WO2010023824A1 - V belt for transmitting heavy load - Google Patents

V belt for transmitting heavy load Download PDF

Info

Publication number
WO2010023824A1
WO2010023824A1 PCT/JP2009/003693 JP2009003693W WO2010023824A1 WO 2010023824 A1 WO2010023824 A1 WO 2010023824A1 JP 2009003693 W JP2009003693 W JP 2009003693W WO 2010023824 A1 WO2010023824 A1 WO 2010023824A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
load transmission
high load
fitting
block
Prior art date
Application number
PCT/JP2009/003693
Other languages
French (fr)
Japanese (ja)
Inventor
坂中宏行
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Publication of WO2010023824A1 publication Critical patent/WO2010023824A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • F16G5/166V-belts, i.e. belts of tapered cross-section consisting of several parts with non-metallic rings

Definitions

  • the present invention relates to a V-belt for high load transmission and a belt transmission device using the same.
  • Belt-type continuously variable transmissions that can improve operability during shifting, improve fuel consumption rates, and the like are known as transmissions for agricultural machines, automobiles, and the like (for example, Patent Documents 1 to 3).
  • the V-belt for high load transmission used in such a belt-type continuously variable transmission has a configuration in which a number of blocks are locked and fixed in an endless tension band at intervals in the belt length direction. When wound on the pulley, both side surfaces can withstand high side pressure from the pulley.
  • the inventor has conventionally considered that a mechanism in which a tension band fitted in a fitting portion of a block holds the block by fitting both the upper and lower projections and transmits torque is actually,
  • the present inventors have found that the fitting of the unevenness on the lower side of the tension band plays most of the functions and arrived at the present invention.
  • the V belt for high load transmission of the present invention is A plurality of blocks each having slit-shaped fitting portions that are open laterally on both sides in the belt width direction, Each of a pair of endless tension bands fitted to connect the plurality of blocks to the fitting portions of the plurality of blocks, With Each of the plurality of blocks is configured such that the upper surface of each fitting portion is a flat surface and the fitting convex portion is formed on the lower surface, Each of the pair of tension bands has a flat upper surface and is formed with a fitting recess on the lower surface to be fitted to the fitting convex portion on the lower surface of the fitting portion of the block.
  • the belt transmission device of the present invention has a continuously variable transmission mechanism configured by winding the V-belt for high load transmission of the present invention around a driving pulley and a driven pulley.
  • FIG. 1 It is a perspective view of the V belt for high load transmission. It is II-II sectional drawing in FIG. It is a side view of a block. It is a side view of a tension belt.
  • A) And (b) is a figure which shows the pulley layout of a belt transmission.
  • A) And (b) is explanatory drawing which shows the effect
  • the high load transmission V-belt B is used for a belt-type continuously variable transmission in an agricultural machine, an automobile, or the like.
  • the high load transmission V-belt B has a configuration in which a plurality of blocks 10 are connected by a pair of endless tension bands 20 on both sides.
  • the high load transmission V-belt B has, for example, a belt length of 450 to 750 mm and a belt pitch width of 20 to 30 mm.
  • the number of blocks 10 is 90 to 375 and the block pitch is 2 to 5 mm.
  • FIG. 3 shows block 10.
  • Each block 10 is formed with a slit-like fitting portion 11 that opens laterally on both sides in the belt width direction of a trapezoidal plate-like body whose upper base is longer than the lower base in plan view. "Is arranged in a shape that the letter" "is horizontal. Each block 10 is formed so that the upper part from the fitting part 11 has a uniform thickness in a side view, while the lower part from the fitting part 11 becomes thinner as it goes downward. . Each block 10 has, for example, a height of 10 to 16.5 mm, a width of 20 to 30 mm, and a thickness of 2 to 5 mm. The angle formed by both sides, that is, the belt angle is, for example, 15 to 26 °.
  • Each fitting part 11 of each block 10 is formed so as to extend horizontally at a uniform interval from the back part on the center side toward the opening on the side part.
  • Each fitting part 11 has a flat upper surface and a fitting convex part 12 formed of a protrusion having an arcuate cross section extending in the belt width direction on the lower side.
  • Each fitting part 11 is comprised by the surface which the back part continued inclining to the back
  • Each fitting portion 11 is, for example, a belt thickness direction of the clearance gap t 1 is 1 ⁇ 3 mm, and the depth of the belt width direction is 2 ⁇ 5 mm.
  • the fitting convex portion 12 has a radius of curvature of, for example, 1.0 to 1.5 mm.
  • Each block 10 has a configuration in which a metal reinforcing material 13 disposed in the center so as to form a skeleton is covered with a hard resin coating material.
  • the entire metal reinforcing material 13 does not need to be covered with the hard resin coating material. It is sufficient that at least the contact portion with the tension band 20 and the pulley is covered, and the metal reinforcing material 13 is exposed in the other portions. It may be.
  • the metal reinforcing member 13 is formed in a shape that has the letter “H” beside it, like the block 10, and the center pillars 13c vertically move between the center portions of the upper and lower beams 13a and 13b extending in the belt width direction. It has the structure connected to.
  • the metal reinforcing material 13 is made of, for example, a lightweight aluminum alloy having high strength and high elastic modulus.
  • the height of the upper beam 13a is 5.0 to 9.5 mm
  • the height of the lower beam 13b is 5.0 to 9.5 mm.
  • the hard resin coating material is formed from, for example, a hard thermosetting phenol resin material, and aramid short fibers or milled carbon fibers may be mixed.
  • the hard resin coating material has a layer thickness of, for example, 0.8 to 1.5 mm.
  • FIG. 4 shows the tension band 20.
  • Each tension band 20 is formed in an endless flat band shape.
  • Each tension band 20 is chamfered on the upper side and the lower side so that one side corresponds to the shape of the back part of the block 10, and the other side corresponds to the inclination of the side part of the block 10. Formed on the inclined surface.
  • Each tension band 20 has a flat upper surface, and fitting recesses 21 formed of circular arc grooves in the belt width direction are formed at a constant pitch in the belt length direction on the lower surface.
  • Each tension band 20 has, for example, a length of 450 to 750 mm, a width of 20 to 30 mm, and a thickness of 2 to 5 mm.
  • the thinnest portion (fitted into partial) t 2 is for example 1.0 ⁇ 3.0 mm in thickness in the fitting recess 21.
  • the fitting concave portion 21 has a radius of curvature larger than that of the fitting convex portion 12, for example, 0.8 to 1.8 mm.
  • Each tension band 20 has a core wire 23 embedded in a spiral shape having a pitch in the belt width direction at the center of the shape retaining rubber layer 22 constituting the main body in the belt thickness direction.
  • Each tension band 20 has an upper reinforcing cloth 24 on its upper side and a lower reinforcing cloth 25 on its lower side.
  • the shape-retaining rubber layer 22 is formed of a rubber composition using H-NBR, EPDM or the like as a raw rubber.
  • the rubber composition constituting the shape-retaining rubber layer 22 is preferably reinforced by adding an unsaturated carboxylic acid metal salt such as zinc dimethacrylate or zinc diacrylate to the raw rubber.
  • the rubber composition constituting the shape retaining rubber layer 22 is preferably reinforced by blending organic short fibers such as aramid short fibers and nylon short fibers in addition to carbon black or silica as a reinforcing material.
  • the rubber composition constituting the shape-retaining rubber layer 22 is preferably crosslinked with an organic peroxide such as dicumyl peroxide.
  • the rubber composition constituting the shape-retaining rubber layer 22 preferably has a rubber hardness of 75 ° or more as measured with a JIS-C hardness meter.
  • the core wire 23 is dipped in a resorcin / formalin latex aqueous solution (RFL aqueous solution) after being immersed in a twisted yarn or braid of high-strength fibers such as aramid fiber, PBO fiber, carbon fiber, etc. and / or dipped in rubber paste and then dried. It is made up of processed ones.
  • the core wire 23 is composed of, for example, a filament bundle of 2640 to 4400 dtex and has an outer diameter of 0.55 to 0.70 mm.
  • Each of the upper and lower reinforcing fabrics 24 and 25 is a process of heating after immersing in an RFL aqueous solution in woven fabric, knitted fabric, or non-woven fabric such as aramid fiber or nylon fiber, and / or dipping or coating rubber paste on rubber paste It is made up of those that have been subjected to a drying process.
  • Each of the upper and lower reinforcing cloths 24 and 25 has a thickness of, for example, 0.6 to 1.2 mm.
  • a tension band 20 is fitted into the fitting portions 11 of the plurality of blocks 10 so as to connect them.
  • the tension band 20 is inserted into each fitting portion 11 of each block 10 from one side portion chamfered, and the upper side surface of the flat surface of the fitting portion 11 is the tension band 20.
  • the fitting convex portion 12 on the lower side surface of the fitting portion 11 is fitted into the fitting concave portion 21 on the lower side surface of the tension band 20 and tension is applied to the inner portion of the fitting portion 11.
  • the tension band 20 is fitted in the fitting part 11 so that one side part of the band 20 contacts.
  • the high load transmission V-belt B has a structure in which a plurality of blocks 10 are locked and fixed to the pair of tension bands 20 at intervals in the belt length direction. Moreover, the other side part of the tension
  • the gap t 1 of the gap of the fitting portion 11 of the block 10 is slightly smaller than the thickness t 2 of the fitting recess 21 of the tension band 20. Accordingly, the tension band 20 is fitted into the fitting portion 11 of the block 10 in a compressed state.
  • the tightening allowance t 2 -t 1 is, for example, 0.03 to 0.15 mm, and the tightening allowance is a ratio of the tightening allowance t 2 -t 1 to the gap t 1 of the gap of the fitting portion 11 of the block 10.
  • the tension band 20 is provided in a state of protruding from the side of the block 10, and thereby the impact when the high load transmission V-belt B enters the pulley. Can be relaxed by the tension band 20 protruding.
  • the allowance ⁇ d is, for example, 0.03 to 0.15 mm
  • the insertion pitch width w of the tension band 20 in the belt pitch line is, for example, 7.5 to 12.0 mm.
  • FIG. 5 (a) and 5 (b) show a belt transmission device 30 using the above-described high load transmission V-belt B.
  • FIG. 5 (a) and 5 (b) show a belt transmission device 30 using the above-described high load transmission V-belt B.
  • the belt transmission device 30 includes a drive shaft 31 and a driven shaft 33 arranged in parallel thereto, a drive pulley 32 on the drive shaft 31, and a substantially the same diameter as the drive pulley 32 on the driven shaft 33.
  • the following driven pulleys 34 are provided.
  • the drive pulley 32 includes a fixed sheave that is rotatably and non-slidably fixed on the drive shaft 31, and a movable sheave that is rotatably and slidably supported so as to face the fixed sheave. ing.
  • the driven pulley 34 includes a fixed sheave that is rotatably and non-slidably fixed on the driven shaft 33, and a movable sheave that is rotatably and slidably supported so as to face the fixed sheave. It is equipped with.
  • Each of the driving pulley 32 and the driven pulley 34 has a V-groove between the fixed sheave and the movable sheave, and the high load transmission V-belt B is bridged between the V-groove of the driving pulley 32 and the driven pulley 34.
  • Each of the driving pulley 32 and the driven pulley 34 is configured to be variable within a pulley pitch diameter range of 55 to 155 mm.
  • the power required for belt transmission is supplied on the drive shaft 31 side and consumed on the driven shaft 33 side, and the belt winding diameter of the drive pulley 32 and the belt winding diameter of the driven pulley 34 are also shown. Is changed so that the traveling speed of the high load transmission V-belt B is changed. Specifically, when the movable sheave of the drive pulley 32 is brought close to the fixed sheave and the movable sheave of the driven pulley 34 is moved away from the fixed sheave, as shown in FIG. This is larger than the belt winding diameter of the driven pulley 34. As a result, the high load transmission V-belt B travels at a high speed.
  • fitting protrusions are formed on each of the upper side and lower side of the fitting part of the block, and fitted on each of the upper side and lower side of the tension band.
  • a concave portion is formed, and the block is locked and fixed to the tension band by fitting the fitting convex portion into the fitting concave portion at the top and bottom.
  • the upper side surface of the fitting portion 11 of the block 10 is configured to be a flat surface, and the tension band 20 Since the upper side surface is configured as a flat surface, a convex portion is formed on the upper side surface of the fitting portion of the block 10 ′ shown in FIG. 6B, and the convex portion is fitted on the upper side surface of the tension band 20 ′.
  • the distance l from the rotation center of the swing of the action point of the force F that swings the block 10 with respect to the tension band 20 in the portion wound around the pulley is formed, the distance l from the rotation center of the swing of the action point of the force F that swings the block 10 with respect to the tension band 20 in the portion wound around the pulley.
  • the height of the upper beam 13a of the metal reinforcing member 13 can be increased and the reinforcing effect can be increased by the amount that does not have the upper concave-convex fitting structure as compared with the conventional configuration.
  • a cord 23 is obtained by subjecting a twisted yarn or braid to a treatment of heating after being immersed in an RFL aqueous solution and / or a treatment of drying after being immersed in rubber paste. In addition, you may perform the process dried after immersing in twisted yarn etc. in an epoxy solution or an isocyanate solution before these processes.
  • a cylindrical mold in which protrusions extending in the mold axial direction of the fitting recess shape of the tension band 20 are provided at an equal pitch in the circumferential direction is covered with a lower reinforcing cloth 25 formed in a cylindrical shape, and a sheet shape is formed thereon.
  • An uncrosslinked rubber composition processed into a predetermined layer is provided.
  • a cylindrical mold is placed in the heating and pressurizing apparatus, the interior of the apparatus is set to a predetermined temperature and pressure so that the crosslinking of the uncrosslinked rubber composition proceeds about half, and the state is maintained for a predetermined time. At this time, the cross-linking of the uncrosslinked rubber composition proceeds about half and the shape of the lower half of the shape-retaining rubber layer 22 is molded, and the uncrosslinked rubber composition flows and is provided in the cylindrical mold.
  • the strip presses the lower reinforcing cloth 25 to form the fitting recess 21.
  • the cylindrical mold is taken out from the heating and pressurizing apparatus, the core wire 23 is spirally wound at an equal pitch from above the semi-crosslinked rubber composition, and the uncrosslinked rubber composition is processed into a sheet shape again thereon.
  • a predetermined layer is provided, and an upper reinforcing cloth 24 formed in a cylindrical shape is placed thereon.
  • a cylindrical mold in which a material is set is placed in the heating and pressurizing device, the inside of the device is set to a predetermined temperature and pressure, and the state is maintained for a predetermined time.
  • crosslinking of the semi-crosslinked and uncrosslinked rubber composition proceeds to form the shape retaining rubber layer 22.
  • the adhesive on the surface of the core wire 23 and the shape-retaining rubber layer 22 are mutually diffused so that the core wire 23 is integrally bonded to the shape-retaining rubber layer 22 and is attached to the upper and lower reinforcing cloths 24 and 25.
  • the upper and lower reinforcing cloths 24 and 25 are integrally bonded to the shape-retaining rubber layer 22 by the mutual diffusion of the adhesive and the shape-retaining rubber layer 22.
  • a cylindrical slab is formed on the surface of the cylindrical mold.
  • the cylindrical mold is taken out from the heating and pressurizing device, the cylindrical slab formed on the peripheral surface is removed from the mold, this is cut into a band with a predetermined width, and chamfering is performed.
  • the tension band 20 is formed.
  • the fitting convex portion 12 of the block 10 is made to correspond to the fitting concave portion 21 of one tension band 20, and the fitting convex portion 12 of the block 10 is fitted into the fitting concave portion 21.
  • the tension band 20 is inserted, and the block 10 is locked to the tension band 20. This operation is performed for the entire circumference of the tension band 20.
  • the other tension band 20 is inserted into the other fitting portion 11 of the block 10, thereby obtaining the high load transmission V-belt B.
  • V-belt for high load transmission A V-belt for high load transmission for the following test evaluation was produced. Each configuration is also shown in Table 1.
  • Example 1 A V-belt for high load transmission having the same configuration as that of the above embodiment, the belt length is 612 mm, the belt angle is 26 °, the belt pitch width is 25 mm, the block pitch is 3 mm, the block thickness is 2.95 mm, the block
  • the rubber composition of the rubber composition constituting the shape-retaining rubber layer of the tension band has a rubber hardness of 81 °, a tightening margin (t Example in which 2 ⁇ t 1 ) is 0.05 mm, the tightening allowance ⁇ is 1.67%, the allowance ⁇ d is 0.05 mm, the allowance ⁇ is 0.50%, and ⁇ is 0.83 It was set to 1.
  • Example 2 The tightening allowance (t 2 -t 1 ) is 0.03 mm and the tightening allowance rate ⁇ is 1.00%, the allowance allowance ⁇ d is 0.06 mm, the allowance allowance ⁇ is 0.60%, and ⁇ is 0.60. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 2.
  • Example 3 The tightening allowance (t 2 -t 1 ) is 0.06 mm and the tightening allowance rate ⁇ is 2.00%, the allowance ⁇ d is 0.03 mm, the allowance allowance ⁇ is 0.30%, and ⁇ is 0.60. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 3.
  • the rubber composition of the shape-retaining rubber layer of the tension band has a rubber hardness measured by a JIS-C hardness meter of 75 °, an interference (t 2 -t 1 ) of 0.09 mm, and an interference margin ⁇ of 3.00. %,
  • the output allowance ⁇ d is 0.09 mm, the output allowance ⁇ is 0.90%, and ⁇ is 2.70, and the high load transmission V-belt having the same configuration as in Example 1 is did.
  • Example 5 The tightening allowance (t 2 -t 1 ) is 0.12 mm and the tightening allowance rate ⁇ is 4.00%, the allowance ⁇ d is 0.12 mm, the allowance allowance ⁇ is 1.20%, and ⁇ is 4.80. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 5.
  • Example 6 The fastening allowance (t 2 -t 1 ) is 0.10 mm, the fastening allowance rate ⁇ is 3.33%, the allowance ⁇ d is 0.15 mm, the allowance allowance ⁇ is 1.50%, and ⁇ is 5.00. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 6.
  • Example 7 The tightening allowance (t 2 -t 1 ) is 0.15 mm and the tightening allowance rate ⁇ is 5.00%, the allowance allowance ⁇ d is 0.10 mm, the allowance allowance ⁇ is 1.00%, and ⁇ is 5.00. Except this, Example 7 is a high-load transmission V-belt having the same configuration as Example 1.
  • Example 8 The tightening allowance (t 2 -t 1 ) is 0.03 mm and the tightening allowance rate ⁇ is 1.00%, the allowance ⁇ d is 0.14 mm, the allowance allowance ⁇ is 1.40%, and ⁇ is 1.40. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 8.
  • Example 9 The tightening allowance (t 2 -t 1 ) is 0.14 mm, the tightening allowance rate ⁇ is 4.67%, the allowance ⁇ d is 0.03 mm, the allowance allowance ⁇ is 0.30%, and ⁇ is 1.40. Except for this, a V-belt for high load transmission having the same configuration as in Example 1 was designated as Example 9.
  • Example 10 A high load transmission V-belt having the same configuration as that of Example 1 except that the block height was 11.5 mm was taken as Example 10.
  • Example 11 A high load transmission V-belt having the same configuration as that of Example 1 except that the upper beam height of the metal reinforcing material was 4 mm was taken as Example 11.
  • a convex portion is formed on the upper side surface of the fitting portion of the block, and a concave portion is formed on the upper side surface of the tension band, and a lower surface of the fitting portion of the block is formed on a flat surface.
  • a high-load transmission V-belt having the same configuration as that of Example 1 except that the lower side surface is formed as a flat surface is referred to as Comparative Example 6.
  • the high-speed heat-resistant high-load durability life is 500 hours or more for Examples 1 to 11 (700 hours or more for Example 10), 300 hours for Comparative Example 1, 255 hours for Comparative Example 2, 230 hours for Comparative Example 3, Comparative Example 4 was 260 hours, Comparative Example 5 was 350 hours, and Comparative Example 6 was 200 hours. In all of Comparative Examples 1 to 6, the failure mode was block failure.
  • the low-speed heat-resistant and high-load durability life is 100 hours or more in Examples 1 to 11 (250 hours or more in Example 11), 50 hours in Comparative Example 1, 30 hours in Comparative Example 2, and 24 hours in Comparative Example 3. Comparative Example 4 was 30 hours, Comparative Example 5 was 70 hours, and Comparative Example 6 was 30 hours. In all of Comparative Examples 1 to 6, the failure mode was block failure.
  • the transmission characteristics are 83.0 N ⁇ m in Examples 1 to 9 and Comparative Examples 1 to 5, 86.0 N ⁇ m in Example 10, 90.0 N ⁇ m in Example 11, and 70.0 N ⁇ m in Comparative Example 6. m.
  • Example 1 The belt temperature at the beginning of running was 106 ° C. in Example 1, 106 ° C. in Example 2, 105 ° C. in Example 3, 108 ° C. in Example 4, 108 ° C. in Example 5, 114 ° C. in Example 6.
  • Example 7 was 115 ° C
  • Example 8 was 108 ° C
  • Example 9 was 110 ° C
  • Example 10 was 100 ° C
  • Example 11 was 110 ° C
  • Comparative Example 1 was 110 ° C
  • Comparative Example 2 was 145 ° C.
  • Comparative Example 3 was 125 ° C.
  • Comparative Example 4 was 145 ° C.
  • Comparative Example 5 was 112 ° C.
  • Comparative Example 6 was 130 ° C.
  • the present invention is useful for a V-belt for high load transmission and a belt transmission device using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

The V belt (B) for transmitting a heavy load has multiple blocks (10) and a pair of endless tensile bands (20). The upper surface of each engagement part (11) of each of the multiple blocks (10) is formed into a flat surface, while a convex engagement part (12) is formed on the lower surface. The upper surface of each pair of tensile bands (20) is formed into a flat surface, while the concave engagement parts (21), which engage with the convex engagement parts (12) formed on the lower surface of the engagement parts (11) of the blocks (10), are formed on the lower surface.

Description

高負荷伝動用VベルトV belt for high load transmission
 本発明は高負荷伝動用Vベルト及びそれを用いたベルト伝動装置に関する。 The present invention relates to a V-belt for high load transmission and a belt transmission device using the same.
 農業用機械や自動車等における変速装置として、変速時の操作性の向上や燃料消費率の改善等を図ることができるベルト式無段変速装置が知られている(例えば、特許文献1~3)。かかるベルト式無段変速装置に用いられる高負荷伝動用のVベルトは、エンドレスの張力帯に、多数のブロックがベルト長さ方向に間隔をおいて係止固定された構成を有し、これによりプーリに巻き付いたときに両側面がプーリからの高い側圧に耐え得るようになっている。 2. Description of the Related Art Belt-type continuously variable transmissions that can improve operability during shifting, improve fuel consumption rates, and the like are known as transmissions for agricultural machines, automobiles, and the like (for example, Patent Documents 1 to 3). . The V-belt for high load transmission used in such a belt-type continuously variable transmission has a configuration in which a number of blocks are locked and fixed in an endless tension band at intervals in the belt length direction. When wound on the pulley, both side surfaces can withstand high side pressure from the pulley.
実開昭63-37845号公報Japanese Utility Model Publication No. 63-37845 特開2000-120794号公報JP 2000-120794 A 特開平9-25999号公報Japanese Patent Laid-Open No. 9-25999
 本発明者は、従来、ブロックの嵌合部に嵌め入れられた張力帯が上側及び下側の両方の凹凸の嵌合によりブロックを保持し且つトルクを伝達すると考えられていた機構が、実は、張力帯の下側の凹凸の嵌合がその大半の機能を担うことを見出し、本発明に想到した。 The inventor has conventionally considered that a mechanism in which a tension band fitted in a fitting portion of a block holds the block by fitting both the upper and lower projections and transmits torque is actually, The present inventors have found that the fitting of the unevenness on the lower side of the tension band plays most of the functions and arrived at the present invention.
 本発明の高負荷伝動用Vベルトは、
 各々、ベルト幅方向の両側部のそれぞれに側方に開口したスリット状の嵌合部が形成された複数のブロックと、
 各々、上記複数のブロックの嵌合部に該複数のブロックを連結するように嵌め入れられた一対のエンドレスの張力帯と、
を備え、
 上記複数のブロックのそれぞれは、各嵌合部の上側面が平坦面に構成されていると共に下側面に嵌合凸部が形成されており、
 上記一対の張力帯のそれぞれは、上側面が平坦面に構成されていると共に下側面に上記ブロックにおける嵌合部の下側面の嵌合凸部に嵌合する嵌合凹部が形成されている。
The V belt for high load transmission of the present invention is
A plurality of blocks each having slit-shaped fitting portions that are open laterally on both sides in the belt width direction,
Each of a pair of endless tension bands fitted to connect the plurality of blocks to the fitting portions of the plurality of blocks,
With
Each of the plurality of blocks is configured such that the upper surface of each fitting portion is a flat surface and the fitting convex portion is formed on the lower surface,
Each of the pair of tension bands has a flat upper surface and is formed with a fitting recess on the lower surface to be fitted to the fitting convex portion on the lower surface of the fitting portion of the block.
 本発明のベルト伝動装置は、本発明の高負荷伝動用Vベルトが駆動プーリ及び従動プーリに巻き掛けられて構成された無段変速機構を有するものである。 The belt transmission device of the present invention has a continuously variable transmission mechanism configured by winding the V-belt for high load transmission of the present invention around a driving pulley and a driven pulley.
高負荷伝動用Vベルトの斜視図である。It is a perspective view of the V belt for high load transmission. 図1におけるII-II断面図である。It is II-II sectional drawing in FIG. ブロックの側面図である。It is a side view of a block. 張力帯の側面図である。It is a side view of a tension belt. (a)及び(b)はベルト伝動装置のプーリレイアウトを示す図である。(A) And (b) is a figure which shows the pulley layout of a belt transmission. (a)及び(b)はブロックを張力帯に対して揺動させる力の作用を示す説明図である。(A) And (b) is explanatory drawing which shows the effect | action of the force which rock | fluctuates a block with respect to a tension belt.
 以下、実施形態について図面に基づいて詳細に説明する。 Hereinafter, embodiments will be described in detail based on the drawings.
 図1及び2は本実施形態に係る高負荷伝動用VベルトBを示す。この高負荷伝動用VベルトBは、農業用機械や自動車等におけるベルト式無段変速装置に用いられるものである。 1 and 2 show a high load transmission V-belt B according to the present embodiment. The high load transmission V-belt B is used for a belt-type continuously variable transmission in an agricultural machine, an automobile, or the like.
 本実施形態に係る高負荷伝動用VベルトBは、複数のブロック10が両側部で一対のエンドレスの張力帯20によって連結された構成を有する。高負荷伝動用VベルトBは、例えば、ベルト長さが450~750mm、ベルトピッチ幅が20~30mmである。高負荷伝動用VベルトBは、例えば、ブロック10の数が90~375個、ブロックピッチが2~5mmである。 The high load transmission V-belt B according to the present embodiment has a configuration in which a plurality of blocks 10 are connected by a pair of endless tension bands 20 on both sides. The high load transmission V-belt B has, for example, a belt length of 450 to 750 mm and a belt pitch width of 20 to 30 mm. In the high load transmission V-belt B, for example, the number of blocks 10 is 90 to 375 and the block pitch is 2 to 5 mm.
 図3はブロック10を示す。 FIG. 3 shows block 10.
 各ブロック10は、平面視で上底が下底よりも長い台形状の板状体のベルト幅方向の両側部のそれぞれに側方に開口したスリット状の嵌合部11が形成された「H」の文字を横にしたような形状に構成されている。各ブロック10は、側面視で嵌合部11より上側部分が均一厚さに形成されている一方、嵌合部11より下側部分が下方に向かうに従って厚さが薄くなるように形成されている。各ブロック10は、例えば、高さが10~16.5mm、幅が20~30mm、及び厚さが2~5mmである。両側部のなす角度、すなわち、ベルト角度は例えば15~26°である。 Each block 10 is formed with a slit-like fitting portion 11 that opens laterally on both sides in the belt width direction of a trapezoidal plate-like body whose upper base is longer than the lower base in plan view. "Is arranged in a shape that the letter" "is horizontal. Each block 10 is formed so that the upper part from the fitting part 11 has a uniform thickness in a side view, while the lower part from the fitting part 11 becomes thinner as it goes downward. . Each block 10 has, for example, a height of 10 to 16.5 mm, a width of 20 to 30 mm, and a thickness of 2 to 5 mm. The angle formed by both sides, that is, the belt angle is, for example, 15 to 26 °.
 各ブロック10の各嵌合部11は、中央側の奥部から側部の開口に向かって均一な間隔で水平に延びるように形成されている。各嵌合部11は、上側面が平坦面に構成されていると共に、下側面にベルト幅方向に延びる断面円弧状の突条からなる嵌合凸部12が形成されている。各嵌合部11は、奥部が上側面から連続して奥側に傾斜した面とその面に連続して外側に傾斜して下側面に続く面とによって構成されている。各嵌合部11は、例えば、ベルト厚さ方向の隙間の隙間tが1~3mm、及びベルト幅方向の奥行きが2~5mmである。嵌合凸部12は、曲率半径が例えば1.0~1.5mmである。 Each fitting part 11 of each block 10 is formed so as to extend horizontally at a uniform interval from the back part on the center side toward the opening on the side part. Each fitting part 11 has a flat upper surface and a fitting convex part 12 formed of a protrusion having an arcuate cross section extending in the belt width direction on the lower side. Each fitting part 11 is comprised by the surface which the back part continued inclining to the back | inner side from the upper side surface, and the surface which continued to the surface, inclines outside, and continues to a lower side surface. Each fitting portion 11 is, for example, a belt thickness direction of the clearance gap t 1 is 1 ~ 3 mm, and the depth of the belt width direction is 2 ~ 5 mm. The fitting convex portion 12 has a radius of curvature of, for example, 1.0 to 1.5 mm.
 各ブロック10は、骨格をなすように中央に配された金属補強材13が硬質樹脂被覆材で被覆された構成を有する。なお、金属補強材13全体が硬質樹脂被覆材で被覆されている必要はなく、少なくとも張力帯20及びプーリとの接触部分が被覆されていればよく、その他の部分では金属補強材13が露出していてもよい。 Each block 10 has a configuration in which a metal reinforcing material 13 disposed in the center so as to form a skeleton is covered with a hard resin coating material. The entire metal reinforcing material 13 does not need to be covered with the hard resin coating material. It is sufficient that at least the contact portion with the tension band 20 and the pulley is covered, and the metal reinforcing material 13 is exposed in the other portions. It may be.
 金属補強材13は、ブロック10と同様に「H」の文字を横にしたような形状に形成され、ベルト幅方向に延びる上側及び下側ビーム13a,13bの中央部間がセンターピラー13cで上下に連結された構成を有する。金属補強材13は、例えば高強度及び高弾性率の軽量アルミニウム合金等で形成されている。金属補強材13は、例えば、上側ビーム13aの高さが5.0~9.5mm、及び下側ビーム13bの高さが5.0~9.5mmである。 The metal reinforcing member 13 is formed in a shape that has the letter “H” beside it, like the block 10, and the center pillars 13c vertically move between the center portions of the upper and lower beams 13a and 13b extending in the belt width direction. It has the structure connected to. The metal reinforcing material 13 is made of, for example, a lightweight aluminum alloy having high strength and high elastic modulus. In the metal reinforcing member 13, for example, the height of the upper beam 13a is 5.0 to 9.5 mm, and the height of the lower beam 13b is 5.0 to 9.5 mm.
 硬質樹脂被覆材は、例えば硬質の熱硬化性フェノール樹脂材料から形成されており、アラミド短繊維やミルドカーボンファイバ等が混合されていてもよい。硬質樹脂被覆材は、層厚さが例えば0.8~1.5mmである。 The hard resin coating material is formed from, for example, a hard thermosetting phenol resin material, and aramid short fibers or milled carbon fibers may be mixed. The hard resin coating material has a layer thickness of, for example, 0.8 to 1.5 mm.
 図4は張力帯20を示す。 FIG. 4 shows the tension band 20.
 各張力帯20は、エンドレスの平帯状に形成されている。各張力帯20は、一方の側部がブロック10の奥部の形状に対応するように上側及び下側のそれぞれで面取り加工されており、他方の側部がブロック10の側部の傾斜に対応した傾斜面に形成されている。各張力帯20は、上側面が平坦面に構成されていると共に、下側面にベルト幅方向に延びる断面円弧溝からなる嵌合凹部21がベルト長さ方向に一定ピッチで形成されている。各張力帯20は、例えば、長さが450~750mm、幅が20~30mm、及び厚さが2~5mmである。特に嵌合凹部21における厚さの最も薄い部分(嵌め入れ部分)tが例えば1.0~3.0mmである。嵌合凹部21は、曲率半径が、嵌合凸部12の曲率半径よりも大きく、例えば0.8~1.8mmである。 Each tension band 20 is formed in an endless flat band shape. Each tension band 20 is chamfered on the upper side and the lower side so that one side corresponds to the shape of the back part of the block 10, and the other side corresponds to the inclination of the side part of the block 10. Formed on the inclined surface. Each tension band 20 has a flat upper surface, and fitting recesses 21 formed of circular arc grooves in the belt width direction are formed at a constant pitch in the belt length direction on the lower surface. Each tension band 20 has, for example, a length of 450 to 750 mm, a width of 20 to 30 mm, and a thickness of 2 to 5 mm. Particularly the thinnest portion (fitted into partial) t 2 is for example 1.0 ~ 3.0 mm in thickness in the fitting recess 21. The fitting concave portion 21 has a radius of curvature larger than that of the fitting convex portion 12, for example, 0.8 to 1.8 mm.
 各張力帯20は、本体を構成する保形ゴム層22のベルト厚さ方向の略中央に、ベルト幅方向にピッチを有する螺旋を形成するように配された心線23が埋設されている。各張力帯20は、上側面に上側補強布24及び下側面に下側補強布25がそれぞれ貼設されている。 Each tension band 20 has a core wire 23 embedded in a spiral shape having a pitch in the belt width direction at the center of the shape retaining rubber layer 22 constituting the main body in the belt thickness direction. Each tension band 20 has an upper reinforcing cloth 24 on its upper side and a lower reinforcing cloth 25 on its lower side.
 保形ゴム層22は、H-NBRやEPDM等を原料ゴムとするゴム組成物で形成されている。保形ゴム層22を構成するゴム組成物は、原料ゴムがジメタクリル酸亜鉛やジアクリル酸亜鉛等の不飽和カルボン酸金属塩が添加されて強化されていることが好ましい。また、保形ゴム層22を構成するゴム組成物は、補強材であるカーボンブラック或いはシリカの他、アラミド短繊維やナイロン短繊維等の有機短繊維が配合されて補強されていることが好ましい。さらに、保形ゴム層22を構成するゴム組成物は、ジクミルパーオキサイド等の有機過酸化物で架橋されていることが好ましい。保形ゴム層22を構成するゴム組成物は、JIS-C硬度計で測定したときに75°以上のゴム硬度を有することが好ましい。 The shape-retaining rubber layer 22 is formed of a rubber composition using H-NBR, EPDM or the like as a raw rubber. The rubber composition constituting the shape-retaining rubber layer 22 is preferably reinforced by adding an unsaturated carboxylic acid metal salt such as zinc dimethacrylate or zinc diacrylate to the raw rubber. The rubber composition constituting the shape retaining rubber layer 22 is preferably reinforced by blending organic short fibers such as aramid short fibers and nylon short fibers in addition to carbon black or silica as a reinforcing material. Furthermore, the rubber composition constituting the shape-retaining rubber layer 22 is preferably crosslinked with an organic peroxide such as dicumyl peroxide. The rubber composition constituting the shape-retaining rubber layer 22 preferably has a rubber hardness of 75 ° or more as measured with a JIS-C hardness meter.
 心線23は、アラミド繊維、PBO繊維、カーボン繊維等の高強度繊維の撚り糸或いは組紐にレゾルシン・ホルマリンラテックス水溶液(RFL水溶液)に浸漬した後に加熱する処理及び/又はゴム糊に浸漬した後に乾燥させる処理が施されたもので構成されている。心線23は、例えば、2640~4400dtexのフィラメント束で構成され、外径が0.55~0.70mmである。 The core wire 23 is dipped in a resorcin / formalin latex aqueous solution (RFL aqueous solution) after being immersed in a twisted yarn or braid of high-strength fibers such as aramid fiber, PBO fiber, carbon fiber, etc. and / or dipped in rubber paste and then dried. It is made up of processed ones. The core wire 23 is composed of, for example, a filament bundle of 2640 to 4400 dtex and has an outer diameter of 0.55 to 0.70 mm.
 上側及び下側補強布24,25のそれぞれは、アラミド繊維やナイロン繊維等の織布、編物、或いは不織布ににRFL水溶液に浸漬した後に加熱する処理及び/又はゴム糊に浸漬或いはゴム糊をコートした後に乾燥させる処理が施されたもので構成されている。上側及び下側補強布24,25のそれぞれは、厚さが例えば0.6~1.2mmである。 Each of the upper and lower reinforcing fabrics 24 and 25 is a process of heating after immersing in an RFL aqueous solution in woven fabric, knitted fabric, or non-woven fabric such as aramid fiber or nylon fiber, and / or dipping or coating rubber paste on rubber paste It is made up of those that have been subjected to a drying process. Each of the upper and lower reinforcing cloths 24 and 25 has a thickness of, for example, 0.6 to 1.2 mm.
 この高負荷伝動用VベルトBでは、複数のブロック10の嵌合部11にそれらを連結するように張力帯20が嵌め入れられている。具体的には、各ブロック10の各嵌合部11には、面取り加工された一方の側部の方から張力帯20が挿入され、嵌合部11の平坦面の上側面が張力帯20の平坦面の上側面に当接すると共に、嵌合部11の下側面の嵌合凸部12が張力帯20の下側面の嵌合凹部21に嵌合し、且つ嵌合部11の奥部に張力帯20の一方の側部が当接するように、嵌合部11に張力帯20が嵌め入れられている。これにより、この高負荷伝動用VベルトBは、複数のブロック10が一対の張力帯20にベルト長さ方向に間隔をおいて係止固定された構造を有する。また、複数のブロック10の両側部及び外側に露出した張力帯20の他方の側部がプーリに接触する動力伝達部に構成されている。この高負荷伝動用VベルトBでは、ブロック10の重心がベルトピッチライン上にあることが好ましい。 In this high load transmission V-belt B, a tension band 20 is fitted into the fitting portions 11 of the plurality of blocks 10 so as to connect them. Specifically, the tension band 20 is inserted into each fitting portion 11 of each block 10 from one side portion chamfered, and the upper side surface of the flat surface of the fitting portion 11 is the tension band 20. While being in contact with the upper side surface of the flat surface, the fitting convex portion 12 on the lower side surface of the fitting portion 11 is fitted into the fitting concave portion 21 on the lower side surface of the tension band 20 and tension is applied to the inner portion of the fitting portion 11. The tension band 20 is fitted in the fitting part 11 so that one side part of the band 20 contacts. As a result, the high load transmission V-belt B has a structure in which a plurality of blocks 10 are locked and fixed to the pair of tension bands 20 at intervals in the belt length direction. Moreover, the other side part of the tension | tensile_strength band 20 exposed to the both sides and the outer side of the some block 10 is comprised by the power transmission part which contacts a pulley. In this high load transmission V-belt B, the center of gravity of the block 10 is preferably on the belt pitch line.
 この高負荷伝動用VベルトBでは、ブロック10の嵌合部11の隙間の隙間tが張力帯20の嵌合凹部21における厚さtよりも若干小さい。従って、張力帯20は圧縮状態でブロック10の嵌合部11に嵌め入れられている。ここで、その締め代t-tは例えば0.03~0.15mmであり、ブロック10の嵌合部11の隙間の隙間tに対する締め代t-tの割合である締め代率をα={(t-t)/t}×100で表すとすると、α=1~5%であることが好ましい。 In this high load transmission V-belt B, the gap t 1 of the gap of the fitting portion 11 of the block 10 is slightly smaller than the thickness t 2 of the fitting recess 21 of the tension band 20. Accordingly, the tension band 20 is fitted into the fitting portion 11 of the block 10 in a compressed state. Here, the tightening allowance t 2 -t 1 is, for example, 0.03 to 0.15 mm, and the tightening allowance is a ratio of the tightening allowance t 2 -t 1 to the gap t 1 of the gap of the fitting portion 11 of the block 10. When the rate is expressed by α = {(t 2 −t 1 ) / t 1 } × 100, α = 1 to 5% is preferable.
 さらに、この高負荷伝動用VベルトBでは、張力帯20はブロック10の側部からはみ出して突出した状態に設けられており、これによって高負荷伝動用VベルトBがプーリに突入する際の衝撃を突出した張力帯20により緩和することができる。ここで、その出代Δdは例えば0.03~0.15mmであり、一方、ベルトピッチラインにおける張力帯20の挿入ピッチ幅wは例えば7.5~12.0mmであり、ベルトピッチラインにおけるブロック10の張力帯噛合位置での張力帯20の挿入ピッチ幅(又はブロック10の張力帯噛合位置でのブロックピッチ幅の半分)wに対する出代Δdの割合である出代率をβ=(Δd/w)×100で表すとすると、β=0.3~1.5%であることが好ましい。なお、この出代Δdは、高負荷伝動用VベルトBの側面をコントレーサ(輪郭形状測定器)で走査すれば容易に測定することができる。 Further, in this high load transmission V-belt B, the tension band 20 is provided in a state of protruding from the side of the block 10, and thereby the impact when the high load transmission V-belt B enters the pulley. Can be relaxed by the tension band 20 protruding. Here, the allowance Δd is, for example, 0.03 to 0.15 mm, and the insertion pitch width w of the tension band 20 in the belt pitch line is, for example, 7.5 to 12.0 mm. The output allowance rate, which is the ratio of the output allowance Δd to the insertion pitch width of the tension band 20 at the tenth tension band engagement position (or half the block pitch width at the tension band engagement position of the block 10) w, is expressed as β = (Δd / When expressed as w) × 100, β is preferably 0.3 to 1.5%. Note that the allowance Δd can be easily measured by scanning the side surface of the V belt B for high load transmission with a tracer (contour shape measuring device).
 図5(a)及び(b)は上記高負荷伝動用VベルトBを用いたベルト伝動装置30を示す。 5 (a) and 5 (b) show a belt transmission device 30 using the above-described high load transmission V-belt B. FIG.
 このベルト伝動装置30は、駆動軸31とそれに平行に配置された従動軸33とを備え、駆動軸31上には駆動プーリ32が、また、従動軸33上には駆動プーリ32と略同径の従動プーリ34が、それぞれ設けられている。駆動プーリ32は、駆動軸31上に回転一体に且つ摺動不能に固定された固定シーブと、その固定シーブに対向するように回転一体に且つ摺動可能に支持された可動シーブと、を備えている。同様に、従動プーリ34は、従動軸33上に回転一体に且つ摺動不能に固定された固定シーブと、その固定シーブに対向するように回転一体に且つ摺動可能に支持された可動シーブと、を備えている。駆動プーリ32及び従動プーリ34のそれぞれは、固定シーブと可動シーブとの間にV溝が構成され、これらの駆動プーリ32及び従動プーリ34のV溝間に高負荷伝動用VベルトBが掛け渡されている。駆動プーリ32及び従動プーリ34のそれぞれは、プーリピッチ径が55~155mmの範囲で可変に構成されている。 The belt transmission device 30 includes a drive shaft 31 and a driven shaft 33 arranged in parallel thereto, a drive pulley 32 on the drive shaft 31, and a substantially the same diameter as the drive pulley 32 on the driven shaft 33. The following driven pulleys 34 are provided. The drive pulley 32 includes a fixed sheave that is rotatably and non-slidably fixed on the drive shaft 31, and a movable sheave that is rotatably and slidably supported so as to face the fixed sheave. ing. Similarly, the driven pulley 34 includes a fixed sheave that is rotatably and non-slidably fixed on the driven shaft 33, and a movable sheave that is rotatably and slidably supported so as to face the fixed sheave. It is equipped with. Each of the driving pulley 32 and the driven pulley 34 has a V-groove between the fixed sheave and the movable sheave, and the high load transmission V-belt B is bridged between the V-groove of the driving pulley 32 and the driven pulley 34. Has been. Each of the driving pulley 32 and the driven pulley 34 is configured to be variable within a pulley pitch diameter range of 55 to 155 mm.
 そして、このベルト伝動装置30では、ベルト伝動に要する動力が駆動軸31側で供給されて従動軸33側で消費され、また、駆動プーリ32のベルト巻き掛け径及び従動プーリ34のベルト巻き掛け径が変化することにより高負荷伝動用VベルトBの走行速度が変化するように構成されている。具体的には、駆動プーリ32の可動シーブを固定シーブに接近させ、且つ従動プーリ34の可動シーブを固定シーブから遠ざけると、図5(a)に示すように、駆動プーリ32のベルト巻き掛け径の方が従動プーリ34のベルト巻き掛け径よりも大きくなり、その結果、高負荷伝動用VベルトBは高速で走行することとなる。逆に、駆動プーリ32の可動シーブを固定シーブから遠ざけ、且つ従動プーリ34の可動シーブを固定シーブに接近させると、図5(b)に示すように、駆動プーリ32のベルト巻き掛け径の方が従動プーリ34のベルト巻き掛け径よりも小さくなり、その結果、高負荷伝動用VベルトBは低速で走行することとなる。つまり、このベルト伝動装置30では、以上のような構成により無段変速機構を構成している。 In this belt transmission device 30, the power required for belt transmission is supplied on the drive shaft 31 side and consumed on the driven shaft 33 side, and the belt winding diameter of the drive pulley 32 and the belt winding diameter of the driven pulley 34 are also shown. Is changed so that the traveling speed of the high load transmission V-belt B is changed. Specifically, when the movable sheave of the drive pulley 32 is brought close to the fixed sheave and the movable sheave of the driven pulley 34 is moved away from the fixed sheave, as shown in FIG. This is larger than the belt winding diameter of the driven pulley 34. As a result, the high load transmission V-belt B travels at a high speed. Conversely, when the movable sheave of the drive pulley 32 is moved away from the fixed sheave and the movable sheave of the driven pulley 34 is moved closer to the fixed sheave, as shown in FIG. Becomes smaller than the belt winding diameter of the driven pulley 34. As a result, the high load transmission V-belt B travels at a low speed. That is, in the belt transmission device 30, the continuously variable transmission mechanism is configured with the above configuration.
 ところで、従来の高負荷伝動用Vベルトでは、ブロックの嵌合部の上側面及び下側面のそれぞれに嵌合凸部が形成されていると共に、張力帯の上側面及び下側面のそれぞれに嵌合凹部が形成されており、上下で嵌合凸部が嵌合凹部に嵌合することにより、ブロックが張力帯に係止固定されている。 By the way, in the conventional high-load power transmission V-belt, fitting protrusions are formed on each of the upper side and lower side of the fitting part of the block, and fitted on each of the upper side and lower side of the tension band. A concave portion is formed, and the block is locked and fixed to the tension band by fitting the fitting convex portion into the fitting concave portion at the top and bottom.
 ところが、張力帯はブロックの嵌合部に圧縮状態で嵌入されているため、張力帯には圧縮歪が常時生じており、また、ベルト走行時には張力帯に繰り返しの屈曲歪が生じる。そのためベルト走行時の高負荷伝動用Vベルトの発熱は著しく、また、張力帯の熱膨張がその発熱をさらに増長させることとなる。そして、長期使用の間に、張力帯は永久歪によってへたり、そのため張力帯とブロックとの間に隙間が生じてブロックの自由度が高まり、その結果、ブロックが揺動可能となって過大な入力がなされることにより破損するといった問題がある。 However, since the tension band is inserted into the fitting portion of the block in a compressed state, compression strain is always generated in the tension band, and repeated bending distortion is generated in the tension band during belt running. For this reason, the heat generation of the high load transmission V-belt during belt running is remarkable, and the thermal expansion of the tension band further increases the heat generation. And, during long-term use, the tension band becomes distorted due to permanent strain, so that a gap is created between the tension band and the block, increasing the degree of freedom of the block. There is a problem that it is damaged when input is made.
 しかしながら、上記本実施形態の高負荷伝動用VベルトBによれば、図6(a)に示すように、ブロック10の嵌合部11の上側面が平坦面に構成され、また、張力帯20の上側面が平坦面に構成されているので、図6(b)に示すブロック10’の嵌合部の上側面に凸部が形成され、張力帯20’の上側面にその凸部に嵌合する凹部が形成された従来の構成のものと比較すると、プーリに巻き付いた部分において、ブロック10を張力帯20に対して揺動させる力Fの作用点の揺動の回転中心からの距離lを長くとることができ、従って、ブロック10に作用するモーメントが同一であるとすると、ブロック10を張力帯20に対して揺動させる力が小さいので、ブロック10の破損を抑えることができる。また、上記従来の構成のものに比べて上側の凹凸の嵌合構造を有さない分、金属補強材13上側ビーム13aの高さを高くして補強効果を高めることができる。 However, according to the high load transmission V-belt B of the present embodiment, as shown in FIG. 6A, the upper side surface of the fitting portion 11 of the block 10 is configured to be a flat surface, and the tension band 20 Since the upper side surface is configured as a flat surface, a convex portion is formed on the upper side surface of the fitting portion of the block 10 ′ shown in FIG. 6B, and the convex portion is fitted on the upper side surface of the tension band 20 ′. Compared to the conventional configuration in which the concave portion to be joined is formed, the distance l from the rotation center of the swing of the action point of the force F that swings the block 10 with respect to the tension band 20 in the portion wound around the pulley. Therefore, if the moments acting on the block 10 are the same, the force that causes the block 10 to swing with respect to the tension band 20 is small, so that damage to the block 10 can be suppressed. In addition, the height of the upper beam 13a of the metal reinforcing member 13 can be increased and the reinforcing effect can be increased by the amount that does not have the upper concave-convex fitting structure as compared with the conventional configuration.
 次に、高負荷伝動用VベルトBの製造方法について説明する。 Next, a method for manufacturing the high load transmission V-belt B will be described.
 -シート状未架橋ゴム組成物準備工程-
 バンバリーミキサー等のゴム練り加工機に原料ゴム素練りした後、これにゴム配合剤を投入して混練りする。そして、練り上がった未架橋ゴム組成物をカレンダロールによりシート状に加工する。
-Preparation process of sheet-like uncrosslinked rubber composition-
A raw material rubber is kneaded into a rubber kneading machine such as a Banbury mixer, and then a rubber compounding agent is added thereto and kneaded. Then, the kneaded uncrosslinked rubber composition is processed into a sheet by a calender roll.
 -心線準備工程-
 撚り糸又は組紐に、RFL水溶液に浸漬した後に加熱する処理及び/又はゴム糊に浸漬した後に乾燥させる処理を施したものを心線23とする。なお、これらの処理の前に撚り糸等にエポキシ溶液やイソシアネート溶液に浸漬した後に乾燥させる処理を施してもよい。
-Core preparation process-
A cord 23 is obtained by subjecting a twisted yarn or braid to a treatment of heating after being immersed in an RFL aqueous solution and / or a treatment of drying after being immersed in rubber paste. In addition, you may perform the process dried after immersing in twisted yarn etc. in an epoxy solution or an isocyanate solution before these processes.
 -上側及び下側補強布準備工程-
 織布、編物、或いは不織布に、RFL水溶液に浸漬した後に加熱する処理及び/又はゴム糊に浸漬或いはゴム糊をコートした後に乾燥させる処理を施したものを上側及び下側補強布24,25とする。なお、これらの処理の前に織布等に、エポキシ溶液やイソシアネート溶液に浸漬した後に乾燥させる処理を施してもよい。
-Upper and lower reinforcing fabric preparation process-
Upper and lower reinforcing cloths 24, 25, which are woven fabric, knitted fabric or non-woven fabric subjected to heating treatment after being immersed in an RFL aqueous solution and / or drying treatment after being immersed in rubber paste or coated with rubber paste, To do. In addition, you may perform the process dried after immersing in an epoxy solution or an isocyanate solution to a woven fabric etc. before these processes.
 -張力帯成形工程-
 張力帯20の嵌合凹部形状の金型軸方向に延びる突条が周方向に等ピッチで設けられた円筒金型を筒状に形成した下側補強布25で被覆し、その上にシート状に加工した未架橋ゴム組成物を所定層設ける。
-Tension band forming process-
A cylindrical mold in which protrusions extending in the mold axial direction of the fitting recess shape of the tension band 20 are provided at an equal pitch in the circumferential direction is covered with a lower reinforcing cloth 25 formed in a cylindrical shape, and a sheet shape is formed thereon. An uncrosslinked rubber composition processed into a predetermined layer is provided.
 次いで、加熱加圧装置の中に円筒金型を入れ、未架橋ゴム組成物の架橋が半分程度進行するように、装置内を所定の温度及び圧力に設定して所定時間その状態を保持する。このとき、未架橋ゴム組成物の架橋が半分程度進行して保形ゴム層22の下側半分の形状が成形されると共に、未架橋ゴム組成物が流動して円筒金型に設けられた突条が下側補強布25を押圧し、嵌合凹部21が形成される。 Next, a cylindrical mold is placed in the heating and pressurizing apparatus, the interior of the apparatus is set to a predetermined temperature and pressure so that the crosslinking of the uncrosslinked rubber composition proceeds about half, and the state is maintained for a predetermined time. At this time, the cross-linking of the uncrosslinked rubber composition proceeds about half and the shape of the lower half of the shape-retaining rubber layer 22 is molded, and the uncrosslinked rubber composition flows and is provided in the cylindrical mold. The strip presses the lower reinforcing cloth 25 to form the fitting recess 21.
 続いて、加熱加圧装置の中から円筒金型を取り出し、半架橋したゴム組成物の上から心線23を等ピッチで螺旋状に巻き付け、その上に再びシート状に加工した未架橋ゴム組成物を所定層設け、その上から筒状に形成した上側補強布24を被せる。 Subsequently, the cylindrical mold is taken out from the heating and pressurizing apparatus, the core wire 23 is spirally wound at an equal pitch from above the semi-crosslinked rubber composition, and the uncrosslinked rubber composition is processed into a sheet shape again thereon. A predetermined layer is provided, and an upper reinforcing cloth 24 formed in a cylindrical shape is placed thereon.
 次いで、内周面が平坦な筒状のスリーブを最外層に被せる。 Next, a cylindrical sleeve with a flat inner peripheral surface is placed on the outermost layer.
 そして、加熱加圧装置の中に材料をセットした円筒金型を入れ、装置内を所定の温度及び圧力に設定して所定時間その状態を保持する。このとき、半架橋及び未架橋ゴム組成物の架橋が進行して保形ゴム層22が構成される。また、心線23表面の接着剤と保形ゴム層22とが相互拡散することにより、心線23が保形ゴム層22に一体に接着すると共に、上側及び下側補強布24,25に付着した接着剤と保形ゴム層22とが相互拡散することにより、上側及び下側補強布24,25が保形ゴム層22に一体に接着する。以上のようにして、円筒金型表面に円筒状のスラブが成形される。 Then, a cylindrical mold in which a material is set is placed in the heating and pressurizing device, the inside of the device is set to a predetermined temperature and pressure, and the state is maintained for a predetermined time. At this time, crosslinking of the semi-crosslinked and uncrosslinked rubber composition proceeds to form the shape retaining rubber layer 22. Further, the adhesive on the surface of the core wire 23 and the shape-retaining rubber layer 22 are mutually diffused so that the core wire 23 is integrally bonded to the shape-retaining rubber layer 22 and is attached to the upper and lower reinforcing cloths 24 and 25. The upper and lower reinforcing cloths 24 and 25 are integrally bonded to the shape-retaining rubber layer 22 by the mutual diffusion of the adhesive and the shape-retaining rubber layer 22. As described above, a cylindrical slab is formed on the surface of the cylindrical mold.
 最後に、加熱加圧装置から円筒金型を取り出し、その周面上に形成された円筒状のスラブを脱型し、これを所定幅の帯状に輪切りし、それを面取り加工等を行うことにより張力帯20を成形する。 Finally, the cylindrical mold is taken out from the heating and pressurizing device, the cylindrical slab formed on the peripheral surface is removed from the mold, this is cut into a band with a predetermined width, and chamfering is performed. The tension band 20 is formed.
 -ブロック成形工程-
 ブロック成形型に形成されたキャビティ内に金属補強材13をセットして型締めした後、そこに硬質樹脂被覆材を射出して冷却後に型開きし、金属補強材13が硬質樹脂被覆材内にインサートされたブ成形品であるブロック10を取り出す。そして、成形したブロック10に、強度を高めるために必要な各種の加工を施す。
-Block molding process-
After the metal reinforcing material 13 is set in the cavity formed in the block mold and the mold is clamped, the hard resin coating material is injected into the cavity and then the mold is opened after cooling. The metal reinforcing material 13 is placed in the hard resin coating material. The block 10 which is the inserted molded product is taken out. And the various processing required in order to raise intensity | strength is given to the shape | molded block 10. FIG.
 -組立工程-
 一方の張力帯20の嵌合凹部21にブロック10の嵌合凸部12を対応させ、嵌合凹部21に嵌合凸部12が嵌め入れられるように、ブロック10の一方の嵌合部11に張力帯20を挿入し、ブロック10を張力帯20に係止させる。この操作を張力帯20の全周について行う。同様に、他方の張力帯20をブロック10の他方の嵌合部11に挿入し、それによって高負荷伝動用VベルトBを得る。
-Assembly process-
The fitting convex portion 12 of the block 10 is made to correspond to the fitting concave portion 21 of one tension band 20, and the fitting convex portion 12 of the block 10 is fitted into the fitting concave portion 21. The tension band 20 is inserted, and the block 10 is locked to the tension band 20. This operation is performed for the entire circumference of the tension band 20. Similarly, the other tension band 20 is inserted into the other fitting portion 11 of the block 10, thereby obtaining the high load transmission V-belt B.
 (高負荷伝動用Vベルト)
 以下の試験評価用の高負荷伝動用Vベルトを作製した。それぞれの構成は表1にも示す。
(V-belt for high load transmission)
A V-belt for high load transmission for the following test evaluation was produced. Each configuration is also shown in Table 1.
 <実施例1>
 上記実施形態と同様の構成の高負荷伝動用Vベルトであって、ベルト長さが612mm、ベルト角度が26°、ベルトピッチ幅が25mm、ブロックピッチが3mm、ブロック厚さが2.95mm、ブロック高さが12.5mm、金属補強材の上側ビーム高さが3mm、張力帯の保形ゴム層を構成するゴム組成物のJIS-C硬度計で測定したゴム硬度が81°、締め代(t-t)が0.05mm及び締め代率αが1.67%、出代Δdが0.05mm及び出代率βが0.50%、並びにαβが0.83であるものを実施例1とした。
<Example 1>
A V-belt for high load transmission having the same configuration as that of the above embodiment, the belt length is 612 mm, the belt angle is 26 °, the belt pitch width is 25 mm, the block pitch is 3 mm, the block thickness is 2.95 mm, the block The rubber composition of the rubber composition constituting the shape-retaining rubber layer of the tension band has a rubber hardness of 81 °, a tightening margin (t Example in which 2− t 1 ) is 0.05 mm, the tightening allowance α is 1.67%, the allowance Δd is 0.05 mm, the allowance β is 0.50%, and αβ is 0.83 It was set to 1.
 <実施例2>
 締め代(t-t)が0.03mm及び締め代率αが1.00%、出代Δdが0.06mm及び出代率βが0.60%、並びにαβが0.60であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例2とした。
<Example 2>
The tightening allowance (t 2 -t 1 ) is 0.03 mm and the tightening allowance rate α is 1.00%, the allowance allowance Δd is 0.06 mm, the allowance allowance β is 0.60%, and αβ is 0.60. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 2.
 <実施例3>
 締め代(t-t)が0.06mm及び締め代率αが2.00%、出代Δdが0.03mm及び出代率βが0.30%、並びにαβが0.60であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例3とした。
<Example 3>
The tightening allowance (t 2 -t 1 ) is 0.06 mm and the tightening allowance rate α is 2.00%, the allowance Δd is 0.03 mm, the allowance allowance β is 0.30%, and αβ is 0.60. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 3.
 <実施例4>
 張力帯の保形ゴム層を構成するゴム組成物のJIS-C硬度計で測定したゴム硬度が75°、締め代(t-t)が0.09mm及び締め代率αが3.00%、出代Δdが0.09mm及び出代率βが0.90%、並びにαβが2.70であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例4とした。
<Example 4>
The rubber composition of the shape-retaining rubber layer of the tension band has a rubber hardness measured by a JIS-C hardness meter of 75 °, an interference (t 2 -t 1 ) of 0.09 mm, and an interference margin α of 3.00. %, The output allowance Δd is 0.09 mm, the output allowance β is 0.90%, and αβ is 2.70, and the high load transmission V-belt having the same configuration as in Example 1 is did.
 <実施例5>
 締め代(t-t)が0.12mm及び締め代率αが4.00%、出代Δdが0.12mm及び出代率βが1.20%、並びにαβが4.80であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例5とした。
<Example 5>
The tightening allowance (t 2 -t 1 ) is 0.12 mm and the tightening allowance rate α is 4.00%, the allowance Δd is 0.12 mm, the allowance allowance β is 1.20%, and αβ is 4.80. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 5.
 <実施例6>
 締め代(t-t)が0.10mm及び締め代率αが3.33%、出代Δdが0.15mm及び出代率βが1.50%、並びにαβが5.00であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例6とした。
<Example 6>
The fastening allowance (t 2 -t 1 ) is 0.10 mm, the fastening allowance rate α is 3.33%, the allowance Δd is 0.15 mm, the allowance allowance β is 1.50%, and αβ is 5.00. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 6.
 <実施例7>
 締め代(t-t)が0.15mm及び締め代率αが5.00%、出代Δdが0.10mm及び出代率βが1.00%、並びにαβが5.00であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例7とした。
<Example 7>
The tightening allowance (t 2 -t 1 ) is 0.15 mm and the tightening allowance rate α is 5.00%, the allowance allowance Δd is 0.10 mm, the allowance allowance β is 1.00%, and αβ is 5.00. Except this, Example 7 is a high-load transmission V-belt having the same configuration as Example 1.
 <実施例8>
 締め代(t-t)が0.03mm及び締め代率αが1.00%、出代Δdが0.14mm及び出代率βが1.40%、並びにαβが1.40であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例8とした。
<Example 8>
The tightening allowance (t 2 -t 1 ) is 0.03 mm and the tightening allowance rate α is 1.00%, the allowance Δd is 0.14 mm, the allowance allowance β is 1.40%, and αβ is 1.40. Except for this, a V-belt for high load transmission having the same configuration as that of Example 1 was designated as Example 8.
 <実施例9>
 締め代(t-t)が0.14mm及び締め代率αが4.67%、出代Δdが0.03mm及び出代率βが0.30%、並びにαβが1.40であることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例9とした。
<Example 9>
The tightening allowance (t 2 -t 1 ) is 0.14 mm, the tightening allowance rate α is 4.67%, the allowance Δd is 0.03 mm, the allowance allowance β is 0.30%, and αβ is 1.40. Except for this, a V-belt for high load transmission having the same configuration as in Example 1 was designated as Example 9.
 <実施例10>
 ブロック高さが11.5mmであることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例10とした。
<Example 10>
A high load transmission V-belt having the same configuration as that of Example 1 except that the block height was 11.5 mm was taken as Example 10.
 <実施例11>
 金属補強材の上側ビーム高さが4mmであることを除いて実施例1と同一構成の高負荷伝動用Vベルトを実施例11とした。
<Example 11>
A high load transmission V-belt having the same configuration as that of Example 1 except that the upper beam height of the metal reinforcing material was 4 mm was taken as Example 11.
 <比較例1>
 締め代(t-t)が0.04mm及び締め代率αが1.33%、出代Δdが0.04mm及び出代率βが0.40%、並びにαβが0.53であり、ブロックの嵌合部の上側面に凸部が形成され且つ張力帯の上側面にその凸部に嵌合する凹部が形成されたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを比較例1とした。
<Comparative Example 1>
The tightening allowance (t 2 -t 1 ) is 0.04 mm and the tightening allowance rate α is 1.33%, the allowance Δd is 0.04 mm, the allowance allowance β is 0.40%, and αβ is 0.53. The high load transmission V having the same configuration as in Example 1 except that a convex portion is formed on the upper side surface of the fitting portion of the block and a concave portion is formed on the upper side surface of the tension band. The belt was designated as Comparative Example 1.
 <比較例2>
 締め代(t-t)が0.13mm及び締め代率αが4.33%、出代Δdが0.14mm及び出代率βが1.40%、並びにαβが6.07であり、ブロックの嵌合部の上側面に凸部が形成され且つ張力帯の上側面にその凸部に嵌合する凹部が形成されたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを比較例2とした。
<Comparative example 2>
The tightening allowance (t 2 -t 1 ) is 0.13 mm and the tightening allowance ratio α is 4.33%, the allowance allowance Δd is 0.14 mm, the allowance allowance β is 1.40%, and αβ is 6.07. The high load transmission V having the same configuration as in Example 1 except that a convex portion is formed on the upper side surface of the fitting portion of the block and a concave portion is formed on the upper side surface of the tension band. The belt was referred to as Comparative Example 2.
 <比較例3>
 締め代(t-t)が0.03mm及び締め代率αが1.00%、出代Δdが0.17mm及び出代率βが1.70%、並びにαβが1.70であり、ブロックの嵌合部の上側面に凸部が形成され且つ張力帯の上側面にその凸部に嵌合する凹部が形成されたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを比較例3とした。
<Comparative Example 3>
The tightening allowance (t 2 -t 1 ) is 0.03 mm and the tightening allowance rate α is 1.00%, the allowance Δd is 0.17 mm, the allowance allowance β is 1.70%, and αβ is 1.70. The high load transmission V having the same configuration as in Example 1 except that a convex portion is formed on the upper side surface of the fitting portion of the block and a concave portion is formed on the upper side surface of the tension band. The belt was referred to as Comparative Example 3.
 <比較例4>
 締め代(t-t)が0.17mm及び締め代率αが5.67%、出代Δdが0.03mm及び出代率βが0.30%、並びにαβが1.70であり、ブロックの嵌合部の上側面に凸部が形成され且つ張力帯の上側面にその凸部に嵌合する凹部が形成されたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを比較例4とした。
<Comparative example 4>
The fastening allowance (t 2 -t 1 ) is 0.17 mm, the fastening allowance rate α is 5.67%, the allowance Δd is 0.03 mm, the allowance allowance β is 0.30%, and αβ is 1.70. The high load transmission V having the same configuration as in Example 1 except that a convex portion is formed on the upper side surface of the fitting portion of the block and a concave portion is formed on the upper side surface of the tension band. The belt was referred to as Comparative Example 4.
 <比較例5>
 ブロックの嵌合部の上側面に凸部が形成され且つ張力帯の上側面にその凸部に嵌合する凹部が形成されたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを比較例5とした。
<Comparative Example 5>
A high load transmission V-belt having the same configuration as that of the first embodiment except that a convex portion is formed on the upper side surface of the fitting portion of the block and a concave portion is formed on the upper side surface of the tension band. Was designated as Comparative Example 5.
 <比較例6>
 ブロックの嵌合部の上側面に凸部が形成され且つ張力帯の上側面にその凸部に嵌合する凹部が形成され、ブロックの嵌合部の下側面が平坦面に形成され且つ張力帯の下側面が平坦面に形成されたことを除いて実施例1と同一構成の高負荷伝動用Vベルトを比較例6とした。
<Comparative Example 6>
A convex portion is formed on the upper side surface of the fitting portion of the block, and a concave portion is formed on the upper side surface of the tension band, and a lower surface of the fitting portion of the block is formed on a flat surface. A high-load transmission V-belt having the same configuration as that of Example 1 except that the lower side surface is formed as a flat surface is referred to as Comparative Example 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (試験評価方法)
 チャンバー内に駆動プーリと従動プーリとが設けられたベルト走行試験機を用い、以下のベルト走行試験を行った。
(Test evaluation method)
The following belt running test was conducted using a belt running tester in which a driving pulley and a driven pulley were provided in the chamber.
 <高速耐熱高負荷耐久試験>
 実施例1~11及び比較例1~6のそれぞれの高負荷伝動用Vベルトについて、プーリピッチ径が133.6mmの駆動プーリ及びプーリピッチ径が61.4mmの従動プーリに巻き掛けると共に、従動プーリに2500Nのデッドウエイトを負荷し、チャンバー内に120℃の温風を吹き込みながら、駆動軸トルク70N・mで駆動プーリを5016±60rpmの回転数で回転させ、最長走行時間500時間(実施例10は700時間)としてベルトが破壊するまで走行させた。そして、ベルトが破壊するまでの走行時間を高速耐熱高負荷耐久寿命とした。
<High speed heat resistance and high load durability test>
The high load transmission V-belts of Examples 1 to 11 and Comparative Examples 1 to 6 are wound around a drive pulley having a pulley pitch diameter of 133.6 mm and a driven pulley having a pulley pitch diameter of 61.4 mm, and the driven pulley is 2500 N The dead pulley was loaded and the driving pulley was rotated at a rotational speed of 5016 ± 60 rpm with a driving shaft torque of 70 N · m while blowing warm air of 120 ° C. into the chamber, and the maximum traveling time was 500 hours (Example 10 is 700). It was run until the belt broke down as time). The running time until the belt breaks was defined as a high speed heat resistant high load durability life.
 <低速耐熱高負荷耐久試験>
 実施例1~11及び比較例1~6のそれぞれの高負荷伝動用Vベルトについて、プーリピッチ径が65.0mmの駆動プーリ及びプーリピッチ径が130.0mmの従動プーリに巻き掛けると共に、従動プーリに4800Nのデッドウエイトを負荷し、チャンバー内に90℃の温風を吹き込みながら、駆動軸トルク89N・mで駆動プーリを2600±60rpmの回転数で回転させ、最長走行時間100時間(実施例11は250時間)としてベルトが破壊するまで走行させた。そして、ベルトが破壊するまでの走行時間を低速耐熱高負荷耐久試験寿命とした。
<Low speed heat resistance and high load durability test>
The high load transmission V-belts of Examples 1 to 11 and Comparative Examples 1 to 6 are wound around a driving pulley having a pulley pitch diameter of 65.0 mm and a driven pulley having a pulley pitch diameter of 130.0 mm, and 4800 N around the driven pulley. A dead pulley of 90 ° C. was loaded into the chamber and the drive pulley was rotated at a rotational speed of 2600 ± 60 rpm with a drive shaft torque of 89 N · m while blowing 90 ° C. warm air into the chamber. It was run until the belt broke down as time). The running time until the belt breaks was defined as the low speed heat resistant high load durability test life.
 <伝動特性試験>
 実施例1~11及び比較例1~6のそれぞれの高負荷伝動用Vベルトについて、プーリピッチ径が65.0mmの駆動プーリ及びプーリピッチ径が130.0mmの従動プーリに巻き掛けると共に、従動プーリに4000Nのデッドウエイトを負荷し、チャンバー内に90℃の温風を吹き込みながら、駆動プーリを2600±60rpmの回転数で回転させ、スリップ率2%として伝動特性を求めた。また、走行初期のベルト温度を測定した。
<Transmission characteristics test>
The high load transmission V-belts of Examples 1 to 11 and Comparative Examples 1 to 6 are wound around a drive pulley having a pulley pitch diameter of 65.0 mm and a driven pulley having a pulley pitch diameter of 130.0 mm, and 4000 N around the driven pulley. The dead weight was loaded and the driving pulley was rotated at a rotation speed of 2600 ± 60 rpm while blowing warm air at 90 ° C. into the chamber, and the transmission characteristics were obtained with a slip ratio of 2%. In addition, the belt temperature at the beginning of running was measured.
 (試験評価結果)
 結果を表2に示す。
(Test evaluation results)
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 高速耐熱高負荷耐久寿命は、実施例1~11が500時間以上(実施例10が700時間以上)、並びに、比較例1が300時間、比較例2が255時間、比較例3が230時間、比較例4が260時間、比較例5が350時間、及び比較例6が200時間であった。比較例1~6のいずれも破損モードはブロック破損であった。 The high-speed heat-resistant high-load durability life is 500 hours or more for Examples 1 to 11 (700 hours or more for Example 10), 300 hours for Comparative Example 1, 255 hours for Comparative Example 2, 230 hours for Comparative Example 3, Comparative Example 4 was 260 hours, Comparative Example 5 was 350 hours, and Comparative Example 6 was 200 hours. In all of Comparative Examples 1 to 6, the failure mode was block failure.
 低速耐熱高負荷耐久寿命は、実施例1~11が100時間以上(実施例11が250時間以上)、並びに、比較例1が50時間、比較例2が30時間、比較例3が24時間、比較例4が30時間、比較例5が70時間、及び比較例6が30時間であった。比較例1~6のいずれも破損モードはブロック破損であった。 The low-speed heat-resistant and high-load durability life is 100 hours or more in Examples 1 to 11 (250 hours or more in Example 11), 50 hours in Comparative Example 1, 30 hours in Comparative Example 2, and 24 hours in Comparative Example 3. Comparative Example 4 was 30 hours, Comparative Example 5 was 70 hours, and Comparative Example 6 was 30 hours. In all of Comparative Examples 1 to 6, the failure mode was block failure.
 伝動特性は、実施例1~9及び比較例1~5が83.0N・m、実施例10が86.0N・m、実施例11が90.0N・m、比較例6が70.0N・mであった。 The transmission characteristics are 83.0 N · m in Examples 1 to 9 and Comparative Examples 1 to 5, 86.0 N · m in Example 10, 90.0 N · m in Example 11, and 70.0 N · m in Comparative Example 6. m.
 走行初期のベルト温度は、実施例1が106℃、実施例2が106℃、実施例3が105℃、実施例4が108℃、実施例5が108℃、実施例6が114℃、実施例7が115℃、実施例8が108℃、実施例9が110℃、実施例10が100℃、及び実施例11が110℃、並びに、比較例1が110℃、比較例2が145℃、比較例3が125℃、比較例4が145℃、比較例5が112℃、比較例6が130℃であった。 The belt temperature at the beginning of running was 106 ° C. in Example 1, 106 ° C. in Example 2, 105 ° C. in Example 3, 108 ° C. in Example 4, 108 ° C. in Example 5, 114 ° C. in Example 6. Example 7 was 115 ° C, Example 8 was 108 ° C, Example 9 was 110 ° C, Example 10 was 100 ° C, Example 11 was 110 ° C, and Comparative Example 1 was 110 ° C, and Comparative Example 2 was 145 ° C. Comparative Example 3 was 125 ° C., Comparative Example 4 was 145 ° C., Comparative Example 5 was 112 ° C., and Comparative Example 6 was 130 ° C.
 以上の結果より、実施例1~11は比較例1~6に比べて耐久に優れることが分かる。 From the above results, it can be seen that Examples 1 to 11 are more durable than Comparative Examples 1 to 6.
 本発明は高負荷伝動用Vベルト及びそれを用いたベルト伝動装置について有用である。 The present invention is useful for a V-belt for high load transmission and a belt transmission device using the same.
B 高負荷伝動用Vベルト
10 ブロック
11 嵌合部
12 嵌合凸部
13 金属補強材
13a 上側ビーム
13b 下側ビーム
13c センターピラー
20 張力帯
21 嵌合凹部
22 保形ゴム層
23 心線
24 上側補強布
25 下側補強布
30 ベルト伝動装置
31 駆動軸
32 駆動プーリ
33 従動軸
34 従動プーリ
B High-load transmission V-belt 10 Block 11 Fitting part 12 Fitting convex part 13 Metal reinforcing material 13a Upper beam 13b Lower beam 13c Center pillar 20 Tension band 21 Fitting concave part 22 Shape-retaining rubber layer 23 Core wire 24 Upper reinforcing part Cloth 25 Lower reinforcing cloth 30 Belt transmission device 31 Drive shaft 32 Drive pulley 33 Drive shaft 34 Drive pulley

Claims (7)

  1.  各々、ベルト幅方向の両側部のそれぞれに側方に開口したスリット状の嵌合部が形成された複数のブロックと、
     各々、上記複数のブロックの嵌合部に該複数のブロックを連結するように嵌め入れられた一対のエンドレスの張力帯と、
    を備え、
     上記複数のブロックのそれぞれは、各嵌合部の上側面が平坦面に構成されていると共に下側面に嵌合凸部が形成されており、
     上記一対の張力帯のそれぞれは、上側面が平坦面に構成されていると共に下側面に上記ブロックにおける嵌合部の下側面の嵌合凸部に嵌合する嵌合凹部が形成されている高負荷伝動用Vベルト。
    A plurality of blocks each having slit-shaped fitting portions that are open laterally on both sides in the belt width direction,
    Each of a pair of endless tension bands fitted to connect the plurality of blocks to the fitting portions of the plurality of blocks,
    With
    Each of the plurality of blocks is configured such that the upper surface of each fitting portion is a flat surface and the fitting convex portion is formed on the lower surface,
    Each of the pair of tension bands is configured such that the upper side surface is configured as a flat surface, and the lower side surface is formed with a fitting concave portion that fits into the fitting convex portion on the lower side surface of the fitting portion in the block. V belt for load transmission.
  2.  請求項1に記載された高負荷伝動用Vベルトにおいて、
     上記複数のブロックのそれぞれは、その重心がベルトピッチライン上にある高負荷伝動用Vベルト。
    In the high load transmission V-belt according to claim 1,
    Each of the plurality of blocks is a high load transmission V-belt whose center of gravity is on the belt pitch line.
  3.  請求項1又は2に記載された高負荷伝動用Vベルトにおいて、
     上記ブロックの嵌合部の隙間をt、上記張力帯の該ブロックの嵌合部への嵌め入れ部分の厚さをtとしたとき、α={(t-t)/t}×100で表される締め代率αが1~5%であり、
     また、上記張力帯の上記ブロックの嵌合部からの突出量である出代をΔd、該ブロックの張力帯噛合位置での該張力帯の挿入ピッチ幅をwとしたとき、β=(Δd/w)×100で表される出代率βが0.3~1.5%であり、
     さらに、α×βが0.6~5.0である高負荷伝動用Vベルト。
    In the high load transmission V-belt according to claim 1 or 2,
    Α = {(t 2 −t 1 ) / t 1 , where t 1 is the gap between the fitting portions of the block, and t 2 is the thickness of the fitting portion of the tension band into the fitting portion of the block. } The fastening margin rate α represented by × 100 is 1 to 5%,
    In addition, when the amount of protrusion of the tension band protruding from the fitting portion of the block is Δd and the insertion pitch width of the tension band at the tension band engagement position of the block is w, β = (Δd / w) The birth rate β expressed by × 100 is 0.3 to 1.5%,
    Furthermore, a V-belt for high load transmission with α × β of 0.6 to 5.0.
  4.  請求項3に記載された高負荷伝動用Vベルトにおいて、
     t-tで表される締め代が0.03~0.15mmである高負荷伝動用Vベルト。
    In the high load transmission V-belt according to claim 3,
    A high load transmission V-belt having a tightening allowance represented by t 2 -t 1 of 0.03 to 0.15 mm.
  5.  請求項3又は4に記載された高負荷伝動用Vベルトにおいて、
     Δdで表される出代が0.03~0.15mmである高負荷伝動用Vベルト。
    In the V belt for high load transmission according to claim 3 or 4,
    A high-load power transmission V-belt with an allowance represented by Δd of 0.03 to 0.15 mm.
  6.  請求項3乃至5のいずれかに記載された高負荷伝動用Vベルトにおいて、
     wで表される挿入ピッチ幅が7.5~12.0mmである高負荷伝動用Vベルト。
    In the V belt for high load transmission according to any one of claims 3 to 5,
    A V-belt for high load transmission having an insertion pitch width represented by w of 7.5 to 12.0 mm.
  7.  請求項1乃至6のいずれかに記載された高負荷伝動用Vベルトが駆動プーリ及び従動プーリに巻き掛けられて構成された無段変速機構を有するベルト伝動装置。 A belt transmission device having a continuously variable transmission mechanism in which the high-load transmission V-belt according to any one of claims 1 to 6 is wound around a driving pulley and a driven pulley.
PCT/JP2009/003693 2008-08-27 2009-08-03 V belt for transmitting heavy load WO2010023824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-218540 2008-08-27
JP2008218540 2008-08-27

Publications (1)

Publication Number Publication Date
WO2010023824A1 true WO2010023824A1 (en) 2010-03-04

Family

ID=41721008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003693 WO2010023824A1 (en) 2008-08-27 2009-08-03 V belt for transmitting heavy load

Country Status (1)

Country Link
WO (1) WO2010023824A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150138U (en) * 1987-03-24 1988-10-03
JP2535858Y2 (en) * 1991-04-08 1997-05-14 バンドー化学株式会社 V belt for high load transmission
JP2006307960A (en) * 2005-04-28 2006-11-09 Mitsuboshi Belting Ltd V belt and its design method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150138U (en) * 1987-03-24 1988-10-03
JP2535858Y2 (en) * 1991-04-08 1997-05-14 バンドー化学株式会社 V belt for high load transmission
JP2006307960A (en) * 2005-04-28 2006-11-09 Mitsuboshi Belting Ltd V belt and its design method

Similar Documents

Publication Publication Date Title
JP3496830B2 (en) V belt for high load transmission
KR100907780B1 (en) Friction Drive Belt and Manufacturing Method
JP6145170B2 (en) V-belt and manufacturing method thereof
JP6192641B2 (en) Transmission belt
JP4768893B2 (en) Friction transmission belt
JP5945562B2 (en) Transmission belt and belt transmission
JP5704752B2 (en) Friction transmission belt
JP6505335B1 (en) Transmission belt
KR20220125679A (en) V-ribbed belt
JP6807212B2 (en) V-ribbed belt and power transmission mechanism
WO2010023824A1 (en) V belt for transmitting heavy load
JP2016211586A (en) V belt for high load transmission and manufacturing method thereof
JP5997352B2 (en) V-ribbed belt
KR20220110095A (en) Friction transmission belt
JP2012193770A (en) Composite v belt
WO2019193881A1 (en) Friction transmission belt
JP4667956B2 (en) Transmission belt and manufacturing method thereof
JP5379929B1 (en) V belt for high load transmission
JP6530877B1 (en) Friction transmission belt
JPWO2017033392A1 (en) Friction transmission belt
JP3907456B2 (en) V belt for high load transmission
WO2010004733A1 (en) Flat belt
WO2015146032A1 (en) Friction transmission belt and manufacturing method thereof
JP2002013594A (en) Heavy-duty power transmission v-belt
JP2001099235A (en) Speed change belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2011)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09809481

Country of ref document: EP

Kind code of ref document: A1