WO2010023921A1 - 半導体光素子アレイおよびその製造方法 - Google Patents

半導体光素子アレイおよびその製造方法 Download PDF

Info

Publication number
WO2010023921A1
WO2010023921A1 PCT/JP2009/004173 JP2009004173W WO2010023921A1 WO 2010023921 A1 WO2010023921 A1 WO 2010023921A1 JP 2009004173 W JP2009004173 W JP 2009004173W WO 2010023921 A1 WO2010023921 A1 WO 2010023921A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor optical
fine columnar
optical device
semiconductor
device array
Prior art date
Application number
PCT/JP2009/004173
Other languages
English (en)
French (fr)
Inventor
岸野克巳
菊池昭彦
関口寛人
Original Assignee
学校法人上智学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人上智学院 filed Critical 学校法人上智学院
Priority to US13/061,425 priority Critical patent/US9224595B2/en
Priority to JP2010526554A priority patent/JP5547076B2/ja
Priority to EP09809577.1A priority patent/EP2333847B1/en
Priority to CN200980141161.XA priority patent/CN102187479B/zh
Publication of WO2010023921A1 publication Critical patent/WO2010023921A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/3203Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth on non-planar substrates to create thickness or compositional variations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a semiconductor optical device array and a manufacturing method thereof.
  • group III nitride semiconductors such as gallium nitride (GaN) have attracted attention as semiconductor materials that can realize semiconductor light emitting devices such as light emitting diodes and laser diodes that can emit high-quality short-wavelength light emission.
  • the semiconductor light emitting device is a group III nitride semiconductor on a substrate using a crystal growth technique such as metal organic chemical vapor deposition (MOCVD) method or molecular beam epitaxy (MBE) method. It is produced by forming a laminated structure consisting of
  • Crystal growth techniques such as MOCVD and MBE have good controllability in the stacking direction when generating a stacked structure.
  • MOCVD and MBE have good controllability in the stacking direction when generating a stacked structure.
  • Crystal processing techniques are roughly classified into a top-down type and a bottom-down type.
  • the top-down type is a technique for forming a structure by processing a crystal after crystal growth
  • the bottom-up type is for processing a base substrate in advance before crystal growth, and placing a crystal on the base substrate. It is a technique for forming a structure simultaneously with crystal growth by growing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-108924 discloses a method of forming nanometer-scale fine columnar crystals (nanocolumns) on a substrate using a bottom-up type process. In this method, a large number of island-like Fe grains are formed on a spinel substrate, and GaN nanocolumns are grown above the substrate from each Fe grain.
  • Prior art documents concerning nanocolumn formation methods include, for example, Non-Patent Document 1 (M. Yoshizawa et al., Jpn. J. Appl. Phys., Vol.36, No.4B (1997). pp.L459-L462) and Non-Patent Document 2 (H. Sekiguchi et al., Journal of Crystal Growth, 300 (2007) pp.259-262).
  • Each of the GaN nanocolumns formed by the method disclosed in Patent Document 1 has a light emitting structure in which an n-type layer, a light emitting layer, and a p-type layer are stacked.
  • a semiconductor light emitting device is constituted by an assembly of these GaN nanocolumns.
  • each GaN nanocolumn is formed with island-like Fe grains on the substrate as nuclei, the position and shape of the GaN nanocolumns are likely to vary, and it is difficult to regularly arrange the GaN nanocolumns. Such variations can cause variations in the characteristics of the semiconductor light emitting device. For example, there is a problem that the emission wavelength of the GaN nanocolumns varies and a desired emission color cannot be obtained.
  • the present invention provides a semiconductor optical device array having a structure capable of controlling the emission wavelength or light absorption wavelength of a fine columnar crystal by controlling the position and shape of the fine columnar crystal formed on a substrate with high accuracy, and The manufacturing method is provided.
  • the present inventors relate to position control and shape control of nanometer order fine columnar crystals (called “nanocolumns”, “nanorods” or “nanopillars”) made of group III nitride semiconductors, and a mask having a plurality of openings. After forming the pattern on the substrate, attention was paid to the step of selectively growing fine columnar crystals from these openings. The present inventors have intensively studied this process and found that the emission wavelength or light absorption wavelength of the fine columnar crystal can be controlled, and have completed the present invention.
  • a semiconductor substrate having a main surface on which a plurality of recesses are formed, and a plurality of openings formed on the main surface of the semiconductor substrate and provided immediately above the plurality of recesses, respectively.
  • a plurality of fine columnar crystals made of a group III nitride semiconductor grown from above the plurality of recesses through the plurality of openings toward the upper side of the mask pattern, and on the plurality of fine columnar crystals.
  • a semiconductor optical device array comprising an active layer or a light absorbing layer grown and a semiconductor layer covering the active layer or the light absorbing layer.
  • the semiconductor optical device array of the present invention includes a plurality of fine columnar crystals made of a group III nitride semiconductor grown from a recess of a semiconductor substrate to an upper portion of the mask pattern through an opening of the mask pattern.
  • the diameter of the fine columnar crystal can be controlled, and a semiconductor optical element array having a desired emission wavelength or absorption wavelength can be obtained.
  • the peak wavelength of the emission wavelength can be determined so as to shift to the longer wavelength side as the diameter of each fine columnar crystal is larger, and to shift to the shorter wavelength side as the diameter of each fine columnar crystal is smaller.
  • the fine columnar crystal preferably has a diameter of 10 nm or more and 1000 nm or less.
  • a method of manufacturing a semiconductor optical device array including a step and a step of forming a semiconductor layer covering the active layer or the light absorption layer can also be provided.
  • the position of the fine columnar crystal formed on the semiconductor substrate can be controlled by adjusting the position of the opening of the mask pattern.
  • the diameter of the fine columnar crystal is controlled by adjusting the diameter of the concave portion immediately below each opening, whereby the peak wavelength of light emitted from the active layer or the wavelength of light absorbed by the light absorption layer Can be set to a desired wavelength. Therefore, a semiconductor optical device array having a structure capable of controlling the emission wavelength of light or the absorption wavelength of light by controlling the position and shape of the fine columnar crystal formed on the substrate with high accuracy and a method for manufacturing the same. Can be provided.
  • FIGS. 4A to 4D are cross-sectional views schematically showing a manufacturing process of a semiconductor device of one embodiment according to the present invention.
  • FIGS. It is a figure which shows an example of the pattern of the opening part formed in a mask pattern. It is a figure which shows an example of the pattern of a nano column.
  • (A), (B) is a figure which shows roughly the cross-sectional shape along the central axis of the front-end
  • (B) is a figure which shows typically the structure of the front-end
  • (A) to (F) are diagrams showing SEM images in a top view of nanocolumn groups regularly arranged in a triangular lattice shape.
  • FIG 20 is a graph showing measurement results of light intensity distribution with respect to PL emission wavelength of the nanocolumn group in FIGS. 19A to 19F. It is a graph which shows the relationship between a column period and the light emission peak wavelength of the light intensity distribution of FIG. It is a figure which shows the SEM image in the top view of the nanocolumn group regularly arranged in the triangular lattice form.
  • (A) is a figure which shows schematically a part of structure of the semiconductor light-emitting device of 2nd Embodiment, respectively. It is a perspective view which shows a part of structure of the semiconductor light-emitting device of the 3rd Embodiment concerning this invention. It is a perspective view which shows a part of structure of the semiconductor light-emitting device of the 3rd Embodiment concerning this invention.
  • FIG. 1A to 1D are cross-sectional views schematically showing a manufacturing process of a semiconductor optical device array 10 according to an embodiment of the present invention.
  • FIG. 1D schematically shows the structure of the semiconductor optical device array 10 of the present embodiment.
  • the semiconductor optical device array 10 has a template substrate, a mask pattern 13P having a plurality of openings, and a plurality of nanocolumns 23.
  • the template substrate is a semiconductor substrate obtained by epitaxially growing a group III nitride semiconductor layer 12P on a base substrate 11 such as a sapphire substrate.
  • a buffer layer (not shown) such as gallium nitride or aluminum nitride is grown on the underlying substrate 11 by a low temperature process by metal organic chemical vapor deposition (MOCVD: Metal-Organic-Chemical-Vapor-Deposition) method or MBE method.
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • a plurality of recesses 14,..., 14 are formed on the main surface on the surface side of the group III nitride semiconductor layer 12P.
  • Mask pattern 13P is formed on the main surface of group III nitride semiconductor layer 12P, and has openings (hereinafter referred to as mask openings) immediately above the plurality of recesses 14,. ing. That is, the recess 14 is formed such that the opening is covered with the recess 14 and the recess 14 is exposed from the opening.
  • the semiconductor optical device array 10 includes a semiconductor element (nanocolumn 23) including a fine columnar crystal 20, an active layer 21 provided on the fine columnar crystal 20, and a semiconductor coating layer 22 covering the active layer 21. ).
  • the plurality of columnar crystals 20,..., 20 are made of a group III nitride semiconductor grown from the recesses 14,..., 14 of the group III nitride semiconductor layer 12P toward the upper side of the mask pattern 13P through the mask openings. .
  • An active layer 21 is formed on the fine columnar crystal 20, and a semiconductor coating layer 22 that covers the active layer 21 is further formed.
  • a nanocolumn 23 is constituted by the fine columnar crystal 20, the active layer 21 and the semiconductor coating layer 22.
  • the fine columnar crystal 20 and the semiconductor coating layer 22 are made of a group III nitride semiconductor such as gallium nitride (GaN).
  • the fine columnar crystal 20 and the semiconductor coating layer 22 are represented by the general formula Al x Ga y In 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1).
  • a quaternary mixed crystal material or boron nitride may be used.
  • the quaternary mixed crystal material has a wide band gap of 0.63 eV to 6.2 eV at room temperature depending on the composition ratios x and y.
  • a light-emitting diode or a laser diode that covers the outside light region can be manufactured.
  • the fine columnar crystal 20 preferably has a diameter of 10 nm or more and 1000 nm or less. Especially, it is preferable that it is 700 nm or less, Furthermore, 650 nm or less, More preferably, it is 600 nm or less. If the thickness is 700 nm or less, particularly 600 nm or less, the occurrence of threading dislocations can be easily suppressed.
  • the diameter of the fine columnar crystal 20 is the diameter of the columnar portion 201 exposed from the mask opening.
  • the diameter of the columnar part 201 is the diameter when the columnar part 201 is cylindrical.
  • the columnar part 201 passes through the center of gravity (plane center) when viewed in plan from the substrate surface side of the semiconductor substrate, and between the intersections among the straight lines intersecting the columnar part 201 at two points. The length of the straight line with the longest distance.
  • the fine columnar crystal 20 includes a columnar portion 201 and a facet structure 202 provided at the tip of the columnar portion 201.
  • the shape of the columnar part 201 is not particularly limited, but may be, for example, a cylindrical shape, a quadrangular column shape, a hexagonal column shape, or the like.
  • the fine columnar crystal 20 is preferably made of a material having a crystal structure of hexagonal crystal from the viewpoint of manufacturing stability.
  • the active layer 21 is provided so as to cover the facet structure 202 of the fine columnar crystal 20.
  • the active layer 21 is made of, for example, InGaN, GaN, AlGaN, AlInGaN, InGaAsN, or InN.
  • the active layer 21 includes, for example, InGaN / GaN (barrier layer: InGaN, well layer: GaN), In x Ga 1-x N / In y Ga 1-y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), GaN / AlGaN (barrier layer: AlGaN, well layer: GaN), or Al x Ga 1-x N / Al y Ga 1-y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) It is only necessary to have a multiple quantum well (MQW) structure or a single quantum well (SQW) structure.
  • the quantum well structure includes a quantum well layer and a barrier layer sandwiching the quantum well layer. The band gap of the barrier layer is larger than that of the quantum well layer.
  • the semiconductor coating layer 22 is provided on the active layer 21 and completely covers the active layer 21.
  • the peak wavelength of light emitted from the active layer 21 can be set to a wavelength corresponding to the diameter ⁇ of the fine columnar crystal 20 immediately before the active layer 21 is formed.
  • the peak wavelength of the light emitted from the active layer 21 shifts to the longer wavelength side as the diameter ⁇ of each fine columnar crystal 20 is larger, and shifts to the shorter wavelength side as the diameter ⁇ of each fine columnar crystal 20 is smaller. It is possible to determine. That is, the peak wavelength of light emitted from the active layer 21 on the fine columnar crystal 20 having a large diameter ⁇ is longer than the peak wavelength of light emitted from the active layer 21 on the fine columnar crystal 20 having a small diameter ⁇ . It is.
  • a desired emission wavelength can be obtained by controlling the diameter ⁇ of the fine columnar crystal 20.
  • the diameter ⁇ of the fine columnar crystal 20 is set to a desired value by adjusting the diameter ⁇ (FIG. 1C) of each recess 14 formed in the group III nitride semiconductor layer 12P of the template substrate. can do. Since the diameter ⁇ of the recess 14 depends on the size of the mask opening, if the size of the mask opening is determined in advance, the diameter ⁇ corresponding to this size can be obtained.
  • the peak wavelength of the light emitted from the active layer 21 can be set to a wavelength according to the surface area of the tip (facet structure 202) of the fine columnar crystal 20 of each nanocolumn 23.
  • the peak wavelength of the light emitted from the active layer 21 can be determined so that it shifts to the longer wavelength side as the surface area of the facet structure is larger, and shifts to the shorter wavelength side as the surface area of the facet structure is smaller. That is, the peak wavelength of light emitted from the active layer 21 on the fine columnar crystal 20 having a large surface area of the facet structure is the peak wavelength of light emitted from the active layer 21 on the fine columnar crystal 20 having a small surface area of the facet structure. Longer wavelength. Therefore, it is possible to obtain a desired emission wavelength by controlling the surface area of the facet structure at the tip of the fine columnar crystal 20.
  • the openings 13g,..., 13g formed in the mask pattern 13P are periodically arranged in the in-plane direction of the mask pattern 13P.
  • a region having a high arrangement density of the plurality of openings and a region having a low arrangement density of the plurality of openings are formed in the mask pattern, a plurality of fine patterns in the region having a high arrangement density of the openings are formed.
  • the peak wavelength of light emitted from the active layer 21 on the columnar crystal 20 is longer than the peak wavelength of light emitted from the active layer 21 on the plurality of fine columnar crystals 20 in the region where the arrangement density of the openings is low. Wavelength.
  • the peak wavelength of the light emitted from the active layer 21 shifts to the longer wavelength side as the in-plane density of the fine columnar crystals 20,..., 20 increases, and the in-plane density of the fine columnar crystals 20,. It can be determined that the lower the value is, the shorter the wavelength is shifted.
  • the in-plane density increases as the spatial period of the fine columnar crystals 20,... 20 decreases, or increases as the diameter of the fine columnar crystal 20 increases.
  • a buffer layer such as gallium nitride or aluminum nitride is grown on the base substrate 11 by a low temperature process by MOCVD or MBE, and a group III nitride such as gallium nitride or aluminum nitride is formed on the buffer layer.
  • the physical semiconductor layer 12 is grown (FIG. 1A).
  • a template substrate including the substrate 11 and the group III nitride semiconductor layer 12 is manufactured.
  • a metal mask layer 13 containing titanium (Ti) is formed in a predetermined region of the main surface of the template substrate (FIG. 1B).
  • the metal mask layer 13 may be a natural oxide film of titanium or a titanium oxide film.
  • the constituent material of the metal mask layer 13 is preferably titanium in that the fine columnar crystals 20 are selectively grown.
  • the material is not limited to this, and titanium (Ti), tantalum (Ta), iron (Fe), nickel ( It may include one or more metals selected from the group consisting of Ni), platinum (Pt), gold (Au), cobalt (Co), tungsten (W), and molybdenum (Mo).
  • the metal mask layer 13 is patterned to form a mask pattern 13P having a plurality of openings exposing the surface of the group III nitride semiconductor layer 12P, as shown in FIG.
  • This patterning can be performed by a lithography process. That is, a mask pattern 13P can be formed by forming a resist pattern on the metal mask layer 13 and executing etching using the resist pattern as an etching mask. Alternatively, the mask pattern 13P can be formed by irradiating the metal mask layer 13 with a predetermined dose amount (irradiation ion amount per unit area) using a FIB (Focused Ion Beam) method.
  • FIB Fluorused Ion Beam
  • the top view shape of the opening of the mask pattern 13P (that is, the top view shape of the concave portion 14) is not particularly limited, and in addition to the square shape shown in FIG. But you can.
  • the fine columnar crystal 20, the active layer 21 and the semiconductor coating layer 22 are continuously grown from the plurality of recesses 14 through the mask openings to the upper side of the mask pattern 13P by MOCVD or MBE (FIG. 1D )).
  • the fine columnar crystal 20 grows above the mask pattern 13P and at the same time grows in the lateral direction along the in-plane direction of the template substrate. Therefore, the diameter ⁇ of the nanocolumn 23 is larger than the diameter ⁇ of the recess 14.
  • the semiconductor coating layer 22 is formed so as to completely cover the active layer 21, the active layer 21 does not have an exposed portion to the external space. In other words, the active layer 21 is completely embedded in the tip of the nanocolumn 23.
  • the fine columnar crystal 20 By reducing the mask opening diameter, the occurrence of threading dislocations at the initial growth stage of the fine columnar crystal 20 is suppressed. If the diameter is then increased by lateral growth, a relatively large diameter fine columnar crystal (for example, a diameter of 1000 nm) without threading dislocations can be obtained.
  • a method of relatively increasing the nitrogen supply amount for example, a method of using AlGaN, and the like.
  • the shape of the top view is a hexagon.
  • 4A and 4B are diagrams schematically showing a cross-sectional shape along the central axis of the tip portion of the fine columnar crystal 20.
  • the tip portion shown in FIG. 4A has a facet structure, and has an inclined surface formed of a semipolar surface 20a of a wurtzite crystal structure as a facet surface facing obliquely upward.
  • the tip has a hexagonal pyramid shape.
  • the tip portion shown in FIG. 4B also has a facet structure, but as a facet surface facing obliquely upward and a surface facing directly upward, from the semipolar surface 20a of the wurtzite crystal structure. And a flat polar surface 20b.
  • the facet structure is a polyhedron structure having a facet surface located obliquely with respect to the horizontal plane of the base substrate 11 as a side surface.
  • the diameter of the fine columnar crystal 20 is small, a tip portion having a hexagonal pyramid shape as shown in FIG. 4A is easily formed. If the diameter of the fine columnar crystal 20 is large, the tip as shown in FIG. The part is easy to be formed.
  • a flat polar surface 20b can clearly appear at the tip of the fine columnar crystal 20. Further, as the diameter of the fine columnar crystal 20 increases beyond about 300 nm, the area of the flat polar surface 20b increases.
  • the fine columnar crystal 20 is grown using the MBE method
  • the fine columnar crystal 20 is grown by introducing a source gas containing active nitrogen and group III metal generated by high frequency plasma excitation onto the surface of the template substrate.
  • the growth conditions at this time may be such that the effective columnar crystal 20 is grown by increasing the effective supply ratio of active nitrogen as compared with the group III metal.
  • the fine columnar crystal 20 made of gallium nitride (GaN) is grown, if the crystal growth temperature is set to 600 ° C. or less, the GaN crystal often grows in a growth suppression region other than the mask opening.
  • the higher the growth temperature the smaller the spatial density of the GaN crystal that grows in the growth suppression region.
  • the temperature at which GaN is not grown in the growth suppression region is 850 ° C. or more as an example, although it depends on the supply amount and ratio of the group III metal and active nitrogen.
  • MBE is desirably performed under the following conditions.
  • the temperature is appropriately selected according to the type of group III nitride semiconductor to be grown, but is in the range of 350 ° C. or higher and 1200 ° C. or lower.
  • the temperature is appropriately selected according to the type of group III nitride semiconductor to be grown, but is in the range of 350 ° C. or higher and 1200 ° C. or lower.
  • the group III nitride semiconductor fine columnar crystal 20 can be grown.
  • the region on the mask pattern 13P where the mask opening is not formed is a region where the growth of the fine columnar crystal 20 is suppressed (growth suppression region).
  • growth suppression region a region where the growth of the fine columnar crystal 20 is suppressed.
  • the surface of the metal film is irradiated with active nitrogen alone or simultaneously with the group III metal.
  • a metal having a nitride forming ability it is estimated that a metal nitride (for example, TiN, WN) is formed. Since these metal nitrides are chemically stable, that is, there are few active dangling bonds on the surface, bonding with Ga, GaN, etc. is weak. Therefore, when the growth temperature is sufficient for Ga, GaN, etc. to desorb from the surface, the supplied Ga, GaN, etc. will be desorbed before it becomes large enough to sustain crystal growth. It is thought that growth is suppressed.
  • the reason why lateral crystal growth is suppressed in the growth suppression region is that, in particular, the temperature in the growth suppression region is higher than that of the substrate surface, and GaN growth nuclei are hardly formed on the growth suppression region. Synergistic effects with points are expected.
  • the fine columnar crystal 20 formed on the surface of the template substrate and the mask pattern 13P can change depending on the material of the template substrate and the mask pattern 13P, the film thickness of the mask pattern 13P, or the growth conditions. It grows upright in a direction substantially perpendicular to the surface or the surface of the mask pattern 13P.
  • the fine columnar crystal 20 made of a group III nitride semiconductor grown by the method of this embodiment is a single crystal having a columnar structure having a diameter ⁇ in the nanometer order.
  • the diameter of the fine columnar crystal 20 is set to a size within a range of 10 nm to 1000 nm, for example.
  • the height of the fine columnar crystal 20 may vary depending on the thickness of the mask pattern 13P and the crystal growth conditions, but is, for example, in the range of 0.2 ⁇ m to 5 ⁇ m.
  • the thickness of the mask pattern 13P is not particularly limited, but is preferably in the range of 2 nm to 100 nm. However, the diameter and height of the fine columnar crystal 20 may vary depending on crystal growth conditions.
  • an active layer 21 is provided on each fine columnar crystal 20, and a semiconductor coating layer 22 is formed on the active layer 21.
  • the active layer 21 and the semiconductor coating layer 22 can be formed by the MOCVD method or the MBE method.
  • the material constituting the active layer 21 and the semiconductor coating layer 22 is also deposited on the mask pattern 13P. Further, when forming the semiconductor coating layer 22, it is preferable to grow it in the lateral direction so as to cover not only the upper surface of the active layer 21 but also the side surfaces.
  • FIG. 5 is a graph showing the relationship between the diameter (hereinafter referred to as “hole diameter”) ⁇ of the recess 14 formed in the group III nitride semiconductor layer 12P and the emission wavelength of the nanocolumn 23.
  • the manufacturing conditions of the nanocolumn 23 produced to obtain the graph of FIG. 5 are as follows.
  • a GaN layer 12P (thickness: about 3.5 ⁇ m) was grown on the (0001) surface of the sapphire substrate 11 by the MOCVD method to form a template substrate.
  • the FIB method is used to form a plurality of openings arranged in a triangular lattice pattern (space period (between the centers of the openings)).
  • 400 nm to form a mask pattern 13P.
  • a recess 14 was formed in the GaN layer 12P.
  • a GaN columnar crystal 20 (height: 2.5 ⁇ m) was grown from the concave portion 14 of the template substrate through the mask opening by the RF-MBE method at a temperature of 900 ° C. Subsequently, an active layer 21 having a multiple quantum well structure including an InGaN film (thickness: 1 nm) was formed on each fine columnar crystal 20. Subsequently, a GaN crystal semiconductor coating layer 22 (thickness: 10 nm) was formed on the active layer 21.
  • FIG. 6 shows the PL emission wavelength (unit: nm) and light intensity (unit: arbitrary unit) measured for each of the semiconductor elements having nanocolumn diameters of 166 nm, 192 nm, 203 nm, 226 nm, 242 nm, 298 nm, and 236 nm. It is a graph which shows the relationship between.
  • the manufacturing conditions of the nanocolumn 23 produced to obtain this graph are the same as the manufacturing conditions of the nanocolumn 23 produced to obtain the graph of FIG.
  • FIG. 7 is a graph showing the relationship between the nanocolumn diameter (Nanocolumn Size) and the detected peak wavelength (Peak Wavelength). It can be seen that the larger the nanocolumn diameter, the longer the peak wavelength, and the smaller the nanocolumn diameter, the shorter the peak wavelength.
  • the peak wavelength shifts to the longer wavelength side as the diameter ⁇ of the fine columnar crystal 20 just before the active layer 21 is formed, and shifts to the shorter wavelength side as the diameter ⁇ of the fine columnar crystal 20 decreases.
  • FIG. 8 shows the dose amount (Doze (cm ⁇ 2 )) and the depth (Nanohole depth (nm)) of the concave portion 14 when the concave portion (hole) 14 is formed in the template substrate using the FIB method. It is a graph which shows a relationship.
  • FIG. 9 shows the relationship between the dose (Doze (cm ⁇ 2 )) and the diameter (Nanohole size (nm)) ⁇ of the recess 14, and the dose (Doze (cm ⁇ 2 )) and the diameter of the nanocolumn 23. It is a graph which shows the relationship with (Nanocolumn size (nm)).
  • the manufacturing conditions of the nanocolumn 23 produced to obtain the graphs of FIGS. 8 and 9 are as follows.
  • a GaN layer 12P (thickness: about 3.5 ⁇ m) was grown on the (0001) surface of the sapphire substrate 11 by the MOCVD method to form a template substrate.
  • a mask pattern 13P was formed by providing a plurality of mask openings in this titanium thin film using the FIB method. Concurrently with the formation of the mask opening, a recess 14 was formed in the GaN layer 12P.
  • a GaN columnar crystal 20 (height: 2.5 ⁇ m) was grown from the concave portion 14 of the template substrate through the mask opening by the RF-MBE method at a temperature of 900 ° C. Subsequently, an active layer 21 having a multiple quantum well structure including an InGaN film (thickness: 1 nm) was formed on each fine columnar crystal 20. Subsequently, a GaN crystal semiconductor coating layer 22 (thickness: 10 nm) was formed on the active layer 21.
  • the depth of the concave portion 14 increases as the dose amount when the focused ion beam is irradiated onto the metal mask layer 13 increases. Further, as shown in the graph of FIG. 9, it can be seen that the larger the dose amount, the larger the diameter (nanohole (size) of the recess 14 and the larger the diameter (nanocolumn size) of the nanocolumn 23. Therefore, it is understood that the diameter ⁇ of the fine columnar crystal 20 increases as the diameter of the recess 14 increases.
  • FIG. 10 and 11 are diagrams showing scanning electron microscope images (SEM images) of nanocolumns 23,..., 23 having different diameters regularly arranged in a square lattice shape.
  • FIG. 10 shows an SEM image of the nanocolumns 23,..., 23 as viewed from above
  • FIG. 11 is an SEM image when the nanocolumns 23,.
  • the nanocolumn group shown in FIG. 10 and FIG. 11 was produced by individually controlling the diameters of the recesses 14.
  • FIG. 12 is a graph showing the measurement results of the spectrum of CL (cathode luminescence) light emitted from the nanocolumn 23.
  • the horizontal axis of this graph corresponds to the emission wavelength
  • the vertical axis of the graph corresponds to the CL intensity (arbitrary unit).
  • FIG. 13A shows an SEM image of the nanocolumn 23 as viewed from above
  • FIGS. 13B and 13C are top views of CL images (cathode luminescence images) having different wavelengths of 405 nm and 510 nm, respectively.
  • 14A shows SEM images obtained by imaging the nanocolumn 23 from the lateral direction
  • FIG. 14 shows the cross section CL image of the nano column 23 of (A).
  • the manufacturing conditions for the nanocolumns 23 produced to obtain FIGS. 12, 13A to 13C, and FIGS. 14A to 14D are as follows.
  • a GaN layer 12P (thickness: about 3.5 ⁇ m) was grown on the (0001) surface of the sapphire substrate 11 by the MOCVD method to form a template substrate.
  • a plurality of openings (spatial period: 400 nm) arranged in a triangular lattice shape are provided in the titanium thin film by using the FIB method.
  • a mask pattern 13P was formed. Concurrently with the formation of the mask opening, a recess 14 was formed in the GaN layer 12P.
  • a GaN columnar crystal 20 (height 1.8 ⁇ m, diameter 180 to 495 nm) was grown from the recess 14 of the template substrate through the mask opening by the RF-MBE method at a temperature of 900 ° C. Subsequently, an active layer 21 having a multiple quantum well structure including an InGaN film (thickness: 3 nm) was formed on each fine columnar crystal 20. Subsequently, a GaN crystal semiconductor coating layer 22 (thickness: 10 nm) was formed on the active layer 21.
  • the CL intensity distribution has a peak of emission from GaN and two peaks of emission from InGaN (wavelengths: 404 nm and 510 nm).
  • a CL image with a wavelength of 405 nm shown in FIG. 13B shows light emission from the entire active layer 21 of the nanocolumn 23.
  • This CL image is considered to indicate light emission from InGaN formed on the side surface (semipolar surface) 20a (FIG. 4B) of the tip of the fine columnar crystal 20.
  • a CL image with a wavelength of 510 nm shown in FIG. 13C shows light emission only from the vicinity of the top of the active layer 21 of the nanocolumn 23.
  • This CL image is considered to indicate light emission from InGaN formed on the flat surface (polar surface) 20b (FIG. 4B) at the tip of the fine columnar crystal 20.
  • a cross-sectional CL image with a wavelength of 365 nm shown in FIG. 14B shows light emission from GaN distributed throughout the nanocolumn 23.
  • a cross-sectional CL image having a wavelength of 435 nm shown in FIG. 14C shows light emission from InGaN at the entire tip of the nanocolumn 23.
  • This cross-sectional CL image is considered to mainly indicate light emission from InGaN formed on the side surface (semipolar surface) 20a (FIG. 4B) of the tip of the fine columnar crystal 20.
  • a cross-sectional CL image with a wavelength of 500 nm shown in FIG. 14D shows light emission from InGaN near the top of the nanocolumn 23.
  • This cross-sectional CL image is considered to mainly indicate light emission from InGaN formed on the flat surface (polar surface) 20 b (FIG. 4B) at the tip of the fine columnar crystal 20.
  • the InGaN formed on the side surface (semipolar surface) 20a of the tip of the fine columnar crystal 20 is formed.
  • the emission wavelength is different from the emission wavelength of InGaN formed on the flat surface (polar surface) 20b of the tip. The reason is considered as follows.
  • the InGaN crystal 21s formed on the side surface 20a of the fine columnar crystal 20 and the InGaN crystal 21t formed on the flat surface 20b can easily incorporate In into the InGaN crystal. Therefore, it is considered that the In composition ratio in the InGaN crystal 21t formed on the flat surface 20b is relatively high, and the In composition ratio in the InGaN crystal 21s formed on the side surface 20a is relatively low. For this reason, the CL spectrum (same CL spectrum as FIG. 12) shown in FIG. 15A is formed. Moreover, since the carriers are confined in the InGaN crystal 21t having a narrow band gap near the tip, the InGaN crystal 21t near the tip can form a quantum dot. This is considered to cause a difference between the emission wavelength of InGaN formed on the side surface 20a and the emission wavelength of InGaN formed on the flat surface 20b.
  • PL (photoluminescence) intensity was measured using a sample prepared to obtain the CL intensity distribution of FIG. CW (Continuous Wave) light having a wavelength of 405 nm was used as excitation light.
  • the excitation light density was 0.29 kW / cm 2 .
  • the peak wavelength of the PL intensity distribution is 486.2 nm at a low temperature condition of 4K and 486.7 nm at a high temperature condition of 300K, and the full width at half maximum (FWHM) of the PL intensity distribution is at a low temperature condition of 4K. This corresponds to 151.3 meV, and corresponds to 187.2 meV at a high temperature condition of 300K.
  • the PL integral intensity ratio between the low temperature condition and the high temperature condition that is, the internal quantum efficiency was about 77% with respect to the wavelength of 486 nm, and very good crystallinity was confirmed.
  • One reason why such a high internal quantum efficiency is realized is that the exposed portion of the active layer 21 (21s, 21t) is not exposed to the external space, and the loss of injected carriers due to non-radiative recombination is suppressed. It is done.
  • the InGaN crystals 21 s and 21 t having a narrow band gap are completely covered with GaN having a wide band gap and are embedded in the nanocolumns 23.
  • the exposed portions of the InGaN crystals 21s and 21t to the external space are eliminated, it can be considered that the formation of non-radiative recombination levels is suppressed. If there is an exposed portion, a non-radiative recombination level is formed in the band gap on the surface of the exposed portion, and light is emitted by recombination of electrons and holes through this non-radiative recombination level. Efficiency is reduced.
  • the nanocolumn 23 having the InGaN crystals 21s and 21t is mentioned here, the InGaN crystal 21t may not be provided. Even in such a nanocolumn, it has been confirmed that the emission wavelength can be controlled by the diameter of the nanocolumn. That is, it has been confirmed that the peak wavelength of light emitted from the nanocolumn active layer having a small diameter is lower than the peak wavelength of light emitted from the active layer on the nanocolumn having a large diameter.
  • FIG. 16 is a graph showing the relationship between the diameter of the nanocolumn 23 (column diameter) and the surface area of the facet structure at the tip of the nanocolumn 23 and the relationship between the column diameter and the emission peak wavelength.
  • the emission peak wavelength is a wavelength detected from the intensity distribution of PL light.
  • the symbol “ ⁇ ” indicates the measured value of the emission peak wavelength
  • the symbol “ ⁇ ” indicates the area of the flat surface (SurfaceC) of the tip of the nanocolumn 23
  • the symbol “ ⁇ ” indicates the inclined side surface of the tip of the nanocolumn 23
  • the area “SurfaceSemi” indicates the area of the flat surface of the tip of the nanocolumn 23 and the area of the inclined side surface.
  • the manufacturing conditions of the nanocolumn 23 produced to obtain the graph of FIG. 16 are as follows.
  • a GaN layer 12P (thickness: about 3.5 ⁇ m) was grown on the (0001) surface of the sapphire substrate 11 by the MOCVD method to form a template substrate.
  • a plurality of openings (spatial period: 400 nm) arranged in a triangular lattice shape are provided in the titanium thin film by using the FIB method.
  • a mask pattern 13P was formed.
  • a recess 14 was formed in the GaN layer 12P.
  • a GaN columnar crystal 20 (height: 2.5 ⁇ m) was grown from the concave portion 14 of the template substrate through the mask opening by the RF-MBE method at a temperature of 900 ° C. Subsequently, an active layer 21 having a multiple quantum well structure including an InGaN film (thickness: 1 nm) was formed on each fine columnar crystal 20. Subsequently, a GaN crystal semiconductor coating layer 22 (thickness: 10 nm) was formed on the active layer 21.
  • FIG. 16 is a graph showing the measurement results.
  • the surface area of the facet structure at the tip of the nanocolumn 23 increases.
  • the value of the emission peak wavelength monotonously increases as the column diameter increases. Therefore, the value of the emission peak wavelength increases with an increase in the total area of the facet surfaces facing upward in the tip portion of the nanocolumn 23. Since the film thickness of the active layer 21 and the film thickness of the semiconductor coating layer 22 are thin, the emission peak wavelength is substantially increased with an increase in the area of the facet surface facing upward in the tip of the fine columnar crystal 20. Can do. Therefore, it is possible to obtain a desired emission peak wavelength by controlling the area of the facet surface facing upward in the tip portion of the fine columnar crystal 20.
  • the value of the emission peak wavelength increases as the area of the inclined side surface (SurfaceSemi) at the tip of the nanocolumn 23 increases.
  • the column diameter exceeds about 260 nm, this correlation does not hold.
  • the value of the emission peak wavelength increases as the area of the flat surface (Surface C) at the tip of the nanocolumn 23 increases.
  • FIG. 17 is a graph showing a light intensity distribution (unit: arbitrary unit) regarding the PL emission wavelength of the nanocolumn 23 having a column diameter of 200 nm.
  • the solid line indicates the measurement curve when the height h of the inclined side surface of the tip of the nanocolumn 23 is 2.1 ⁇ m
  • the broken line indicates the height h of the inclined side surface of the tip of the nanocolumn 23 is 1.25 ⁇ m.
  • the measurement curves are shown respectively.
  • FIG. 18 is a graph showing the relationship between the height h and the emission peak wavelength for the same nanocolumn 23.
  • the horizontal axis of the graph in FIG. 18 corresponds to the height h
  • the vertical axis corresponds to the emission peak wavelength.
  • the manufacturing conditions of the nanocolumn 23 produced to obtain the graphs of FIGS. 17 and 18 are as follows.
  • a GaN layer 12P (thickness: about 3.5 ⁇ m) was grown on the (0001) surface of the sapphire substrate 11 by the MOCVD method to form a template substrate.
  • a plurality of openings (spatial period: 400 nm) arranged in a triangular lattice shape are provided in the titanium thin film by using the FIB method.
  • a mask pattern 13P was formed.
  • a recess 14 was formed in the GaN layer 12P.
  • a GaN columnar crystal 20 (height: 2.5 ⁇ m) was grown from the concave portion 14 of the template substrate through the mask opening by the RF-MBE method at a temperature of 900 ° C. Subsequently, an active layer 21 having a multiple quantum well structure including an InGaN film (thickness: 1 nm) was formed on each fine columnar crystal 20. Subsequently, a GaN crystal semiconductor coating layer 22 (thickness: 10 nm) was formed on the active layer 21.
  • FIG. 17 when the height h of the inclined side surface of the tip of the nanocolumn 23 is changed from 1.25 ⁇ m to 2.1 ⁇ m, the peak of the light intensity distribution is also shifted to the long wavelength side.
  • FIG. 18 also shows this tendency.
  • FIGS. 19A to 19F are views showing SEM images of the nanocolumn group regularly arranged in a triangular lattice shape in a top view.
  • 19 (A), (B), (C), (D), (E), and (F) are respectively the spatial period (distance between the centers of the fine columnar crystals 20) 400 nm, 600 nm, 800 nm, and 1 ⁇ m. , 2 ⁇ m, 4 ⁇ m.
  • the peak wavelengths of PL emission corresponding to the arrays having a spatial period of 400 nm, 600 nm, 800 nm, 1 ⁇ m, 2 ⁇ m, and 4 ⁇ m were measured as 508 nm, 500 nm, 490 nm, 480 nm, 480 nm, and 479 nm, respectively.
  • the manufacturing conditions of the nanocolumn 23 produced in order to obtain the SEM image of FIG. 19 are as follows.
  • a GaN layer 12P (thickness: about 3.5 ⁇ m) was grown on the (0001) surface of the sapphire substrate 11 by the MOCVD method to form a template substrate.
  • a plurality of mask openings (diameter of each mask opening: arranged in a triangular lattice pattern) on the titanium thin film using the FIB method. 167 nm) to form a mask pattern 13P.
  • a recess 14 was formed in the GaN layer 12P.
  • a GaN columnar crystal 20 (height 1.5 ⁇ m, diameter 190 nm) was grown from the concave portion 14 of the template substrate through the mask opening by the RF-MBE method at a temperature of 900 ° C. Subsequently, an active layer 21 having a multiple quantum well structure including an InGaN film (thickness: 3 nm) was formed on each fine columnar crystal 20. Subsequently, a GaN crystal semiconductor coating layer 22 (thickness: 10 nm) was formed on the active layer 21.
  • the peak wavelength shifts to the longer wavelength side as the spatial period (column period, arrangement density) of the nanocolumns 23,... , 23 is shifted to the shorter wavelength side as the spatial period is longer.
  • FIG. 20 is a graph showing the measurement results of the light intensity distribution (unit: arbitrary unit) related to the PL emission wavelength of the nanocolumn group in FIGS. 19 (A) to 19 (F).
  • FIG. 21 is a graph showing the relationship between the column period and the emission peak wavelength of the light intensity distribution of FIG.
  • the column diameter of each nanocolumn 23 was set to 160 nm.
  • the value of the emission peak wavelength decreases as the column period increases. If the column period is increased while the column diameter is kept constant, the in-plane density of the nanocolumns 23,..., 23 decreases, so that the emission peak wavelength decreases as the in-plane density decreases, and the emission peak wavelength increases as the in-plane density increases. become longer.
  • FIG. 22 is a view showing an SEM image of the nanocolumn group regularly arranged in a triangular lattice shape in a top view.
  • 22A, 22B, 22C, and 22D show arrangements in the case of spatial periods 242 nm, 269 nm, 298 nm, and 336 nm, respectively.
  • the peak wavelengths of PL emission corresponding to the arrangement of spatial periods 242 nm, 269 nm, 298 nm, and 336 nm were measured as 607 nm, 643 nm, 649 nm, and 650 nm, respectively.
  • the manufacturing conditions of the nanocolumns 23 produced to obtain the SEM images of FIGS. 22A to 22D are the same as those of the nanocolumns 23 produced to obtain the SEM images of FIG. 19 except for the diameter of the mask opening. The manufacturing conditions are the same.
  • the diameter of the nanocolumn 23 produced to obtain the SEM image of FIG. 22 was set so as to increase as the spatial period increased.
  • the value of the peak wavelength increases as the diameter of the nanocolumn 23 increases.
  • the in-plane density (arrangement density) of the nanocolumns 23,..., 23 increases, so that the emission peak wavelength increases with the increase of the in-plane density and Shorter.
  • the peak wavelength of light emitted from the active layer 21 is the fine columnar crystal 20,.
  • the semiconductor optical device array 10 can control the position of the fine columnar crystal 20 formed on the template substrate by adjusting the position of the opening of the mask pattern 13P. it can.
  • the diameter of the fine columnar crystal 20 can be controlled by adjusting the diameter of the concave portion 14 immediately below each opening, and thereby the peak wavelength of light emitted from the active layer 21 can be set to a desired wavelength. It is. Further, the diameter of each fine columnar crystal 20 can be increased to shift the peak wavelength to the longer wavelength side, and the diameter of each fine columnar crystal 20 can be decreased to shift the peak wavelength to the shorter wavelength side.
  • the peak wavelength of the light emitted from the active layer 21 can be set to a desired wavelength.
  • the surface area of the facet structure can be increased to shift the peak wavelength to the longer wavelength side, and the surface area of the facet structure can be decreased to shift the peak wavelength to the shorter wavelength side.
  • the peak wavelength is shifted to the long wavelength side, and the in-plane density of the fine columnar crystals 20,.
  • the in-plane density is controlled by adjusting the spatial period of the fine columnar crystals 20,..., 20 (that is, the spatial period of the openings formed in the mask pattern 13P), or the diameter of each fine columnar crystal 20 (that is, the mask). It can be performed with high accuracy by adjusting the diameter of the opening formed in the pattern 13P.
  • FIGS. 23A and 23B are views each schematically showing a part of the configuration of the semiconductor light emitting device of the second embodiment.
  • the structures shown in FIGS. 23A and 23B include the structure of the semiconductor optical device array 10 of the first embodiment.
  • the group III nitride semiconductor layer 12P formed on the base substrate 11 is an n-type semiconductor layer into which an n-type impurity is introduced.
  • Mask pattern 13P is connected to an n-side electrode (not shown).
  • a fine columnar crystal 20 including an n-type cladding layer such as n-type AlGaN, an active layer 21, and a p-type semiconductor layer 24 including a p-type cladding layer such as p-type AlGaN.
  • a nanocolumn consisting of An insulating film 30 such as silicon oxide is embedded in the space between these nanocolumns.
  • a p-side electrode 31 such as a Ni / Au multilayer film or ITO (Indium Tin Oxide) is formed so as to be electrically connected to the p-type semiconductor layers 24,.
  • the active layer 21 emits light when the holes injected from the p-side electrode and the electrons from the n-side electrode recombine in the active layer 21.
  • the fine columnar crystal 20 is composed of an n-type semiconductor layer, and may have a three-layer structure of GaN / AlGaN / GaN, for example.
  • the group III nitride semiconductor layer 12P formed on the base substrate 11 is an n-type semiconductor layer into which an n-type impurity is introduced.
  • Mask pattern 13P is connected to an n-side electrode (not shown).
  • a nanocolumn 23 is formed.
  • the p-type semiconductor layer 25 is continuously formed in the lateral direction by promoting the crystal growth in the lateral direction.
  • a p-side electrode 32 such as a Ni / Au multilayer film or ITO (Indium Tin Oxide) is formed so as to be electrically connected to the p-type semiconductor layer 25.
  • the active layer 21 emits light when the holes injected from the p-side electrode and the electrons from the n-side electrode recombine in the active layer 21.
  • an optical resonator for confining light emitted from the active layer 21 may be formed.
  • multilayer reflectors can be formed above and below the active layer 21, respectively, and an optical resonator can be configured with these multilayer reflectors.
  • An optical waveguide can also be formed in the p-type semiconductor layer 25.
  • the structure in FIG. 23A or FIG. 23B can be modified into a photoelectric conversion element such as a solar cell.
  • a pin structure (light absorption structure) may be formed instead of the active layer 21.
  • the i-type semiconductor layer can have a quantum dot structure. Conversion efficiency can be improved by laminating a plurality of quantum dot layers via an intermediate layer to form an i-type semiconductor layer.
  • the pin structure can be adapted to a desired absorption wavelength by controlling the diameter of the fine columnar crystal 20, the in-plane density of the fine columnar crystals 20, ..., or the tip shape of the fine columnar crystal 20. It is.
  • FIGS. 24 and 25 are perspective views showing a part of the configuration of the semiconductor light emitting device of the third embodiment.
  • the semiconductor light emitting device of the third embodiment includes the structure of the semiconductor optical device array 10 of the first embodiment.
  • the group III nitride semiconductor layer 12P formed on the base substrate 11 is an n-type semiconductor layer into which an n-type impurity is introduced.
  • An n-side electrode 40 is formed on the mask pattern 13P.
  • a plurality of types of nanocolumn groups 23R, 23G, and 23B having different emission wavelengths are formed on the group III nitride semiconductor layer 12P.
  • the nanocolumns constituting the nanocolumn groups 23R, 23G, and 23B include an n-type (first conductivity type) fine columnar crystal 20 including an n-type cladding layer such as n-type AlGaN, as shown in FIG.
  • each of the nanocolumn groups 23R, 23G, and 23B has a crystal structure that emits light of wavelengths of three primary colors of R (red), G (green), and B (blue), respectively.
  • p-type semiconductor layers 25R, 25G, and 25B are formed on the nanocolumn groups 23R, 23G, and 23B, respectively. Then, p-side electrodes 42R, 42G, and 42B are connected to the p-type semiconductor layers 25R, 25G, and 25B, respectively.
  • the p-side electrodes 42R, 42G, and 42B may be made of a Ni / Au multilayer film or ITO (Indium Tin Oxide).
  • the active layer can emit light by recombining holes injected from the p-side electrodes 42R, 42G, and 42B and electrons from the n-side electrode in the active layers of the nanocolumn groups 23R, 23G, and 23B.
  • an optical resonator for confining light emitted from the active layer may be formed.
  • multilayer reflectors can be formed above and below the active layer, respectively, and an optical resonator can be configured with these multilayer reflectors.
  • the semiconductor light emitting device of the third embodiment can integrate light emitters that emit light of three primary colors on the same substrate 11. Furthermore, the light intensity distribution is controlled by individually adjusting the in-plane density of the nanocolumn groups 23R, 23G, and 23B that emit light of R, G, and B, respectively, and the entire spectrum distribution is changed to the spectrum distribution of sunlight. It is possible to approximate. As a result, an ideal white light emitting diode can be produced.
  • a sapphire substrate is used as the base substrate 11, but the present invention is not limited to this.
  • a silicon substrate or a SiC substrate may be used.
  • a group III nitride semiconductor substrate such as a gallium nitride substrate may be used.
  • the semiconductor optical element array according to the present invention can be applied in the fields of electronic devices and optical devices. Fine columnar crystals have excellent light-emitting properties and are expected to be applied to light-emitting devices.
  • the semiconductor optical element array according to the present invention can be applied to, for example, a phosphor, a light emitting diode, a laser diode, or a photoelectric conversion element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

複数の凹部が形成された主面を有する半導体基板と、前記半導体基板の当該主面上に形成され、かつ前記複数の凹部の直上にそれぞれ複数の開口部を有するマスクパターンと、前記複数の凹部から前記複数の開口部を介して前記マスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶と、前記複数の微細柱状結晶上にそれぞれ成長した活性層と、前記各活性層を被覆する半導体層と、を備える半導体光素子アレイが提供される。

Description

半導体光素子アレイおよびその製造方法
 本発明は、半導体光素子アレイおよびその製造方法に関する。
 近年、窒化ガリウム(GaN)などのIII族窒化物半導体は、高品質の短波長発光を出力し得る発光ダイオードやレーザダイオードなどの半導体発光素子を実現できる半導体材料として注目されている。半導体発光素子は、有機金属化学気相堆積(MOCVD:Metal Organic Chemical Vapor Deposition)法や分子線エピタキシ(MBE:Molecular Beam Epitaxy)法などの結晶成長技術を用いて、基板上にIII族窒化物半導体からなる積層構造を形成することで作製される。
 MOCVDやMBEなどの公知の結晶成長技術は、積層構造を生成する際にその積層方向に良好な制御性を有している。基板の面内方向に沿った構造を形成するためには、結晶加工技術を使用して積層構造を加工する必要がある。結晶加工技術は、大別して、トップダウン型とボトムダウン型とがある。トップダウン型は、結晶成長後に結晶を加工して構造を形成する技術であり、これに対してボトムアップ型は、結晶成長前に下地基板を予め加工しておき、この下地基板上に結晶を成長させることで結晶成長と同時に構造を形成する技術である。トップダウン型のプロセスには、加工により結晶がダメージを受けやすく、特に、微細構造を形成したときにその微細構造の表面積が大きくなるという問題がある。一方、ボトムアップ型のプロセスでは、微細構造と良好な結晶品質とが共に得られやすい。
 特許文献1(特開2008-108924号公報)には、ボトムアップ型のプロセスを用いて、基板上にナノメータスケールの微細柱状結晶(ナノコラム)を形成する方法が開示されている。この方法は、スピネル基板上に多数の島状のFe粒を形成し、各Fe粒から基板の上方にGaNナノコラムを成長させるというものである。ナノコラムの形成方法に関する先行技術文献は、特許文献1の他に、たとえば、非特許文献1(M. Yoshizawa et al., Jpn. J. Appl. Phys., Vol.36, No.4B (1997) pp.L459-L462)や非特許文献2(H. Sekiguchi et al., Journal of Crystal Growth, 300 (2007) pp.259-262)が挙げられる。
特開2008-108924号公報
M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita and K. Kishino, "Growth of Self-Organized GaN Nanostructures on Al2O3 (0001) by RF-Radical Source Molecular Beam Epitaxy", Jpn. J. Appl. Phys., Vol.36, No.4B (1997) pp.L459-L462. H. Sekiguchi, T. Nakazato, A. Kikuchi and K. Kishino, "Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy", Journal of Crystal Growth, 300 (2007) pp.259-262.
 特許文献1に開示されている方法で形成されたGaNナノコラムの各々は、n型層、発光層およびp型層が積層された発光構造を有している。これらGaNナノコラムの集合体により半導体発光素子が構成される。
 しかしながら、各GaNナノコラムは、基板上の島状のFe粒を核として形成されるので、GaNナノコラムの位置および形状にバラツキが生じやすく、GaNナノコラムを規則的に配列させることが難しい。このようなバラツキは、半導体発光素子の特性のバラツキを生じさせ得る。たとえば、GaNナノコラムの発光波長にバラツキが生じて所望の発光色が得られないという問題がある。
 上記に鑑みて本発明は、基板上に形成された微細柱状結晶の位置および形状を高精度に制御して微細柱状結晶の発光波長あるいは光吸収波長を制御し得る構造を有する半導体光素子アレイおよびその製造方法を提供するものである。
 本発明者らは、III族窒化物半導体からなるナノメータオーダーの微細柱状結晶(「ナノコラム」、「ナノロッド」あるいは「ナノピラー」と呼ばれる。)の位置制御および形状制御に関し、複数の開口部を有するマスクパターンを基板上に形成した後に、これら開口部から微細柱状結晶を選択的に成長させる工程に着目した。本発明者らは、かかる工程を鋭意研究して微細柱状結晶の発光波長あるいは光吸収波長を制御できることを見出し、本発明を完成するに至った。
 本発明によれば、複数の凹部が形成された主面を有する半導体基板と、前記半導体基板の当該主面上に形成され、かつ前記複数の凹部の直上にそれぞれ設けられた複数の開口部を有するマスクパターンと、前記複数の凹部から前記複数の開口部を介して前記マスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶と、前記複数の微細柱状結晶上にそれぞれ成長した活性層または光吸収層と、前記各活性層または光吸収層を被覆する半導体層と、を備える半導体光素子アレイが提供される。
 本発明の半導体光素子アレイは、半導体基板の凹部からマスクパターンの開口部を介してマスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶を備えている。このような構成とすることで、微細柱状結晶の径を制御することができ、所望の発光波長あるいは吸収波長の半導体光素子アレイを得ることができる。
 特に、発光波長のピーク波長は、前記各微細柱状結晶の径が大きいほど長波長側にシフトし、前記各微細柱状結晶の径が小さいほど短波長側にシフトするように定めることができる。
 ここで、微細柱状結晶は、径が10nm以上、1000nm以下であることが好ましい。 
 また、本発明によれば、半導体基板上に複数の開口部を有するマスクパターンを形成する工程と、前記マスクパターンをエッチングマスクとして前記半導体基板をエッチングすることにより前記半導体基板の主面に複数の凹部を形成する工程と、各凹部から各開口部を介して前記マスクパターンの上方に向けて複数の微細柱状結晶を成長させる工程と、前記微細柱状結晶上に活性層または光吸収層を成長させる工程と、前記活性層または光吸収層を被覆する半導体層を形成する工程と、を含む半導体光素子アレイの製造方法も提供できる。
 本発明によれば、半導体基板上に形成された微細柱状結晶の位置を、マスクパターンの開口部の位置を調整することで制御することができる。また、各開口部の直下の凹部の径を調整することで微細柱状結晶の径を制御し、これにより、活性層から放出される光のピーク波長、あるいは光吸収層で吸収される光の波長を所望の波長に定めることが可能である。したがって、基板上に形成された微細柱状結晶の位置および形状を高精度に制御して微細柱状結晶の発光波長、あるいは光の吸収波長を制御し得る構造を持つ半導体光素子アレイおよびその製造方法を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
(A)~(D)は、本発明に係る一実施形態の半導体素子の製造工程を概略的に示す断面図である。 マスクパターンに形成される開口部のパターンの一例を示す図である。 ナノコラムのパターンの一例を示す図である。 (A),(B)は、微細柱状結晶の先端部の中心軸に沿った断面形状を概略的に示す図である。 テンプレート基板に形成された凹部の径とナノコラムの発光波長との間の関係を示すグラフである。 PL発光波長と光強度との間の関係を示すグラフである。 ナノコラム径(Nanocolumn Size)と検出されたピーク波長(Peak Wavelength)との関係を表すグラフである。 FIB法を用いてテンプレート基板に凹部を形成した場合のドーズ量(Doze)と凹部の深さ(Nanohole depth)との関係を示すグラフである。 ドーズ量(Doze)と凹部の径(Nanohole size)との関係を示し、ドーズ量(Doze)とナノコラムの径(Nanocolumn size)との関係を示すグラフである。 正方格子状に規則的に配列されたナノコラムの走査型電子顕微鏡像を示す図である。 正方格子状に規則的に配列されたナノコラムの走査型電子顕微鏡像を示す図である。 ナノコラムから放出されたCL(カソードルミネッセンス)光のスペクトルの測定結果を示すグラフである。 (A)は、ナノコラムの上面視からのSEM像を示し、(B),(C)は、それぞれ異なる波長のCL像(カソードルミネッセンス像)の上面視図である。 (A)は、ナノコラムを横方向から撮像したSEM像を示し、(B),(C),(D)は、それぞれ異なる波長の断面CL像を示す図である。 (A)は、図12と同じCLスペクトルを示すグラフであり、(B)は、ナノコラムの先端部の構成を模式的に示す図である。 ナノコラムの径とナノコラムの表面積との関係を示し、ナノコラムの径と発光ピーク波長との関係を示すグラフである。 ナノコラムのPL発光波長に関する光強度分布を示すグラフである。 ナノコラムの先端部の高さと発光ピーク波長との関係を示すグラフである。 (A)~(F)は、三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。 図19(A)~(F)のナノコラム群のPL発光波長に関する光強度分布の測定結果を示すグラフである。 コラム周期と図20の光強度分布の発光ピーク波長との関係を示すグラフである。 三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。 (A),(B)は、それぞれ、第2の実施形態の半導体発光素子の構成の一部を概略的に示す図である。 本発明に係る第3の実施形態の半導体発光素子の構成の一部を示す斜視図である。 本発明に係る第3の実施形態の半導体発光素子の構成の一部を示す斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 (第1の実施形態)
 図1(A)~(D)は、本発明に係る一実施形態の半導体光素子アレイ10の製造工程を概略的に示す断面図である。図1(D)には、本実施形態の半導体光素子アレイ10の構造が概略的に示されている。
 図1(D)に示されるように、半導体光素子アレイ10は、テンプレート基板、複数の開口部を有するマスクパターン13P、および複数のナノコラム23を有している。テンプレート基板は、サファイア基板などの下地基板11上にIII族窒化物半導体層12Pをエピタキシャル成長させてなる半導体基板である。たとえば、有機金属化学気相堆積(MOCVD:Metal-Organic Chemical Vapor Deposition)法やMBE法により、下地基板11上に窒化ガリウムや窒化アルミニウムなどのバッファ層(図示せず)を低温プロセスで成長させ、このバッファ層上にIII族窒化物半導体層を成長させることでテンプレート基板が形成される。
 III族窒化物半導体層12Pの表面側の主面には複数の凹部14,…,14(図1(C))が形成されている。
 マスクパターン13Pは、このIII族窒化物半導体層12Pの主面上に形成されており、複数の凹部14,…,14の直上にそれぞれ開口部(以下、マスク開口部と呼ぶ。)を有している。すなわち、開口部が凹部14にかさなりあい、開口部から凹部14が露出するように凹部14が形成される。
 半導体光素子アレイ10は、微細柱状結晶20と、この微細柱状結晶20上に設けられた活性層21と、活性層21を被覆する半導体被覆層22とを含んで構成される半導体素子(ナノコラム23)を複数備えるものである。
 複数の細柱状結晶20,…,20は、III族窒化物半導体層12Pの凹部14,…,14からマスク開口部を介してマスクパターン13Pの上方に向けて成長したIII族窒化物半導体からなる。微細柱状結晶20上には活性層21が形成され、さらに活性層21を被覆する半導体被覆層22が形成されている。微細柱状結晶20、活性層21および半導体被覆層22によってナノコラム23が構成される。
 微細柱状結晶20および半導体被覆層22は、窒化ガリウム(GaN)などのIII族窒化物半導体からなる。あるいは、微細柱状結晶20および半導体被覆層22は、一般式AlGaIn1-x-yN(0≦x≦1、0≦y≦1、かつ0≦x+y≦1)で表される4元混晶材料やボロン窒化物で構成されてもよい。4元混晶材料は、組成比x,yに応じて、室温で0.63eV~6.2eVの広いバンドギャップを有するので、4元混晶を使用すれば、紫外域から可視光域を含み、赤外光域までをカバーする発光ダイオードやレーザダイオードを作製することができる。
 微細柱状結晶20は、径が10nm以上、1000nm以下であることが好ましい。なかでも、700nm以下、さらには、650nm以下、より好ましくは600nm以下であることが好ましい。700nm以下、特に600nm以下とすれば、貫通転位の発生を抑制しやすくなる。
 微細柱状結晶20の径とは、マスク開口部から露出した柱状部201の径である。柱状部201の径は、柱状部201が円柱形状の場合には、その径である。円柱形状以外の場合には、柱状部201を半導体基板の基板面側から平面視した際の重心点(平面中心)を通るとともに、柱状部201と2点で交差する直線のうち、交点間の距離が最も長い直線の長さをいう。
 微細柱状結晶20は、柱状部201と、この柱状部201の先端に設けられたファセット構造202とを備える。柱状部201の形状は、特に限定されないが、たとえば、円柱形状、四角柱形状、六角柱形状等とすることができる。
 また、微細柱状結晶20は、製造安定性の観点から、結晶構造が六方晶の材料で構成されていることが好ましい。
 活性層21は、微細柱状結晶20のファセット構造202を覆うように設けられている。この活性層21は、たとえば、InGaN、GaN、AlGaN、AlInGaN、InGaAsN、InNからなる。より具体的には、活性層21は、たとえば、InGaN/GaN(障壁層:InGaN、井戸層:GaN)、InGa1-xN/InGa1-yN(0≦x≦1,0≦y≦1)、GaN/AlGaN(障壁層:AlGaN、井戸層:GaN)、またはAlGa1-xN/AlGa1-yN(0≦x≦1,0≦y≦1)からなる多重量子井戸(MQW)構造または単一量子井戸(SQW)構造を有していればよい。ここで、量子井戸構造とは、量子井戸層と、この量子井戸層を挟み込む障壁層とを含むものである。障壁層のバンドギャップは、量子井戸層のそれよりも大きい。
 半導体被覆層22は、活性層21上に設けられており、活性層21を完全に被覆している。
 本実施形態では、活性層21から放出される光のピーク波長を、活性層21が形成される直前の微細柱状結晶20の径Δに応じた波長に定めることができる。活性層21から放出される光のピーク波長は、各微細柱状結晶20の径Δが大きいほど長波長側にシフトし、各微細柱状結晶20の径Δが小さいほど短波長側にシフトするように定めることが可能である。すなわち、径Δが大きな微細柱状結晶20上の活性層21から放出される光のピーク波長は、径Δが小さな微細柱状結晶20上の活性層21から放出される光のピーク波長よりも長波長である。
よって、微細柱状結晶20の径Δを制御することで所望の発光波長を得ることができる。後述するようにこの微細柱状結晶20の径Δは、テンプレート基板のIII族窒化物半導体層12Pに形成された各凹部14の径δ(図1(C))を調整することで所望の値にすることができる。凹部14の径δは、マスク開口部の大きさに依存するので、予めマスク開口部の大きさを定めておけば、この大きさに応じた径δを得ることができる。
 さらに、活性層21から放出される光のピーク波長は、各ナノコラム23の微細柱状結晶20の先端部(ファセット構造202)の表面積に応じた波長に定めることができる。活性層21から放出される光のピーク波長は、ファセット構造の表面積が大きいほど長波長側にシフトし、ファセット構造の表面積が小さいほど短波長側にシフトするように定めることができる。すなわち、ファセット構造の表面積が大きな微細柱状結晶20上の活性層21から放出される光のピーク波長は、ファセット構造の表面積が小さな微細柱状結晶20上の活性層21から放出される光のピーク波長よりも長波長である。
よって、微細柱状結晶20の先端部におけるファセット構造の表面積を制御することで所望の発光波長を得ることが可能である。
 また、図2に示されるように、マスクパターン13Pに形成される開口部13g,…,13gは、マスクパターン13Pの面内方向において周期的に配列されている。
 ここで、マスクパターンには、複数の開口部の配置密度が高い領域と、前記複数の開口部の配置密度が低い領域とを形成した場合、開口部の配置密度が高い領域にある複数の微細柱状結晶20上の活性層21から放出される光のピーク波長は、開口部の配置密度が低い領域にある複数の微細柱状結晶20上の活性層21から放出される光のピーク波長よりも長波長となる。
 すなわち、活性層21から放出される光のピーク波長は、微細柱状結晶20,…,20の面内密度が高いほど長波長側へシフトし、かつ微細柱状結晶20,…,20の面内密度が低いほど短波長側へシフトするように定めることができる。面内密度は、微細柱状結晶20,…,20の空間的な周期が短いほど高くなり、あるいは、微細柱状結晶20の径が大きいほど高くなる。
 次に、図1(A)~(D)を参照して、本実施形態における半導体光素子アレイ10の好適な製造方法を以下に説明する。
 先ず、MOCVD法やMBE法により、下地基板11上に窒化ガリウムや窒化アルミニウムなどのバッファ層(図示せず)を低温プロセスで成長させ、このバッファ層上に窒化ガリウムや窒化アルミニウムなどのIII族窒化物半導体層12を成長させる(図1(A))。この結果、基板11とIII族窒化物半導体層12とを含むテンプレート基板が作製される。次に、テンプレート基板の主面の所定領域に、チタン(Ti)を含む金属マスク層13を形成する(図1(B))。この金属マスク層13は、チタンの自然酸化膜でもよいし、あるいは、酸化チタン膜でもよい。
 なお、金属マスク層13の構成材料は、微細柱状結晶20を選択成長させる点でチタンが好適であるが、これに限らず、チタン(Ti)、タンタル(Ta)、鉄(Fe)、ニッケル(Ni)、白金(Pt)、金(Au)、コバルト(Co)、タングステン(W)、モリブデン(Mo)よりなる群から選択された1種または2種以上の金属を含むものでもよい。
 次に、金属マスク層13をパターニングして、図1(C)に示すように、III族窒化物半導体層12Pの表面を露出させる複数の開口部を有するマスクパターン13Pを形成する。このパターニングは、リソグラフィ工程により実行できる。すなわち、金属マスク層13上にレジストパターンを形成し、このレジストパターンをエッチングマスクとするエッチングを実行することでマスクパターン13Pを形成できる。あるいは、FIB(Focused Ion Beam)法を用いて集束イオンビームを金属マスク層13に所定のドーズ量(単位面積当たりの照射イオン量)で照射することでマスクパターン13Pを形成することができる。
 金属マスク層13をパターニングする際に、金属マスク層13だけでなく、開口部の直下にあるIII族窒化物半導体層12も加工されるので、図1(C)に示すようにマスクパターン13Pの開口部の直下にドット状の凹部(ホール)14,…,14が形成される。マスクパターン13Pの開口部の上面視形状(すなわち、凹部14の上面視形状)は、特に限定されるものではなく、図2に示した正方形状のほか、円形状や多角形状などの軸対称形状でもよい。
 その後、MOCVD法やMBE法により、複数の凹部14からマスク開口部を介してマスクパターン13Pの上方へ微細柱状結晶20、活性層21および半導体被覆層22を連続的に成長させる(図1(D))。微細柱状結晶20は、マスクパターン13Pの上方に成長すると同時に、テンプレート基板の面内方向に沿った横方向にも成長する。それ故、ナノコラム23の径Δは、凹部14の径δよりも大きくなる。また、半導体被覆層22は活性層21を完全に被覆するように形成されるので、活性層21は外部空間への露出部を持たない。言い換えれば、活性層21は、ナノコラム23の先端部の中に完全に埋め込まれた状態にある。それ故、その露出部に起因する非発光再結合準位の形成が抑制され、高い内部量子効率を実現することが可能となる。
 また、微細柱状結晶20を横方向成長させることで、以下のような効果がある。
 マスク開口部径を小さくすることで、微細柱状結晶20の成長初期での貫通転位の発生が抑制される。その後に横方向成長で径を太くすれば貫通転位のない比較的、径の大きな微細柱状結晶(例えば、直径1000nm)を得ることが可能となる。
 なお、微細柱状結晶20を横方向成長させるためには、相対的に窒素供給量を増加する方法や、Alを添加する方法(たとえば、AlGaNとする方法)等がある。
 ウルツ鉱型結晶構造のIII族窒化物半導体を、c面(=(0001)面)と呼ばれる極性面の方向に成長させて微細柱状結晶20を形成した場合、ナノコラム23(または微細柱状結晶20)の上面視形状は、図3に示されるように六角形となる。図4(A),(B)は、微細柱状結晶20の先端部の中心軸に沿った断面形状を概略的に示す図である。図4(A)に示される先端部は、ファセット構造となっており、斜め上方を向いたファセット面として、ウルツ鉱型結晶構造の半極性面20aからなる傾斜面を有している。
 この先端部の形状は六角錐形状である。ここで、半極性面20aとしては、たとえば、(10-1-1)面、(10-1-3)面、(11-22)面、(11-24)面、(10-12)面が挙げられる。一方、図4(B)に示される先端部もファセット構造となっているが、斜め上方を向いたファセット面、および、直上方を向いた面として、ウルツ鉱型結晶構造の半極性面20aからなる傾斜面と平坦な極性面20bとを有している。結晶の成長条件に応じて、図4(A)の先端部形状あるいは図4(B)の先端部形状のいずれかが形成される。
 なお、ファセット構造とは、下地基板11水平面に対して斜めに位置するファセット面を側面とする多面体構造のことである。
 微細柱状結晶20の径が小さければ、図4(A)に示す六角錐形状を持つ先端部が形成されやすく、微細柱状結晶20の径が大きくなれば、図4(B)に示すような先端部が形成されやすい。結晶の成長条件にもよるが、微細柱状結晶20の径を約300nm以上にすると、微細柱状結晶20の先端部に平坦な極性面20bを明確に出現させることができる。また、微細柱状結晶20の径が約300nmを超えて大きくなるほど平坦な極性面20bの面積は拡大する。
 MBE法を用いて微細柱状結晶20を成長させる場合、高周波プラズマ励起により生成された活性窒素とIII族金属とを含む原料ガスをテンプレート基板の表面上に導入して微細柱状結晶20を成長させる。この際の成長条件は、III族金属に比べて活性窒素の実効的な供給量比を大きくして微細柱状結晶20が成長する条件とすればよい。たとえば、窒化ガリウム(GaN)からなる微細柱状結晶20を成長させる場合は、結晶成長温度を600℃以下とするとマスク開口部以外の成長抑制領域にもGaN結晶が成長することが多い。一方、成長温度を高くするほど成長抑制領域に成長するGaN結晶の空間密度が減少する。温度をある一定温度以上にすることにより、成長抑制領域にGaNを成長させないことも可能である。成長抑制領域にGaNを成長させない温度は、III族金属と活性窒素の供給量や比率にも依存するが、一例として、850℃以上である。
 微細柱状結晶20を成長させるために、MBEは以下の条件で行うことが望ましい。温度は、成長させるIII族窒化物半導体の種類に応じて適宜選択されるが、350℃以上、1200℃以下の範囲である。たとえば、GaN結晶を成長させる場合は400℃以上1000℃以下であり、AlN結晶を成長させる場合は500℃以上1200℃以下であり、InNを成長させる場合は350℃以上600℃以下であることが好ましい。上記の温度範囲で、窒素リッチの条件下でMBEを行うことにより、III族窒化物半導体の微細柱状結晶20を成長させることができる。
 本実施形態では、マスク開口部が形成されていないマスクパターン13P上の領域は、微細柱状結晶20の成長が抑制される領域(成長抑制領域)である。成長抑制領域で横方向の結晶成長が抑制される理由は、必ずしも明らかではなく、推測の域を出ないが、マスクパターン13Pの表面におけるガリウム(Ga)などの離脱がテンプレート基板の露出表面上よりも促進されるため、横方向成長が抑制されると推測される。あるいは、TiおよびPtの物性に着目した場合、これらは他の金属に比べて融点や沸点が高く、共有結合あたりの結合エネルギーが高く、また、熱伝導率が他の金属に比べて低い。TiおよびPtは、共有結合の強さから、表面における未結合の手が少ない。このことから、結合のしやすさが期待できず、III族窒化物微細柱状結晶の成長開始を抑制したと推測することもできる。
 また、結晶成長工程において、金属膜表面には活性窒素が単独またはIII族金属と同時に照射される。窒化物形成能を有する金属の場合には、金属窒化物(たとえば、TiN、WN)が形成されると推測される。これらの金属窒化物は化学的に安定、すなわち表面には活性な未結合手が少ないので、GaやGaNなどとの結合が弱い。したがって、GaやGaNなどが表面から脱離するに十分な成長温度の場合、供給されたGaやGaNなどが結晶成長を持続するに足る十分な大きさとなる前に脱離してしまい、GaNなどの成長が抑制されるとも考えられる。
 以上より、成長抑制領域で横方向の結晶成長が抑制される理由としては、特に、成長抑制領域における温度が基板表面に比べて高い点と、成長抑制領域上にGaNの成長核が形成されにくい点との相乗効果が予想される。
 一方、テンプレート基板のIII族窒化物半導体層12Pの露出表面上では、結晶成長の抑制が生じない。テンプレート基板およびマスクパターン13Pの表面上に形成される微細柱状結晶20は、テンプレート基板やマスクパターン13Pの材質、マスクパターン13Pの膜厚あるいは成長条件に依存して変化し得るが、テンプレート基板の主面またはマスクパターン13Pの表面に対して略垂直方向に起立して成長する。
 本実施形態の方法によって成長するIII族窒化物半導体からなる微細柱状結晶20は、ナノメータオーダーの径Δを有する柱状構造の単結晶である。微細柱状結晶20の直径は、たとえば、10nm以上1000nm以下の範囲内の大きさに定められる。微細柱状結晶20の高さは、マスクパターン13Pの厚さや結晶の成長条件によっても変動し得るが、たとえば、0.2μm以上5μm以下の範囲内である。マスクパターン13Pの膜厚は、特に限定されないが、好ましくは、2nm以上100nm以下の範囲内である。ただし、微細柱状結晶20の直径および高さは、結晶の成長条件により変動し得る。
 その後、各微細柱状結晶20上に活性層21を設け、さらに、活性層21上に半導体被覆層22を形成する。活性層21、半導体被覆層22は、MOCVD法や、MBE法により形成することができる。
 なお、活性層21や、半導体被覆層22を構成する材料は、マスクパターン13P上にも堆積することとなる。
 また、半導体被覆層22を形成する際には、横方向成長させて、活性層21上面のみならず、側面を被覆することが好ましい。
 (発光波長の結晶径依存性)
 図5は、III族窒化物半導体層12Pに形成された凹部14の径(以下「ホール径」と呼ぶ。)δとナノコラム23の発光波長との間の関係を示すグラフである。
 図5のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期(開口部の中心間の距離):400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF-MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
 このような製造条件で、50nm~265nmの範囲内の異なるホール径δを持つ半導体発光素子のサンプルを13個作製し、各サンプルについて、凹部14の深さ(以下「ホール深さ」と呼ぶ。)と、PL(photoluminescence)発光波長と、ナノコラム23の径(以下「ナノコラム径」と呼ぶ。)とを測定した。この測定結果を示すグラフが図5である。
 図5のグラフから、ホール径δが大きいほど、ホール深さが深く、ホール径が大きく、発光波長が長くなる傾向が確認された。逆に、ホール径が小さいほど、ホール深さが浅く、ナノコラム径が小さく、発光波長が短くなる傾向が確認された。
 次に、図6は、166nm,192nm,203nm,226nm,242nm,298nm,236nmというナノコラム径をそれぞれ持つ半導体素子について測定されたPL発光波長(単位:nm)と光強度(単位:任意単位)との間の関係を示すグラフである。このグラフを得るために作製されたナノコラム23の製造条件は、図5のグラフを得るために作製されたナノコラム23の製造条件と同じである。
 図6の光強度分布から各ナノコラム径についてピーク波長を検出した。図7は、ナノコラム径(Nanocolumn Size)と検出されたピーク波長(Peak Wavelength)との関係を表すグラフである。ナノコラム径が大きいほどピーク波長が長くなり、ナノコラム径が小さいほどピーク波長が短くなることが分かる。
 以上、光を放出する活性層21の構造が微細柱状結晶20の先端形状に依存することを考慮すれば、図5乃至図7のグラフから明らかなように、活性層21から放出される光のピーク波長は、活性層21が形成される直前の微細柱状結晶20の径Δが大きいほど長波長側にシフトし、微細柱状結晶20の径Δが小さいほど短波長側にシフトすることが理解される。
 次に、図8は、FIB法を用いてテンプレート基板に凹部(ホール)14を形成した場合のドーズ量(Doze(cm-2))と凹部14の深さ(Nanohole depth(nm))との関係を示すグラフである。また、図9は、ドーズ量(Doze(cm-2))と凹部14の径(Nanohole size(nm))δとの関係を示し、ドーズ量(Doze(cm-2))とナノコラム23の径(Nanocolumn size(nm))との関係を示すグラフである。
 図8および図9のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、複数のマスク開口部を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF-MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
 このような製造条件と、異なるドーズ量とで半導体発光素子のサンプルを14個作製し、各サンプルについて、凹部14の深さ、凹部14の径δおよびナノコラム23の径を測定した。その測定結果を示すグラフが図8および図9である。
 図8のグラフに示されるように、金属マスク層13に集束イオンビームを照射したときのドーズ量が多くなるほど凹部14の深さも大きくなる。また、図9のグラフに示されるように、ドーズ量が多くなるほど、凹部14の径(nanohole size)が大きくなるとともにナノコラム23の径(nanocolumn size)も大きくなることが分かる。したがって、凹部14の径の増大とともに微細柱状結晶20の径Δも増大することが理解される。
 図10および図11は、正方格子状に規則的に配列された、異なる径を持つナノコラム23,…,23の走査型電子顕微鏡像(SEM像)を示す図である。図10は、ナノコラム23,…,23の上面視からのSEM像を示し、図11は、これらナノコラム23,…,23を斜めから俯瞰したときのSEM像である。図10および図11に示すナノコラム群は、凹部14,…,14の径を個別に制御することにより作製された。
 (発光波長の先端形状依存性)
 次に、図12は、ナノコラム23から放出されたCL(カソードルミネッセンス)光のスペクトルの測定結果を示すグラフである。このグラフの横軸は発光波長に対応し、グラフの縦軸はCL強度(任意単位)に対応している。図13(A)は、ナノコラム23の上面視からのSEM像を示し、図13(B),(C)は、それぞれ異なる波長405nm,510nmのCL像(カソードルミネッセンス像)の上面視図である。図14(A)は、ナノコラム23を横方向から撮像したSEM像を示し、図14(B),(C),(D)は、それぞれ異なる波長365nm,435nm,500nmの断面CL像(図14(A)のナノコラム23の断面CL像)を示す図である。
 図12、図13(A)~(C)および図14(A)~(D)を得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期:400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF-MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ1.8μm、径180~495nm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:3nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
 図12のグラフに示されるように、CL強度分布には、GaNからの発光のピークと、InGaNからの2つの発光のピーク(波長:404nm、510nm)とがある。
 図13(B)に示される波長405nmのCL像は、ナノコラム23の活性層21の全体からの発光を示している。このCL像は、微細柱状結晶20の先端部の側面(半極性面)20a(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。これに対し、図13(C)に示される波長510nmのCL像は、ナノコラム23の活性層21のうち頂上付近のみからの発光を示している。このCL像は、微細柱状結晶20の先端部の平坦面(極性面)20b(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。
 さらに、図14(B)に示される波長365nmの断面CL像は、ナノコラム23の全体に分布するGaNからの発光を示している。図14(C)に示される波長435nmの断面CL像は、ナノコラム23の先端部全体のInGaNからの発光を示している。この断面CL像は、主に、微細柱状結晶20の先端部の側面(半極性面)20a(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。また、図14(D)に示される波長500nmの断面CL像は、ナノコラム23の頂上付近のInGaNからの発光を示している。この断面CL像は、主に、微細柱状結晶20の先端部の平坦面(極性面)20b(図4(B))上に形成されたInGaNからの発光を示すものと考えられる。
 図12、図13(A)~(C)および図14(A)~(D)から理解される通り、微細柱状結晶20の先端部の側面(半極性面)20a上に形成されたInGaNの発光波長と、当該先端部の平坦面(極性面)20b上に形成されたInGaNの発光波長とは異なる。その理由は、以下のように考えられる。
 図15(B)に示されるように、微細柱状結晶20の側面20a上に形成されたInGaN結晶21sと平坦面20b上に形成されたInGaN結晶21tとでは、InGaN結晶中へのInの取り込みやすさが異なるので、平坦面20bに形成されたInGaN結晶21t中のIn組成比は比較的高く、側面20aに形成されたInGaN結晶21s中のIn組成比は比較的低いと考えられる。このため、図15(A)に示されるCLスペクトル(図12と同じCLスペクトル)が形成される。また、キャリアは、先端部付近のバンドギャップの狭いInGaN結晶21tに閉じ込められるので、先端部付近のInGaN結晶21tが量子ドットを形成し得る。これが、側面20aに形成されたInGaNの発光波長と、平坦面20bに形成されたInGaNの発光波長との差を生じさせていると考えられる。
 図12のCL強度分布を得るために作製されたサンプルを用いてPL(フォトルミネッセンス)強度を測定した。励起光として波長405nmのCW(Continuous Wave)光を使用した。また、励起光密度は0.29kW/cmであった。PL強度分布のピーク波長は、4Kの低温条件で486.2nm、300Kの高温条件で486.7nmであり、PL強度分布の半値全幅(FWHM:Full Width at Half Maximum)は、4Kの低温条件で151.3meVに相当し、300Kの高温条件で187.2meVに相当した。したがって、低温条件と高温条件との間のPL積分強度比すなわち内部量子効率は、波長486nmに対して約77%であり、非常に良好な結晶性が確認された。このような高い内部量子効率が実現された1つの理由は、活性層21(21s,21t)の外部空間への露出部が無くなり、非発光再結合による注入キャリアの損失が抑制されたからだと考えられる。図15(B)に示されるように、狭いバンドギャップを持つInGaN結晶21s,21tは広いバンドギャップを持つGaNにより完全に被覆されてナノコラム23中に埋め込まれた状態にある。それ故、InGaN結晶21s,21tの外部空間への露出部が無くなるので、非発光再結合準位の形成が抑制されたと考えることができる。仮に露出部が存在すれば、この露出部の表面のバンドギャップ内に非発光再結合準位が形成され、この非発光再結合準位を介して電子と正孔とが再結合することにより発光効率が低下する。
 なお、ここでは、InGaN結晶21s,21tを有するナノコラム23について言及したが、InGaN結晶21tはなくてもよい。
 このようなナノコラムであっても、ナノコラムの径により、発光波長を制御することができることが確認されている。すなわち、径が小さなナノコラムの活性層から放出される光のピーク波長は、径が大きなナノコラム上の活性層から放出される光のピーク波長よりも低波長となることが確認されている。
 図16は、ナノコラム23の径(コラム径)とナノコラム23の先端部のファセット構造の表面積との関係を示すとともに、コラム径と発光ピーク波長との関係を示すグラフである。発光ピーク波長は、PL光の強度分布から検出された波長である。グラフ中、記号「○」が発光ピーク波長の測定値を、記号「●」がナノコラム23の先端部の平坦面(SurfaceC)の面積を、記号「▲」がナノコラム23の先端部の傾斜側面(SurfaceSemi)の面積を、記号「■」がナノコラム23の先端部の平坦面の面積と傾斜側面の面積との合計を、それぞれ示している。
 この図16のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期:400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF-MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
 このような製造条件で、135nm~350nmの範囲内の異なるコラム径を持つナノコラム群のサンプルを複数個作製し、各サンプルについて、ナノコラム23の先端部の表面積と、発光ピーク波長とを測定した。この測定結果を示すグラフが図16である。
 図16のグラフに示されるように、コラム径の増大とともに、ナノコラム23の先端部のファセット構造の表面積(傾斜側面(ファセット面)と平坦面の合計面積)は増大する。また、コラム径が約135nm~約288nmの範囲内では、コラム径の増大とともに発光ピーク波長の値も単調に増大している。よって、ナノコラム23の先端部のうち上方を向いたファセット面の合計面積の増大とともに、発光ピーク波長の値が増大する。活性層21の膜厚と半導体被覆層22の膜厚は薄いので、実質的に、微細柱状結晶20の先端部のうち上方を向いたファセット面の面積の増大とともに発光ピーク波長が長くなるということができる。したがって、微細柱状結晶20の先端部のうち上方を向いたファセット面の面積を制御することで、所望の発光ピーク波長を得ることが可能である。
 また、図16のグラフに示されるように、コラム径が約135nm~約260nmの範囲では、ナノコラム23の先端部の傾斜側面(SurfaceSemi)の面積の増大とともに発光ピーク波長の値も増大するという正の相関関係が成立するが、コラム径が約260nmを超えると、この相関関係が成立しなくなる。この代わりに、コラム径が約260nm~約288nmの範囲では、ナノコラム23の先端部の平坦面(SurfaceC)の面積の増大とともに発光ピーク波長の値が増大する。
 次に、図17は、200nmのコラム径を持つナノコラム23のPL発光波長に関する光強度分布(単位:任意単位)を示すグラフである。グラフ中、実線は、ナノコラム23の先端部の傾斜側面の高さhが2.1μmの場合の測定曲線を、破線は、ナノコラム23の先端部の傾斜側面の高さhが1.25μmの場合の測定曲線を、それぞれ示している。図18は、同じナノコラム23についての高さhと発光ピーク波長との関係を示すグラフである。図18のグラフの横軸は高さhに対応し、縦軸は発光ピーク波長に対応している。
 図17および図18のグラフを得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数の開口部(空間周期:400nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF-MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ:2.5μm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:1nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
 図17に示されるようにナノコラム23の先端部の傾斜側面の高さhが1.25μmから2.1μmに変化すると、光強度分布のピークも長波長側にシフトしている。図18にもその傾向が示されている。
 (発光波長の面内密度依存性)
 図19(A)~(F)は、三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。図19(A),(B),(C),(D),(E),(F)は、それぞれ、空間周期(各微細柱状結晶20の中心間の距離)400nm,600nm,800nm,1μm,2μm,4μmの場合の配列を示している。また、空間周期400nm,600nm,800nm,1μm,2μm,4μmの配列に対応するPL発光のピーク波長は、それぞれ、508nm,500nm,490nm,480nm,480nm,479nmと測定された。
 図19のSEM像を得るために作製されたナノコラム23の製造条件は以下の通りである。サファイア基板11の(0001)面上にGaN層12P(厚み:約3.5μm)をMOCVD法で成長させてテンプレート基板を形成した。このテンプレート基板上にチタン薄膜(厚み:約5nm)を成膜した後、FIB法を用いて、このチタン薄膜に、三角格子状に配列された複数のマスク開口部(各マスク開口部の径:167nm)を設けることでマスクパターン13Pを形成した。マスク開口部の形成と同時に、GaN層12Pには凹部14が形成された。次に、RF-MBE法により、900℃の温度条件下で、テンプレート基板の凹部14からマスク開口部を介してGaN柱状結晶20(高さ1.5μm、径190nm)を成長させた。続けて、各微細柱状結晶20上にInGaN膜(厚み:3nm)を含む多重量子井戸構造を持つ活性層21を形成した。続けて、この活性層21上にGaN結晶の半導体被覆層22(厚み:10nm)を形成した。
 図19(A)~(F)に示されるように、ピーク波長は、ナノコラム23,…,23の空間周期(コラム周期、配置密度)が短いほど長波長側へシフトし、かつナノコラム23,…,23の空間周期が長いほど短波長側へシフトしている。
 図20は、図19(A)~(F)のナノコラム群のPL発光波長に関する光強度分布(単位:任意単位)の測定結果を示すグラフである。また、図21は、コラム周期と図20の光強度分布の発光ピーク波長との関係を示すグラフである。ここで、各ナノコラム23のコラム径は160nmにされた。
 図21に示されるように、コラム周期が約1μm以下の範囲では、コラム周期の増大とともに発光ピーク波長の値が減少している。コラム径が一定のままコラム周期を長くすると、ナノコラム23,…,23の面内密度が小さくなるので、面内密度の減少とともに発光ピーク波長が短くなり、面内密度の増大とともに発光ピーク波長が長くなる。
 図22は、三角格子状に規則的に配列されたナノコラム群の上面視でのSEM像を示す図である。図22(A),(B),(C),(D)は、それぞれ、空間周期242nm,269nm,298nm,336nmの場合の配列を示している。また、空間周期242nm,269nm,298nm,336nmの配列に対応するPL発光のピーク波長は、それぞれ、607nm,643nm,649nm,650nmと測定された。
 図22(A)~(D)のSEM像を得るために作製されたナノコラム23の製造条件は、マスク開口部の径を除いて、図19のSEM像を得るために作製されたナノコラム23の製造条件と同じである。図22のSEM像を得るために作製されたナノコラム23の径は、空間周期の増大とともに大きくなるように設定された。
 図22(A)~(D)に示されるように、ナノコラム23の径の増大とともに、ピーク波長の値が増大している。ナノコラム23の径の増大とともに、ナノコラム23,…,23の面内密度(配置密度)が大きくなるので、面内密度の増大とともに発光ピーク波長が長くなり、面内密度の減少とともに発光ピーク波長が短くなる。
 各ナノコラム23の半導体被覆層22の膜厚は薄く、横方向の結晶成長が抑制されることを考慮すれば、活性層21から放出される光のピーク波長は、微細柱状結晶20,…,20の面内密度が高いほど長波長側へシフトし、かつ微細柱状結晶20,…,20の面内密度が低いほど短波長側へシフトする。したがって、微細柱状結晶20の径を制御することで所望の発光波長を得ることが可能である。
 以上説明した通り、第1の実施形態の半導体光素子アレイ10は、テンプレート基板上に形成された微細柱状結晶20の位置を、マスクパターン13Pの開口部の位置を調整することで制御することができる。また、各開口部の直下の凹部14の径を調整することで微細柱状結晶20の径を制御し、これにより、活性層21から放出される光のピーク波長を所望の波長に定めることが可能である。また、各微細柱状結晶20の径を大きくしてピーク波長を長波長側にシフトさせ、各微細柱状結晶20の径を小さくしてピーク波長を短波長側にシフトさせることができる。
 また、微細柱状結晶20の先端部のファセット構造の表面積を制御することで、活性層21から放出される光のピーク波長を所望の波長に定めることが可能である。ファセット構造の表面積を大きくしてピーク波長を長波長側にシフトさせ、ファセット構造の表面積を小さくしてピーク波長を短波長側にシフトさせることができる。
 さらに、周期的に配列された微細柱状結晶20,…,20の面内密度を高くすることでピーク波長を長波長側へシフトさせ、微細柱状結晶20,…,20の面内密度を低くすることでピーク波長を短波長側へシフトさせることができる。面内密度の制御は、微細柱状結晶20,…,20の空間周期(すなわち、マスクパターン13Pに形成される開口部の空間周期)の調整、あるいは、各微細柱状結晶20の径(すなわち、マスクパターン13Pに形成される開口部の径)の調整により高精度で行うことが可能である。
 (第2の実施形態)
 次に、本発明に係る第2の実施形態について説明する。図23(A),(B)は、それぞれ、第2の実施形態の半導体発光素子の構成の一部を概略的に示す図である。図23(A),(B)に示される構造は、上記第1の実施形態の半導体光素子アレイ10の構造を含むものである。
 図23(A)を参照すると、下地基板11上に形成されたIII族窒化物半導体層12Pは、n型不純物が導入されたn型半導体層である。マスクパターン13Pは、n側電極(図示せず)と接続されている。このIII族窒化物半導体層12P上には、n型AlGaNなどのn型クラッド層を含む微細柱状結晶20と、活性層21と、p型AlGaNなどのp型クラッド層を含むp型半導体層24とからなるナノコラムが形成されている。これらナノコラム間の空間には、酸化珪素などの絶縁膜30が埋め込まれている。そして、p型半導体層24,…,24に電気的に接続されるように、Ni/Au多層膜やITO(Indium Tin Oxide)などのp側電極31が成膜されている。p側電極から注入された正孔とn側電極からの電子とが活性層21で再結合することにより活性層21は光を放出する。
 微細柱状結晶20は、n型半導体層で構成されており、たとえば、GaN/AlGaN/GaNの3層構成であってもよい。
 一方、図23(B)を参照すると、下地基板11上に形成されたIII族窒化物半導体層12Pは、n型不純物が導入されたn型半導体層である。マスクパターン13Pは、n側電極(図示せず)と接続されている。このIII族窒化物半導体層12P上には、n型AlGaNなどのn型クラッド層を含む微細柱状結晶20と、活性層21と、p型AlGaNなどのp型クラッド層を含むp型半導体層25とからなるナノコラム23が形成されている。p型半導体層25は、横方向の結晶成長の促進により横方向に連続的に形成されている。
p型半導体層25を横方向成長を促進させるためには、Mgをドープする方法、成長温度を下げる方法、Alを添加する方法等がある。そして、p型半導体層25に電気的に接続されるように、Ni/Au多層膜やITO(Indium Tin Oxide)などのp側電極32が成膜されている。p側電極から注入された正孔とn側電極からの電子とが活性層21で再結合することにより活性層21は光を放出する。
 図23(A)および図23(B)の構造をレーザダイオードとして構成する場合には、活性層21から放出された光を閉じ込める光共振器を形成すればよい。たとえば、活性層21よりも上方と下方とにそれぞれ多層膜反射鏡を形成して、これら多層膜反射鏡で光共振器を構成することができる。
 なお、p型半導体層25に光導波路を形成することもできる。
 また、図23(A)または図23(B)の構造を、太陽電池などの光電変換素子に変形することも可能である。たとえば、各ナノコラム23において、活性層21の代わりにpin構造(光吸収構造)を形成すればよい。このpin構造では、i型半導体層を量子ドット構造とすることができる。複数の量子ドット層を中間層を介して積層してi型半導体層を構成することにより、変換効率を向上させることができる。上述の通り、微細柱状結晶20の径、微細柱状結晶20,…,20の面内密度あるいは微細柱状結晶20の先端形状を制御することにより、pin構造を所望の吸収波長に適合させることが可能である。
 (第3の実施形態)
 次に、本発明の第3の実施形態について説明する。図24および図25は、それぞれ、第3の実施形態の半導体発光素子の構成の一部を示す斜視図である。第3の実施形態の半導体発光素子は、上記第1の実施形態の半導体光素子アレイ10の構造を含むものである。
 図24を参照すると、下地基板11上に形成されたIII族窒化物半導体層12Pは、n型不純物が導入されたn型半導体層である。マスクパターン13P上にはn側電極40が形成されている。このIII族窒化物半導体層12P上には、発光波長の異なる複数種のナノコラム群23R,23G,23Bが形成されている。これらナノコラム群23R,23G,23Bを構成するナノコラムは、図23(B)に示したような、n型AlGaNなどのn型クラッド層を含むn型(第1導電型)の微細柱状結晶20と、活性層21と、p型AlGaNなどのp型クラッド層を含むp型(第2導電型)の半導体層25とからなるナノコラムと同じ構造を有していればよい。ナノコラム群23R,23G,23Bは、それぞれ、R(赤色),G(緑色),B(青色)の3原色の波長の光をそれぞれ放出する結晶構造を有している。
 さらに、図25に示すように、ナノコラム群23R,23G,23B上には、それぞれ、p型半導体層25R,25G,25Bが成膜されている。そして、これらp型半導体層25R,25G,25Bには、それぞれ、p側電極42R,42G,42Bが接続されている。p側電極42R,42G,42Bは、Ni/Au多層膜やITO(Indium Tin Oxide)で構成すればよい。
 p側電極42R,42G,42Bから注入された正孔とn側電極からの電子とがナノコラム群23R,23G,23Bの活性層で再結合することにより活性層は光を放出することができる。
 図25の構造をレーザダイオードとして構成する場合には、活性層から放出された光を閉じ込める光共振器を形成すればよい。たとえば、活性層よりも上方と下方とにそれぞれ多層膜反射鏡を形成して、これら多層膜反射鏡で光共振器を構成することができる。
 第3の実施形態の半導体発光素子は、3原色の波長の光を放出する発光体を同一の基板11上に集積することができる。さらに、R、G、Bの光をそれぞれ放出するナノコラム群23R,23G,23Bの面内密度を個別に調整することで光強度分布を制御して、全体のスペクトル分布を太陽光のスペクトル分布に近似することが可能である。この結果、理想的な白色発光ダイオードを作製することができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、上記実施形態では、下地基板11としてサファイア基板が使用されるが、これに限定されず、たとえば、シリコン基板やSiC基板を使用してもよい。テンプレート基板の代わりに、窒化ガリウム基板などのIII族窒化物半導体基板を使用してもよい。
 本発明に係る半導体光素子アレイは、電子デバイスおよび光デバイスの分野において応用可能である。微細柱状結晶は優れた発光特性を持ち、発光デバイスへの応用が期待される。本発明に係る半導体光素子アレイは、たとえば、蛍光体、発光ダイオード、レーザダイオードあるいは光電変換素子に適用することができる。

Claims (21)

  1.  複数の凹部が形成された主面を有する半導体基板と、
     前記半導体基板の当該主面上に形成され、かつ前記複数の凹部の直上にそれぞれ設けられた複数の開口部を有するマスクパターンと、
     前記複数の凹部から前記複数の開口部を介して前記マスクパターンの上方に向けて成長したIII族窒化物半導体からなる複数の微細柱状結晶と、
     前記複数の微細柱状結晶上にそれぞれ成長した活性層または光吸収層と、
     前記各活性層または光吸収層を被覆する半導体層と、
    を備える半導体光素子アレイ。
  2.  請求項1に記載の半導体光素子アレイにおいて、
     前記各微細柱状結晶上には活性層が形成されている半導体光素子アレイ。
  3.  請求項2に記載の半導体光素子アレイにおいて、
     前記各微細柱状結晶の径は、10nm以上、1000nm以下である半導体光素子アレイ。
  4.  請求項2または3に記載の半導体光素子アレイであって、
     異なる径の前記微細柱状結晶を含み、
     径が小さな前記微細柱状結晶上の活性層から放出される光のピーク波長は、径が大きな前記微細柱状結晶上の活性層から放出される光のピーク波長よりも低波長である半導体光素子アレイ。
  5.  請求項2乃至4のいずれかに記載の半導体光素子アレイであって、
     前記マスクパターンには、前記複数の開口部の配置密度が高い領域と、前記複数の開口部の配置密度が低い領域とがあり、
     複数の開口部の配置密度が高い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長は、複数の開口部の配置密度が低い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長よりも長波長である、半導体光素子アレイ。
  6.  請求項2に記載の半導体光素子アレイであって、
     前記各微細柱状結晶は、先端部にファセット構造を有するとともに、各微細柱状結晶における前記ファセット構造の表面積は異なっており、
     ファセット構造の表面積が小さな前記微細柱状結晶から放出される光のピーク波長は、ファセット構造の表面積が大きな前記微細柱状結晶から放出される光のピーク波長よりも低波長である半導体光素子アレイ。
  7.  請求項6記載の半導体光素子アレイであって、
     前記各微細柱状結晶は、ウルツ鉱型結晶構造を有しており、
     前記ファセット構造を構成するファセット面は、前記ウルツ鉱型結晶構造の半極性面を含む、
    半導体光素子アレイ。
  8.  請求項7に記載の半導体光素子アレイであって、前記ファセット構造は、前記ウルツ鉱型結晶構造の極性面を含む、半導体光素子アレイ。
  9.  請求項6に記載の半導体光素子アレイであって、
     前記各微細柱状結晶は、ウルツ鉱型結晶構造を有しており、
     前記ファセット構造は、前記ウルツ鉱型結晶構造の極性面を含む、
    半導体光素子アレイ。
  10.  請求項6乃至9のいずれかに記載の半導体光素子アレイであって、
     前記マスクパターンには、前記複数の開口部の配置密度が高い領域と、前記複数の開口部の配置密度が低い領域とがあり、
     複数の開口部の配置密度が高い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長は、複数の開口部の配置密度が低い領域にある複数の微細柱状結晶上の活性層から放出される光のピーク波長よりも長波長である、半導体光素子アレイ。
  11.  請求項2から10のうちのいずれか1項に記載の半導体光素子アレイであって、
     前記活性層は、前記半導体層により完全に被覆されている、半導体光素子アレイ。
  12.  請求項2から11のうちのいずれか1項に記載の半導体光素子アレイであって、
     前記微細柱状結晶の導電型は、第1導電型であり、
     前記半導体層は、前記第1導電型とは逆の第2導電型のIII族窒化物半導体層を含む、
    半導体光素子アレイ。
  13.  請求項2から12のうちのいずれか1項に記載の半導体光素子アレイであって、
     前記複数の微細柱状結晶は、発光波長の異なる複数の柱状結晶群からなる、半導体光素子アレイ。
  14.  請求項13に記載の半導体光素子アレイであって、
     前記複数の柱状結晶群は、少なくとも、3原色の波長の光をそれぞれ放出する3つの柱状結晶群を含む、半導体光素子アレイ。
  15.  請求項2から14のうちのいずれか1項に記載の半導体光素子アレイであって、前記活性層は、量子井戸層と、前記量子井戸層よりも大きなバンドギャップを有し前記量子井戸層を挟み込む障壁層とを含む量子井戸構造を有する、半導体光素子アレイ。
  16.  請求項2から15のうちのいずれか1項に記載の半導体光素子アレイであって、前記マスクパターンの構成材料は、チタン(Ti)、タンタル(Ta)、鉄(Fe)、ニッケル(Ni)、白金(Pt)、金(Au)、コバルト(Co)およびタングステン(W)、モリブデン(Mo)からなる群より選択された1種または2種以上の金属である、半導体光素子アレイ。
  17.  請求項2から16のうちのいずれか1項に記載の半導体光素子アレイであって、前記III族窒化物半導体は窒化ガリウムを含む、半導体光素子アレイ。
  18.  請求項2から17のうちのいずれか1項に記載の半導体光素子アレイであって、前記III族窒化物半導体はAlGaIn1-x-yN(0≦x≦1、0≦y≦1、かつ0≦x+y≦1)を含む、半導体光素子アレイ。
  19.  半導体基板上に複数の開口部を有するマスクパターンを形成する工程と、
     前記マスクパターンをエッチングマスクとして前記半導体基板をエッチングすることにより前記半導体基板の主面に複数の凹部を形成する工程と、
     前記各凹部から前記各開口部を介して前記マスクパターンの上方に向けて複数の微細柱状結晶を成長させる工程と、
     前記微細柱状結晶上に活性層または光吸収層を成長させる工程と、
     前記活性層または光吸収層を被覆する半導体層を形成する工程と、
    を備える半導体光素子アレイの製造方法。
  20.  請求項19に記載の半導体光素子アレイの製造方法であって、前記マスクパターンの上方に向けて複数の微細柱状結晶を成長させる前記工程と同時に、前記微細柱状結晶を前記半導体基板の面内方向に沿った横方向へ成長させる工程をさらに備える半導体光素子アレイの製造方法。
  21.  請求項19または20に記載の半導体光素子アレイの製造方法であって、
     前記微細柱状結晶の導電型は、第1導電型であり、
     前記半導体層は、前記第1導電型とは逆の第2導電型のIII族窒化物半導体層を含む
    半導体光素子アレイの製造方法。
PCT/JP2009/004173 2008-09-01 2009-08-27 半導体光素子アレイおよびその製造方法 WO2010023921A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/061,425 US9224595B2 (en) 2008-09-01 2009-08-27 Semiconductor optical element array and method of manufacturing the same
JP2010526554A JP5547076B2 (ja) 2008-09-01 2009-08-27 半導体光素子アレイおよびその製造方法
EP09809577.1A EP2333847B1 (en) 2008-09-01 2009-08-27 Semiconductor optical element array and manufacturing method therefore
CN200980141161.XA CN102187479B (zh) 2008-09-01 2009-08-27 半导体光学元件阵列及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-224131 2008-09-01
JP2008224131 2008-09-01
JP2008-224129 2008-09-01
JP2008224129 2008-09-01

Publications (1)

Publication Number Publication Date
WO2010023921A1 true WO2010023921A1 (ja) 2010-03-04

Family

ID=41721104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004173 WO2010023921A1 (ja) 2008-09-01 2009-08-27 半導体光素子アレイおよびその製造方法

Country Status (7)

Country Link
US (1) US9224595B2 (ja)
EP (1) EP2333847B1 (ja)
JP (2) JP5547076B2 (ja)
KR (1) KR101567121B1 (ja)
CN (1) CN102187479B (ja)
TW (1) TWI470828B (ja)
WO (1) WO2010023921A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117056A1 (de) * 2010-03-25 2011-09-29 Osram Opto Semiconductors Gmbh Strahlungsemittierendes halbleiterbauelement und verfahren zur herstellung eines strahlungsemittierenden halbleiterbauelements
KR20120028104A (ko) * 2010-09-14 2012-03-22 삼성엘이디 주식회사 Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
WO2012076901A1 (en) * 2010-12-09 2012-06-14 The University Of Nottingham Electrical device
JP2014060198A (ja) * 2012-09-14 2014-04-03 Oki Electric Ind Co Ltd 窒化物半導体発光ダイオードの製造方法、及び窒化物半導体発光ダイオード
JP2014107441A (ja) * 2012-11-28 2014-06-09 Fujitsu Ltd 太陽電池及びその製造方法
JP2014533897A (ja) * 2011-12-01 2014-12-15 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives コア/シェル構造を有するナノワイヤを備えた光電子デバイス
JP2015512151A (ja) * 2012-02-14 2015-04-23 クナノ・アーベー 窒化ガリウムナノワイヤに基づくエレクトロニクス
JP2016521459A (ja) * 2013-04-26 2016-07-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 活性ゾーンを有する半導体積層体を円柱状構造上に備えた発光アセンブリ
JP2016527706A (ja) * 2013-06-07 2016-09-08 グロ アーベーGlo Ab マルチカラーled及びその製造方法
JP2017195305A (ja) * 2016-04-21 2017-10-26 富士通株式会社 発光素子及びその製造方法
WO2018062252A1 (ja) * 2016-09-29 2018-04-05 日亜化学工業株式会社 発光素子
JP2018142660A (ja) * 2017-02-28 2018-09-13 学校法人上智学院 光デバイスおよび光デバイスの製造方法
JP2018206861A (ja) * 2017-05-31 2018-12-27 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
JP2019012744A (ja) * 2017-06-29 2019-01-24 学校法人 名城大学 半導体発光素子および半導体発光素子の製造方法
JP2019525460A (ja) * 2016-06-30 2019-09-05 ヴァレオ ビジョンValeo Vision 強化されたスペクトルを有する白色光を放射するモジュール
JP2020057640A (ja) * 2018-09-28 2020-04-09 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2020077817A (ja) * 2018-11-09 2020-05-21 学校法人 名城大学 半導体発光素子
EP3696300A1 (de) 2019-02-18 2020-08-19 Aixatech GmbH Verfahren zur herstellung eines verbundmaterialkörpers insbesondere für die verwendung bei der herstellung von elektronischen oder optoelektronischen bauelementen
JP2020141048A (ja) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 発光装置およびプロジェクター
WO2022045206A1 (ja) * 2020-08-31 2022-03-03 株式会社小糸製作所 半導体発光素子および半導体発光素子の製造方法
US11329190B2 (en) 2019-03-26 2022-05-10 Seiko Epson Corporation Light emitting device and projector
JP2022118051A (ja) * 2017-02-28 2022-08-12 学校法人上智学院 光デバイスおよび光デバイスの製造方法
WO2022190353A1 (ja) * 2021-03-12 2022-09-15 シャープ株式会社 量子ドット、量子ドット層、発光素子、及び太陽電池
JP2022141079A (ja) * 2021-03-15 2022-09-29 セイコーエプソン株式会社 発光装置、プロジェクター、およびディスプレイ
US11508874B2 (en) 2019-11-28 2022-11-22 Seiko Epson Corporation Light emitting apparatus and projector
WO2022264854A1 (ja) * 2021-06-14 2022-12-22 豊田合成株式会社 半導体発光素子の製造方法
WO2023282177A1 (ja) * 2021-07-08 2023-01-12 株式会社小糸製作所 半導体発光素子および半導体発光素子の製造方法
US11626533B2 (en) 2019-03-26 2023-04-11 Seiko Epson Corporation Light emitting device and projector

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059837A1 (en) * 2010-11-04 2012-05-10 Koninklijke Philips Electronics N.V. Solid state light emitting devices based on crystallographically relaxed structures
SE537434C2 (sv) 2012-06-26 2015-04-28 Polar Light Technologies Ab Grupp III-nitridstruktur
TWI476953B (zh) 2012-08-10 2015-03-11 Univ Nat Taiwan 半導體發光元件及其製作方法
WO2014102512A1 (fr) * 2012-12-28 2014-07-03 Aledia Dispositif optoelectronique a microfils ou nanofils
FR3000612B1 (fr) 2012-12-28 2016-05-06 Commissariat Energie Atomique Dispositif optoelectronique a microfils ou nanofils
US11502219B2 (en) * 2013-03-14 2022-11-15 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and devices for solid state nanowire devices
KR102190675B1 (ko) * 2013-10-10 2020-12-15 삼성전자주식회사 반도체 소자의 미세 패턴 형성 방법
FR3023410A1 (fr) * 2014-07-02 2016-01-08 Aledia Dispositif optoelectronique a elements semiconducteurs et son procede de fabrication
FR3026564B1 (fr) * 2014-09-30 2018-02-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a elements semiconducteurs tridimensionnels
KR102212557B1 (ko) 2014-11-03 2021-02-08 삼성전자주식회사 나노구조 반도체 발광소자
DE102014116999A1 (de) * 2014-11-20 2016-05-25 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
FR3029015B1 (fr) * 2014-11-24 2018-03-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique a elements semiconducteurs tridimensionnels et son procede de fabrication
DE102016104616B4 (de) * 2016-03-14 2021-09-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterlichtquelle
FR3050322B1 (fr) * 2016-04-18 2019-01-25 Centre National De La Recherche Scientifique (Cnrs) Dispositif photorecepteur multicouche, a parametres de maille differents
JP6972665B2 (ja) * 2017-05-31 2021-11-24 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
FR3068517B1 (fr) * 2017-06-30 2019-08-09 Aledia Dispositif optoelectronique comportant des structures semiconductrices tridimensionnelles en configuration axiale
US10263151B2 (en) * 2017-08-18 2019-04-16 Globalfoundries Inc. Light emitting diodes
CN107482094A (zh) * 2017-09-21 2017-12-15 山西飞虹微纳米光电科技有限公司 基于GaN基轴向纳米棒阵列的LED及其制备方法
JP7053209B2 (ja) * 2017-10-02 2022-04-12 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子及び半導体成長用基板の製造方法
WO2019151508A1 (ja) * 2018-02-01 2019-08-08 日立化成株式会社 ナノ結晶膜の製造方法
JP7105442B2 (ja) 2018-08-06 2022-07-25 セイコーエプソン株式会社 発光装置およびプロジェクター
CN109148651B (zh) * 2018-08-06 2019-10-15 复旦大学 基于GaN条纹模板的多色发光InGaN量子阱外延片的制备方法
JP7188690B2 (ja) * 2018-08-22 2022-12-13 セイコーエプソン株式会社 プロジェクター
KR102652501B1 (ko) * 2018-09-13 2024-03-29 삼성디스플레이 주식회사 발광 소자의 제조방법 및 발광 소자를 포함하는 표시 장치
CN111463659B (zh) * 2019-01-21 2021-08-13 华为技术有限公司 量子点半导体光放大器及其制备方法
JP7207012B2 (ja) 2019-02-27 2023-01-18 セイコーエプソン株式会社 発光装置の製造方法、発光装置、およびプロジェクター
JP6981444B2 (ja) 2019-04-01 2021-12-15 セイコーエプソン株式会社 発光装置、発光装置の製造方法、およびプロジェクター
FR3098019B1 (fr) * 2019-06-25 2022-05-20 Aledia Dispositif optoélectronique comprenant des éléments semi-conducteurs tridimensionnels et procédé pour sa fabrication
RU2758776C2 (ru) * 2019-12-05 2021-11-01 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n
US11404473B2 (en) 2019-12-23 2022-08-02 Lumileds Llc III-nitride multi-wavelength LED arrays
US11923398B2 (en) 2019-12-23 2024-03-05 Lumileds Llc III-nitride multi-wavelength LED arrays
JP7444984B2 (ja) * 2020-06-22 2024-03-06 京セラ株式会社 半導体デバイスの製造方法、半導体基板、半導体デバイス、電子機器
JP7176700B2 (ja) * 2020-07-31 2022-11-22 セイコーエプソン株式会社 発光装置およびプロジェクター
US11094846B1 (en) 2020-08-31 2021-08-17 4233999 Canada Inc. Monolithic nanocolumn structures
JP7203390B2 (ja) 2020-10-13 2023-01-13 セイコーエプソン株式会社 発光装置およびプロジェクター
US11631786B2 (en) 2020-11-12 2023-04-18 Lumileds Llc III-nitride multi-wavelength LED arrays with etch stop layer
JP2023065945A (ja) * 2021-10-28 2023-05-15 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7272412B1 (ja) 2021-12-03 2023-05-12 信越半導体株式会社 接合型半導体ウェーハの製造方法
CN114300580B (zh) * 2021-12-30 2024-06-04 长春理工大学 一种探测器材料及其制备方法
US11799054B1 (en) 2023-02-08 2023-10-24 4233999 Canada Inc. Monochromatic emitters on coalesced selective area growth nanocolumns

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法
WO2006025407A1 (ja) * 2004-08-31 2006-03-09 Akihiko Kikuchi 発光素子及びその製造方法
JP2007027298A (ja) * 2005-07-14 2007-02-01 Matsushita Electric Works Ltd 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法
JP2008022014A (ja) * 2006-07-13 2008-01-31 Sharp Corp 窒化物半導体を加工してなる発光デバイスの処理方法
JP2008108924A (ja) 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69220824T2 (de) 1991-03-22 1998-01-29 Hitachi Ltd Optische Halbleitervorrichtung
JP3556916B2 (ja) 2000-09-18 2004-08-25 三菱電線工業株式会社 半導体基材の製造方法
JP4780113B2 (ja) 2000-09-18 2011-09-28 三菱化学株式会社 半導体発光素子
JP4381397B2 (ja) 2000-10-04 2009-12-09 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
JP3863720B2 (ja) 2000-10-04 2006-12-27 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
JP3679720B2 (ja) 2001-02-27 2005-08-03 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
JP3454791B2 (ja) 2001-03-01 2003-10-06 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
US6818465B2 (en) 2001-08-22 2004-11-16 Sony Corporation Nitride semiconductor element and production method for nitride semiconductor element
DE10213643A1 (de) 2002-03-27 2003-10-09 Geka Brush Gmbh Kosmetikeinheit
US7485902B2 (en) 2002-09-18 2009-02-03 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device
US6936851B2 (en) * 2003-03-21 2005-08-30 Tien Yang Wang Semiconductor light-emitting device and method for manufacturing the same
JP2004354617A (ja) 2003-05-28 2004-12-16 Sharp Corp フォトニック結晶とその製造方法
US7132677B2 (en) 2004-02-13 2006-11-07 Dongguk University Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
JP2006339534A (ja) 2005-06-03 2006-12-14 Sony Corp 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器
KR101019941B1 (ko) * 2006-03-10 2011-03-09 에스티씨. 유엔엠 Gan 나노선의 펄스 성장 및 ⅲ 족 질화물 반도체 기판 물질과 디바이스에서의 어플리케이션
JP2008034482A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008034483A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Works Ltd 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
EP2064745A1 (en) * 2006-09-18 2009-06-03 QuNano AB Method of producing precision vertical and horizontal layers in a vertical semiconductor structure
JP2008108757A (ja) 2006-10-23 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
US8030108B1 (en) * 2008-06-30 2011-10-04 Stc.Unm Epitaxial growth of in-plane nanowires and nanowire devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法
WO2006025407A1 (ja) * 2004-08-31 2006-03-09 Akihiko Kikuchi 発光素子及びその製造方法
JP2007027298A (ja) * 2005-07-14 2007-02-01 Matsushita Electric Works Ltd 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法
JP2008022014A (ja) * 2006-07-13 2008-01-31 Sharp Corp 窒化物半導体を加工してなる発光デバイスの処理方法
JP2008108924A (ja) 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. SEKIGUCHI ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 300, 2007, pages 259 - 262
H. SEKIGUCHI, T. NAKAZATO, A. KIKUCHI, K. KISHINO: "Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy", JOURNAL OF CRYSTAL GROWTH, vol. 300, 2007, pages 259 - 262
M. YOSHIZAWA ET AL., JPN. J. APPL. PHYS., vol. 36, no. 4B, 1997, pages L459 - L462
M. YOSHIZAWA, A. KIKUCHI, M. MORI, N. FUJITA, K. KISHINO: "Growth of Self-Organized GaN Nanostructures on A1203 (0001) by RF-Radical Source Molecular Beam Epitaxy", JPN. J. APPL. PHYS., vol. 36, no. 4B, 1997, pages L459 - L462

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117056A1 (de) * 2010-03-25 2011-09-29 Osram Opto Semiconductors Gmbh Strahlungsemittierendes halbleiterbauelement und verfahren zur herstellung eines strahlungsemittierenden halbleiterbauelements
KR101710159B1 (ko) * 2010-09-14 2017-03-08 삼성전자주식회사 Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
CN102403428A (zh) * 2010-09-14 2012-04-04 三星Led株式会社 Ⅲ族氮化物纳米棒发光装置及其制造方法
KR20120028104A (ko) * 2010-09-14 2012-03-22 삼성엘이디 주식회사 Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
US9024294B2 (en) 2010-09-14 2015-05-05 Samsung Electronics Co., Ltd. Group III nitride nanorod light emitting device
WO2012076901A1 (en) * 2010-12-09 2012-06-14 The University Of Nottingham Electrical device
JP2014533897A (ja) * 2011-12-01 2014-12-15 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives コア/シェル構造を有するナノワイヤを備えた光電子デバイス
JP2015512151A (ja) * 2012-02-14 2015-04-23 クナノ・アーベー 窒化ガリウムナノワイヤに基づくエレクトロニクス
US10236178B2 (en) 2012-02-14 2019-03-19 Hexagem Ab Gallium nitride nanowire based electronics
US9653286B2 (en) 2012-02-14 2017-05-16 Hexagem Ab Gallium nitride nanowire based electronics
JP2014060198A (ja) * 2012-09-14 2014-04-03 Oki Electric Ind Co Ltd 窒化物半導体発光ダイオードの製造方法、及び窒化物半導体発光ダイオード
JP2014107441A (ja) * 2012-11-28 2014-06-09 Fujitsu Ltd 太陽電池及びその製造方法
US9531161B2 (en) 2013-04-26 2016-12-27 Osram Opto Semiconductors Gmbh Light-emitting assembly having a semiconductor layer sequence having an active zone on a columnar structure
JP2016521459A (ja) * 2013-04-26 2016-07-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 活性ゾーンを有する半導体積層体を円柱状構造上に備えた発光アセンブリ
US10304992B2 (en) 2013-06-07 2019-05-28 Glo Ab Multicolor LED and method of fabricating thereof
US9748437B2 (en) 2013-06-07 2017-08-29 Glo Ab Multicolor LED and method of fabricating thereof
JP2016527706A (ja) * 2013-06-07 2016-09-08 グロ アーベーGlo Ab マルチカラーled及びその製造方法
JP2017195305A (ja) * 2016-04-21 2017-10-26 富士通株式会社 発光素子及びその製造方法
JP2019525460A (ja) * 2016-06-30 2019-09-05 ヴァレオ ビジョンValeo Vision 強化されたスペクトルを有する白色光を放射するモジュール
JPWO2018062252A1 (ja) * 2016-09-29 2019-06-24 日亜化学工業株式会社 発光素子
WO2018062252A1 (ja) * 2016-09-29 2018-04-05 日亜化学工業株式会社 発光素子
US11482642B2 (en) 2016-09-29 2022-10-25 Nichia Corporation Light emitting element
US10879422B2 (en) 2016-09-29 2020-12-29 Nichia Corporation Light emitting element
JP7090861B2 (ja) 2017-02-28 2022-06-27 学校法人上智学院 光デバイスおよび光デバイスの製造方法
JP2018142660A (ja) * 2017-02-28 2018-09-13 学校法人上智学院 光デバイスおよび光デバイスの製造方法
JP2022118051A (ja) * 2017-02-28 2022-08-12 学校法人上智学院 光デバイスおよび光デバイスの製造方法
JP7333666B2 (ja) 2017-02-28 2023-08-25 学校法人上智学院 光デバイスおよび光デバイスの製造方法
JP2018206861A (ja) * 2017-05-31 2018-12-27 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
JP7147132B2 (ja) 2017-05-31 2022-10-05 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
JP2019012744A (ja) * 2017-06-29 2019-01-24 学校法人 名城大学 半導体発光素子および半導体発光素子の製造方法
JP7320770B2 (ja) 2018-09-28 2023-08-04 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2020057640A (ja) * 2018-09-28 2020-04-09 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7312997B2 (ja) 2018-11-09 2023-07-24 学校法人 名城大学 半導体発光素子
JP2020077817A (ja) * 2018-11-09 2020-05-21 学校法人 名城大学 半導体発光素子
EP3696300A1 (de) 2019-02-18 2020-08-19 Aixatech GmbH Verfahren zur herstellung eines verbundmaterialkörpers insbesondere für die verwendung bei der herstellung von elektronischen oder optoelektronischen bauelementen
JP7232461B2 (ja) 2019-02-28 2023-03-03 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2020141048A (ja) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 発光装置およびプロジェクター
US11626533B2 (en) 2019-03-26 2023-04-11 Seiko Epson Corporation Light emitting device and projector
US11329190B2 (en) 2019-03-26 2022-05-10 Seiko Epson Corporation Light emitting device and projector
US11508874B2 (en) 2019-11-28 2022-11-22 Seiko Epson Corporation Light emitting apparatus and projector
WO2022045206A1 (ja) * 2020-08-31 2022-03-03 株式会社小糸製作所 半導体発光素子および半導体発光素子の製造方法
JP7520305B2 (ja) 2020-08-31 2024-07-23 株式会社小糸製作所 半導体発光素子および半導体発光素子の製造方法
WO2022190353A1 (ja) * 2021-03-12 2022-09-15 シャープ株式会社 量子ドット、量子ドット層、発光素子、及び太陽電池
JP2022141079A (ja) * 2021-03-15 2022-09-29 セイコーエプソン株式会社 発光装置、プロジェクター、およびディスプレイ
JP7320794B2 (ja) 2021-03-15 2023-08-04 セイコーエプソン株式会社 発光装置、プロジェクター、およびディスプレイ
WO2022264854A1 (ja) * 2021-06-14 2022-12-22 豊田合成株式会社 半導体発光素子の製造方法
WO2023282177A1 (ja) * 2021-07-08 2023-01-12 株式会社小糸製作所 半導体発光素子および半導体発光素子の製造方法

Also Published As

Publication number Publication date
TWI470828B (zh) 2015-01-21
KR20110063799A (ko) 2011-06-14
KR101567121B1 (ko) 2015-11-06
US20110169025A1 (en) 2011-07-14
EP2333847A4 (en) 2015-02-25
JPWO2010023921A1 (ja) 2012-01-26
US9224595B2 (en) 2015-12-29
CN102187479A (zh) 2011-09-14
TW201027800A (en) 2010-07-16
JP2013239718A (ja) 2013-11-28
JP5687731B2 (ja) 2015-03-18
CN102187479B (zh) 2014-06-18
EP2333847A1 (en) 2011-06-15
JP5547076B2 (ja) 2014-07-09
EP2333847B1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP5687731B2 (ja) 半導体光素子アレイおよびその製造方法
JP4786691B2 (ja) 半導体デバイスおよびその製造方法
US20110220871A1 (en) Nitride semiconductor light-emitting device and semiconductor light-emitting device
US9437684B2 (en) Method of producing microstructure of nitride semiconductor and photonic crystal prepared according to the method
CN101944480A (zh) 氮化物半导体芯片及其制造方法以及半导体器件
JP2003218395A (ja) 半導体発光素子、半導体レーザ素子及びこれを用いた発光装置
KR20010081005A (ko) 인듐-풍부 클러스터를 갖는 ⅲ-질화물 양자 웰 구조 및이의 제조 방법
JP5143214B2 (ja) 半導体発光素子
US10995403B2 (en) Method of forming aluminum nitride film and method of manufacturing semiconductor light-emitting element
KR20220066948A (ko) 물질의 조성물
JP2008117902A (ja) 窒化物半導体素子の製造方法
US20230307578A1 (en) Nitride Semiconductor Ultraviolet Light Emitting Element
TWI828945B (zh) 氮化物半導體紫外線發光元件
US20230197889A1 (en) Nitride semiconductor ultraviolet light-emitting element and production method therefor
US20230299232A1 (en) Nitride Semiconductor Ultraviolet Light-Emitting Element and Manufacturing Method Thereof
JP5227870B2 (ja) エピタキシャル基板、半導体素子構造、およびエピタキシャル基板の作製方法
TW202107734A (zh) 發光二極體及其製造方法
WO2024029553A1 (ja) 半導体光素子アレイ
Kishino et al. Molecular beam epitaxial growth of GaN nanocolumns and related nanocolumn emitters
JP2009253047A (ja) Iii族窒化物発光素子及びエピタキシャルウエハ
TW202425077A (zh) 奈米結構/微結構裝置
WO2024042221A1 (en) Nanostructure/microstructure device
TW202425372A (zh) 半導體光元件陣列
JP2022118051A (ja) 光デバイスおよび光デバイスの製造方法
JP2013135016A (ja) 窒化物半導体発光素子およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141161.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809577

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526554

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13061425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809577

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117007423

Country of ref document: KR

Kind code of ref document: A