、第1洗浄部450の下流側に、第1洗浄部450に隣接して設けられており、第2フィルタ乾燥部480は、第2洗浄部460の下流側に、第2洗浄部460に隣接して設けられている。
 第1フィルタ乾燥部470及び第2フィルタ乾燥部480には、それぞれ、吸着装置200を通過して暖められ且つ低湿度となった浄化空気が、浄化空気供給路210を介して導入されて、第1洗浄部450で洗浄されたフィルタ430、及び第2洗浄部460で洗浄されたフィルタ430を乾燥する。
 以上のフィルタ装置400は、以下のように動作する。
 先ず、モータ(図示せず)を駆動させると、複数のローラ440のうちモータに接続されたローラが回転し、複数のローラ440に支持されたフィルタ430は、所定方向に一定の速度で回転移動する。
 この状態で、塗装システム110から排出された排気が排気導入部410から導入される。排気導入部410から導入された排気は、先ず、無端状のフィルタ430の排気導入部410を覆う部分をフィルタ430の外面側から内面側に向けて通過する。これにより、排気中に含まれる塗料ミストや塗装かすは、主としてフィルタ430の外面側に付着して捕集される。
 フィルタ430の排気導入部410を覆う部分を通過した排気は、次いで、無端状のフィルタ430の排気導出部420を覆う部分をフィルタ430の内面側から外面側に向けて通過する。これにより、フィルタ430の排気導入部410に位置する部分により捕集されなかった塗料ミストや塗装かすは、主としてフィルタ430の排気導出部420を覆う部分におけるフィルタ430の内面側に付着して捕集される。
 ここで、フィルタ430は、所定方向に一定の速度で回転移動しているので、フィルタ430の排気導入部410を覆っていた部分に付着した塗料ミストや塗装かすは、排気導入部410の下流側に設けられた第1洗浄部450で除去される。また、フィルタ430の排気導出部420を覆っていた部分に付着した塗料ミストや塗装かすは、排気導出部420の下流側に設けられた第2洗浄部460で除去される。
 図3(a)~図3(c)は、それぞれ、第1洗浄部450及び第2洗浄部460での各洗浄手段を模式的に示した図である。尚、図3中Aは電荷を含む気体を、Bは塗料ミストや塗装かすを、Cは活性水素水を示す。
 第1洗浄部450では、先ず、図3(a)に示すように、除電ブローバー451により、電荷を含む気体Aがフィルタ430の外面側及び内面側に吹き付けられる。これにより、帯電したフィルタ430や塗料ミストや塗装かすBの帯電が除去される。
 次いで、図3(b)に示すように、活性水素水噴射装置452により、ヒドロキシルイオンを含む活性水素水Cがフィルタ430に噴霧される。これにより、フィルタ430に付着した塗料ミストや塗装かすBは、フィルタ430から容易に分離可能となる。
 次いで、図3(c)に示すように、エアブロー装置453により、フィルタ430の内面側から外面側に向けて空気(図示せず)が吹き付けられる。これにより、フィルタ430に付着した塗料ミストや塗装かすBは、フィルタ430の外面側に分離されてフィルタ430から除去される。
 フィルタ430から除去された塗料ミストや塗装かすBは、エアブロー装置453により吹き付けられた空気とともに排気口454から排出される。
 活性水素水噴射装置462とエアブロー装置463との間には、微振動発生装置455が配置されており、この微振動発生装置455を駆動することで、第1洗浄部450においてフィルタ430は微振動する。これにより、フィルタ430に付着した塗料ミストや塗装かすは、フィルタ430から剥離しやすくなる。
 第2洗浄部460においても、第1洗浄部450と同様の工程でフィルタ430から塗料ミストや塗装かすが除去される。
 第1洗浄部450により塗料ミストや塗装かすが除去されたフィルタ430は、第1フィルタ乾燥部470で乾燥される。この第1フィルタ乾燥部470には、吸着装置200を通過する際に暖められた浄化空気が導入される。
 同様に、第2洗浄部460により塗料ミストや塗装かすが除去されたフィルタ430は、第2フィルタ乾燥部480で乾燥される。この第2フィルタ乾燥部480にも、吸着装置200を通過して暖められ且つ低湿度となった浄化空気が導入される。
 第1フィルタ乾燥部470で乾燥されたフィルタ430は、下流側に移動し、排気導出部420を覆う部分において、排気導入部410から導入された排気中に残存する塗料ミストや塗装かすを除去する。
 第2フィルタ乾燥部480で乾燥されたフィルタ430は、下流側に移動し、排気導入部410を覆う部分において、塗装システム110から排出された排気中に含まれる塗料ミストや塗装かすを除去する。
 以上のフィルタ装置400によれば、以下の効果を奏する。
 無端状のフィルタ430を排気導入部410及び排気導出部420それぞれを覆うように配置するとともに、排気導入部410の下流側に第1洗浄部450を設け、排気導出部420の下流側に第2洗浄部460を設けた。これにより、排気導入部410から導入された排気は、先ず、無端状のフィルタ430の排気導入部410を覆う部分を通過した後、更に無端状のフィルタ430の排気導出部420を覆う部分を通過する。よって、塗装システム110から排出された排気に含まれる塗料ミストや塗装かすを効率的に除去できる。
 また、フィルタ430の排気導入部410を覆う部分で除去されてフィルタ430に付着した塗料ミストや塗装かすは、第1洗浄部450でフィルタ430から除去され、フィルタ430の排気導出部420を覆う部分で除去されてフィルタ430に付着した塗料ミストや塗装かすは、第2洗浄部460でフィルタ430から除去される。これにより、フィルタ430は、常に、塗料ミストや塗装かすが除去された状態で排気導入部410及び排気導出部420に位置するので、時間が経過してもフィルタ430に目詰まりを生じない。よって、フィルタ装置400のメンテナンスの頻度を低減できる。
 また、第1洗浄部450及び第2洗浄部460を、それぞれ、除電ブローバー451と、活性水素水噴射装置452と、エアブロー装置453と、を含んで構成した。よって、第1洗浄部450及び第2洗浄部460でのフィルタ430の洗浄効果が向上し、フィルタ430に付着した塗料ミストや塗装かすを効果的に除去できる。
 また、第1洗浄部450及び第2洗浄部460を、それぞれ、フィルタ430を微振動させる微振動発生装置455,465を含んで構成した。よって、第1洗浄部450及び第2洗浄部460において、フィルタ430に付着した塗料ミストや塗装かすは、フィルタ430から剥離しやすくなる。
 また、第1洗浄部450の下流側に第1フィルタ乾燥部470を設け、第2洗浄部460の下流側に第2フィルタ乾燥部480を設けた。これにより、第1洗浄部450及び第2洗浄部460で洗浄されたフィルタ430は、乾燥されて排気導入部410及び排気導出部420に配置される。よって、フィルタ装置400による塗料ミストや塗装かすの除去効果を安定化できる。
 また、第1フィルタ乾燥部470及び第2フィルタ乾燥部480それぞれに、吸着装置200を通過した浄化空気を導入した。これにより、吸着装置200を通過することにより暖められ且つ低湿度となった浄化空気を、フィルタ430の乾燥に用いるので、浄化空気を有効利用できる。
 なお、本実施形態の塗装設備100に用いられるフィルタ装置は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、本実施形態では、洗浄液噴霧手段として活性水素水噴射装置452を用い洗浄液として活性水素水を用いたが、これに限らず、洗浄液として界面活性剤を使用してもよい。
[活性炭フィルタ装置]
 次に、活性炭フィルタ装置500について説明する。
 図4は、活性炭フィルタ装置500の構成を示す平面図である。図5は、図4のX-X線断面図である。
 活性炭フィルタ装置500は、上述したように、この活性炭フィルタ装置500の下流側に設けられた吸着装置200に供給される排気中のVOC濃度を調整する。
 活性炭フィルタ装置500は、フィルタ装置400の下流側に設けられており、フィルタ装置400を通過した排気の流路590に配置された2つのフィルタ装置本体510を備える。2つのフィルタ装置本体510は、流路590の上流側及び下流側に、互いに所定間隔をあけて配置されている。
 フィルタ装置本体510は、筐体520と、この筐体520の内部に配置される複数の活性炭カートリッジ530と、この筐体520の内部に配置される複数の仕切り板540と、を備える。
 複数の活性炭カートリッジ530は、筐体520の内部に、それぞれ、高さ方向に所定間隔をあけて多段に積層配置されて収容される。より具体的には、複数の活性炭カートリッジ530は、それぞれ、略直方体形状を有しており、筐体520の幅方向に複数列配置されるとともに、筐体520の高さ方向にも複数段配置されている。
 複数の仕切り板540は、高さ方向に隣り合う2つの活性炭カートリッジ530の間に形成される隙間にそれぞれ配置される。これら複数の仕切り板540は、排気の流れ方向に向けて下方に傾斜している。
 ここで、排気の流れ方向とは、排気が筐体520を通過する場合の排気の通過方向を示す。
 筐体520は、第1本体部521と、一対の第2本体部522と、一対の第3本体部523と、を備える。
 第1本体部521は、フィルタ装置400を通過した排気の流路590の幅方向中央部に、排気の導入方向(図4中a方向)に対して略垂直に配置されている。
 一対の第2本体部522は、第1本体部521の幅方向の両端部から流路590の下流側に延び、且つ、この第1本体部521に略垂直に配置されている。
 一対の第3本体部523は、一対の第2本体部522それぞれの先端部から外方に延び、且つ、一対の第2本体部522それぞれに略垂直に配置されている。
 このように、流路590には、2つの筐体520(フィルタ装置本体510)が上流側に向けて凸字状に配置されている。
 これにより、活性炭フィルタ装置500は、流路590の全域を覆っている。
 図6(a)は、活性炭カートリッジ530の平面図であり、図6(b)は、活性炭カートリッジ530の底面図である。図7は、底面部に調節機構531が設けられた活性炭カートリッジ530の底面図である。
 活性炭カートリッジ530は、底面部及び側面部が網状部材から構成されるカートリッジ本体534に活性炭535が充填されて形成されている。このカートリッジ本体534には取手536が設けられている。
 また、図7に示すように、複数の活性炭カートリッジ530のうちの所定の活性炭カートリッジ530の底面部には、この活性炭カートリッジ530を通過する排気の流通量を調節する調節機構531が設けられている。
 調節機構531は、略同形の2枚の板状部材532,533から構成されており、この2枚の板状部材532,533で活性炭カートリッジ530の底面部を覆っている。2枚の板状部材532,533のうちの一方の板状部材532は、他方の板状部材533側にスライド可能に構成されており、この一方の板状部材532をスライドされることにより活性炭カートリッジ530の底面部の開放される面積を調整可能となっている。
 複数の活性炭カートリッジ530は、筐体520に着脱自在に構成されている。具体的には、第1本体部521及び一対の第3本体部523に収容配置される複数の活性炭カートリッジ530は、上流側から筐体520に取り付け及び取り外しが可能に構成されている(図5の2点鎖線部分参照)。また、一対の第2本体部522に収容配置される複数の活性炭カートリッジ530は、外側(流路590の側壁側)から筐体520に取り付け及び取り外しが可能に構成されている。
 次に、活性炭フィルタ装置500における排気の流れについて説明する。
 フィルタ装置400を通過した排気が活性炭フィルタ装置500に導入されると、排気導入部410から導入された排気は、先ず、上流側に配置されたフィルタ装置本体510に到達する。そして、筐体520の内部の高さ方向に隣り合う2つの活性炭カートリッジ530の間にそれぞれ形成された複数の隙間に進入する。これら複数の隙間には、それぞれ流れ方向に向けて下方に傾斜した仕切り板540が配置されているので、これらの隙間に進入した排気は、仕切り板540に導かれてこの仕切り板540の下方に配置された活性炭カートリッジ530の上面側から導入され、この活性炭カートリッジ530の底面側から排出される。
 これにより、排気中に含まれるVOCのうちの一部は、活性炭カートリッジに吸着されて一時的に保持される。また、活性炭フィルタ装置500に導入される排気中に含まれるVOCの濃度が低い場合には、活性炭カートリッジ530に吸着されて保持されたVOCの一部は排気中に放出される。
 また、これら複数の活性炭カートリッジ530により、吸着装置200で使用されるゼオライトのVOC吸着能を妨げる物質が除去される。
 複数の活性炭カートリッジ530のうち所定の活性炭カートリッジ530の底面部には、調節機構531が設けられている。
 底面部に調節機構531が設けられている活性炭カートリッジ530では、2枚の板状部材532,533で底面部が覆われた状態では、排気は、この底面部が覆われた活性炭カートリッジ530を通過しないので、この活性炭カートリッジ530に吸着して保持されたVOCは、排気中には放出されない。
 一方、2枚の板状部材532,533のうちの一方の板状部材532をスライドさせて、底面部の一部が開放された状態では、排気は、底面部の開放された部分を通過できるので、この活性炭カートリッジに吸着して保持されたVOCの一部は、放出される。
 このように、底面部に調節機構531が設けられた活性炭カートリッジ530では、2枚の板状部材532,533を開閉させて底面部の開放された部分の面積を調整することで、この活性炭カートリッジ530に吸着されて保持されたVOCの放出量を調整できる。
 フィルタ装置本体510に到達した排気は、筐体520を構成する第1本体部521及び一対の第3本体部523からは、導入された排気の流れ方向(図4中a方向)に沿って進入して活性炭カートリッジ530を通過する。
 一方、一対の第2本体部522からは、排気は、導入された排気の流れ方向に略直交する方向(図4中b方向)に向かって進入して活性炭カートリッジ530を通過する。
 上流側に配置されたフィルタ装置本体510を通過した排気は、次に、下流側に配置されたフィルタ装置本体510に到達する。下流側に配置されたフィルタ装置本体510においては、排気は、上流側に配置されたフィルタ装置本体510を通過する場合と同様の態様で、この下流側に配置されたフィルタ装置本体510を通過する。
 下流側に配置されたフィルタ装置本体510を通過した排気は、次に、吸着装置200に供給される。
 以上の活性炭フィルタ装置500によれば、以下の効果を奏する。
 複数の活性炭カートリッジ530を高さ方向に所定間隔をあけて多段に積層配置し、隣り合う2つの活性炭カートリッジ530の間にそれぞれ仕切り板540を設けた。
 これにより、フィルタ装置400から排出されて活性炭フィルタ装置500に導入された排気は、仕切り板540に導かれてこの仕切り板540の下方に配置された活性炭カートリッジ530の上面側から導入され、この活性炭カートリッジ530の底面側から排出される。よって、排気中に含まれるVOCのうちの一部は、活性炭カートリッジ530に吸着されて保持されるので、高濃度のVOCを含む排気が排出された場合でも、吸着装置200に供給される排気中に含まれるVOCの濃度を低減できる。
 また、活性炭フィルタ装置500に導入される排気中に含まれるVOCの濃度が低い場合には、活性炭カートリッジ530に吸着されて一時的に保持されたVOCの一部が放出されて吸着装置200に供給される。よって、活性炭フィルタ装置500に導入される排気中に含まれるVOCの濃度が低い場合でも、吸着装置200に供給される排気中に含まれるVOCの濃度を所定の範囲に維持できる。
 このように、吸着装置200に供給される排気中に含まれるVOCの濃度を安定化できる。
 また、活性炭フィルタ装置500を通過する排気と活性炭カートリッジ530との接触面積を広くできるので、活性炭カートリッジ530によるVOCの吸着効率を向上できる。
 また、仕切り板540を、排気の流れ方向に向けて下方に傾斜させた。これにより、排気は、仕切り板540に導かれて、この仕切り板540の下方に配置された活性炭カートリッジ530の上面から底面に向けて通過する。よって、空気よりも比重の大きいVOCを活性炭カートリッジ530に効果的に吸着して保持できる。
 また、筐体520を、第1本体部521と、第2本体部522と、第3本体部523とを含んで構成した。これにより、活性炭フィルタ装置500に導入された排気は、排気の流れ方向に対して略垂直に配置される第1本体部521及び第3本体部523から進入するとともに、第1本体部521及び第3本体部523に略垂直に配置される第2本体部522からも進入する。よって、活性炭フィルタ装置500に導入された排気が多方向から進入するので、排気が活性炭フィルタ装置500を通過する速度を低下でき、VOCの吸着効率を向上できる。
 また、フィルタ装置本体510を、排気の流れ方向に2つ配置した。これにより、活性炭フィルタ装置500によるVOCの保持容量を増加できるので、吸着装置200に供給する排気中に含まれるVOC濃度をより安定化できる。
 また、複数の活性炭カートリッジ530それぞれを筐体520に着脱自在に構成した。これにより、複数の活性炭カートリッジ530のうち交換を要する活性炭カートリッジ530のみを交換できるので、活性炭フィルタ装置500のメンテナンスを容易に行える。
 また、複数の活性炭カートリッジ530のうちの所定の活性炭カートリッジ530の底面部に、排気の流通量を調節する調節機構531を設けた。これにより、調節機構531を調整することで、活性炭カートリッジ530に吸着して保持されたVOCの放出量を調整できる。よって、吸着装置200に供給する排気中に含まれるVOCの濃度をより安定化できる。
 なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、本実施形態では、流路590にフィルタ装置本体510を2つ配置したが、これに限らず、フィルタ装置本体510を1つのみ配置してもよく、また、3つ以上のフィルタ装置本体510を配置してもよい。
 また、本実施形態では、活性炭カートリッジ530を、筐体520の幅方向に複数列配置したが、これに限らない。すなわち、活性炭カートリッジの幅方向の長さを、筐体の幅方向の長さと略同一に構成して、この活性炭カートリッジを筐体の高さ方向に多段に積層配置してもよい。
 また、本実施形態では、本発明の活性炭カートリッジ530を、自動車の車体に塗装を施す塗装設備に適用したが、これに限らない。即ち、本発明の活性炭カートリッジ530を、冷蔵庫や洗濯機等の家電に塗装を施す塗装設備に適用してもよく、また、紙等の媒体にインクを転写する印刷設備に適用してもよい。
[ダンパ装置]
 次に、ダンパ装置について説明する。なお、第1ダンパ装置610と第2ダンパ装置620とは、構成を同一としているので、第1ダンパ装置610を代表して説明する。
 図8を参照すると、第1ダンパ装置610は、開閉弁611、排気弁612、及び切換手段613を有している。開閉弁611は、第1主ダクト735の流路を開閉する。排気弁612は、第1排気ダクト736の流路を開閉する。切換手段613は、開閉弁611が第1主ダクト735の流路を閉じているときは排気弁612が第1排気ダクト736の流路を開き、開閉弁611が第1主ダクト735の流路を開いているときは排気弁612が第1排気ダクト736の流路を閉じる。
 図1を参照すると、切換手段613は、吸着装置200から排出される浄化空気のVOCの濃度が検出されて作動するとともに、蓄熱燃焼装置300から排出される高温ガスの温度が検出されて作動する。なお、切換手段613は、吸着装置200から排出される浄化空気のVOCの濃度が検出されて作動するか、あるいは蓄熱燃焼装置300から排出される高温ガスの温度が検出されて作動するものであってもよい。
 図8を参照すると、開閉弁611は、第1梃子クランク611aを有している。第1梃子クランク611aの一端部を回動すると、開閉弁611を回動できる。又、排気弁612は、第2梃子クランク612aを有している。第2梃子クランク612aの一端部を回動すると排気弁612を回動できる。
 図8を参照すると、切換手段613は、回動軸614、回動手段615(図9及び図10参照)、揺動円板616、第1リンク棒617、及び第2リンク棒618を有している。回動軸614は、第1主ダクト735の浄化空気(又は第2主ダクト723の高温ガス)の流通方向と略直交する向きに、第1主ダクト735を横断している。回動手段615は、第1主ダクト735の外部に配置されており、回動軸614を回動させる(図9及び図10参照)。
 図8を参照すると、揺動円板616は、回動軸614と同軸に取り付けられている。又、揺動円板616は、中心から所定の角度に開角する円周上の2点に回転結合点C1・C2を設けている。
 図8を参照すると、第1リンク棒617は、一方の回転結合点C1に一端部が回転結合し、第1梃子クランク611aの一端部に他端部が回転結合している。第2リンク棒618は、他方の回転結合点C2に一端部が回転結合し、第2梃子クランク612aの一端部に他端部が回転結合している。
 図8を参照すると、第1ダンパ装置610は、第1梃子クランク611a、第1リンク棒617、及び揺動円板616が第1の梃子クランク機構K1を構成している。第1の梃子クランク機構K1は、最短リンクである第1梃子クランク611aと対偶をなすリンク(本発明の実施形態の場合、第1主ダクト735の隔壁が相当する)が固定リンクの場合に成り立っている。第1の梃子クランク機構K1は、揺動円板616を所定の角度に往復角運動をすると、第1リンク棒617に運動が伝達されて、第1梃子クランク611aを揺動できる。すなわち、開閉弁611を所定の角度に傾動できる。
 又、図8を参照すると、第1ダンパ装置610は、第2梃子クランク612a、第2リンク棒618、及び揺動円板616が第2の梃子クランク機構K2を構成している。第2の梃子クランク機構K2は、最短リンクである第2梃子クランク612aと対偶をなすリンク(本発明の実施形態の場合、第1主ダクト735の隔壁が相当する)が固定リンクの場合に成り立っている。第2の梃子クランク機構K2は、揺動円板616を所定の角度に往復角運動をすると、第2リンク棒618に運動が伝達されて、第2梃子クランク612aを揺動できる。すなわち、排気弁612を所定の角度に傾動できる。
 図8を参照すると、通常時は、第1梃子クランク611aが第1主ダクト735の浄化空気(又は、第2主ダクト723の高温ガス)の流通方向と略直交する向き配置され、開閉弁611が第1主ダクト735を開いている。一方、第2梃子クランク612aが第1排気ダクト736の浄化空気(又は、第2主ダクト723の高温ガス)の流通方向と平行する向き配置され、排気弁612が第1排気ダクト736を閉じている。
 そして、揺動円板616を一方の方向に所定の角度に回動すると、第1梃子クランク611aの一端部は第1リンク棒617に引きずられて、開閉弁611が第1主ダクト735を閉じることができる。一方、揺動円板616を一方の方向に所定の角度に回動すると、第2梃子クランク612aの一端部は第2リンク棒618に押されて、排気弁612が第1排気ダクト736を開くことができる。
 反対に、揺動円板616を他方の方向に所定の角度に回動すると、第1梃子クランク611aの一端部は第1リンク棒617に押されて、弁が第1主ダクト735を開くことができる。一方、揺動円板616を他方の方向に所定の角度に回動すると、第2梃子クランク612aの一端部は第2リンク棒618に引きずられて、排気弁612が第1排気ダクト736を閉じることができる。
 図8を参照すると、揺動円板616は、二つの回転結合点C1・C2を等間隔に設けている。第1リンク棒617及び第2リンク棒618は、それらの長さが固定されているので、例えば、第2リンク棒618の一端部を別の回転結合点C2に付け替えて、排気弁612の開口率を微調整できる。
 図9及び図10を参照すると、第1ダンパ装置610は、開閉弁611、排気弁612、及び揺動円板616を4つに分割配置している。第1ダンパ装置610は、第1の梃子クランク機構K1及び第2の梃子クランク機構K2を4つに分割配置しているということもできる。第1ダンパ装置610は、開閉弁611、排気弁612、及び揺動円板616を分割配置しているので、開閉弁611及び排気弁612の開口率を更に微調整できる。
 図9を参照すると、回動手段615は、出力軸が回動軸614の一端部と連結するサーボモータ615mからなっている。
 サーボモータ615mに油圧サーボモータを用いれば、リサイクルシステム130の確実性が保証されるメカニカルなダンパ装置を実現できる。サーボモータ615mで揺動円板616を角度制御することにより、常に一定量のガスを排気して、塗装ゾーン111のエアバランスの乱れを防止できる(図1参照)。
 図10を参照すると、回動手段615は、ピストンロッド615rのストロークを可変可能なポジショニングエアシリンダ615cからなっている。回動軸614の一端部は、回動軸614を回動させるクランク棒614cを有している。そして、進退するピストンロッド615rの先端部がクランク棒614cの先端部と連結している。
 図10において、第1ダンパ装置610は、ピストンロッド615rのストロークが揺動円板616の回動角度に変換される。揺動円板616を駆動するアクチュエータとしてエアシリンダを用いることにより、メカニカルなダンパ装置を実現できる。ポジショニングエアシリンダは、ピストンロッドのストロークを細分化できるという利点がある。
 次に、ダンパ装置の動作、効果について説明する。
 図1及び図8を参照すると、通常、塗装設備100が稼働中は、開閉弁611が第1主ダクト735及び第2主ダクト723の流路を開いており、排気弁612が第1排気ダクト736、第2排気ダクト726の流路を閉じているので、第1主ダクト735及び第2主ダクト723は、浄化空気及び高温ガスが複数の塗装ゾーン111、111に帰還する閉回路を構成している。
 図1及び図8を参照すると、吸着装置200から排出される浄化空気のVOCの濃度が検出器S1で検出されて、所定値以上になると切換手段613が作動して、開閉弁611が第1主ダクト735の流路を閉じ、排気弁612が第1排気ダクト736の流路を開いて正常値に復帰できる。なお、検出器S1は、図示された場所に限定されない、インターロック機能が作用する適正な場所に配置されることが好ましい。
 又、図1及び図8を参照すると、蓄熱燃焼装置300から排出される高温ガスの温度が検出器S2で検出されて、所定値以上になると切換手段613が作動して、開閉弁611が第2主ダクト723の流路を閉じ、排気弁612が第2排気ダクト726の流路を開いて正常値に復帰できる。なお、検出器S2は、図示された場所に限定されない、インターロック機能が作用する適正な場所に配置されることが好ましい。
 本発明の実施形態によるダンパ装置は、一方のダンパが一方のダクトを閉じているときは、他方のダンパが他方のダクトを開いており、一方のダンパが一方のダクトを開いているときは、他方のダンパが他方のダクトを閉じている、可逆的な動作が許可される機械的なインターロック機能を有しており、リサイクルシステム130の確実性が保証される。
 図1を参照すると、本発明の実施形態による第1ダンパ装置610は、図示しない空調機を介して複数の塗装ゾーン111、111に吸着装置200の浄化空気を帰還させるに当たり、浄化空気中のVOCの濃度を検出して、不適当な検出値の場合には、この浄化空気を大気に放出し、適切な検出値の場合には、この浄化空気を空調機に送出する。従って、常に一定レベルのクリーンエアーをリサイクルできる。又、一定の風量を排気するように切換手段613を制御することにより、塗装ゾーン111のエアバランスを一定の範囲に収めることができる。
 又、図1を参照すると、本発明の実施形態による第2ダンパ装置620は、蓄熱燃焼装置300が発生する高温ガスを複数の塗装ゾーン111、111に帰還させるに当たり、蓄熱燃焼装置300から排出される高温ガスの温度が検出されて切換手段613が作動する。例えば、蓄熱燃焼装置300が立ち上がり時は、高温ガスが所定の温度に到達していないので、この高温ガスを大気に自動放出する。一方、高温ガスが所定の温度に到達した時点から、この高温ガスを複数の塗装ゾーン111、111に帰還させてリサイクルする。
 このように、本発明の実施形態による第2ダンパ装置620は、蓄熱燃焼装置300から排出される高温ガスを所定の温度で熱回収(サーマルリサイクル)できる。
 図8から図10を参照すると、本発明の実施形態によるダンパ装置は、一方のダンパが一方のダクトを閉じているときは、他方のダンパが他方のダクトを開いており、一方のダンパが一方のダクトを開いているときは、他方のダンパが他方のダクトを閉じている、可逆的な動作が許可される機械的なインターロック機能を有しており、リサイクルシステム130の確実性が保証されるメカニカルなダンパ装置を実現している。電気的に制御されるダンパ装置と比較して、メカニカルなダンパ装置は、一般に、誤動作が少ないとされている。
 なお、本発明の塗装設備に用いられるダンパ装置は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
[リサイクルシステム]
 次に、リサイクルシステム130について説明する。
 リサイクルシステム130は、吸着装置200を通過した浄化空気、及び蓄熱燃焼装置300によりVOCを燃焼し除去する際に生じる高温ガスを塗装システム110へと導いてリサイクルする。
 ここで、本発明に係るリサイクルシステム130は、高温ガスリサイクル装置によりリサイクルされる高温ガスが流通する内管720と、この内管720を隙間をあけて包囲し、前記隙間に、浄化空気リサイクル装置によりリサイクルされる浄化空気が流通される外管730と、からなる二重管構造体710を備えている。
 外管730は、内管720を包囲するように設けられており、これら外管730と内管720とにより、二重管構造体710が形成されている。内管720には、第2主ダクト723を介して高温ガスが流通する。外管730には、第1主ダクト735を介して浄化空気が流通する。
 内管720は蓄熱燃焼装置300に連通され、この蓄熱燃焼装置300からの高温ガスが内管720の内部729を流通する。一方、外管730は、吸着装置200に連通する第1主ダクト735が延長したものであり、第1主ダクト735を通ってきた浄化空気が隙間728を流通する。このようにして、高温ガスは浄化空気を介して外気から隔離されるため、外気による高温ガスの急冷(つまり、熱エネルギーの大損失)が抑制されるとともに、高温ガスから熱エネルギーが奪われた分、浄化空気が昇温される。なお、二重管構造体710を備えている限りにおいて、更なる管状体を備えた構成が除外されるものではない。例えば、内管720と外管730との間、又は外管730の外側に、第3の管が配置されていてもよい。
 二重管構造体710の設置範囲は、特に限定されず、吸着装置200及び蓄熱燃焼装置300の位置関係に応じて適宜設定されてよい。本実施形態における二重管構造体710は、後述のリサイクルシステム制御装置800の直前まで設けられていて、これにより、高温ガス及び浄化空気の低温化が最大限に抑制される。また、第2主ダクト723の長さを短くして高温ガスの低温化を抑制できるよう、二重管構造体710は蓄熱燃焼装置300の近傍から下流側へと設けられている。
 図11は図1の二重管構造体710の全体斜視図であり、図12は図11の平面図である。本実施形態では、図11に示されるように、内管720の内部729が、外管730を貫通する連通管としての第2主ダクト723を介して蓄熱燃焼装置300に連通され、第2主ダクト723を通った高温ガスが内部729へと供給される。そして、図1に示されるように、第2主ダクト723は蓄熱燃焼装置300の比較的近傍にて外管730を貫通するよう配置されているため、第2主ダクト723を流通する間における高温ガスの外気による冷却が最小限に抑えられる。なお、内管720を蓄熱燃焼装置300に連通させる構造は、これに限られず、例えば内管が外管の基端まで延長され、更に外管の基端から蓄熱燃焼装置300へと延出された構造であってもよい。
 本実施形態の内管720の基端721には、浄化空気の反流れ方向(外管730の上流側)に向かって縮径するテーパ部722が設けられている。これにより、上流側から流れてきた浄化空気の基端721への衝突が緩和され、浄化空気の流通が円滑化される。なお、テーパ部722は内管720と一体であってもよいし、別体でもよく、また、テーパ部722の内部が内管720の内部729に連通していてもよいし、連通していなくともよい。
 また、本実施形態では基端721にテーパ部722を設けたが、第2主ダクト723のうち外管730内に侵入している部分に、浄化空気の反流れ方向に向かって縮径するテーパ部を設けてもよい。これによっても、浄化空気の流通が円滑化される。なお、本実施形態のテーパ部722は四角錐形状であるが、浄化空気の反流れ方向に向かって縮径する限り、任意の形状であってよい。また、二重管構造体710の設置位置において外管730の内径を増加する設計変更を行うことで、浄化空気が流通可能なスペースを充分に確保し、浄化空気の流通を円滑化してもよい。
 本実施形態では、第1主ダクト735の途中、具体的にはテーパ部722よりも上流側に第1ダンパ装置610が設けられており、この第1ダンパ装置610の開閉に応じて、吸着装置200からの浄化空気は外管730内を流通するか、第1排気ダクト736から外気へ放出される。同様に、第2主ダクト723の途中に第2ダンパ装置620が設けられており、この第2ダンパ装置620の開閉に応じて、蓄熱燃焼装置300からの気体は内部729に供給されるか、第2排気ダクト726から外気へ放出される。これにより、高温ガス及び浄化空気に何らかの異常が生じた場合、外気に放出することで事故発生を予防できる。例えば、蓄熱燃焼装置300の立上げ時等、蓄熱燃焼装置300内での熱分解処理温度が一定温度に達していない場合には、VOC除去システム120によるVOCの除去が十分に行われてはいないため、第1ダンパ装置610、第2ダンパ装置620を開いて浄化空気及び高温ガスを大気放出し、リサイクルを実行しない。
 図13は図12のY-Y線断面図である。図13に示されるように、本実施形態の外管730は、内側に配置された(本実施形態では第1主ダクト735の周囲に設けられている)管状の第1断熱部材731と、外側に配置された管状の第2断熱部材733と、第1断熱部材731及び第2断熱部材733の間に介在し外管730の軸方向(図13における上下方向)に沿って延びる空所734と、を有する。この空所734は供給手段としての供給管738を介して蓄熱燃焼装置300に連通され、供給管738が蓄熱燃焼装置300からの高温ガスを空所734に供給する。これにより、728を流通する浄化空気が外気から隔離される結果、外気による浄化空気の冷却が抑制される。また、空所734を流れる高温ガスは第1断熱部材731及び第2断熱部材733に挟まれているため、浄化空気の低温化、それに伴う内部729の高温ガスの低温化を効率的に抑制できる。なお、空所734を流れる高温ガスは、やがて空所734の終端739から外気へと放出される。
 空所734に供給される高温ガスの冷却を抑制できるよう、供給管738の長さを短くし、蓄熱燃焼装置300の近傍から下流側へと設けられている。結果的に本実施形態では、供給管738が上流側の空所734に設けられているため、空所734を流通する高温ガスが浄化空気と同じ方向に流通するが、これに限られるものではない。また、本実施形態では空所734は第1断熱部材731の周囲全体に形成されているが、これに限られず、周囲の一部のみに形成されていてもよい。
 本実施形態では、第2断熱部材733の外周に第3断熱部材737が設けられており、空所734を流れる高温ガスの低温化が更に抑制されている。なお、本実施形態の第1断熱部材731及び第2断熱部材733はアルミ断熱シートで構成され、第1主ダクト735はアルタイト鋼板で構成され、第3断熱部材737はロックウールで構成されているが、これに限られるものではない。
 このようにして728を流通した浄化空気、及び内部729を流通した高温ガスは、リサイクルシステム制御装置800へと導入される。そして、これらのガスは、エアーダンパ装置810から導入される新鮮空気と混合され、必要に応じてガスバーナ840で所望の温度にまで暖められた後、塗装システム110へと導かれ、リサイクルされることになる。
 ここでリサイクルシステム制御装置800は、リサイクルシステム130によりリサイクルされるリサイクルガス(浄化空気及び高温ガス)量を制御し、具体的には、高温ガス濃度センサとしてのCOセンサ820で検出される高温ガス濃度に基づいて、エアーダンパ装置810の開度を調節し、リサイクルシステム制御装置800の内圧を変動させることで塗装システム110に供給される新鮮空気量、浄化空気量及び高温ガス量を制御する。これにより、リサイクルガス(浄化空気及び高温ガス)中の高温ガス濃度に応じてリサイクルガス(浄化空気及び高温ガス)量を制御できるため、ひいては、安全且つ安定的な塗装設備100のリサイクル運転が可能になる。
 以上のリサイクルシステム130によれば、以下の効果を奏する。
 高温ガスは内管720の内部729を流通される一方、浄化空気は内管720と外管730との隙間728に流通される。これにより、高温ガスは浄化空気を介して外気から隔離されるため、外気による高温ガスの急冷(つまり、熱エネルギの大損失)が抑制されるとともに、高温ガスから熱エネルギが奪われた分、浄化空気が昇温されることになる。よって、浄化空気及び高温ガスを効率的にリサイクルできる。
 外管730を貫通する第2主ダクト723を介して内管720を蓄熱燃焼装置300に連通させたので、蓄熱燃焼装置300と吸着装置200との位置関係にかかわらず、第2主ダクト723を比較的短く設計できる。これにより、高温ガスの低温化が抑制され、浄化空気及び高温ガスをより効率的にリサイクルできる。
 内管720の基端721にテーパ部722を設けたので、上流側から流れてきた浄化空気の基端721への衝突が緩和される。これにより、特段の設計変更を行わずに浄化空気の流通が円滑化されるため、浄化空気のリサイクルをより効率化できる。
 外管730の軸方向、つまり浄化空気の流れ方向に沿って延びる空所734に高温ガスが供給されるため、浄化空気が外気から隔離される結果、外気による浄化空気の冷却が抑制される。また、空所734は第1断熱部材731及び第2断熱部材733の間に介在するよう形成されているため、空所734を流れる高温ガスの低温化が抑制される。これにより、浄化空気の低温化、それに伴う内部729の高温ガスの低温化がより抑制されるため、浄化空気及び高温ガスのリサイクルをより効率化できる。
 なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
[リサイクルシステム制御装置]
 次に、リサイクルシステム制御装置800について説明する。
 図14は、リサイクルシステム制御装置800の構成を示す図である。
 リサイクルシステム制御装置800は、上述したように、リサイクルシステム130によりリサイクルされるリサイクルガス(浄化空気及び高温ガス)量を制御する。
 リサイクルシステム制御装置800は、上述のリサイクルシステム130によりリサイクルされる浄化空気を導入する導入口860を有する静圧調整室850と、塗装システム110へ新鮮な空気を供給する新鮮空気供給機構としてのエアーダンパ装置810と、静圧調整室850内の高温ガス濃度を計測する高温ガス濃度センサとしてのCOセンサ820と、このCOセンサ820により計測された高温ガス濃度に基づいて新鮮空気供給機構を駆動させて静圧調整室850内の圧力を調整することにより、塗装システム110へ供給される新鮮空気量、リサイクルされる浄化空気量及び高温ガス量を制御するリサイクル制御機構としてのECU830(図示せず)と、を備える。
 エアーダンパ装置810は、モータ812と、このモータ812により開度の調整が可能な複数の多翼ダンパ811と、を備える。ECU830からの制御信号により、多翼ダンパ811の開度が調整される。
 ECU830はCOセンサ820と接続されており、COセンサ820の検出信号はECU830に供給される。ECU830は、COセンサ820からの入力信号波形を整形し、電圧レベルを所定のレベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路と、中央演算処理ユニット(以下、CPUという)とを備える。この他、ECU830は、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路と、エアーダンパ装置810に制御信号を出力する出力回路と、を備える。
 また、静圧調整室850内には、導入された新鮮空気と浄化空気とを暖気するガスバーナ840と、隔壁フィルタ871、872と、空気を塗装システム110に導くための給気ファン880、及び給気路891、892を備える。
 以上のリサイクルシステム制御装置800の動作について説明する。
 先ず、上述のリサイクルシステム130により、浄化空気が導入口860から静圧調整室850内に導入される。静圧調整室850内の高温ガス濃度は、COセンサ820により検出され、その検出信号はECU830に供給される。次いで、ECU830からエアーダンパ装置810に制御信号が出力され、検出された高温ガス濃度に基づいて、多翼ダンパ811の開度が調整される。
 多翼ダンパ811が全開されると、静圧調整室850内に新鮮空気が大量に導入されて静圧調整室850内の負圧が低くなるため、リサイクルシステム130によりリサイクルされる浄化空気量は大幅に減少する。逆に、多翼ダンパ811が全閉されると、静圧調整室850内の負圧が高くなるため、100%リサイクル状態となる。
 このため、COセンサ820により検出された高温ガス濃度が設定値を超えたときには、多翼ダンパ811の開度を大きくして新鮮空気の導入量を増加させることにより、静圧調整室850内の負圧を低くして、リサイクルされる浄化空気量及び高温ガス量を減少させることができる。一方、COセンサ820により検出された高温ガス濃度が設定値未満であったときには、多翼ダンパ811の開度を小さくして新鮮空気の導入量を減少させることにより、静圧調整室850内の負圧を大きくして、リサイクルされる浄化空気量及び高温ガス量を増加させることができる。
 エアーダンパ装置810から導入された新鮮空気と、導入口860から導入された浄化空気は、静圧調整室850内で混合され、ガスバーナ840により暖められる。ガスバーナ840により暖められた空気は、隔壁フィルタ871、872を通過した後、給気ファン880により、給気路891、892を通じて塗装システム110へと導かれる。
 以上のリサイクルシステム制御装置800によれば、以下のような効果が奏される。
 塗装により生ずる排気(VOC)を浄化してリサイクルすることが可能な塗装設備100のリサイクルシステム制御装置800を、リサイクルシステム130によりリサイクルされる浄化空気を導入する導入口860を有する静圧調整室850と、塗装システム110へ新鮮な空気を供給する新鮮空気供給機構と、静圧調整室850内の高温ガス濃度を計測する高温ガス濃度センサとしてのCOセンサ820と、COセンサ820により計測された高温ガス濃度に基づいて新鮮空気供給機構を駆動させて静圧調整室850内の圧力を調整することにより、塗装システム110へ供給される新鮮空気量、リサイクルされる浄化空気量及び高温ガス量を制御するリサイクル制御機構と、で構成した。
 これにより、塗装により生ずる排気(VOC)を浄化してリサイクルすることが可能な塗装設備100において、静圧調整室850内の高温ガス濃度に応じてリサイクルガス(浄化空気及び高温ガス)量を制御することが可能となった。ひいては、安全且つ安定的な塗装設備100のリサイクル運転が可能となった。
 また、新鮮空気供給機構を、開度の調整が可能なエアーダンパ装置810で構成した。これにより、COセンサにより計測された高温ガス濃度に基づいて、エアーダンパ装置810の開度が調整され、塗装システム110へ供給される新鮮空気量及びリサイクルされる浄化空気量及び高温ガス量を、容易且つ確実に制御することが可能となった。
 なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 例えば、本実施形態では、新鮮空気供給機構に相当するエアーダンパ装置810として、多翼ダンパ811を用いたが、回転式のダンパ等を用いてもよい。
 また、本実施形態では、本発明を、自動車の車体に塗装を施す塗装設備100に適用したが、これに限らない。即ち、本発明を、冷蔵庫や洗濯機等の家電に塗装を施す塗装設備に適用してもよく、また、紙等の媒体にインクを転写する印刷設備に適用してもよい。
 100  塗装設備
 110  塗装システム
 111  塗装ゾーン(所定ゾーン)
 120  VOC除去システム
 130  リサイクルシステム
 200  吸着装置
 300  蓄熱燃焼装置
 400  フィルタ装置
 410  排気導入部
 420  排気導出部
 430  フィルタ
 440  ローラ
 450  第1洗浄部
 460  第2洗浄部
 500  活性炭フィルタ装置
 510  フィルタ装置本体
 520  筐体
 521  第1本体部
 522  第2本体部
 523  第3本体部
 530  活性炭カートリッジ
 531  調節機構
 540  仕切り板
 590  流路
 610  第1ダンパ装置
 620  第2ダンパ装置
 611  開閉弁
 612  排気弁
 613  切換手段
 723  第2主ダクト
 735  第1主ダクト
 720  内管
 726  第2排気ダクト
 736  第1排気ダクト
 730  外管
 800  リサイクルシステム制御装置
 820  COセンサ
 850  静圧調整室
 860  導入口

Claims (15)

  1.  揮発性有機化合物を含む排気を排出する所定ゾーンと、
     前記所定ゾーンから排出された排気中の揮発性有機化合物を吸着する吸着装置と、
     前記吸着装置に吸着された揮発性有機化合物を、前記吸着装置から離脱させて燃焼装置の燃焼燃料とするとともに、前記吸着装置を通過して浄化された浄化空気を前記所定ゾーンへ再び導く浄化空気リサイクル装置と、を備えることを特徴とする排気リサイクルシステム。
  2.  前記吸着装置は、揮発性有機化合物を吸着する吸着部と、吸着した揮発性有機化合物を離脱させる離脱部と、前記吸着部と前記離脱部との切替えが可能な切替え機構と、を備え、
     前記浄化空気リサイクル装置は、前記燃焼装置で揮発性有機化合物を燃焼除去する際に生じる高温ガスを前記離脱部に供給することにより、前記吸着装置に吸着された揮発性有機化合物を離脱させることを特徴とする請求項1記載の排気リサイクルシステム。
  3.  前記排気リサイクルシステムは、前記燃焼装置で揮発性有機化合物を燃焼除去する際に生じる高温ガスを、前記所定ゾーンへ導いてリサイクルする高温ガスリサイクル装置を更に備えることを特徴とする請求項1又は2記載の排気リサイクルシステム。
  4.  前記浄化空気リサイクル装置は、
     前記浄化空気を前記所定ゾーンに導いてリサイクルするための第1主ダクトと、
     前記第1主ダクトから分岐して前記浄化空気を大気に放出するための第1排気ダクトと、
     前記第1主ダクトと前記第1排気ダクトとの分岐部に設けられ、第1弁切換装置を備える第1ダンパ装置と、を備えることを特徴とする請求項3記載の排気リサイクルシステム。
  5.  前記第1弁切換装置は、前記第1主ダクトの流路を開閉する開閉弁と、前記第1排気ダクトの流路を開閉する排気弁と、前記開閉弁が前記第1主ダクトの流路を閉じているときは前記排気弁が前記第1排気ダクトの流路を開き、前記開閉弁が前記第1主ダクトの流路を開いているときは前記排気弁が前記第1排気ダクトの流路を閉じる切換手段と、を備え、
     前記切換手段は、前記浄化空気中の揮発性有機化合物の濃度が検出されて作動するとともに、前記燃焼装置から排出される前記高温ガスの温度が検出されて作動することを特徴とする請求項4記載の排気リサイクルシステム。
  6.  前記高温ガスリサイクル装置は、
     前記高温ガスを前記所定ゾーンに導いてリサイクルするための第2主ダクトと、
     前記第2主ダクトから分岐して前記高温ガスを大気に放出するための第2排気ダクトと、
     前記第2主ダクトと前記第2排気ダクトとの分岐部に設けられ、第2弁切換装置を備える第2ダンパ装置と、を備えることを特徴とする請求項3から5いずれか記載の排気リサイクルシステム。
  7.  前記第2弁切換装置は、前記第2主ダクトの流路を開閉する開閉弁と、前記第2排気ダクトの流路を開閉する排気弁と、前記開閉弁が前記第2主ダクトの流路を閉じているときは前記排気弁が前記第2排気ダクトの流路を開き、前記開閉弁が前記第2主ダクトの流路を開いているときは前記排気弁が前記第2排気ダクトの流路を閉じる切換手段と、を備え、
     前記切換手段は、前記浄化空気中の揮発性有機化合物の濃度が検出されて作動するとともに、前記燃焼装置から排出される前記高温ガスの温度が検出されて作動することを特徴とする請求項6記載の排気リサイクルシステム。
  8.  前記排気リサイクルシステムは、前記高温ガスリサイクル装置によりリサイクルされる高温ガスが流通する内管と、この内管を隙間をあけて包囲し、前記隙間に、前記浄化空気リサイクル装置によりリサイクルされる浄化空気が流通される外管と、からなる二重管構造体を備えることを特徴とする請求項3から7いずれか記載の排気リサイクルシステム。
  9.  前記排気リサイクルシステムは排気リサイクルシステム制御装置を備え、
     前記排気リサイクルシステム制御装置は、
     前記浄化空気及び前記高温ガスが導入される静圧調整室と、
     前記静圧調整室に設けられ、前記所定ゾーンへ新鮮な空気を供給する新鮮空気供給機構と、
     前記静圧調整室に設けられ、前記静圧調整室内の高温ガス濃度を計測する高温ガス濃度センサと、
     前記高温ガス濃度センサにより計測された高温ガス濃度に基づいて、前記新鮮空気供給機構を駆動させて前記静圧調整室内の圧力を調整することにより、前記所定ゾーンへ供給される新鮮空気量及びリサイクルされる浄化空気量を制御する排気リサイクル制御機構と、を備えることを特徴とする請求項3から8いずれか記載の排気リサイクルシステム。
  10.  揮発性有機化合物が発生する所定ゾーンから排出された排気が通過するフィルタ装置本体を有し、
     前記フィルタ装置本体は、
     前記所定ゾーンから排出された排気中に含まれる揮発性化合物のうちの一部を吸着して保持すると共に、該排気中に含まれる揮発性化合物の濃度が低い場合には、吸着されて保持された揮発性化合物の一部を放出する機能を有する活性炭カートリッジを備えることを特徴とする活性炭フィルタ装置。
  11.  前記フィルタ装置本体は、前記所定ゾーンから排出された排気の流路に配置される筐体を更に備え、
     前記活性炭カートリッジは、前記筐体の内部に、高さ方向に所定間隔をあけて多段に積層配置されており、
     隣り合う2つの前記活性炭カートリッジの間には、前記排気の流れ方向に向けて下方に傾斜した複数の仕切り板がそれぞれ配置されることを特徴とする請求項10記載の活性炭フィルタ装置。
  12.  複数の前記活性炭カートリッジの底面部には、前記排気の流通量を調節する調節機構が設けられていることを特徴とする請求項10又は11記載の活性炭フィルタ装置。
  13.  前記筐体は、前記流路の幅方向中央部に、前記排気の導入方向に対して略垂直に配置される第1本体部と、
     前記第1本体部の幅方向の両端部から下流側に延び、且つ、該第1本体部に略垂直に配置される一対の第2本体部と、
     前記一対の第2本体部それぞれの先端部から外方に延び、且つ、該一対の第2本体部それぞれに略垂直に配置される一対の第3本体部と、を備えることを特徴とする請求項11記載の活性炭フィルタ装置。
  14.  前記フィルタ装置本体が所定間隔をあけて複数配置されていることを特徴とする請求項11~13のいずれかに記載の活性炭フィルタ装置。
  15.  複数の前記活性炭カートリッジは、前記筐体に着脱自在に構成されていることを特徴とする請求項11記載の活性炭フィルタ装置。
PCT/JP2009/064940 2008-08-29 2009-08-27 排気リサイクルシステム WO2010024321A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/059,846 US20110132197A1 (en) 2008-08-29 2009-08-27 Exhaust recycle system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-222772 2008-08-29
JP2008-222826 2008-08-29
JP2008222826A JP2010051935A (ja) 2008-08-29 2008-08-29 活性炭フィルタ装置
JP2008222772A JP4881925B2 (ja) 2008-08-29 2008-08-29 排気リサイクルシステム

Publications (1)

Publication Number Publication Date
WO2010024321A1 true WO2010024321A1 (ja) 2010-03-04

Family

ID=41721487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064940 WO2010024321A1 (ja) 2008-08-29 2009-08-27 排気リサイクルシステム

Country Status (2)

Country Link
US (1) US20110132197A1 (ja)
WO (1) WO2010024321A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104906905A (zh) * 2015-05-27 2015-09-16 成都市金臣环保科技有限公司 一种基于喷淋除尘和活性炭吸附除voc的涂装房
CN111059563A (zh) * 2020-01-19 2020-04-24 新疆和融热力有限公司 一种基于燃气锅炉的烟气余热深度回收节能***
CN111151324A (zh) * 2020-01-09 2020-05-15 上海雄首空气净化科技有限公司 一种气体净化实验台
CN114887479A (zh) * 2022-06-06 2022-08-12 安徽绿能技术研究院有限公司 一种常见挥发性有机废气处理方法
CN115214047A (zh) * 2022-06-16 2022-10-21 宁波信百勒智能机械制造有限公司 一种注塑车间智能除湿干燥供料***

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001234A1 (de) * 2010-01-26 2011-07-28 Dürr Systems GmbH, 74321 Anlage zum Trocknen von Karossen mit Gasturbine
DE102012003299A1 (de) * 2012-02-18 2013-08-22 Eisenmann Ag Verfahren zum Behandeln von Gegenständen und Anlage hierfür
DE202012103894U1 (de) 2012-10-11 2014-01-15 Dürr Systems GmbH Oberflächenbehandlungsvorrichtung
DE102013002041A1 (de) * 2013-02-07 2014-08-07 Eisenmann Ag Verfahren zum Betreiben einer Oberflächenbehandlungsanlage
US9500144B1 (en) * 2014-04-01 2016-11-22 Leidos, Inc. System and method for managing a volatile organic compound emission stream
US9915479B2 (en) * 2015-08-28 2018-03-13 Kumho Environment Co., Ltd. Heat storage type combustion system equipped with disk type distributor having excellent sealing
CN105999952B (zh) * 2016-06-30 2019-01-29 常州市骠马工业机器人***工程有限公司 一种喷漆室废气净化循环再利用***
TWI594803B (zh) * 2016-07-22 2017-08-11 Jg Environmental Technology Co Ltd Gas circulation system and gas circulation method applied in drying room of coating operation
CN106731472A (zh) * 2017-03-06 2017-05-31 江苏和顺环保有限公司 危废仓库废气自动化高效收集装置
DE102017105094A1 (de) * 2017-03-10 2018-09-13 Eisenmann Se Temperiervorrichtung für oberflächenbehandelte Gegenstände wie Fahrzeugteile
CN107854959A (zh) * 2017-12-07 2018-03-30 韩志军 混合型复杂工况VOCs净化工艺及装置
CN110841419A (zh) * 2019-12-30 2020-02-28 北京环都环保科技有限公司 一种有机废气的回收处理设备及回收处理方法
EP3871754A1 (en) * 2020-02-26 2021-09-01 Brofind S.p.a. Plant and method for treating an aeriform effluent
CN111905518B (zh) * 2020-08-03 2024-05-03 珠海格力电器股份有限公司 可靠性高的负压冷水机组及控制方法
CN112370934B (zh) * 2020-10-28 2022-09-27 江苏安琪尔废气净化有限公司 一种有机废气活性炭浓缩耦合rto矿化***和工艺
CN112473342A (zh) * 2020-12-08 2021-03-12 昆山工统环保科技有限公司 一种tvoc预处理装置
DE102021107533A1 (de) * 2021-03-25 2022-09-29 Dürr Systems Ag Anlage und Verfahren für die regenerative thermische Oxidation von Rohgas
CN113842734A (zh) * 2021-11-01 2021-12-28 杭州三星工艺玻璃有限公司 一种玻璃瓶生产用喷漆废气处理装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041777A (ja) * 1973-04-26 1975-04-16
JPS53135889A (en) * 1977-04-30 1978-11-27 Taikisha Ltd Treating system for exhaust gas containing harmful components
JPS551896A (en) * 1978-06-01 1980-01-09 Bobst Sa Energy recovery method in solvent evaporation system and its device
JPS6422326A (en) * 1987-03-27 1989-01-25 Amegu Fr Treating facility for waste gas containing solvent
JPH0576725A (ja) * 1991-09-26 1993-03-30 Taikisha Ltd 塗装設備の排気浄化装置
JPH05269414A (ja) * 1992-03-26 1993-10-19 Toyota Motor Corp 塗装ブースの排気処理装置
JP2002263415A (ja) * 2001-03-06 2002-09-17 Toray Ind Inc エアフィルタ濾材およびエアフィルタユニット
JP3109082U (ja) * 2004-11-29 2005-05-12 華懋科技股▲分▼ 有限公司 揮発性有機廃ガス処理装置
JP2007247922A (ja) * 2006-03-14 2007-09-27 Sintokogio Ltd 排気ガス処理システム
JP2008302348A (ja) * 2007-06-11 2008-12-18 Ooden:Kk 排ガス処理監視装置、排ガス処理装置及び排ガス処理監視方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348573A (en) * 1992-01-10 1994-09-20 County Sanitation Districts Of Los Angeles County Annular scrubber
DE10164461A1 (de) * 2001-12-21 2003-07-03 M & W Zander Facility Eng Gmbh Adsorber zur Reinigung von Rohgasen, Filtermodul mit einem solchen Adsorber, Filtereinheit mit wenigstens zwei solchen Filtermodulen und Anlage zur Außenluftaufbereitung bzw. zur Fortluftbehandlung mit solchen Filtermodulen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041777A (ja) * 1973-04-26 1975-04-16
JPS53135889A (en) * 1977-04-30 1978-11-27 Taikisha Ltd Treating system for exhaust gas containing harmful components
JPS551896A (en) * 1978-06-01 1980-01-09 Bobst Sa Energy recovery method in solvent evaporation system and its device
JPS6422326A (en) * 1987-03-27 1989-01-25 Amegu Fr Treating facility for waste gas containing solvent
JPH0576725A (ja) * 1991-09-26 1993-03-30 Taikisha Ltd 塗装設備の排気浄化装置
JPH05269414A (ja) * 1992-03-26 1993-10-19 Toyota Motor Corp 塗装ブースの排気処理装置
JP2002263415A (ja) * 2001-03-06 2002-09-17 Toray Ind Inc エアフィルタ濾材およびエアフィルタユニット
JP3109082U (ja) * 2004-11-29 2005-05-12 華懋科技股▲分▼ 有限公司 揮発性有機廃ガス処理装置
JP2007247922A (ja) * 2006-03-14 2007-09-27 Sintokogio Ltd 排気ガス処理システム
JP2008302348A (ja) * 2007-06-11 2008-12-18 Ooden:Kk 排ガス処理監視装置、排ガス処理装置及び排ガス処理監視方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104906905A (zh) * 2015-05-27 2015-09-16 成都市金臣环保科技有限公司 一种基于喷淋除尘和活性炭吸附除voc的涂装房
CN111151324A (zh) * 2020-01-09 2020-05-15 上海雄首空气净化科技有限公司 一种气体净化实验台
CN111059563A (zh) * 2020-01-19 2020-04-24 新疆和融热力有限公司 一种基于燃气锅炉的烟气余热深度回收节能***
CN114887479A (zh) * 2022-06-06 2022-08-12 安徽绿能技术研究院有限公司 一种常见挥发性有机废气处理方法
CN115214047A (zh) * 2022-06-16 2022-10-21 宁波信百勒智能机械制造有限公司 一种注塑车间智能除湿干燥供料***
CN115214047B (zh) * 2022-06-16 2023-12-15 宁波信百勒智能机械制造有限公司 一种注塑车间智能除湿干燥供料***

Also Published As

Publication number Publication date
US20110132197A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2010024321A1 (ja) 排気リサイクルシステム
JP5744488B2 (ja) 排ガス処理装置
CN101596390A (zh) 空气净化装置
JP4010640B2 (ja) ガス浄化方法および装置
KR100603810B1 (ko) 도장설비용 휘발성 유기화합물 처리장치
JPH0775714A (ja) 有機溶剤蒸気吸着装置
JP6621810B2 (ja) 処理排気から不純物を分離するための方法および再生式分離装置
CN108939821A (zh) 一种沸石转轮吸附浓缩装置
JP5973249B2 (ja) 有機溶剤含有ガス処理システム
JP4881925B2 (ja) 排気リサイクルシステム
KR100690441B1 (ko) 휘발성 유기화합물 농축 촉매 연소 시스템 및 이를 위한 농축 뱅크
CN102046212A (zh) 空气净化设备
KR100490140B1 (ko) 도장설비용 휘발성 유기화합물 처리장치
US7582139B2 (en) Method for processing organic solvent-containing air
KR101887478B1 (ko) Voc 제거 시스템
CN107913551A (zh) 用于去除颗粒污染物或气体污染物的可交换吸附脱附装置
KR20070017084A (ko) 휘발성 유기화합물 농축 촉매 연소 시스템 및 방법
KR20050107323A (ko) 흡착농축 및 역기류식, 열풍식 탈착 촉매 산화장치
JP4875675B2 (ja) 排気リサイクルシステム
KR102325207B1 (ko) VOCs의 효율적 처리가 가능한 자동차 도장 시설
KR101404817B1 (ko) 로터를 이용한 배출가스 처리장치
CN209123625U (zh) 一种沸石转轮吸附浓缩装置
KR20110105444A (ko) 배기가스 및 활성탄 재생시 발생하는 폐가스를 재활용하는 자동차용 도장 장치
KR200280005Y1 (ko) 도장부스용 휘발성 유기화합물 처리장치
CN206081963U (zh) 新型有机废气浓缩装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13059846

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809971

Country of ref document: EP

Kind code of ref document: A1