WO2010023709A1 - Welding machine power supply apparatus and welding machine - Google Patents

Welding machine power supply apparatus and welding machine Download PDF

Info

Publication number
WO2010023709A1
WO2010023709A1 PCT/JP2008/002312 JP2008002312W WO2010023709A1 WO 2010023709 A1 WO2010023709 A1 WO 2010023709A1 JP 2008002312 W JP2008002312 W JP 2008002312W WO 2010023709 A1 WO2010023709 A1 WO 2010023709A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
welding
voltage
welding machine
conducting semiconductor
Prior art date
Application number
PCT/JP2008/002312
Other languages
French (fr)
Japanese (ja)
Inventor
志賀雅人
北原忠幸
神子諭
小島直人
福田志郎
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to PCT/JP2008/002312 priority Critical patent/WO2010023709A1/en
Publication of WO2010023709A1 publication Critical patent/WO2010023709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit
    • B23K9/1056Power supply characterised by the electric circuit by using digital means

Definitions

  • the present invention relates to a power supply device for a welding machine and a welding machine.
  • This induction heating power supply device is for supplying a high frequency alternating pulse current to an induction coil for induction heating of an object to be heated, and a DC power source and a smoothing unit for smoothing DC power from the DC power source.
  • a bridge circuit configured by bridge-connecting four reverse conducting semiconductor switches composed of a reverse parallel circuit of a coil for a self-extinguishing element and a diode, and connected between the DC terminals of the bridge circuit, A capacitor for accumulating regenerative magnetic energy of the circuit when the switch is shut off and a control means for controlling on / off of the reverse conducting semiconductor switch are provided.
  • the control means simultaneously turns on / off pairs located on the diagonal line among the reverse conducting semiconductor switches in the cycle of the alternating pulse current supplied to the induction coil, and the two pairs are not simultaneously turned on.
  • the operation is controlled so that the frequency of the generated alternating pulse current is lower than the resonance frequency determined by the inductance of the induction coil and the capacitance of the capacitor.
  • the resonance condition can be maintained regardless of the pulse frequency, and the magnetic energy of the circuit can be regenerated and reused, and the alternating coil can be continuously applied to the induction coil by charging the capacitor from the DC power source via the smoothing coil. Supplying current. JP 2008-92745 A
  • an arc welding machine used for arc welding that uses arc discharge for welding is known.
  • arc welding when aluminum or the like is used as a base material, an oxide film having a high melting point is formed on the surface of the base material during welding. If an oxide film is formed on the surface of the base material, the base material is not melted uniformly, and bead defects such as undulations and grooves may occur. Therefore, in arc welding, it is necessary to remove an oxide film generated during welding.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a power supply device for a welding machine capable of switching between alternating current and direct current with a simpler configuration, and a welding machine including the power supply device for the welding machine. On offer.
  • an aspect of the present invention is a power supply device for a welder, and the power supply device for a welder is connected between a DC power supply, a welding electrode, and an object to be welded, and is output from the DC power supply.
  • a DC / AC conversion switch for converting the generated DC voltage into an AC voltage, a controller for controlling the DC / AC conversion switch, and a coil for causing resonance with the alternating pulse current, and the DC / AC conversion switch includes at least 2 Two reverse conducting semiconductor switches, and a capacitor for accumulating the magnetic energy of the circuit and regenerating it to the welding electrode and the work piece when the current is interrupted, and the control unit controls the switching frequency of the DC / AC conversion switch Thus, the DC voltage output from the DC power source is converted into an AC voltage.
  • Another aspect of the present invention is a welding machine, and the welding machine includes the welding machine power supply apparatus according to the above-described aspect and a welding electrode connected to the welding machine power supply apparatus. To do.
  • the present invention it is possible to provide a welding machine power supply device capable of switching between alternating current and direct current with a simpler configuration, and a welding machine equipped with the welding machine power supply device.
  • FIGS. 2A, 2B, and 2C are diagrams for explaining the operation of MERS. It is a figure for demonstrating supply of the electric power from DC power supply. It is a figure which shows the other aspect of MERS. It is a figure which shows the other aspect of MERS. It is a schematic block diagram of a welding machine.
  • SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8 Reverse conducting semiconductor switch 1 Welding machine power supply device, 2 DC power supply, 3, 31, 32 Smoothing coil, 4 DC AC power converter, 5 Resonance Coil, 10, 10a, 10b Magnetic energy regenerative switch (MERS), 12, 13, 14, 15, 16 capacitor, 20 control unit, 30 welding rod, 40 base material, 50 ammeter, 100 welding machine.
  • MERS Magnetic energy regenerative switch
  • FIG. 1 is a circuit block diagram illustrating a configuration of a power supply device for a welding machine according to the present embodiment.
  • a power supply device 1 for a welding machine includes a DC power supply 2 and a smoothing coil 3 for smoothing DC power from the DC power supply 2.
  • the welding machine power supply device 1 includes a DC / AC power conversion unit 4 that converts an AC voltage and a DC voltage supplied to the resonance coil 5.
  • the electric resistance R of arc discharge connected to the welding machine power supply device 1 is illustrated for explaining the welding machine power supply device 1.
  • the electric resistance R includes an electric resistance component included in the resonance coil 5.
  • the DC / AC power conversion unit 4 includes a magnetic energy regenerative switch (MERS) (hereinafter referred to as MERS) 10 as a DC / AC conversion switch, and a control unit 20 that controls switching of the MERS 10.
  • MERS magnetic energy regenerative switch
  • the MERS 10 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss.
  • the MERS 10 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and an energy storage capacitor 12 that absorbs magnetic energy of a current flowing through the circuit when the bridge circuit is cut off. Prepare.
  • a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
  • the reverse conducting semiconductor switches SW1 to SW4 are composed of an anti-parallel circuit of a self-extinguishing element and a diode.
  • a self-extinguishing element for example, a power MOSFET, IGBT or the like can be used.
  • the capacitor 12 is at the connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW2 and between the reverse conduction type semiconductor switch SW3 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N).
  • a DC power source 2 and a smoothing coil 3 are connected in series to the DC terminals DC (P) and DC (N). Further, there is resonance between the AC terminal at the connection point between the reverse conduction semiconductor switch SW1 and the reverse conduction semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction semiconductor switch SW2 and the reverse conduction semiconductor switch SW3. Coils 5 for use are connected in series.
  • the control unit 20 sends a control signal to the gates of the reverse conducting semiconductor switches SW1 to SW4 to control the switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 10. Specifically, the ON / OFF operation of the first pair composed of the reverse conducting semiconductor switches SW1 and SW3 located on the diagonal line in the bridge circuit of the MERS 10 and the second pair comprising the reverse conducting semiconductor switches SW2 and SW4. A control signal is transmitted to each gate so that when one is ON, the other is OFF and ON / OFF switching is performed simultaneously.
  • 2A, 2 ⁇ / b> B, and 2 ⁇ / b> C are diagrams for explaining the operation of the MERS 10.
  • illustration of the DC power supply 2, the smoothing coil 3, and the control unit 20 is omitted.
  • the reverse conducting semiconductor switches SW1 and SW3 are turned on while the voltage is charged in the capacitor 12, the charge of the capacitor 12 is discharged to the resonance coil 5 as shown in FIG. Thus, the current flows through a path passing through the reverse conducting semiconductor switch SW 1 -the resonance coil 5 -reverse conducting semiconductor switch SW 3 -the capacitor 12.
  • the current of the capacitor 12 stops and the current continues to flow through the diodes of the other reverse conducting semiconductor switches. For example, when the reverse conducting semiconductor switch SW1 is turned off, a current flows through the diode of the reverse conducting semiconductor switch SW4.
  • the reverse conducting semiconductor switches SW2 and SW4 are turned on while the voltage is charged in the capacitor 12, the direction of the current flowing through the resonance coil 5 is opposite to the arrow in the figure. Therefore, the current flowing through the resonance coil 5 depending on which of the first pair consisting of the reverse conduction type semiconductor switches SW1 and SW3 and the second pair consisting of the reverse conduction type semiconductor switches SW2 and SW4 is turned ON. Direction can be selected.
  • the capacitance of the capacitor 12 is small, and the resonance frequency with the inductance L of the resonance coil 5 is higher than the pulse frequency. Therefore, the MERS 10 is zero voltage switching and zero current switching. That is, by using the MERS 10, the magnetic energy of the resonance coil 5 can be regenerated to alternately generate bipolar current pulses, that is, alternating pulse currents in the resonance coil 5. Therefore, the power supply device 1 for the welding machine can supply an AC voltage to the resonance coil 5 by controlling the MERS 10 as described above by the control unit 20, and is always a reverse conducting semiconductor switch. By turning on SW1 and SW3 and turning off reverse conducting semiconductor switches SW2 and SW4, the DC voltage from the DC power supply 2 can be supplied to the resonance coil 5 as it is.
  • the AC frequency can be arbitrarily adjusted below the resonance frequency by adjusting the switching frequency of the reverse conducting semiconductor switches SW1 to SW4.
  • FIG. 3 is a diagram for explaining the supply of electric power from the DC power supply 2.
  • illustration of the control part 20 is abbreviate
  • the power supply from the DC power source 2 to the capacitor 12 is performed through the smoothing coil 3 having a large inductance.
  • the current from the DC power supply 2 becomes a DC with less ripples by the smoothing coil 3, and becomes smaller than the oscillating pulse load current.
  • the above-described welding machine power supply device 1 has a configuration in which the MERS 10 includes a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 12 connected between the DC terminals of the bridge circuit.
  • the MERS 10 may have the following configuration.
  • FIG. 4 and 5 are diagrams showing other modes of the MERS 10. Since the configuration other than the mode of MERS 10 is the same as the configuration illustrated in FIG. 1, the same configuration is denoted by the same reference numeral and description thereof is omitted.
  • the MERS 10a shown in FIG. 4 has two reverse-conducting semiconductor switches, two diodes, and 2 for the full-bridge type MERS 10 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and the capacitor 12 described above. It is a vertical half-bridge type composed of two capacitors. More specifically, the vertical half-bridge MERS 10a is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series and the two reverse conducting semiconductor switches SW5 and SW6. Two capacitors 13 and 14 connected in series, and two diodes D1 and D2 connected in parallel with each of the two capacitors 13 and 14 are included.
  • the MERS 10b shown in FIG. 5 is a horizontal half-bridge type, and includes two reverse conducting semiconductor switches and two capacitors. More specifically, the horizontal half-bridge MERS 10b includes a reverse conducting semiconductor switch SW7 provided on the first path connecting the power source and the ground, and a reverse conducting semiconductor switch provided on the second path. SW8 and capacitors 15 and 16 connected in parallel with the reverse conducting semiconductor switches SW7 and SW8, respectively.
  • a smoothing coil 31 is provided in series with the reverse conducting semiconductor switch SW7 on the first path, and a smoothing coil 32 is provided in series with the reverse conducting semiconductor switch SW8 on the second path. Is provided. The smoothing coils 31 and 32 are not included in the MERS 10b.
  • FIG. 6 is a schematic configuration diagram of the welding machine.
  • an arc welder that performs welding using arc discharge will be described as an example.
  • the welding machine 100 of the present embodiment includes a DC power source 2, a DC AC power conversion unit 4, and welding as a welding electrode connected to the DC power source 2 via the DC AC power conversion unit 4. And rod 30.
  • the welding machine 100 applies a negative voltage to the welding rod 30, and further applies a positive voltage to the base material 40 as an object to be welded connected to the DC power source 2 via the MERS 10 of the DC / AC power converter 4. By applying, an arc is generated between them, and the base material 40 is welded by the heat.
  • a resonance coil 5 is connected between the MERS 10 and the welding rod 30.
  • the welding machine 100 of this embodiment is provided with the ammeter 50 as a welding state monitoring part.
  • the direct current alternating current power conversion part 4 in FIG. 6 provides the coil 5 for resonance in the direct current alternating current power conversion part 4 shown in FIG.
  • the welding rod 30 and the base material 40 correspond to the electric resistance R of arc discharge of the welding machine power supply device 1 shown in FIG.
  • the welding rod 30 is made of a material that is not easily deformed at high temperatures, has high heat and electrical conductivity, is difficult to alloy with the base material 40, and is not easily oxidized in the atmosphere. , Tungsten alloy or the like.
  • Base material 40 is made of any metal such as copper, copper alloy, iron, iron alloy, stainless steel, aluminum, aluminum alloy, and magnesium alloy.
  • the base material 40 is usually welded by applying a DC voltage to the welding rod 30 and the base material 40.
  • the base material 40 is made of a material that easily oxidizes, such as aluminum, an aluminum alloy, or a magnesium alloy, an oxide film having a high melting point is formed on the surface of the base material 40 during welding.
  • an oxide film is formed on the surface of the base material 40, the base material 40 does not melt evenly, and bead defects such as undulations and grooves occur.
  • the welding machine 100 monitors the welding state, and when the state where the oxide film is formed on the surface of the base material 40 and the welding is difficult is detected, the welding machine 100 is supplied from the DC power source 2 in the DC / AC power conversion unit 4.
  • the DC voltage is converted into an AC voltage and supplied to the welding rod 30 and the base material 40. Then, the oxide film formed on the surface of the base material 40 is removed by the cleaning action of the AC voltage.
  • an ammeter 50 is provided in the DC / AC power conversion unit 4 and the current flowing through the welding rod 30 and the base material 40 is detected by the ammeter 50. The detection result by the ammeter 50 is transmitted from the ammeter 50 to the control unit 20.
  • the control unit 20 When the control unit 20 detects that the current value received from the ammeter 50 is equal to or lower than a predetermined current value, the control unit 20 controls the MERS 10 to convert the DC voltage supplied from the DC power source 2 into an AC voltage. To do. Thereby, an AC voltage is supplied to the welding rod 30 and the base material 40, and the oxide film formed on the surface of the base material 40 is removed by the cleaning action of the AC.
  • the “predetermined current value” is, for example, a lower limit current value required at least for welding of the base material 40, and is appropriately set according to the material, thickness, and the like of the base material 40. The lower limit current value can be obtained experimentally.
  • the welding machine 100 is provided with a setting switch for setting a current value to be output, and the user can appropriately set the output current value according to the material of the base material 40 and the like.
  • the lower limit current value is defined as a value obtained by subtracting a predetermined ratio from the set current value set by the user.
  • the control unit 20 determines that it is difficult to weld the base material 40 due to the oxide film, and switches the DC voltage to the AC voltage.
  • the control unit 20 includes a storage unit (not shown), a table in which the set current value and the lower limit current value are associated with each other is stored in the storage unit, and the control unit 20 is stored in the storage unit. DC / AC conversion is executed with reference to the table.
  • control unit 20 When the control unit 20 detects that the current value received from the ammeter 50 exceeds a predetermined current value after converting the DC voltage supplied from the DC power source 2 to an AC voltage, the control unit 20 stops the switching control of the MERS 10. As a result, a DC voltage is supplied again to the welding rod 30 and the base material 40.
  • the welding machine 100 which concerns on this embodiment, conversion control of direct current alternating current is possible only by incorporating the direct current alternating current power conversion part 4 provided with MERS10 and the control part 20 which have a simple structure. Therefore, it is possible to switch between alternating current and direct current with a simpler configuration.
  • the welding machine 100 includes a welding state monitoring unit such as an ammeter 50, which enables automatic DC / AC conversion. Therefore, DC / AC conversion at a more appropriate timing according to the welding state is possible, and the welding efficiency and the welding accuracy can be further improved.
  • the DC / AC conversion is not only configured to be performed according to the monitoring result of the welding state monitoring unit, but a program that preliminarily defines the DC / AC conversion timing is stored in the storage unit and the program is executed. In this case, DC / AC conversion may be performed. According to this, the welding machine 100 can be made a simpler configuration.
  • the conversion timing when the DC / AC conversion timing is defined in advance for example, a conversion timing for periodically switching between a DC voltage and an AC voltage is conceivable. In particular, if the time for supplying the DC voltage is longer than the time for supplying the AC voltage, the welding efficiency can be increased.
  • the frequency of the AC voltage can be adjusted in the welding machine 100 according to the present embodiment, the frequency of the AC voltage converted from the DC voltage may be changed. According to this, the following effects can be obtained.
  • the frequency when the frequency is lowered, the output waveform approaches a rectangular wave, and the period during which the voltage including zero voltage is low decreases, so that the time for cooling the welding rod 30 is shortened, and the effect of improving the welding efficiency is obtained. It is done.
  • the frequency is increased, the concentration of the arc to be emitted can be increased. Therefore, particularly when the base material 40 is a material having high thermal conductivity such as aluminum or copper, the welding efficiency is improved. The effect that it can be improved is obtained.
  • a setting switch for setting the frequency of the AC voltage is provided in the welding machine 100, and the user can set the frequency appropriately according to the properties of the base material 40 including the material of the base material 40. it can.
  • the control unit 20 converts the DC voltage to an AC voltage having a frequency set by the setting switch.
  • the welding machine power supply device 1 and the welding machine 100 are connected between the DC power supply 2, the welding rod 30 and the base material 40.
  • MERS10 which converts the output DC voltage into AC voltage
  • the control part 20 which controls MERS10 are provided.
  • the control part 20 is converting the DC voltage output from the direct-current power supply 2 into the alternating voltage by controlling switching of MERS10. Therefore, alternating current and direct current can be switched with a simpler configuration.
  • the welding machine 100 includes a welding state monitoring unit that monitors the welding state of the base material 40.
  • the control part 20 is converting the DC voltage output from the DC power supply 2 into AC voltage according to the monitoring result of the welding condition monitoring part. Therefore, DC / AC conversion at a more appropriate timing according to the welding state is possible, and the welding efficiency and the welding accuracy can be further improved.
  • control unit 20 adjusts the frequency of the AC voltage by adjusting the switching of the MERS 10 according to the properties of the base material 40. Therefore, the welding efficiency can be further improved.
  • the present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art.
  • the embodiment to which such a modification is added is also the present embodiment. It can be included in the scope of the invention.
  • the present invention can be used for a welding machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

A welding machine power supply apparatus (1) is connected between a DC power supply (2) and each of a welding rod (30) and a base material (40) and comprises an MERS (10) that converts a DC voltage outputted by the DC power supply (2) to an AC voltage; a control part (20) that controls the MERS (10); and a coil (5) used for resonation with an alternating pulse current. The MERS (10) includes at least two reverse-conducting-type semiconductor switches and a capacitor (12) that, during a current interruption, stores a circuit magnetic energy to regenerate the welding rod and the base material. The control part (20) controls the switching frequency of the MERS (10), thereby converting the DC voltage outputted by the DC power supply (2) to the AC voltage.

Description

溶接機用電源装置および溶接機Power supply device for welding machine and welding machine
 本発明は、溶接機用電源装置および溶接機に関するものである。 The present invention relates to a power supply device for a welding machine and a welding machine.
 従来、磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS)を用いた誘導加熱用電源装置が提案されている(特許文献1参照)。この誘導加熱電源装置は、被加熱物を誘導加熱するための誘導コイルに高周波の交番パルス電流を供給するためのものであり、直流電源と、該直流電源からの直流電力を平滑するための平滑用コイルと、自己消弧形素子とダイオードとの逆並列回路から成る逆導通型半導体スイッチを4個ブリッジ接続して構成されるブリッジ回路と、ブリッジ回路の直流端子間に接続され、ブリッジ回路のスイッチ遮断時に回路の回生磁気エネルギーを蓄積するコンデンサと、逆導通型半導体スイッチのオン/オフを制御する制御手段と、を備えている。 Conventionally, a power supply device for induction heating using a magnetic energy regenerative switch (Magnetic Energy Recovery Switch: MERS) has been proposed (see Patent Document 1). This induction heating power supply device is for supplying a high frequency alternating pulse current to an induction coil for induction heating of an object to be heated, and a DC power source and a smoothing unit for smoothing DC power from the DC power source. A bridge circuit configured by bridge-connecting four reverse conducting semiconductor switches composed of a reverse parallel circuit of a coil for a self-extinguishing element and a diode, and connected between the DC terminals of the bridge circuit, A capacitor for accumulating regenerative magnetic energy of the circuit when the switch is shut off and a control means for controlling on / off of the reverse conducting semiconductor switch are provided.
 そして、制御手段が、誘導コイルに供給する交番パルス電流の周期で、逆導通型半導体スイッチのうち対角線上に位置するペアを同時にオン/オフさせ、かつ2組のペアが同時にオンすることのないように制御するとともに、発生する交番パルス電流の周波数が、誘導コイルのインダクタンスとコンデンサの静電容量とで決まる共振周波数よりも低くなるように運転制御している。これにより、パルス周波数によらず共振条件を維持でき、回路の磁気エネルギーを回生して再利用するとともに、平滑用コイルを介して直流電源からコンデンサを充電することで誘導コイルに持続して交番パルス電流を供給している。
特開2008-92745号公報
The control means simultaneously turns on / off pairs located on the diagonal line among the reverse conducting semiconductor switches in the cycle of the alternating pulse current supplied to the induction coil, and the two pairs are not simultaneously turned on. The operation is controlled so that the frequency of the generated alternating pulse current is lower than the resonance frequency determined by the inductance of the induction coil and the capacitance of the capacitor. As a result, the resonance condition can be maintained regardless of the pulse frequency, and the magnetic energy of the circuit can be regenerated and reused, and the alternating coil can be continuously applied to the induction coil by charging the capacitor from the DC power source via the smoothing coil. Supplying current.
JP 2008-92745 A
 ところで、溶接機として、アーク放電を利用して溶接するアーク溶接に用いられるアーク溶接機が知られている。アーク溶接では、母材にアルミニウムなどが用いられた場合、溶接時に、母材の表面に高い融点を持つ酸化膜が形成されてしまう。母材表面に酸化膜が形成されると、母材の溶融が均等に行われず、起伏や溝などのビード欠陥が発生するおそれがある。そのため、アーク溶接では、溶接時に発生する酸化膜を除去する必要がある。 Incidentally, as a welding machine, an arc welding machine used for arc welding that uses arc discharge for welding is known. In arc welding, when aluminum or the like is used as a base material, an oxide film having a high melting point is formed on the surface of the base material during welding. If an oxide film is formed on the surface of the base material, the base material is not melted uniformly, and bead defects such as undulations and grooves may occur. Therefore, in arc welding, it is necessary to remove an oxide film generated during welding.
 これに対し、溶接棒と母材とに対して溶接時に印加する電圧と逆極性の電圧を印加することで、母材表面に形成された酸化膜を除去することが可能であり、この酸化膜の除去作用はクリーニング作用と呼ばれている。このクリーニング作用を得るためには、母材に対して交流電圧を印加すればよいため、一般にアーク溶接機としては、酸化膜の除去作用を有する交流アーク溶接機が用いられている。 On the other hand, it is possible to remove the oxide film formed on the surface of the base material by applying a voltage having the opposite polarity to the voltage applied during welding to the welding rod and the base material. This removing action is called a cleaning action. In order to obtain this cleaning action, it is only necessary to apply an AC voltage to the base material. Therefore, an AC arc welding machine having an oxide film removing action is generally used as the arc welding machine.
 一方、直流アークを用いた場合には、電極の消耗が少なく、その交換周期を延長することができるため、コストダウンとともに溶接機の稼働率をアップさせることができる。また、直流アークを用いた場合には、アークの集中性が高く、深溶け込みが得られるという効果がある。そのため、直流アークを用いた溶接が望まれている。 On the other hand, when a DC arc is used, the electrode is less consumed and the replacement cycle can be extended, so that the operating rate of the welding machine can be increased along with cost reduction. In addition, when a DC arc is used, there is an effect that arc concentration is high and deep penetration can be obtained. Therefore, welding using a DC arc is desired.
 このような要望に対し、交流電圧と直流電圧とを切り替え可能な溶接機が提供されているが、従来提供されている交流直流切り替え可能な溶接機は、構造が複雑であり、そのため価格も高価であった。このような状況において、本発明者らは、より簡単な構成で交流直流切り換えを可能にするために、上述の特許文献1に開示された構成を溶接機に適用することを思い至った。 In response to such a demand, a welding machine capable of switching between an AC voltage and a DC voltage is provided. However, a conventional AC / DC switching welding machine that is provided has a complicated structure and is therefore expensive. Met. Under such circumstances, the present inventors have come to consider applying the configuration disclosed in Patent Document 1 described above to a welding machine in order to enable AC / DC switching with a simpler configuration.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、より簡単な構成で交流と直流とを切り替え可能な溶接機用電源装置、および当該溶接機用電源装置を備えた溶接機の提供にある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a power supply device for a welding machine capable of switching between alternating current and direct current with a simpler configuration, and a welding machine including the power supply device for the welding machine. On offer.
 上記課題を解決するために、本発明のある態様は溶接機用電源装置であり、この溶接機用電源装置は、直流電源と溶接電極および被溶接物との間に接続され、直流電源から出力された直流電圧を交流電圧に変換する直流交流変換スイッチと、直流交流変換スイッチを制御する制御部と、交番パルス電流と共振を起こすためのコイルと、を備え、直流交流変換スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時に回路の磁気エネルギーを蓄積して溶接電極および被溶接物に回生するためのコンデンサと、を含み、制御部は、直流交流変換スイッチのスイッチング周波数を制御することで、直流電源から出力された直流電圧を交流電圧へ変換することを特徴とする。 In order to solve the above-mentioned problems, an aspect of the present invention is a power supply device for a welder, and the power supply device for a welder is connected between a DC power supply, a welding electrode, and an object to be welded, and is output from the DC power supply. A DC / AC conversion switch for converting the generated DC voltage into an AC voltage, a controller for controlling the DC / AC conversion switch, and a coil for causing resonance with the alternating pulse current, and the DC / AC conversion switch includes at least 2 Two reverse conducting semiconductor switches, and a capacitor for accumulating the magnetic energy of the circuit and regenerating it to the welding electrode and the work piece when the current is interrupted, and the control unit controls the switching frequency of the DC / AC conversion switch Thus, the DC voltage output from the DC power source is converted into an AC voltage.
 また、本発明の他の態様は溶接機であり、この溶接機は、上述の態様の溶接機用電源装置と、溶接機用電源装置に接続された溶接電極と、を備えたことを特徴とする。 Another aspect of the present invention is a welding machine, and the welding machine includes the welding machine power supply apparatus according to the above-described aspect and a welding electrode connected to the welding machine power supply apparatus. To do.
 本発明によれば、より簡単な構成で交流と直流とを切り替え可能な溶接機用電源装置、および当該溶接機用電源装置を備えた溶接機を提供することができる。 According to the present invention, it is possible to provide a welding machine power supply device capable of switching between alternating current and direct current with a simpler configuration, and a welding machine equipped with the welding machine power supply device.
本実施形態にかかる溶接機用電源装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the power supply device for welding machines concerning this embodiment. 図2(a)、(b)、(c)は、MERSの動作について説明するための図である。FIGS. 2A, 2B, and 2C are diagrams for explaining the operation of MERS. 直流電源からの電力の供給を説明するための図である。It is a figure for demonstrating supply of the electric power from DC power supply. MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. MERSの他の態様を示す図である。It is a figure which shows the other aspect of MERS. 溶接機の概略構成図である。It is a schematic block diagram of a welding machine.
符号の説明Explanation of symbols
 SW1、SW2、SW3、SW4、SW5、SW6、SW7、SW8 逆導通型半導体スイッチ、 1 溶接機用電源装置、 2 直流電源、 3、31、32 平滑用コイル、 4 直流交流電力変換部、 5 共振用コイル、 10、10a、10b 磁気エネルギー回生スイッチ(MERS)、 12、13、14、15、16 コンデンサ、 20 制御部、 30 溶接棒、 40 母材、 50 電流計、 100 溶接機。 SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8 Reverse conducting semiconductor switch, 1 Welding machine power supply device, 2 DC power supply, 3, 31, 32 Smoothing coil, 4 DC AC power converter, 5 Resonance Coil, 10, 10a, 10b Magnetic energy regenerative switch (MERS), 12, 13, 14, 15, 16 capacitor, 20 control unit, 30 welding rod, 40 base material, 50 ammeter, 100 welding machine.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
(実施形態)
 図1は、本実施形態にかかる溶接機用電源装置の構成を示す回路ブロック図である。図1に示すように、本実施形態にかかる溶接機用電源装置1は、直流電源2と、直流電源2からの直流電力を平滑するための平滑用コイル3と、を備える。また、溶接機用電源装置1は、共振用コイル5へ供給される電圧の交流と直流とを変換する直流交流電力変換部4を備える。図1では、溶接機用電源装置1の説明のために、溶接機用電源装置1に接続されたアーク放電の電気抵抗Rを図示している。電気抵抗Rは、共振用コイル5に含まれる電気抵抗成分を含んでいる。
(Embodiment)
FIG. 1 is a circuit block diagram illustrating a configuration of a power supply device for a welding machine according to the present embodiment. As shown in FIG. 1, a power supply device 1 for a welding machine according to this embodiment includes a DC power supply 2 and a smoothing coil 3 for smoothing DC power from the DC power supply 2. In addition, the welding machine power supply device 1 includes a DC / AC power conversion unit 4 that converts an AC voltage and a DC voltage supplied to the resonance coil 5. In FIG. 1, the electric resistance R of arc discharge connected to the welding machine power supply device 1 is illustrated for explaining the welding machine power supply device 1. The electric resistance R includes an electric resistance component included in the resonance coil 5.
 直流交流電力変換部4は、直流交流変換スイッチとしての磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS)(以下、MERSと称する)10と、MERS10のスイッチングを制御する制御部20と、を備える。 The DC / AC power conversion unit 4 includes a magnetic energy regenerative switch (MERS) (hereinafter referred to as MERS) 10 as a DC / AC conversion switch, and a control unit 20 that controls switching of the MERS 10.
 MERS10は、順逆両方向の電流を制御可能であり、磁気エネルギーをロスなく負荷側に回生できる磁気エネルギー回生スイッチである。MERS10は、4つの逆導通型半導体スイッチSW1、SW2、SW3、SW4にて構成されるブリッジ回路と、ブリッジ回路のスイッチ遮断時に回路に流れる電流の磁気エネルギーを吸収するエネルギー蓄積用のコンデンサ12とを備える。 The MERS 10 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss. The MERS 10 includes a bridge circuit composed of four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4, and an energy storage capacitor 12 that absorbs magnetic energy of a current flowing through the circuit when the bridge circuit is cut off. Prepare.
 ブリッジ回路は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4とが直列に接続され、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3とが直列に接続され、それらが並列に接続されて形成されている。逆導通型半導体スイッチSW1~SW4は、自己消弧型素子とダイオードとの逆並列回路から成り、自己消弧型素子としては、たとえばパワーMOSFET、IGBTなどを用いることができる。 In the bridge circuit, a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed. The reverse conducting semiconductor switches SW1 to SW4 are composed of an anti-parallel circuit of a self-extinguishing element and a diode. As the self-extinguishing element, for example, a power MOSFET, IGBT or the like can be used.
 コンデンサ12は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW2との接続点にある直流端子DC(P)と、逆導通型半導体スイッチSW3と逆導通型半導体スイッチSW4との接続点にある直流端子DC(N)とに接続されている。また、直流端子DC(P)、DC(N)には、直流電源2と平滑用コイル3とが直列接続されている。さらに、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4との接続点にある交流端子と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3との接続点にある交流端子とには共振用コイル5が直列接続されている。 The capacitor 12 is at the connection point between the DC terminal DC (P) at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW2 and between the reverse conduction type semiconductor switch SW3 and the reverse conduction type semiconductor switch SW4. It is connected to a direct current terminal DC (N). A DC power source 2 and a smoothing coil 3 are connected in series to the DC terminals DC (P) and DC (N). Further, there is resonance between the AC terminal at the connection point between the reverse conduction semiconductor switch SW1 and the reverse conduction semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction semiconductor switch SW2 and the reverse conduction semiconductor switch SW3. Coils 5 for use are connected in series.
 制御部20は、逆導通型半導体スイッチSW1~SW4のゲートに制御信号を送り、MERS10の逆導通型半導体スイッチSW1~SW4のスイッチングを制御する。具体的には、MERS10のブリッジ回路における対角線上に位置する逆導通型半導体スイッチSW1、SW3からなる第1のペアのON/OFF動作と、逆導通型半導体スイッチSW2、SW4からなる第2のペアのON/OFF動作とを、一方がONのとき他方がOFFとなり、かつON/OFF切り替えが同時に行われるように各ゲートに制御信号を送信する。 The control unit 20 sends a control signal to the gates of the reverse conducting semiconductor switches SW1 to SW4 to control the switching of the reverse conducting semiconductor switches SW1 to SW4 of the MERS 10. Specifically, the ON / OFF operation of the first pair composed of the reverse conducting semiconductor switches SW1 and SW3 located on the diagonal line in the bridge circuit of the MERS 10 and the second pair comprising the reverse conducting semiconductor switches SW2 and SW4. A control signal is transmitted to each gate so that when one is ON, the other is OFF and ON / OFF switching is performed simultaneously.
 続いて、MERS10の動作について詳細に説明する。図2(a)、(b)、(c)は、MERS10の動作について説明するための図である。なお、図2では、直流電源2、平滑用コイル3、および制御部20の図示を省略している。 Subsequently, the operation of the MERS 10 will be described in detail. 2A, 2 </ b> B, and 2 </ b> C are diagrams for explaining the operation of the MERS 10. In FIG. 2, illustration of the DC power supply 2, the smoothing coil 3, and the control unit 20 is omitted.
 まず、たとえばコンデンサ12に電圧が充電された状態で、逆導通型半導体スイッチSW1、SW3がONにされると、図2(a)に示すように、コンデンサ12の電荷が共振用コイル5に放電され、電流は逆導通型半導体スイッチSW1-共振用コイル5-逆導通型半導体スイッチSW3-コンデンサ12を通る経路を流れる。このとき、逆導通型半導体スイッチSW1、SW3のどちらかがOFFにされると、コンデンサ12の電流は停止し、電流は他の逆導通型半導体スイッチのダイオードを介して流れ続ける。たとえば、逆導通型半導体スイッチSW1がOFFにされた場合、逆導通型半導体スイッチSW4のダイオードを介して電流が流れる。 First, for example, when the reverse conducting semiconductor switches SW1 and SW3 are turned on while the voltage is charged in the capacitor 12, the charge of the capacitor 12 is discharged to the resonance coil 5 as shown in FIG. Thus, the current flows through a path passing through the reverse conducting semiconductor switch SW 1 -the resonance coil 5 -reverse conducting semiconductor switch SW 3 -the capacitor 12. At this time, when one of the reverse conducting semiconductor switches SW1 and SW3 is turned OFF, the current of the capacitor 12 stops and the current continues to flow through the diodes of the other reverse conducting semiconductor switches. For example, when the reverse conducting semiconductor switch SW1 is turned off, a current flows through the diode of the reverse conducting semiconductor switch SW4.
 なお、コンデンサ12に電圧が充電された状態で、逆導通型半導体スイッチSW2、SW4がONされれば、共振用コイル5に流れる電流の方向は図中の矢印とは逆方向になる。そのため、逆導通型半導体スイッチSW1、SW3からなる第1のペアと、逆導通型半導体スイッチSW2、SW4からなる第2のペアとのどちらのペアをONするかで、共振用コイル5に流れる電流の方向を選択することができる。 If the reverse conducting semiconductor switches SW2 and SW4 are turned on while the voltage is charged in the capacitor 12, the direction of the current flowing through the resonance coil 5 is opposite to the arrow in the figure. Therefore, the current flowing through the resonance coil 5 depending on which of the first pair consisting of the reverse conduction type semiconductor switches SW1 and SW3 and the second pair consisting of the reverse conduction type semiconductor switches SW2 and SW4 is turned ON. Direction can be selected.
 次に、コンデンサ12に蓄積された電荷が放電されて電圧がゼロになると、図2(b)に示すように、自動的に逆導通型半導体スイッチSW2、SW4のダイオードがオンして、電流は逆導通型半導体スイッチSW2、SW1を通る経路と、逆導通型半導体スイッチSW3、SW4を通る経路を流れ続ける並列導通状態となる。共振用コイル5に流れる電流はアーク放電の電気抵抗Rにより減衰する。 Next, when the charge accumulated in the capacitor 12 is discharged and the voltage becomes zero, the diodes of the reverse conducting semiconductor switches SW2 and SW4 are automatically turned on, as shown in FIG. A parallel conduction state continues to flow through the path passing through the reverse conduction type semiconductor switches SW2 and SW1 and the path passing through the reverse conduction type semiconductor switches SW3 and SW4. The current flowing in the resonance coil 5 is attenuated by the electric resistance R of arc discharge.
 次に、全ての逆導通型半導体スイッチSW1~SW4がOFFにされると、図2(C)に示すように、共振用コイル5に流れる電流は逆導通型半導体スイッチSW2、SW4のダイオードを介してコンデンサ12に充電される。コンデンサ12の電圧は、電流が停止するまで上昇する。電流が停止したところで回生磁気エネルギーがコンデンサ12に移動したことになる。コンデンサ12への充電が終了すると、図2(a)に示す状態に戻り、以後この動作が繰り返される。このとき、コンデンサ12の電圧極性は電流の方向に因らず同一である。 Next, when all the reverse conducting semiconductor switches SW1 to SW4 are turned off, as shown in FIG. 2C, the current flowing through the resonance coil 5 passes through the diodes of the reverse conducting semiconductor switches SW2 and SW4. The capacitor 12 is charged. The voltage on the capacitor 12 rises until the current stops. When the current stops, the regenerative magnetic energy has moved to the capacitor 12. When the charging of the capacitor 12 is completed, the state returns to the state shown in FIG. 2A, and this operation is repeated thereafter. At this time, the voltage polarity of the capacitor 12 is the same regardless of the direction of the current.
 本実施形態に係る溶接機用電源装置1におけるMERS10では、コンデンサ12の静電容量が小さく、共振用コイル5のインダクタンスLとの共振周波数はパルス周波数より高くなっている。そのため、MERS10はゼロ電圧スイッチング、ゼロ電流スイッチングになっている。すなわち、MERS10を用いて、共振用コイル5の磁気エネルギーを回生して、交互に両極性電流パルス、すなわち交番パルス電流を共振用コイル5に発生することができる。したがって、溶接機用電源装置1は、制御部20によってMERS10を上述のように制御することで、共振用コイル5に対して交流電圧を供給することができ、また、常時、逆導通型半導体スイッチSW1、SW3をONにし、逆導通型半導体スイッチSW2、SW4をOFFにすることで、直流電源2からの直流電圧をそのまま共振用コイル5に対して供給することができる。 In the MERS 10 in the welding machine power supply device 1 according to this embodiment, the capacitance of the capacitor 12 is small, and the resonance frequency with the inductance L of the resonance coil 5 is higher than the pulse frequency. Therefore, the MERS 10 is zero voltage switching and zero current switching. That is, by using the MERS 10, the magnetic energy of the resonance coil 5 can be regenerated to alternately generate bipolar current pulses, that is, alternating pulse currents in the resonance coil 5. Therefore, the power supply device 1 for the welding machine can supply an AC voltage to the resonance coil 5 by controlling the MERS 10 as described above by the control unit 20, and is always a reverse conducting semiconductor switch. By turning on SW1 and SW3 and turning off reverse conducting semiconductor switches SW2 and SW4, the DC voltage from the DC power supply 2 can be supplied to the resonance coil 5 as it is.
 また、溶接機用電源装置1によれば、逆導通型半導体スイッチSW1~SW4のスイッチング周波数を調整することにより、交流の周波数を上記の共振周波数以下で任意に調整することができる。 Further, according to the power supply device 1 for a welding machine, the AC frequency can be arbitrarily adjusted below the resonance frequency by adjusting the switching frequency of the reverse conducting semiconductor switches SW1 to SW4.
 交番パルス電流は、アーク放電の電気抵抗R、または共振用コイル5に含まれる電気抵抗成分にエネルギーが消費されて電流は減衰する。そこで、図3に示すように、直流電源2によって電力が供給され、コンデンサ12が充電される。溶接機用電源装置1では、直流電源2がコンデンサ12に接続されている。そして、コンデンサ12の両端には、電流切り替え時に共振用コイル5の誘導性リアクタンスとコンデンサ12の容量性リアクタンスとの共振の半サイクルの間と、全ての逆導通型半導体スイッチSW1~SW4がOFFにされて電流が停止している間とにおいてコンデンサ電圧が現れ、ここに直流電源2から、(電流)×(コンデンサ電圧)分の電力が供給される。図3は、直流電源2からの電力の供給を説明するための図である。なお、図3では、制御部20の図示を省略している。 In the alternating pulse current, energy is consumed by the electric resistance R of the arc discharge or the electric resistance component included in the resonance coil 5 and the current is attenuated. Therefore, as shown in FIG. 3, power is supplied by the DC power source 2 and the capacitor 12 is charged. In the welding machine power supply device 1, a DC power supply 2 is connected to a capacitor 12. At the opposite ends of the capacitor 12, all reverse conducting semiconductor switches SW1 to SW4 are turned off during a half cycle of resonance between the inductive reactance of the resonance coil 5 and the capacitive reactance of the capacitor 12 when switching the current. Then, a capacitor voltage appears while the current is stopped, and power corresponding to (current) × (capacitor voltage) is supplied from the DC power supply 2 to the capacitor voltage. FIG. 3 is a diagram for explaining the supply of electric power from the DC power supply 2. In addition, illustration of the control part 20 is abbreviate | omitted in FIG.
 直流電源2からコンデンサ12への電力の供給は、大きなインダクタンスを持つ平滑用コイル3を介して行われる。この場合、直流電源2からの電流が平滑用コイル3によりリップルの少ない直流になり、振動するパルス負荷電流より小さくなる。 The power supply from the DC power source 2 to the capacitor 12 is performed through the smoothing coil 3 having a large inductance. In this case, the current from the DC power supply 2 becomes a DC with less ripples by the smoothing coil 3, and becomes smaller than the oscillating pulse load current.
 なお、上述の溶接機用電源装置1では、MERS10が4つの逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子間に接続されたコンデンサ12とからなる構成であったが、MERS10は次のような構成であってもよい。 The above-described welding machine power supply device 1 has a configuration in which the MERS 10 includes a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a capacitor 12 connected between the DC terminals of the bridge circuit. However, the MERS 10 may have the following configuration.
 図4および図5は、MERS10の他の態様を示す図である。なお、MERS10の態様以外の構成は図1に示す構成と同様であるため、同一の構成については同一の符号を付し、説明は省略する。 4 and 5 are diagrams showing other modes of the MERS 10. Since the configuration other than the mode of MERS 10 is the same as the configuration illustrated in FIG. 1, the same configuration is denoted by the same reference numeral and description thereof is omitted.
 図4に示すMERS10aは、上述の4つの逆導通型半導体スイッチSW1~SW4と1つのコンデンサ12とからなるフルブリッジ型のMERS10に対して、2つの逆導通型半導体スイッチと2つのダイオード、および2つのコンデンサで構成される縦型のハーフブリッジ型となっている。より詳細には、この縦型ハーフブリッジ構造のMERS10aは、直列に接続された2つの逆導通型半導体スイッチSW5、SW6と、この2つの逆導通型半導体スイッチSW5、SW6と並列に設けられた、直列に接続された2つのコンデンサ13、14と、この2つのコンデンサ13、14のそれぞれと並列に接続された2つのダイオードD1、D2と、を含んでいる。 The MERS 10a shown in FIG. 4 has two reverse-conducting semiconductor switches, two diodes, and 2 for the full-bridge type MERS 10 composed of the four reverse-conducting semiconductor switches SW1 to SW4 and the capacitor 12 described above. It is a vertical half-bridge type composed of two capacitors. More specifically, the vertical half-bridge MERS 10a is provided in parallel with two reverse conducting semiconductor switches SW5 and SW6 connected in series and the two reverse conducting semiconductor switches SW5 and SW6. Two capacitors 13 and 14 connected in series, and two diodes D1 and D2 connected in parallel with each of the two capacitors 13 and 14 are included.
 図5に示すMERS10bは、横型のハーフブリッジ型であり、2つの逆導通型半導体スイッチと2つのコンデンサで構成されている。より詳細には、この横型ハーフブリッジ構造のMERS10bは、電源と接地を結ぶ第1の経路上に設けられた逆導通型半導体スイッチSW7と、第2の経路上に設けられた逆導通型半導体スイッチSW8と、逆導通型半導体スイッチSW7、SW8それぞれと並列に接続されたコンデンサ15、16と、を含んでいる。なお、第1の経路上には逆導通型半導体スイッチSW7と直列に平滑用コイル31が設けられており、また、第2の経路上には逆導通型半導体スイッチSW8と直列に平滑用コイル32が設けられている。平滑用コイル31、32は、MERS10bには含まれない。 The MERS 10b shown in FIG. 5 is a horizontal half-bridge type, and includes two reverse conducting semiconductor switches and two capacitors. More specifically, the horizontal half-bridge MERS 10b includes a reverse conducting semiconductor switch SW7 provided on the first path connecting the power source and the ground, and a reverse conducting semiconductor switch provided on the second path. SW8 and capacitors 15 and 16 connected in parallel with the reverse conducting semiconductor switches SW7 and SW8, respectively. A smoothing coil 31 is provided in series with the reverse conducting semiconductor switch SW7 on the first path, and a smoothing coil 32 is provided in series with the reverse conducting semiconductor switch SW8 on the second path. Is provided. The smoothing coils 31 and 32 are not included in the MERS 10b.
 続いて、上述の溶接機用電源装置1を備えた溶接機について説明する。図6は、溶接機の概略構成図である。本実施形態では、アーク放電を利用して溶接するアーク溶接機を例に説明する。 Then, the welding machine provided with the above-mentioned power supply device 1 for welding machines is demonstrated. FIG. 6 is a schematic configuration diagram of the welding machine. In this embodiment, an arc welder that performs welding using arc discharge will be described as an example.
 図6に示すように、本実施形態の溶接機100は、直流電源2と、直流交流電力変換部4と、直流交流電力変換部4を介して直流電源2に接続された溶接電極としての溶接棒30とを備える。溶接機100は、たとえば溶接棒30に負の電圧を印加し、さらに、直流交流電力変換部4のMERS10を介して直流電源2に接続された被溶接物としての母材40に正の電圧を印加することにより、これらの間にアークを発生させて、その熱で母材40を溶接する。MERS10と溶接棒30との間には共振用コイル5が接続されている。また、本実施形態の溶接機100は、溶接状態監視部としての電流計50を備える。なお、図6における直流電源2は、図1に示す溶接機用電源装置1である。また、図6における直流交流電力変換部4は、図1に示す直流交流電力変換部4内に共振用コイル5を設けたものである。溶接棒30、および母材40は、図1に示す溶接機用電源装置1のアーク放電の電気抵抗Rに対応している。 As shown in FIG. 6, the welding machine 100 of the present embodiment includes a DC power source 2, a DC AC power conversion unit 4, and welding as a welding electrode connected to the DC power source 2 via the DC AC power conversion unit 4. And rod 30. For example, the welding machine 100 applies a negative voltage to the welding rod 30, and further applies a positive voltage to the base material 40 as an object to be welded connected to the DC power source 2 via the MERS 10 of the DC / AC power converter 4. By applying, an arc is generated between them, and the base material 40 is welded by the heat. A resonance coil 5 is connected between the MERS 10 and the welding rod 30. Moreover, the welding machine 100 of this embodiment is provided with the ammeter 50 as a welding state monitoring part. In addition, the DC power supply 2 in FIG. 6 is the power supply apparatus 1 for welding machines shown in FIG. Moreover, the direct current alternating current power conversion part 4 in FIG. 6 provides the coil 5 for resonance in the direct current alternating current power conversion part 4 shown in FIG. The welding rod 30 and the base material 40 correspond to the electric resistance R of arc discharge of the welding machine power supply device 1 shown in FIG.
 溶接棒30は、たとえば高温下で変形しにくく、熱および電気伝導度が高く、母材40と合金化しにくく、大気中で酸化しにくい材質の素材からなり、たとえば銅、クロム銅、アルミナ分散銅、タングステン系合金などで形成される。母材40は、たとえば、銅、銅合金、鉄、鉄合金、ステンレス、アルミニウム、アルミニウム合金、マグネシウム合金などの任意の金属からなる。 The welding rod 30 is made of a material that is not easily deformed at high temperatures, has high heat and electrical conductivity, is difficult to alloy with the base material 40, and is not easily oxidized in the atmosphere. , Tungsten alloy or the like. Base material 40 is made of any metal such as copper, copper alloy, iron, iron alloy, stainless steel, aluminum, aluminum alloy, and magnesium alloy.
 続いて、溶接機100による溶接方法について説明する。
 本実施形態に係る溶接機100では、通常、溶接棒30および母材40に対して直流電圧を印加して母材40を溶接する。ここで、母材40がアルミニウム、アルミニウム合金、マグネシウム合金などの酸化しやすい材質の素材からなる場合、溶接時に母材40表面に高い融点を持つ酸化膜が形成されてしまう。母材40表面に酸化膜が形成されると、母材40が均等に溶融せず、起伏や溝などのビード欠陥が発生してしまう。
Then, the welding method by the welding machine 100 is demonstrated.
In the welding machine 100 according to the present embodiment, the base material 40 is usually welded by applying a DC voltage to the welding rod 30 and the base material 40. Here, when the base material 40 is made of a material that easily oxidizes, such as aluminum, an aluminum alloy, or a magnesium alloy, an oxide film having a high melting point is formed on the surface of the base material 40 during welding. When an oxide film is formed on the surface of the base material 40, the base material 40 does not melt evenly, and bead defects such as undulations and grooves occur.
 そこで、溶接機100は、溶接状態を監視し、母材40表面に酸化膜が形成されて溶接が困難になった状態を検知した場合に、直流交流電力変換部4において直流電源2から供給される直流電圧を交流電圧に変換して、溶接棒30および母材40に供給する。そして、交流電圧の持つクリーニング作用により、母材40表面に形成された酸化膜を除去する。 Therefore, the welding machine 100 monitors the welding state, and when the state where the oxide film is formed on the surface of the base material 40 and the welding is difficult is detected, the welding machine 100 is supplied from the DC power source 2 in the DC / AC power conversion unit 4. The DC voltage is converted into an AC voltage and supplied to the welding rod 30 and the base material 40. Then, the oxide film formed on the surface of the base material 40 is removed by the cleaning action of the AC voltage.
 具体的には、母材40表面に酸化膜が形成されると、溶接棒30と母材40との間に電流が流れにくくなるため、溶接棒30と母材40との間に流れる電流を検知することで、溶接状態を把握することができる。そこで、本実施形態の溶接機100では、直流交流電力変換部4に電流計50を設け、電流計50により溶接棒30と母材40とに流れる電流を検知している。電流計50による検知結果は、電流計50から制御部20に送信される。 Specifically, when an oxide film is formed on the surface of the base material 40, it becomes difficult for current to flow between the welding rod 30 and the base material 40. By detecting, the welding state can be grasped. Therefore, in the welding machine 100 of the present embodiment, an ammeter 50 is provided in the DC / AC power conversion unit 4 and the current flowing through the welding rod 30 and the base material 40 is detected by the ammeter 50. The detection result by the ammeter 50 is transmitted from the ammeter 50 to the control unit 20.
 制御部20は、電流計50から受信した電流値が予め定められた所定電流値以下となったことを検知すると、MERS10を制御して、直流電源2から供給された直流電圧を交流電圧に変換する。これにより、溶接棒30および母材40に対して交流電圧が供給され、交流の持つクリーニング作用により母材40の表面に形成された酸化膜が除去される。ここで、前記「所定電流値」は、たとえば母材40の溶接に最低限必要とされる下限電流値であり、母材40の材質、厚さなどに応じて適宜設定されるものである。また、この下限電流値は、実験的に求めることができる。 When the control unit 20 detects that the current value received from the ammeter 50 is equal to or lower than a predetermined current value, the control unit 20 controls the MERS 10 to convert the DC voltage supplied from the DC power source 2 into an AC voltage. To do. Thereby, an AC voltage is supplied to the welding rod 30 and the base material 40, and the oxide film formed on the surface of the base material 40 is removed by the cleaning action of the AC. Here, the “predetermined current value” is, for example, a lower limit current value required at least for welding of the base material 40, and is appropriately set according to the material, thickness, and the like of the base material 40. The lower limit current value can be obtained experimentally.
 たとえば、溶接機100には、出力する電流値を設定するための設定スイッチが設けられており、ユーザが母材40の材質などに応じて出力電流値を適宜設定可能である。そして、前記下限電流値は、ユーザが設定した設定電流値から所定割合だけ減じられた値として規定されている。制御部20は、電流計50によって検知された電流値が下限電流値以下となったときに、酸化膜によって母材40の溶接が困難になったと判断し、直流電圧を交流電圧に切換える。この場合、たとえば制御部20が図示しない記憶部を備え、設定電流値と下限電流値とを対応付けたテーブルが当該記憶部に保管されており、制御部20は、記憶部に保管されている当該テーブルを参照して直流交流変換を実行する。 For example, the welding machine 100 is provided with a setting switch for setting a current value to be output, and the user can appropriately set the output current value according to the material of the base material 40 and the like. The lower limit current value is defined as a value obtained by subtracting a predetermined ratio from the set current value set by the user. When the current value detected by the ammeter 50 is equal to or lower than the lower limit current value, the control unit 20 determines that it is difficult to weld the base material 40 due to the oxide film, and switches the DC voltage to the AC voltage. In this case, for example, the control unit 20 includes a storage unit (not shown), a table in which the set current value and the lower limit current value are associated with each other is stored in the storage unit, and the control unit 20 is stored in the storage unit. DC / AC conversion is executed with reference to the table.
 制御部20は、直流電源2から供給された直流電圧を交流電圧に変換した後、電流計50から受信した電流値が所定電流値を上回ったことを検知すると、MERS10のスイッチング制御を停止する。これにより、溶接棒30および母材40に対して、再び直流電圧が供給される。 When the control unit 20 detects that the current value received from the ammeter 50 exceeds a predetermined current value after converting the DC voltage supplied from the DC power source 2 to an AC voltage, the control unit 20 stops the switching control of the MERS 10. As a result, a DC voltage is supplied again to the welding rod 30 and the base material 40.
 このように、本実施形態に係る溶接機100によれば、簡単な構成を有するMERS10と制御部20とを備えた直流交流電力変換部4を組み込んだだけで直流交流の変換制御が可能であるため、より簡単な構成で交流と直流とを切り替え可能である。また、溶接機100は、電流計50などの溶接状態監視部を備え、これにより自動的な直流交流変換が可能である。そのため、溶接状態に応じたより適切なタイミングでの直流交流変換が可能となり、溶接効率および溶接精度をより向上させることができる。 Thus, according to the welding machine 100 which concerns on this embodiment, conversion control of direct current alternating current is possible only by incorporating the direct current alternating current power conversion part 4 provided with MERS10 and the control part 20 which have a simple structure. Therefore, it is possible to switch between alternating current and direct current with a simpler configuration. In addition, the welding machine 100 includes a welding state monitoring unit such as an ammeter 50, which enables automatic DC / AC conversion. Therefore, DC / AC conversion at a more appropriate timing according to the welding state is possible, and the welding efficiency and the welding accuracy can be further improved.
 なお、直流交流の変換は、溶接状態監視部の監視結果に応じて実行する構成だけでなく、予め直流交流の変換タイミングを規定したプログラムを記憶部に保管しておき、当該プログラムを実行することで直流交流変換を行うようにしてもよい。これによれば、溶接機100をより簡単な構成とすることができる。予め直流交流の変換タイミングを規定する場合の変換タイミングの一例としては、たとえば、直流電圧と交流電圧とを周期的に切り換える変換タイミングが考えられる。特に、直流電圧を供給する時間を交流電圧を供給する時間よりも長くすると、溶接効率を高めることができる。 In addition, the DC / AC conversion is not only configured to be performed according to the monitoring result of the welding state monitoring unit, but a program that preliminarily defines the DC / AC conversion timing is stored in the storage unit and the program is executed. In this case, DC / AC conversion may be performed. According to this, the welding machine 100 can be made a simpler configuration. As an example of the conversion timing when the DC / AC conversion timing is defined in advance, for example, a conversion timing for periodically switching between a DC voltage and an AC voltage is conceivable. In particular, if the time for supplying the DC voltage is longer than the time for supplying the AC voltage, the welding efficiency can be increased.
 さらに、本実施形態に係る溶接機100では、交流電圧の周波数を調整することができるため、直流電圧から変換される交流電圧の周波数を変更するようにしてもよい。これによれば次のような効果が得られる。まず、周波数を低くした場合には、出力波形が矩形波に近づき、電圧ゼロを含む電圧の低い期間が減少するため、溶接棒30が冷める時間が短くなり、溶接効率が向上するという効果が得られる。逆に、周波数を高くした場合には、放出されるアークの集中性を高めることができるため、特に母材40がアルミニウム、銅などの熱伝導性の高い素材であった場合に、溶接効率を向上させることができるという効果が得られる。この場合、たとえば溶接機100に交流電圧の周波数を設定するための設定スイッチが設けられており、ユーザは母材40の材質などを含む母材40の性質に応じて周波数を適宜設定することができる。制御部20は、直流電圧から交流電圧に変換する際に、設定スイッチによって設定された周波数の交流電圧に変換する。 Furthermore, since the frequency of the AC voltage can be adjusted in the welding machine 100 according to the present embodiment, the frequency of the AC voltage converted from the DC voltage may be changed. According to this, the following effects can be obtained. First, when the frequency is lowered, the output waveform approaches a rectangular wave, and the period during which the voltage including zero voltage is low decreases, so that the time for cooling the welding rod 30 is shortened, and the effect of improving the welding efficiency is obtained. It is done. On the other hand, when the frequency is increased, the concentration of the arc to be emitted can be increased. Therefore, particularly when the base material 40 is a material having high thermal conductivity such as aluminum or copper, the welding efficiency is improved. The effect that it can be improved is obtained. In this case, for example, a setting switch for setting the frequency of the AC voltage is provided in the welding machine 100, and the user can set the frequency appropriately according to the properties of the base material 40 including the material of the base material 40. it can. When converting from a DC voltage to an AC voltage, the control unit 20 converts the DC voltage to an AC voltage having a frequency set by the setting switch.
 以上説明した構成による作用効果を総括すると、本実施形態に係る溶接機用電源装置1および溶接機100は、直流電源2と溶接棒30および母材40との間に接続され、直流電源2から出力された直流電圧を交流電圧に変換するMERS10と、MERS10を制御する制御部20と、を備えている。そして、制御部20は、MERS10のスイッチングを制御することで、直流電源2から出力された直流電圧を交流電圧へ変換している。そのため、より簡単な構成で交流と直流とを切り替えることができる。 Summarizing the effects of the configuration described above, the welding machine power supply device 1 and the welding machine 100 according to the present embodiment are connected between the DC power supply 2, the welding rod 30 and the base material 40. MERS10 which converts the output DC voltage into AC voltage, and the control part 20 which controls MERS10 are provided. And the control part 20 is converting the DC voltage output from the direct-current power supply 2 into the alternating voltage by controlling switching of MERS10. Therefore, alternating current and direct current can be switched with a simpler configuration.
 また、本実施形態に係る溶接機100は、母材40の溶接状態を監視する溶接状態監視部を備えている。そして、制御部20は、溶接状態監視部の監視結果に応じて、直流電源2から出力された直流電圧を交流電圧へ変換している。そのため、溶接状態に応じたより適切なタイミングでの直流交流変換が可能となり、溶接効率および溶接精度をより向上させることができる。 Further, the welding machine 100 according to the present embodiment includes a welding state monitoring unit that monitors the welding state of the base material 40. And the control part 20 is converting the DC voltage output from the DC power supply 2 into AC voltage according to the monitoring result of the welding condition monitoring part. Therefore, DC / AC conversion at a more appropriate timing according to the welding state is possible, and the welding efficiency and the welding accuracy can be further improved.
 さらに、本実施形態に係る溶接機100では、制御部20が母材40の性質に応じてMERS10のスイッチングを調製することにより、交流電圧の周波数を調整している。そのため、より溶接効率を向上させることができる。 Furthermore, in the welding machine 100 according to the present embodiment, the control unit 20 adjusts the frequency of the AC voltage by adjusting the switching of the MERS 10 according to the properties of the base material 40. Therefore, the welding efficiency can be further improved.
 本発明は、上述の実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The embodiment to which such a modification is added is also the present embodiment. It can be included in the scope of the invention.
 本発明は、溶接機に利用できる。 The present invention can be used for a welding machine.

Claims (9)

  1.  直流電源と溶接電極および被溶接物との間に接続され、前記直流電源から出力された直流電圧を交流電圧に変換する直流交流変換スイッチと、
     前記直流交流変換スイッチを制御する制御部と、
     交番パルス電流と共振を起こすためのコイルと、
    を備え、
     前記直流交流変換スイッチは、少なくとも2つの逆導通型半導体スイッチと、電流遮断時に回路の磁気エネルギーを蓄積して前記溶接電極および前記被溶接物に回生するためのコンデンサと、を含み、
     前記制御部は、前記直流交流変換スイッチのスイッチング周波数を制御することで、前記直流電源から出力された直流電圧を交流電圧へ変換することを特徴とする溶接機用電源装置。
    A DC / AC conversion switch connected between the DC power source and the welding electrode and the work piece, and converting a DC voltage output from the DC power source into an AC voltage;
    A control unit for controlling the DC-AC conversion switch;
    A coil for causing resonance with an alternating pulse current;
    With
    The DC / AC conversion switch includes at least two reverse conducting semiconductor switches, and a capacitor for accumulating magnetic energy of a circuit when current is interrupted to regenerate the welding electrode and the workpiece.
    The control unit converts a DC voltage output from the DC power source into an AC voltage by controlling a switching frequency of the DC / AC conversion switch.
  2.  前記制御部は、前記直流電源から出力された直流電圧を周期的に交流電圧へ変換することを特徴とする請求項1に記載の溶接機用電源装置。 The power supply device for a welding machine according to claim 1, wherein the control unit periodically converts a DC voltage output from the DC power source into an AC voltage.
  3.  前記被溶接物の溶接状態を監視する溶接状態監視部を備え、
     前記制御部は、前記溶接状態監視部の監視結果に応じて、前記直流電源から出力された直流電圧を交流電圧へ変換することを特徴とする請求項1または2に記載の溶接機用電源装置。
    A welding state monitoring unit for monitoring a welding state of the workpiece,
    3. The power supply device for a welding machine according to claim 1, wherein the control unit converts a DC voltage output from the DC power source into an AC voltage according to a monitoring result of the welding state monitoring unit. .
  4.  前記溶接状態監視部は、前記溶接電極および前記被溶接物に流れる電流を検知する電流計であり、
     前記制御部は、前記電流計によって検知された電流値が、所定電流値以下となったときに、前記直流電源から出力された直流電圧を交流電圧へ変換することを特徴とする請求項3に記載の溶接機用電源装置。
    The welding state monitoring unit is an ammeter that detects a current flowing through the welding electrode and the workpiece.
    The said control part converts the DC voltage output from the said DC power supply into an AC voltage, when the electric current value detected by the said ammeter becomes below a predetermined electric current value. The power supply apparatus for welding machines as described.
  5.  前記制御部は、前記被溶接物の性質に応じて前記直流交流変換スイッチのスイッチング周波数を調整することにより、前記交流電圧の周波数を調整することを特徴とする請求項1ないし4のいずれか1項に記載の溶接機用電源装置。 The said control part adjusts the frequency of the said alternating voltage by adjusting the switching frequency of the said direct current alternating current conversion switch according to the property of the said to-be-welded object, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. The power supply device for welding machines as described in the item.
  6.  前記直流交流変換スイッチは、
     4つの逆導通型半導体スイッチで構成されるブリッジ回路と、
     前記ブリッジ回路の直流端子間に接続され、電流遮断時に回路の磁気エネルギーを蓄積して前記溶接電極および前記被溶接物に回生するためのコンデンサと、を有し、
     前記制御部は、前記逆導通型半導体スイッチのゲートに制御信号を送り、前記ブリッジ回路の対角線上に位置する2つの逆導通型半導体スイッチからなるペア2組のうち、一方のペアがONの時に他方のペアがOFFとなるように、各ペアの逆導通型半導体スイッチのON/OFF切換を行うことで、前記直流電源から出力された直流電圧を交流電圧に変換することを特徴とする請求項1ないし5のいずれか1項に記載の溶接機用電源装置。
    The DC / AC conversion switch is:
    A bridge circuit composed of four reverse conducting semiconductor switches;
    A capacitor connected between the DC terminals of the bridge circuit, for accumulating magnetic energy of the circuit when current is interrupted, and regenerating the welding electrode and the work piece;
    The control unit sends a control signal to the gate of the reverse conducting semiconductor switch, and when one of two pairs of two reverse conducting semiconductor switches located on a diagonal line of the bridge circuit is ON The DC voltage output from the DC power source is converted into an AC voltage by switching ON / OFF of the reverse conducting semiconductor switches of each pair so that the other pair is OFF. The power supply device for a welding machine according to any one of 1 to 5.
  7.  前記直流交流変換スイッチは、
     直列に接続された2つの逆導通型半導体スイッチと、
     前記2つの逆導通型半導体スイッチと並列に設けられた、直列に接続された2つのコンデンサと、
     前記2つのコンデンサそれぞれと並列に接続された2つのダイオードと、
    を含む縦型のハーフブリッジ構造を有することを特徴とする請求項1ないし5のいずれか1項に記載の溶接機用電源装置。
    The DC / AC conversion switch is:
    Two reverse conducting semiconductor switches connected in series;
    Two capacitors connected in series, provided in parallel with the two reverse conducting semiconductor switches;
    Two diodes connected in parallel with each of the two capacitors;
    6. The power supply device for a welding machine according to claim 1, having a vertical half-bridge structure including
  8.  前記直流交流変換スイッチは、
     電源と接地を結ぶ第1の経路上に並列に設けられた逆導通型半導体スイッチおよびコンデンサと、
     電源と接地を結ぶ第2の経路上に並列に設けられた逆導通型半導体スイッチおよびコンデンサと、
    を含む横型のハーフブリッジ構造を有することを特徴とする請求項1ないし5のいずれか1項に記載の溶接機用電源装置。
    The DC / AC conversion switch is:
    A reverse conducting semiconductor switch and a capacitor provided in parallel on the first path connecting the power source and the ground;
    A reverse conducting semiconductor switch and a capacitor provided in parallel on a second path connecting the power source and the ground;
    6. The power supply device for a welding machine according to claim 1, having a horizontal half-bridge structure including
  9.  請求項1ないし8のいずれか1項に記載の溶接機用電源装置と、
     前記溶接機用電源装置に接続された溶接電極と、
    を備えたことを特徴とする溶接機。
    A power supply device for a welding machine according to any one of claims 1 to 8,
    A welding electrode connected to the power supply device for the welding machine;
    A welding machine comprising:
PCT/JP2008/002312 2008-08-26 2008-08-26 Welding machine power supply apparatus and welding machine WO2010023709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002312 WO2010023709A1 (en) 2008-08-26 2008-08-26 Welding machine power supply apparatus and welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002312 WO2010023709A1 (en) 2008-08-26 2008-08-26 Welding machine power supply apparatus and welding machine

Publications (1)

Publication Number Publication Date
WO2010023709A1 true WO2010023709A1 (en) 2010-03-04

Family

ID=41720898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002312 WO2010023709A1 (en) 2008-08-26 2008-08-26 Welding machine power supply apparatus and welding machine

Country Status (1)

Country Link
WO (1) WO2010023709A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093340A1 (en) * 2014-12-12 2016-06-16 新日鐵住金株式会社 Power-source device, joining system, and conductive processing method
JP2017042800A (en) * 2015-08-27 2017-03-02 新日鐵住金株式会社 Power supply unit for resistance spot welding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122671A (en) * 1980-03-05 1981-09-26 Hitachi Ltd High-frequency pulse tig welding method
JPH04279279A (en) * 1991-03-04 1992-10-05 Matsushita Electric Ind Co Ltd Ac tig welding machine
JP2001197748A (en) * 2000-01-14 2001-07-19 Matsushita Electric Works Ltd Power supply unit
JP2004082163A (en) * 2002-08-27 2004-03-18 Sansha Electric Mfg Co Ltd Welding method and electric power unit for welding
JP2008092745A (en) * 2006-10-05 2008-04-17 Tokyo Institute Of Technology Power supply device for induction heating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122671A (en) * 1980-03-05 1981-09-26 Hitachi Ltd High-frequency pulse tig welding method
JPH04279279A (en) * 1991-03-04 1992-10-05 Matsushita Electric Ind Co Ltd Ac tig welding machine
JP2001197748A (en) * 2000-01-14 2001-07-19 Matsushita Electric Works Ltd Power supply unit
JP2004082163A (en) * 2002-08-27 2004-03-18 Sansha Electric Mfg Co Ltd Welding method and electric power unit for welding
JP2008092745A (en) * 2006-10-05 2008-04-17 Tokyo Institute Of Technology Power supply device for induction heating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093340A1 (en) * 2014-12-12 2016-06-16 新日鐵住金株式会社 Power-source device, joining system, and conductive processing method
KR20170084295A (en) * 2014-12-12 2017-07-19 신닛테츠스미킨 카부시키카이샤 Power-source device, joining system, and conductive processing method
CN107148736A (en) * 2014-12-12 2017-09-08 新日铁住金株式会社 Supply unit, mating system and energization processing method
JPWO2016093340A1 (en) * 2014-12-12 2017-11-02 新日鐵住金株式会社 Power supply device, joining system, and energization processing method
CN107148736B (en) * 2014-12-12 2019-06-07 新日铁住金株式会社 Power supply device, mating system and energization processing method
KR102010163B1 (en) * 2014-12-12 2019-08-12 닛폰세이테츠 가부시키가이샤 Power-source device, joining system, and conductive processing method
US10603743B2 (en) 2014-12-12 2020-03-31 Nippon Steel Corporation Power supply device, joining system, and electric processing method
JP2017042800A (en) * 2015-08-27 2017-03-02 新日鐵住金株式会社 Power supply unit for resistance spot welding

Similar Documents

Publication Publication Date Title
JP5110189B2 (en) Inverter control device
CN1086973C (en) Method and apparatus for controlling resistance welding
JP2008048485A (en) Dc/ac converter and its overcurrent protedction method
JP2019104040A (en) Coated electrode welding system and welding power supply device for coated electrode welding
TW200824248A (en) Power supply apparatus for welder
JP6532140B2 (en) Arc welding control method
JP5709247B2 (en) Resistance welding method and resistance welding apparatus
JP2006280120A (en) Inverter power supply unit
JP2000052051A (en) Inverter type resistance welding control device
US10239144B2 (en) Welding device
WO2010023709A1 (en) Welding machine power supply apparatus and welding machine
KR101676927B1 (en) Capacitor type welding method and welding device
KR100278799B1 (en) Arc type electric welding method using voltage type inverter
Paul Simple means of resolving issues of AC-TIG welding equipment
JP5513249B2 (en) Capacitor resistance welding machine
JP3811670B2 (en) Power supply device for arc machining
JP2008048484A (en) Driving method of dc/ac converter
CN110605459B (en) Welding power supply device
JP5877316B2 (en) AC arc welding equipment
JP5009689B2 (en) Inverter power supply
JP2017163680A (en) Welding power supply device
JPH1085947A (en) Method and device for controlling resistance welding
JP2019217544A (en) Weld power supply
JP6493093B2 (en) Power unit for resistance spot welding
JPH0810966A (en) Controller of resistance welding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08808296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08808296

Country of ref document: EP

Kind code of ref document: A1