WO2010021158A1 - Oh- conductor and process for producing the oh- conductor - Google Patents

Oh- conductor and process for producing the oh- conductor Download PDF

Info

Publication number
WO2010021158A1
WO2010021158A1 PCT/JP2009/052712 JP2009052712W WO2010021158A1 WO 2010021158 A1 WO2010021158 A1 WO 2010021158A1 JP 2009052712 W JP2009052712 W JP 2009052712W WO 2010021158 A1 WO2010021158 A1 WO 2010021158A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
functional group
water
anion exchange
conductor
Prior art date
Application number
PCT/JP2009/052712
Other languages
French (fr)
Japanese (ja)
Inventor
啓太朗 藤井
秀伯 大橋
大知 伊藤
山口 猛央
信義 正司
山本 博嗣
Original Assignee
国立大学法人東京工業大学
Agcエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, Agcエンジニアリング株式会社 filed Critical 国立大学法人東京工業大学
Publication of WO2010021158A1 publication Critical patent/WO2010021158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/20Tetrahydrofuran
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel OH - about the conductor. Further, the present invention, the OH - relates to a novel method for producing a conductor.
  • SAFC An all solid alkaline fuel cell
  • OH ⁇ is conducted from a cathode to an anode through an anion exchange membrane.
  • SAFC can use cheaper metals as catalysts compared to acidic PEFC (see Non-Patent Document 1), and it is possible to use various liquid fuels that are difficult to proceed in PEFC ( (See Non-Patent Document 1), which is considered to have the potential to solve problems such as cost and energy density, which are particularly problems in fuel cells for automobiles.
  • PEFC See Non-Patent Document 1
  • there is no high-performance anion exchange membrane that can withstand use as an electrolyte membrane for a fuel cell little research has been done on SAFC in automotive applications.
  • anion exchange membranes The biggest problem with anion exchange membranes is the low chemical stability of the functional groups. This becomes particularly remarkable at high temperatures, and causes deterioration such as a decrease in ionic conductivity with time (see Non-Patent Documents 2 and 3).
  • a quaternary ammonium group particularly benzyltrimethylamine, is often used because of its high ionization degree and relatively high stability (see Non-Patent Document 4).
  • the quaternary ammonium group the N atom is positively charged, but the electron density of the surrounding C atom decreases accordingly.
  • the direct current resistance of the membrane is generally not a problem under sufficient temperature and humidity conditions, but OH ⁇ has a lower conductivity than H + , so DC resistance is not negligible in battery performance.
  • an anion exchange membrane having an ionic conductivity of about 0.01 S / cm or more is required.
  • electrolyte membranes include “free water” that is in the same state as bulk water and fixed water that is affected by functional groups. Fixed water has a melting point lower than that of free water and has a melting point of about -30 ° C to -5 ° C is called “bound water”, and water that does not freeze at lower temperatures is called “antifreeze water”. In antifreeze, as compared with the case of free water will have significantly lower ion mobility, OH if water all antifreeze water in the anion exchange membrane - can suppress the nucleophilic substitution attack on the C atoms there is a possibility.
  • anion exchange membrane that consists only of antifreeze water and in which anion exchange groups are dense and dense, it has a new conduction mechanism and contains only antifreeze water as a high OH content.
  • a conductor subjected to an alkali-shaped solid fuel cell applications - shows the conductivity, and novel OH with excellent heat-resistance.
  • the present invention has been made in view of such problems, a novel OH - and to provide a conductor. Further, the present invention, the OH - and to provide a novel method for producing a conductor.
  • OH of the present invention - conductors comprises an anion exchange polymer, the anion exchange polymer, free water, bound water, the antifreeze Among them, it contains at least antifreeze water, the free water is in a range of 5 mol or less per mol of functional groups, the bound water is in a range of 1 mol or less per mol of functional groups, and the antifreeze water is 0.1 mol per mol of functional groups. Within the range of ⁇ 10 mol.
  • the present invention also provides, as another embodiment, an OH - conductor having a polymer having a functional group having an anion exchange ability in addition to or in addition to the above embodiment, wherein the polymer is in a dry state. in, a functional group, per the polymer 1g, having more than 1.8 mmol, OH - providing conductor.
  • the present invention provides, as another embodiment, an OH - conductor having a polymer having a functional group having an anion exchange ability in addition to or in addition to the above embodiment, wherein the polymer is swollen with water.
  • the functional group density when obtained by has more than 2 mmol / g, OH - providing conductor.
  • the present invention is, in another embodiment, in addition to the above embodiments, or in addition to the above embodiments, OH with a polymer having a functional group having an anion exchange capacity - a conductor, a liquid fuel containing hydrogen , such as alcohols, the OH of the solvent selected from the group consisting of NH 3 and hydrazine - permeability coefficient conductor is not more than 2 ⁇ 10 -6 cm 2 / s , OH - providing conductor.
  • OH of the present invention - conductor may be between those anion exchange polymer is filled in the pores of the porous body.
  • the anion exchange polymer is preferably composed of either or both of aminated polysulfone and aminated polystyrene.
  • the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is preferably composed of one type or a combination of two or more types.
  • OH - ion conductivity of the conductor is preferably in the range of more than 0.0001 S / cm.
  • the average pore diameter of the porous body is in the range of 10 to 10,000 nm.
  • the porosity of the porous body is preferably in the range of 5 to 80%.
  • the present invention is the above-mentioned OH - provides a method of producing a conductor.
  • OH of the present invention - the production method of the conductor may be a method of filling an anion-exchange polymer in the pores of the porous body.
  • the anion exchange polymer is preferably composed of either or both of aminated polysulfone and aminated polystyrene.
  • the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is preferably composed of one type or a combination of two or more types.
  • OH - ion conductivity of the conductor is preferably in the range of more than 0.0001 S / cm.
  • the average pore diameter of the porous body is in the range of 10 to 10,000 nm.
  • the porosity of the porous body is preferably in the range of 5 to 80%.
  • ⁇ P1> contains an anion exchange polymer
  • the anion exchange polymer contains at least antifreeze water among free water, bound water, and antifreeze water
  • the free water is in a range of 5 mol or less per 1 mol of the functional group
  • bound water per functional group 1 mol in the range below 1 mol
  • antifreeze is per functional group 1 mol
  • OH is in the range of 0.1 ⁇ 10 mol - conductor.
  • anion exchange polymer anion exchange polymer, OH is filled in the pores of the porous body - conductor.
  • the anion exchange polymer may be composed of one or both of aminated polysulfone and aminated polystyrene.
  • the anion exchange polymer may be composed of an aminated polysulfone.
  • the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is good to consist of a seed
  • the porous body is preferably made of heat-resistant crosslinked polyethylene.
  • the anion exchange polymer is preferably made of an aminated polysulfone, and the porous body is preferably made of a heat-resistant crosslinked polyethylene.
  • the ionic conductivity of the OH ⁇ conductor may be in the range of 0.0001 S / cm or more.
  • the average pore diameter of the porous body is preferably in the range of 10 to 10,000 nm.
  • the porosity of the porous body is preferably in the range of 5 to 80%.
  • ⁇ P11> A method of controlling at least the amount of free water among free water and bound water that may be contained in an anion exchange polymer, and the free water is within a range of 5 mol or less per 1 mol of functional groups. , bound water per functional group 1 mol, OH is in the range below 1 mol - method for manufacturing a conductor.
  • ⁇ P12> OH filled an anion-exchange polymer in the pores of the porous body - the production method of the conductor.
  • the anion exchange polymer may be composed of one or both of aminated polysulfone and aminated polystyrene.
  • the anion exchange polymer may be composed of an aminated polysulfone.
  • the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE It is good to consist of a seed
  • the porous body is preferably made of heat-resistant crosslinked polyethylene.
  • the anion exchange polymer may be made of aminated polysulfone, and the porous body may be made of heat-resistant crosslinked polyethylene.
  • the ionic conductivity of the OH ⁇ conductor may be in the range of 0.0001 S / cm or more.
  • the average pore diameter of the porous body is preferably in the range of 10 to 10,000 nm.
  • the porosity of the porous body is preferably in the range of 5 to 80%.
  • the present inventors have also found the following invention.
  • ⁇ 1> OH with a polymer having a functional group having an anion exchange capacity - a conductor, the polymer is a non-freezing water per the functional group 1 mol, having 0.1 ⁇ 10 mol, OH - conductor.
  • the polymer may have 5 mol or less of free water per 1 mol of the functional group and 1 mol or less of bound water per 1 mol of the functional group.
  • the polymer may have only antifreeze water among free water, bound water and antifreeze water.
  • OH - conductor having a polymer having a functional group having an anion exchange capacity, wherein the polymer has a functional group in a dry state of not less than 1.8 mmol per gram of the polymer, preferably 2.0 ⁇ 4.0mmol, more preferably 2.2 ⁇ 4.0mmol, OH - conductor.
  • the polymer has a functional group in a dry state of 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4.0 mmol, per 1 g of the polymer. It is good.
  • OH with a polymer having a functional group having an anion exchange capacity - a conductor, a liquid fuel such as alcohols containing hydrogen, the OH of the solvent selected from the group consisting of NH 3 and hydrazine -
  • the transmission coefficient of the conductor is 2 ⁇ 10 ⁇ 6 cm 2 / s or less, preferably 1.0 ⁇ 10 ⁇ 6 cm 2 / s or less, more preferably 5.0 ⁇ 10 ⁇ 7 cm 2 / s or less.
  • the functional group density when the polymer is swollen with water is 2 mmol / g or more, preferably 2.1 to 4.0 mmol / g, more preferably 2.1 to 2.5 mmol. / G.
  • the polymer has a functional group in a dry state of 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4.0 g per 1 g of the polymer. It is good to have 4.0 mmol.
  • the polymer may have 0.1 to 10 mol of antifreeze water per mol of the functional group.
  • the polymer may have 5 mol or less of free water per 1 mol of the functional group and 1 mol or less of bound water per 1 mol of the functional group.
  • the polymer may have only antifreeze water among free water, bound water and antifreeze water.
  • OH - conductor has a porous body, it is preferable the polymer is filled in the pores of the porous body.
  • the functional group is a group having a quaternary ammonium group, preferably -R 11 -N + R 12 R 13 R 14 X 11 - a group represented by (Wherein R 11 represents a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and R 12 , R 13 and R 14 are each independently hydrogen, a linear or branched monovalent hydrocarbon group having 1 to 2 carbon atoms, X 11 - is an anion, preferably Cl -, Br -, I - or OH - shows a), more preferably - It may be CH 2 N + (CH 3 ) 3 Cl ⁇ .
  • the polymer having a functional group having anion exchange ability may have at least one main chain skeleton selected from the group consisting of C1 to C4. Good.
  • the polymer having a functional group having anion exchange ability is represented by the following formula CI, or a crosslinked product of the polymer, wherein A cross-linked product represented by II is preferable.
  • m, m1 and m2 each independently represents an integer of 10 to 100.
  • W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group.
  • At least a part of the phenylene group is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, or —NR 1 R 2 (R 1 and R 2 are independently hydrogen A group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms))), and at least a part of the phenylene group has a quaternary ammonium group, preferably —R 11 —.
  • W has the same definition as described above, and Y represents a divalent group.
  • Y is, for example, a divalent group via the above-described — (CH 2 ) sX group.
  • — (CH 2 ) s1 —N + R 21 R 22 X 21 ⁇ —R 23 —N + R 24 R 25 X It may be 22 ⁇ — (CH 2 ) s2 —.
  • s1 and s2 are each independently an integer of 1 to 5
  • R 21 , R 22 , R 24 and R 25 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • R 23 represents a divalent hydrocarbon group having 1 to 5 carbon atoms.
  • X 21 - and X 22 - is independently an anion, preferably Cl -, Br -, I - or OH - shows the.
  • the porous body is a ceramic porous body made of glass, alumina, or silica, or high density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is good to consist of 1 type chosen from the porous film which becomes, or a combination of 2 or more types.
  • the porous body may be made of heat-resistant crosslinked polyethylene.
  • the average pore diameter of the porous body is preferably 10 to 10,000 nm.
  • the porosity of the porous body is preferably in the range of 5 to 80%.
  • the OH ⁇ conductor may have an OH ⁇ ion conductivity of 0.0001 S / cm or more.
  • ⁇ 22> A method for producing an OH - conductor having a polymer having a functional group having anion exchange ability, A) preparing a polymer having a functional group having an anion exchange ability; and B1) controlling at least the amount of free water among free water and bound water that may be contained in the polymer.
  • the free water is in a range of 5 mol or less per 1 mol of the functional group
  • the above-mentioned method, wherein the bound water is in the range of 1 mol or less per 1 mol of the functional group.
  • the polymer may have 0.1 to 10 mol of antifreeze water per mol of the functional group.
  • the polymer preferably has only antifreeze water, and the antifreeze water may have 0.1 to 10 mol per mol of the functional group.
  • a method for producing an OH - conductor having a polymer having a functional group having anion exchange ability A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer; Have The method as described above, wherein the polymer has 0.1 to 10 mol of antifreeze water per mol of the functional group.
  • the polymer may have 5 mol or less of free water per 1 mol of the functional group, and 1 mol or less of bound water per 1 mol of the functional group.
  • the polymer may have only antifreeze water among free water, bound water and antifreeze water.
  • a method for producing an OH - conductor having a polymer having a functional group having anion exchange ability A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
  • the polymer has a functional group of 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4.0 mmol per 1 g of the polymer in a dry state.
  • the polymer is in a dry state, and the functional group is 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4. It is good to have 0 mmol.
  • OH with a polymer having a functional group having an anion exchange capacity - a process for the preparation of the conductor A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
  • the permeability coefficient of the OH ⁇ conductor for a liquid fuel containing hydrogen for example a solvent selected from the group consisting of alcohols, NH 3 and hydrazine, is 2 ⁇ 10 ⁇ 6 cm 2 / s or less, preferably 1.0 ⁇
  • the above method which is 10 ⁇ 6 cm 2 / s or less, more preferably 5.0 ⁇ 10 ⁇ 7 cm 2 / s or less.
  • the density of the functional group when the polymer is swollen with water is 2 mmol / g or more, preferably 2.1 to 4.0 mmol / g, more preferably 2.1 to 2. It is good to have 5 mmol / g.
  • the polymer is in a dry state, and the functional group is 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2. It is preferable to have 2 to 4.0 mmol.
  • the polymer may have 0.1 to 10 mol of antifreeze water per mol of the functional group.
  • the polymer may have 5 mol or less of free water per 1 mol of the functional group and 1 mol or less of bound water per 1 mol of the functional group.
  • the polymer may have only antifreeze water among free water, bound water and antifreeze water.
  • the functional group is a group having a quaternary ammonium group, preferably -R 11 -N + R 12 R 13 R 14 X 11 - a group represented by (Wherein R 11 represents a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and R 12 , R 13 and R 14 are each independently hydrogen, a linear or branched monovalent hydrocarbon group having 1 to 2 carbon atoms, X 11 - is an anion, preferably Cl - or OH - are shown), and more preferably -CH 2 N + (CH 3) 3 Cl - and it's good.
  • the polymer having a group having a quaternary ammonium group preferably -R 11 -N + R 12 R 13 R 14 X 11 - a group represented by (Wherein R 11 represents a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and R 12
  • the polymer having a functional group having anion exchange ability is represented by the following formula CI, or a crosslinked product of the polymer, wherein A cross-linked product represented by II is preferable.
  • m, m1 and m2 each independently represents an integer of 10 to 100.
  • W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group.
  • At least a part of the phenylene group is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, or —NR 1 R 2 (R 1 and R 2 are independently hydrogen A group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms))), and at least a part of the phenylene group has a quaternary ammonium group, preferably —R 11 —.
  • W has the same definition as described above, and Y represents a divalent group.
  • Y is, for example, a divalent group via the above-described — (CH 2 ) sX group.
  • — (CH 2 ) s1 —N + R 21 R 22 X 21 ⁇ —R 23 —N + R 24 R 25 X It may be 22 ⁇ — (CH 2 ) s2 —.
  • s1 and s2 are each independently an integer of 1 to 5
  • R 21 , R 22 , R 24 and R 25 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • R 23 represents a divalent hydrocarbon group having 1 to 5 carbon atoms.
  • X 21 - and X 22 - is independently an anion, preferably Cl -, Br -, I - or OH - shows the.
  • the porous body is a ceramic porous body made of glass, alumina, or silica, or high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is good to consist of 1 type chosen from the porous film which becomes, or a combination of 2 or more types.
  • the porous body may be made of heat-resistant crosslinked polyethylene.
  • the average pore diameter of the porous body is preferably 10 to 10,000 nm.
  • the porosity of the porous body is preferably in the range of 5 to 80%.
  • OH - OH conductors - ion conductivity may be between at 0.0001 S / cm or more.
  • the present invention relates to novel OH - can provide conductor. Further, the present invention relates to novel OH - it is possible to provide a manufacturing method of the conductor.
  • FIG. 3 is a diagram showing a chemical reaction in an all solid alkaline fuel cell (SAFC). It is a figure which shows the result of the low-temperature DSC measurement about a cast film
  • SAFC all solid alkaline fuel cell
  • FIG. 3 is a graph showing changes over time in ion conductivity of cast membrane and pore filling membrane under conditions of 90 ° C. and relative humidity of 100%.
  • FIG. 6 is a diagram showing measurement results of free water, bound water, and antifreeze water of cast membranes and pore filling membranes of Examples 2 to 5.
  • FIG. 6 is a graph showing the measurement results of the functional group density and WU of cast films and pore filling films of Examples 2 to 5.
  • FIG. 6 is a graph showing the measurement results of methanol (MeOH) and NH 3 permeation coefficients of cast membranes and pore filling membranes of Examples 2 to 5.
  • MeOH methanol
  • NH 3 permeation coefficients of cast membranes and pore filling membranes of Examples 2 to 5.
  • FIG. 6 is a graph showing the relationship between the methanol (MeOH) permeability coefficient and the functional group density of the cast membranes and pore filling membranes of Examples 2 to 5.
  • FIG. 6 is a graph showing the relationship between the NH 3 permeability coefficient and the functional group density of cast films and pore filling films of Examples 2 to 5.
  • FIG. 6 is a graph showing the relationship between the ionic conductivity of the pore filling membranes of Examples 2 to 5 and the ionic conductivity of Cast1 (Example 2).
  • OH - described embodiments of the invention according to the conductor and its manufacturing method.
  • a method for producing the OH - conductor will be described.
  • OH - method for manufacturing a conductor may be included in an anion exchange polymer reached swelling equilibrium in aqueous solution, free water, of the bound water is a method of controlling the amount of at least free water.
  • OH - method of manufacturing a conductor is a method of filling an anion-exchange polymer in the pores of the porous body.
  • bound water means water having a melting point of ⁇ 30 ° C. to ⁇ 5 ° C.
  • antifreeze water means water having a melting point of ⁇ 30 ° C. or less
  • free water means melting point. Means that the temperature is -5 ° C or higher.
  • free water”, “bound water” and “antifreeze water” can be measured as follows. That is, the sample was immersed in water at 25 ° C. for 24 hours, and then water adhered to the surface was wiped off. This sample is measured by low temperature DSC. The measurement conditions are cooling from 20 ° C. to ⁇ 50 ° C. at a rate of 20 ° C./min, and then increasing the temperature to 20 ° C.
  • the amount of the functional group of the anion exchange polymer that is, the polymer having a functional group having an anion exchange ability can be determined as follows. That is, by immersing the sample 1M Na 2 SO 4 aqueous solution at least 6 hours, counterion Cl - was substituted with ion released Cl - - SO 4 from the amount of molding method, i.e., 5% of the indicator A few drops of K 2 CrO 4 aqueous solution was dropped, 0.1M HCl aqueous solution was dropped, and quantitative determination was performed using a color reaction. Since the amount of Cl ⁇ released into the solution is equal to the amount of the functional group having anion exchange ability, the amount of the functional group can be quantified.
  • a calibration curve can be created using several samples, and the amount of functional group having anion exchange ability can be determined using the calibration curve.
  • OH - polymer in conductor is in a dry state, a functional group, per the polymer 1g, more 1.8 mmol, preferably 2.0 ⁇ 4.0 mmol, more preferably 2.2 ⁇ 4.0 mmol It is good to have.
  • the functional group density using the amount of the functional group having an anion exchange capacity obtained above, further, the present invention OH - in after conductor (sample) was left for a few days immersed in water, the sample It can be determined by measuring the “sample weight during swelling”, which is the sum of the amount of water in the sample and the weight of the sample itself. That is, in this application, “functional group density” is a value obtained by dividing “amount of functional group having anion exchange ability” by “sample weight during swelling”.
  • the functional group density 2 mmol / g or more, preferably 2.1 ⁇ 4.0 mmol / g, more preferably may have 2.1 ⁇ 2.5mmol / g.
  • anion exchange polymer that is, a polymer having a functional group having an anion exchange ability
  • a functional group having anion exchange capacity has a literal meaning.
  • the functional group may be a group having a strong base, specifically a group having a pKb of 6 or less, preferably 5 to 0.1.
  • a quaternary ammonium salt (—N + R can be represented by wherein, R 3 ⁇ R 5 are mutually the same or different hydrogen, alkyl group or hydroxyalkyl group having 1 to 5 carbon atoms having 1 to 5 carbon atoms, a - - 3 R 4 R 5 a. the A group having an anion).
  • the functional group having anion exchange ability can be arranged in a pendant form on the polymer main chain.
  • a quaternary ammonium salt may be represented by a divalent hydrocarbon group (the divalent hydrocarbon group may be represented by — (CH 2 ) s ).
  • S is an integer from 0 to 6, preferably from 1 to 4)
  • the main chain of the anion exchange polymer that is, the polymer having a functional group having anion exchange ability is not particularly limited as long as it has the above-described functional group having anion exchange ability.
  • the following C1 to C4 repetitions are performed. It should have at least one type of unit, and preferably has at least one type of repeating unit of C1 to C3. Further, when a plurality of C1 to C4 repeating units are used, they are preferably bonded through —O— or the like.
  • anion exchange polymer one selected from aminated polysulfone represented by the following formulas (I) to (III), aminated polystyrene, or the like, or a combination of two or more types can be employed.
  • W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group.
  • at least one hydrogen atom bonded to the aromatic ring in W is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, hydroxyl group or —NR 1 R 2 ). It is replaced.
  • R 1 and R 2 are the same or different hydrogen, an alkyl group having 1 to 5 carbon atoms, or a hydroxyalkyl group having 1 to 5 carbon atoms.
  • Q 1 and Q 2 represent the same or different hydrocarbon groups having 1 to 8 carbon atoms or fluorine atoms.
  • a and b are integers of 0 to 4, and a + b is 0 to 8.
  • the portion of X is -N + R 3 R 4 R 5 A - is substituted with.
  • R 3 to R 5 are the same or different from each other, an alkyl group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms, and A is an anion.
  • Y and Z are different from each other O, O-Ph-O, O-Ph-Ph-O, O-Ph-C (CH 3 ) 2 -Ph-O, S, and Ph is A phenylene group.
  • m is 10 to 100
  • n is 0 to 100.
  • A represents an alkylene group having 3 to 8 carbon atoms or an alkyleneoxyalkyl group having 4 to 9 carbon atoms in total.
  • R 1 , R 2 , and R 3 each represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a hydroxyalkyl group.
  • X ⁇ represents an anion.
  • the hydrogen atom bonded to the benzene ring may be substituted with an alkyl group or a halogen atom.
  • the anion exchange polymer of the present invention that is, the polymer having a functional group having anion exchange ability is represented by the following formula CI or a crosslinked product of the polymer represented by the following formula C-II: It is good that it is a crosslinked body represented.
  • m, m1 and m2 each independently represents an integer of 10 to 100.
  • W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group.
  • At least a part of the phenylene group is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, or —NR 1 R 2 (R 1 and R 2 are independently hydrogen A group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms))), and at least a part of the phenylene group has a quaternary ammonium group, preferably —R 11 —.
  • W has the same definition as described above, and Y represents a divalent group.
  • Y is, for example, a divalent group via the above-described — (CH 2 ) sX group.
  • — (CH 2 ) s1 —N + R 21 R 22 X 21 ⁇ —R 23 —N + R 24 R 25 X It may be 22 ⁇ — (CH 2 ) s2 —.
  • s1 and s2 are each independently an integer of 1 to 5
  • R 21 , R 22 , R 24 and R 25 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms.
  • R 23 represents a divalent hydrocarbon group having 1 to 5 carbon atoms.
  • X 21 - and X 22 - is independently an anion, preferably Cl -, Br -, I - or OH - shows the.
  • the porous body a material having heat resistance and alkali resistance and not swelled with an organic solvent is used.
  • the inorganic material is made of a porous ceramic body made of glass, alumina, silica, or the like, or the polymer material is made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, PTFE, or the like.
  • One selected from a porous film or a combination of two or more can be employed.
  • the average pore diameter of the porous body is preferably in the range of 10 to 10,000 nm.
  • the average pore diameter of the porous body is more preferably in the range of 20 to 300 nm.
  • the average pore diameter is 10 nm or more, there is an advantage that the filling polymer can be easily filled and a polymer having a large molecular weight can be filled.
  • the average pore diameter is 20 nm or more, this effect becomes more remarkable.
  • the average pore diameter is 10000 nm or less, there is an advantage that a substrate having a large swelling inhibiting power can be easily obtained, and the moisture content and free water content of the membrane can be suppressed low.
  • the average pore diameter is 300 nm or less, this effect becomes more remarkable.
  • the porosity of the porous body is preferably in the range of 5 to 80%.
  • the porosity of the porous body is more preferably in the range of 20 to 60%.
  • the porosity is 5% or more, there is an advantage that the amount of filled polymer per unit volume increases and the ionic conductivity increases. When the porosity is 20% or more, this effect becomes more remarkable.
  • the porosity is 80% or less, it is easy to obtain a base material having a large swelling inhibiting force, and there is an advantage that the moisture content and free water content of the membrane can be suppressed low. This effect becomes more remarkable when the porosity is 60% or less.
  • the method of filling the pores of the porous body with the anion exchange polymer includes the method of filling the pores with a polymer and crosslinking, the method of polymerizing after filling the pores with monomers, or the graft polymerization on the surface of the membrane pores.
  • the method to do can be adopted.
  • the polymer is dissolved and dispersed in the solvent, the polymer rotation radius is made smaller than the pore diameter, and the solvent is evaporated while impregnating the pores.
  • a crosslinking agent is added after filling so that the filled polymer does not flow out of the pores.
  • the method of polymerizing the monomer in the pores is a method in which a solution containing a monomer and a crosslinking agent, an initiator, a catalyst and the like is impregnated in advance and polymerization is performed by thermal polymerization or photopolymerization.
  • Intrapore graft polymerization is a method in which a polymerization initiation point is provided on the surface of pores in the porous body in advance and the monomer is charged to perform graft polymerization, or after filling a polymer having reactivity with the reactive sites on the pore surface.
  • the method for controlling the amount of free water and bound water is not limited to the method of filling the pores of the porous body with the anion exchange polymer.
  • a method of controlling the amount of free water and bound water a method of producing a block polymer cast film showing a phase separation structure and aminating only one component of the phase separation structure to produce an ion conduction path.
  • IPN Interpenerate network
  • a cast film of a polystyrene / polymethyl methacrylate block copolymer is prepared, and only the polystyrene portion is aminated after chloromethylation.
  • the method of producing a phase-separation structure similarly with a polymer alloy, and aminating only a polystyrene part after chloromethylation etc. are mentioned.
  • a film can be formed by previously impregnating a monomer such as polystyrene that can be aminated into a crosslinked resin that does not swell with water, polymerizing with a crosslinking agent, and then aminating.
  • the OH - conductor includes an anion exchange polymer, and the anion exchange polymer includes at least antifreeze water among free water, bound water, and antifreeze water, and the free water, the bound water, and the antifreeze The amount of water is within a predetermined range. Further, OH - conductors are those anion exchange polymer is filled in the pores of the porous body. The definitions of “free water”, “bound water” and “non-freezing water” are as described above.
  • the free water contained in the anion exchange polymer is preferably in the range of 5 mol or less per 1 mol of the functional group. Further, the free water is more preferably in the range of 1 mol or less per 1 mol of the functional group. If the free water is 5 mol or less, there is an advantage that the rate of decomposition of amine groups, which are anion exchange groups, can be reduced due to a decrease in water mobility. This effect becomes more conspicuous when the free water is 1 mol or less.
  • the bound water contained in the anion exchange polymer is preferably in the range of 1 mol or less per 1 mol of the functional group.
  • the bound water is more preferably in the range of 0.5 mol or less per 1 mol of the functional group.
  • the antifreeze water contained in the anion exchange polymer is preferably in the range of 0.1 to 10 mol per 1 mol of the functional group. Further, the antifreeze water is more preferably in the range of 0.3 to 3 mol per 1 mol of the functional group.
  • the amount of antifreeze water is 0.1 mol or more, there is an advantage that the number of water molecules contributing to the hopping mechanism of 0H ⁇ is increased and OH ⁇ conductivity is improved. This effect becomes more remarkable when the antifreeze water is 0.3 mol or more.
  • the amount of antifreeze water is 10 mol or less, there is an advantage that the distance between anion exchange groups is shortened and the OH - conductivity is improved. This effect becomes more remarkable when the amount of antifreeze water is 3 mol or less.
  • the ionic conductivity of the OH - conductor is preferably in the range of 0.0001 S / cm or more.
  • the ionic conductivity of the conductor is more preferably in the range of 0.01 S / cm or more.
  • the following effects can be expected from an OH - conductor composed mainly of bound water and antifreeze water. Due to the decrease in the amount of free water, the mobility of OH ⁇ is decreased, and the degradation rate of the anion exchange group can be expected. Furthermore, the conduction mechanism is changed from a beering mechanism to a hopping mechanism by realizing a high OH - conductivity by shortening the distance between anion exchange groups by containing only limited amount of antifreeze water and bound water and reducing water mobility. can do.
  • the OH - conductor of the present invention in addition to or in addition to the above-mentioned characteristics and content of water, has a desired functional group amount in a dry state as described above. . Further, OH of the present invention - conductors, in addition to the above features, or in addition to the characteristics, as described above, when the polymer is swollen with water, with the desired functional group density.
  • the present invention may contain, in addition to the above features, or in addition to the characteristics, the liquid fuel, for example alcohols containing hydrogen, the OH of the solvent selected from the group consisting of NH 3 and hydrazine - conductors permeability coefficient of 2 ⁇ 10 -6 cm 2 / s or less, preferably 1.0 ⁇ 10 -6 cm 2 / s or less, more preferably 5.0 ⁇ 10 -7 cm 2 / s or less OH - conductor I will provide a.
  • OH has a combination of two or more features described above - to provide a conductor.
  • the functional group amount and functional group density are as described above, and the desired amounts thereof are also as described above.
  • the solvent permeability or the solvent permeation blocking ability is the same as the method for obtaining the solvent permeability coefficient described in the method of Yamaguchi et al. (Takeo Yamaguchi, et al., Advanced Materials, 19 (4), 592-596 (2007)). You can ask for it. That is, the fuel permeation rate in the sample cross-sectional direction was measured using an H-type diffusion cell. The sample is sandwiched between diffusion cells, and the solution is divided into two according to the sample. Pure water is put into a cell divided into two and left overnight to make the sample water-containing.
  • the liquid on one side is replaced with an aqueous solution containing a solvent (fuel) such as alcohol or ammonia, and the change over time in the concentration of the solvent (fuel) on the other side across the sample is recorded.
  • a solvent such as alcohol or ammonia
  • the permeation speed is obtained from the slope of the straight line in a region where the time change of the total amount of permeation thereafter becomes a straight line, except for the time when the solvent (fuel) does not permeate at all.
  • the transmission coefficient is obtained from the transmission speed and the thickness of the sample.
  • OH-conductor Applications of OH-conductor include electrolyte membranes for solid alkaline fuel cells, material purification, and electrodialysis membranes for salt production.
  • the present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.
  • Next, specific examples of the present invention will be described. However, it goes without saying that the present invention is not limited to these examples.
  • a method for manufacturing the sample will be described.
  • ⁇ Preparation of pore filling membrane> A method for producing the pore filling film will be described.
  • a pore filling membrane was prepared by filling a porous polymer substrate with an aromatic anion exchange polymer (AM-APS).
  • AM-APS solution A polymer solution (AM-APS solution) was obtained by the following method.
  • an aromatic polysulfone polymer represented by Chemical Formula 5 (Amoco Japan, trade name: Radel R5000NT) was used.
  • the intrinsic viscosity of this polymer was 0.65 dL / g.
  • trimethylamine corresponding to about 70 mol% of the chloromethyl group was added dropwise over 4 hours, and then stirred at room temperature for 20 hours to obtain an aminated solution (AM-APS solution). A portion of this was cast to form a film and the ion exchange capacity was measured to find 1.96 meq / g dry resin.
  • a method for producing a cast film will be described.
  • a cast film of aromatic anion exchange polymer (AM-APS) was prepared.
  • a 6.9 wt% AM-APS solution is prepared in the same manner as the pore filling membrane. Take 10 ml of the solution in a petri dish, heat and concentrate at 60 ° C for 1 hour to increase the viscosity, drop it on a glass substrate, cast with an applicator (S253302, manufactured by Tester Sangyo Co., Ltd.), heat dry to 30 ° C, cast Membrane C-1 was obtained. Crosslinking, washing and drying were performed in the same manner as for the pore filling film.
  • volume change rate ⁇ V (s2 ⁇ d2 ⁇ s1 ⁇ d1) / (s1 ⁇ d1).
  • the baseline was taken from -30 ° C to 10 ° C, and the melting endothermic peak area of water during the temperature rising process was analyzed. Quantitative analysis was performed by assigning a sharp melting endothermic peak at 0 ° C. to free water and a broad melting endothermic peak at 0 ° C. or lower to bound water. After the measurement, the sample was vacuum-dried at 90 ° C. for 4 hours, and the dry weight excluding all free water, bound water and antifreeze water was measured to determine the total water content. The difference between the amount of free water and bound water obtained from low-temperature DSC measurement and the total water content was defined as antifreeze water.
  • the sample evaluation results will be described.
  • the analysis result of the structure of the pore filling membrane will be described. From the FT-IR measurement, it was confirmed from the absorption specific to AM-APS such as 1140 cm ⁇ 1 and 1230 cm ⁇ 1 that APS was filled in the pores.
  • Table 1 summarizes the moisture content and the dimensional change rate after swelling of the cast membrane and the pore filling membrane.
  • the moisture content and volume change rate were suppressed to a fraction of the cast membrane due to the swelling suppression effect of the base material, indicating that the functional group density was high. .
  • Figure 2 shows the results of low-temperature DSC measurement.
  • a sharp peak of free water melting heat was observed at 0 ° C, and a moderate peak of bound water was observed from -30 ° C to -5 ° C.
  • no peak was observed in the pore filling membrane.
  • FIG. 3 shows the results of calculating the number of moles of free water, bound water and antifreeze water contained in 1 mol of the functional group in the cast membrane and the pore filling membrane.
  • FIG. 4 shows the results of calculating the weights of free water, bound water and antifreeze water contained in 1 mg of AM-APS in the cast membrane and the pore filling membrane.
  • FIG. 5 shows the change over time in the ionic conductivity of the membrane under the conditions of 90 ° C. and relative humidity of 100%.
  • the pore filling membrane has no free water and is in an environment with only antifreeze water, but shows ionic conductivity in the same order as cast membrane, and OH - conduction due to the hopping mechanism appears in the antifreeze water. It is highly probable that With regard to heat resistance, it is necessary to experiment for a longer time, but in the cast film, the ionic conductivity tended to decrease by 10% to 30% within a few days.
  • Examples 2 to 5 In the same manner as in Example 1, an AM-APS solution was prepared. However, in the polysulfone-based polymer shown in Scheme I above, the ratio of “quaternary ammonium group / chloromethyl group / unsubstituted” in the biphenyl moiety (each mol% when the whole is 100 mol%) is Compared to 54/36/10, Example 2 was 70/20/10, Example 3 was 54/36/10, Example 4 was 36/54/10, and Example 5 was 27/63. / 10.
  • ⁇ Pore filling membrane> In Examples 2 to 5, CLPEs 1 to 4 were obtained in the same manner as in Example 1 except that the above-mentioned ratio of AM-APS solution was used. ⁇ Cast film> Regarding cast films, cast films Cast 1 to 4 were obtained in the same manner as in Example 1 except that the above-mentioned ratio of AM-APS solution was used. The concentrations of TMHDA and isopropanol used for crosslinking were 1/10 for Cast1, 1/2 for Cast2, and 1/5 for Cast3 and 4.
  • the ion exchange group capacity (hereinafter sometimes abbreviated as “IEC”. Ion exchange group per 1 g of polymer, in this case, mmol of quaternary ammonium base) was measured. did.
  • the amount of Cl ⁇ released into the solution by the Mole method was measured, and the IEC was calculated by dividing the measured value by the dry weight of the membrane, assuming that the measured value was equal to the amount of ion exchange groups. .
  • a calibration curve was prepared by plotting the IEC and the value obtained by normalizing the peak area derived from the chloromethyl group (mass: 50) measured by TG-MS with the dry weight.
  • the pore filling membrane For the pore filling membrane, the peak area derived from the chloromethyl group (mass: 50) was measured by TG-MS and normalized with the dry weight of AM-APS, and from the value and the above calibration curve, The IEC for each pore filling membrane CLPE1-4 was determined and summarized in Table 2 below. Further, the moisture content (%) was obtained and indicated in WU (%) in Table 2 below. In addition, a moisture content is based on the following formula
  • equation. Moisture content (%) (Membrane weight when swollen with water ⁇ membrane weight when dried) / (membrane weight when dried) ⁇ 100.
  • ⁇ moisture content> and ⁇ analysis of water state> were performed for each of the pore filling membranes CLPE1 to 4 and the cast membranes Cast1 to Cast4.
  • is a value obtained by dividing the number of moles of water inside the membrane at the time of membrane swelling by the number of moles of ion exchange groups inside the membrane, that is, water per ion exchange group at the time of membrane swelling. Indicates a number. From FIG. 6, it can be seen that each of the pore filling membranes CLPE1 to CLPE4 has almost only antifreeze water.
  • FIG. 7 shows a graph with the functional group density obtained on the vertical axis and WU on the horizontal axis.
  • FIG. 7 shows that each of the pore filling films CLPE1 to CLPE4 has a functional group density of 2 mmol / g or more.
  • the solvent (fuel) permeation blocking ability was measured using the measurement method described above.
  • methanol and ammonia were used for the solvent.
  • the supply side was 10 wt% methanol solution (methanol permeation inhibition ability) and 10% ammonia water (ammonia permeation inhibition ability), respectively, and the permeation side was reverse osmosis water.
  • the obtained results are shown in FIG. 8, FIG. 9 and FIG. 8 to 10, it can be seen that the pore filling membranes CLPE1 to 4 having a functional group density of 2 mmol / g or more have a high solvent (fuel) permeation-preventing ability.
  • a pore filling membrane having almost only antifreeze water and having a high functional group density or a high functional group capacity has a high solvent permeation-preventing ability, but the ionic conductivity is Cast. because not seen so much reduced as compared to the membrane, OH - conductors, in particular OH - believed suitable for an electrolyte membrane having conductivity.
  • OH of the present invention - conductors for example as a solid alkaline fuel cell electrolyte membrane, the power generation efficiency of the cell, greatly contribute to durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a novel OH- conductor comprising an anion exchange polymer. The anion exchange polymer comprises at least unfreezable water among free water, bound water, and unfreezable water. The content of the free water is in the range of not more than 5 mol per mol of the functional group, the content of the bound water is in the range of not more than 1 mol per mol of the functional group, and the content of the unfreezable water is in the range of 0.1 to 10 mol per mol of the functional group. The OH- conductor comprises an anion exchange polymer filled into pores in a porous body. The anion exchange polymer preferably comprises an amidated polysulfone. The porous body preferably is formed of a porous film of a heat resistant crosslinked polyethylene. The ion conductivity of the OH- conductor is preferably in the range of not less than 0.0001 S/cm.

Description

OH-伝導体およびその製造方法OH-conductor and method for producing the same
 本発明は、新規なOH-伝導体に関する。また、本発明は、このOH-伝導体の新規な製造方法に関する。 The present invention relates to a novel OH - about the conductor. Further, the present invention, the OH - relates to a novel method for producing a conductor.
 全固体形アルカリ形燃料電池(SAFC)は、図1に示す反応により発電する燃料電池で、カソードからアノードへアニオン交換膜を介してOH-が伝導する。SAFCは、酸性のPEFCと比較して安価な金属を触媒に用いることができ(非特許文献1参照)、また、PEFCにおいては反応の進みにくい様々な液体燃料を用いることが可能であるため(非特許文献1参照)、自動車用燃料電池で特に課題となるコストやエネルギー密度などの問題を解決できるポテンシャルを有すると考えられる。ところが、燃料電池用電解質膜としての使用に耐えうる高性能なアニオン交換膜が存在しないため、自動車用途などではSAFCの研究はほとんどなされていないのが現状である。 An all solid alkaline fuel cell (SAFC) is a fuel cell that generates electricity by the reaction shown in FIG. 1, and OH is conducted from a cathode to an anode through an anion exchange membrane. SAFC can use cheaper metals as catalysts compared to acidic PEFC (see Non-Patent Document 1), and it is possible to use various liquid fuels that are difficult to proceed in PEFC ( (See Non-Patent Document 1), which is considered to have the potential to solve problems such as cost and energy density, which are particularly problems in fuel cells for automobiles. However, since there is no high-performance anion exchange membrane that can withstand use as an electrolyte membrane for a fuel cell, little research has been done on SAFC in automotive applications.
 アニオン交換膜の最大の問題点は、官能基の化学的安定性の低さである。それが高温においては特に顕著となり、時間とともにイオン伝導度の低下といった劣化を引き起こす(非特許文献2,3参照)。アニオン交換ポリマーの官能基としては4級アンモニウム基、特にベンジルトリメチルアミンが電離度が高く、かつ比較的安定性が高いため多く用いられている(非特許文献4参照)。4級アンモニウム基において、N原子はプラスチャージを帯びているが、それに伴って周囲のC原子の電子密度が低くなる。SAFC用電解質膜など、対イオンがOH-である場合は、これらのC原子へOH-が求核置換攻撃し、以下に示すように、メタノールが脱離してベンジルジメチルアミンとなる反応、もしくはトリメチルアミンが脱離してベンジルアルコールとなる反応が起こる(非特許文献2,5,6参照)。 The biggest problem with anion exchange membranes is the low chemical stability of the functional groups. This becomes particularly remarkable at high temperatures, and causes deterioration such as a decrease in ionic conductivity with time (see Non-Patent Documents 2 and 3). As a functional group of an anion exchange polymer, a quaternary ammonium group, particularly benzyltrimethylamine, is often used because of its high ionization degree and relatively high stability (see Non-Patent Document 4). In the quaternary ammonium group, the N atom is positively charged, but the electron density of the surrounding C atom decreases accordingly. Such as SAFC electrolyte membrane, the counter ion is OH - if it is, the to these C atoms OH - is a nucleophilic substitution attack, as shown below, the reaction methanol is desorbed by benzyldimethylamine, or trimethylamine Is eliminated to form benzyl alcohol (see Non-Patent Documents 2, 5, and 6).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、プロトン交換膜を用いたPEFCにおいては、一般に、充分な温度、湿度条件であれば膜の直流抵抗は問題とならないが、OH-はH+と比較して伝導度が低いため、膜の直流抵抗が電池性能において無視できない。高効率なSAFCの実現のためには0.01S/cm程度以上のイオン伝導度を示すアニオン交換膜が求められる。 In addition, in PEFC using a proton exchange membrane, the direct current resistance of the membrane is generally not a problem under sufficient temperature and humidity conditions, but OH has a lower conductivity than H + , so DC resistance is not negligible in battery performance. In order to realize a highly efficient SAFC, an anion exchange membrane having an ionic conductivity of about 0.01 S / cm or more is required.
 現在まで、自動車用電源などを想定したSAFC用アニオン交換膜として充分な耐熱性とOH-伝導度を示す膜は存在しない。耐熱性とOH-伝導度を両立させるためには、新しい発想によるアプローチが必要である。 To date, there is no membrane that exhibits sufficient heat resistance and OH - conductivity as an anion exchange membrane for SAFC that assumes power sources for automobiles. In order to achieve both heat resistance and OH - conductivity, a new concept approach is required.
 このSAFC用アニオン交換膜の課題、すなわち官能基の耐熱性と膜のイオン伝導度はいずれもOH-に関わる現象であり、アニオン交換膜中のOH-のモビリティを把握することが課題解決に向けて非常に重要になると考えられる。ところが、PEFCに関する研究が盛んになるとともに、Nafionに代表されるプロトン交換膜中のH+の伝導機構に関する研究が多くなされてきた一方で、アニオン交換膜中のOH-の伝導機構についての研究はほとんどなされていない。 Object of the SAFC for anion exchange membranes, i.e. any ionic conductivity of the heat resistance and film functional groups OH - a phenomenon related to, OH in the anion-exchange membrane - Toward problem solution to grasp the mobility It will be very important. However, along with study on PEFC is popular, while studies have many made which are related to H + conduction mechanism in proton exchange membrane represented by Nafion, OH in the anion-exchange membrane - studies on the conduction mechanism Little has been done.
 電解質膜中において、イオンのモビリティと水の状態は非常に密接な関係にある(非特許文献9参照)。一般に電解質膜中には、バルクの水と同じ状態である「自由水」と、官能基の影響を受けた固定水がある。固定水は融点が自由水より低く、-30℃~-5℃程度が融点のものを「束縛水」、それ以下の温度でも凍結しないものを「不凍水」という。不凍水においては、自由水の場合と比較してイオンのモビリティが著しく低くなり、アニオン交換膜中の水が全て不凍水であればOH-のC原子への求核置換攻撃を抑制できる可能性がある。 In the electrolyte membrane, the mobility of ions and the state of water are very closely related (see Non-Patent Document 9). In general, electrolyte membranes include “free water” that is in the same state as bulk water and fixed water that is affected by functional groups. Fixed water has a melting point lower than that of free water and has a melting point of about -30 ° C to -5 ° C is called "bound water", and water that does not freeze at lower temperatures is called "antifreeze water". In antifreeze, as compared with the case of free water will have significantly lower ion mobility, OH if water all antifreeze water in the anion exchange membrane - can suppress the nucleophilic substitution attack on the C atoms there is a possibility.
 すなわち耐熱性、OH-耐久性を向上させるためには、束縛水、より望ましくは不凍水から成るアニオン交換膜が望ましいと考えられる。しかしながら、実際に不凍水のみからなるようなアニオン交換膜、OH-伝導体もまったく報告されていないため、検証も行われていない。 That heat resistance, OH - in order to improve the durability, bound water, more preferably considered anion exchange membrane made of antifreeze is desirable. However, no anion exchange membrane or OH - conductor that actually consists only of antifreeze water has been reported, so no verification has been performed.
 上記のように膜中の水の状態を制御した電解質膜として、OH-ではないが、プロトン伝導性の膜がいくつか報告されている(例えば、特許文献1参照)。この膜ではプロトン酸基1個あたりの自由水の数を0.5個以下、束縛水・不凍水の個数を1個以下にすることにより、物質の拡散を低減させ、メタノール直接燃料電池用電解質膜として重要な特性である、膜を介したアノードからカソードへの燃料リーク即ちメタノールクロスオーバーの低減と高プロトン伝導性の両立に成功している。しかしながら、プロトン以外のイオンとは異なり、プロトン伝導機構はグロータス機構と呼ばれる特殊な伝導機構を有する。OH-伝導では、不凍水のみから成る膜で高伝導度を示す可能性は極めて低かった。 As electrolyte membrane controls the state of water in the membrane, as described above, OH - and is not, proton conductivity of the membrane have been reported several (e.g., see Patent Document 1). This membrane reduces the diffusion of substances by reducing the number of free water per protonic acid group to 0.5 or less and the number of bound / antifreeze water to 1 or less, for direct methanol fuel cells. It has succeeded in reducing fuel leakage from the anode to the cathode through the membrane, that is, an important characteristic of the electrolyte membrane, that is, reducing methanol crossover and high proton conductivity. However, unlike ions other than protons, the proton conduction mechanism has a special conduction mechanism called the Grotus mechanism. In OH - conduction, the possibility of high conductivity in a membrane consisting only of antifreeze water was extremely low.
 しかし、不凍水のみからなり、かつアニオン交換基が高密度で密集したような、新規なアニオン交換膜を提供することにより、新しい伝導機構で、水として不凍水のみを含有しながら高OH-伝導度を示し、かつ耐熱・耐久性に優れた新規なOH-伝導体を、アルカリ形固体燃料電池用途に供することができる可能性がある。 However, by providing a new anion exchange membrane that consists only of antifreeze water and in which anion exchange groups are dense and dense, it has a new conduction mechanism and contains only antifreeze water as a high OH content. - there is a possibility of a conductor, subjected to an alkali-shaped solid fuel cell applications - shows the conductivity, and novel OH with excellent heat-resistance.
特開2005-285334号公報。JP-A-2005-285334.
 本発明は、このような課題に鑑みてなされたものであり、新規なOH-伝導体を提供することを目的とする。
 また、本発明は、このOH-伝導体の新規な製造方法を提供することを目的とする。
The present invention has been made in view of such problems, a novel OH - and to provide a conductor.
Further, the present invention, the OH - and to provide a novel method for producing a conductor.
 上記課題を解決し、本発明の目的を達成するため、本発明のOH-伝導体は、ある態様として、アニオン交換ポリマーを含み、前記アニオン交換ポリマーは、自由水、束縛水、不凍水のうち少なくとも不凍水を含み、前記自由水は官能基1mol当たり5mol以下の範囲内にあり、前記束縛水は官能基1mol当たり1mol以下の範囲内にあり、前記不凍水は官能基1mol当たり0.1~10molの範囲内にある。 Order to solve the above problems and achieve the object of the present invention, OH of the present invention - conductors, as one embodiment, comprises an anion exchange polymer, the anion exchange polymer, free water, bound water, the antifreeze Among them, it contains at least antifreeze water, the free water is in a range of 5 mol or less per mol of functional groups, the bound water is in a range of 1 mol or less per mol of functional groups, and the antifreeze water is 0.1 mol per mol of functional groups. Within the range of ~ 10 mol.
 また、本発明は、他の態様として、上記態様の他に、又は上記態様に加えて、アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、該ポリマーは、乾燥状態で、官能基を、該ポリマー1g当たり、1.8mmol以上有する、OH伝導体を提供する。 The present invention also provides, as another embodiment, an OH - conductor having a polymer having a functional group having an anion exchange ability in addition to or in addition to the above embodiment, wherein the polymer is in a dry state. in, a functional group, per the polymer 1g, having more than 1.8 mmol, OH - providing conductor.
 さらに、本発明は、他の態様として、上記態様の他に、又は上記態様に加えて、アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、該ポポリマーを水で膨潤させた場合の前記官能基密度が、2mmol/g以上有する、OH伝導体を提供する。 Furthermore, the present invention provides, as another embodiment, an OH - conductor having a polymer having a functional group having an anion exchange ability in addition to or in addition to the above embodiment, wherein the polymer is swollen with water. the functional group density when obtained by has more than 2 mmol / g, OH - providing conductor.
 さらに、本発明は、他の態様として、上記態様の他に、又は上記態様に加えて、アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、水素を含有する液体燃料、例えばアルコール類、NH及びヒドラジンからなる群から選ばれる溶媒についての該OH伝導体の透過係数が2×10-6cm/s以下である、OH伝導体を提供する。 Furthermore, the present invention is, in another embodiment, in addition to the above embodiments, or in addition to the above embodiments, OH with a polymer having a functional group having an anion exchange capacity - a conductor, a liquid fuel containing hydrogen , such as alcohols, the OH of the solvent selected from the group consisting of NH 3 and hydrazine - permeability coefficient conductor is not more than 2 × 10 -6 cm 2 / s , OH - providing conductor.
 本発明のOH-伝導体は、アニオン交換ポリマーが多孔質体の細孔に充填されたものであるのがよい。 OH of the present invention - conductor may be between those anion exchange polymer is filled in the pores of the porous body.
 ここで、限定されるわけではないが、アニオン交換ポリマーは、アミノ化ポリスルホン、アミノ化ポリスチレンのいずれか一方または双方からなることが好ましい。また、限定されるわけではないが、多孔質体は、ガラス、アルミナ、若しくはシリカからなるセラミックス多孔体、または高密度ポリエチレン、耐熱性架橋ポリエチレン、ポリプロピレン、ポリイミド、若しくはPTFEからなる多孔フィルムから選ばれる1種、または2種以上の組み合わせからなることが好ましい。また、限定されるわけではないが、OH-伝導体のイオン伝導度は0.0001S/cm以上の範囲内にあることが好ましい。また、限定されるわけではないが、多孔質体の平均細孔径は10~10000nmの範囲内にあることが好ましい。また、限定されるわけではないが、多孔質体の空隙率は5~80%の範囲内にあることが好ましい。 Here, although not necessarily limited, the anion exchange polymer is preferably composed of either or both of aminated polysulfone and aminated polystyrene. Although not limited, the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is preferably composed of one type or a combination of two or more types. Also, but not limited, OH - ion conductivity of the conductor is preferably in the range of more than 0.0001 S / cm. Further, although not limited, it is preferable that the average pore diameter of the porous body is in the range of 10 to 10,000 nm. Although not limited, the porosity of the porous body is preferably in the range of 5 to 80%.
 また、本発明は、上述のOH伝導体を製造する方法を提供する。
 本発明のOH-伝導体の製造方法は、多孔質体の細孔にアニオン交換ポリマーを充填する方法であってもよい。
Further, the present invention is the above-mentioned OH - provides a method of producing a conductor.
OH of the present invention - the production method of the conductor may be a method of filling an anion-exchange polymer in the pores of the porous body.
 ここで、限定されるわけではないが、アニオン交換ポリマーは、アミノ化ポリスルホン、アミノ化ポリスチレンのいずれか一方または双方からなることが好ましい。また、限定されるわけではないが、多孔質体は、ガラス、アルミナ、若しくはシリカからなるセラミックス多孔体、または高密度ポリエチレン、耐熱性架橋ポリエチレン、ポリプロピレン、ポリイミド、若しくはPTFEからなる多孔フィルムから選ばれる1種、または2種以上の組み合わせからなることが好ましい。また、限定されるわけではないが、OH-伝導体のイオン伝導度は0.0001S/cm以上の範囲内にあることが好ましい。また、限定されるわけではないが、多孔質体の平均細孔径は10~10000nmの範囲内にあることが好ましい。また、限定されるわけではないが、多孔質体の空隙率は5~80%の範囲内にあることが好ましい。 Here, although not necessarily limited, the anion exchange polymer is preferably composed of either or both of aminated polysulfone and aminated polystyrene. Although not limited, the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is preferably composed of one type or a combination of two or more types. Also, but not limited, OH - ion conductivity of the conductor is preferably in the range of more than 0.0001 S / cm. Further, although not limited, it is preferable that the average pore diameter of the porous body is in the range of 10 to 10,000 nm. Although not limited, the porosity of the porous body is preferably in the range of 5 to 80%.
 具体的には、本発明者らは、以下の発明を見出した。
 <P1> アニオン交換ポリマーを含み、アニオン交換ポリマーは、自由水、束縛水、不凍水のうち、少なくとも不凍水を含み、自由水は、官能基1mol当たり、5mol以下の範囲内にあり、束縛水は、官能基1mol当たり、1mol以下の範囲内にあり、不凍水は、官能基1mol当たり、0.1~10molの範囲内にあるOH-伝導体。
 <P2> アニオン交換ポリマーが、多孔質体の細孔に充填されたOH-伝導体。
 <P3> 上記<P1>又は<P2>において、アニオン交換ポリマーは、アミノ化ポリスルホン、アミノ化ポリスチレンのいずれか一方または双方からなるのがよい。
Specifically, the present inventors have found the following invention.
<P1> contains an anion exchange polymer, the anion exchange polymer contains at least antifreeze water among free water, bound water, and antifreeze water, and the free water is in a range of 5 mol or less per 1 mol of the functional group, bound water per functional group 1 mol, in the range below 1 mol, antifreeze is per functional group 1 mol, OH is in the range of 0.1 ~ 10 mol - conductor.
<P2> anion exchange polymer, OH is filled in the pores of the porous body - conductor.
<P3> In the above <P1> or <P2>, the anion exchange polymer may be composed of one or both of aminated polysulfone and aminated polystyrene.
 <P4> 上記<P1>又は<P2>において、アニオン交換ポリマーは、アミノ化ポリスルホンからなるのがよい。
 <P5> 上記<P2>において、多孔質体は、ガラス、アルミナ、若しくはシリカからなるセラミックス多孔体、または高密度ポリエチレン、耐熱性架橋ポリエチレン、ポリプロピレン、ポリイミド、若しくはPTFEからなる多孔フィルムから選ばれる1種、または2種以上の組み合わせからなるのがよい。
 <P6> 上記<P2>において、多孔質体は、耐熱性架橋ポリエチレンからなるのがよい。
<P4> In the above <P1> or <P2>, the anion exchange polymer may be composed of an aminated polysulfone.
<P5> In the above <P2>, the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is good to consist of a seed | species or 2 or more types of combinations.
<P6> In the above <P2>, the porous body is preferably made of heat-resistant crosslinked polyethylene.
 <P7> 上記<P2>において、アニオン交換ポリマーは、アミノ化ポリスルホンからなり、多孔質体は、耐熱性架橋ポリエチレンからなるのがよい。
 <P8> 上記<P1>又は<P2>において、OH-伝導体のイオン伝導度は0.0001S/cm以上の範囲内にあるのがよい。
 <P9> 上記<P2>において、多孔質体の平均細孔径は10~10000nmの範囲内にあるのがよい。
 <P10> 上記<P2>において、多孔質体の空隙率は5~80%の範囲内にあるのがよい。
<P7> In the above <P2>, the anion exchange polymer is preferably made of an aminated polysulfone, and the porous body is preferably made of a heat-resistant crosslinked polyethylene.
<P8> In the above <P1> or <P2>, the ionic conductivity of the OH conductor may be in the range of 0.0001 S / cm or more.
<P9> In the above <P2>, the average pore diameter of the porous body is preferably in the range of 10 to 10,000 nm.
<P10> In the above <P2>, the porosity of the porous body is preferably in the range of 5 to 80%.
 <P11> アニオン交換ポリマーに含まれることがある、自由水、束縛水のうち、少なくとも自由水の量を制御する方法であって、自由水は、官能基1mol当たり、5mol以下の範囲内にあり、束縛水は、官能基1mol当たり、1mol以下の範囲内にあるOH-伝導体の製造方法。
 <P12> 多孔質体の細孔にアニオン交換ポリマーを充填するOH-伝導体の製造方法。
 <P13> 上記<P11>又は<P12>において、アニオン交換ポリマーは、アミノ化ポリスルホン、アミノ化ポリスチレンのいずれか一方または双方からなるのがよい。
<P11> A method of controlling at least the amount of free water among free water and bound water that may be contained in an anion exchange polymer, and the free water is within a range of 5 mol or less per 1 mol of functional groups. , bound water per functional group 1 mol, OH is in the range below 1 mol - method for manufacturing a conductor.
<P12> OH filled an anion-exchange polymer in the pores of the porous body - the production method of the conductor.
<P13> In the above <P11> or <P12>, the anion exchange polymer may be composed of one or both of aminated polysulfone and aminated polystyrene.
 <P14> 上記<P11>又は<P12>において、アニオン交換ポリマーは、アミノ化ポリスルホンからなるのがよい。
 <P15> 上記<P12>において、多孔質体は、ガラス、アルミナ、若しくはシリカからなるセラミックス多孔体、または高密度ポリエチレン、耐熱性架橋ポリエチレン、ポリプロピレン、ポリイミド、若しくはPTFEからなる多孔フィルムから選ばれる1種、または2種以上の組み合わせからなるのがよい。
 <P16> 上記<P12>において、多孔質体は、耐熱性架橋ポリエチレンからなるのがよい。
<P14> In the above <P11> or <P12>, the anion exchange polymer may be composed of an aminated polysulfone.
<P15> In the above <P12>, the porous body is selected from a ceramic porous body made of glass, alumina, or silica, or a porous film made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE It is good to consist of a seed | species or 2 or more types of combinations.
<P16> In the above <P12>, the porous body is preferably made of heat-resistant crosslinked polyethylene.
 <P17> 上記<P12>において、アニオン交換ポリマーは、アミノ化ポリスルホンからなり、多孔質体は、耐熱性架橋ポリエチレンからなるのがよい。
 <P18> 上記<P11>又は<P12>において、OH-伝導体のイオン伝導度は0.0001S/cm以上の範囲内にあるのがよい。
 <P19> 上記<P12>において、多孔質体の平均細孔径は10~10000nmの範囲内にあるのがよい。
 <P20> 上記<P12>において、多孔質体の空隙率は5~80%の範囲内にあるのがよい。
<P17> In the above <P12>, the anion exchange polymer may be made of aminated polysulfone, and the porous body may be made of heat-resistant crosslinked polyethylene.
<P18> In the above <P11> or <P12>, the ionic conductivity of the OH conductor may be in the range of 0.0001 S / cm or more.
<P19> In the above <P12>, the average pore diameter of the porous body is preferably in the range of 10 to 10,000 nm.
<P20> In the above <P12>, the porosity of the porous body is preferably in the range of 5 to 80%.
 また、本発明者らは、以下の発明を見出した。
 <1> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、該ポリマーは、不凍水を前記官能基1mol当たり、0.1~10mol有する、OH伝導体。
 <2> 上記<1>において、ポリマーは、自由水を前記官能基1mol当たり、5mol以下有し、且つ束縛水を前記官能基1mol当たり、1mol以下有するのがよい。
 <3> 上記<1>において、ポリマーは、自由水、束縛水及び不凍水のうち、不凍水のみを有するのがよい。
The present inventors have also found the following invention.
<1> OH with a polymer having a functional group having an anion exchange capacity - a conductor, the polymer is a non-freezing water per the functional group 1 mol, having 0.1 ~ 10 mol, OH - conductor.
<2> In the above item <1>, the polymer may have 5 mol or less of free water per 1 mol of the functional group and 1 mol or less of bound water per 1 mol of the functional group.
<3> In the above item <1>, the polymer may have only antifreeze water among free water, bound water and antifreeze water.
 <4> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、該ポリマーは、乾燥状態で、官能基を、該ポリマー1g当たり、1.8mmol以上、好ましくは2.0~4.0mmol、より好ましくは2.2~4.0mmol有する、OH伝導体。
 <5> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、ポリマーを水で膨潤させた場合の官能基密度が、2mmol/g以上、好ましくは2.1~4.0mmol/g、より好ましくは2.1~2.5mmol/g有する、OH伝導体。
 <6> 上記<5>において、ポリマーは、乾燥状態で、官能基を、ポリマー1g当たり、1.8mmol以上、好ましくは2.0~4.0mmol、より好ましくは2.2~4.0mmol有するのがよい。
<4> An OH - conductor having a polymer having a functional group having an anion exchange capacity, wherein the polymer has a functional group in a dry state of not less than 1.8 mmol per gram of the polymer, preferably 2.0 ~ 4.0mmol, more preferably 2.2 ~ 4.0mmol, OH - conductor.
<5> OH with a polymer having a functional group having an anion exchange capacity - a conductor, functional group density in the case where the polymer swollen with water, 2 mmol / g or more, preferably from 2.1 to 4. 0 mmol / g, more preferably 2.1 ~ 2.5mmol / g, OH - conductor.
<6> In the above item <5>, the polymer has a functional group in a dry state of 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4.0 mmol, per 1 g of the polymer. It is good.
 <7> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、水素を含有する液体燃料、例えばアルコール類、NH及びヒドラジンからなる群から選ばれる溶媒についての該OH伝導体の透過係数が2×10-6cm/s以下、好ましくは1.0×10-6cm/s以下、より好ましくは5.0×10-7cm/s以下である、OH伝導体。
 <8> 上記<7>において、ポリマーを水で膨潤させた場合の官能基密度が、2mmol/g以上、好ましくは2.1~4.0mmol/g、より好ましくは2.1~2.5mmol/g有するのがよい。
 <9> 上記<7>又は<8>において、ポリマーは、乾燥状態で、官能基を、ポリマー1g当たり、1.8mmol以上、好ましくは2.0~4.0mmol、より好ましくは2.2~4.0mmol有するのがよい。
<7> OH with a polymer having a functional group having an anion exchange capacity - a conductor, a liquid fuel such as alcohols containing hydrogen, the OH of the solvent selected from the group consisting of NH 3 and hydrazine - The transmission coefficient of the conductor is 2 × 10 −6 cm 2 / s or less, preferably 1.0 × 10 −6 cm 2 / s or less, more preferably 5.0 × 10 −7 cm 2 / s or less. OH conductor.
<8> In the above <7>, the functional group density when the polymer is swollen with water is 2 mmol / g or more, preferably 2.1 to 4.0 mmol / g, more preferably 2.1 to 2.5 mmol. / G.
<9> In the above item <7> or <8>, the polymer has a functional group in a dry state of 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4.0 g per 1 g of the polymer. It is good to have 4.0 mmol.
 <10> 上記<4>~<9>において、ポリマーは、不凍水を前記官能基1mol当たり、0.1~10mol有するのがよい。
 <11> 上記<10>において、ポリマーは、自由水を官能基1mol当たり、5mol以下有し、且つ束縛水を官能基1mol当たり、1mol以下有するのがよい。
 <12> 上記<10>において、ポリマーは、自由水、束縛水及び不凍水のうち、不凍水のみを有するのがよい。
 <13> 上記<1>~<12>のいずれかにおいて、OH伝導体は、多孔質体を有し、前記ポリマーが該多孔質体の細孔に充填されるのがよい。
<10> In the above items <4> to <9>, the polymer may have 0.1 to 10 mol of antifreeze water per mol of the functional group.
<11> In the above item <10>, the polymer may have 5 mol or less of free water per 1 mol of the functional group and 1 mol or less of bound water per 1 mol of the functional group.
<12> In the above item <10>, the polymer may have only antifreeze water among free water, bound water and antifreeze water.
<13> above <1> to in any one of <12>, OH - conductor has a porous body, it is preferable the polymer is filled in the pores of the porous body.
 <14> 上記<1>~<13>のいずれかにおいて、官能基は、4級アンモニウム基を有する基、好ましくは-R11-N12131411 で表される基(式中、R11は、炭素数0~6、好ましくは炭素数1~4の直鎖又は分岐鎖の二価の炭化水素基を示し、R12、R13及びR14は各々独立に、水素、炭素数1~2の直鎖又は分岐鎖の一価の炭化水素基を示し、X11 はアニオン、好ましくはCl、Br、I又はOHを示す)、より好ましくは-CH(CHClであるのがよい。
 <15> 上記<1>~<14>のいずれかにおいて、アニオン交換能を有する官能基を有するポリマーは、その主鎖骨格が、C1~C4からなる群から選ばれる少なくとも1種であるのがよい。
<14> In any one of the above items <1> to <13>, the functional group is a group having a quaternary ammonium group, preferably -R 11 -N + R 12 R 13 R 14 X 11 - a group represented by (Wherein R 11 represents a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and R 12 , R 13 and R 14 are each independently hydrogen, a linear or branched monovalent hydrocarbon group having 1 to 2 carbon atoms, X 11 - is an anion, preferably Cl -, Br -, I - or OH - shows a), more preferably - It may be CH 2 N + (CH 3 ) 3 Cl .
<15> In any one of the above items <1> to <14>, the polymer having a functional group having anion exchange ability may have at least one main chain skeleton selected from the group consisting of C1 to C4. Good.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 <16> 上記<1>~<15>のいずれかにおいて、アニオン交換能を有する官能基を有するポリマーが、下記式C-Iであるか、又は該ポリマーの架橋体であって下記式C-IIで表される架橋体であるのがよい。式中、m、m1及びm2は各々独立に10~100の整数を示す。ここで、WはPh、Ph-Ph、又はPh-C(CH-Phであり、Phはフェニレン基である。また、Wにおいてフェニレン基の少なくとも一部は-(CH)sX(sは1~5の整数、XはCl、Br、Iまたは-NR(R及びRは独立に、水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基である。))で置換され、且つフェニレン基の少なくとも一部は4級アンモニウム基を有する基、好ましくは-R11-N12131411 で表される基(式中、R11は、炭素数0~6、好ましくは炭素数1~4の直鎖又は分岐鎖の二価の炭化水素基を示し、R12、R13及びR14は各々独立に、水素、炭素数1~2の直鎖又は分岐鎖の一価の炭化水素基を示し、X11 はアニオン、好ましくはCl、Br、I又はOHを示す)、より好ましくは-CH(CHClで置換されるのがよい。下記式C-IIにおいて、Wは上述で同じ定義を有し、Yは二価の基を示す。Yは、例えば上述の-(CH)sX基を介する2価の基であり、例えば-(CHs1-N212221 -R23-N242522 -(CHs2-であるのがよい。ここで、s1及びs2は各々独立に1~5の整数であり、R21、R22、R24及びR25は各々独立に、水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基を示し、R23は炭素数1~5の二価の炭化水素基を示す。X21 及びX22 は各々独立にアニオン、好ましくはCl、Br、I又はOHを示す。 <16> In any one of the above items <1> to <15>, the polymer having a functional group having anion exchange ability is represented by the following formula CI, or a crosslinked product of the polymer, wherein A cross-linked product represented by II is preferable. In the formula, m, m1 and m2 each independently represents an integer of 10 to 100. Here, W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group. In W, at least a part of the phenylene group is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, or —NR 1 R 2 (R 1 and R 2 are independently hydrogen A group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms))), and at least a part of the phenylene group has a quaternary ammonium group, preferably —R 11 —. A group represented by N + R 12 R 13 R 14 X 11 (wherein R 11 is a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms; R 12 , R 13 and R 14 each independently represent hydrogen, a linear or branched monovalent hydrocarbon group having 1 to 2 carbon atoms, X 11 represents an anion, preferably Cl , br -, I - or OH - shows a), more preferably -C 2 N + (CH 3) 3 Cl - it is being replaced with. In the following formula C-II, W has the same definition as described above, and Y represents a divalent group. Y is, for example, a divalent group via the above-described — (CH 2 ) sX group. For example, — (CH 2 ) s1 —N + R 21 R 22 X 21 —R 23 —N + R 24 R 25 X It may be 22 — (CH 2 ) s2 —. Here, s1 and s2 are each independently an integer of 1 to 5, and R 21 , R 22 , R 24 and R 25 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. And R 23 represents a divalent hydrocarbon group having 1 to 5 carbon atoms. X 21 - and X 22 - is independently an anion, preferably Cl -, Br -, I - or OH - shows the.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 <17> 上記<13>~<16>のいずれかにおいて、多孔質体は、ガラス、アルミナ、若しくはシリカからなるセラミックス多孔体、または高密度ポリエチレン、耐熱性架橋ポリエチレン、ポリプロピレン、ポリイミド、若しくはPTFEからなる多孔フィルムから選ばれる1種、または2種以上の組み合わせからなるのがよい。
 <18> 上記<17>において、多孔質体は、耐熱性架橋ポリエチレンからなるのがよい。
 <19> 上記<13>~<18>のいずれかにおいて、多孔質体の平均細孔径が10~10000nmであるのがよい。
 <20> 上記<13>~<19>のいずれかにおいて、多孔質体の空隙率が5~80%の範囲内であるのがよい。
 <21> 上記<1>~<20>のいずれかにおいて、OH伝導体のOHイオン伝導度が0.0001S/cm以上であるのがよい。
<17> In any one of the above items <13> to <16>, the porous body is a ceramic porous body made of glass, alumina, or silica, or high density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is good to consist of 1 type chosen from the porous film which becomes, or a combination of 2 or more types.
<18> In the above item <17>, the porous body may be made of heat-resistant crosslinked polyethylene.
<19> In any one of the above items <13> to <18>, the average pore diameter of the porous body is preferably 10 to 10,000 nm.
<20> In any one of the above items <13> to <19>, the porosity of the porous body is preferably in the range of 5 to 80%.
<21> In any one of the above items <1> to <20>, the OH conductor may have an OH ion conductivity of 0.0001 S / cm or more.
 <22> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
 A)アニオン交換能を有する官能基を有するポリマーを準備する工程;及び
 B1)前記ポリマーに含まれることがある、自由水、束縛水のうち、少なくとも自由水の量を制御する工程;を有し、
 前記自由水は、官能基1mol当たり、5mol以下の範囲内にあり、
 前記束縛水は、官能基1mol当たり、1mol以下の範囲内にある、上記方法。
 <23> 上記<22>において、ポリマーが不凍水を前記官能基1mol当たり、0.1~10mol有するのがよい。
 <24> 上記<22>において、ポリマーが不凍水のみを有し、該不凍水を前記官能基1mol当たり、0.1~10mol有するのがよい。
<22> A method for producing an OH - conductor having a polymer having a functional group having anion exchange ability,
A) preparing a polymer having a functional group having an anion exchange ability; and B1) controlling at least the amount of free water among free water and bound water that may be contained in the polymer. ,
The free water is in a range of 5 mol or less per 1 mol of the functional group,
The above-mentioned method, wherein the bound water is in the range of 1 mol or less per 1 mol of the functional group.
<23> In the above item <22>, the polymer may have 0.1 to 10 mol of antifreeze water per mol of the functional group.
<24> In the above item <22>, the polymer preferably has only antifreeze water, and the antifreeze water may have 0.1 to 10 mol per mol of the functional group.
 <25> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
 A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
 C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
を有し、
 前記ポリマーが、不凍水を前記官能基1mol当たり、0.1~10mol有する、上記方法。
 <26> 上記<25>において、ポリマーは、自由水を前記官能基1mol当たり、5mol以下有し、且つ束縛水を前記官能基1mol当たり、1mol以下有するのがよい。
 <27> 上記<25>において、ポリマーは、自由水、束縛水及び不凍水のうち、不凍水のみを有するのがよい。
<25> A method for producing an OH - conductor having a polymer having a functional group having anion exchange ability,
A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
Have
The method as described above, wherein the polymer has 0.1 to 10 mol of antifreeze water per mol of the functional group.
<26> In the above item <25>, the polymer may have 5 mol or less of free water per 1 mol of the functional group, and 1 mol or less of bound water per 1 mol of the functional group.
<27> In the above <25>, the polymer may have only antifreeze water among free water, bound water and antifreeze water.
 <28> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
 A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
 C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
を有し、
 前記ポリマーは、乾燥状態で、前記官能基が該ポリマー1g当たり、1.8mmol以上、好ましくは2.0~4.0mmol、より好ましくは2.2~4.0mmol有する、上記方法。
<28> A method for producing an OH - conductor having a polymer having a functional group having anion exchange ability,
A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
Have
The above-mentioned method, wherein the polymer has a functional group of 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4.0 mmol per 1 g of the polymer in a dry state.
 <29> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
 A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
 C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
を有し、
 前記ポリマーを水で膨潤させた場合の前記官能基密度が、2mmol/g以上、好ましくは2.1~4.0mmol/g、より好ましくは2.1~2.5mmol/g有する、上記方法。
 <30> 上記<29>において、ポリマーは、乾燥状態で、前記官能基を、前記ポリマー1g当たり、1.8mmol以上、好ましくは2.0~4.0mmol、より好ましくは2.2~4.0mmol有するのがよい。
OH with a polymer having a functional group having a <29> anion exchange capacity - a process for the preparation of the conductor,
A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
Have
The above method, wherein the functional group density when the polymer is swollen with water is 2 mmol / g or more, preferably 2.1 to 4.0 mmol / g, more preferably 2.1 to 2.5 mmol / g.
<30> In the above item <29>, the polymer is in a dry state, and the functional group is 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2.2 to 4. It is good to have 0 mmol.
 <31> アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
 A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
 C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
を有し、
 水素を含有する液体燃料、例えばアルコール類、NH及びヒドラジンからなる群から選ばれる溶媒についての該OH伝導体の透過係数が2×10-6cm/s以下、好ましくは1.0×10-6cm/s以下、より好ましくは5.0×10-7cm/s以下である、上記方法。
 <32> 上記<31>において、ポリマーを水で膨潤させた場合の前記官能基密度が、2mmol/g以上、好ましくは2.1~4.0mmol/g、より好ましくは2.1~2.5mmol/g有するのがよい。
<31> OH with a polymer having a functional group having an anion exchange capacity - a process for the preparation of the conductor,
A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
Have
The permeability coefficient of the OH conductor for a liquid fuel containing hydrogen, for example a solvent selected from the group consisting of alcohols, NH 3 and hydrazine, is 2 × 10 −6 cm 2 / s or less, preferably 1.0 × The above method, which is 10 −6 cm 2 / s or less, more preferably 5.0 × 10 −7 cm 2 / s or less.
<32> In the above item <31>, the density of the functional group when the polymer is swollen with water is 2 mmol / g or more, preferably 2.1 to 4.0 mmol / g, more preferably 2.1 to 2. It is good to have 5 mmol / g.
 <33> 上記<31>又は<32>において、ポリマーは、乾燥状態で、前記官能基を、前記ポリマー1g当たり、1.8mmol以上、好ましくは2.0~4.0mmol、より好ましくは2.2~4.0mmol有するのがよい。
 <34> 上記<29>~<33>のいずれかにおいて、ポリマーは、不凍水を前記官能基1mol当たり、0.1~10mol有するのがよい。
 <35> 上記<34>において、ポリマーは、自由水を官能基1mol当たり、5mol以下有し、且つ束縛水を官能基1mol当たり、1mol以下有するのがよい。
 <36> 上記<34>において、ポリマーは、自由水、束縛水及び不凍水のうち、不凍水のみを有するのがよい。
<33> In the above <31> or <32>, the polymer is in a dry state, and the functional group is 1.8 mmol or more, preferably 2.0 to 4.0 mmol, more preferably 2. It is preferable to have 2 to 4.0 mmol.
<34> In any one of the above items <29> to <33>, the polymer may have 0.1 to 10 mol of antifreeze water per mol of the functional group.
<35> In the above item <34>, the polymer may have 5 mol or less of free water per 1 mol of the functional group and 1 mol or less of bound water per 1 mol of the functional group.
<36> In the above item <34>, the polymer may have only antifreeze water among free water, bound water and antifreeze water.
 <37> 上記<25>~<36>のいずれかにおいて、D)細孔内の前記ポリマーを架橋させる工程;をさらに有するのがよい。
 <38> 上記<22>~<37>のいずれかにおいて、官能基は、4級アンモニウム基を有する基、好ましくは-R11-N12131411 で表される基(式中、R11は、炭素数0~6、好ましくは炭素数1~4の直鎖又は分岐鎖の二価の炭化水素基を示し、R12、R13及びR14は各々独立に、水素、炭素数1~2の直鎖又は分岐鎖の一価の炭化水素基を示し、X11 はアニオン、好ましくはCl又はOHを示す)、より好ましくは-CH(CHClであるのがよい。
 <39> 上記<22>~<38>のいずれかにおいて、アニオン交換能を有する官能基を有するポリマーは、その主鎖骨格が、C1~C4からなる群から選ばれる少なくとも1種であるのがよい。
<37> In any one of the above items <25> to <36>, it may further include D) a step of crosslinking the polymer in the pores.
<38> In any one of the above items <22> to <37>, the functional group is a group having a quaternary ammonium group, preferably -R 11 -N + R 12 R 13 R 14 X 11 - a group represented by (Wherein R 11 represents a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and R 12 , R 13 and R 14 are each independently hydrogen, a linear or branched monovalent hydrocarbon group having 1 to 2 carbon atoms, X 11 - is an anion, preferably Cl - or OH - are shown), and more preferably -CH 2 N + (CH 3) 3 Cl - and it's good.
<39> In any one of the above items <22> to <38>, the polymer having a functional group having anion exchange ability may have at least one main chain skeleton selected from the group consisting of C1 to C4. Good.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 <40> 上記<22>~<39>のいずれかにおいて、アニオン交換能を有する官能基を有するポリマーが、下記式C-Iであるか、又は該ポリマーの架橋体であって下記式C-IIで表される架橋体であるのがよい。式中、m、m1及びm2は各々独立に10~100の整数を示す。ここで、WはPh、Ph-Ph、又はPh-C(CH-Phであり、Phはフェニレン基である。また、Wにおいてフェニレン基の少なくとも一部は-(CH)sX(sは1~5の整数、XはCl、Br、Iまたは-NR(R及びRは独立に、水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基である。))で置換され、且つフェニレン基の少なくとも一部は4級アンモニウム基を有する基、好ましくは-R11-N12131411 で表される基(式中、R11は、炭素数0~6、好ましくは炭素数1~4の直鎖又は分岐鎖の二価の炭化水素基を示し、R12、R13及びR14は各々独立に、水素、炭素数1~2の直鎖又は分岐鎖の一価の炭化水素基を示し、X11 はアニオン、好ましくはCl、Br、I又はOHを示す)、より好ましくは-CH(CHClで置換されるのがよい。下記式C-IIにおいて、Wは上述で同じ定義を有し、Yは二価の基を示す。Yは、例えば上述の-(CH)sX基を介する2価の基であり、例えば-(CHs1-N212221 -R23-N242522 -(CHs2-であるのがよい。ここで、s1及びs2は各々独立に1~5の整数であり、R21、R22、R24及びR25は各々独立に、水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基を示し、R23は炭素数1~5の二価の炭化水素基を示す。X21 及びX22 は各々独立にアニオン、好ましくはCl、Br、I又はOHを示す。 <40> In any one of the above items <22> to <39>, the polymer having a functional group having anion exchange ability is represented by the following formula CI, or a crosslinked product of the polymer, wherein A cross-linked product represented by II is preferable. In the formula, m, m1 and m2 each independently represents an integer of 10 to 100. Here, W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group. In W, at least a part of the phenylene group is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, or —NR 1 R 2 (R 1 and R 2 are independently hydrogen A group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms))), and at least a part of the phenylene group has a quaternary ammonium group, preferably —R 11 —. A group represented by N + R 12 R 13 R 14 X 11 (wherein R 11 is a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms; R 12 , R 13 and R 14 each independently represent hydrogen, a linear or branched monovalent hydrocarbon group having 1 to 2 carbon atoms, X 11 represents an anion, preferably Cl , br -, I - or OH - shows a), more preferably -C 2 N + (CH 3) 3 Cl - it is being replaced with. In the following formula C-II, W has the same definition as described above, and Y represents a divalent group. Y is, for example, a divalent group via the above-described — (CH 2 ) sX group. For example, — (CH 2 ) s1 —N + R 21 R 22 X 21 —R 23 —N + R 24 R 25 X It may be 22 — (CH 2 ) s2 —. Here, s1 and s2 are each independently an integer of 1 to 5, and R 21 , R 22 , R 24 and R 25 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. And R 23 represents a divalent hydrocarbon group having 1 to 5 carbon atoms. X 21 - and X 22 - is independently an anion, preferably Cl -, Br -, I - or OH - shows the.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 <41> 上記<25>~<40>のいずれかにおいて、多孔質体は、ガラス、アルミナ、若しくはシリカからなるセラミックス多孔体、または高密度ポリエチレン、耐熱性架橋ポリエチレン、ポリプロピレン、ポリイミド、若しくはPTFEからなる多孔フィルムから選ばれる1種、または2種以上の組み合わせからなるのがよい。
 <42> 上記<41>において、多孔質体は、耐熱性架橋ポリエチレンからなるのがよい。
 <43> 上記<25>~<42>のいずれかにおいて、多孔質体の平均細孔径が10~10000nmであるのがよい。
<41> In any one of the above items <25> to <40>, the porous body is a ceramic porous body made of glass, alumina, or silica, or high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, or PTFE. It is good to consist of 1 type chosen from the porous film which becomes, or a combination of 2 or more types.
<42> In the above item <41>, the porous body may be made of heat-resistant crosslinked polyethylene.
<43> In any one of the above items <25> to <42>, the average pore diameter of the porous body is preferably 10 to 10,000 nm.
 <44> 上記<25>~<43>のいずれかにおいて、多孔質体の空隙率が5~80%の範囲内であるのがよい。
 <45> 上記<22>~<44>のいずれかにおいて、OH伝導体のOHイオン伝導度が0.0001S/cm以上であるのがよい。
<44> In any one of the above items <25> to <43>, the porosity of the porous body is preferably in the range of 5 to 80%.
<45> In any one of the above <22> ~ <44>, OH - OH conductors - ion conductivity may be between at 0.0001 S / cm or more.
 本発明は、新規なOH-伝導体を提供することができる。
 また、本発明は、新規なOH-伝導体の製造方法を提供することができる。
The present invention relates to novel OH - can provide conductor.
Further, the present invention relates to novel OH - it is possible to provide a manufacturing method of the conductor.
全固体形アルカリ形燃料電池(SAFC)内における化学反応を示す図である。FIG. 3 is a diagram showing a chemical reaction in an all solid alkaline fuel cell (SAFC). キャスト膜および細孔フィリング膜についての、低温DSC測定の結果を示す図である。It is a figure which shows the result of the low-temperature DSC measurement about a cast film | membrane and a pore filling film | membrane. キャスト膜および細孔フィリング膜の、官能基1mol当たりに含まれる自由水、束縛水、不凍水のmol数を計算した結果を示す図である。It is a figure which shows the result of having calculated the mol number of the free water, the bound water, and the antifreeze water which are contained per 1 mol of functional groups of a cast membrane and a pore filling membrane. キャスト膜および細孔フィリング膜の、AM-APS1mg当たりに含まれる自由水、束縛水、不凍水の重量を計算した結果を示す図である。It is a figure which shows the result of having calculated the weight of the free water, the bound water, and antifreeze water which are contained per 1 mg of AM-APS of a cast membrane and a pore filling membrane. 90℃、相対湿度100%の条件下における、キャスト膜および細孔フィリング膜のイオン伝導度の経時変化を示す図である。FIG. 3 is a graph showing changes over time in ion conductivity of cast membrane and pore filling membrane under conditions of 90 ° C. and relative humidity of 100%. 実施例2~5のキャスト膜および細孔フィリング膜の自由水、束縛水、不凍水の測定結果を示す図である。FIG. 6 is a diagram showing measurement results of free water, bound water, and antifreeze water of cast membranes and pore filling membranes of Examples 2 to 5. 実施例2~5のキャスト膜および細孔フィリング膜の官能基密度及びWUの測定結果を示す図である。FIG. 6 is a graph showing the measurement results of the functional group density and WU of cast films and pore filling films of Examples 2 to 5. 実施例2~5のキャスト膜および細孔フィリング膜のメタノール(MeOH)及びNHの透過係数の測定結果を示す図である。FIG. 6 is a graph showing the measurement results of methanol (MeOH) and NH 3 permeation coefficients of cast membranes and pore filling membranes of Examples 2 to 5. 実施例2~5のキャスト膜および細孔フィリング膜のメタノール(MeOH)透過係数と官能基密度との関係を示す図である。FIG. 6 is a graph showing the relationship between the methanol (MeOH) permeability coefficient and the functional group density of the cast membranes and pore filling membranes of Examples 2 to 5. 実施例2~5のキャスト膜および細孔フィリング膜のNH透過係数と官能基密度との関係を示す図である。FIG. 6 is a graph showing the relationship between the NH 3 permeability coefficient and the functional group density of cast films and pore filling films of Examples 2 to 5. 実施例2~5の細孔フィリング膜のイオン伝導度とCast1(実施例2)のイオン伝導度との関係を示す図である。FIG. 6 is a graph showing the relationship between the ionic conductivity of the pore filling membranes of Examples 2 to 5 and the ionic conductivity of Cast1 (Example 2).
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、OH-伝導体およびその製造方法にかかる発明を実施するための形態について説明する。
 OH-伝導体の製造方法について説明する。
 OH-伝導体の製造方法は、水溶液中で膨潤平衡に達したアニオン交換ポリマーに含まれることがある、自由水、束縛水のうち、少なくとも自由水の量を制御する方法である。また、OH-伝導体の製造方法は、多孔質体の細孔にアニオン交換ポリマーを充填する方法である。
Hereinafter, OH - described embodiments of the invention according to the conductor and its manufacturing method.
A method for producing the OH - conductor will be described.
OH - method for manufacturing a conductor, may be included in an anion exchange polymer reached swelling equilibrium in aqueous solution, free water, of the bound water is a method of controlling the amount of at least free water. Further, OH - method of manufacturing a conductor is a method of filling an anion-exchange polymer in the pores of the porous body.
 本願において、「束縛水」とは融点が-30℃~-5℃の水をいい、「不凍水」とは、融点が-30℃以下の水をいい、「自由水」とは、融点が-5℃以上のものをいう。
 具体的には、次のように、「自由水」、「束縛水」及び「不凍水」を測定することができる。即ち、試料を、25℃で、24時間、水中に浸漬させた後、表面に付着した水を拭き取った。この試料を、低温DSCで測定する。測定条件は、20℃から-50℃まで20℃/分の速度で冷却し、その後、20℃まで5.0℃/分の速度で昇温する。ベースラインを-30℃~10℃に取り、昇温過程における水の融解吸熱ピーク面積を解析した。0℃におけるシャープな融解吸熱ピークを自由水に、0℃以下におけるブロードな融解吸熱ピークを束縛水に帰属して、定量分析を行った。測定後に、試料を90℃で4時間真空乾燥し、自由水・束縛水・不凍水の全てを除いた乾燥重量を測定して、全含水量を求めた。低温DSC測定で求めた自由水及び束縛水の量と全含水量との差を不凍水の量とした。その後、これらの自由水・束縛水・不凍水の量を、試料中のアニオン交換基を有する官能基の量で規格化した。
In the present application, “bound water” means water having a melting point of −30 ° C. to −5 ° C., “antifreeze water” means water having a melting point of −30 ° C. or less, and “free water” means melting point. Means that the temperature is -5 ° C or higher.
Specifically, “free water”, “bound water” and “antifreeze water” can be measured as follows. That is, the sample was immersed in water at 25 ° C. for 24 hours, and then water adhered to the surface was wiped off. This sample is measured by low temperature DSC. The measurement conditions are cooling from 20 ° C. to −50 ° C. at a rate of 20 ° C./min, and then increasing the temperature to 20 ° C. at a rate of 5.0 ° C./min. The baseline was taken at −30 ° C. to 10 ° C., and the melting endothermic peak area of water during the temperature rising process was analyzed. A sharp melting endothermic peak at 0 ° C. was assigned to free water, and a broad melting endothermic peak at 0 ° C. or lower was assigned to bound water for quantitative analysis. After the measurement, the sample was vacuum-dried at 90 ° C. for 4 hours, and the dry weight excluding all free water, bound water and antifreeze water was measured to determine the total water content. The difference between the amount of free water and bound water obtained by low temperature DSC measurement and the total water content was defined as the amount of antifreeze water. Thereafter, the amounts of these free water, bound water and antifreeze water were normalized by the amount of functional groups having anion exchange groups in the sample.
 アニオン交換ポリマー、即ちアニオン交換能を有する官能基を有するポリマーの官能基の量は、次のように求めることができる。
 即ち、試料を1M NaSO水溶液に6時間以上浸漬することによって、対イオンをClからSO イオンに置換し、放出されたClの量を、モール法、即ち指示薬の5%KCrO水溶液を数滴垂らし、0.1M HCl水溶液を滴下、呈色反応を利用して定量した。溶液中に放出されたClの量は、アニオン交換能を有する官能基の量に等しいため、これにより該官能基量を定量することができる。
 なお、滴定による算出が不能な程度の少量の場合、いくつかの試料により検量線を作成し、その検量線を用いて、アニオン交換能を有する官能基の量を求めることができる。
 本願において、OH伝導体中のポリマーは、乾燥状態で、官能基を、該ポリマー1g当たり、1.8mmol以上、好ましくは2.0~4.0mmol、より好ましくは2.2~4.0mmol有するのがよい。
The amount of the functional group of the anion exchange polymer, that is, the polymer having a functional group having an anion exchange ability can be determined as follows.
That is, by immersing the sample 1M Na 2 SO 4 aqueous solution at least 6 hours, counterion Cl - was substituted with ion released Cl - - SO 4 from the amount of molding method, i.e., 5% of the indicator A few drops of K 2 CrO 4 aqueous solution was dropped, 0.1M HCl aqueous solution was dropped, and quantitative determination was performed using a color reaction. Since the amount of Cl released into the solution is equal to the amount of the functional group having anion exchange ability, the amount of the functional group can be quantified.
When the amount is too small to be calculated by titration, a calibration curve can be created using several samples, and the amount of functional group having anion exchange ability can be determined using the calibration curve.
In the present application, OH - polymer in conductor is in a dry state, a functional group, per the polymer 1g, more 1.8 mmol, preferably 2.0 ~ 4.0 mmol, more preferably 2.2 ~ 4.0 mmol It is good to have.
 また、官能基密度は、上記で得られたアニオン交換能を有する官能基の量を用い、さらに、本発明のOH伝導体(試料)を水に浸して数日放置した後での、試料中の水の量と試料自身の重さの合計である「膨潤時の試料重量」を測定することにより、求めることができる。即ち、本願において、「官能基密度」とは、「アニオン交換能を有する官能基の量」を「膨潤時の試料重量」で除した値である。
 本願において、OH伝導体は、官能基密度が、2mmol/g以上、好ましくは2.1~4.0mmol/g、より好ましくは2.1~2.5mmol/g有するのがよい。
Further, the functional group density, using the amount of the functional group having an anion exchange capacity obtained above, further, the present invention OH - in after conductor (sample) was left for a few days immersed in water, the sample It can be determined by measuring the “sample weight during swelling”, which is the sum of the amount of water in the sample and the weight of the sample itself. That is, in this application, “functional group density” is a value obtained by dividing “amount of functional group having anion exchange ability” by “sample weight during swelling”.
In the present application, OH - conductors, the functional group density, 2 mmol / g or more, preferably 2.1 ~ 4.0 mmol / g, more preferably may have 2.1 ~ 2.5mmol / g.
 アニオン交換ポリマー、即ちアニオン交換能を有する官能基を有するポリマーは、次のものを挙げることができる。
<アニオン交換能を有する官能基>
 アニオン交換能を有する官能基は、文字通りの意味を有する。該官能基として、強塩基を有する基、具体的にはpKbが6以下、好ましくは5~0.1である基を有する基であるのがよく、例えば、4級アンモニウム塩(-Nで表すことができる。ここで、R~Rは互いに同一または異なる水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基、Aはアニオンである)を有する基を挙げることができる。
 アニオン交換能を有する官能基は、ポリマー主鎖にペンダント状に配置することができる。例えば、主鎖がポリスルホン及び/又はポリビフェニレンである場合、該主鎖に4級アンモニウム塩が、二価の炭化水素基(二価の炭化水素基は、-(CHで表すことができ、sは0~6、好ましくは1~4の整数である)を介して、配置することができる
Examples of the anion exchange polymer, that is, a polymer having a functional group having an anion exchange ability include the following.
<Functional group having anion exchange ability>
A functional group having anion exchange capacity has a literal meaning. The functional group may be a group having a strong base, specifically a group having a pKb of 6 or less, preferably 5 to 0.1. For example, a quaternary ammonium salt (—N + R can be represented by wherein, R 3 ~ R 5 are mutually the same or different hydrogen, alkyl group or hydroxyalkyl group having 1 to 5 carbon atoms having 1 to 5 carbon atoms, a - - 3 R 4 R 5 a. the A group having an anion).
The functional group having anion exchange ability can be arranged in a pendant form on the polymer main chain. For example, when the main chain is polysulfone and / or polybiphenylene, a quaternary ammonium salt may be represented by a divalent hydrocarbon group (the divalent hydrocarbon group may be represented by — (CH 2 ) s ). S is an integer from 0 to 6, preferably from 1 to 4)
<アニオン交換能を有する官能基を有するポリマーの主鎖>
 アニオン交換ポリマー、即ちアニオン交換能を有する官能基を有するポリマーの主鎖は、上述のアニオン交換能を有する官能基を有するものであれば、特に限定されないが、例えば、以下のC1~C4の繰り返し単位を少なくとも1種有するものであるのがよく、好ましくはC1~C3の繰り返し単位を少なくとも1種有するものであるのがよい。また、C1~C4の繰り返し単位を複数種有する場合、それらを-O-などで介して結合するのがよい。
<Main chain of polymer having functional group having anion exchange ability>
The main chain of the anion exchange polymer, that is, the polymer having a functional group having anion exchange ability is not particularly limited as long as it has the above-described functional group having anion exchange ability. For example, the following C1 to C4 repetitions are performed. It should have at least one type of unit, and preferably has at least one type of repeating unit of C1 to C3. Further, when a plurality of C1 to C4 repeating units are used, they are preferably bonded through —O— or the like.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 アニオン交換ポリマーとしては、下記式(I)~(III)などに示されるアミノ化ポリスルホンやアミノ化ポリスチレンなどから選ばれる1種、または2種以上の組み合わせからなるものを採用することができる。下記式(I)及び(II)で、WはPh、Ph-Ph、またはPh-C(CH3)2-Phであり、Phはフェニレン基である。ただし、Wにおいて芳香族環に結合した水素原子の少なくとも1個は-(CH2)sX(sは1~5の整数、XはCl、Br、I、ヒドロキシル基または-NR1R2)で置換されてなる。ここで、R1、R2は互いに同一または異なる水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基である。Q1およびQ2は互いに同一または異なる炭素数1~8の炭化水素基またはフッ素原子を示す。a、bは0~4の整数、a+bは0~8である。なお、下記式(I)において、Xの一部は-N+R3R4R5A-で置換されている。ここで、R3~R5は互いに同一または異なる水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基、Aはアニオンである。下記式(II)において、YおよびZは互いに異なるO、O-Ph-O、O-Ph-Ph-O、O-Ph-C(CH3)2-Ph-O、Sであり、Phはフェニレン基である。mは10~100であり、nは0~100である。下記式(III)で、Aは、炭素数3~8のアルキレン基または総炭素数4~9のアルキレンオキシアルキル基を表す。R1、R2、R3はそれぞれ水素原子、又は炭素数1~6のアルキル基、ヒドロキシアルキル基を表す。X-は、アニオンを表す。ベンゼン環に結合している水素原子はアルキル基またはハロゲン原子で置換されていてもよい。 As the anion exchange polymer, one selected from aminated polysulfone represented by the following formulas (I) to (III), aminated polystyrene, or the like, or a combination of two or more types can be employed. In the following formulas (I) and (II), W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group. However, at least one hydrogen atom bonded to the aromatic ring in W is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, hydroxyl group or —NR 1 R 2 ). It is replaced. Here, R 1 and R 2 are the same or different hydrogen, an alkyl group having 1 to 5 carbon atoms, or a hydroxyalkyl group having 1 to 5 carbon atoms. Q 1 and Q 2 represent the same or different hydrocarbon groups having 1 to 8 carbon atoms or fluorine atoms. a and b are integers of 0 to 4, and a + b is 0 to 8. In the following formula (I), the portion of X is -N + R 3 R 4 R 5 A - is substituted with. Here, R 3 to R 5 are the same or different from each other, an alkyl group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms, and A is an anion. In the following formula (II), Y and Z are different from each other O, O-Ph-O, O-Ph-Ph-O, O-Ph-C (CH 3 ) 2 -Ph-O, S, and Ph is A phenylene group. m is 10 to 100, and n is 0 to 100. In the following formula (III), A represents an alkylene group having 3 to 8 carbon atoms or an alkyleneoxyalkyl group having 4 to 9 carbon atoms in total. R 1 , R 2 , and R 3 each represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a hydroxyalkyl group. X represents an anion. The hydrogen atom bonded to the benzene ring may be substituted with an alkyl group or a halogen atom.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 より具体的には、本発明のアニオン交換ポリマー、即ちアニオン交換能を有する官能基を有するポリマーは、下記式C-Iであるか、又は該ポリマーの架橋体であって下記式C-IIで表される架橋体であるのがよい。式中、m、m1及びm2は各々独立に10~100の整数を示す。ここで、WはPh、Ph-Ph、又はPh-C(CH-Phであり、Phはフェニレン基である。また、Wにおいてフェニレン基の少なくとも一部は-(CH)sX(sは1~5の整数、XはCl、Br、Iまたは-NR(R及びRは独立に、水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基である。))で置換され、且つフェニレン基の少なくとも一部は4級アンモニウム基を有する基、好ましくは-R11-N12131411 で表される基(式中、R11は、炭素数0~6、好ましくは炭素数1~4の直鎖又は分岐鎖の二価の炭化水素基を示し、R12、R13及びR14は各々独立に、水素、炭素数1~2の直鎖又は分岐鎖の一価の炭化水素基を示し、X11 はアニオン、好ましくはCl、Br、I又はOHを示す)、より好ましくは-CH(CHClで置換されるのがよい。下記式C-IIにおいて、Wは上述で同じ定義を有し、Yは二価の基を示す。Yは、例えば上述の-(CH)sX基を介する2価の基であり、例えば-(CHs1-N212221 -R23-N242522 -(CHs2-であるのがよい。ここで、s1及びs2は各々独立に1~5の整数であり、R21、R22、R24及びR25は各々独立に、水素、炭素数1~5のアルキル基または炭素数1~5のヒドロキシアルキル基を示し、R23は炭素数1~5の二価の炭化水素基を示す。X21 及びX22 は各々独立にアニオン、好ましくはCl、Br、I又はOHを示す。 More specifically, the anion exchange polymer of the present invention, that is, the polymer having a functional group having anion exchange ability is represented by the following formula CI or a crosslinked product of the polymer represented by the following formula C-II: It is good that it is a crosslinked body represented. In the formula, m, m1 and m2 each independently represents an integer of 10 to 100. Here, W is Ph, Ph-Ph, or Ph-C (CH 3 ) 2 -Ph, and Ph is a phenylene group. In W, at least a part of the phenylene group is — (CH 2 ) sX (s is an integer of 1 to 5, X is Cl, Br, I, or —NR 1 R 2 (R 1 and R 2 are independently hydrogen A group having 1 to 5 carbon atoms or a hydroxyalkyl group having 1 to 5 carbon atoms))), and at least a part of the phenylene group has a quaternary ammonium group, preferably —R 11 —. A group represented by N + R 12 R 13 R 14 X 11 (wherein R 11 is a linear or branched divalent hydrocarbon group having 0 to 6 carbon atoms, preferably 1 to 4 carbon atoms; R 12 , R 13 and R 14 each independently represent hydrogen, a linear or branched monovalent hydrocarbon group having 1 to 2 carbon atoms, X 11 represents an anion, preferably Cl , br -, I - or OH - shows a), more preferably -C 2 N + (CH 3) 3 Cl - it is being replaced with. In the following formula C-II, W has the same definition as described above, and Y represents a divalent group. Y is, for example, a divalent group via the above-described — (CH 2 ) sX group. For example, — (CH 2 ) s1 —N + R 21 R 22 X 21 —R 23 —N + R 24 R 25 X It may be 22 — (CH 2 ) s2 —. Here, s1 and s2 are each independently an integer of 1 to 5, and R 21 , R 22 , R 24 and R 25 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. And R 23 represents a divalent hydrocarbon group having 1 to 5 carbon atoms. X 21 - and X 22 - is independently an anion, preferably Cl -, Br -, I - or OH - shows the.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 多孔質体としては、 耐熱性・耐アルカリ性を有し、有機溶媒で膨潤しない材料を用いる。そのような性質を持つものとして、無機材料としては、ガラス、アルミナ、シリカなどからなるセラミックス多孔体、あるいは高分子材料としては、高密度ポリエチレン、耐熱性架橋ポリエチレン、ポリプロピレン、ポリイミド、PTFEなどからなる多孔フィルムなどから選ばれる1種、または2種以上の組み合わせからなるものを採用することができる。  As the porous body, a material having heat resistance and alkali resistance and not swelled with an organic solvent is used. As such a material, the inorganic material is made of a porous ceramic body made of glass, alumina, silica, or the like, or the polymer material is made of high-density polyethylene, heat-resistant crosslinked polyethylene, polypropylene, polyimide, PTFE, or the like. One selected from a porous film or a combination of two or more can be employed.
 多孔質体の平均細孔径は10~10000nmの範囲内にあることが好ましい。また、多孔質体の平均細孔径は20~300nmの範囲内にあることがさらに好ましい。
 平均細孔径が10nm以上であると、充填ポリマーの充填が容易であり、かつ分子量の大きなポリマーの充填が可能になるという利点がある。平均細孔径が20nm以上であると、この効果がより顕著になる。
 平均細孔径が10000nm以下であると、膨潤抑制力が大きな基材が得られやすく、膜の含水率・自由水量を低く抑えることができるという利点がある。平均細孔径が300nm以下であると、この効果がより顕著になる。
The average pore diameter of the porous body is preferably in the range of 10 to 10,000 nm. The average pore diameter of the porous body is more preferably in the range of 20 to 300 nm.
When the average pore diameter is 10 nm or more, there is an advantage that the filling polymer can be easily filled and a polymer having a large molecular weight can be filled. When the average pore diameter is 20 nm or more, this effect becomes more remarkable.
When the average pore diameter is 10000 nm or less, there is an advantage that a substrate having a large swelling inhibiting power can be easily obtained, and the moisture content and free water content of the membrane can be suppressed low. When the average pore diameter is 300 nm or less, this effect becomes more remarkable.
 多孔質体の空隙率は5~80%の範囲内にあることが好ましい。また、多孔質体の空隙率は20~60%の範囲内にあることがさらに好ましい。
 空隙率が5%以上であると、単位体積あたりの充填ポリマー量が増加し、イオン伝導度が増加するという利点がある。空隙率が20%以上であると、この効果がより顕著になる。
 空隙率が80%以下であると、膨潤抑制力が大きな基材が得られやすく、膜の含水率・自由水量を低く抑えることができるという利点がある。空隙率が60 %以下であると、この効果がより顕著になる。
The porosity of the porous body is preferably in the range of 5 to 80%. The porosity of the porous body is more preferably in the range of 20 to 60%.
When the porosity is 5% or more, there is an advantage that the amount of filled polymer per unit volume increases and the ionic conductivity increases. When the porosity is 20% or more, this effect becomes more remarkable.
When the porosity is 80% or less, it is easy to obtain a base material having a large swelling inhibiting force, and there is an advantage that the moisture content and free water content of the membrane can be suppressed low. This effect becomes more remarkable when the porosity is 60% or less.
 多孔質体の細孔にアニオン交換ポリマーを充填する方法としては、細孔内にポリマーを充填し架橋する方法、細孔内にモノマーを充填した後に重合する方法、あるいは膜細孔表面にグラフト重合する方法などを採用することができる。 The method of filling the pores of the porous body with the anion exchange polymer includes the method of filling the pores with a polymer and crosslinking, the method of polymerizing after filling the pores with monomers, or the graft polymerization on the surface of the membrane pores. The method to do can be adopted.
 細孔内にポリマーを充填し架橋する方法は、ポリマーを溶媒中に溶解分散させ、ポリマー回転半径が細孔径より小さくなるようにして、細孔中に含浸させながら、溶媒を蒸発させ、同時あるいは充填後に架橋剤を添加しておくことにより、充填ポリマーが細孔内から流出しないように架橋する方法である。 In the method of filling the pores with the polymer and crosslinking, the polymer is dissolved and dispersed in the solvent, the polymer rotation radius is made smaller than the pore diameter, and the solvent is evaporated while impregnating the pores. In this method, a crosslinking agent is added after filling so that the filled polymer does not flow out of the pores.
 細孔内にモノマーを充填重合する方法は、あらかじめモノマー及び架橋剤、開始剤、触媒等を含む溶液を含浸し、熱重合あるいは光重合などにより重合を行う方法である。
 細孔内グラフト重合法は、あらかじめ多孔質内細孔表面に重合開始点を設け、モノマーを充填してグラフト重合を行う方法、あるいは細孔表面の反応活性点と反応性を有するポリマーを充填後に、細孔壁面とポリマーを反応させてグラフトする方法がある。
The method of polymerizing the monomer in the pores is a method in which a solution containing a monomer and a crosslinking agent, an initiator, a catalyst and the like is impregnated in advance and polymerization is performed by thermal polymerization or photopolymerization.
Intrapore graft polymerization is a method in which a polymerization initiation point is provided on the surface of pores in the porous body in advance and the monomer is charged to perform graft polymerization, or after filling a polymer having reactivity with the reactive sites on the pore surface. There is a method of grafting by reacting a pore wall surface with a polymer.
 自由水、束縛水の量を制御する方法としては、多孔質体の細孔にアニオン交換ポリマーを充填する方法に限定されるわけではない。このほか、自由水、束縛水の量を制御する方法としては、相分離構造を示すブロックポリマーのキャスト膜を作製し、相分離構造の一方成分のみをアミノ化してイオン伝導パスを作製する方法。あるいはIPN(Interpenerate network)法などにより、電解質ポリマーの膨潤を抑制する方法などがある。 The method for controlling the amount of free water and bound water is not limited to the method of filling the pores of the porous body with the anion exchange polymer. In addition, as a method of controlling the amount of free water and bound water, a method of producing a block polymer cast film showing a phase separation structure and aminating only one component of the phase separation structure to produce an ion conduction path. Alternatively, there is a method of suppressing swelling of the electrolyte polymer by an IPN (Interpenerate network) method or the like.
 例えばポリスチレン・ポリメチルメタクリレートのブロック共重合体のキャスト膜を作製し、ポリスチレン部分のみをクロロメチル化後にアミノ化する方法などが挙げられる。またポリマーアロイにより同様に相分離構造を作製し、ポリスチレン部分のみをクロロメチル化後にアミノ化する方法などが挙げられる。 
 IPN法の場合は予め水で膨潤しない架橋樹脂中にアミノ化可能なポリスチレンなどのモノマーを含浸し、架橋剤とともに重合し、後にアミノ化することにより製膜が可能である。
For example, a cast film of a polystyrene / polymethyl methacrylate block copolymer is prepared, and only the polystyrene portion is aminated after chloromethylation. Moreover, the method of producing a phase-separation structure similarly with a polymer alloy, and aminating only a polystyrene part after chloromethylation etc. are mentioned.
In the case of the IPN method, a film can be formed by previously impregnating a monomer such as polystyrene that can be aminated into a crosslinked resin that does not swell with water, polymerizing with a crosslinking agent, and then aminating.
 OH-伝導体について説明する。
 OH-伝導体は、アニオン交換ポリマーを含み、前記アニオン交換ポリマーは、含水後自由水、束縛水、不凍水のうち少なくとも不凍水を含み、前記自由水、前記束縛水、および前記不凍水の量は、所定の範囲内にある。また、OH-伝導体は、アニオン交換ポリマーが多孔質体の細孔に充填されたものである。なお、「自由水」、「束縛水」及び「不凍水」の定義は上述した通りである。
The OH - conductor will be described.
The OH - conductor includes an anion exchange polymer, and the anion exchange polymer includes at least antifreeze water among free water, bound water, and antifreeze water, and the free water, the bound water, and the antifreeze The amount of water is within a predetermined range. Further, OH - conductors are those anion exchange polymer is filled in the pores of the porous body. The definitions of “free water”, “bound water” and “non-freezing water” are as described above.
 アニオン交換ポリマーが含む自由水は、官能基1mol当たり、5mol以下の範囲内にあることが好ましい。また、自由水は、官能基1mol当たり、1mol以下の範囲内にあることがさらに好ましい。
 自由水が5mol以下であると、水のモビリティ低下によりアニオン交換基であるアミン基分解速度の低減が可能になるという利点がある。自由水が1mol以下であると、この効果がより顕著になる。
The free water contained in the anion exchange polymer is preferably in the range of 5 mol or less per 1 mol of the functional group. Further, the free water is more preferably in the range of 1 mol or less per 1 mol of the functional group.
If the free water is 5 mol or less, there is an advantage that the rate of decomposition of amine groups, which are anion exchange groups, can be reduced due to a decrease in water mobility. This effect becomes more conspicuous when the free water is 1 mol or less.
 アニオン交換ポリマーが含む束縛水は、官能基1mol当たり、1mol以下の範囲内にあることが好ましい。また、束縛水は、官能基1mol当たり、0.5mol以下の範囲内にあることがさらに好ましい。
 束縛水が1mol以下であると、アニオン交換基間の距離が短くなり、OH-伝導度が向上するという利点がある。束縛水が0.5mol以下であると、この効果がより顕著になる。
The bound water contained in the anion exchange polymer is preferably in the range of 1 mol or less per 1 mol of the functional group. The bound water is more preferably in the range of 0.5 mol or less per 1 mol of the functional group.
When the bound water is 1 mol or less, there is an advantage that the distance between the anion exchange groups is shortened and the OH - conductivity is improved. This effect becomes more remarkable when the bound water is 0.5 mol or less.
 アニオン交換ポリマーが含む不凍水は、官能基1mol当たり、0.1~10molの範囲内にあることが好ましい。また、不凍水は、官能基1mol当たり、0.3~3molの範囲内にあることがさらに好ましい。
 不凍水が0.1mol以上であると、0H-のホッピング機構に寄与する水分子の数が増加し、OH-伝導度が向上するという利点がある。不凍水が0.3mol以上であると、この効果がより顕著になる。
 不凍水が10mol以下であると、アニオン交換基間の距離が短くなり、OH-伝導度が向上するという利点がある。不凍水が3mol以下であると、この効果がより顕著になる。
The antifreeze water contained in the anion exchange polymer is preferably in the range of 0.1 to 10 mol per 1 mol of the functional group. Further, the antifreeze water is more preferably in the range of 0.3 to 3 mol per 1 mol of the functional group.
When the amount of antifreeze water is 0.1 mol or more, there is an advantage that the number of water molecules contributing to the hopping mechanism of 0H is increased and OH conductivity is improved. This effect becomes more remarkable when the antifreeze water is 0.3 mol or more.
When the amount of antifreeze water is 10 mol or less, there is an advantage that the distance between anion exchange groups is shortened and the OH - conductivity is improved. This effect becomes more remarkable when the amount of antifreeze water is 3 mol or less.
 OH-伝導体のイオン伝導度は0.0001S/cm以上の範囲内にあることが好ましい。また、伝導体のイオン伝導度は0.01S/cm以上の範囲内にあることがさらに好ましい。
 イオン伝導度が0.0001S/cm以上であると、アルカリ形固体燃料電池運転時の膜オーム抵抗が低減でき、発電時のエネルギー変換効率が向上するという利点がある。イオン伝導度が0.01S/cm以上であると、この効果がより顕著になる。
The ionic conductivity of the OH - conductor is preferably in the range of 0.0001 S / cm or more. The ionic conductivity of the conductor is more preferably in the range of 0.01 S / cm or more.
When the ionic conductivity is 0.0001 S / cm or more, there is an advantage that the membrane ohmic resistance during the operation of the alkaline solid fuel cell can be reduced and the energy conversion efficiency during power generation is improved. This effect becomes more remarkable when the ionic conductivity is 0.01 S / cm or more.
 以上のように、束縛水・不凍水を主体とするOH-伝導体では、以下のような効果が期待できる。自由水量の低下により、OH-のモビリィティが低下して、アニオン交換基の分解速度の低下が期待できる。さらに量が限定された不凍水・束縛水のみ含むことによるアニオン交換基間の距離短縮と、水のモビリィティ低下により、伝導メカニズムがビールグ機構から、ホッピング機構に変わり、高OH-伝導度を実現することができる。 As described above, the following effects can be expected from an OH - conductor composed mainly of bound water and antifreeze water. Due to the decrease in the amount of free water, the mobility of OH is decreased, and the degradation rate of the anion exchange group can be expected. Furthermore, the conduction mechanism is changed from a beering mechanism to a hopping mechanism by realizing a high OH - conductivity by shortening the distance between anion exchange groups by containing only limited amount of antifreeze water and bound water and reducing water mobility. can do.
 また、本発明において、上述の水の特性及び含有量の他に、又は該事項に加えて、本発明のOH伝導体は、上述のように、乾燥状態で、所望の官能基量を有する。
 また、本発明のOH伝導体は、上記の特徴の他に、又は該特徴に加えて、上述のように、ポリマーを水で膨潤させた場合、所望の官能基密度を有する。
 さらに、本発明は、上記の特徴の他に、又は該特徴に加えて、水素を含有する液体燃料、例えばアルコール類、NH及びヒドラジンからなる群から選ばれる溶媒についての該OH伝導体の透過係数が2×10-6cm/s以下、好ましくは1.0×10-6cm/s以下、より好ましくは5.0×10-7cm/s以下であるOH伝導体を提供する。
 また、本発明は、上述の特徴を2種以上組合せて有するOH伝導体を提供する。
 なお、官能基量、官能基密度に関しては、上述した通りであり、それらの所望量についても上述した通りである。
Further, in the present invention, in addition to or in addition to the above-mentioned characteristics and content of water, the OH - conductor of the present invention has a desired functional group amount in a dry state as described above. .
Further, OH of the present invention - conductors, in addition to the above features, or in addition to the characteristics, as described above, when the polymer is swollen with water, with the desired functional group density.
Furthermore, the present invention may contain, in addition to the above features, or in addition to the characteristics, the liquid fuel, for example alcohols containing hydrogen, the OH of the solvent selected from the group consisting of NH 3 and hydrazine - conductors permeability coefficient of 2 × 10 -6 cm 2 / s or less, preferably 1.0 × 10 -6 cm 2 / s or less, more preferably 5.0 × 10 -7 cm 2 / s or less OH - conductor I will provide a.
Further, the present invention, OH has a combination of two or more features described above - to provide a conductor.
The functional group amount and functional group density are as described above, and the desired amounts thereof are also as described above.
 溶媒透過性又は溶媒透過阻止能は、Yamaguchiらの方法(Takeo Yamaguchi, et al., Advanced Materials, 19(4), 592-596 (2007))に記載される、溶媒透過係数を求める手法と同様に、求めることができる。
 即ち、H型の拡散セルを用いて、試料断面方向の燃料透過速度の測定を行った。
 試料を拡散セルに挟み、溶液を試料によって2つに分ける。2つに分けられたセル中に純水を入れ、一晩、放置し、試料を含水状態とする。
 その後、片側の液をアルコールやアンモニアなど溶媒(燃料)の入っている水溶液と取り替え、試料を隔てたもう一方の側の溶媒(燃料)濃度の経時変化を記録する。最初に、溶媒(燃料)が全く透過してこない時間を除き、その後の透過した全量の時間変化が直線となる領域において、直線の傾きから透過速度を求める。また、透過速度と試料の厚さから、透過係数が求められる。
The solvent permeability or the solvent permeation blocking ability is the same as the method for obtaining the solvent permeability coefficient described in the method of Yamaguchi et al. (Takeo Yamaguchi, et al., Advanced Materials, 19 (4), 592-596 (2007)). You can ask for it.
That is, the fuel permeation rate in the sample cross-sectional direction was measured using an H-type diffusion cell.
The sample is sandwiched between diffusion cells, and the solution is divided into two according to the sample. Pure water is put into a cell divided into two and left overnight to make the sample water-containing.
Thereafter, the liquid on one side is replaced with an aqueous solution containing a solvent (fuel) such as alcohol or ammonia, and the change over time in the concentration of the solvent (fuel) on the other side across the sample is recorded. First, the permeation speed is obtained from the slope of the straight line in a region where the time change of the total amount of permeation thereafter becomes a straight line, except for the time when the solvent (fuel) does not permeate at all. Further, the transmission coefficient is obtained from the transmission speed and the thickness of the sample.
 OH-伝導体の用途としては、固体アルカリ形燃料電池用電解質膜・物質精製あるいは製塩用電気透析膜などがある。  Applications of OH-conductor include electrolyte membranes for solid alkaline fuel cells, material purification, and electrodialysis membranes for salt production.
 なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
 つぎに、本発明にかかる実施例について具体的に説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。
The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.
Next, specific examples of the present invention will be described. However, it goes without saying that the present invention is not limited to these examples.
 サンプルの作製方法について説明する。
<細孔フィリング膜の調製>
 細孔フィリング膜の作製方法について説明する。芳香族系アニオン交換ポリマー(AM-APS)を多孔質ポリマー基材に充填した細孔フィリング膜を作製した。
A method for manufacturing the sample will be described.
<Preparation of pore filling membrane>
A method for producing the pore filling film will be described. A pore filling membrane was prepared by filling a porous polymer substrate with an aromatic anion exchange polymer (AM-APS).
<<AM-APS溶液の調製>>
 ポリマー溶液(AM-APS溶液)は以下の方法によって得られた。重合体の前駆体として、化5で示される芳香族ポリスルホン重合体(アモコジャパン社製、商品名:レーデルR5000NT)を用いた。この重合体の固有粘度は0.65dL/gであった。
<< Preparation of AM-APS solution >>
A polymer solution (AM-APS solution) was obtained by the following method. As a polymer precursor, an aromatic polysulfone polymer represented by Chemical Formula 5 (Amoco Japan, trade name: Radel R5000NT) was used. The intrinsic viscosity of this polymer was 0.65 dL / g.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<<<クロロメチル基の導入>>>
 上記重合体75gを1,1,2,2-テトラクロロエタン1020mLに溶解し、クロロメチルメチルエーテル400gおよび無水塩化スズ4.5gを添加し、80℃にて6時間かけてクロロメチル化反応を行った。反応終了後、メタノール5000mLを用いて反応生成物を沈殿させ、これを洗浄し、クロロメチル化重合体を得た。このクロロメチル化重合体におけるクロロメチル基の含有量は3.84ミリ当量/g乾燥樹脂であり、クロロメチル基をすべてトリメチルアミンで反応させた場合のイオン交換容量は3.1ミリ当量/g乾燥樹脂であった。
<<< Introduction of chloromethyl group >>>
75 g of the above polymer was dissolved in 1020 mL of 1,1,2,2-tetrachloroethane, 400 g of chloromethyl methyl ether and 4.5 g of anhydrous tin chloride were added, and chloromethylation reaction was performed at 80 ° C. for 6 hours. . After completion of the reaction, 5000 mL of methanol was used to precipitate the reaction product, which was washed to obtain a chloromethylated polymer. The chloromethyl group content in this chloromethylated polymer was 3.84 meq / g dry resin, and the ion exchange capacity when all chloromethyl groups were reacted with trimethylamine was 3.1 meq / g dry resin. .
<<<4級アンモニウム基の導入>>>
 このクロロメチル化重合体100質量部をN,N-ジメチルホルムアミド(以下、DMFという)に溶解し、次いで溶液を0℃にて撹拌しながら、1mol/Lの濃度のトリメチルアミンのDMF溶液と、2-メトキシエタノールとの混合物(混合比率は質量比で、1mol/LのトリメチルアミンのDMF溶液/2-メトキシエタノール=85/15)を、温度を0℃に保ったままゆっくりと滴下した。このようにして、クロロメチル基の約70mol%に相当するトリメチルアミンを4時間かけて滴下し、その後、室温で20時間攪拌してアミノ化溶液を得た(AM-APS溶液)。この一部をキャストしてフィルムを作成しイオン交換容量を測定したところ1.96ミリ当量/g乾燥樹脂であった。
<<< Introduction of Quaternary Ammonium Group >>>
100 parts by mass of this chloromethylated polymer was dissolved in N, N-dimethylformamide (hereinafter referred to as DMF), and then the solution was stirred at 0 ° C., and a DMF solution of trimethylamine having a concentration of 1 mol / L, 2 A mixture with -methoxyethanol (mixing ratio by mass, 1 mol / L trimethylamine in DMF solution / 2-methoxyethanol = 85/15) was slowly added dropwise while maintaining the temperature at 0 ° C. Thus, trimethylamine corresponding to about 70 mol% of the chloromethyl group was added dropwise over 4 hours, and then stirred at room temperature for 20 hours to obtain an aminated solution (AM-APS solution). A portion of this was cast to form a film and the ion exchange capacity was measured to find 1.96 meq / g dry resin.
<<細孔内での架橋>>
 上記AM-APS溶液7mlを60℃に加熱したホットプレート上にシャーレを置き、シャーレ中に4×4cmに切断し、よく脱気した架橋ポリエチレン多孔基材(日東電工社製:CLPE3、空隙率40%、細孔径200nm、膜厚20μm)を静置して、1時間、膜をポリマー溶液に含浸させた。含浸後に、膜を取り出し、表面についた溶液をふき取った後、室温で乾燥した。その後、20%のN,N,N’,N’-テトラメチル-1,6-ヘキサジアミン(「TMHDA」と略する。下記スキームIにおいて、R=-(CH-)のイソプロパノール溶液に室温で24時間浸し、架橋反応を終了した。その後、イソプロパノールで2h洗浄後、膜を室温で真空乾燥した。これを数回繰り返すことにより、表1に示す膜A-1を得た。架橋工程について、下記スキームIに示す。なお、スキームIにおいて、ビフェニレン基の各々のフェニレン基に4級アンモニウム基及び塩化メチレン基が有するように模式的に記載する(実際には、後述のように、繰り返し単位のうち、未置換のフェニレン基、未置換のビフェニレン基も存在する)。
<< Crosslinking in pores >>
Place the petri dish on a hot plate heated to 60 ° C with 7 ml of the above AM-APS solution, cut into 4 x 4 cm in the petri dish, and thoroughly degassed crosslinked polyethylene porous substrate (manufactured by Nitto Denko Corporation: CLPE3, porosity 40 %, Pore diameter 200 nm, film thickness 20 μm) were allowed to stand and the membrane was impregnated with the polymer solution for 1 hour. After impregnation, the membrane was taken out, wiped off the solution on the surface, and dried at room temperature. Thereafter, 20% of N, N, N ′, N′-tetramethyl-1,6-hexadiamine (abbreviated as “TMHDA”. In Scheme I below, R = — (CH 2 ) 6 —) in an isopropanol solution And 24 hours at room temperature to complete the crosslinking reaction. Thereafter, after washing with isopropanol for 2 hours, the membrane was vacuum-dried at room temperature. By repeating this several times, a film A-1 shown in Table 1 was obtained. The crosslinking step is shown in Scheme I below. In Scheme I, each biphenylene group is schematically described so that each phenylene group has a quaternary ammonium group and a methylene chloride group (actually, as described later, among the repeating units, unsubstituted phenylene Groups and unsubstituted biphenylene groups also exist).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
<キャスト膜の調製>
 キャスト膜の作製方法について説明する。芳香族系アニオン交換ポリマー(AM-APS)のキャスト膜を作製した。細孔フィリィング膜と同様に6.9wt%のAM-APS溶液を準備する。シャーレに溶液を10ml取り、60℃で1時間加熱濃縮して粘度を上昇させた後、ガラス基板に滴下した後、アプリケーター(テスター産業社製、S253302)でキャストし、30℃に加熱乾燥、キャスト膜C-1を得た。架橋・洗浄・乾燥を細孔フィリィング膜と同様の方法で行った。
<Preparation of cast film>
A method for producing a cast film will be described. A cast film of aromatic anion exchange polymer (AM-APS) was prepared. A 6.9 wt% AM-APS solution is prepared in the same manner as the pore filling membrane. Take 10 ml of the solution in a petri dish, heat and concentrate at 60 ° C for 1 hour to increase the viscosity, drop it on a glass substrate, cast with an applicator (S253302, manufactured by Tester Sangyo Co., Ltd.), heat dry to 30 ° C, cast Membrane C-1 was obtained. Crosslinking, washing and drying were performed in the same manner as for the pore filling film.
<評価>
 サンプルの評価方法について説明する。
 細孔フィリング膜の構造の分析方法について説明する。得られた膜は、FT-IR測定装置(Nicolet, USA, Model MAGNA550)により、膜厚方向の透過吸収スペクトルを測定した。
<Evaluation>
A sample evaluation method will be described.
A method for analyzing the structure of the pore filling membrane will be described. The obtained film was measured for transmission absorption spectrum in the film thickness direction using an FT-IR measuring apparatus (Nicolet, USA, Model MAGNA550).
<<含水率>>
 含水率の測定方法について説明する。電子天秤(島津製作所製、LIBOROR: AEL-40SM)により、乾燥時の重量Wdryと、含水させ平衡に達した膜の重量Wwetをそれぞれ測定し、下式で含水率を求めた。
  含水率ΔW=(Wwet-Wdry)/ Wwet
<< moisture content >>
A method for measuring the moisture content will be described. Using an electronic balance (manufactured by Shimadzu Corporation, LIBOROR: AEL-40SM), the dry weight W dry and the wet weight of the membrane W wet were measured, and the water content was determined by the following equation.
Moisture content ΔW = (W wet -W dry ) / W wet
<<寸法変化率>>
 寸法変化率の測定方法について説明する。定規により、4cm四方の正方形に切った膜の縦方向a1、及び横方向の長さb1を乾燥状態で測定し、縦と横の積から乾燥膜面積S1を求めた。
  乾燥膜面積:S1=a1×b1。
 その後、純水中に1日以上浸漬して膨潤平衡状態に達した状態で、膜の縦方向a2、及び横方向の長さb2を乾燥状態で測定し、縦と横の積から湿潤膜面積S2を求めた。
  湿潤膜面積:S2=a2×b2。
これより寸法変化ΔSを下式で求めた。
  面積変化率:ΔS=(S2-S1)/S1。
<< Dimension change rate >>
A method for measuring the dimensional change rate will be described. Using a ruler, the longitudinal direction a1 and the lateral length b1 of the membrane cut into a 4 cm square were measured in a dry state, and the dry membrane area S1 was determined from the product of the longitudinal and lateral directions.
Dry membrane area: S1 = a1 × b1.
Then, in a state where it has been immersed in pure water for 1 day or more to reach a swelling equilibrium state, the longitudinal direction a2 and the lateral length b2 of the membrane are measured in a dry state, and the wet membrane area is determined from the product of the longitudinal and lateral directions. S2 was determined.
Wet membrane area: S2 = a2 × b2.
From this, the dimensional change ΔS was determined by the following equation.
Area change rate: ΔS = (S2−S1) / S1.
 デジタルノギス(ミツトヨ社製 No293-421-20 0190577)により、乾燥時の膜の四方及び中央の5箇所の膜厚を測定し、その平均値を計算した。乾燥時膜厚d1、膨潤時膜厚d2から、膜厚変化率Δdを下式で求めた。
  膜厚変化率:Δd=(d2-d1)/d1。
Using a digital caliper (Mitutoyo Co., Ltd. No293-421-20 0190577), the film thickness at the four sides and the center of the film during drying was measured, and the average value was calculated. From the film thickness d1 at the time of drying and the film thickness d2 at the time of swelling, the film thickness change rate Δd was obtained by the following equation.
Change rate of film thickness: Δd = (d2−d1) / d1.
 さらに膜厚と膜面積を用い、体積変化率ΔVを下式で定義した。
  体積変化率:ΔV=(s2×d2-s1×d1)/(s1×d1)。
Further, using the film thickness and the film area, the volume change rate ΔV was defined by the following equation.
Volume change rate: ΔV = (s2 × d2−s1 × d1) / (s1 × d1).
<<水の状態の解析>>
 膜中の水の状態の解析方法を説明する。低温DSC測定により、水の融解熱量を測定することで、含水したキャスト膜、細孔フィリング膜中に含まれる自由水、束縛水、不凍水の量を計算した。
<< Analysis of water condition >>
A method for analyzing the state of water in the membrane will be described. The amount of free water, bound water, and antifreeze contained in the hydrous cast membrane and pore filling membrane was calculated by measuring the heat of fusion of the water by low-temperature DSC measurement.
 まず膜を直径0.8mm程度の円形にくりぬき、10枚程度準備する。切断した膜を純水中に含浸して平衡化させた後に取り出して、膜表面の水をふき取り、電子天秤(島津製作所製 LIBOROR: AEL-40SM)で重量を測定した後、DSC測定用のパンにつめ、密封する。低温DSC(パーキンエルマー社製:DSC7)の測定条件は、20℃から-50℃まで20℃/minの速度で冷却し、その後20℃まで5.0℃/minの速度で昇温した。ベースラインを-30℃から10℃に取り、昇温過程における水の融解吸熱ピーク面積を解析した。0℃におけるシャープな融解吸熱ピークを自由水に、0℃以下におけるブロードな融解吸熱ピークを束縛水に帰属して、定量分析を行った。測定後にサンプルを90℃で4時間真空乾燥を行い、自由水・束縛水・不凍水の全てを除いた乾燥重量を測定して全含水量を求めた。低温DSC測定から求めた自由水・束縛水の量と全含水量との差を不凍水とした。 First, cut the membrane into a circle with a diameter of about 0.8 mm and prepare about 10 sheets. The cut membrane is impregnated with pure water and allowed to equilibrate. The membrane surface is wiped off, the weight is measured with an electronic balance (Shimadzu LIBOROR: ORAEL-40SM), and the pan for DSC measurement Claw and seal. The measurement conditions of the low temperature DSC (Perkin Elmer: DSC7) were cooled from 20 ° C. to −50 ° C. at a rate of 20 ° C./min, and then increased to 20 ° C. at a rate of 5.0 ° C./min. The baseline was taken from -30 ° C to 10 ° C, and the melting endothermic peak area of water during the temperature rising process was analyzed. Quantitative analysis was performed by assigning a sharp melting endothermic peak at 0 ° C. to free water and a broad melting endothermic peak at 0 ° C. or lower to bound water. After the measurement, the sample was vacuum-dried at 90 ° C. for 4 hours, and the dry weight excluding all free water, bound water and antifreeze water was measured to determine the total water content. The difference between the amount of free water and bound water obtained from low-temperature DSC measurement and the total water content was defined as antifreeze water.
<<耐久試験-イオン伝導度>>
 耐久性試験について説明する。90℃、相対湿度100%におけるイオン伝導度を測定し、経時変化を観察した。
 電解質膜を10mm×30mmの短冊状に切り取り、両端を白金板(5mm×50mm)で挟み込み、テフロン(登録商標)製測定用プローブで挟持した。この挟持した積層体を、恒温恒湿槽(エスペック社製 SH-241)の中に設置し、25℃、湿度100%の雰囲気中にて、白金板間の抵抗をSOLARTRON社製、1260FREQUENCY RESPONSE ANALYSERにより測定し、以下の式からOH-伝導度を求めた。
 OH-伝導度[S/cm]=白金板間隔[cm]/(膜幅[cm]×膜厚[cm]×抵抗[Ω])。
<< Durability Test-Ionic Conductivity >>
The durability test will be described. Ionic conductivity at 90 ° C. and 100% relative humidity was measured, and the change with time was observed.
The electrolyte membrane was cut into a 10 mm × 30 mm strip, both ends were sandwiched between platinum plates (5 mm × 50 mm), and sandwiched between Teflon (registered trademark) measuring probes. This sandwiched laminate is placed in a constant temperature and humidity chamber (SH-241 manufactured by Espec), and the resistance between platinum plates is 1260FREQUENCY RESPONSE ANALYSER manufactured by SOLARTRON in an atmosphere of 25 ° C and 100% humidity. OH - conductivity was determined from the following equation.
OH - conductivity [S / cm] = platinum plate interval [cm] / (film width [cm] × film thickness [cm] × resistance [Ω]).
 サンプルの評価結果について説明する。
 細孔フィリング膜の構造の分析結果について説明する。FT-IR測定より、1140cm-1、1230cm-1等のAM-APS特有の吸収から、細孔中にAPSが充填されたことを確認した。
The sample evaluation results will be described.
The analysis result of the structure of the pore filling membrane will be described. From the FT-IR measurement, it was confirmed from the absorption specific to AM-APS such as 1140 cm −1 and 1230 cm −1 that APS was filled in the pores.
 含水率および膨潤後の寸法変化率について説明する。キャスト膜及び細孔フィリング膜の含水率及び膨潤後の寸法変化率を表1にまとめる。細孔フィリング膜においては、基材の膨潤抑制効果によって含水率や体積変化率がキャスト膜の数分の一以下に抑えられており、官能基密度が高い状態になっていることが示された。 The moisture content and the dimensional change rate after swelling will be described. Table 1 summarizes the moisture content and the dimensional change rate after swelling of the cast membrane and the pore filling membrane. In the pore filling membrane, the moisture content and volume change rate were suppressed to a fraction of the cast membrane due to the swelling suppression effect of the base material, indicating that the functional group density was high. .
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 膜中の水の状態の解析結果について説明する。図2に低温DSC測定の結果を示す。キャスト膜においては、0℃に自由水の融解熱の鋭いピークが見られ、また、-30℃~-5℃付近にかけて束縛水の緩やかなピークが見られた。一方、細孔フィリング膜においてはいずれのピークも見られなかった。 The analysis result of the state of water in the film will be described. Figure 2 shows the results of low-temperature DSC measurement. In the cast film, a sharp peak of free water melting heat was observed at 0 ° C, and a moderate peak of bound water was observed from -30 ° C to -5 ° C. On the other hand, no peak was observed in the pore filling membrane.
 キャスト膜および細孔フィリング膜の、官能基1mol当たりに含まれる自由水、束縛水、不凍水のmol数を計算した結果を図3に示す。また、キャスト膜および細孔フィリング膜の、AM-APS1mg当たりに含まれる自由水、束縛水、不凍水の重量を計算した結果を図4に示す。官能基当たりの水分子の量を計算すると、キャスト膜で17~18個(不凍水8~9個、束縛水2~3個)、細孔フィリング膜で2~3個(全て不凍水)であった。以上の結果より、細孔フィリング膜は含水状態においても自由水及び束縛水は存在せず、官能基近傍に不凍水のみが存在することが示された。 Fig. 3 shows the results of calculating the number of moles of free water, bound water and antifreeze water contained in 1 mol of the functional group in the cast membrane and the pore filling membrane. In addition, FIG. 4 shows the results of calculating the weights of free water, bound water and antifreeze water contained in 1 mg of AM-APS in the cast membrane and the pore filling membrane. When the amount of water molecules per functional group is calculated, 17 to 18 cast films (8 to 9 antifreeze water, 2 to 3 bound water) and 2 to 3 pore filling membranes (all antifreeze water) )Met. From the above results, it was shown that the pore filling membrane does not contain free water or bound water even in a water-containing state, and only antifreeze water exists in the vicinity of the functional group.
 耐久性試験結果について説明する。90℃、相対湿度100%の条件下における膜のイオン伝導度の経時変化を図5に示す。細孔フィリング膜は、自由水が全く無く、不凍水のみの環境下であるが、キャスト膜と同オーダーのイオン伝導度を示しており、不凍水中においてホッピング機構によるOH-伝導が発現している可能性が高いと考えられる。耐熱性に関しては、さらに長時間の実験が必要だが、キャスト膜においては数日で10%~30%程度イオン伝導度が低下する傾向が見られた。 The durability test result will be described. FIG. 5 shows the change over time in the ionic conductivity of the membrane under the conditions of 90 ° C. and relative humidity of 100%. The pore filling membrane has no free water and is in an environment with only antifreeze water, but shows ionic conductivity in the same order as cast membrane, and OH - conduction due to the hopping mechanism appears in the antifreeze water. It is highly probable that With regard to heat resistance, it is necessary to experiment for a longer time, but in the cast film, the ionic conductivity tended to decrease by 10% to 30% within a few days.
(実施例2~5)
 実施例1と同様に、AM-APS溶液を準備した。ただし、上記Scheme Iに示すポリスルホン系ポリマーにおいて、ビフェニル部位における「4級アンモニウム基/クロロメチル基/未置換」の割合(全体を100mol%とした場合の各mol%)は、実施例1では、54/36/10であったのに対して、実施例2は70/20/10、実施例3は54/36/10、実施例4は36/54/10、実施例5は27/63/10であった。
(Examples 2 to 5)
In the same manner as in Example 1, an AM-APS solution was prepared. However, in the polysulfone-based polymer shown in Scheme I above, the ratio of “quaternary ammonium group / chloromethyl group / unsubstituted” in the biphenyl moiety (each mol% when the whole is 100 mol%) is Compared to 54/36/10, Example 2 was 70/20/10, Example 3 was 54/36/10, Example 4 was 36/54/10, and Example 5 was 27/63. / 10.
<細孔フィリング膜>
 実施例2~5は、上記割合のAM-APS溶液を用いた以外、実施例1と同様の方法で、CLPE1~4を得た。
<キャスト膜>
 キャスト膜についても、上記割合のAM-APS溶液を用いた以外、実施例1と同様の方法で、キャスト膜Cast1~4を得た。なお、架橋に用いたTMHDAとイソプロパノールとの濃度は、Cast1が1/10、Cast2が1/2、Cast3及び4が1/5とした。
<Pore filling membrane>
In Examples 2 to 5, CLPEs 1 to 4 were obtained in the same manner as in Example 1 except that the above-mentioned ratio of AM-APS solution was used.
<Cast film>
Regarding cast films, cast films Cast 1 to 4 were obtained in the same manner as in Example 1 except that the above-mentioned ratio of AM-APS solution was used. The concentrations of TMHDA and isopropanol used for crosslinking were 1/10 for Cast1, 1/2 for Cast2, and 1/5 for Cast3 and 4.
 得られた細孔フィリング膜及びキャスト膜について、イオン交換基容量(以下、「IEC」と略記する場合がある。ポリマー1g当たりのイオン交換基、今回の場合、4級アンモニウム塩基のmmol)を測定した。
 キャスト膜については、上述のように、モール法により溶液中に放出されたClの量を測定し、該測定値がイオン交換基量に等しいとし、膜の乾燥重量で割ってIECを算出した。
 また、このIECと、それぞれTG-MSで測定したクロロメチル基由来(mass:50)のピーク面積を乾燥重量で規格化した値をプロットし、検量線を作成した。
 細孔フィリング膜については、該細孔フィリング膜をTG-MSでクロロメチル基由来(mass:50)のピーク面積を測定し且つAM-APS乾燥重量で規格化し、その値と上記検量線から、各細孔フィリング膜CLPE1~4のIECを求め、以下の表2にまとめた。
 また、含水率(%)を求め、以下の表2において、WU(%)で示した。なお、含水率は、以下の式に基づく。
 含水率(%)=
(水での膨潤時の膜重量-乾燥時の膜重量)/(乾燥時の膜重量)×100。
With respect to the obtained pore filling membrane and cast membrane, the ion exchange group capacity (hereinafter sometimes abbreviated as “IEC”. Ion exchange group per 1 g of polymer, in this case, mmol of quaternary ammonium base) was measured. did.
For the cast membrane, as described above, the amount of Cl released into the solution by the Mole method was measured, and the IEC was calculated by dividing the measured value by the dry weight of the membrane, assuming that the measured value was equal to the amount of ion exchange groups. .
Further, a calibration curve was prepared by plotting the IEC and the value obtained by normalizing the peak area derived from the chloromethyl group (mass: 50) measured by TG-MS with the dry weight.
For the pore filling membrane, the peak area derived from the chloromethyl group (mass: 50) was measured by TG-MS and normalized with the dry weight of AM-APS, and from the value and the above calibration curve, The IEC for each pore filling membrane CLPE1-4 was determined and summarized in Table 2 below.
Further, the moisture content (%) was obtained and indicated in WU (%) in Table 2 below. In addition, a moisture content is based on the following formula | equation.
Moisture content (%) =
(Membrane weight when swollen with water−membrane weight when dried) / (membrane weight when dried) × 100.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 また、上述と同様に、各細孔フィリング膜CLPE1~4、各キャスト膜Cast1~4について、<含水率>及び<水の状態の解析>を行った。その結果を、図6に示す。なお、図6中、λは、膜膨潤時における、膜内部の水のモル数を膜内部のイオン交換基のモル数で除した値、即ち膜膨潤時におけるイオン交換基1個あたりの水の数を示す。図6から、各細孔フィリング膜CLPE1~4は、ほぼ不凍水のみしか有してないことがわかる。 Further, in the same manner as described above, <moisture content> and <analysis of water state> were performed for each of the pore filling membranes CLPE1 to 4 and the cast membranes Cast1 to Cast4. The result is shown in FIG. In FIG. 6, λ is a value obtained by dividing the number of moles of water inside the membrane at the time of membrane swelling by the number of moles of ion exchange groups inside the membrane, that is, water per ion exchange group at the time of membrane swelling. Indicates a number. From FIG. 6, it can be seen that each of the pore filling membranes CLPE1 to CLPE4 has almost only antifreeze water.
 さらに、官能基密度を、上述の通り、求めた。図7に、得られた官能基密度を縦軸に、WUを横軸にしたグラフを図7に示す。図7から、各細孔フィリング膜CLPE1~4は、官能基密度が2mmol/g以上有することがわかる。 Furthermore, the functional group density was determined as described above. FIG. 7 shows a graph with the functional group density obtained on the vertical axis and WU on the horizontal axis. FIG. 7 shows that each of the pore filling films CLPE1 to CLPE4 has a functional group density of 2 mmol / g or more.
 <<溶媒透過阻止能の評価>>
 溶媒(燃料)透過阻止能は、上述の測定法を用いて行った。なお、溶媒は、メタノール、アンモニアを用いた。
 供給側を、それぞれ10wt%メタノール溶液(メタノール透過阻止能)、10%アンモニア水(アンモニア透過阻止能)とし、透過側を逆浸透水とした。得られた結果を、図8並びに図9及び図10に示す。図8~10から、官能基密度を2mmol/g以上有する細孔フィリング膜CLPE1~4は、高い溶媒(燃料)透過阻止能を有することがわかる。
<< Evaluation of solvent permeation blocking ability >>
The solvent (fuel) permeation blocking ability was measured using the measurement method described above. In addition, methanol and ammonia were used for the solvent.
The supply side was 10 wt% methanol solution (methanol permeation inhibition ability) and 10% ammonia water (ammonia permeation inhibition ability), respectively, and the permeation side was reverse osmosis water. The obtained results are shown in FIG. 8, FIG. 9 and FIG. 8 to 10, it can be seen that the pore filling membranes CLPE1 to 4 having a functional group density of 2 mmol / g or more have a high solvent (fuel) permeation-preventing ability.
<<OHイオン伝導性>>
 各細孔フィリング膜CLPE1~4、及びキャスト膜Cast1についてのOHイオン伝導性を、実施例1と同様に測定した。測定結果を図11に示す。
<< OH - ion conductivity >>
The OH ion conductivity of each pore filling membrane CLPE1 to 4 and the cast membrane Cast1 was measured in the same manner as in Example 1. The measurement results are shown in FIG.
 以上の結果から、ほぼ不凍水のみしか有しておらず、且つ高い官能基密度又は高い官能基容量を有する細孔フィリング膜は、高い溶媒透過阻止能を有する割に、イオン伝導性はCast膜に比してそれ程の低下が見られないため、OH伝導体、特にOH伝導性を有する電解質膜に適するものと考えられる。 From the above results, a pore filling membrane having almost only antifreeze water and having a high functional group density or a high functional group capacity has a high solvent permeation-preventing ability, but the ionic conductivity is Cast. because not seen so much reduced as compared to the membrane, OH - conductors, in particular OH - believed suitable for an electrolyte membrane having conductivity.
 このように、本発明のOH伝導体は、例えば固体アルカリ形燃料電池電解質膜として、電池の発電効率、耐久性向上に大きく貢献する。 Thus, OH of the present invention - conductors, for example as a solid alkaline fuel cell electrolyte membrane, the power generation efficiency of the cell, greatly contribute to durability.

Claims (9)

  1.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、
     該ポリマーは、不凍水を前記官能基1mol当たり、0.1~10mol有する、OH伝導体。
    OH with a polymer having a functional group having an anion exchange capacity - a conductor,
    The polymer non-freezing water per the functional group 1 mol, having 0.1 ~ 10 mol, OH - conductor.
  2.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、
     該ポリマーは、乾燥状態で、前記官能基を、該ポリマー1g当たり、1.8mmol以上有する、OH伝導体。
    OH with a polymer having a functional group having an anion exchange capacity - a conductor,
    The polymer, in a dry state, said functional group, per the polymer 1g, having more than 1.8 mmol, OH - conductor.
  3.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、
     該ポリマーを水で膨潤させた場合の前記官能基密度が、2mmol/g以上有する、OH伝導体。
    OH with a polymer having a functional group having an anion exchange capacity - a conductor,
    The functional group density when swollen the polymer with water has more than 2 mmol / g, OH - conductor.
  4.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体であって、
     水素を含有する液体燃料についての該OH伝導体の透過係数が2×10-6cm/s以下である、OH伝導体。
    OH with a polymer having a functional group having an anion exchange capacity - a conductor,
    The OH of the liquid fuel containing hydrogen - permeability coefficient conductor is not more than 2 × 10 -6 cm 2 / s , OH - conductor.
  5.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
     A)アニオン交換能を有する官能基を有するポリマーを準備する工程;及び
     B1)前記ポリマーに含まれることがある、自由水、束縛水のうち、少なくとも自由水の量を制御する工程;を有し、
     前記自由水は、官能基1mol当たり、5mol以下の範囲内にあり、
     前記束縛水は、官能基1mol当たり、1mol以下の範囲内にある、上記方法。
    OH with a polymer having a functional group having an anion exchange capacity - a process for the preparation of the conductor,
    A) preparing a polymer having a functional group having an anion exchange ability; and B1) controlling at least the amount of free water among free water and bound water that may be contained in the polymer. ,
    The free water is in a range of 5 mol or less per 1 mol of the functional group,
    The above-mentioned method, wherein the bound water is in the range of 1 mol or less per 1 mol of the functional group.
  6.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
     A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
     C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
    を有し、
     前記ポリマーが、不凍水を前記官能基1mol当たり、0.1~10mol有する、上記方法。
    OH with a polymer having a functional group having an anion exchange capacity - a process for the preparation of the conductor,
    A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
    Have
    The method as described above, wherein the polymer has 0.1 to 10 mol of antifreeze water per mol of the functional group.
  7.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
     A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
     C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
    を有し、
     前記ポリマーは、乾燥状態で、前記官能基が該ポリマー1g当たり1.8mmol以上有する、上記方法。
    OH with a polymer having a functional group having an anion exchange capacity - a process for the preparation of the conductor,
    A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
    Have
    The above-mentioned method, wherein the polymer is in a dry state and the functional group has 1.8 mmol or more per 1 g of the polymer.
  8.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
     A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
     C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
    を有し、
     前記ポリマーを水で膨潤させた場合の前記官能基密度が、2mmol/g以上有する、上記方法。
    OH with a polymer having a functional group having an anion exchange capacity - a process for the preparation of the conductor,
    A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
    Have
    The said method that the said functional group density at the time of making the said polymer swell with water has 2 mmol / g or more.
  9.  アニオン交換能を有する官能基を有するポリマーを有するOH伝導体の製造方法であって、
     A)アニオン交換能を有する官能基を有するポリマー又はその前駆体を準備する工程;及び
     C)i)前記前駆体を用いる場合、該前駆体を多孔質体の細孔に充填し、その後、該前駆体を重合させて前記ポリマーを多孔質体の細孔に充填させるか、又はii)前記ポリマーを用いる場合、該ポリマーを多孔質体の細孔に充填する工程;
    を有し、
     水素を含有する液体燃料についての該OH伝導体の透過係数が2×10-6cm/s以下である、上記方法。
    OH with a polymer having a functional group having an anion exchange capacity - a process for the preparation of the conductor,
    A) a step of preparing a polymer having a functional group having anion exchange ability or a precursor thereof; and C) i) when using the precursor, filling the pores of the porous body, Polymerizing a precursor to fill the pores of the porous body with the polymer, or ii) when using the polymer, filling the pores of the porous body with the polymer;
    Have
    The method as described above, wherein the permeability coefficient of the OH conductor for a liquid fuel containing hydrogen is 2 × 10 −6 cm 2 / s or less.
PCT/JP2009/052712 2008-08-22 2009-02-17 Oh- conductor and process for producing the oh- conductor WO2010021158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008213423 2008-08-22
JP2008-213423 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021158A1 true WO2010021158A1 (en) 2010-02-25

Family

ID=41707041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052712 WO2010021158A1 (en) 2008-08-22 2009-02-17 Oh- conductor and process for producing the oh- conductor

Country Status (1)

Country Link
WO (1) WO2010021158A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161472A1 (en) * 2012-04-27 2013-10-31 株式会社 日立製作所 Alkaline fuel cell
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135137A (en) * 1997-10-31 1999-05-21 Asahi Glass Co Ltd Solid polyelectrolyte type methanol fuel cell
JPH11144745A (en) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd Solid high molecular electrolyte type methanol fuel cell
JPH11273695A (en) * 1998-03-19 1999-10-08 Asahi Glass Co Ltd Solid high polymer electrolyte methanol fuel cell
JP2001160408A (en) * 1999-12-01 2001-06-12 Asahi Glass Co Ltd Solid polymer electrolyte fuel cell
WO2009025291A1 (en) * 2007-08-23 2009-02-26 Tokuyama Corporation Separation membrane for direct liquid fuel cell and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135137A (en) * 1997-10-31 1999-05-21 Asahi Glass Co Ltd Solid polyelectrolyte type methanol fuel cell
JPH11144745A (en) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd Solid high molecular electrolyte type methanol fuel cell
JPH11273695A (en) * 1998-03-19 1999-10-08 Asahi Glass Co Ltd Solid high polymer electrolyte methanol fuel cell
JP2001160408A (en) * 1999-12-01 2001-06-12 Asahi Glass Co Ltd Solid polymer electrolyte fuel cell
WO2009025291A1 (en) * 2007-08-23 2009-02-26 Tokuyama Corporation Separation membrane for direct liquid fuel cell and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161472A1 (en) * 2012-04-27 2013-10-31 株式会社 日立製作所 Alkaline fuel cell
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Similar Documents

Publication Publication Date Title
Zuo et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage
Han et al. Elastic long-chain multication cross-linked anion exchange membranes
Bai et al. Branched, side-chain grafted polyarylpiperidine anion exchange membranes for fuel cell application
Xing et al. Sulfonated poly (aryl ether ketone) s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes
Zarrin et al. High durable PEK-based anion exchange membrane for elevated temperature alkaline fuel cells
US9534097B2 (en) Poly(phenylene alkylene)-based lonomers
Wang et al. Synthesis of soluble poly (arylene ether sulfone) ionomers with pendant quaternary ammonium groups for anion exchange membranes
Wang et al. Novel hydroxide-conducting polyelectrolyte composed of an poly (arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications
Lee et al. Water sorption, proton conduction, and methanol permeation properties of sulfonated polyimide membranes cross-linked with N, N-bis (2-hydroxyethyl)-2-aminoethanesulfonic acid (BES)
Dai et al. A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application
Li et al. A microporous polymer with suspended cations for anion exchange membrane fuel cells
Das et al. Cross-linked alkaline anion exchange membrane from N-spirocyclic quaternary ammonium and polybenzimidazole
Coppola et al. Polybenzimidazole-crosslinked-poly (vinyl benzyl chloride) as anion exchange membrane for alkaline electrolyzers
Liu et al. Quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) anion exchange membranes based on isomeric benzyltrimethylammonium cations for alkaline fuel cells
Zhang et al. Influence of solvent on polymer prequaternization toward anion-conductive membrane fabrication for all-vanadium flow battery
JP5794573B2 (en) Anion exchange resin and fuel cell containing the anion exchange resin
Seo et al. Anion conductive poly (arylene ether sulfone) s containing tetra-quaternary ammonium hydroxide on fluorenyl group for alkaline fuel cell application
Liu et al. Semi-interpenetrating polymer network membranes from SPEEK and BPPO for high concentration DMFC
Tamura et al. Polymer electrolyte membranes based on polystyrenes with phosphonic acid via long alkyl side chains
WO2010021158A1 (en) Oh- conductor and process for producing the oh- conductor
US10862151B2 (en) Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for slid polymer fuel cells, and fuel cell
Cha et al. Oligomeric chain extender-derived anion conducting membrane materials with poly (p-phenylene)-based architecture for fuel cells and water electrolyzers
US20080038614A1 (en) Proton-conducting electrolyte membrane, production process thereof, and membrane-electrode assembly and fuel cell using the same
Liu et al. Anion conducting multiblock copolymers with different tethered cations
Pandey et al. Phosphonic acid grafted poly (ethyleneimine)-silica composite polymer electrolyte membranes by epoxide ring opening: improved conductivity and water retention at high temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09808094

Country of ref document: EP

Kind code of ref document: A1