WO2010023849A1 - Two-dimensional communication system - Google Patents

Two-dimensional communication system Download PDF

Info

Publication number
WO2010023849A1
WO2010023849A1 PCT/JP2009/003980 JP2009003980W WO2010023849A1 WO 2010023849 A1 WO2010023849 A1 WO 2010023849A1 JP 2009003980 W JP2009003980 W JP 2009003980W WO 2010023849 A1 WO2010023849 A1 WO 2010023849A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
terminal device
dimensional communication
supply unit
Prior art date
Application number
PCT/JP2009/003980
Other languages
French (fr)
Japanese (ja)
Inventor
門洋一
太田敏史
張兵
リム,アズマン・オスマン
マハダド ヌリシラジ
Original Assignee
独立行政法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人情報通信研究機構 filed Critical 独立行政法人情報通信研究機構
Publication of WO2010023849A1 publication Critical patent/WO2010023849A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective

Definitions

  • the present invention relates to a two-dimensional communication system, and more particularly to a two-dimensional communication system capable of transmitting and receiving power.
  • the two-dimensional communication system is realized by using a sheet-like sheet as a medium between devices conventionally connected by wire or wireless, and eliminates wiring by an indoor cable and has a wider bandwidth than wireless. It is intended to provide a high security communication connection (Patent Document 1). JP 2006-270165 A
  • the present invention has been made to solve such a problem, and an object thereof is to provide a two-dimensional communication system that can easily supply the maximum power.
  • the two-dimensional communication system includes a two-dimensional communication medium, a terminal device, a plurality of connectors, and a power feeding unit.
  • the terminal device is arranged at an arbitrary position on the two-dimensional communication medium.
  • the plurality of connectors are arranged at the periphery of the two-dimensional communication medium.
  • the power supply unit supplies power to the terminal device.
  • the terminal device transmits a measurement wave having an angular frequency arbitrarily selected from a predetermined frequency band to the two-dimensional communication medium and receives power from the power supply unit via the two-dimensional communication medium.
  • the power supply unit detects a measurement wave at a plurality of positions where a plurality of connectors are arranged, detects a plurality of amplitudes and a plurality of phases of the detected plurality of measurement waves, and detects the plurality of detected waves. Based on the amplitude and the plurality of phases, the terminal device uses the two-dimensional communication medium to supply power using at least one of the plurality of connectors so that the phase at the position of the terminal device is the same and the amplitude is maximized. Power supply processing to be performed.
  • the power supply unit selects a desired connector from which the amplitude equal to or greater than the threshold is detected from the plurality of detected amplitudes from the plurality of connectors, and performs power supply processing using the selected desired connector.
  • the power supply unit detects m (m is an integer of 2 or more) amplitudes as a plurality of detected amplitudes, and detects k (k is a positive integer) amplitudes greater than or equal to a threshold among the m amplitudes.
  • the sum of the detected k amplitudes is calculated, a desired connector is selected from a plurality of connectors so that the ratio of the supplied power to the calculated sum is larger than the reference ratio, and the selected desired Power supply processing is executed using the connector.
  • the terminal device transmits a trigger signal indicating the start of transmission of the measurement wave to the power supply unit via the two-dimensional communication medium according to a change in the communication environment, and after the trigger signal is transmitted, the measurement wave is two-dimensionally transmitted.
  • the power supply unit executes detection processing in response to reception of the trigger signal, and executes power supply processing based on the result of the detection processing.
  • the power supply unit executes the power supply process by increasing the time as the desired power in the desired connector is increased and shortening the time as the desired power is decreased.
  • the terminal device always transmits a measurement wave to the two-dimensional communication medium.
  • the power supply unit periodically executes the detection process and the power supply process repeatedly.
  • the terminal device includes a plurality of communication devices.
  • Each of the plurality of communication devices transmits a desired power signal indicating desired power to the power supply unit via the two-dimensional communication medium in response to a measurement wave transmission request from the power supply unit, and performs measurement after transmitting the desired power signal. Waves are transmitted to the two-dimensional communication medium and desired power is received via the two-dimensional communication medium.
  • the power supply unit transmits a plurality of transmission requests for requesting transmission of measurement waves to a plurality of communication devices in time division to the plurality of communication devices, and detects in accordance with a plurality of desired power signals from the plurality of communication devices. Processing and power supply processing are executed in a time-sharing manner.
  • the measurement waves transmitted from the terminal device arranged on the two-dimensional communication medium are detected by a plurality of connectors, the plurality of amplitudes and the plurality of phases of the detected plurality of measurement waves are detected, Based on the detected plurality of amplitudes and the plurality of phases, the phase at the position of the terminal device is the same and the amplitude is maximized using at least one of the plurality of connectors via the two-dimensional communication medium. Power is supplied to the terminal device.
  • the maximum power can be easily supplied to the terminal device.
  • FIG. 3 is a cross-sectional view of a two-dimensional communication sheet taken along line III-III shown in FIG.
  • It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG.
  • It is a schematic block diagram which shows the structure of the terminal device shown in FIG.
  • It is a conceptual diagram of two-dimensional communication.
  • It is a conceptual diagram of a measurement phase.
  • FIG. 6 is a schematic diagram of a two-dimensional communication system according to Embodiment 2.
  • FIG. It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG.
  • FIG. 10 is a conceptual diagram of a measurement phase and a power feeding phase in the second embodiment. 10 is a flowchart for illustrating a method of supplying power in the second embodiment.
  • 6 is a schematic diagram of a two-dimensional communication system according to Embodiment 3.
  • FIG. It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG. It is a schematic block diagram which shows the structure of the terminal device shown in FIG. FIG.
  • FIG. 10 is a conceptual diagram of a measurement phase and a power feeding phase in the third embodiment. 12 is a flowchart for illustrating a method of supplying power in the third embodiment.
  • FIG. 10 is a schematic diagram of a two-dimensional communication system according to a fourth embodiment. It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG. It is a schematic block diagram which shows the structure of the terminal device shown in FIG. It is a conceptual diagram of the measurement phase and electric power feeding phase by Embodiment 4.
  • FIG. 10 is a flowchart for illustrating a method of supplying power in the fourth embodiment.
  • FIG. 1 is a schematic diagram of a two-dimensional communication system according to Embodiment 1 of the present invention.
  • a two-dimensional communication system 100 according to Embodiment 1 of the present invention includes a power feeding unit 1, connectors 2-5, wires 6-9, a terminal device 10, a two-dimensional communication sheet 30, and the like. Is provided.
  • the power supply unit 1 is disposed outside the two-dimensional communication sheet 30 and connected to the connectors 2 to 5 by wires 6 to 9, respectively.
  • the connectors 2 and 3 are arranged on one side of the two-dimensional communication sheet 30, and the connectors 4 and 5 are arranged on the other side of the two-dimensional communication sheet 30.
  • the terminal device 10 is arranged at an arbitrary position on the two-dimensional communication sheet 30.
  • the power supply unit 1 receives the measurement waves wv1 to wv4 received by the connectors 2 to 5 via the wirings 6 to 9, respectively.
  • the power feeding unit 1 detects the amplitudes I1 to I4 of the measurement waves wv1 to wv4 and detects the phases ⁇ 1 to ⁇ 4 of the measurement waves wv1 to wv4. Thereafter, in the power feeding phase, the power feeding unit 1 uses at least one of the connectors 2 to 5 so that the terminal device 10 can receive the maximum power by a method described later based on the amplitudes I1 to I4 and the phases ⁇ 1 to ⁇ 4. Is used to supply power to the terminal device 10.
  • the connectors 2 to 5 receive the measurement waves wv transmitted from the terminal device 10 as measurement waves wv1 to wv4 via the two-dimensional communication sheet 30, respectively, and receive the received measurement waves wv1 to wv4 through the wirings 6 to 9, respectively.
  • the connectors 2 to 5 transmit the power supplied from the power supply unit 1 via the wirings 6 to 9 to the terminal device 10 via the two-dimensional communication sheet 30, respectively.
  • Wiring 6 to 9 exchange measurement waves and power between the connectors 2 to 5 and the power supply unit 1, respectively.
  • the terminal device 10 receives power via the two-dimensional communication sheet 30 and accumulates the received power.
  • the two-dimensional communication sheet 30 has a substantially rectangular planar shape.
  • FIG. 2 is a perspective view of the two-dimensional communication sheet 30 shown in FIG. 3 is a cross-sectional view of the two-dimensional communication sheet 30 taken along line III-III shown in FIG.
  • the two-dimensional communication sheet 30 includes a dielectric portion 31 and conductor portions 32 and 33.
  • the dielectric portion 31 is made of, for example, a plastic or foam material having a substantially constant thickness, and has a sheet-like shape.
  • the conductor portion 32 is made of, for example, metal, and is formed in a mesh shape on one main surface of the dielectric portion 31.
  • the opening 32 ⁇ / b> A surrounded by the mesh-like conductor portion 32 has a square shape, and the plurality of openings 32 ⁇ / b> A are arranged at intervals shorter than the electromagnetic wave length in the outside of the two-dimensional communication sheet 30. .
  • the conductor portion 33 is made of, for example, metal and is formed on the entire surface of the other main surface of the dielectric portion 31 (the surface opposite to the surface on which the conductor portion 32 is formed).
  • the mesh-like conductor portion 32 serves to weaken the mutual electromagnetic coupling between the outside world and the sheet-like dielectric portion 31, it is assumed that the electromagnetic coupling between the outside world and the dielectric portion 31 is sufficiently weak.
  • the electromagnetic wave propagates at 1 / ( ⁇ ) 1/2 .
  • is the magnetic permeability of the dielectric part 31
  • is the dielectric constant of the dielectric part 31.
  • the evanescent wave leaking from each opening 32A also changes the electromagnetic wave phase in a spatial period shorter than the electromagnetic wave length. It is not a wave that propagates far away.
  • the attenuation coefficient in this case is exp ( ⁇ ( ⁇ / ⁇ 0 ⁇ 1) 1/2 ( ⁇ / c) z).
  • ⁇ 0 is the dielectric constant of the outside world
  • is the angular frequency of the signal
  • c is the speed of light in the outside world
  • z is from the surface on which the conductor part 32 of the dielectric part 31 is formed. Is the distance.
  • the area where the evanescent wave oozes out can be reduced to about the wavelength with respect to the thin film thickness of the dielectric portion 31.
  • the two-dimensional communication sheet 30 propagates the electromagnetic wave at 1 / ( ⁇ ) 1/2 and exudes an evanescent wave from one main surface (surface on which the conductor portion 32 is formed).
  • FIG. 4 is a schematic block diagram showing the configuration of the power supply unit 1 shown in FIG.
  • power supply unit 1 includes amplitude / phase measuring devices 11 to 14, a control device 15, an oscillator 16, phase adjusters 17 to 20, and amplifiers 21 to 24.
  • the amplitude / phase measuring instruments 11 to 14 are provided corresponding to the connectors 2 to 5, respectively, and are connected to the connectors 2 to 5 by wirings 6 to 9.
  • the amplitude / phase measuring instruments 11 to 14 receive the measurement waves wv1 to wv4 from the connectors 2 to 5, respectively.
  • the measurement waves wv1 to wv4 include sine waves I1sin ( ⁇ t), I2sin ( ⁇ t ⁇ 2), I3sin ( ⁇ t ⁇ 3), and I4sin ( ⁇ t ⁇ 4), respectively.
  • the control device 15 receives the amplitudes I1 to I4 and the phases ⁇ 1 to ⁇ 4 from the amplitude / phase measuring devices 11 to 14, respectively. In addition, the control device 15 holds a threshold value I_th and a reference ratio RA_std.
  • the control device 15 selects the connectors 2 and 3 as connectors used for power supply, and determines the amplitude of power supplied via the connectors 2 and 3 as 10 [mW]. Then, the control device 15 calculates amplification factors A1 and A2 for the connectors 2 and 3 to supply 10 [mW], and outputs the calculated amplification factors A1 and A2 to the amplifiers 21 and 22, respectively.
  • the amplitudes I1 to I4 constitute m (m is an integer greater than or equal to 2) amplitudes, and I1 to I3 constitute k (k is a positive integer) amplitudes greater than or equal to the threshold value I_th.
  • the oscillated sine wave sin ( ⁇ t) is output to the phase adjusters 17-20.
  • the phase adjusters 17 to 20 are provided corresponding to the amplifiers 21 to 24, respectively, and receive a sine wave sin ( ⁇ t) from the oscillator 16.
  • the phase adjusters 17 to 20 receive the phase adjustment amounts ⁇ 1_CTL to ⁇ 4_CTL from the control device 15, the phase adjusters 17 to 20 adjust the phase of the sine wave sin ( ⁇ t) by the received phase adjustment amounts ⁇ 1_CTL to ⁇ 4_CTL.
  • ⁇ t + ⁇ 1_CTL) to sin ( ⁇ t + ⁇ 4_CTL) are generated, and the generated sine waves sin ( ⁇ t + ⁇ 1_CTL) to sin ( ⁇ t + ⁇ 4_CTL) are output to the amplifiers 21 to 24, respectively.
  • phase adjusters 17 to 20 do not receive the phase adjustment amounts ⁇ 1_CTL to ⁇ 4_CTL from the control device 15, nothing is output to the amplifiers 21 to 24, respectively.
  • the phase of the wave sin ( ⁇ t) is adjusted to generate sine waves sin ( ⁇ t) and sin ( ⁇ t + ⁇ 2). Then, the phase adjuster 17 outputs the sine wave sin ( ⁇ t) to the amplifier 21, and the phase adjuster 18 outputs the sine wave sin ( ⁇ t + ⁇ 2) to the amplifier 22.
  • the phase adjusters 19 and 20 do not output anything to the amplifiers 23 and 24, respectively.
  • Amplifiers 21 to 24 are provided corresponding to connectors 2 to 5, respectively.
  • the amplifiers 21 to 24 receive the amplification factors A1 to A4 from the control device 15, respectively, and the sine waves sin ( ⁇ t + ⁇ 1_CTL) to sin ( ⁇ t + ⁇ 4_CTL) from the phase adjusters 17 to 20, respectively.
  • the amplifiers 21 to 24 amplify the sine waves sin ( ⁇ t + ⁇ 1_CTL) to sin ( ⁇ t + ⁇ 4_CTL) by the amplification factors A1 to A4, respectively, and generate the amplified sine waves I0sin ( ⁇ t + ⁇ 1_CTL) to I0sin ( ⁇ t + ⁇ 4_CTL). Then, the amplifiers 21 to 24 output the sine waves I0sin ( ⁇ t + ⁇ 1_CTL) to I0sin ( ⁇ t + ⁇ 4_CTL) to the connectors 2 to 5 via the wirings 6 to 9, respectively.
  • the amplifiers 21 and 22 receive the sine waves sin ( ⁇ t) and sin ( ⁇ t + ⁇ 2), respectively. Therefore, the amplifier 21 amplifies the sine wave sin ( ⁇ t) by the amplification factor A1, and generates a sine wave I0sin ( ⁇ t) having an amplitude I0 of 10 [mW]. Then, the amplifier 21 outputs the sine wave I 0 sin ( ⁇ t) to the connector 2 via the wiring 6. The amplifier 22 amplifies the sine wave sin ( ⁇ t + ⁇ 2) by the amplification factor A2, and generates a sine wave I0sin ( ⁇ t + ⁇ 2) having an amplitude I0 of 10 [mW]. Then, the amplifier 22 outputs a sine wave I0sin ( ⁇ t + ⁇ 2) to the connector 3 via the wiring 7.
  • FIG. 5 is a schematic block diagram showing the configuration of the terminal device 10 shown in FIG.
  • terminal device 10 includes a connector 101, a power accumulator 102, and an oscillator 103.
  • the connector 101 is disposed on the two-dimensional communication sheet 30 in contact with the two-dimensional communication sheet 30.
  • the connector 101 receives the sine wave I 0 sin ( ⁇ t + ⁇ ) from the power supply unit 1 via the two-dimensional communication sheet 30 and outputs the received sine wave I 0 sin ( ⁇ t + ⁇ ) to the power accumulator 102. Further, the connector 101 receives the sine wave I 0 sin ( ⁇ t ⁇ ) from the oscillator 103 and transmits the received sine wave I 0 sin ( ⁇ t ⁇ ) to the two-dimensional communication sheet 30.
  • the power accumulator 102 accumulates the sine wave I 0 sin ( ⁇ t + ⁇ ) received from the connector 101 as electric power.
  • the oscillator 103 oscillates a sine wave I 0 sin ( ⁇ t ⁇ ) having an amplitude of 10 [mW], and outputs the oscillated sine wave I 0 sin ( ⁇ t ⁇ ) to the connector 101.
  • FIG. 6 is a conceptual diagram of two-dimensional communication.
  • connectors 2 to 5 shown in FIG. 1 are installed on the periphery of two-dimensional communication sheet 30, and terminal device 10 is arranged on two-dimensional communication sheet 30.
  • the connectors 2 to 5 are in contact with the dielectric portion 31 of the two-dimensional communication sheet 30, and the connector 101 of the terminal device 10 is in contact with the opening 32A of the two-dimensional communication sheet 30.
  • Connectors 2 to 5 change the scalar potential and / or vector potential of a built-in electrode (not shown) according to the transmission wave received from the power supply unit 1.
  • a change in scalar potential corresponds to a change in potential
  • a change in vector potential corresponds to a change in current distribution, a change in electric flux density, and a change in distribution of displacement current.
  • the electromagnetic wave propagated to the position where the terminal device 10 is disposed oozes the evanescent wave EWV from the opening 32A of the conductor part 32.
  • the connector 101 of the terminal device 10 detects the evanescent wave EWV with its built-in electrode (not shown) and receives the transmission wave transmitted from the connectors 2 to 5.
  • the two-dimensional communication is performed using an electromagnetic wave transmitted near the surface of the two-dimensional communication sheet 30.
  • the measurement wave emitted from the connector 101 of the terminal device 10 also propagates through the two-dimensional communication sheet 30 by the method described above.
  • FIG. 7 is a conceptual diagram of the measurement phase.
  • FIG. 8 is a conceptual diagram of the power feeding phase.
  • terminal apparatus 10 transmits measurement wave wv composed of sine wave I0sin ( ⁇ t ⁇ ) to two-dimensional communication sheet 30, and connectors 2-5 receive sine wave I0sin ( ⁇ t ⁇ ) are received as sine waves I1sin ( ⁇ t), I2sin ( ⁇ t ⁇ 2), I3sin ( ⁇ t ⁇ 3), and I4sin ( ⁇ t ⁇ 4), respectively.
  • the power supply unit 1 uses the method described above based on the sine waves I1sin ( ⁇ t), I2sin ( ⁇ t ⁇ 2), I3sin ( ⁇ t ⁇ 3), and I4sin ( ⁇ t ⁇ 4) from the connectors 2 to 5. Are determined to be connectors 2 and 3.
  • the power supply unit 1 supplies the sine wave I0sin ( ⁇ t) to the connector 2 via the wiring 6 and supplies the sine wave I0sin ( ⁇ t + ⁇ 2) to the connector 3 via the wiring 7.
  • the connector 2 transmits the sine wave I0sin ( ⁇ t) to the two-dimensional communication sheet 30, and the connector 3 transmits the sine wave I0sin ( ⁇ t + ⁇ 2) to the two-dimensional communication sheet 30.
  • the connector 101 receives the sine waves I 0 sin ( ⁇ t) and I 0 sin ( ⁇ t + ⁇ 2), and outputs the received sine waves I 0 sin ( ⁇ t) and I 0 sin ( ⁇ t + ⁇ 2) to the power storage 102. Then, the power accumulator 102 accumulates sine waves I0sin ( ⁇ t) and I0sin ( ⁇ t + ⁇ 2) as electric power (see FIG. 8).
  • the terminal device 10 receives as a power a sine wave in which two sine waves I0sin ( ⁇ t) and I0sin ( ⁇ t + ⁇ 2) are strengthened.
  • the connector 2 When the terminal device 10 transmits a sine wave I0sin ( ⁇ t ⁇ ) having an amplitude I0 of 10 [dBm] as the measurement wave wv, the connector 2 has a sine wave I1sin ( ⁇ t having an amplitude I1 of 7.0 [dBm]. ) And the connector 3 receives a sine wave I2sin ( ⁇ t ⁇ 2) having an amplitude I2 of 0.0 [dBm], so that the connectors 2 and 3 each have an amplitude I0 of 10 [dBm].
  • Is supplied to the connector 4 and the sine wave I4sin ( ⁇ t ⁇ 4) received by the connector 5 is supplied to the connector 5 as a sine wave I0sin ( ⁇ t + ⁇ 4) obtained by reversing the phase of ⁇ 4. To do.
  • the connectors 4 and 5 transmit sine waves I 0 sin ( ⁇ t + ⁇ 3) and I0 sin ( ⁇ t + ⁇ 4) to the two-dimensional communication sheet 30, respectively.
  • the terminal device 10 Since the four sine waves I0sin ( ⁇ t), I0sin ( ⁇ t + ⁇ 2), I0sin ( ⁇ t + ⁇ 3), and I0sin ( ⁇ t + ⁇ 4) have the same phase at the position of the terminal device 10, the terminal device 10 has four sine waves I0sin.
  • a sine wave in which ( ⁇ t), I0sin ( ⁇ t + ⁇ 2), I0sin ( ⁇ t + ⁇ 3), and I0sin ( ⁇ t + ⁇ 4) are strengthened is received and stored as electric power.
  • FIG. 9 is a flowchart for explaining the power supply method according to the first embodiment.
  • terminal apparatus 10 transmits a measurement wave composed of sine wave I0sin ( ⁇ t ⁇ ) to two-dimensional communication sheet 30 (step S1). .
  • the power supply unit 1 receives the measurement waves transmitted from the terminal device 10 as a plurality of measurement waves by the plurality of connectors 2 to 5 (step S2).
  • the power supply unit 1 detects a plurality of amplitudes and a plurality of phases of the plurality of measurement waves (step S3). Subsequently, the power supply unit 1 detects an amplitude greater than or equal to the threshold I_th among the detected plurality of amplitudes, and the ratio between the sum of the detected amplitudes and the sum when the detected amplitudes are added in descending order is A connector that is larger than the reference ratio is determined as a connector for supplying power (step S4).
  • the power supply unit 1 then generates a sine wave having a phase obtained by reversing the phase of the measurement wave received by the connector determined as the connector for supplying power and the amplitude of the sine wave transmitted by the terminal device 10. It transmits through the determined connector (step S5).
  • the terminal device 10 receives the sine wave from the power supply unit 1 via the two-dimensional communication sheet 30, and accumulates the received sine wave as electric power (step S6). Thus, a series of operations is completed.
  • a plurality of amplitudes and a plurality of phases of the plurality of measurement waves when the measurement waves transmitted from the terminal device 10 are received by the plurality of connectors 2 to 5 are detected, and based on the detected plurality of amplitudes. Then, a connector for supplying as much power as possible is determined, and using the determined connector, power is transmitted from the power supply unit 1 to the terminal device 10 so that the phase is the same at the position of the terminal device 10.
  • the maximum power can be easily supplied to the terminal device 10.
  • the connectors installed on the two-dimensional communication sheet 30 are the four connectors 2 to 5.
  • the embodiment of the present invention is not limited to this, and the two-dimensional communication sheet is used.
  • the connector installed in 30 should just consist of two or more connectors.
  • the two or more connectors may be disposed along one side of the two-dimensional communication sheet 30 or may be disposed along two or more sides of the two-dimensional communication sheet 30.
  • FIG. 10 is a schematic diagram of a two-dimensional communication system according to the second embodiment.
  • a two-dimensional communication system 100A according to Embodiment 2 is obtained by replacing power supply unit 1 and terminal device 10 of two-dimensional communication system 100 shown in FIG. 1 with power supply unit 1A and terminal device 10A, respectively. Others are the same as those of the two-dimensional communication system 100.
  • the terminal device 10A generates a trigger signal TRG when a situation change occurs, such as when the amount of power in the terminal device 10 falls below the threshold value PW_th, when the position of the terminal device 10A changes, or when the surrounding electromagnetic wave environment changes. Then, the generated trigger signal TRG is transmitted to the power supply unit 1 via the two-dimensional communication sheet 30. Then, after transmitting the trigger signal TRG, the terminal device 10A transmits a measurement wave including a sine wave I0sin ( ⁇ t ⁇ ) to the two-dimensional communication sheet 30. Thereafter, the terminal device 10A receives and accumulates power from the power feeding unit 1A.
  • the power feeding unit 1A determines a connector for supplying power by the same method as that of the power feeding unit 1 based on the measurement wave received in the measurement phase, and uses the determined connector to supply power. Supply to terminal device 10A.
  • the power supply unit 1A supplies power to the terminal device 10A while controlling the power supply time according to the total amount of power output by the connector used for power supply. That is, the power supply unit 1A increases the power supply time as the total power amount is larger, and supplies the power to the terminal device 10A while decreasing the power supply time as the total power amount is smaller.
  • FIG. 11 is a schematic block diagram showing the configuration of the power supply unit 1A shown in FIG.
  • power supply unit 1A replaces amplitude / phase measuring devices 11-14 of power supply unit 1 shown in FIG. 4 with amplitude / phase measuring devices 11A-14A, and replaces control device 15 with control device 15A.
  • the input units 25 to 28 are added, and the other parts are the same as those of the power supply unit 1.
  • the amplitude / phase measuring instruments 11A to 14A are provided corresponding to the connectors 2 to 5, respectively, and are connected to the connectors 2 to 5 by wirings 6 to 9.
  • the amplitude / phase measuring devices 11A to 14A enter the measurement phase when receiving the trigger signal TRG from the connectors 2 to 5 via the wirings 6 to 9, respectively.
  • the control device 15A selects a connector for supplying power from the connectors 2 to 5 by the same method as the control device 15 based on the amplitudes I1 to I4 and the phases ⁇ 1 to ⁇ 4. Then, the control device 15A calculates the power supply time according to the total power supplied by the selected connector, and the input provided corresponding to the connector that uses the calculated power supply time for power supply. Part (at least one of the input parts 25 to 28). For example, when the connectors 2 and 3 are selected as the connectors for supplying power, the control device 15A outputs the power supply time to the input units 25 and 26. In addition, the control device 15 ⁇ / b> A performs the same function as the control device 15.
  • the input units 25 to 28 are provided corresponding to the connectors 2 to 5, respectively, and are arranged between the phase adjusters 17 to 20 and the amplifiers 21 to 24.
  • the input units 25 to 28 When receiving the power supply time from the control device 15A, the input units 25 to 28 output the sine waves input from the phase adjusters 17 to 20 to the amplifiers 21 to 24 during the power supply time, respectively. To do. Input units 25 to 28 do not output a sine wave to amplifiers 21 to 24 when they do not receive the power supply time from control device 15A.
  • FIG. 12 is a schematic block diagram showing the configuration of the terminal device 10A shown in FIG. Referring to FIG. 12, terminal device 10 ⁇ / b> A is obtained by adding control device 104 to terminal device 10 shown in FIG. 5, and is otherwise the same as terminal device 10.
  • the control device 104 detects the power amount PW stored in the power storage 102 and determines whether or not the detected power amount PW is equal to or less than the threshold value PW_th. When control device 104 determines that power amount PW is equal to or less than threshold value PW_th, control device 104 generates trigger signal TRG and outputs the generated trigger signal TRG to connector 101. Further, the control apparatus 101 controls the oscillator 103 so as to generate a measurement wave after outputting the trigger signal TRG.
  • control device 104 does not generate the trigger signal TRG and does not control the oscillator 103 so as to generate a measurement wave when the power amount PW is larger than the threshold value PW_th.
  • the oscillator 103 In the terminal device 10 ⁇ / b> A, the oscillator 103 generates a measurement wave and outputs it to the connector 101 in accordance with control from the control device 104. Further, when the connector 101 receives the trigger signal TRG from the control device 104, the connector 101 transmits the received trigger signal TRG to the two-dimensional communication sheet 30.
  • FIG. 13 is a conceptual diagram of the measurement phase and the power feeding phase in the second embodiment.
  • terminal device 10A generates trigger signal TRG1 and transmits it to power supply unit 1A when its own power amount PW becomes equal to or less than threshold value PW_th. Then, the power feeding unit 1A receives the reception signal R1 of the trigger signal TRG1, and enters the measurement phase MP1.
  • a connector for supplying power is determined by the method described above based on the plurality of received measurement waves.
  • the power feeding unit 1 ⁇ / b> A determines the connectors for supplying power as the connectors 2 and 3.
  • the amplification factors A1 and A2 are output to the amplifiers 21 and 22, respectively.
  • the input unit 25 of the power supply unit 1A outputs the sine wave sin ( ⁇ t) received from the phase adjuster 17 to the amplifier 21 during the time width (power supply time) TPP1 , and the input unit 26 adjusts the phase.
  • the sine wave sin ( ⁇ t + ⁇ 2) received from the device 18 is output to the amplifier 22 for a time width (power supply time) T PP1 .
  • the amplifier 21 of the power supply unit 1A amplifies the sine wave sin ( ⁇ t) received from the input unit 25 so that the amplitude becomes I0, and two-dimensionally the sine wave I0sin ( ⁇ t) via the wiring 6 and the connector 2.
  • the amplifier 22 amplifies the sine wave sin ( ⁇ t + ⁇ 2) received from the input unit 26 so that the amplitude becomes I0, and the amplifier 22 transmits the sine wave I0sin ( ⁇ t + ⁇ 2) to the 2 through the wiring 7 and the connector 3. It transmits to the dimension communication sheet 30.
  • the terminal device 10A again detects that the power amount PW has become equal to or less than the threshold value PW_th, the terminal device 10A generates the trigger signal TRG2 and transmits it to the power feeding unit 1A. Then, the power feeding unit 1A receives the reception signal R2 of the trigger signal TRG2, and enters the measurement phase MP2.
  • a connector for supplying power is determined by the above-described method based on the plurality of received measurement waves.
  • the power supply unit 1A determines the connectors for supplying power as connectors 2 to 4.
  • the input unit 25 of the power feeding unit 1A outputs the sine wave sin ( ⁇ t) received from the phase adjuster 17 to the amplifier 21 during the time width (power supply time) TPP2 , and the input unit 26 adjusts the phase.
  • the sine wave sin ( ⁇ t + ⁇ 2) received from the phase adjuster 18 is output to the amplifier 22 during the time width (power supply time) T PP2 , and the input unit 27 receives the sine wave sin ( ⁇ t + ⁇ 3) received from the phase adjuster 19. Is output to the amplifier 23 for a time width (power supply time) TPP2 .
  • the amplifier 21 of the power supply unit 1A amplifies the sine wave sin ( ⁇ t) received from the input unit 25 so that the amplitude becomes I0, and two-dimensionally the sine wave I0sin ( ⁇ t) via the wiring 6 and the connector 2.
  • the amplifier 22 amplifies the sine wave sin ( ⁇ t + ⁇ 2) received from the input unit 26 so that the amplitude becomes I0, and the amplifier 22 transmits the sine wave I0sin ( ⁇ t + ⁇ 2) to the 2 through the wiring 7 and the connector 3.
  • the amplifier 23 amplifies the sine wave sin ( ⁇ t + ⁇ 3) received from the input unit 27 so that the amplitude becomes I0, and the amplifier 23 transmits the sine wave I0sin ( ⁇ t + ⁇ 3) via the wiring 8 and the connector 4. Transmit to the two-dimensional communication sheet 30.
  • FIG. 14 is a flowchart for explaining a power supply method according to the second embodiment.
  • the flowchart shown in FIG. 14 is the same as the flowchart shown in FIG. 9 except that steps S11 to S14 are added to the flowchart shown in FIG. 9 and step S5 is replaced with step S5A.
  • terminal device 10 ⁇ / b> A determines whether or not a situation change has occurred, for example, power amount PW stored therein becomes equal to or less than threshold value PW_th. (Step S11).
  • step S11 When it is determined in step S11 that no situation change has occurred, the series of operations ends.
  • step S11 when it is determined in step S11 that a situation change has occurred, the terminal apparatus 10A generates and transmits a trigger signal TRG (step S12), and the power feeding unit 1A receives the trigger signal TRG (step S13). . Accordingly, the power feeding unit 1A and the terminal device 10A enter the measurement phase.
  • step S4 the power supply unit 1A determines the power supply time according to the power supplied from the determined connector (step S14). Then, the power feeding unit 1A converts a sine wave having a phase obtained by reversing the phase of the measurement wave received by the connector determined as the connector for supplying power and the amplitude of the sine wave transmitted by the terminal device 10A to the power During the supply time, the data is transmitted through the determined connector (step S5A).
  • step S6 described above is executed, and a series of operations is completed.
  • the terminal device 10A when the situation in the terminal device 10A changes, the terminal device 10A generates a trigger signal TRG for entering the measurement phase and transmits it to the power supply unit 1A.
  • the power supply unit 1A responds to the reception of the trigger signal TRG. Then, the measurement phase and the power feeding phase are sequentially executed to supply power to the terminal device 10A.
  • FIG. 15 is a schematic diagram of a two-dimensional communication system according to the third embodiment.
  • a two-dimensional communication system 100B according to Embodiment 3 is obtained by replacing power supply unit 1 and terminal device 10 of two-dimensional communication system 100 shown in FIG. 1 with power supply unit 1B and terminal device 10B, respectively. Others are the same as those of the two-dimensional communication system 100.
  • the terminal device 10B is arranged at an arbitrary position on the two-dimensional communication sheet 30 and constantly transmits a measurement wave to the two-dimensional communication sheet 30 until power is not required.
  • the power feeding unit 1B periodically measures the measurement wave transmitted from the terminal device 10B by the connectors 2-5. Then, when the power feeding unit 1B measures a plurality of measurement waves by the connectors 2 to 5, the power feeding unit 1B supplies power to the terminal device 10B by the same method as the power feeding unit 1.
  • FIG. 16 is a schematic block diagram showing the configuration of the power supply unit 1B shown in FIG. Referring to FIG. 16, a power feeding unit 1B is obtained by replacing the amplitude / phase measuring devices 11-14 of power feeding unit 1 shown in FIG. 4 with amplitude / phase measuring devices 11B-14B, respectively. Same as 1.
  • the amplitude / phase measuring instruments 11B to 14B are provided corresponding to the connectors 2 to 5, respectively, and are connected to the connectors 2 to 5 by wirings 6 to 9, respectively.
  • the amplitude / phase measuring instruments 11B to 14B have built-in timers (not shown) that are synchronized with each other. Based on the built-in timers, the wirings 6 to 9 are connected from the connectors 2 to 5, respectively.
  • the detected amplitudes I 1 to I 4 and phases ⁇ 1 to ⁇ 4 are output to the control device 15 at regular intervals.
  • FIG. 17 is a schematic block diagram showing the configuration of the terminal device 10B shown in FIG.
  • terminal device 10B is the same as terminal device 10 except that oscillator 103A and control device 104 of terminal device 10A shown in FIG. 12 are replaced by oscillator 103A and control device 104A, respectively. is there.
  • the control device 104A generates a stop signal STP and outputs the generated stop signal STP to the oscillator 103A when power for turning off the power of the terminal device 10B becomes unnecessary.
  • FIG. 18 is a conceptual diagram of the measurement phase and the power feeding phase in the third embodiment.
  • the power feeding unit 1B executes the measurement phase MP1, and executes the power feeding phase PP1 by the same method as that of the power feeding unit 1 based on the plurality of measurement waves measured by the connectors 2 to 5 in the measurement phase MP1.
  • the power supply unit 1B executes the measurement phase MP2 after a certain period of time has elapsed from the measurement phase MP1, and based on the plurality of measurement waves measured by the connectors 2 to 5 in the measurement phase MP2, the same method as the power supply unit 1 To execute the power feeding phase PP2.
  • the power supply unit 1B executes the measurement phase MP3 after a certain period of time has elapsed from the measurement phase MP2, and based on the plurality of measurement waves measured by the connectors 2 to 5 in the measurement phase MP3, the same method as the power supply unit 1 To execute the power feeding phase PP3.
  • FIG. 19 is a flowchart for explaining the power supply method according to the third embodiment.
  • the flowchart shown in FIG. 19 is the same as the flowchart shown in FIG. 9 except that step S1 of the flowchart shown in FIG. 9 is replaced with step S21 and steps S22 to S24 are added.
  • the terminal device 10B constantly transmits a measurement wave including a sine wave (step S21). Then, the power supply unit 1B determines whether or not to enter the measurement phase by determining whether or not to measure the measurement wave based on the built-in timer (step S22).
  • step S22 If it is determined in step S22 that the measurement phase is entered, the above-described steps S2 to S6 are sequentially executed.
  • step S6 the terminal device 10B determines whether or not power is unnecessary (step S23).
  • step S23 the series of operations returns to step S21, and the above-described steps S21, S22, S2 to S6 are performed until it is determined in step S23 that power is not required. S23 is repeatedly executed.
  • step S23 the terminal device 10B stops transmission of a measurement wave (step S24). As a result, a series of operations is completed.
  • the terminal device 10B constantly transmits a measurement wave until it is determined that power is unnecessary, and the power supply unit 1B periodically enters the measurement phase to perform measurement. Since power is supplied to the terminal device 10B, it is possible to quickly detect a change in the status of the terminal device 10B and quickly supply power.
  • FIG. 20 is a schematic diagram of a two-dimensional communication system according to the fourth embodiment.
  • power supply unit 1 of 2D communication system 100 shown in FIG. 1 is replaced with power supply unit 1C
  • terminal device 10 is replaced with terminal devices 111-113. The rest is the same as the two-dimensional communication system 100.
  • the power supply unit 1C holds the addresses Add111 to Add113 of the terminal devices 111 to 113 arranged on the two-dimensional communication sheet 30.
  • the power supply unit 1C generates beacons Bc1 to Bc3 for the terminal devices 111 to 113, and transmits the generated beacons Bc1 to Bc3 to the terminal devices 111 to 113 in a time division manner.
  • beacons Bc1 to Bc3 include addresses Add111 to Add113, respectively.
  • Terminal devices 111 to 113 are arranged on the two-dimensional communication sheet 30. Then, the terminal device 111 receives the beacons Bc1 to Bc3 from the power supply unit 1C in a time division manner, and detects that the beacon Bc1 is a beacon addressed to itself. In addition, the terminal device 112 receives the beacons Bc1 to Bc3 from the power supply unit 1C in a time division manner, and detects that the beacon Bc2 is a beacon addressed to itself. Further, the terminal device 113 receives the beacons Bc1 to Bc3 from the power supply unit 1C in a time division manner, and detects that the beacon Bc3 is a beacon addressed to itself.
  • FIG. 21 is a schematic block diagram showing the configuration of the power supply unit 1C shown in FIG.
  • power supply unit 1 ⁇ / b> C is obtained by adding a time division multiplexing device 29 to power supply unit 1 shown in FIG. 4, and the rest is the same as power supply unit 1.
  • the time division multiplexing device 29 is connected to the connector 2 by, for example, the wiring 6.
  • the time division multiplexing device 29 holds the addresses Add111 to Add113 of the terminal devices 111 to 113, and transmits the beacons Bc1 to Bc3 to the terminal devices 111 to 113 via the connector 2 in a time division manner, respectively.
  • the time division multiplexing device 29 receives the desired power notifications PNTF1 to PNTF3 from the terminal devices 111 to 113, and outputs the received desired power notifications PNTF1 to PNTF3 to the control device 15.
  • control device 15 determines a connector for supplying power
  • amplification factor is set so that the power supplied using the determined connector becomes the desired power of each terminal device 111-113. And the determined amplification factor is output to at least one of the amplifiers 21 to 24.
  • FIG. 22 is a schematic block diagram showing the configuration of the terminal device 111 shown in FIG. Referring to FIG. 22, terminal device 111 is obtained by adding discriminator 105 and communication module 106 to terminal device 10 shown in FIG. 5, and is otherwise the same as terminal device 10.
  • the discriminator 105 receives the received radio wave from the connector 101, converts the received radio wave from an analog signal to a digital signal, and decodes the converted digital signal. When the decoded signal includes an address, the discriminator 105 outputs the decoded signal to the communication module 106. Further, the discriminator 105 outputs the received radio wave to the power accumulator 102 when the decoded signal does not include an address.
  • the decoded signal When the received radio wave is made up of beacons Bc1 to Bc3, the decoded signal includes the address Add, so the discriminator 105 outputs the decoded signal to the communication module 106. Further, when the received radio wave is composed of power, the decoded signal does not include the address Add, and therefore the discriminator 105 outputs the received radio wave to the power accumulator 102.
  • the communication module 106 determines that the decoded signal includes the address Add111 of the terminal device 111
  • the communication module 106 generates a desired power notification PNTF1 indicating the desired power of the terminal device 111, and the generated desired power notification PNTF1 is sent to the connector 101.
  • an instruction signal COM for instructing generation of the measurement wave wv_111 is generated and output to the oscillator 103.
  • the communication module 106 discards the decoded signal.
  • the oscillator 103 oscillates the measurement wave wv_111 in response to the instruction signal COM from the communication module 106, and outputs the oscillated measurement wave wv_111 to the connector 101.
  • Each of the terminal devices 112 and 113 shown in FIG. 20 has the same configuration as the terminal device 111 shown in FIG.
  • FIG. 23 is a conceptual diagram of a measurement phase and a power feeding phase according to the fourth embodiment.
  • time division multiplexing device 29 of power supply unit 1C generates beacon Bc1 including address Add111 of terminal device 111, and transmits the generated beacon Bc1 to two-dimensional communication sheet 30 via connector 2. To do.
  • the communication module 106 of the terminal device 111 receives the beacon Bc1 from the power feeding unit 1C, and detects that the received beacon Bc1 includes the address Add111 of the terminal device 111.
  • the communication module 106 of the terminal device 111 generates a desired power notification PNTF1 indicating the desired power PW_111 in the terminal device 111, and transmits the generated desired power notification PNTF1 to the two-dimensional communication sheet 30 via the connector 101.
  • the instruction signal COM is generated and output to the oscillator 103.
  • the time division multiplexing device 29 of the power supply unit 1C receives the desired power notification PNTF1 via the connector 2 and the wiring 6, and outputs the desired power PW_111 indicated by the received desired power notification PNTF1 to the control device 15.
  • the amplitude / phase measuring devices 11 to 14 of the power supply unit 1C receive the sine waves I1sin ( ⁇ t), I2sin ( ⁇ t ⁇ 2), and I3sin ( ⁇ t ⁇ 3) received from the connectors 2 to 5, respectively, in the measurement phase MP1. , I4sin ( ⁇ t ⁇ 4), amplitudes I1 to I4 and phases ⁇ 1 to ⁇ 4 are detected, and the detected amplitudes I1 to I4 and phases ⁇ 1 to ⁇ 4 are output to the controller 15.
  • the control device 15 of the power feeding unit 1C determines the connectors for supplying power to the connectors 2 and 3 by the method described above based on the amplitudes I1 to I4, and supplies the power PW2 to be supplied via the connector 2.
  • the powers PW2 and PW3 are determined so that the sum of the power PW3 supplied via the connector 3 becomes the desired power PW_111 in the terminal device 111.
  • the control device 15 of the power feeding unit 1C determines the amplification factors A1 and A2 in the amplifiers 21 and 22 based on the determined powers PW2 and PW3.
  • the amplifier 21 of the power feeding unit 1C amplifies the sine wave sin ( ⁇ t) received from the phase adjuster 17 with the amplification factor A1, and the sine wave PW2sin ( ⁇ t) via the wiring 6 and the connector 2.
  • the amplifier 22 of the power supply unit 1C amplifies the sine wave sin ( ⁇ t + ⁇ 2) received from the phase adjuster 18 with the amplification factor A2, and the sine wave PW3sin ( ⁇ t + ⁇ 2) via the wiring 7 and the connector 3 to provide a two-dimensional communication sheet.
  • the terminal device 111 receives the sine waves PW2sin ( ⁇ t) and PW3sin ( ⁇ t + ⁇ 2) from the two-dimensional communication sheet 30 in the power feeding phase PP1, and accumulates the desired power PW_111.
  • the time division multiplexing device 29 of the power supply unit 1C generates a beacon Bc2 including the address Add112 of the terminal device 112, and transmits the generated beacon Bc2 to the two-dimensional communication sheet 30 via the wiring 6 and the connector 2.
  • the communication module 106 of the terminal device 112 receives the beacon Bc2 from the power feeding unit 1C, and detects that the received beacon Bc2 includes the address Add112 of the terminal device 112.
  • the communication module 106 of the terminal device 112 generates a desired power notification PNTF2 indicating the desired power PW_112 in the terminal device 112, and transmits the generated desired power notification PNTF2 to the two-dimensional communication sheet 30 via the connector 101.
  • the instruction signal COM is generated and output to the oscillator 103.
  • the time division multiplexing device 29 of the power supply unit 1C receives the desired power notification PNTF2 via the connector 2 and the wiring 6, and outputs the desired power PW_112 indicated by the received desired power notification PNTF2 to the control device 15.
  • the amplitude / phase measuring devices 11 to 14 of the power supply unit 1C receive the sine waves I1sin ( ⁇ t), I2sin ( ⁇ t ⁇ 2), and I3sin ( ⁇ t ⁇ 3) received from the connectors 2 to 5, respectively, in the measurement phase MP2.
  • I4sin ( ⁇ t ⁇ 4) amplitudes I1 to I4 and phases ⁇ 1 to ⁇ 4 are detected, and the detected amplitudes I1 to I4 and phases ⁇ 1 to ⁇ 4 are output to the controller 15.
  • the control device 15 of the power supply unit 1C determines the connectors for supplying power to the connectors 2 and 4 by the method described above based on the amplitudes I1 to I4, and supplies the power PW2 to be supplied via the connector 2
  • the powers PW2 and PW4 are determined such that the sum of the power PW4 supplied via the connector 4 becomes the desired power PW_112 in the terminal device 112.
  • the control device 15 of the power feeding unit 1C determines the amplification factors A1 and A3 in the amplifiers 21 and 23 based on the determined powers PW2 and PW4.
  • the amplifier 21 of the power feeding unit 1C amplifies the sine wave sin ( ⁇ t) received from the phase adjuster 17 with the amplification factor A1, and the sine wave PW2sin ( ⁇ t) is passed through the wiring 6 and the connector 2.
  • the amplifier 23 of the power supply unit 1C amplifies the sine wave sin ( ⁇ t + ⁇ 3) received from the phase adjuster 19 with the amplification factor A3, and the sine wave PW4sin ( ⁇ t + ⁇ 3) via the wiring 8 and the connector 4. 30.
  • the terminal device 112 receives the sine waves PW2sin ( ⁇ t) and PW4sin ( ⁇ t + ⁇ 3) from the two-dimensional communication sheet 30 in the power supply phase PP2 and accumulates the desired power PW_112.
  • the time division multiplexing device 29 of the power supply unit 1C generates a beacon Bc3 including the address Add113 of the terminal device 113, and transmits the generated beacon Bc3 to the two-dimensional communication sheet 30 via the wiring 6 and the connector 2.
  • the communication module 106 of the terminal device 113 receives the beacon Bc3 from the power supply unit 1C and detects that the received beacon Bc3 includes the address Add113 of the terminal device 113.
  • the communication module 106 of the terminal device 113 generates a desired power notification PNTF3 indicating the desired power PW_113 in the terminal device 113, and transmits the generated desired power notification PNTF3 to the two-dimensional communication sheet 30 via the connector 101.
  • the instruction signal COM is generated and output to the oscillator 103.
  • the time division multiplexing device 29 of the power supply unit 1C receives the desired power notification PNTF3 via the connector 2 and the wiring 6, and outputs the desired power PW_113 indicated by the received desired power notification PNTF3 to the control device 15.
  • the amplitude / phase measuring devices 11 to 14 of the power supply unit 1C receive the sine waves I1sin ( ⁇ t), I2sin ( ⁇ t ⁇ 2), and I3sin ( ⁇ t ⁇ 3) received from the connectors 2 to 5, respectively, in the measurement phase MP3.
  • I4sin ( ⁇ t ⁇ 4) amplitudes I1 to I4 and phases ⁇ 1 to ⁇ 4 are detected, and the detected amplitudes I1 to I4 and phases ⁇ 1 to ⁇ 4 are output to the controller 15.
  • the control device 15 of the power feeding unit 1C determines the connectors for supplying power to the connectors 4 and 5 by the method described above based on the amplitudes I1 to I4, and supplies the power PW4 to be supplied via the connector 4
  • the powers PW4 and PW5 are determined such that the sum of the power PW5 supplied via the connector 5 becomes the desired power PW_113 in the terminal device 113.
  • the control device 15 of the power feeding unit 1C determines the amplification factors A3 and A4 in the amplifiers 23 and 24 based on the determined powers PW4 and PW5.
  • control device 15 of the power supply unit 1C uses the above-described method to adjust the phase adjustment amount based on the phases ⁇ 3 and ⁇ 4 of the sine waves I1sin ( ⁇ t ⁇ 3) and I2sin ( ⁇ t ⁇ 4) received by the connectors 4 and 5.
  • the amplifier 23 of the power feeding unit 1C amplifies the sine wave sin ( ⁇ t + ⁇ 3) received from the phase adjuster 19 with the amplification factor A3, and the sine wave PW4sin ( ⁇ t + ⁇ 3) via the wiring 8 and the connector 4.
  • the amplifier 24 of the power feeding unit 1C amplifies the sine wave sin ( ⁇ t + ⁇ 4) received from the phase adjuster 20 with the amplification factor A4, and the sine wave PW5sin ( ⁇ t + ⁇ 4) via the wiring 9 and the connector 5 to provide a two-dimensional communication sheet.
  • the terminal device 113 receives the sine waves PW4sin ( ⁇ t + ⁇ 3) and PW5sin ( ⁇ t + ⁇ 4) from the two-dimensional communication sheet 30, and accumulates the desired power PW_113.
  • FIG. 24 is a flowchart for explaining the power supply method according to the fourth embodiment.
  • the flowchart shown in FIG. 24 is the same as the flowchart shown in FIG. 9 except that Steps S31 to S37 are added to the flowchart shown in FIG. 9 and Step S5 is replaced with Step S5B.
  • the terminal device 11i receives the beacon Bci (step S33), and generates and transmits a desired power notification PNTFi indicating the desired power PW_11i in itself (step S34).
  • the time division multiplexing device 29 of the power feeding unit 1C receives the desired power notification PNTFi (step S35), and outputs the desired power PW_11i indicated by the received desired power notification PNTFi to the control device 15.
  • step S4 the power feeding unit 1C has a sine having a phase obtained by reversing the phase of the measurement wave received by the connector determined as the connector for supplying power and the amplitude obtained by distributing the desired power PW_11i of the terminal device 11i.
  • a wave is transmitted through the determined connector (step S5B).
  • the measurement phase and the power supply phase are executed in a time-sharing manner between the three terminal devices 111 to 113 arranged on the two-dimensional communication sheet 30 and the power supply unit 1C.
  • the power is supplied from the power supply unit 1C to the three terminal devices 111 to 113 in a time division manner.
  • the desired power PW_111 to PW_113 can be easily supplied to the terminal devices 111 to 113.
  • the present invention is not limited to this, and generally n ( n is an integer of 2 or more) terminal devices 111 to 11n may be arranged.
  • the time division multiplexing device 29 of the power supply unit 1C holds the addresses Add111 to Add11n of the n terminal devices 111 to 11n, and transmits the beacons Bc1 to Bcn to the n terminal devices 111 to 11n, respectively.
  • the desired power PW_111 to PW_11n is allocated to the terminal devices 111 to 11n in a time division manner.
  • the terminal devices 111 to 113 constitute “a plurality of communication devices”, and the amplitudes I1 to I4 constitute “m (m is an integer of 2 or more) amplitudes”.
  • the amplitudes I1 to I3 larger than the threshold value I_th constitute “k (k is a positive integer) amplitudes”.
  • each of the beacons Bc1 to Bc3 constitutes a “measurement wave transmission request”.
  • the process in the measurement phase constitutes a “detection process”
  • the process in the power supply phase constitutes a “power supply process”.
  • the present invention is applied to a two-dimensional communication system that can easily supply maximum power.

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

Disclosed is a two-dimensional communication system capable of supplying the maximum amount of electricity in a simple manner. A terminal device (10) transmits a measured wave composed of a sine wave to a two-dimensional communication sheet (30). An electricity supply unit (1) receives the measured wave by means of connectors (2-5) and detects the multiple amplitudes and multiple phases of multiple measured waves that are received. Then, based on the multiple amplitudes and multiple phases that have been detected, electricity supply unit (1) supplies electricity to the terminal device (10) via the two-dimensional communication sheet (30) using at least one of the connectors (2-5) so that the phase will be the same at the position of the terminal device (10) and the amplitude will be the maximum.

Description

2次元通信システム2D communication system
 この発明は、2次元通信システムに関し、特に、電力の送受電が可能な2次元通信システムに関するものである。 The present invention relates to a two-dimensional communication system, and more particularly to a two-dimensional communication system capable of transmitting and receiving power.
 2次元通信システムは、従来、有線または無線で接続していた機器同士を面状のシートを媒体とすることで実現するものであり、屋内のケーブルによる配線を廃止しつつ、無線よりも広帯域および高セキュリティーの通信接続を提供しようとするものである(特許文献1)。
特開2006-270165号公報
The two-dimensional communication system is realized by using a sheet-like sheet as a medium between devices conventionally connected by wire or wireless, and eliminates wiring by an indoor cable and has a wider bandwidth than wireless. It is intended to provide a high security communication connection (Patent Document 1).
JP 2006-270165 A
 しかし、従来の2次元通信システムにおいては、2次元通信シート上の特定の領域に電磁波を収束させるためには、2次元通信シート上に置かれた受電装置の受電量を観察しながらシート辺に配置された全ての送信電極が送信する電力の最適な位相を個別、かつ、逐次的に調整する必要があり、多くの時間と労力とを要していた。 However, in the conventional two-dimensional communication system, in order to converge the electromagnetic wave to a specific area on the two-dimensional communication sheet, while observing the amount of power received by the power receiving device placed on the two-dimensional communication sheet, It is necessary to individually and sequentially adjust the optimum phase of the power transmitted by all the arranged transmission electrodes, which requires a lot of time and labor.
 そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、最大限の電力を簡単に供給可能な2次元通信システムを提供することである。 Therefore, the present invention has been made to solve such a problem, and an object thereof is to provide a two-dimensional communication system that can easily supply the maximum power.
 この発明によれば、2次元通信システムは、2次元通信媒体と、端末装置と、複数のコネクタと、給電ユニットとを備える。端末装置は、2次元通信媒体上の任意の位置に配置される。複数のコネクタは、2次元通信媒体の周辺部に配置される。給電ユニットは、端末装置へ電力を供給する。そして、端末装置は、所定の周波数帯から任意に選択した角周波数を有する測定波を2次元通信媒体へ送信するとともに、2次元通信媒体を介して給電ユニットから電力を受電する。また、給電ユニットは、複数のコネクタが配置された複数の位置において測定波を検出するとともに、その検出した複数の測定波の複数の振幅および複数の位相を検出する検出処理と、検出した複数の振幅および複数の位相に基づいて、端末装置の位置における位相が同じになり、かつ、振幅が最大になるように複数のコネクタの少なくとも1つを用いて2次元通信媒体を介して電力を端末装置へ供給する給電処理とを行なう。 According to the present invention, the two-dimensional communication system includes a two-dimensional communication medium, a terminal device, a plurality of connectors, and a power feeding unit. The terminal device is arranged at an arbitrary position on the two-dimensional communication medium. The plurality of connectors are arranged at the periphery of the two-dimensional communication medium. The power supply unit supplies power to the terminal device. Then, the terminal device transmits a measurement wave having an angular frequency arbitrarily selected from a predetermined frequency band to the two-dimensional communication medium and receives power from the power supply unit via the two-dimensional communication medium. The power supply unit detects a measurement wave at a plurality of positions where a plurality of connectors are arranged, detects a plurality of amplitudes and a plurality of phases of the detected plurality of measurement waves, and detects the plurality of detected waves. Based on the amplitude and the plurality of phases, the terminal device uses the two-dimensional communication medium to supply power using at least one of the plurality of connectors so that the phase at the position of the terminal device is the same and the amplitude is maximized. Power supply processing to be performed.
 好ましくは、給電ユニットは、検出した複数の振幅のうち、閾値以上の振幅が検出された所望のコネクタを複数のコネクタから選択し、その選択した所望のコネクタを用いて、給電処理を実行する。 Preferably, the power supply unit selects a desired connector from which the amplitude equal to or greater than the threshold is detected from the plurality of detected amplitudes from the plurality of connectors, and performs power supply processing using the selected desired connector.
 好ましくは、給電ユニットは、検出した複数の振幅をm(mは2以上の整数)個の振幅とし、m個の振幅のうち、閾値以上のk(kは正の整数)個の振幅を検出するとともに、その検出したk個の振幅の総和を演算し、その演算した総和に対する供給電力の比率が基準比率よりも大きくなるように複数のコネクタから所望のコネクタを選択し、その選択した所望のコネクタを用いて、給電処理を実行する。 Preferably, the power supply unit detects m (m is an integer of 2 or more) amplitudes as a plurality of detected amplitudes, and detects k (k is a positive integer) amplitudes greater than or equal to a threshold among the m amplitudes. In addition, the sum of the detected k amplitudes is calculated, a desired connector is selected from a plurality of connectors so that the ratio of the supplied power to the calculated sum is larger than the reference ratio, and the selected desired Power supply processing is executed using the connector.
 好ましくは、端末装置は、通信環境の変動に応じて、測定波の送信開始を示すトリガー信号を2次元通信媒体を介して給電ユニットへ送信するとともに、トリガー信号の送信後、測定波を2次元通信媒体へ送信する。給電ユニットは、トリガー信号の受信に応じて検出処理を実行し、検出処理の結果に基づいて給電処理を実行する。 Preferably, the terminal device transmits a trigger signal indicating the start of transmission of the measurement wave to the power supply unit via the two-dimensional communication medium according to a change in the communication environment, and after the trigger signal is transmitted, the measurement wave is two-dimensionally transmitted. Send to communication medium. The power supply unit executes detection processing in response to reception of the trigger signal, and executes power supply processing based on the result of the detection processing.
 好ましくは、給電ユニットは、所望のコネクタにおける所望の電力が大きいほど時間を長くし、所望の電力が小さいほど時間を短くして給電処理を実行する。 Preferably, the power supply unit executes the power supply process by increasing the time as the desired power in the desired connector is increased and shortening the time as the desired power is decreased.
 好ましくは、端末装置は、常時、測定波を2次元通信媒体へ送信する。給電ユニットは、検出処理と給電処理とを定期的に繰返し実行する。 Preferably, the terminal device always transmits a measurement wave to the two-dimensional communication medium. The power supply unit periodically executes the detection process and the power supply process repeatedly.
 好ましくは、端末装置は、複数の通信装置からなる。複数の通信装置の各々は、給電ユニットからの測定波の送信要求に応じて、所望電力を示す所望電力信号を2次元通信媒体を介して給電ユニットへ送信し、所望電力信号の送信後、測定波を2次元通信媒体へ送信するとともに、2次元通信媒体を介して所望電力を受電する。給電ユニットは、複数の通信装置に対して測定波の送信を要求する複数の送信要求を時分割で複数の通信装置へ送信し、複数の通信装置からの複数の所望電力信号に応じて、検出処理および給電処理を時分割で実行する。 Preferably, the terminal device includes a plurality of communication devices. Each of the plurality of communication devices transmits a desired power signal indicating desired power to the power supply unit via the two-dimensional communication medium in response to a measurement wave transmission request from the power supply unit, and performs measurement after transmitting the desired power signal. Waves are transmitted to the two-dimensional communication medium and desired power is received via the two-dimensional communication medium. The power supply unit transmits a plurality of transmission requests for requesting transmission of measurement waves to a plurality of communication devices in time division to the plurality of communication devices, and detects in accordance with a plurality of desired power signals from the plurality of communication devices. Processing and power supply processing are executed in a time-sharing manner.
 この発明においては、2次元通信媒体上に配置された端末装置から送信された測定波を複数のコネクタによって検出し、その検出した複数の測定波の複数の振幅および複数の位相を検出し、その検出した複数の振幅および複数の位相に基づいて、端末装置の位置における位相が同じになり、かつ、振幅が最大になるように複数のコネクタの少なくとも1つを用いて2次元通信媒体を介して電力を端末装置へ供給する。 In the present invention, the measurement waves transmitted from the terminal device arranged on the two-dimensional communication medium are detected by a plurality of connectors, the plurality of amplitudes and the plurality of phases of the detected plurality of measurement waves are detected, Based on the detected plurality of amplitudes and the plurality of phases, the phase at the position of the terminal device is the same and the amplitude is maximized using at least one of the plurality of connectors via the two-dimensional communication medium. Power is supplied to the terminal device.
 したがって、この発明によれば、最大限の電力を簡単に端末装置へ供給できる。 Therefore, according to the present invention, the maximum power can be easily supplied to the terminal device.
この発明の実施の形態1による2次元通信システムの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the two-dimensional communication system by Embodiment 1 of this invention. 図1に示す2次元通信シートの斜視図である。It is a perspective view of the two-dimensional communication sheet shown in FIG. 図2に示す線III-III間における2次元通信シートの断面図である。FIG. 3 is a cross-sectional view of a two-dimensional communication sheet taken along line III-III shown in FIG. 図1に示す給電ユニットの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG. 図1に示す端末装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device shown in FIG. 2次元通信の概念図である。It is a conceptual diagram of two-dimensional communication. 測定フェーズの概念図である。It is a conceptual diagram of a measurement phase. 給電フェーズの概念図である。It is a conceptual diagram of the electric power feeding phase. 実施の形態1における電力の給電方法を説明するためのフローチャートである。3 is a flowchart for illustrating a method of supplying power in the first embodiment. 実施の形態2による2次元通信システムの概略図である。6 is a schematic diagram of a two-dimensional communication system according to Embodiment 2. FIG. 図10に示す給電ユニットの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG. 図10に示す端末装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device shown in FIG. 実施の形態2における測定フェーズおよび給電フェーズの概念図である。FIG. 10 is a conceptual diagram of a measurement phase and a power feeding phase in the second embodiment. 実施の形態2における電力の給電方法を説明するためのフローチャートである。10 is a flowchart for illustrating a method of supplying power in the second embodiment. 実施の形態3による2次元通信システムの概略図である。6 is a schematic diagram of a two-dimensional communication system according to Embodiment 3. FIG. 図15に示す給電ユニットの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG. 図15に示す端末装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device shown in FIG. 実施の形態3における測定フェーズおよび給電フェーズの概念図である。FIG. 10 is a conceptual diagram of a measurement phase and a power feeding phase in the third embodiment. 実施の形態3における電力の給電方法を説明するためのフローチャートである。12 is a flowchart for illustrating a method of supplying power in the third embodiment. 実施の形態4による2次元通信システムの概略図である。FIG. 10 is a schematic diagram of a two-dimensional communication system according to a fourth embodiment. 図20に示す給電ユニットの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the electric power feeding unit shown in FIG. 図20に示す端末装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device shown in FIG. 実施の形態4による測定フェーズおよび給電フェーズの概念図である。It is a conceptual diagram of the measurement phase and electric power feeding phase by Embodiment 4. FIG. 実施の形態4における電力の給電方法を説明するためのフローチャートである。10 is a flowchart for illustrating a method of supplying power in the fourth embodiment.
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 図1は、この発明の実施の形態1による2次元通信システムの概略図である。図1を参照して、この発明の実施の形態1による2次元通信システム100は、給電ユニット1と、コネクタ2~5と、配線6~9と、端末装置10と、2次元通信シート30とを備える。
[Embodiment 1]
FIG. 1 is a schematic diagram of a two-dimensional communication system according to Embodiment 1 of the present invention. Referring to FIG. 1, a two-dimensional communication system 100 according to Embodiment 1 of the present invention includes a power feeding unit 1, connectors 2-5, wires 6-9, a terminal device 10, a two-dimensional communication sheet 30, and the like. Is provided.
 給電ユニット1は、2次元通信シート30外に配置され、それぞれ、配線6~9によってコネクタ2~5に接続される。 The power supply unit 1 is disposed outside the two-dimensional communication sheet 30 and connected to the connectors 2 to 5 by wires 6 to 9, respectively.
 コネクタ2,3は、2次元通信シート30の1つの辺に配置され、コネクタ4,5は、2次元通信シート30の他の辺に配置される。 The connectors 2 and 3 are arranged on one side of the two-dimensional communication sheet 30, and the connectors 4 and 5 are arranged on the other side of the two-dimensional communication sheet 30.
 端末装置10は、2次元通信シート30上の任意の位置に配置される。 The terminal device 10 is arranged at an arbitrary position on the two-dimensional communication sheet 30.
 給電ユニット1は、測定フェーズにおいて、コネクタ2~5がそれぞれ受信した測定波wv1~wv4を配線6~9を介して受ける。そして、給電ユニット1は、測定フェーズにおいて、測定波wv1~wv4の振幅I1~I4を検出するとともに、測定波wv1~wv4の位相φ1~φ4を検出する。その後、給電ユニット1は、給電フェーズにおいて、振幅I1~I4および位相φ1~φ4に基づいて、後述する方法によって、端末装置10が最大限の電力を受電できるようにコネクタ2~5の少なくとも1つを用いて電力を端末装置10へ供給する。 In the measurement phase, the power supply unit 1 receives the measurement waves wv1 to wv4 received by the connectors 2 to 5 via the wirings 6 to 9, respectively. In the measurement phase, the power feeding unit 1 detects the amplitudes I1 to I4 of the measurement waves wv1 to wv4 and detects the phases φ1 to φ4 of the measurement waves wv1 to wv4. Thereafter, in the power feeding phase, the power feeding unit 1 uses at least one of the connectors 2 to 5 so that the terminal device 10 can receive the maximum power by a method described later based on the amplitudes I1 to I4 and the phases φ1 to φ4. Is used to supply power to the terminal device 10.
 コネクタ2~5は、端末装置10から送信された測定波wvを2次元通信シート30を介してそれぞれ測定波wv1~wv4として受信し、その受信した測定波wv1~wv4をそれぞれ配線6~9を介して給電ユニット1へ出力する。 The connectors 2 to 5 receive the measurement waves wv transmitted from the terminal device 10 as measurement waves wv1 to wv4 via the two-dimensional communication sheet 30, respectively, and receive the received measurement waves wv1 to wv4 through the wirings 6 to 9, respectively. To the power supply unit 1 via
 また、コネクタ2~5は、それぞれ、配線6~9を介して給電ユニット1から供給された電力を2次元通信シート30を介して端末装置10へ送信する。 The connectors 2 to 5 transmit the power supplied from the power supply unit 1 via the wirings 6 to 9 to the terminal device 10 via the two-dimensional communication sheet 30, respectively.
 配線6~9は、それぞれ、コネクタ2~5と給電ユニット1との間で測定波および電力のやり取りを行なう。 Wiring 6 to 9 exchange measurement waves and power between the connectors 2 to 5 and the power supply unit 1, respectively.
 端末装置10は、測定フェーズにおいて、正弦波からなる測定波wv=I0sin(ωt-θ)を2次元通信シート30へ送信する。 The terminal device 10 transmits a measurement wave wv = I 0 sin (ωt−θ) composed of a sine wave to the two-dimensional communication sheet 30 in the measurement phase.
 また、端末装置10は、給電フェーズにおいて、2次元通信シート30を介して電力を受電し、その受電した電力を蓄積する。 Further, in the power supply phase, the terminal device 10 receives power via the two-dimensional communication sheet 30 and accumulates the received power.
 2次元通信シート30は、略四角形の平面形状を有する。 The two-dimensional communication sheet 30 has a substantially rectangular planar shape.
 図2は、図1に示す2次元通信シート30の斜視図である。また、図3は、図2に示す線III-III間における2次元通信シート30の断面図である。 FIG. 2 is a perspective view of the two-dimensional communication sheet 30 shown in FIG. 3 is a cross-sectional view of the two-dimensional communication sheet 30 taken along line III-III shown in FIG.
 図2および図3を参照して、2次元通信シート30は、誘電体部31と、導体部32,33とを含む。誘電体部31は、たとえば、厚みがほぼ一定であるプラスチックまたは発泡材からなり、シート状の形状を有する。 2 and 3, the two-dimensional communication sheet 30 includes a dielectric portion 31 and conductor portions 32 and 33. The dielectric portion 31 is made of, for example, a plastic or foam material having a substantially constant thickness, and has a sheet-like shape.
 導体部32は、たとえば、金属からなり、誘電体部31の一方の一主面にメッシュ状に形成される。この場合、メッシュ状の導体部32によって囲まれる開口部32Aは、正方形の形状を有し、複数の開口部32Aは、2次元通信シート30の外界における電磁波長よりも短い間隔で配置されている。 The conductor portion 32 is made of, for example, metal, and is formed in a mesh shape on one main surface of the dielectric portion 31. In this case, the opening 32 </ b> A surrounded by the mesh-like conductor portion 32 has a square shape, and the plurality of openings 32 </ b> A are arranged at intervals shorter than the electromagnetic wave length in the outside of the two-dimensional communication sheet 30. .
 導体部33は、たとえば、金属からなり、誘電体部31の他方の一主面(導体部32が形成された面と反対面)の全面に形成される。 The conductor portion 33 is made of, for example, metal and is formed on the entire surface of the other main surface of the dielectric portion 31 (the surface opposite to the surface on which the conductor portion 32 is formed).
 メッシュ状の導体部32は、外界とシート状の誘電体部31との相互電磁結合を弱める働きをするので、外界と誘電体部31との電磁結合が十分に弱いと仮定すると、シート状の誘電体部31の内部では、電磁波は、1/(με)1/2で伝搬する。この場合、μは、誘電体部31の透磁率であり、εは、誘電体部31の誘電率である。 Since the mesh-like conductor portion 32 serves to weaken the mutual electromagnetic coupling between the outside world and the sheet-like dielectric portion 31, it is assumed that the electromagnetic coupling between the outside world and the dielectric portion 31 is sufficiently weak. Inside the dielectric part 31, the electromagnetic wave propagates at 1 / (με) 1/2 . In this case, μ is the magnetic permeability of the dielectric part 31, and ε is the dielectric constant of the dielectric part 31.
 開口部32Aは、2次元通信シート30の外界における電磁波長よりも短い間隔で配置されているので、各開口部32Aから漏れ出すエバネッセント波も、電磁波長よりも短い空間周期で電磁波位相が変化し、遠方まで伝搬する波動とはならない。 Since the openings 32A are arranged at intervals shorter than the electromagnetic wave length in the outside of the two-dimensional communication sheet 30, the evanescent wave leaking from each opening 32A also changes the electromagnetic wave phase in a spatial period shorter than the electromagnetic wave length. It is not a wave that propagates far away.
 この場合の減衰係数は、exp(-(ε/ε-1)1/2(ω/c)z)となる。ここで、εは、外界の誘電率であり、ωは、信号の角周波数であり、cは、外界における光速であり、zは、誘電体部31の導体部32が形成された面からの距離である。 The attenuation coefficient in this case is exp (− (ε / ε 0 −1) 1/2 (ω / c) z). Here, ε 0 is the dielectric constant of the outside world, ω is the angular frequency of the signal, c is the speed of light in the outside world, and z is from the surface on which the conductor part 32 of the dielectric part 31 is formed. Is the distance.
 したがって、εがそれほど大きくなくても、誘電体部31の薄い膜厚に対して、エバネッセント波のしみ出し領域を波長程度まで小さくすることができる。 Therefore, even if ε is not so large, the area where the evanescent wave oozes out can be reduced to about the wavelength with respect to the thin film thickness of the dielectric portion 31.
 このように、2次元通信シート30は、電磁波を1/(με)1/2で伝搬させるとともに、その一主面(導体部32が形成された面)からエバネッセント波をしみ出させる。 As described above, the two-dimensional communication sheet 30 propagates the electromagnetic wave at 1 / (με) 1/2 and exudes an evanescent wave from one main surface (surface on which the conductor portion 32 is formed).
 図4は、図1に示す給電ユニット1の構成を示す概略ブロック図である。図4を参照して、給電ユニット1は、振幅・位相計測器11~14と、制御装置15と、発振器16と、位相調整器17~20と、増幅器21~24とを含む。 FIG. 4 is a schematic block diagram showing the configuration of the power supply unit 1 shown in FIG. Referring to FIG. 4, power supply unit 1 includes amplitude / phase measuring devices 11 to 14, a control device 15, an oscillator 16, phase adjusters 17 to 20, and amplifiers 21 to 24.
 振幅・位相計測器11~14は、それぞれ、コネクタ2~5に対応して設けられ、配線6~9によってコネクタ2~5に接続される。そして、振幅・位相計測器11~14は、それぞれ、コネクタ2~5から測定波wv1~wv4を受ける。この場合、測定波wv1~wv4は、それぞれ、正弦波I1sin(ωt),I2sin(ωt-φ2),I3sin(ωt-φ3),I4sin(ωt-φ4)からなる。 The amplitude / phase measuring instruments 11 to 14 are provided corresponding to the connectors 2 to 5, respectively, and are connected to the connectors 2 to 5 by wirings 6 to 9. The amplitude / phase measuring instruments 11 to 14 receive the measurement waves wv1 to wv4 from the connectors 2 to 5, respectively. In this case, the measurement waves wv1 to wv4 include sine waves I1sin (ωt), I2sin (ωt−φ2), I3sin (ωt−φ3), and I4sin (ωt−φ4), respectively.
 振幅・位相計測器11~14は、それぞれ、測定波wv1=I1sin(ωt),wv2=I2sin(ωt-φ2),wv3=I3sin(ωt-φ3),wv4=I4sin(ωt-φ4)を受けると、その受けた測定波wv1=I1sin(ωt),wv2=I2sin(ωt-φ2),wv3=I3sin(ωt-φ3),wv4=I4sin(ωt-φ4)の振幅I1~I4および位相φ1~φ4を検出し、その検出した振幅I1~I4および位相φ1~φ4を制御装置15へ出力する。 When the amplitude / phase measuring instruments 11 to 14 receive the measurement waves wv1 = I1sin (ωt), wv2 = I2sin (ωt−φ2), wv3 = I3sin (ωt−φ3), wv4 = I4sin (ωt−φ4), respectively. The received measurement waves wv1 = I1sin (ωt), wv2 = I2sin (ωt−φ2), wv3 = I3sin (ωt−φ3), wv4 = I4sin (ωt−φ4), amplitudes I1 to I4 and phases φ1 to φ4 The detected amplitudes I 1 to I 4 and phases φ 1 to φ 4 are output to the control device 15.
 制御装置15は、それぞれ、振幅・位相計測器11~14から振幅I1~I4および位相φ1~φ4を受ける。また、制御装置15は、閾値I_thおよび基準比率RA_stdを保持している。 The control device 15 receives the amplitudes I1 to I4 and the phases φ1 to φ4 from the amplitude / phase measuring devices 11 to 14, respectively. In addition, the control device 15 holds a threshold value I_th and a reference ratio RA_std.
 そして、制御装置15は、振幅I1~I4を閾値I_thと比較して閾値I_thよりも大きい振幅を検出する。たとえば、振幅I1,I2,I3,I4={7.0,0.0,-15.0,-23.0}[dBm]={5.01,1.00,0.03,0.005}[mW]であり、閾値I_th=0.01[mW](=-20dBm)である場合、制御装置15は、I4<I_th(=-20dBm)であるので、コネクタ5を除外し、閾値I_th以上の振幅I1~I3の和P_rtotal=I1+I2+I3=5.01+1.00+0.03=6.04[mW]を演算する。 The control device 15 compares the amplitudes I1 to I4 with the threshold value I_th and detects an amplitude larger than the threshold value I_th. For example, amplitudes I1, I2, I3, I4 = {7.0, 0.0, −15.0, −23.0} [dBm] = {5.01, 1.00, 0.03, 0.005 } [MW] and the threshold value I_th = 0.01 [mW] (= −20 dBm), the control device 15 excludes the connector 5 because I4 <I_th (= −20 dBm), and the threshold value I_th The sum P_rtotal = I1 + I2 + I3 = 5.01 + 1.00 + 0.03 = 6.04 [mW] of the amplitudes I1 to I3 is calculated.
 その後、制御装置15は、閾値I_th以上の振幅I1~I3を大きい順に真値(dBmではなくmW)で加算して和P_rsubを演算し、その演算した和P_rsubが和P_rtotalに対して基準比率RA_std(たとえば、99%)を超えるコネクタまでを電力の供給に用いるコネクタとして選択する。すなわち、制御装置15は、振幅I1,I2,I3の順に大きいので、まず、(I1)/(I1+I2+I3)=5.01/6.04=0.829を演算し、振幅I1と和P_rtotalとの比率RA(=I1/P_rtotal)が82.9%であり、99%(基準比率RA_std)よりも小さいことを検知する。そして、制御装置15は、次に、(I1+I2)/(I1+I2+I3)=6.01/6.04=0.995を演算し、振幅I1,I2の和I1+I2と和P_rtotalとの比率RA(=(I1+I2)/P_rtotal)が99.5%であり、99%(基準比率RA_std)を超えることを検知する。 After that, the control device 15 calculates the sum P_rsub by adding the amplitudes I1 to I3 equal to or greater than the threshold value I_th in the descending order of true values (mW instead of dBm), and the calculated sum P_rsub is the reference ratio RA_std Up to connectors exceeding 99% (for example, 99%) are selected as connectors used for power supply. That is, since the control device 15 increases in order of the amplitudes I1, I2, and I3, first, (I1) / (I1 + I2 + I3) = 5.01 / 6.04 = 0.829 is calculated, and the amplitude I1 and the sum P_rtotal are calculated. It is detected that the ratio RA (= I1 / P_rtotal) is 82.9%, which is smaller than 99% (reference ratio RA_std). Then, the control device 15 calculates (I1 + I2) / (I1 + I2 + I3) = 6.01 / 6.04 = 0.993, and calculates the ratio RA (= () between the sum I1 + I2 of the amplitudes I1 and I2 and the sum P_rtotal. It is detected that (I1 + I2) / P_total) is 99.5% and exceeds 99% (reference ratio RA_std).
 そうすると、制御装置15は、コネクタ2,3を電力の供給に用いるコネクタとして選択するとともに、コネクタ2,3を介して供給する電力の振幅を10[mW]と決定する。そして、制御装置15は、コネクタ2,3が10[mW]を供給するための増幅率A1,A2を演算し、その演算した増幅率A1,A2をそれぞれ増幅器21,22へ出力する。 Then, the control device 15 selects the connectors 2 and 3 as connectors used for power supply, and determines the amplitude of power supplied via the connectors 2 and 3 as 10 [mW]. Then, the control device 15 calculates amplification factors A1 and A2 for the connectors 2 and 3 to supply 10 [mW], and outputs the calculated amplification factors A1 and A2 to the amplifiers 21 and 22, respectively.
 上述したように、(I1+I2)/P_rtotalが99.5%であることは、(I1+I2)/P_rtotalが99%(=基準比率RA_std)を超えることを意味し、(I1+I2)/P_rtotalは、閾値I_th以上の振幅I1~I3の総和(=P_rtotal)に対するコネクタ2,3を用いて供給される電力の比率を意味する。したがって、上述した方法によって電力を供給するコネクタ2,3を選択することは、総和(=P_rtotal)に対する供給電力の比率が基準比率(=基準比率RA_std)よりも大きくなるように電力を供給するコネクタ2,3を選択することに相当する。 As described above, (I1 + I2) / P_rtotal being 99.5% means that (I1 + I2) / P_rtotal exceeds 99% (= reference ratio RA_std), and (I1 + I2) / P_rtotal is a threshold value I_th. This means the ratio of the power supplied using the connectors 2 and 3 to the sum (= P_total) of the amplitudes I1 to I3. Therefore, selecting the connectors 2 and 3 that supply power by the above-described method means that the connector that supplies power so that the ratio of the supplied power to the sum (= P_total) is larger than the reference ratio (= reference ratio RA_std). This corresponds to selecting 2,3.
 ここで、振幅I1~I4は、m(mは2以上の整数)個の振幅を構成し、I1~I3は、閾値I_th以上のk(kは正の整数)個の振幅を構成する。 Here, the amplitudes I1 to I4 constitute m (m is an integer greater than or equal to 2) amplitudes, and I1 to I3 constitute k (k is a positive integer) amplitudes greater than or equal to the threshold value I_th.
 制御装置15は、電力の供給に用いるコネクタ2,3を選択すると、その選択したコネクタ2,3のうち、コネクタ2が受信した測定波wv1=I1sin(ωt)の位相φ1=0を基準位相として、コネクタ2,3を介して供給する電力の位相調整量φ1_CTL=0,φ2_CTL=+φ2を決定する。そして、制御装置15は、その決定した位相調整量φ1_CTL=0,φ2_CTL=+φ2をそれぞれ位相調整器17,18へ出力する。 When the control device 15 selects the connectors 2 and 3 used for power supply, the phase φ1 = 0 of the measurement wave wv1 = I1sin (ωt) received by the connector 2 out of the selected connectors 2 and 3 is set as a reference phase. The phase adjustment amounts φ1_CTL = 0 and φ2_CTL = + φ2 of the power supplied through the connectors 2 and 3 are determined. The control device 15 outputs the determined phase adjustment amounts φ1_CTL = 0 and φ2_CTL = + φ2 to the phase adjusters 17 and 18, respectively.
 発振器16は、たとえば、2.4GHz帯(=2400~2500MHz)から任意の周波数fを選択し、その選択した周波数fを有する角周波数ω(=2πf)の正弦波sin(ωt)を発振し、その発振した正弦波sin(ωt)を位相調整器17~20へ出力する。 For example, the oscillator 16 selects an arbitrary frequency f from the 2.4 GHz band (= 2400 to 2500 MHz), oscillates a sine wave sin (ωt) having an angular frequency ω (= 2πf) having the selected frequency f, The oscillated sine wave sin (ωt) is output to the phase adjusters 17-20.
 位相調整器17~20は、それぞれ、増幅器21~24に対応して設けられ、正弦波sin(ωt)を発振器16から受ける。そして、位相調整器17~20は、制御装置15から位相調整量φ1_CTL~φ4_CTLを受けると、その受けた位相調整量φ1_CTL~φ4_CTLによって正弦波sin(ωt)の位相を調整して正弦波sin(ωt+φ1_CTL)~sin(ωt+φ4_CTL)を生成し、その生成した正弦波sin(ωt+φ1_CTL)~sin(ωt+φ4_CTL)をそれぞれ増幅器21~24へ出力する。 The phase adjusters 17 to 20 are provided corresponding to the amplifiers 21 to 24, respectively, and receive a sine wave sin (ωt) from the oscillator 16. When the phase adjusters 17 to 20 receive the phase adjustment amounts φ1_CTL to φ4_CTL from the control device 15, the phase adjusters 17 to 20 adjust the phase of the sine wave sin (ωt) by the received phase adjustment amounts φ1_CTL to φ4_CTL. ωt + φ1_CTL) to sin (ωt + φ4_CTL) are generated, and the generated sine waves sin (ωt + φ1_CTL) to sin (ωt + φ4_CTL) are output to the amplifiers 21 to 24, respectively.
 一方、位相調整器17~20は、制御装置15から位相調整量φ1_CTL~φ4_CTLを受けないとき、それぞれ、増幅器21~24へ何も出力しない。 On the other hand, when the phase adjusters 17 to 20 do not receive the phase adjustment amounts φ1_CTL to φ4_CTL from the control device 15, nothing is output to the amplifiers 21 to 24, respectively.
 上述した例では、位相調整器17,18だけがそれぞれ位相調整量φ1_CTL=0,φ2_CTL=+φ2を受けるので、位相調整器17,18は、それぞれ、位相調整量φ1_CTL=0,φ2_CTL=+φ2によって正弦波sin(ωt)の位相を調整し、正弦波sin(ωt),sin(ωt+φ2)を生成する。そして、位相調整器17は、正弦波sin(ωt)を増幅器21へ出力し、位相調整器18は、正弦波sin(ωt+φ2)を増幅器22へ出力する。 In the example described above, only the phase adjusters 17 and 18 receive the phase adjustment amounts φ1_CTL = 0 and φ2_CTL = + φ2, respectively. Therefore, the phase adjusters 17 and 18 are sine by the phase adjustment amounts φ1_CTL = 0 and φ2_CTL = + φ2, respectively. The phase of the wave sin (ωt) is adjusted to generate sine waves sin (ωt) and sin (ωt + φ2). Then, the phase adjuster 17 outputs the sine wave sin (ωt) to the amplifier 21, and the phase adjuster 18 outputs the sine wave sin (ωt + φ2) to the amplifier 22.
 なお、位相調整器19,20は、それぞれ、増幅器23,24へ何も出力しない。 The phase adjusters 19 and 20 do not output anything to the amplifiers 23 and 24, respectively.
 増幅器21~24は、それぞれ、コネクタ2~5に対応して設けられる。そして、増幅器21~24は、それぞれ、増幅率A1~A4を制御装置15から受け、位相調整器17~20から正弦波sin(ωt+φ1_CTL)~sin(ωt+φ4_CTL)を受ける。そして、増幅器21~24は、それぞれ、増幅率A1~A4によって正弦波sin(ωt+φ1_CTL)~sin(ωt+φ4_CTL)を増幅し、その増幅した正弦波I0sin(ωt+φ1_CTL)~I0sin(ωt+φ4_CTL)を生成する。そうすると、増幅器21~24は、それぞれ、正弦波I0sin(ωt+φ1_CTL)~I0sin(ωt+φ4_CTL)を配線6~9を介してコネクタ2~5へ出力する。 Amplifiers 21 to 24 are provided corresponding to connectors 2 to 5, respectively. The amplifiers 21 to 24 receive the amplification factors A1 to A4 from the control device 15, respectively, and the sine waves sin (ωt + φ1_CTL) to sin (ωt + φ4_CTL) from the phase adjusters 17 to 20, respectively. The amplifiers 21 to 24 amplify the sine waves sin (ωt + φ1_CTL) to sin (ωt + φ4_CTL) by the amplification factors A1 to A4, respectively, and generate the amplified sine waves I0sin (ωt + φ1_CTL) to I0sin (ωt + φ4_CTL). Then, the amplifiers 21 to 24 output the sine waves I0sin (ωt + φ1_CTL) to I0sin (ωt + φ4_CTL) to the connectors 2 to 5 via the wirings 6 to 9, respectively.
 上述した例では、増幅器21,22だけがそれぞれ正弦波sin(ωt),sin(ωt+φ2)を受ける。したがって、増幅器21は、正弦波sin(ωt)を増幅率A1によって増幅し、10[mW]の振幅I0を有する正弦波I0sin(ωt)を生成する。そして、増幅器21は、正弦波I0sin(ωt)を配線6を介してコネクタ2へ出力する。また、増幅器22は、正弦波sin(ωt+φ2)を増幅率A2によって増幅し、10[mW]の振幅I0を有する正弦波I0sin(ωt+φ2)を生成する。そして、増幅器22は、正弦波I0sin(ωt+φ2)を配線7を介してコネクタ3へ出力する。 In the example described above, only the amplifiers 21 and 22 receive the sine waves sin (ωt) and sin (ωt + φ2), respectively. Therefore, the amplifier 21 amplifies the sine wave sin (ωt) by the amplification factor A1, and generates a sine wave I0sin (ωt) having an amplitude I0 of 10 [mW]. Then, the amplifier 21 outputs the sine wave I 0 sin (ωt) to the connector 2 via the wiring 6. The amplifier 22 amplifies the sine wave sin (ωt + φ2) by the amplification factor A2, and generates a sine wave I0sin (ωt + φ2) having an amplitude I0 of 10 [mW]. Then, the amplifier 22 outputs a sine wave I0sin (ωt + φ2) to the connector 3 via the wiring 7.
 図5は、図1に示す端末装置10の構成を示す概略ブロック図である。図5を参照して、端末装置10は、コネクタ101と、電力蓄積器102と、発振器103とを含む。コネクタ101は、2次元通信シート30に接して2次元通信シート30上に配置される。そして、コネクタ101は、2次元通信シート30を介して給電ユニット1から正弦波I0sin(ωt+φ)を受信し、その受信した正弦波I0sin(ωt+φ)を電力蓄積器102へ出力する。また、コネクタ101は、発振器103から正弦波I0sin(ωt-θ)を受け、その受けた正弦波I0sin(ωt-θ)を2次元通信シート30へ送信する。 FIG. 5 is a schematic block diagram showing the configuration of the terminal device 10 shown in FIG. Referring to FIG. 5, terminal device 10 includes a connector 101, a power accumulator 102, and an oscillator 103. The connector 101 is disposed on the two-dimensional communication sheet 30 in contact with the two-dimensional communication sheet 30. The connector 101 receives the sine wave I 0 sin (ωt + φ) from the power supply unit 1 via the two-dimensional communication sheet 30 and outputs the received sine wave I 0 sin (ωt + φ) to the power accumulator 102. Further, the connector 101 receives the sine wave I 0 sin (ωt−θ) from the oscillator 103 and transmits the received sine wave I 0 sin (ωt−θ) to the two-dimensional communication sheet 30.
 電力蓄積器102は、コネクタ101から受けた正弦波I0sin(ωt+φ)を電力として蓄積する。 The power accumulator 102 accumulates the sine wave I 0 sin (ωt + φ) received from the connector 101 as electric power.
 発振器103は、10[mW]の振幅を有する正弦波I0sin(ωt-θ)を発振し、その発振した正弦波I0sin(ωt-θ)をコネクタ101へ出力する。 The oscillator 103 oscillates a sine wave I 0 sin (ωt−θ) having an amplitude of 10 [mW], and outputs the oscillated sine wave I 0 sin (ωt−θ) to the connector 101.
 図6は、2次元通信の概念図である。図6を参照して、図1に示すコネクタ2~5が2次元通信シート30の周辺部に設置され、端末装置10が2次元通信シート30上に配置される。この場合、コネクタ2~5が2次元通信シート30の誘電体部31に接し、端末装置10のコネクタ101が2次元通信シート30の開口部32Aに接する。 FIG. 6 is a conceptual diagram of two-dimensional communication. Referring to FIG. 6, connectors 2 to 5 shown in FIG. 1 are installed on the periphery of two-dimensional communication sheet 30, and terminal device 10 is arranged on two-dimensional communication sheet 30. In this case, the connectors 2 to 5 are in contact with the dielectric portion 31 of the two-dimensional communication sheet 30, and the connector 101 of the terminal device 10 is in contact with the opening 32A of the two-dimensional communication sheet 30.
 コネクタ2~5は、給電ユニット1から受けた伝送波に応じて、内蔵した電極(図示せず)のスカラーポテンシャルおよび/またはベクトルポテンシャルを変化させる。ここで、スカラーポテンシャルの変化は、電位の変化に対応し、ベクトルポテンシャルの変化は、電流分布の変化、電束密度の変化および変位電流の分布の変化に対応する。 Connectors 2 to 5 change the scalar potential and / or vector potential of a built-in electrode (not shown) according to the transmission wave received from the power supply unit 1. Here, a change in scalar potential corresponds to a change in potential, and a change in vector potential corresponds to a change in current distribution, a change in electric flux density, and a change in distribution of displacement current.
 コネクタ2~5に内蔵された電極のスカラーポテンシャルおよび/またはベクトルポテンシャルが変化すると、2次元通信シート30の誘電体部31に電磁波が発生し、その発生した電磁波は、2次元通信シート30の表面付近のみを伝搬する(図6の矢印参照)。 When the scalar potential and / or vector potential of the electrodes built in the connectors 2 to 5 change, an electromagnetic wave is generated in the dielectric part 31 of the two-dimensional communication sheet 30, and the generated electromagnetic wave is generated on the surface of the two-dimensional communication sheet 30. Propagate only in the vicinity (see arrows in FIG. 6).
 そして、端末装置10が配置された位置まで伝搬した電磁波は、導体部32の開口部32Aからエバネッセント波EWVをしみ出させる。そうすると、端末装置10のコネクタ101は、その内蔵した電極(図示せず)によってエバネッセント波EWVを検知し、コネクタ2~5から送信された伝送波を受信する。 Then, the electromagnetic wave propagated to the position where the terminal device 10 is disposed oozes the evanescent wave EWV from the opening 32A of the conductor part 32. Then, the connector 101 of the terminal device 10 detects the evanescent wave EWV with its built-in electrode (not shown) and receives the transmission wave transmitted from the connectors 2 to 5.
 このように、2次元通信は、2次元通信シート30の表面近傍を伝送する電磁波を用いて行なわれる。なお、端末装置10のコネクタ101から出射された測定波も、上述した方法によって2次元通信シート30中を伝搬する。 As described above, the two-dimensional communication is performed using an electromagnetic wave transmitted near the surface of the two-dimensional communication sheet 30. Note that the measurement wave emitted from the connector 101 of the terminal device 10 also propagates through the two-dimensional communication sheet 30 by the method described above.
 図7は、測定フェーズの概念図である。また、図8は、給電フェーズの概念図である。図7を参照して、測定フェーズにおいては、端末装置10は、正弦波I0sin(ωt-θ)からなる測定波wvを2次元通信シート30へ送信し、コネクタ2~5は、正弦波I0sin(ωt-θ)をそれぞれ正弦波I1sin(ωt),I2sin(ωt-φ2),I3sin(ωt-φ3),I4sin(ωt-φ4)として受信する。 FIG. 7 is a conceptual diagram of the measurement phase. FIG. 8 is a conceptual diagram of the power feeding phase. Referring to FIG. 7, in the measurement phase, terminal apparatus 10 transmits measurement wave wv composed of sine wave I0sin (ωt−θ) to two-dimensional communication sheet 30, and connectors 2-5 receive sine wave I0sin ( ωt−θ) are received as sine waves I1sin (ωt), I2sin (ωt−φ2), I3sin (ωt−φ3), and I4sin (ωt−φ4), respectively.
 そして、給電ユニット1は、コネクタ2~5からの正弦波I1sin(ωt),I2sin(ωt-φ2),I3sin(ωt-φ3),I4sin(ωt-φ4)に基づいて、上述した方法によって、電力を供給するためのコネクタをコネクタ2,3と決定する。 Then, the power supply unit 1 uses the method described above based on the sine waves I1sin (ωt), I2sin (ωt−φ2), I3sin (ωt−φ3), and I4sin (ωt−φ4) from the connectors 2 to 5. Are determined to be connectors 2 and 3.
 そうすると、給電フェーズにおいて、給電ユニット1は、正弦波I0sin(ωt)を配線6を介してコネクタ2へ供給し、正弦波I0sin(ωt+φ2)を配線7を介してコネクタ3へ供給する。 Then, in the power supply phase, the power supply unit 1 supplies the sine wave I0sin (ωt) to the connector 2 via the wiring 6 and supplies the sine wave I0sin (ωt + φ2) to the connector 3 via the wiring 7.
 そして、コネクタ2は、正弦波I0sin(ωt)を2次元通信シート30へ送信し、コネクタ3は、正弦波I0sin(ωt+φ2)を2次元通信シート30へ送信する。 Then, the connector 2 transmits the sine wave I0sin (ωt) to the two-dimensional communication sheet 30, and the connector 3 transmits the sine wave I0sin (ωt + φ2) to the two-dimensional communication sheet 30.
 そうすると、端末装置10において、コネクタ101は、正弦波I0sin(ωt),I0sin(ωt+φ2)を受信し、その受信した正弦波I0sin(ωt),I0sin(ωt+φ2)を電力蓄積器102へ出力する。そして、電力蓄積器102は、正弦波I0sin(ωt),I0sin(ωt+φ2)を電力として蓄積する(図8参照)。 Then, in the terminal device 10, the connector 101 receives the sine waves I 0 sin (ωt) and I 0 sin (ωt + φ 2), and outputs the received sine waves I 0 sin (ωt) and I 0 sin (ωt + φ 2) to the power storage 102. Then, the power accumulator 102 accumulates sine waves I0sin (ωt) and I0sin (ωt + φ2) as electric power (see FIG. 8).
 コネクタ2は、端末装置10から送信された正弦波I0sin(ωt-θ)を正弦波I1sin(ωt)として受信し、コネクタ3は、端末装置10から送信された正弦波I0sin(ωt-θ)を正弦波I2sin(ωt-φ2)として受信するので、正弦波I1sin(ωt)の位相=0を逆転させた正弦波I0sin(ωt)をコネクタ2から送信し、正弦波I2sin(ωt-φ2)の位相=-φ2を逆転させた正弦波I0sin(ωt+φ2)をコネクタ3から送信することによって、2つの正弦波I0sin(ωt),I0sin(ωt+φ2)の位相は、端末装置10の位置において同じになる。その結果、端末装置10は、2つの正弦波I0sin(ωt),I0sin(ωt+φ2)が強め合った正弦波を電力として受信する。 The connector 2 receives the sine wave I0sin (ωt−θ) transmitted from the terminal device 10 as the sine wave I1sin (ωt), and the connector 3 receives the sine wave I0sin (ωt−θ) transmitted from the terminal device 10. Since the sine wave I2sin (ωt−φ2) is received, the sine wave I0sin (ωt) obtained by reversing the phase = 0 of the sine wave I1sin (ωt) is transmitted from the connector 2, and the phase of the sine wave I2sin (ωt−φ2) is transmitted. By transmitting a sine wave I0sin (ωt + φ2) obtained by reversing = −φ2 from the connector 3, the phases of the two sine waves I0sin (ωt) and I0sin (ωt + φ2) become the same at the position of the terminal device 10. As a result, the terminal device 10 receives as a power a sine wave in which two sine waves I0sin (ωt) and I0sin (ωt + φ2) are strengthened.
 端末装置10が10[dBm]の振幅I0を有する正弦波I0sin(ωt-θ)を測定波wvとして送信した場合、コネクタ2は、7.0[dBm]の振幅I1を有する正弦波I1sin(ωt)を受信し、コネクタ3は、0.0[dBm]の振幅I2を有する正弦波I2sin(ωt-φ2)を受信するので、コネクタ2,3がそれぞれ10[dBm]の振幅I0を有する正弦波I0sin(ωt),I0sin(ωt+φ2)を送信した場合、正弦波I0sin(ωt),I0sin(ωt+φ2)は、それぞれ、-3dBm,-10dBmの減衰を経て端末装置10へ到達する。 When the terminal device 10 transmits a sine wave I0sin (ωt−θ) having an amplitude I0 of 10 [dBm] as the measurement wave wv, the connector 2 has a sine wave I1sin (ωt having an amplitude I1 of 7.0 [dBm]. ) And the connector 3 receives a sine wave I2sin (ωt−φ2) having an amplitude I2 of 0.0 [dBm], so that the connectors 2 and 3 each have an amplitude I0 of 10 [dBm]. When I0sin (ωt) and I0sin (ωt + φ2) are transmitted, the sine waves I0sin (ωt) and I0sin (ωt + φ2) reach the terminal device 10 through attenuation of −3 dBm and −10 dBm, respectively.
 なお、コネクタ2,3に加え、コネクタ4,5も電力を供給するためのコネクタとして選択された場合、給電ユニット1は、コネクタ4が受信した正弦波I3sin(ωt-φ3)の位相=-φ3を逆転させた正弦波I0sin(ωt+φ3)をコネクタ4へ供給し、コネクタ5が受信した正弦波I4sin(ωt-φ4)の位相=-φ4を逆転させた正弦波I0sin(ωt+φ4)をコネクタ5へ供給する。そして、コネクタ4,5は、それぞれ、正弦波I0sin(ωt+φ3),I0sin(ωt+φ4)を2次元通信シート30へ送信する。 When the connectors 4 and 5 are also selected as connectors for supplying power in addition to the connectors 2 and 3, the power supply unit 1 uses the phase of the sine wave I3sin (ωt−φ3) received by the connector 4 = −φ3. Is supplied to the connector 4 and the sine wave I4sin (ωt−φ4) received by the connector 5 is supplied to the connector 5 as a sine wave I0sin (ωt + φ4) obtained by reversing the phase of −φ4. To do. Then, the connectors 4 and 5 transmit sine waves I 0 sin (ωt + φ3) and I0 sin (ωt + φ4) to the two-dimensional communication sheet 30, respectively.
 4個の正弦波I0sin(ωt),I0sin(ωt+φ2),I0sin(ωt+φ3),I0sin(ωt+φ4)は、端末装置10の位置において位相が同じになるため、端末装置10は、4個の正弦波I0sin(ωt),I0sin(ωt+φ2),I0sin(ωt+φ3),I0sin(ωt+φ4)が強め合った正弦波を受信して電力として蓄積する。 Since the four sine waves I0sin (ωt), I0sin (ωt + φ2), I0sin (ωt + φ3), and I0sin (ωt + φ4) have the same phase at the position of the terminal device 10, the terminal device 10 has four sine waves I0sin. A sine wave in which (ωt), I0sin (ωt + φ2), I0sin (ωt + φ3), and I0sin (ωt + φ4) are strengthened is received and stored as electric power.
 図9は、実施の形態1における電力の給電方法を説明するためのフローチャートである。図9を参照して、一連の動作が開始されると、測定フェーズにおいて、端末装置10は、正弦波I0sin(ωt-θ)からなる測定波を2次元通信シート30へ送信する(ステップS1)。 FIG. 9 is a flowchart for explaining the power supply method according to the first embodiment. Referring to FIG. 9, when a series of operations is started, in the measurement phase, terminal apparatus 10 transmits a measurement wave composed of sine wave I0sin (ωt−θ) to two-dimensional communication sheet 30 (step S1). .
 そして、給電ユニット1は、測定フェーズにおいて、端末装置10から送信された測定波を複数の測定波としてそれぞれ複数のコネクタ2~5によって受信する(ステップS2)。 In the measurement phase, the power supply unit 1 receives the measurement waves transmitted from the terminal device 10 as a plurality of measurement waves by the plurality of connectors 2 to 5 (step S2).
 その後、給電ユニット1は、複数の測定波の複数の振幅および複数の位相を検出する(ステップS3)。引き続いて、給電ユニット1は、その検出した複数の振幅のうち、閾値I_th以上の振幅を検出し、その検出した振幅の総和と、その検出した振幅を大きい順に加算したときの和との比率が基準比率よりも大きくなるコネクタを電力を供給するためのコネクタとして決定する(ステップS4)。 Thereafter, the power supply unit 1 detects a plurality of amplitudes and a plurality of phases of the plurality of measurement waves (step S3). Subsequently, the power supply unit 1 detects an amplitude greater than or equal to the threshold I_th among the detected plurality of amplitudes, and the ratio between the sum of the detected amplitudes and the sum when the detected amplitudes are added in descending order is A connector that is larger than the reference ratio is determined as a connector for supplying power (step S4).
 そして、給電ユニット1は、電力を供給するためのコネクタとして決定したコネクタで受信した測定波の位相を逆転させた位相と、端末装置10が送信した正弦波の振幅とを有する正弦波を、その決定したコネクタを介して送信する(ステップS5)。 The power supply unit 1 then generates a sine wave having a phase obtained by reversing the phase of the measurement wave received by the connector determined as the connector for supplying power and the amplitude of the sine wave transmitted by the terminal device 10. It transmits through the determined connector (step S5).
 そうすると、端末装置10は、2次元通信シート30を介して給電ユニット1からの正弦波を受信し、その受信した正弦波を電力として蓄積する(ステップS6)。これによって、一連の動作は終了する。 Then, the terminal device 10 receives the sine wave from the power supply unit 1 via the two-dimensional communication sheet 30, and accumulates the received sine wave as electric power (step S6). Thus, a series of operations is completed.
 このように、端末装置10から送信された測定波を複数のコネクタ2~5によって受信したときの複数の測定波の複数の振幅および複数の位相を検出し、その検出した複数の振幅に基づいて、できる限り大きい電力を供給するためのコネクタを決定し、その決定したコネクタを用いて、端末装置10の位置において位相が同じになるように電力を給電ユニット1から端末装置10へ送信する。 In this way, a plurality of amplitudes and a plurality of phases of the plurality of measurement waves when the measurement waves transmitted from the terminal device 10 are received by the plurality of connectors 2 to 5 are detected, and based on the detected plurality of amplitudes. Then, a connector for supplying as much power as possible is determined, and using the determined connector, power is transmitted from the power supply unit 1 to the terminal device 10 so that the phase is the same at the position of the terminal device 10.
 したがって、この発明によれば、最大限の電力を簡単に端末装置10へ供給できる。 Therefore, according to the present invention, the maximum power can be easily supplied to the terminal device 10.
 なお、上記においては、2次元通信シート30に設置されるコネクタは、4個のコネクタ2~5であると説明したが、この発明の実施の形態においては、これに限らず、2次元通信シート30に設置されるコネクタは、2個以上のコネクタからなっていればよい。そして、2以上のコネクタは、2次元通信シート30の1つの辺に沿って配置されていてもよく、2次元通信シート30の2つ以上の辺に沿って配置されていてもよい。 In the above description, it has been described that the connectors installed on the two-dimensional communication sheet 30 are the four connectors 2 to 5. However, the embodiment of the present invention is not limited to this, and the two-dimensional communication sheet is used. The connector installed in 30 should just consist of two or more connectors. The two or more connectors may be disposed along one side of the two-dimensional communication sheet 30 or may be disposed along two or more sides of the two-dimensional communication sheet 30.
 [実施の形態2]
 図10は、実施の形態2による2次元通信システムの概略図である。図10を参照して、実施の形態2による2次元通信システム100Aは、図1に示す2次元通信システム100の給電ユニット1および端末装置10をそれぞれ給電ユニット1Aおよび端末装置10Aに代えたものであり、その他は、2次元通信システム100と同じである。
[Embodiment 2]
FIG. 10 is a schematic diagram of a two-dimensional communication system according to the second embodiment. Referring to FIG. 10, a two-dimensional communication system 100A according to Embodiment 2 is obtained by replacing power supply unit 1 and terminal device 10 of two-dimensional communication system 100 shown in FIG. 1 with power supply unit 1A and terminal device 10A, respectively. Others are the same as those of the two-dimensional communication system 100.
 端末装置10Aは、自己における電力量がしきい値PW_th以下になったとき、自己の位置が変動したとき、および周りの電磁波環境が変化したとき等の状況変化が生じると、トリガー信号TRGを生成し、その生成したトリガー信号TRGを2次元通信シート30を介して給電ユニット1へ送信する。そして、端末装置10Aは、トリガー信号TRGを送信した後、正弦波I0sin(ωt-θ)からなる測定波を2次元通信シート30へ送信する。その後、端末装置10Aは、給電ユニット1Aからの電力を受電して蓄積する。 The terminal device 10A generates a trigger signal TRG when a situation change occurs, such as when the amount of power in the terminal device 10 falls below the threshold value PW_th, when the position of the terminal device 10A changes, or when the surrounding electromagnetic wave environment changes. Then, the generated trigger signal TRG is transmitted to the power supply unit 1 via the two-dimensional communication sheet 30. Then, after transmitting the trigger signal TRG, the terminal device 10A transmits a measurement wave including a sine wave I0sin (ωt−θ) to the two-dimensional communication sheet 30. Thereafter, the terminal device 10A receives and accumulates power from the power feeding unit 1A.
 給電ユニット1Aは、コネクタ2~5を介してトリガー信号TRGを受信すると、測定フェーズに入り、コネクタ2~5によって端末装置10Aからの測定波(=正弦波I0sin(ωt-θ))を受信する。 When power supply unit 1A receives trigger signal TRG via connectors 2-5, it enters a measurement phase and receives a measurement wave (= sine wave I0sin (ωt−θ)) from terminal device 10A via connectors 2-5. .
 そして、給電ユニット1Aは、給電フェーズにおいて、測定フェーズにおいて受信した測定波に基づいて、給電ユニット1と同じ方法によって、電力を供給するためのコネクタを決定し、その決定したコネクタを用いて電力を端末装置10Aへ供給する。 Then, in the power feeding phase, the power feeding unit 1A determines a connector for supplying power by the same method as that of the power feeding unit 1 based on the measurement wave received in the measurement phase, and uses the determined connector to supply power. Supply to terminal device 10A.
 この場合、給電ユニット1Aは、電力の供給に用いるコネクタが出力するトータルの電力量に応じて電力の給電時間を制御しながら電力を端末装置10Aへ供給する。すなわち、給電ユニット1Aは、トータルの電力量が大きいほど、電力の給電時間を長くし、トータルの電力量が小さいほど、電力の給電時間を短くして電力を端末装置10Aへ供給する。 In this case, the power supply unit 1A supplies power to the terminal device 10A while controlling the power supply time according to the total amount of power output by the connector used for power supply. That is, the power supply unit 1A increases the power supply time as the total power amount is larger, and supplies the power to the terminal device 10A while decreasing the power supply time as the total power amount is smaller.
 図11は、図10に示す給電ユニット1Aの構成を示す概略ブロック図である。図11を参照して、給電ユニット1Aは、図4に示す給電ユニット1の振幅・位相計測器11~14をそれぞれ振幅・位相計測器11A~14Aに代え、制御装置15を制御装置15Aに代え、入力部25~28を追加したものであり、その他は、給電ユニット1と同じである。 FIG. 11 is a schematic block diagram showing the configuration of the power supply unit 1A shown in FIG. Referring to FIG. 11, power supply unit 1A replaces amplitude / phase measuring devices 11-14 of power supply unit 1 shown in FIG. 4 with amplitude / phase measuring devices 11A-14A, and replaces control device 15 with control device 15A. The input units 25 to 28 are added, and the other parts are the same as those of the power supply unit 1.
 振幅・位相計測器11A~14Aは、それぞれ、コネクタ2~5に対応して設けられ、配線6~9によってコネクタ2~5に接続される。そして、振幅・位相計測器11A~14Aは、それぞれ、コネクタ2~5から配線6~9を介してトリガー信号TRGを受信すると、測定フェーズに入り、トリガー信号TRGの受信後に、それぞれ、測定波wv1=I1sin(ωt),wv2=I2sin(ωt-φ2),wv3=I3sin(ωt-φ3),wv4=I4sin(ωt-φ4)をコネクタ2~5から受け、その受けた測定波wv1=I1sin(ωt),wv2=I2sin(ωt-φ2),wv3=I3sin(ωt-φ3),wv4=I4sin(ωt-φ4)の振幅I1~I4および位相φ1~φ4を検出して制御装置15Aへ出力する。 The amplitude / phase measuring instruments 11A to 14A are provided corresponding to the connectors 2 to 5, respectively, and are connected to the connectors 2 to 5 by wirings 6 to 9. The amplitude / phase measuring devices 11A to 14A enter the measurement phase when receiving the trigger signal TRG from the connectors 2 to 5 via the wirings 6 to 9, respectively. After receiving the trigger signal TRG, the measurement wave wv1 = I1sin (ωt), wv2 = I2sin (ωt−φ2), wv3 = I3sin (ωt−φ3), wv4 = I4sin (ωt−φ4) are received from the connectors 2 to 5, and the received measurement wave wv1 = I1sin (ωt ), Wv2 = I2sin (ωt−φ2), wv3 = I3sin (ωt−φ3), wv4 = I4sin (ωt−φ4) amplitudes I1 to I4 and phases φ1 to φ4 are detected and output to the control device 15A.
 制御装置15Aは、振幅I1~I4および位相φ1~φ4に基づいて、制御装置15と同じ方法によって、電力を供給するためのコネクタをコネクタ2~5の中から選択する。そして、制御装置15Aは、その選択したコネクタによって供給する電力の総和に応じて電力の供給時間を演算し、その演算した電力の供給時間を電力の供給に用いるコネクタに対応して設けられた入力部(入力部25~28の少なくとも1つ)へ出力する。たとえば、制御装置15Aは、電力を供給するためのコネクタとしてコネクタ2,3を選択した場合、電力の供給時間を入力部25,26へ出力する。その他、制御装置15Aは、制御装置15と同じ機能を果たす。 The control device 15A selects a connector for supplying power from the connectors 2 to 5 by the same method as the control device 15 based on the amplitudes I1 to I4 and the phases φ1 to φ4. Then, the control device 15A calculates the power supply time according to the total power supplied by the selected connector, and the input provided corresponding to the connector that uses the calculated power supply time for power supply. Part (at least one of the input parts 25 to 28). For example, when the connectors 2 and 3 are selected as the connectors for supplying power, the control device 15A outputs the power supply time to the input units 25 and 26. In addition, the control device 15 </ b> A performs the same function as the control device 15.
 入力部25~28は、それぞれ、コネクタ2~5に対応して設けられ、位相調整器17~20と増幅器21~24との間に配置される。そして、入力部25~28は、制御装置15Aから電力の供給時間を受けると、それぞれ、位相調整器17~20から入力された正弦波を、電力の供給時間の間、増幅器21~24へ出力する。なお、入力部25~28は、制御装置15Aから電力の供給時間を受けないとき、正弦波を増幅器21~24へ出力しない。 The input units 25 to 28 are provided corresponding to the connectors 2 to 5, respectively, and are arranged between the phase adjusters 17 to 20 and the amplifiers 21 to 24. When receiving the power supply time from the control device 15A, the input units 25 to 28 output the sine waves input from the phase adjusters 17 to 20 to the amplifiers 21 to 24 during the power supply time, respectively. To do. Input units 25 to 28 do not output a sine wave to amplifiers 21 to 24 when they do not receive the power supply time from control device 15A.
 図12は、図10に示す端末装置10Aの構成を示す概略ブロック図である。図12を参照して、端末装置10Aは、図5に示す端末装置10に制御装置104を追加したものであり、その他は、端末装置10と同じである。 FIG. 12 is a schematic block diagram showing the configuration of the terminal device 10A shown in FIG. Referring to FIG. 12, terminal device 10 </ b> A is obtained by adding control device 104 to terminal device 10 shown in FIG. 5, and is otherwise the same as terminal device 10.
 制御装置104は、電力蓄積器102に蓄積された電力量PWを検出し、その検出した電力量PWがしきい値PW_th以下であるか否かを判定する。そして、制御装置104は、電力量PWがしきい値PW_th以下であると判定したとき、トリガー信号TRGを生成し、その生成したトリガー信号TRGをコネクタ101へ出力する。また、制御装置101は、トリガー信号TRGの出力後、測定波を生成するように発振器103を制御する。 The control device 104 detects the power amount PW stored in the power storage 102 and determines whether or not the detected power amount PW is equal to or less than the threshold value PW_th. When control device 104 determines that power amount PW is equal to or less than threshold value PW_th, control device 104 generates trigger signal TRG and outputs the generated trigger signal TRG to connector 101. Further, the control apparatus 101 controls the oscillator 103 so as to generate a measurement wave after outputting the trigger signal TRG.
 なお、制御装置104は、電力量PWがしきい値PW_thよりも大きいとき、トリガー信号TRGを生成せず、測定波を生成するように発振器103を制御することもない。 Note that the control device 104 does not generate the trigger signal TRG and does not control the oscillator 103 so as to generate a measurement wave when the power amount PW is larger than the threshold value PW_th.
 端末装置10Aにおいては、発振器103は、制御装置104からの制御に従って、測定波を生成してコネクタ101へ出力する。また、コネクタ101は、トリガー信号TRGを制御装置104から受けると、その受けたトリガー信号TRGを2次元通信シート30へ送信する。 In the terminal device 10 </ b> A, the oscillator 103 generates a measurement wave and outputs it to the connector 101 in accordance with control from the control device 104. Further, when the connector 101 receives the trigger signal TRG from the control device 104, the connector 101 transmits the received trigger signal TRG to the two-dimensional communication sheet 30.
 図13は、実施の形態2における測定フェーズおよび給電フェーズの概念図である。図13を参照して、端末装置10Aは、自己における電力量PWがしきい値PW_th以下になると、トリガー信号TRG1を生成して給電ユニット1Aへ送信する。そして、給電ユニット1Aは、トリガー信号TRG1の受信信号R1を受信し、測定フェーズMP1に入る。 FIG. 13 is a conceptual diagram of the measurement phase and the power feeding phase in the second embodiment. Referring to FIG. 13, terminal device 10A generates trigger signal TRG1 and transmits it to power supply unit 1A when its own power amount PW becomes equal to or less than threshold value PW_th. Then, the power feeding unit 1A receives the reception signal R1 of the trigger signal TRG1, and enters the measurement phase MP1.
 その後、端末装置10Aは、測定波wv_1(=I0sin(ωt-θ))を生成して2次元通信シート30へ送信し、給電ユニット1Aは、測定フェーズMP1において、測定波wv_1をコネクタ2~5によって受信し、その受信した複数の測定波に基づいて、上述した方法によって、電力を供給するためのコネクタを決定する。この場合、給電ユニット1Aは、電力を供給するためのコネクタをコネクタ2,3と決定するものとする。 Thereafter, the terminal apparatus 10A generates a measurement wave wv_1 (= I0sin (ωt−θ)) and transmits it to the two-dimensional communication sheet 30, and the power supply unit 1A sends the measurement wave wv_1 to the connectors 2 to 5 in the measurement phase MP1. And a connector for supplying power is determined by the method described above based on the plurality of received measurement waves. In this case, the power feeding unit 1 </ b> A determines the connectors for supplying power as the connectors 2 and 3.
 そうすると、コネクタ2,3からそれぞれ10[mW]の振幅I0を有する正弦波I0sin(ωt),I0sin(ωt+φ2)を送信するので、給電ユニット1Aの制御装置15Aは、2×I0=20[mW]をコネクタ2,3から供給する電力の総和とし、20[mW]に応じて給電フェーズPP1の時間幅(電力の供給時間)TPP1を決定する。また、給電ユニット1Aの制御装置15Aは、制御装置15と同じ方法によって、位相調整量φ1_CTL=0,φ2_CTL=+φ2および増幅率A1,A2を決定する。 Then, since the sine waves I0sin (ωt) and I0sin (ωt + φ2) having the amplitude I0 of 10 [mW] are transmitted from the connectors 2 and 3, the control device 15A of the power supply unit 1A has 2 × I0 = 20 [mW]. Is the total power supplied from the connectors 2 and 3, and the time width (power supply time) T PP1 of the power feeding phase PP1 is determined according to 20 [mW]. Further, the control device 15A of the power supply unit 1A determines the phase adjustment amounts φ1_CTL = 0, φ2_CTL = + φ2 and the amplification factors A1 and A2 by the same method as the control device 15.
 そして、給電ユニット1Aの制御装置15Aは、位相調整量φ1_CTL=0,φ2_CTL=+φ2をそれぞれ位相調整器17,18へ出力し、時間幅(電力の供給時間)TPP1を入力部25,26へ出力し、増幅率A1,A2をそれぞれ増幅器21,22へ出力する。 Then, the control device 15A of the power supply unit 1A outputs the phase adjustment amounts φ1_CTL = 0 and φ2_CTL = + φ2 to the phase adjusters 17 and 18, respectively, and the time width (power supply time) TPP1 to the input units 25 and 26. The amplification factors A1 and A2 are output to the amplifiers 21 and 22, respectively.
 給電ユニット1Aの位相調整器17は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ1_CTL=0によって調整して正弦波sin(ωt)を入力部25へ出力する。また、給電ユニット1Aの位相調整器18は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ2_CTL=+φ2によって調整して正弦波sin(ωt+φ2)を入力部26へ出力する。 The phase adjuster 17 of the power supply unit 1A adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ1_CTL = 0 and outputs the sine wave sin (ωt) to the input unit 25. The phase adjuster 18 of the power supply unit 1A adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ2_CTL = + φ2, and outputs the sine wave sin (ωt + φ2) to the input unit 26.
 給電ユニット1Aの入力部25は、位相調整器17から受けた正弦波sin(ωt)を、時間幅(電力の供給時間)TPP1の間、増幅器21へ出力し、入力部26は、位相調整器18から受けた正弦波sin(ωt+φ2)を、時間幅(電力の供給時間)TPP1の間、増幅器22へ出力する。 The input unit 25 of the power supply unit 1A outputs the sine wave sin (ωt) received from the phase adjuster 17 to the amplifier 21 during the time width (power supply time) TPP1 , and the input unit 26 adjusts the phase. The sine wave sin (ωt + φ2) received from the device 18 is output to the amplifier 22 for a time width (power supply time) T PP1 .
 そして、給電ユニット1Aの増幅器21は、入力部25から受けた正弦波sin(ωt)を振幅がI0になるように増幅し、正弦波I0sin(ωt)を配線6およびコネクタ2を介して2次元通信シート30へ送信し、増幅器22は、入力部26から受けた正弦波sin(ωt+φ2)を振幅がI0になるように増幅し、正弦波I0sin(ωt+φ2)を配線7およびコネクタ3を介して2次元通信シート30へ送信する。 The amplifier 21 of the power supply unit 1A amplifies the sine wave sin (ωt) received from the input unit 25 so that the amplitude becomes I0, and two-dimensionally the sine wave I0sin (ωt) via the wiring 6 and the connector 2. The amplifier 22 amplifies the sine wave sin (ωt + φ2) received from the input unit 26 so that the amplitude becomes I0, and the amplifier 22 transmits the sine wave I0sin (ωt + φ2) to the 2 through the wiring 7 and the connector 3. It transmits to the dimension communication sheet 30.
 これによって、時間幅(電力の供給時間)TPP1の間、給電フェーズPP1において、電力が給電ユニット1Aから端末装置10Aへ供給される。 Thus, power is supplied from the power supply unit 1A to the terminal device 10A in the power supply phase PP1 during the time width (power supply time) TPP1 .
 その後、端末装置10Aは、再び、電力量PWがしきい値PW_th以下になったことを検出すると、トリガー信号TRG2を生成して給電ユニット1Aへ送信する。そして、給電ユニット1Aは、トリガー信号TRG2の受信信号R2を受信し、測定フェーズMP2に入る。 Thereafter, when the terminal device 10A again detects that the power amount PW has become equal to or less than the threshold value PW_th, the terminal device 10A generates the trigger signal TRG2 and transmits it to the power feeding unit 1A. Then, the power feeding unit 1A receives the reception signal R2 of the trigger signal TRG2, and enters the measurement phase MP2.
 その後、端末装置10Aは、測定波wv_2(=I0sin(ωt-θ))を生成して2次元通信シート30へ送信し、給電ユニット1Aは、測定フェーズMP2において、測定波wv_2をコネクタ2~5によって受信し、その受信した複数の測定波に基づいて、上述した方法によって、電力を供給するためのコネクタを決定する。この場合、給電ユニット1Aは、電力を供給するためのコネクタをコネクタ2~4と決定するものとする。 Thereafter, the terminal device 10A generates a measurement wave wv_2 (= I0sin (ωt−θ)) and transmits it to the two-dimensional communication sheet 30, and the power supply unit 1A sends the measurement wave wv_2 to the connectors 2 to 5 in the measurement phase MP2. And a connector for supplying power is determined by the above-described method based on the plurality of received measurement waves. In this case, the power supply unit 1A determines the connectors for supplying power as connectors 2 to 4.
 そうすると、コネクタ2~4からそれぞれ10[mW]の振幅I0を有する正弦波I0sin(ωt),I0sin(ωt+φ2),I0sin(ωt+φ3)を送信するので、給電ユニット1Aの制御装置15Aは、3×I0=30[mW]をコネクタ2~4から供給する電力の総和とし、30[mW]に応じて給電フェーズPP2の時間幅(電力の供給時間)TPP2(>TPP1)を決定する。また、給電ユニット1Aの制御装置15Aは、制御装置15と同じ方法によって、位相調整量φ1_CTL=0,φ2_CTL=+φ2,φ3_CTL=+φ3および増幅率A1,A2,A3を決定する。 Then, since the sine waves I0sin (ωt), I0sin (ωt + φ2), and I0sin (ωt + φ3) each having an amplitude I0 of 10 [mW] are transmitted from the connectors 2 to 4, the control device 15A of the power feeding unit 1A is 3 × I0. = 30 [mW] is the sum of the power supplied from the connectors 2 to 4, and the time width (power supply time) T PP2 (> T PP1 ) of the power feeding phase PP2 is determined according to 30 [mW]. Further, the control device 15A of the power supply unit 1A determines the phase adjustment amounts φ1_CTL = 0, φ2_CTL = + φ2, φ3_CTL = + φ3, and amplification factors A1, A2, and A3 by the same method as the control device 15.
 そして、給電ユニット1Aの制御装置15Aは、位相調整量φ1_CTL=0,φ2_CTL=+φ2,φ3_CTL=+φ3をそれぞれ位相調整器17~19へ出力し、時間幅(電力の供給時間)TPP2を入力部25~27へ出力し、増幅率A1,A2,A3をそれぞれ増幅器21~23へ出力する。 Then, the controller 15A of the power supply unit 1A, the phase adjustment amount φ1_CTL = 0, φ2_CTL = + φ2 , output φ3_CTL = + φ3 to the phase adjuster 17-19 respectively, the time width (power supply time) enter the T PP2 portion 25 to 27, and the amplification factors A1, A2, and A3 are output to the amplifiers 21 to 23, respectively.
 給電ユニット1Aの位相調整器17は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ1_CTL=0によって調整して正弦波sin(ωt)を入力部25へ出力する。また、給電ユニット1Aの位相調整器18は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ2_CTL=+φ2によって調整して正弦波sin(ωt+φ2)を入力部26へ出力する。さらに、給電ユニット1Aの位相調整器19は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ3_CTL=+φ3によって調整して正弦波sin(ωt+φ3)を入力部27へ出力する。 The phase adjuster 17 of the power supply unit 1A adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ1_CTL = 0 and outputs the sine wave sin (ωt) to the input unit 25. The phase adjuster 18 of the power supply unit 1A adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ2_CTL = + φ2, and outputs the sine wave sin (ωt + φ2) to the input unit 26. Further, the phase adjuster 19 of the power feeding unit 1A adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ3_CTL = + φ3, and outputs the sine wave sin (ωt + φ3) to the input unit 27.
 給電ユニット1Aの入力部25は、位相調整器17から受けた正弦波sin(ωt)を、時間幅(電力の供給時間)TPP2の間、増幅器21へ出力し、入力部26は、位相調整器18から受けた正弦波sin(ωt+φ2)を、時間幅(電力の供給時間)TPP2の間、増幅器22へ出力し、入力部27は、位相調整器19から受けた正弦波sin(ωt+φ3)を、時間幅(電力の供給時間)TPP2の間、増幅器23へ出力する。 The input unit 25 of the power feeding unit 1A outputs the sine wave sin (ωt) received from the phase adjuster 17 to the amplifier 21 during the time width (power supply time) TPP2 , and the input unit 26 adjusts the phase. The sine wave sin (ωt + φ2) received from the phase adjuster 18 is output to the amplifier 22 during the time width (power supply time) T PP2 , and the input unit 27 receives the sine wave sin (ωt + φ3) received from the phase adjuster 19. Is output to the amplifier 23 for a time width (power supply time) TPP2 .
 そして、給電ユニット1Aの増幅器21は、入力部25から受けた正弦波sin(ωt)を振幅がI0になるように増幅し、正弦波I0sin(ωt)を配線6およびコネクタ2を介して2次元通信シート30へ送信し、増幅器22は、入力部26から受けた正弦波sin(ωt+φ2)を振幅がI0になるように増幅し、正弦波I0sin(ωt+φ2)を配線7およびコネクタ3を介して2次元通信シート30へ送信し、増幅器23は、入力部27から受けた正弦波sin(ωt+φ3)を振幅がI0になるように増幅し、正弦波I0sin(ωt+φ3)を配線8およびコネクタ4を介して2次元通信シート30へ送信する。 The amplifier 21 of the power supply unit 1A amplifies the sine wave sin (ωt) received from the input unit 25 so that the amplitude becomes I0, and two-dimensionally the sine wave I0sin (ωt) via the wiring 6 and the connector 2. The amplifier 22 amplifies the sine wave sin (ωt + φ2) received from the input unit 26 so that the amplitude becomes I0, and the amplifier 22 transmits the sine wave I0sin (ωt + φ2) to the 2 through the wiring 7 and the connector 3. The amplifier 23 amplifies the sine wave sin (ωt + φ3) received from the input unit 27 so that the amplitude becomes I0, and the amplifier 23 transmits the sine wave I0sin (ωt + φ3) via the wiring 8 and the connector 4. Transmit to the two-dimensional communication sheet 30.
 これによって、時間幅(電力の供給時間)TPP2の間、給電フェーズPP2において、電力が給電ユニット1Aから端末装置10Aへ供給される。 Thus, power is supplied from the power supply unit 1A to the terminal device 10A in the power supply phase PP2 during the time width (power supply time) TPP2 .
 以後、上述した動作を繰り返すことによって、端末装置10Aにおいて状況変化が生じると、電力が給電ユニット1Aから端末装置10Aへ供給される。 Thereafter, when the situation changes in the terminal device 10A by repeating the above-described operation, power is supplied from the power feeding unit 1A to the terminal device 10A.
 図14は、実施の形態2における電力の給電方法を説明するためのフローチャートである。図14に示すフローチャートは、図9に示すフローチャートにステップS11~S14を追加し、ステップS5をステップS5Aに代えたものであり、その他は、図9に示すフローチャートと同じである。 FIG. 14 is a flowchart for explaining a power supply method according to the second embodiment. The flowchart shown in FIG. 14 is the same as the flowchart shown in FIG. 9 except that steps S11 to S14 are added to the flowchart shown in FIG. 9 and step S5 is replaced with step S5A.
 図14を参照して、一連の動作が開始されると、端末装置10Aは、自己が蓄積している電力量PWがしきい値PW_th以下になる等の状況変化が生じたか否かを判定する(ステップS11)。 Referring to FIG. 14, when a series of operations is started, terminal device 10 </ b> A determines whether or not a situation change has occurred, for example, power amount PW stored therein becomes equal to or less than threshold value PW_th. (Step S11).
 ステップS11において、状況変化が生じていないと判定されたとき、一連の動作は、終了する。 When it is determined in step S11 that no situation change has occurred, the series of operations ends.
 一方、ステップS11において、状況変化が生じたと判定されたとき、端末装置10Aは、トリガー信号TRGを生成して送信し(ステップS12)、給電ユニット1Aは、トリガー信号TRGを受信する(ステップS13)。これによって、給電ユニット1Aおよび端末装置10Aは、測定フェーズに入る。 On the other hand, when it is determined in step S11 that a situation change has occurred, the terminal apparatus 10A generates and transmits a trigger signal TRG (step S12), and the power feeding unit 1A receives the trigger signal TRG (step S13). . Accordingly, the power feeding unit 1A and the terminal device 10A enter the measurement phase.
 その後、上述したステップS1~ステップS4が順次実行される。そして、ステップS4の後、給電ユニット1Aは、決定したコネクタから供給する電力に応じて電力の供給時間を決定する(ステップS14)。そして、給電ユニット1Aは、電力を供給するためのコネクタとして決定したコネクタで受信した測定波の位相を逆転させた位相と、端末装置10Aが送信した正弦波の振幅とを有する正弦波を、電力の供給時間の間、その決定したコネクタを介して送信する(ステップS5A)。 Thereafter, the above-described steps S1 to S4 are sequentially executed. After step S4, the power supply unit 1A determines the power supply time according to the power supplied from the determined connector (step S14). Then, the power feeding unit 1A converts a sine wave having a phase obtained by reversing the phase of the measurement wave received by the connector determined as the connector for supplying power and the amplitude of the sine wave transmitted by the terminal device 10A to the power During the supply time, the data is transmitted through the determined connector (step S5A).
 その後、上述したステップS6が実行され、一連の動作が終了する。 Thereafter, step S6 described above is executed, and a series of operations is completed.
 なお、端末装置10Aにおける状況変化が生じるごとに、給電ユニット1Aおよび端末装置10Aは、図14に示すフローチャートを繰返し実行する。 Note that each time a situation change occurs in the terminal device 10A, the power supply unit 1A and the terminal device 10A repeatedly execute the flowchart shown in FIG.
 このように、端末装置10Aにおける状況が変化すると、端末装置10Aは、測定フェーズに入るためのトリガー信号TRGを生成して給電ユニット1Aへ送信し、給電ユニット1Aは、トリガー信号TRGの受信に応じて、測定フェーズおよび給電フェーズを順次実行して電力を端末装置10Aへ供給する。 Thus, when the situation in the terminal device 10A changes, the terminal device 10A generates a trigger signal TRG for entering the measurement phase and transmits it to the power supply unit 1A. The power supply unit 1A responds to the reception of the trigger signal TRG. Then, the measurement phase and the power feeding phase are sequentially executed to supply power to the terminal device 10A.
 したがって、端末装置10Aにおける状況が変化しても、電力を端末装置10Aへ確実に供給できる。 Therefore, even if the situation in the terminal device 10A changes, power can be reliably supplied to the terminal device 10A.
 その他は、実施の形態1と同じである。 Others are the same as those in the first embodiment.
 [実施の形態3]
 図15は、実施の形態3による2次元通信システムの概略図である。図15を参照して、実施の形態3による2次元通信システム100Bは、図1に示す2次元通信システム100の給電ユニット1および端末装置10をそれぞれ給電ユニット1Bおよび端末装置10Bに代えたものであり、その他は、2次元通信システム100と同じである。
[Embodiment 3]
FIG. 15 is a schematic diagram of a two-dimensional communication system according to the third embodiment. Referring to FIG. 15, a two-dimensional communication system 100B according to Embodiment 3 is obtained by replacing power supply unit 1 and terminal device 10 of two-dimensional communication system 100 shown in FIG. 1 with power supply unit 1B and terminal device 10B, respectively. Others are the same as those of the two-dimensional communication system 100.
 端末装置10Bは、2次元通信シート30上の任意の位置に配置され、電力が不要になるまで、常時、測定波を2次元通信シート30へ送信する。 The terminal device 10B is arranged at an arbitrary position on the two-dimensional communication sheet 30 and constantly transmits a measurement wave to the two-dimensional communication sheet 30 until power is not required.
 給電ユニット1Bは、端末装置10Bから送信された測定波をコネクタ2~5によって定期的に測定する。そして、給電ユニット1Bは、コネクタ2~5によって複数の測定波を測定すると、給電ユニット1と同じ方法によって電力を端末装置10Bへ供給する。 The power feeding unit 1B periodically measures the measurement wave transmitted from the terminal device 10B by the connectors 2-5. Then, when the power feeding unit 1B measures a plurality of measurement waves by the connectors 2 to 5, the power feeding unit 1B supplies power to the terminal device 10B by the same method as the power feeding unit 1.
 図16は、図15に示す給電ユニット1Bの構成を示す概略ブロック図である。図16を参照して、給電ユニット1Bは、図4に示す給電ユニット1の振幅・位相計測器11~14をそれぞれ振幅・位相計測器11B~14Bに代えたものであり、その他は、給電ユニット1と同じである。 FIG. 16 is a schematic block diagram showing the configuration of the power supply unit 1B shown in FIG. Referring to FIG. 16, a power feeding unit 1B is obtained by replacing the amplitude / phase measuring devices 11-14 of power feeding unit 1 shown in FIG. 4 with amplitude / phase measuring devices 11B-14B, respectively. Same as 1.
 振幅・位相計測器11B~14Bは、それぞれ、コネクタ2~5に対応して設けられ、配線6~9によってコネクタ2~5に接続される。そして、振幅・位相計測器11B~14Bは、相互に同期が取れたタイマー(図示せず)を内蔵しており、その内蔵したタイマーに基づいて、それぞれ、コネクタ2~5から配線6~9を介して受けた測定波wv1=I1sin(ωt),wv2=I2sin(ωt-φ2),wv3=I3sin(ωt-φ3),wv4=I4sin(ωt-φ4)の振幅I1~I4および位相φ1~φ4を定期的に検出し、その検出した振幅I1~I4および位相φ1~φ4を制御装置15へ出力する。 The amplitude / phase measuring instruments 11B to 14B are provided corresponding to the connectors 2 to 5, respectively, and are connected to the connectors 2 to 5 by wirings 6 to 9, respectively. The amplitude / phase measuring instruments 11B to 14B have built-in timers (not shown) that are synchronized with each other. Based on the built-in timers, the wirings 6 to 9 are connected from the connectors 2 to 5, respectively. Wv1 = I1sin (ωt), wv2 = I2sin (ωt−φ2), wv3 = I3sin (ωt−φ3), wv4 = I4sin (ωt−φ4), amplitudes I1 to I4 and phases φ1 to φ4 The detected amplitudes I 1 to I 4 and phases φ 1 to φ 4 are output to the control device 15 at regular intervals.
 図17は、図15に示す端末装置10Bの構成を示す概略ブロック図である。図17を参照して、端末装置10Bは、図12に示す端末装置10Aの発振器103および制御装置104をそれぞれ発振器103Aおよび制御装置104Aに代えたものであり、その他は、端末装置10と同じである。 FIG. 17 is a schematic block diagram showing the configuration of the terminal device 10B shown in FIG. Referring to FIG. 17, terminal device 10B is the same as terminal device 10 except that oscillator 103A and control device 104 of terminal device 10A shown in FIG. 12 are replaced by oscillator 103A and control device 104A, respectively. is there.
 発振器103Aは、制御装置104Aから停止信号STPを受けるまで、常時、正弦波I0sin(ωt-θ)からなる測定波wvを発振し、その発振した測定波wv=I0sin(ωt-θ)をコネクタ101を介して2次元通信シート30へ送信する。 The oscillator 103A constantly oscillates a measurement wave wv consisting of a sine wave I0sin (ωt−θ) until it receives a stop signal STP from the control device 104A, and the oscillated measurement wave wv = I0sin (ωt−θ) is transmitted to the connector 101. Is transmitted to the two-dimensional communication sheet 30.
 制御装置104Aは、端末装置10Bの電源がオフされる等の電力が不要になると、停止信号STPを生成し、その生成した停止信号STPを発振器103Aへ出力する。 The control device 104A generates a stop signal STP and outputs the generated stop signal STP to the oscillator 103A when power for turning off the power of the terminal device 10B becomes unnecessary.
 図18は、実施の形態3における測定フェーズおよび給電フェーズの概念図である。図18を参照して、端末装置10Bは、電力が不要になるまで、常時、測定波wv=I0sin(ωt-θ)を2次元通信シート30へ送信する。そして、給電ユニット1Bは、測定フェーズMP1を実行し、測定フェーズMP1においてコネクタ2~5によって測定した複数の測定波に基づいて、給電ユニット1と同じ方法によって、給電フェーズPP1を実行する。 FIG. 18 is a conceptual diagram of the measurement phase and the power feeding phase in the third embodiment. Referring to FIG. 18, terminal device 10B always transmits measurement wave wv = I0sin (ωt−θ) to two-dimensional communication sheet 30 until no power is required. Then, the power feeding unit 1B executes the measurement phase MP1, and executes the power feeding phase PP1 by the same method as that of the power feeding unit 1 based on the plurality of measurement waves measured by the connectors 2 to 5 in the measurement phase MP1.
 また、給電ユニット1Bは、測定フェーズMP1から一定期間が経過した後、測定フェーズMP2を実行し、測定フェーズMP2においてコネクタ2~5によって測定した複数の測定波に基づいて、給電ユニット1と同じ方法によって、給電フェーズPP2を実行する。 The power supply unit 1B executes the measurement phase MP2 after a certain period of time has elapsed from the measurement phase MP1, and based on the plurality of measurement waves measured by the connectors 2 to 5 in the measurement phase MP2, the same method as the power supply unit 1 To execute the power feeding phase PP2.
 さらに、給電ユニット1Bは、測定フェーズMP2から一定期間が経過した後、測定フェーズMP3を実行し、測定フェーズMP3においてコネクタ2~5によって測定した複数の測定波に基づいて、給電ユニット1と同じ方法によって、給電フェーズPP3を実行する。 Further, the power supply unit 1B executes the measurement phase MP3 after a certain period of time has elapsed from the measurement phase MP2, and based on the plurality of measurement waves measured by the connectors 2 to 5 in the measurement phase MP3, the same method as the power supply unit 1 To execute the power feeding phase PP3.
 このように、給電ユニット1Bは、常時、端末装置10Bから送信されている測定波wv=I0sin(ωt-θ)をコネクタ2~5によって定期的に測定し、その測定した複数の測定波に基づいて、給電ユニット1と同じ方法によって、電力を端末装置10Bへ供給する。 As described above, the power supply unit 1B regularly measures the measurement wave wv = I 0 sin (ωt−θ) transmitted from the terminal device 10B by the connectors 2 to 5, and based on the measured plurality of measurement waves. Thus, power is supplied to the terminal device 10B by the same method as the power supply unit 1.
 図19は、実施の形態3における電力の給電方法を説明するためのフローチャートである。図19に示すフローチャートは、図9に示すフローチャートのステップS1をステップS21に代え、ステップS22~ステップS24を追加したものであり、その他は、図9に示すフローチャートと同じである。 FIG. 19 is a flowchart for explaining the power supply method according to the third embodiment. The flowchart shown in FIG. 19 is the same as the flowchart shown in FIG. 9 except that step S1 of the flowchart shown in FIG. 9 is replaced with step S21 and steps S22 to S24 are added.
 図19を参照して、一連の動作が開始されると、端末装置10Bは、正弦波からなる測定波を常時送信する(ステップS21)。そして、給電ユニット1Bは、内蔵したタイマーに基づいて、測定波を測定するか否かを判定することによって測定フェーズに入るか否かを判定する(ステップS22)。 Referring to FIG. 19, when a series of operations is started, the terminal device 10B constantly transmits a measurement wave including a sine wave (step S21). Then, the power supply unit 1B determines whether or not to enter the measurement phase by determining whether or not to measure the measurement wave based on the built-in timer (step S22).
 ステップS22において、測定フェーズに入ると判定されると、上述したステップS2~ステップS6が順次実行される。 If it is determined in step S22 that the measurement phase is entered, the above-described steps S2 to S6 are sequentially executed.
 そして、ステップS6の後、端末装置10Bは、電力が不要か否かを判定する(ステップS23)。ステップS23において、電力が不要でないと判定されたとき、一連の動作は、ステップS21へ戻り、ステップS23において、電力が不要であると判定されるまで、上述したステップS21,S22,S2~S6,S23が繰返し実行される。 Then, after step S6, the terminal device 10B determines whether or not power is unnecessary (step S23). When it is determined in step S23 that power is not required, the series of operations returns to step S21, and the above-described steps S21, S22, S2 to S6 are performed until it is determined in step S23 that power is not required. S23 is repeatedly executed.
 そして、ステップS23において、電力が不要であると判定されると、端末装置10Bは、測定波の送信を停止する(ステップS24)。これによって、一連の動作が終了する。 And when it determines with electric power being unnecessary in step S23, the terminal device 10B stops transmission of a measurement wave (step S24). As a result, a series of operations is completed.
 このように、実施の形態3においては、端末装置10Bは、電力が不要であると判定するまで、測定波を常時送信し、給電ユニット1Bは、測定フェーズに定期的に入って測定を行ない、電力を端末装置10Bへ供給するので、端末装置10Bの状況変化をいち早く検出して素早く電力を供給できる。 As described above, in the third embodiment, the terminal device 10B constantly transmits a measurement wave until it is determined that power is unnecessary, and the power supply unit 1B periodically enters the measurement phase to perform measurement. Since power is supplied to the terminal device 10B, it is possible to quickly detect a change in the status of the terminal device 10B and quickly supply power.
 その他は、実施の形態1と同じである。 Others are the same as those in the first embodiment.
 [実施の形態4]
 図20は、実施の形態4による2次元通信システムの概略図である。図20を参照して、実施の形態4による2次元通信システム100Cは、図1に示す2次元通信システム100の給電ユニット1を給電ユニット1Cに代え、端末装置10を端末装置111~113に代えたものであり、その他は、2次元通信システム100と同じである。
[Embodiment 4]
FIG. 20 is a schematic diagram of a two-dimensional communication system according to the fourth embodiment. Referring to FIG. 20, in 2D communication system 100C according to the fourth embodiment, power supply unit 1 of 2D communication system 100 shown in FIG. 1 is replaced with power supply unit 1C, and terminal device 10 is replaced with terminal devices 111-113. The rest is the same as the two-dimensional communication system 100.
 給電ユニット1Cは、2次元通信シート30上に配置された端末装置111~113のアドレスAdd111~Add113を保持している。そして、給電ユニット1Cは、端末装置111~113用のビーコンBc1~Bc3を生成し、その生成したビーコンBc1~Bc3を時分割でそれぞれ端末装置111~113へ送信する。この場合、ビーコンBc1~Bc3は、それぞれ、アドレスAdd111~Add113を含む。 The power supply unit 1C holds the addresses Add111 to Add113 of the terminal devices 111 to 113 arranged on the two-dimensional communication sheet 30. The power supply unit 1C generates beacons Bc1 to Bc3 for the terminal devices 111 to 113, and transmits the generated beacons Bc1 to Bc3 to the terminal devices 111 to 113 in a time division manner. In this case, beacons Bc1 to Bc3 include addresses Add111 to Add113, respectively.
 給電ユニット1Cは、ビーコンBc1を端末装置111へ送信した後に、端末装置111の所望電力を示す所望電力通知PNTF1を端末装置111から受信する。その後、給電ユニット1Cは、端末装置111から送信された測定波wv_111(=I0sin(ωt-θ1))をコネクタ2~5によって測定し、その測定した複数の測定波に基づいて、給電ユニット1と同じ方法によって電力を供給するためのコネクタを決定し、その決定したコネクタを用いて、所望電力通知PNTF1によって示された電力を端末装置111へ供給する。 The power feeding unit 1 </ b> C receives the desired power notification PNTF <b> 1 indicating the desired power of the terminal device 111 from the terminal device 111 after transmitting the beacon Bc <b> 1 to the terminal device 111. Thereafter, the power feeding unit 1C measures the measurement wave wv_111 (= I 0 sin (ωt−θ1)) transmitted from the terminal device 111 with the connectors 2 to 5, and based on the measured plurality of measurement waves, A connector for supplying power is determined by the same method, and the power indicated by the desired power notification PNTF1 is supplied to the terminal device 111 using the determined connector.
 また、給電ユニット1Cは、ビーコンBc2を端末装置112へ送信した後に、端末装置112の所望電力を示す所望電力通知PNTF2を端末装置112から受信する。その後、給電ユニット1Cは、端末装置112から送信された測定波wv_112(=I0sin(ωt-θ2))をコネクタ2~5によって測定し、その測定した複数の測定波に基づいて、給電ユニット1と同じ方法によって電力を供給するためのコネクタを決定し、その決定したコネクタを用いて、所望電力通知PNTF2によって示された電力を端末装置112へ供給する。 Further, the power feeding unit 1 </ b> C receives the desired power notification PNTF <b> 2 indicating the desired power of the terminal device 112 from the terminal device 112 after transmitting the beacon Bc <b> 2 to the terminal device 112. Thereafter, the power feeding unit 1C measures the measurement wave wv_112 (= I 0 sin (ωt−θ2)) transmitted from the terminal device 112 using the connectors 2 to 5, and based on the measured plurality of measurement waves, The connector for supplying power is determined by the same method, and the power indicated by the desired power notification PNTF2 is supplied to the terminal device 112 using the determined connector.
 さらに、給電ユニット1Cは、ビーコンBc3を端末装置113へ送信した後に、端末装置113の所望電力を示す所望電力通知PNTF3を端末装置113から受信する。その後、給電ユニット1Cは、端末装置113から送信された測定波wv_113(=I0sin(ωt-θ3))をコネクタ2~5によって測定し、その測定した複数の測定波に基づいて、給電ユニット1と同じ方法によって電力を供給するためのコネクタを決定し、その決定したコネクタを用いて、所望電力通知PNTF3によって示された電力を端末装置113へ供給する。 Furthermore, the power feeding unit 1C receives the desired power notification PNTF3 indicating the desired power of the terminal device 113 from the terminal device 113 after transmitting the beacon Bc3 to the terminal device 113. Thereafter, the power feeding unit 1C measures the measurement wave wv_113 (= I 0 sin (ωt−θ3)) transmitted from the terminal device 113 with the connectors 2 to 5, and based on the measured plurality of measurement waves, A connector for supplying power is determined by the same method, and the power indicated by the desired power notification PNTF3 is supplied to the terminal device 113 using the determined connector.
 端末装置111~113は、2次元通信シート30上に配置される。そして、端末装置111は、ビーコンBc1~Bc3を時分割で給電ユニット1Cから受信し、ビーコンBc1が自己宛てのビーコンであることを検知する。また、端末装置112は、ビーコンBc1~Bc3を時分割で給電ユニット1Cから受信し、ビーコンBc2が自己宛てのビーコンであることを検知する。さらに、端末装置113は、ビーコンBc1~Bc3を時分割で給電ユニット1Cから受信し、ビーコンBc3が自己宛てのビーコンであることを検知する。 Terminal devices 111 to 113 are arranged on the two-dimensional communication sheet 30. Then, the terminal device 111 receives the beacons Bc1 to Bc3 from the power supply unit 1C in a time division manner, and detects that the beacon Bc1 is a beacon addressed to itself. In addition, the terminal device 112 receives the beacons Bc1 to Bc3 from the power supply unit 1C in a time division manner, and detects that the beacon Bc2 is a beacon addressed to itself. Further, the terminal device 113 receives the beacons Bc1 to Bc3 from the power supply unit 1C in a time division manner, and detects that the beacon Bc3 is a beacon addressed to itself.
 端末装置111は、ビーコンBc1を受信すると、所望電力通知PNTF1を生成して給電ユニット1Cへ送信し、その後、測定波wv_111(=I0sin(ωt-θ1))を2次元通信シート30へ送信する。そして、端末装置111は、給電ユニット1Cから所望電力を受電して蓄積する。 When the terminal device 111 receives the beacon Bc1, the terminal device 111 generates a desired power notification PNTF1 and transmits it to the power feeding unit 1C, and then transmits the measurement wave wv_111 (= I0sin (ωt−θ1)) to the two-dimensional communication sheet 30. The terminal device 111 receives and accumulates desired power from the power feeding unit 1C.
 端末装置112は、ビーコンBc2を受信すると、所望電力通知PNTF2を生成して給電ユニット1Cへ送信し、その後、測定波wv_112(=I0sin(ωt-θ2))を2次元通信シート30へ送信する。そして、端末装置112は、給電ユニット1Cから所望電力を受電して蓄積する。 Upon receiving the beacon Bc2, the terminal device 112 generates a desired power notification PNTF2 and transmits it to the power feeding unit 1C, and then transmits a measurement wave wv — 112 (= I0sin (ωt−θ2)) to the two-dimensional communication sheet 30. Then, the terminal device 112 receives and accumulates desired power from the power feeding unit 1C.
 端末装置113は、ビーコンBc3を受信すると、所望電力通知PNTF3を生成して給電ユニット1Cへ送信し、その後、測定波wv_113(=I0sin(ωt-θ3))を2次元通信シート30へ送信する。そして、端末装置113は、給電ユニット1Cから所望電力を受電して蓄積する。 Upon receiving the beacon Bc3, the terminal device 113 generates a desired power notification PNTF3 and transmits it to the power feeding unit 1C, and then transmits the measurement wave wv_113 (= I0sin (ωt−θ3)) to the two-dimensional communication sheet 30. Then, the terminal device 113 receives and accumulates desired power from the power feeding unit 1C.
 図21は、図20に示す給電ユニット1Cの構成を示す概略ブロック図である。図21を参照して、給電ユニット1Cは、図4に示す給電ユニット1に時分割多重装置29を追加したものであり、その他は、給電ユニット1と同じである。 FIG. 21 is a schematic block diagram showing the configuration of the power supply unit 1C shown in FIG. Referring to FIG. 21, power supply unit 1 </ b> C is obtained by adding a time division multiplexing device 29 to power supply unit 1 shown in FIG. 4, and the rest is the same as power supply unit 1.
 時分割多重装置29は、たとえば、配線6によってコネクタ2に接続される。時分割多重装置29は、端末装置111~113のアドレスAdd111~Add113を保持しており、コネクタ2を介して、ビーコンBc1~Bc3を時分割でそれぞれ端末装置111~113へ送信する。 The time division multiplexing device 29 is connected to the connector 2 by, for example, the wiring 6. The time division multiplexing device 29 holds the addresses Add111 to Add113 of the terminal devices 111 to 113, and transmits the beacons Bc1 to Bc3 to the terminal devices 111 to 113 via the connector 2 in a time division manner, respectively.
 そして、時分割多重装置29は、所望電力通知PNTF1~PNTF3をそれぞれ端末装置111~113から受信し、その受信した所望電力通知PNTF1~PNTF3を制御装置15へ出力する。 Then, the time division multiplexing device 29 receives the desired power notifications PNTF1 to PNTF3 from the terminal devices 111 to 113, and outputs the received desired power notifications PNTF1 to PNTF3 to the control device 15.
 なお、給電ユニット1Cにおいては、制御装置15は、電力を供給するためのコネクタを決定すると、その決定したコネクタを用いて供給する電力が各端末装置111~113の所望電力になるように増幅率を決定し、その決定した増幅率を増幅器21~24の少なくとも1つへ出力する。 In power supply unit 1C, when control device 15 determines a connector for supplying power, amplification factor is set so that the power supplied using the determined connector becomes the desired power of each terminal device 111-113. And the determined amplification factor is output to at least one of the amplifiers 21 to 24.
 図22は、図20に示す端末装置111の構成を示す概略ブロック図である。図22を参照して、端末装置111は、図5に示す端末装置10に判別器105および通信モジュール106を追加したものであり、その他は、端末装置10と同じである。 FIG. 22 is a schematic block diagram showing the configuration of the terminal device 111 shown in FIG. Referring to FIG. 22, terminal device 111 is obtained by adding discriminator 105 and communication module 106 to terminal device 10 shown in FIG. 5, and is otherwise the same as terminal device 10.
 判別器105は、コネクタ101から受信電波を受け、その受けた受信電波をアナログ信号からディジタル信号に変換し、その変換したディジタル信号を復号する。そして、判別器105は、その復号信号がアドレスを含む場合、その復号信号を通信モジュール106へ出力する。また、判別器105は、その復号信号がアドレスを含まない場合、受信電波を電力蓄積器102へ出力する。 The discriminator 105 receives the received radio wave from the connector 101, converts the received radio wave from an analog signal to a digital signal, and decodes the converted digital signal. When the decoded signal includes an address, the discriminator 105 outputs the decoded signal to the communication module 106. Further, the discriminator 105 outputs the received radio wave to the power accumulator 102 when the decoded signal does not include an address.
 受信電波がビーコンBc1~Bc3からなる場合、復号信号は、アドレスAddを含むので、判別器105は、復号信号を通信モジュール106へ出力する。また、受信電波が電力からなる場合、復号信号は、アドレスAddを含まないので、判別器105は、受信電波を電力蓄積器102へ出力する。 When the received radio wave is made up of beacons Bc1 to Bc3, the decoded signal includes the address Add, so the discriminator 105 outputs the decoded signal to the communication module 106. Further, when the received radio wave is composed of power, the decoded signal does not include the address Add, and therefore the discriminator 105 outputs the received radio wave to the power accumulator 102.
 通信モジュール106は、判別器105から復号信号(=ビーコンBc1~Bc3のいずれか)を受け、その受けた復号信号が端末装置111のアドレスAdd111を含むか否かを判定する。そして、通信モジュール106は、復号信号が端末装置111のアドレスAdd111を含むと判定した場合、端末装置111の所望電力を示す所望電力通知PNTF1を生成し、その生成した所望電力通知PNTF1をコネクタ101を介して送信するとともに、測定波wv_111の生成を指示するための指示信号COMを生成して発振器103へ出力する。また、通信モジュール106は、復号信号が端末装置111のアドレスAdd111を含まない場合、復号信号を破棄する。 The communication module 106 receives the decoded signal (= any one of the beacons Bc1 to Bc3) from the discriminator 105, and determines whether or not the received decoded signal includes the address Add111 of the terminal device 111. When the communication module 106 determines that the decoded signal includes the address Add111 of the terminal device 111, the communication module 106 generates a desired power notification PNTF1 indicating the desired power of the terminal device 111, and the generated desired power notification PNTF1 is sent to the connector 101. And an instruction signal COM for instructing generation of the measurement wave wv_111 is generated and output to the oscillator 103. Further, when the decoded signal does not include the address Add111 of the terminal device 111, the communication module 106 discards the decoded signal.
 なお、端末装置111においては、発振器103は、通信モジュール106からの指示信号COMに応じて、測定波wv_111を発振し、その発振した測定波wv_111をコネクタ101へ出力する。 In the terminal device 111, the oscillator 103 oscillates the measurement wave wv_111 in response to the instruction signal COM from the communication module 106, and outputs the oscillated measurement wave wv_111 to the connector 101.
 図20に示す端末装置112,113の各々は、図22に示す端末装置111と同じ構成からなる。 Each of the terminal devices 112 and 113 shown in FIG. 20 has the same configuration as the terminal device 111 shown in FIG.
 図23は、実施の形態4による測定フェーズおよび給電フェーズの概念図である。図23を参照して、給電ユニット1Cの時分割多重装置29は、端末装置111のアドレスAdd111を含むビーコンBc1を生成し、その生成したビーコンBc1をコネクタ2を介して2次元通信シート30へ送信する。 FIG. 23 is a conceptual diagram of a measurement phase and a power feeding phase according to the fourth embodiment. Referring to FIG. 23, time division multiplexing device 29 of power supply unit 1C generates beacon Bc1 including address Add111 of terminal device 111, and transmits the generated beacon Bc1 to two-dimensional communication sheet 30 via connector 2. To do.
 そして、端末装置111の通信モジュール106は、給電ユニット1CからのビーコンBc1を受信し、その受信したビーコンBc1が端末装置111のアドレスAdd111を含むことを検知する。 Then, the communication module 106 of the terminal device 111 receives the beacon Bc1 from the power feeding unit 1C, and detects that the received beacon Bc1 includes the address Add111 of the terminal device 111.
 そうすると、端末装置111の通信モジュール106は、端末装置111における所望電力PW_111を示す所望電力通知PNTF1を生成し、その生成した所望電力通知PNTF1をコネクタ101を介して2次元通信シート30へ送信するとともに、指示信号COMを生成して発振器103へ出力する。 Then, the communication module 106 of the terminal device 111 generates a desired power notification PNTF1 indicating the desired power PW_111 in the terminal device 111, and transmits the generated desired power notification PNTF1 to the two-dimensional communication sheet 30 via the connector 101. The instruction signal COM is generated and output to the oscillator 103.
 そして、端末装置111の発振器103は、通信モジュール106からの指示信号COMに応じて、測定波wv_111(=I0sin(ωt-θ1))を発振し、その発振した測定波wv_111(=I0sin(ωt-θ1))をコネクタ101を介して2次元通信シート30へ出力する。 Then, the oscillator 103 of the terminal device 111 oscillates the measurement wave wv_111 (= I0sin (ωt−θ1)) in response to the instruction signal COM from the communication module 106, and the oscillated measurement wave wv_111 (= I0sin (ωt−). θ1)) is output to the two-dimensional communication sheet 30 via the connector 101.
 給電ユニット1Cの時分割多重装置29は、コネクタ2および配線6を介して所望電力通知PNTF1を受信し、その受信した所望電力通知PNTF1によって示された所望電力PW_111を制御装置15へ出力する。 The time division multiplexing device 29 of the power supply unit 1C receives the desired power notification PNTF1 via the connector 2 and the wiring 6, and outputs the desired power PW_111 indicated by the received desired power notification PNTF1 to the control device 15.
 その後、給電ユニット1Cの振幅・位相計測器11~14は、測定フェーズMP1において、それぞれ、コネクタ2~5から受けた正弦波I1sin(ωt),I2sin(ωt-φ2),I3sin(ωt-φ3),I4sin(ωt-φ4)の振幅I1~I4および位相φ1~φ4を検出し、その検出した振幅I1~I4および位相φ1~φ4を制御装置15へ出力する。 Thereafter, the amplitude / phase measuring devices 11 to 14 of the power supply unit 1C receive the sine waves I1sin (ωt), I2sin (ωt−φ2), and I3sin (ωt−φ3) received from the connectors 2 to 5, respectively, in the measurement phase MP1. , I4sin (ωt−φ4), amplitudes I1 to I4 and phases φ1 to φ4 are detected, and the detected amplitudes I1 to I4 and phases φ1 to φ4 are output to the controller 15.
 そして、給電ユニット1Cの制御装置15は、振幅I1~I4に基づいて、上述した方法によって、電力を供給するためのコネクタをコネクタ2,3に決定し、コネクタ2を介して供給する電力PW2とコネクタ3を介して供給する電力PW3との和が端末装置111における所望電力PW_111になるように電力PW2,PW3を決定する。その後、給電ユニット1Cの制御装置15は、その決定した電力PW2,PW3に基づいて、増幅器21,22における増幅率A1,A2を決定する。 Then, the control device 15 of the power feeding unit 1C determines the connectors for supplying power to the connectors 2 and 3 by the method described above based on the amplitudes I1 to I4, and supplies the power PW2 to be supplied via the connector 2. The powers PW2 and PW3 are determined so that the sum of the power PW3 supplied via the connector 3 becomes the desired power PW_111 in the terminal device 111. Thereafter, the control device 15 of the power feeding unit 1C determines the amplification factors A1 and A2 in the amplifiers 21 and 22 based on the determined powers PW2 and PW3.
 また、給電ユニット1Cの制御装置15は、コネクタ2,3が受信した正弦波I1sin(ωt),I2sin(ωt-φ2)の位相φ1,φ2に基づいて、上述した方法によって、位相調整量φ1_CTL=0,φ2_CTL=+φ2を決定する。 Further, the control device 15 of the power feeding unit 1C uses the above-described method based on the phases φ1 and φ2 of the sine waves I1sin (ωt) and I2sin (ωt−φ2) received by the connectors 2 and 3 to adjust the phase adjustment amount φ1_CTL = 0, φ2_CTL = + φ2 is determined.
 そうすると、給電ユニット1Cの制御装置15は、位相調整量φ1_CTL=0,φ2_CTL=+φ2をそれぞれ位相調整器17,18へ出力し、増幅率A1,A2をそれぞれ増幅器21,22へ出力する。 Then, the control device 15 of the power feeding unit 1C outputs the phase adjustment amounts φ1_CTL = 0 and φ2_CTL = + φ2 to the phase adjusters 17 and 18, respectively, and outputs the amplification factors A1 and A2 to the amplifiers 21 and 22, respectively.
 そして、給電ユニット1Cの位相調整器17は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ1_CTL=0によって調整し、正弦波sin(ωt)を増幅器21へ出力する。また、給電ユニット1Cの位相調整器18は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ2_CTL=+φ2によって調整し、正弦波sin(ωt+φ2)を増幅器22へ出力する。 The phase adjuster 17 of the power feeding unit 1C adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ1_CTL = 0, and outputs the sine wave sin (ωt) to the amplifier 21. The phase adjuster 18 of the power supply unit 1 </ b> C adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ2_CTL = + φ2 and outputs the sine wave sin (ωt + φ2) to the amplifier 22.
 そうすると、給電フェーズPP1において、給電ユニット1Cの増幅器21は、位相調整器17から受けた正弦波sin(ωt)を増幅率A1で増幅し、正弦波PW2sin(ωt)を配線6およびコネクタ2を介して2次元通信シート30へ送信する。また、給電ユニット1Cの増幅器22は、位相調整器18から受けた正弦波sin(ωt+φ2)を増幅率A2で増幅し、正弦波PW3sin(ωt+φ2)を配線7およびコネクタ3を介して2次元通信シート30へ送信する。 Then, in the power feeding phase PP1, the amplifier 21 of the power feeding unit 1C amplifies the sine wave sin (ωt) received from the phase adjuster 17 with the amplification factor A1, and the sine wave PW2sin (ωt) via the wiring 6 and the connector 2. To the two-dimensional communication sheet 30. The amplifier 22 of the power supply unit 1C amplifies the sine wave sin (ωt + φ2) received from the phase adjuster 18 with the amplification factor A2, and the sine wave PW3sin (ωt + φ2) via the wiring 7 and the connector 3 to provide a two-dimensional communication sheet. 30.
 そして、端末装置111は、給電フェーズPP1において、正弦波PW2sin(ωt),PW3sin(ωt+φ2)を2次元通信シート30から受信し、所望電力PW_111を蓄積する。 And the terminal device 111 receives the sine waves PW2sin (ωt) and PW3sin (ωt + φ2) from the two-dimensional communication sheet 30 in the power feeding phase PP1, and accumulates the desired power PW_111.
 その後、給電ユニット1Cの時分割多重装置29は、端末装置112のアドレスAdd112を含むビーコンBc2を生成し、その生成したビーコンBc2を配線6およびコネクタ2を介して2次元通信シート30へ送信する。 Thereafter, the time division multiplexing device 29 of the power supply unit 1C generates a beacon Bc2 including the address Add112 of the terminal device 112, and transmits the generated beacon Bc2 to the two-dimensional communication sheet 30 via the wiring 6 and the connector 2.
 そして、端末装置112の通信モジュール106は、給電ユニット1CからのビーコンBc2を受信し、その受信したビーコンBc2が端末装置112のアドレスAdd112を含むことを検知する。 Then, the communication module 106 of the terminal device 112 receives the beacon Bc2 from the power feeding unit 1C, and detects that the received beacon Bc2 includes the address Add112 of the terminal device 112.
 そうすると、端末装置112の通信モジュール106は、端末装置112における所望電力PW_112を示す所望電力通知PNTF2を生成し、その生成した所望電力通知PNTF2をコネクタ101を介して2次元通信シート30へ送信するとともに、指示信号COMを生成して発振器103へ出力する。 Then, the communication module 106 of the terminal device 112 generates a desired power notification PNTF2 indicating the desired power PW_112 in the terminal device 112, and transmits the generated desired power notification PNTF2 to the two-dimensional communication sheet 30 via the connector 101. The instruction signal COM is generated and output to the oscillator 103.
 そして、端末装置112の発振器103は、通信モジュール106からの指示信号COMに応じて、測定波wv_112(=I0sin(ωt-θ2))を発振し、その発振した測定波wv_112(=I0sin(ωt-θ2))をコネクタ101を介して2次元通信シート30へ出力する。 The oscillator 103 of the terminal device 112 oscillates the measurement wave wv_112 (= I0sin (ωt−θ2)) in response to the instruction signal COM from the communication module 106, and the oscillated measurement wave wv_112 (= I0sin (ωt−). θ2)) is output to the two-dimensional communication sheet 30 via the connector 101.
 給電ユニット1Cの時分割多重装置29は、コネクタ2および配線6を介して所望電力通知PNTF2を受信し、その受信した所望電力通知PNTF2によって示された所望電力PW_112を制御装置15へ出力する。 The time division multiplexing device 29 of the power supply unit 1C receives the desired power notification PNTF2 via the connector 2 and the wiring 6, and outputs the desired power PW_112 indicated by the received desired power notification PNTF2 to the control device 15.
 その後、給電ユニット1Cの振幅・位相計測器11~14は、測定フェーズMP2において、それぞれ、コネクタ2~5から受けた正弦波I1sin(ωt),I2sin(ωt-φ2),I3sin(ωt-φ3),I4sin(ωt-φ4)の振幅I1~I4および位相φ1~φ4を検出し、その検出した振幅I1~I4および位相φ1~φ4を制御装置15へ出力する。 Thereafter, the amplitude / phase measuring devices 11 to 14 of the power supply unit 1C receive the sine waves I1sin (ωt), I2sin (ωt−φ2), and I3sin (ωt−φ3) received from the connectors 2 to 5, respectively, in the measurement phase MP2. , I4sin (ωt−φ4), amplitudes I1 to I4 and phases φ1 to φ4 are detected, and the detected amplitudes I1 to I4 and phases φ1 to φ4 are output to the controller 15.
 そして、給電ユニット1Cの制御装置15は、振幅I1~I4に基づいて、上述した方法によって、電力を供給するためのコネクタをコネクタ2,4に決定し、コネクタ2を介して供給する電力PW2とコネクタ4を介して供給する電力PW4との和が端末装置112における所望電力PW_112になるように電力PW2,PW4を決定する。その後、給電ユニット1Cの制御装置15は、その決定した電力PW2,PW4に基づいて、増幅器21,23における増幅率A1,A3を決定する。 Then, the control device 15 of the power supply unit 1C determines the connectors for supplying power to the connectors 2 and 4 by the method described above based on the amplitudes I1 to I4, and supplies the power PW2 to be supplied via the connector 2 The powers PW2 and PW4 are determined such that the sum of the power PW4 supplied via the connector 4 becomes the desired power PW_112 in the terminal device 112. Thereafter, the control device 15 of the power feeding unit 1C determines the amplification factors A1 and A3 in the amplifiers 21 and 23 based on the determined powers PW2 and PW4.
 また、給電ユニット1Cの制御装置15は、コネクタ2,4が受信した正弦波I1sin(ωt),I2sin(ωt-φ3)の位相φ1,φ3に基づいて、上述した方法によって、位相調整量φ1_CTL=0,φ3_CTL=+φ3を決定する。 Further, the control device 15 of the power feeding unit 1C uses the method described above based on the phases φ1 and φ3 of the sine waves I1sin (ωt) and I2sin (ωt−φ3) received by the connectors 2 and 4, and the phase adjustment amount φ1_CTL = 0, φ3_CTL = + φ3 is determined.
 そうすると、給電ユニット1Cの制御装置15は、位相調整量φ1_CTL=0,φ3_CTL=+φ3をそれぞれ位相調整器17,19へ出力し、増幅率A1,A3をそれぞれ増幅器21,23へ出力する。 Then, the control device 15 of the power feeding unit 1C outputs the phase adjustment amounts φ1_CTL = 0 and φ3_CTL = + φ3 to the phase adjusters 17 and 19, respectively, and outputs the amplification factors A1 and A3 to the amplifiers 21 and 23, respectively.
 そして、給電ユニット1Cの位相調整器17は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ1_CTL=0によって調整し、正弦波sin(ωt)を増幅器21へ出力する。また、給電ユニット1Cの位相調整器19は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ3_CTL=+φ3によって調整し、正弦波sin(ωt+φ3)を増幅器23へ出力する。 The phase adjuster 17 of the power feeding unit 1C adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ1_CTL = 0, and outputs the sine wave sin (ωt) to the amplifier 21. The phase adjuster 19 of the power supply unit 1C adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ3_CTL = + φ3, and outputs the sine wave sin (ωt + φ3) to the amplifier 23.
 そうすると、給電フェーズPP2において、給電ユニット1Cの増幅器21は、位相調整器17から受けた正弦波sin(ωt)を増幅率A1で増幅し、正弦波PW2sin(ωt)を配線6およびコネクタ2を介して2次元通信シート30へ送信する。また、給電ユニット1Cの増幅器23は、位相調整器19から受けた正弦波sin(ωt+φ3)を増幅率A3で増幅し、正弦波PW4sin(ωt+φ3)を配線8およびコネクタ4を介して2次元通信シート30へ送信する。 Then, in the power feeding phase PP2, the amplifier 21 of the power feeding unit 1C amplifies the sine wave sin (ωt) received from the phase adjuster 17 with the amplification factor A1, and the sine wave PW2sin (ωt) is passed through the wiring 6 and the connector 2. To the two-dimensional communication sheet 30. The amplifier 23 of the power supply unit 1C amplifies the sine wave sin (ωt + φ3) received from the phase adjuster 19 with the amplification factor A3, and the sine wave PW4sin (ωt + φ3) via the wiring 8 and the connector 4. 30.
 そして、端末装置112は、給電フェーズPP2において、正弦波PW2sin(ωt),PW4sin(ωt+φ3)を2次元通信シート30から受信し、所望電力PW_112を蓄積する。 And the terminal device 112 receives the sine waves PW2sin (ωt) and PW4sin (ωt + φ3) from the two-dimensional communication sheet 30 in the power supply phase PP2 and accumulates the desired power PW_112.
 その後、給電ユニット1Cの時分割多重装置29は、端末装置113のアドレスAdd113を含むビーコンBc3を生成し、その生成したビーコンBc3を配線6およびコネクタ2を介して2次元通信シート30へ送信する。 Thereafter, the time division multiplexing device 29 of the power supply unit 1C generates a beacon Bc3 including the address Add113 of the terminal device 113, and transmits the generated beacon Bc3 to the two-dimensional communication sheet 30 via the wiring 6 and the connector 2.
 そして、端末装置113の通信モジュール106は、給電ユニット1CからのビーコンBc3を受信し、その受信したビーコンBc3が端末装置113のアドレスAdd113を含むことを検知する。 Then, the communication module 106 of the terminal device 113 receives the beacon Bc3 from the power supply unit 1C and detects that the received beacon Bc3 includes the address Add113 of the terminal device 113.
 そうすると、端末装置113の通信モジュール106は、端末装置113における所望電力PW_113を示す所望電力通知PNTF3を生成し、その生成した所望電力通知PNTF3をコネクタ101を介して2次元通信シート30へ送信するとともに、指示信号COMを生成して発振器103へ出力する。 Then, the communication module 106 of the terminal device 113 generates a desired power notification PNTF3 indicating the desired power PW_113 in the terminal device 113, and transmits the generated desired power notification PNTF3 to the two-dimensional communication sheet 30 via the connector 101. The instruction signal COM is generated and output to the oscillator 103.
 そして、端末装置113の発振器103は、通信モジュール106からの指示信号COMに応じて、測定波wv_113(=I0sin(ωt-θ3))を発振し、その発振した測定波wv_113(=I0sin(ωt-θ3))をコネクタ101を介して2次元通信シート30へ出力する。 The oscillator 103 of the terminal device 113 oscillates the measurement wave wv_113 (= I0sin (ωt−θ3)) in response to the instruction signal COM from the communication module 106, and the oscillated measurement wave wv_113 (= I0sin (ωt−). θ3)) is output to the two-dimensional communication sheet 30 via the connector 101.
 給電ユニット1Cの時分割多重装置29は、コネクタ2および配線6を介して所望電力通知PNTF3を受信し、その受信した所望電力通知PNTF3によって示された所望電力PW_113を制御装置15へ出力する。 The time division multiplexing device 29 of the power supply unit 1C receives the desired power notification PNTF3 via the connector 2 and the wiring 6, and outputs the desired power PW_113 indicated by the received desired power notification PNTF3 to the control device 15.
 その後、給電ユニット1Cの振幅・位相計測器11~14は、測定フェーズMP3において、それぞれ、コネクタ2~5から受けた正弦波I1sin(ωt),I2sin(ωt-φ2),I3sin(ωt-φ3),I4sin(ωt-φ4)の振幅I1~I4および位相φ1~φ4を検出し、その検出した振幅I1~I4および位相φ1~φ4を制御装置15へ出力する。 Thereafter, the amplitude / phase measuring devices 11 to 14 of the power supply unit 1C receive the sine waves I1sin (ωt), I2sin (ωt−φ2), and I3sin (ωt−φ3) received from the connectors 2 to 5, respectively, in the measurement phase MP3. , I4sin (ωt−φ4), amplitudes I1 to I4 and phases φ1 to φ4 are detected, and the detected amplitudes I1 to I4 and phases φ1 to φ4 are output to the controller 15.
 そして、給電ユニット1Cの制御装置15は、振幅I1~I4に基づいて、上述した方法によって、電力を供給するためのコネクタをコネクタ4,5に決定し、コネクタ4を介して供給する電力PW4とコネクタ5を介して供給する電力PW5との和が端末装置113における所望電力PW_113になるように電力PW4,PW5を決定する。その後、給電ユニット1Cの制御装置15は、その決定した電力PW4,PW5に基づいて、増幅器23,24における増幅率A3,A4を決定する。 Then, the control device 15 of the power feeding unit 1C determines the connectors for supplying power to the connectors 4 and 5 by the method described above based on the amplitudes I1 to I4, and supplies the power PW4 to be supplied via the connector 4 The powers PW4 and PW5 are determined such that the sum of the power PW5 supplied via the connector 5 becomes the desired power PW_113 in the terminal device 113. Thereafter, the control device 15 of the power feeding unit 1C determines the amplification factors A3 and A4 in the amplifiers 23 and 24 based on the determined powers PW4 and PW5.
 また、給電ユニット1Cの制御装置15は、コネクタ4,5が受信した正弦波I1sin(ωt-φ3),I2sin(ωt-φ4)の位相φ3,φ4に基づいて、上述した方法によって、位相調整量φ3_CTL=+φ3,φ4_CTL=+φ4を決定する。 Further, the control device 15 of the power supply unit 1C uses the above-described method to adjust the phase adjustment amount based on the phases φ3 and φ4 of the sine waves I1sin (ωt−φ3) and I2sin (ωt−φ4) received by the connectors 4 and 5. Determine φ3_CTL = + φ3, φ4_CTL = + φ4.
 そうすると、給電ユニット1Cの制御装置15は、位相調整量φ3_CTL=+φ3,φ4_CTL=+φ4をそれぞれ位相調整器19,20へ出力し、増幅率A3,A4をそれぞれ増幅器23,24へ出力する。 Then, the control device 15 of the power supply unit 1C outputs the phase adjustment amounts φ3_CTL = + φ3, φ4_CTL = + φ4 to the phase adjusters 19 and 20, respectively, and outputs the amplification factors A3 and A4 to the amplifiers 23 and 24, respectively.
 そして、給電ユニット1Cの位相調整器19は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ3_CTL=+φ3によって調整し、正弦波sin(ωt+φ3)を増幅器23へ出力する。また、給電ユニット1Cの位相調整器20は、発振器16からの正弦波sin(ωt)の位相を位相調整量φ4_CTL=+φ4によって調整し、正弦波sin(ωt+φ4)を増幅器24へ出力する。 Then, the phase adjuster 19 of the power feeding unit 1C adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ3_CTL = + φ3, and outputs the sine wave sin (ωt + φ3) to the amplifier 23. The phase adjuster 20 of the power supply unit 1 </ b> C adjusts the phase of the sine wave sin (ωt) from the oscillator 16 by the phase adjustment amount φ4_CTL = + φ4, and outputs the sine wave sin (ωt + φ4) to the amplifier 24.
 そうすると、給電フェーズPP3において、給電ユニット1Cの増幅器23は、位相調整器19から受けた正弦波sin(ωt+φ3)を増幅率A3で増幅し、正弦波PW4sin(ωt+φ3)を配線8およびコネクタ4を介して2次元通信シート30へ送信する。また、給電ユニット1Cの増幅器24は、位相調整器20から受けた正弦波sin(ωt+φ4)を増幅率A4で増幅し、正弦波PW5sin(ωt+φ4)を配線9およびコネクタ5を介して2次元通信シート30へ送信する。 Then, in the power feeding phase PP3, the amplifier 23 of the power feeding unit 1C amplifies the sine wave sin (ωt + φ3) received from the phase adjuster 19 with the amplification factor A3, and the sine wave PW4sin (ωt + φ3) via the wiring 8 and the connector 4. To the two-dimensional communication sheet 30. The amplifier 24 of the power feeding unit 1C amplifies the sine wave sin (ωt + φ4) received from the phase adjuster 20 with the amplification factor A4, and the sine wave PW5sin (ωt + φ4) via the wiring 9 and the connector 5 to provide a two-dimensional communication sheet. To 30.
 そして、端末装置113は、給電フェーズPP3において、正弦波PW4sin(ωt+φ3),PW5sin(ωt+φ4)を2次元通信シート30から受信し、所望電力PW_113を蓄積する。 In the power supply phase PP3, the terminal device 113 receives the sine waves PW4sin (ωt + φ3) and PW5sin (ωt + φ4) from the two-dimensional communication sheet 30, and accumulates the desired power PW_113.
 図24は、実施の形態4における電力の給電方法を説明するためのフローチャートである。図24に示すフローチャートは、図9に示すフローチャートにステップS31~ステップS37を追加し、ステップS5をステップS5Bに代えたものであり、その他は、図9に示すフローチャートと同じである。 FIG. 24 is a flowchart for explaining the power supply method according to the fourth embodiment. The flowchart shown in FIG. 24 is the same as the flowchart shown in FIG. 9 except that Steps S31 to S37 are added to the flowchart shown in FIG. 9 and Step S5 is replaced with Step S5B.
 図24を参照して、一連の動作が開始されると、給電ユニット1Cの時分割多重装置29は、i(i=1~3)=1を設定し(ステップS31)、ビーコンBciを生成して送信する(ステップS32)。 Referring to FIG. 24, when a series of operations is started, time division multiplexing device 29 of power supply unit 1C sets i (i = 1 to 3) = 1 (step S31), and generates beacon Bci. (Step S32).
 そして、端末装置11iは、ビーコンBciを受信し(ステップS33)、自己における所望電力PW_11iを示す所望電力通知PNTFiを生成して送信する(ステップS34)。 Then, the terminal device 11i receives the beacon Bci (step S33), and generates and transmits a desired power notification PNTFi indicating the desired power PW_11i in itself (step S34).
 その後、給電ユニット1Cの時分割多重装置29は、所望電力通知PNTFiを受信し(ステップS35)、その受信した所望電力通知PNTFiによって示される所望電力PW_11iを制御装置15へ出力する。 Thereafter, the time division multiplexing device 29 of the power feeding unit 1C receives the desired power notification PNTFi (step S35), and outputs the desired power PW_11i indicated by the received desired power notification PNTFi to the control device 15.
 そして、上述したステップS1~ステップS4が順次実行される。ステップS4の後、給電ユニット1Cは、電力を供給するためのコネクタとして決定したコネクタで受信した測定波の位相を逆転させた位相と、端末装置11iの所望電力PW_11iを分配した振幅とを有する正弦波を、その決定したコネクタを介して送信する(ステップS5B)。 Then, the above-described steps S1 to S4 are sequentially executed. After step S4, the power feeding unit 1C has a sine having a phase obtained by reversing the phase of the measurement wave received by the connector determined as the connector for supplying power and the amplitude obtained by distributing the desired power PW_11i of the terminal device 11i. A wave is transmitted through the determined connector (step S5B).
 その後、上述したステップS6が実行される。そして、給電ユニット1Cの時分割多重装置29は、i=3であるか否かを判定する(ステップS36)。 Thereafter, step S6 described above is executed. Then, the time division multiplexing device 29 of the power supply unit 1C determines whether i = 3 (step S36).
 ステップS36において、i=3でないと判定されたとき、給電ユニット1Cの時分割多重装置29は、i=i+1を設定する(ステップS37)。そして、一連の動作は、上述したステップS32へ戻り、ステップS36において、i=3であると判定されるまで、上述したステップS32~S35,S1~S4,S5B,S6,S36,S37が繰返し実行される。 When it is determined in step S36 that i = 3 is not true, the time division multiplexing device 29 of the power feeding unit 1C sets i = i + 1 (step S37). Then, the series of operations returns to step S32 described above, and steps S32 to S35, S1 to S4, S5B, S6, S36, and S37 are repeatedly executed until it is determined in step S36 that i = 3. Is done.
 そして、ステップS36において、i=3であると判定されると、一連の動作は終了する。 If it is determined in step S36 that i = 3, the series of operations ends.
 このように、実施の形態4においては、2次元通信シート30上に配置された3台の端末装置111~113と、給電ユニット1Cとの間で、測定フェーズおよび給電フェーズが時分割で実行され、給電ユニット1Cから3台の端末装置111~113へ時分割で電力が供給される。 Thus, in the fourth embodiment, the measurement phase and the power supply phase are executed in a time-sharing manner between the three terminal devices 111 to 113 arranged on the two-dimensional communication sheet 30 and the power supply unit 1C. The power is supplied from the power supply unit 1C to the three terminal devices 111 to 113 in a time division manner.
 したがって、3台の端末装置111~113が2次元通信シート30上に配置されている場合にも、各端末装置111~113へ所望電力PW_111~PW_113を簡単に供給できる。 Therefore, even when the three terminal devices 111 to 113 are arranged on the two-dimensional communication sheet 30, the desired power PW_111 to PW_113 can be easily supplied to the terminal devices 111 to 113.
 なお、上記においては、3台の端末装置111~113が2次元通信シート30上に配置されると説明したが、この実施の形態4においては、これに限らず、一般的には、n(nは2以上の整数)台の端末装置111~11nが配置されていてもよい。この場合、給電ユニット1Cの時分割多重装置29は、n台の端末装置111~11nのアドレスAdd111~Add11nを保持しており、n台の端末装置111~11nに対してそれぞれビーコンBc1~Bcnを割り当てて、所望電力PW_111~PW_11nを時分割でそれぞれ端末装置111~11nへ供給する。 In the above description, it has been described that the three terminal devices 111 to 113 are arranged on the two-dimensional communication sheet 30. However, in Embodiment 4, the present invention is not limited to this, and generally n ( n is an integer of 2 or more) terminal devices 111 to 11n may be arranged. In this case, the time division multiplexing device 29 of the power supply unit 1C holds the addresses Add111 to Add11n of the n terminal devices 111 to 11n, and transmits the beacons Bc1 to Bcn to the n terminal devices 111 to 11n, respectively. The desired power PW_111 to PW_11n is allocated to the terminal devices 111 to 11n in a time division manner.
 この発明においては、端末装置111~113は、「複数の通信装置」を構成し、振幅I1~I4は、「m(mは2以上の整数)個の振幅」を構成する。 In the present invention, the terminal devices 111 to 113 constitute “a plurality of communication devices”, and the amplitudes I1 to I4 constitute “m (m is an integer of 2 or more) amplitudes”.
 また、この発明においては、閾値I_thよりも大きい振幅I1~I3は、「k(kは正の整数)個の振幅」を構成する。 Further, in the present invention, the amplitudes I1 to I3 larger than the threshold value I_th constitute “k (k is a positive integer) amplitudes”.
 さらに、この発明においては、ビーコンBc1~Bc3の各々は、「測定波の送信要求」を構成する。 Furthermore, in the present invention, each of the beacons Bc1 to Bc3 constitutes a “measurement wave transmission request”.
 さらに、この発明においては、測定フェーズにおける処理は、「検出処理」を構成し、給電フェーズにおける処理は、「給電処理」を構成する。 Furthermore, in the present invention, the process in the measurement phase constitutes a “detection process”, and the process in the power supply phase constitutes a “power supply process”.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
 この発明は、最大限の電力を簡単に供給可能な2次元通信システムに適用される。 The present invention is applied to a two-dimensional communication system that can easily supply maximum power.

Claims (7)

  1.  2次元通信媒体(30)と、
     前記2次元通信媒体(30)上の任意の位置に配置された端末装置(10,10A,10B,111~113)と、
     前記2次元通信媒体(30)の周辺部に配置された複数のコネクタ(2~5)と、
     前記端末装置(10,10A,10B,111~113)へ電力を供給する給電ユニット(1,1A,1B,1C)とを備え、
     前記端末装置(10,10A,10B,111~113)は、所定の周波数帯から任意に選択した角周波数を有する測定波を前記2次元通信媒体(30)へ送信するとともに、前記2次元通信媒体(30)を介して前記給電ユニット(1,1A,1B,1C)から電力を受電し、
     前記給電ユニット(1,1A,1B,1C)は、前記複数のコネクタ(2~5)が配置された複数の位置において前記測定波を検出するとともに、その検出した複数の測定波の複数の振幅および複数の位相を検出する検出処理と、前記検出した複数の振幅および複数の位相に基づいて、前記端末装置(10,10A,10B,111~113)の位置における位相が同じになり、かつ、振幅が最大になるように前記複数のコネクタ(2~5)の少なくとも1つを用いて前記2次元通信媒体(30)を介して電力を前記端末装置(10,10A,10B,111~113)へ供給する給電処理とを行なう、2次元通信システム。
    A two-dimensional communication medium (30);
    Terminal devices (10, 10A, 10B, 111 to 113) arranged at arbitrary positions on the two-dimensional communication medium (30);
    A plurality of connectors (2 to 5) arranged at the periphery of the two-dimensional communication medium (30);
    A power supply unit (1, 1A, 1B, 1C) for supplying power to the terminal devices (10, 10A, 10B, 111 to 113);
    The terminal device (10, 10A, 10B, 111 to 113) transmits a measurement wave having an angular frequency arbitrarily selected from a predetermined frequency band to the two-dimensional communication medium (30), and the two-dimensional communication medium Receiving power from the power supply unit (1, 1A, 1B, 1C) via (30),
    The power feeding unit (1, 1A, 1B, 1C) detects the measurement wave at a plurality of positions where the plurality of connectors (2 to 5) are disposed, and also detects a plurality of amplitudes of the detected plurality of measurement waves. And the detection processing for detecting a plurality of phases, and the phases at the positions of the terminal devices (10, 10A, 10B, 111 to 113) are the same based on the detected plurality of amplitudes and a plurality of phases, and The terminal device (10, 10A, 10B, 111 to 113) is configured to supply power via the two-dimensional communication medium (30) using at least one of the plurality of connectors (2 to 5) so as to maximize the amplitude. A two-dimensional communication system that performs power supply processing to be supplied to the network.
  2.  前記給電ユニット(1,1A,1B,1C)は、前記検出した複数の振幅のうち、閾値以上の振幅が検出された所望のコネクタを前記複数のコネクタ(2~5)から選択し、その選択した所望のコネクタを用いて、前記給電処理を実行する、請求項1に記載の2次元通信システム。 The power supply unit (1, 1A, 1B, 1C) selects, from the plurality of connectors (2 to 5), a desired connector in which an amplitude equal to or greater than a threshold is detected from the plurality of detected amplitudes, and selects the selected connector The two-dimensional communication system according to claim 1, wherein the power supply process is executed using a desired connector.
  3.  前記給電ユニットは、前記検出した複数の振幅(I1~I4)をm(mは2以上の整数)個の振幅とし、前記m個の振幅(I1~I4)のうち、閾値(I_th)以上のk(kは正の整数)個の振幅(I1~I3)を検出するとともに、その検出したk個の振幅(I1~I3)の総和を演算し、その演算した総和に対する供給電力の比率が基準比率よりも大きくなるように前記複数のコネクタ(2~5)から所望のコネクタを選択し、その選択した所望のコネクタを用いて、前記給電処理を実行する、請求項1に記載の2次元通信システム。 The power supply unit sets the detected plurality of amplitudes (I1 to I4) to m (m is an integer of 2 or more) amplitudes, and among the m amplitudes (I1 to I4), the threshold (I_th) or more k (k is a positive integer) amplitudes (I1 to I3) are detected, the sum of the detected k amplitudes (I1 to I3) is calculated, and the ratio of the supplied power to the calculated total is the reference 2. The two-dimensional communication according to claim 1, wherein a desired connector is selected from the plurality of connectors (2 to 5) so as to be larger than a ratio, and the power feeding process is executed using the selected desired connector. system.
  4.  前記端末装置(10B)は、通信環境の変動に応じて、前記測定波の送信開始を示すトリガー信号を前記2次元通信媒体(30)を介して前記給電ユニットへ送信するとともに、前記トリガー信号の送信後、前記測定波を前記2次元通信媒体(30)へ送信し、
     前記給電ユニット(1B)は、前記トリガー信号の受信に応じて前記検出処理を実行し、前記検出処理の結果に基づいて前記給電処理を実行する、請求項3に記載の2次元通信システム。
    The terminal device (10B) transmits a trigger signal indicating the start of transmission of the measurement wave to the power supply unit via the two-dimensional communication medium (30) in accordance with a change in the communication environment. After transmission, the measurement wave is transmitted to the two-dimensional communication medium (30),
    The two-dimensional communication system according to claim 3, wherein the power supply unit (1B) executes the detection process in response to reception of the trigger signal, and executes the power supply process based on a result of the detection process.
  5.  前記給電ユニット(1A)は、前記所望のコネクタにおける所望の電力が大きいほど時間を長くし、前記所望の電力が小さいほど時間を短くして前記給電処理を実行する、請求項4に記載の2次元通信システム。 5. The power feeding unit (1 </ b> A) executes the power feeding process with a longer time as the desired power in the desired connector is larger and with a shorter time as the desired power is smaller. Dimensional communication system.
  6.  前記端末装置(10B)は、常時、前記測定波を前記2次元通信媒体(30)へ送信し、
     前記給電ユニット(1B)は、前記検出処理と前記給電処理とを定期的に繰返し実行する、請求項1に記載の2次元通信システム。
    The terminal device (10B) always transmits the measurement wave to the two-dimensional communication medium (30),
    The two-dimensional communication system according to claim 1, wherein the power supply unit (1B) periodically and repeatedly executes the detection process and the power supply process.
  7.  前記端末装置(10,10A,10B,111~113)は、複数の通信装置(111~113)からなり、
     前記複数の通信装置(111~113)の各々は、前記給電ユニット(1C)からの前記測定波の送信要求(Bc1~Bc3)に応じて、所望電力を示す所望電力信号を前記2次元通信媒体(30)を介して前記給電ユニット(1C)へ送信し、前記所望電力信号の送信後、前記測定波を前記2次元通信媒体(30)へ送信するとともに、前記2次元通信媒体(30)を介して前記所望電力を受電し、
     前記給電ユニット(1C)は、前記複数の通信装置(111~113)に対して前記測定波の送信を要求する複数の送信要求(Bc1~Bc3)を時分割で前記複数の通信装置(111~113)へ送信し、前記複数の通信装置(111~113)からの複数の前記所望電力信号に応じて、前記検出処理および前記給電処理を時分割で実行する、請求項1に記載の2次元通信システム。
    The terminal device (10, 10A, 10B, 111 to 113) includes a plurality of communication devices (111 to 113).
    Each of the plurality of communication devices (111 to 113) sends a desired power signal indicating desired power to the two-dimensional communication medium in response to the measurement wave transmission request (Bc1 to Bc3) from the power supply unit (1C). (30) to the power supply unit (1C), and after transmitting the desired power signal, the measurement wave is transmitted to the two-dimensional communication medium (30), and the two-dimensional communication medium (30) Receiving the desired power via
    The power supply unit (1C) time-divides a plurality of transmission requests (Bc1 to Bc3) for requesting the plurality of communication devices (111 to 113) to transmit the measurement waves. The two-dimensional according to claim 1, wherein the detection process and the power supply process are executed in a time-sharing manner according to a plurality of the desired power signals from the plurality of communication devices (111 to 113). Communications system.
PCT/JP2009/003980 2008-08-29 2009-08-20 Two-dimensional communication system WO2010023849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008220814A JP5211324B2 (en) 2008-08-29 2008-08-29 2D communication system
JP2008-220814 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010023849A1 true WO2010023849A1 (en) 2010-03-04

Family

ID=41721033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003980 WO2010023849A1 (en) 2008-08-29 2009-08-20 Two-dimensional communication system

Country Status (2)

Country Link
JP (1) JP5211324B2 (en)
WO (1) WO2010023849A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044873A (en) * 2019-09-06 2021-03-18 株式会社東芝 Electronic device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523540B2 (en) * 2012-11-20 2014-06-18 三菱電機エンジニアリング株式会社 Transmission system using wireless power transmission and transmission apparatus on transmission side
US20150087228A1 (en) * 2013-03-12 2015-03-26 Shahar Porat Coexistence between nfc and wct
JP2018093334A (en) * 2016-12-01 2018-06-14 テスラシート株式会社 Two-dimensional communication sheet and two-dimensional communication system including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270165A (en) * 2005-03-22 2006-10-05 Serukurosu:Kk Communication system, interface device, sheet device
WO2009028171A1 (en) * 2007-08-27 2009-03-05 National Institute Of Information And Communications Technology Communication device and two-dimensional communication system using the same
JP2009124632A (en) * 2007-11-19 2009-06-04 National Institute Of Information & Communication Technology Communication apparatus, two-dimensional communication system employing same, and communication method in communication apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866322B2 (en) * 2002-10-15 2011-01-11 Given Imaging Ltd. Device, system and method for transfer of signals to a moving device
JP2006094428A (en) * 2004-09-27 2006-04-06 Serukurosu:Kk Communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270165A (en) * 2005-03-22 2006-10-05 Serukurosu:Kk Communication system, interface device, sheet device
WO2009028171A1 (en) * 2007-08-27 2009-03-05 National Institute Of Information And Communications Technology Communication device and two-dimensional communication system using the same
JP2009124632A (en) * 2007-11-19 2009-06-04 National Institute Of Information & Communication Technology Communication apparatus, two-dimensional communication system employing same, and communication method in communication apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAOSHI YAMAHIRA ET AL.: "Proximity Connection in Two-Dimensional Signal Transmission", SICE- ICASE INTERNATIONAL JOINT CONFERENCE 2006, 18 October 2006 (2006-10-18), pages 2735 - 2740 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044873A (en) * 2019-09-06 2021-03-18 株式会社東芝 Electronic device and method
JP7321849B2 (en) 2019-09-06 2023-08-07 株式会社東芝 Electronic device and method

Also Published As

Publication number Publication date
JP5211324B2 (en) 2013-06-12
JP2010056994A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2021109345A1 (en) Method to modulate signals by reflecting surfaces
AU2010335966B2 (en) Wireless power transmission using phased array antennae
JP5211324B2 (en) 2D communication system
WO2010040799A1 (en) Coverage optimisation for wireless networks
US11765639B2 (en) Controlling tree topology over mesh topology based on autonomous decentralized control
KR20120128570A (en) Power transmitting device and method of transmitting power for communicating with one or more power receiving devices
JP2009525722A (en) Power transmission network and method
US9293943B2 (en) Battery charging method and system using wireless power transmission
US11146115B2 (en) Conformal wave selector
WO2019146362A1 (en) Electronic device, power transmission device, and power transmission method
CN112106268A (en) Directional wireless power and wireless data communications
CN115733521A (en) Mesh network for power retransmission
JP2007158418A (en) Ad hoc radio communication network, terminal unit therefor, method of setting active time, and method of setting transmission path
CN111465029A (en) Dual-channel passive room distribution system and gain adjustment method thereof
Guo et al. A wireless sensor network for monitoring smart grid transmission lines
KR20190141281A (en) Wireless power transmitter and method for controlling thereof
CN112640254B (en) Wireless power transmission device and wireless power transmission system
JP5172933B2 (en) Wireless base station system, wireless control device, wireless terminal, and radio wave state map creation method
JP2023540893A (en) Method and system for wireless power supply
Morcos et al. M2RC: multiplicative-increase/additive-decrease multipath routing control for wireless sensor networks
JP6745649B2 (en) Communication device, control method thereof, and program
WO2014156156A1 (en) Electric power meter, electric power meter system
Hayashi et al. Curve fitting-based phase optimization for microwave power transfer
WO2021229756A1 (en) Radio communication method, radio communication device, radio communication system, and radio communication program
WO2013035171A1 (en) Power transmitting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809505

Country of ref document: EP

Kind code of ref document: A1