WO2010021123A1 - Gasification device, fuel generation system, gasification method, and fuel generation method - Google Patents

Gasification device, fuel generation system, gasification method, and fuel generation method Download PDF

Info

Publication number
WO2010021123A1
WO2010021123A1 PCT/JP2009/003928 JP2009003928W WO2010021123A1 WO 2010021123 A1 WO2010021123 A1 WO 2010021123A1 JP 2009003928 W JP2009003928 W JP 2009003928W WO 2010021123 A1 WO2010021123 A1 WO 2010021123A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification furnace
temperature
gasifier
fuel
water vapor
Prior art date
Application number
PCT/JP2009/003928
Other languages
French (fr)
Japanese (ja)
Inventor
橋本芳郎
Original Assignee
株式会社マイクロ・エナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マイクロ・エナジー filed Critical 株式会社マイクロ・エナジー
Priority to JP2010525591A priority Critical patent/JP5527743B2/en
Priority to CN2009801412788A priority patent/CN102186954A/en
Publication of WO2010021123A1 publication Critical patent/WO2010021123A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/005Rotary drum or kiln gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/0923Sludge, e.g. from water treatment plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a gasifier, a fuel generation system, a gasification method, and a fuel generator for generating liquid fuel from waste or the like.
  • a methane fermentation tank for methane fermentation of low-calorie waste a gasifier for gasifying high-calorie waste, a gas purification device for removing tar and soot from the gas generated in the gasifier, and gas It is equipped with a liquid fuel synthesizer that performs Fischer-Tropsch synthesis (FT synthesis) of hydrogen and carbon monoxide purified from the refiner, and the biogas generated in the methane fermentation tank is sent to the gasifier as a combustion aid
  • FT synthesis Fischer-Tropsch synthesis
  • an object of the present invention is to provide a gasification apparatus, a fuel generation system, a gasification method, and a fuel generation method that have a simple and small overall configuration and that can increase the processing efficiency.
  • the reaction for reforming the tar content into hydrogen and carbon monoxide is an endothermic reaction.
  • the present inventors have considered a method for maintaining the temperature in the gasification furnace above the decomposition temperature of tar and completed the following invention.
  • the present invention is a gasification device for generating a gas mainly composed of hydrogen and carbon monoxide from a raw material containing a carbon compound, and a supply port for supplying the raw material and for discharging the gas
  • a gasification furnace having a discharge port; steam supply means for supplying steam to the gasification furnace; heating means for heating the gasification furnace; temperature detection means for detecting the temperature of the gasification furnace; Temperature control means for controlling the heating means based on the temperature detected by the temperature detection means and maintaining at least the outlet side of the gasification furnace at or above the decomposition temperature of tar.
  • the heating means is formed inside the gasification furnace with the heat insulating means interposed therebetween.
  • the heating means is preferably formed in a cylindrical shape.
  • the heating means is preferably an electric heater.
  • a catalyst for lowering the decomposition temperature of tar is disposed inside the gasification furnace.
  • the water vapor supplied by the water vapor supply means is superheated water vapor.
  • the gasification furnace is preferably formed so as to be inclined downward from the supply port toward the discharge port.
  • the discharge port is formed in a size capable of preventing the pressure in the gasification furnace from exceeding a certain level at the upper end on one end side of the gasification furnace.
  • the suction means for sucking the gas generated in the gasification furnace from the discharge port, the pressure detection means for detecting the pressure in the gasification furnace, and the pressure detected by the pressure detection means It is preferable to comprise pressure control means for controlling the suction means and maintaining the pressure in the gasification furnace in a certain range.
  • the water vapor supply means is formed so as to supply water vapor from the supply port.
  • the fuel generation system of the present invention includes the above-described gasifier of the present invention, and a liquid fuelizer that generates liquid fuel by synthesizing hydrogen and carbon monoxide generated by the gasifier. It is characterized by doing.
  • the generator that generates power using the surplus gas generated in the liquid fuel generator as a fuel
  • the generator is any of an engine generator, a micro gas turbine generator, and a fuel cell.
  • an auxiliary fuel supply device that supplies the liquid fuel to the generator.
  • the heating means of the gasifier is an electric heater that heats using electricity generated by the generator.
  • the gasification method of the present invention is characterized in that the carbon compound-containing raw material and water vapor are maintained at a temperature equal to or higher than the decomposition temperature of tar in an air-blocked state.
  • the water vapor is preferably superheated water vapor.
  • the fuel generation method of the present invention includes a gas generation step of generating a gas mainly composed of hydrogen and carbon monoxide by maintaining a raw material containing a carbon compound and water vapor at a temperature equal to or higher than the decomposition temperature of tar in an air shut-off state. And a liquid fuel conversion step of synthesizing hydrogen and carbon monoxide generated in the gas generation step into a liquid fuel.
  • a catalyst that lowers the decomposition temperature of tar in the gasification production step it is preferable to use a catalyst that lowers the decomposition temperature of tar in the gasification production step.
  • the gas generation step it is preferable to heat the raw material and the water vapor using electricity generated in the power generation step.
  • the present invention maintains the gasification furnace outlet side above the decomposition temperature of tar, it prevents the temperature in the gasification furnace from rising and falling and prevents the tar content from remaining in the generated gas. Can do. Therefore, a gas purifier or the like that removes tar can be dispensed with, and the configuration of the gasifier and the entire fuel generation system can be simplified and reduced in size. Further, the processing efficiency can be increased.
  • the present invention is a gasification apparatus 1 for generating a gas 93 mainly composed of hydrogen and carbon monoxide from a raw material 91 containing a carbon compound, comprising a supply port 11A for supplying the raw material 91 and a gas 93.
  • a gasification furnace 11 having a discharge port 11B for discharging, a raw material supply means 12 for supplying a raw material 91 from a supply port 11A, a steam supply means 13 for supplying water vapor to the gasification furnace 11, and a gasification furnace 11
  • a heating means 14 for heating the gasification furnace 11, a temperature detection means 15 for detecting the temperature of the gasification furnace 11, and the heating means 14 are controlled based on the temperature detected by the temperature detection means 15, and at least the outlet side of the gasification furnace 11
  • temperature control means 16 for maintaining the temperature above the decomposition temperature of tar.
  • the raw material 91 may be any material as long as it contains at least a carbon compound, and waste such as food residue, woody biomass, rice husk, agricultural residue, activated sludge, and waste plastic can be used. These wastes are preferably pulverized to a predetermined size by the pulverizer 2 in order to easily cause thermal decomposition in the gasification furnace 11. It is also possible to provide the pulverizer 2 at the supply port 11A of the gasification furnace 11.
  • the gasification furnace 11 internally heats the raw material 91 and water vapor in an air-blocked state, and thermally decomposes the raw material 91 to generate a gas 93 mainly composed of hydrogen and carbon monoxide. It is formed in a cylindrical shape. Further, as the material of the gasification furnace 11, any material can be used as long as it can withstand the temperature and pressure at the time of the thermal decomposition.
  • the supply port 11A of the gasification furnace 11 is provided with raw material supply means 12 such as a piston, a conveyor, and a rotating screw that are operated by air pressure or hydraulic pressure, for example, whereby the raw material 91 is quantitatively introduced into the gasification furnace 11. Can be supplied continuously.
  • raw material supply means 12 such as a piston, a conveyor, and a rotating screw that are operated by air pressure or hydraulic pressure, for example, whereby the raw material 91 is quantitatively introduced into the gasification furnace 11. Can be supplied continuously.
  • the gasification furnace 11 can be formed as a rotary furnace that is inclined downward from the supply port 11A toward the discharge port 11B and is rotated by a rotary drive device such as a motor.
  • a rotary drive device such as a motor.
  • the raw material 91 and carbide 92 supplied to the gasification furnace 11 naturally flow to the discharge port 11B and overflow and are discharged from the discharge port 11B.
  • the space for gasification formed thereon becomes smaller toward the discharge port 11B.
  • a large amount of tar such as methane touches the high-temperature carbide 92 on the outlet side.
  • the carbide 92 acts as a catalyst, and a reaction for reforming tar or the like into hydrogen and carbon monoxide is promoted.
  • the amount of the carbide 92 increases on the discharge port side, the heat capacity on the discharge port side increases, and the temperature change on the discharge port side of the gasification furnace 11 can be reduced. Therefore, the temperature in the gasification furnace 11 can be stably maintained above the decomposition temperature of tar.
  • the size of the discharge port 11B is preferably formed at the upper end of the gasification furnace 11 so as to prevent the pressure in the gasification furnace 11 from exceeding a certain level.
  • a suction means (not shown) for sucking the gas generated in the gasification furnace from the discharge port, a pressure detection means 17 for detecting the pressure in the gasification furnace 11, and a pressure detected by the pressure detection means 17
  • the pressure control means for controlling the suction means based on the above and maintaining the pressure in the gasification furnace 11 in a certain range may be provided.
  • a pressure sensor may be provided near the supply port side or the discharge port of the gasification furnace to detect the pressure, and the pressure in the gasification furnace 11 may be adjusted to a positive pressure of 0 to 0.3 kPa with respect to the atmospheric pressure.
  • a scrubber 18 dust collecting means that collects dust such as ash contained in the discharged gas 93 with a liquid such as water is provided at the discharge port 11B of the gasification furnace 11.
  • the water vapor supply means 13 is for supplying water vapor into the gasification furnace 11. From the viewpoint of maintaining the temperature in the gasification furnace 11 at or above the decomposition temperature of tar, it is preferable to use superheated steam appropriately heated. For example, superheated steam heated to 170 ° C. or higher, preferably to the decomposition temperature of tar or higher can be used. Further, it is preferable that the water vapor supply means 13 is formed so as to supply water vapor from the supply port 11A of the gasification furnace 11. This is to prevent air from entering the gasification furnace 11 and maintain the gasification furnace 11 in an air shut-off state.
  • the heating means 14 heats the inside of the gasification furnace 11 to a temperature higher than the decomposition temperature of tar, for example, 1000 ° C. or more.
  • a temperature higher than the decomposition temperature of tar for example, 1000 ° C. or more.
  • an electric heater surrounding the gasification furnace 11 can be used. By using the electric heater in this way, the temperature in the gasification furnace 11 can be accurately adjusted.
  • the heating means 14 is formed inside the gasification furnace with the heat insulating means interposed therebetween. This is because, in the external heating type structure in which the heating means is arranged outside the gasification furnace, various mechanisms around the gasification furnace need to be adjusted in accordance with the thermal expansion, and the entire apparatus becomes complicated. . Moreover, since heat is transferred to the inside through the gasification furnace, it is difficult to finely adjust the temperature in the gasification furnace.
  • the heating means 14 is more preferably formed in a cylindrical shape. Thereby, the inside of the gasification furnace can be heated uniformly, and the inside of the gasification furnace 11 can be reliably maintained at a temperature equal to or higher than the decomposition temperature of tar.
  • a rotor centering on the rotation axis of the gasification furnace is provided outside the gasification furnace 11, and electricity is supplied to the heating means 14 (electric heater) through this. Can be supplied.
  • the temperature detection means 15 detects the temperature of the gasification furnace 11, and for example, a thermocouple can be used. Further, the temperature detection means 15 is electrically connected to a temperature control means 16 described later, and is formed so as to send the detection information to the temperature control means 16. In order to accurately grasp the temperature inside the gasification furnace 11, it is preferable to provide the temperature detection means 15 at a plurality of locations.
  • the temperature control means 16 controls the heating means 14 based on the temperature detected by the temperature detection means 15, and maintains at least the outlet side in the gasification furnace 11 at or above the decomposition temperature of tar.
  • a computer is used as the temperature control means 16, and a predetermined temperature equal to or higher than the decomposition temperature of tar is set in advance in the computer.
  • a signal is sent to the heating means 14 by PID control or the like, and the output of the heating means 14 is adjusted to control the temperature in the gasifier 11 To do.
  • the set temperature may be set to a tar decomposition temperature or higher, for example, 1000 ° C. or higher.
  • an upper limit value of the heating temperature can also be set.
  • the temperature in the case of the gasification furnace 11 made of stainless steel, the temperature can be set in a range of a lower limit value of 1000 ° C. and an upper limit value of 1100 ° C. The temperature is preferably set to 1070 to 1090 ° C.
  • the tar decomposition temperature can be lowered. In this case, it is possible to select a lower set temperature, and it is sufficient to maintain the tar decomposition temperature or higher when the catalyst is used.
  • the gasifier 1 can eliminate the need for a gas purifier for removing tar and the like.
  • the gasifier 1 of the present invention also includes a heat exchanging means 19 for exchanging heat between the generated hydrogen and carbon monoxide and water that is the source of water vapor supplied by the water vapor supply means 13. good.
  • a heat exchanging means 19 for exchanging heat between the generated hydrogen and carbon monoxide and water that is the source of water vapor supplied by the water vapor supply means 13. good.
  • the sensible heat of the high temperature (eg 1000 ° C) gas 93 discharged from the outlet 11B of the gasification furnace 11 is recovered with a heat exchanger, etc., and the temperature of the gas 93 is cooled to 200 to 300 ° C and recovered. It is only necessary to heat the water using the generated heat to generate water vapor supplied by the water vapor supply means 13 (heat exchange step).
  • the raw material 91 containing a carbon compound and water vapor are maintained at a temperature equal to or higher than the decomposition temperature of tar in an air-blocked state.
  • the raw material 91 such as food residue and woody biomass is pulverized to a predetermined size by the pulverizer 2 and is continuously metered in from the supply port 11A of the gasifier 11. At that time, water vapor is simultaneously supplied from the supply path of the raw material 91.
  • the raw material 91 and water vapor supplied to the gasification furnace 11 are heated by the heating means 14 in an air shut-off state. Then, the raw material 91 is thermally decomposed into the carbide 92 and the gas 93 without burning. Further, when the gas 93 is heated to a tar decomposition temperature, for example, 1000 ° C. or more, the gas 93 is reformed into a gas mainly composed of hydrogen and carbon monoxide.
  • the carbide 92 and the gas 93 can be quickly heated to a temperature higher than the decomposition temperature of tar, and the tar content contained in the generated gas can be further reduced. it can.
  • the fuel generation system 100 of the present invention includes the above-described gasifier 1 of the present invention, a liquid fuelizer 3 that synthesizes hydrogen and carbon monoxide generated by the gasifier 1, and generates a liquid fuel, and a liquid And a generator 4 that generates power using surplus gas generated in the fueling device 3 as fuel.
  • the liquid fuel conversion device 3 converts hydrogen and carbon monoxide obtained in the gasification device 1 into liquid fuel using a Fischer-Tropsch (hereinafter referred to as FT) method.
  • the liquid fuel conversion device 3 may be a generally used device as long as it can perform FT synthesis.
  • An example of a processing flow (liquid fuel conversion process) using the liquid fuel conversion apparatus 3 will be described with reference to FIG.
  • the gas 93 generated by the gasifier 1 is blown from the cyclone 31 to the FT synthesis unit 33 and is passed through the FT synthesis catalyst 34 to perform FT synthesis, light oil 94 and water as liquid fuel are produced. Since the quality of FT synthesis is greatly affected by the performance of the FT synthesis catalyst 34, it is preferable that the FT synthesis catalyst 34 has a high carbon monoxide conversion rate and a high chain growth probability.
  • Light oil 94 and water are introduced into the cooling separation unit 35 and separated.
  • the separated light oil 94 is collected in the oil tank 36, the water is collected as warm water through the heat exchanger 37, and the unseparated one is returned to the FT synthesis unit 33 and repeated.
  • Cooling water is supplied to the cooling separation unit 35 via the heat exchanger 38.
  • the fuel generation system 100 may be combined with a generator 4 that generates electricity using the surplus gas generated in the liquid fueling device 3 as fuel (power generation process).
  • a generator 4 that generates electricity using the surplus gas generated in the liquid fueling device 3 as fuel (power generation process).
  • surplus gas generated in the cooling separation unit 35 can be effectively used as fuel for the generator 4.
  • an engine generator, a micro gas turbine generator, a fuel cell, or the like may be used as the generator.
  • the heating means 14 of the gasifier 1 is an electric heater and the electricity generated by the generator 4 is used for the electric heater, it is not necessary to prepare a separate power source for the gasifier 1, and the fuel generation system 100 is externally provided. And can be an independent system. As a result, the fuel generation system 100 of the present invention can be used even in areas where there are sufficient raw materials such as woody biomass and agricultural residues, such as rural areas in developing countries, but electrical facilities are insufficient. It becomes possible.
  • the auxiliary fuel supply device may supply the liquid fuel by gasification, or may mix and mix the liquid fuel with the surplus gas as it is.

Abstract

Provided are a gasification device, a fuel generation system, a gasification method, and a fuel generation method that have a simple and compact configuration overall and that can improve processing efficiency. The gasification device (1), that generates a gas (93) containing hydrogen and carbon monoxide as the main components from a starting material (91) containing a carbon compound, is characterized in being equipped with a gasification furnace (11) that has a supply port (11A) for supplying the starting material (91) and an exhaust port (11B) for discharging the gas (93), a water vapor supply means (13) for supplying water vapor to the gasification furnace (11), a heating means (14) for heating the gasification furnace (11), a temperature sensing means (15) for sensing the temperature of the gasification furnace (11), and a temperature control means (16) that controls the heating means (14) based on the temperature sensed by the temperature sensing means (15) so as to maintain at least the exhaust port (11B) side of the gasification furnace (11) at a temperature equal to or higher than the decomposition temperature of tar.

Description

ガス化装置、燃料生成システム、ガス化方法および燃料生成方法Gasification apparatus, fuel generation system, gasification method, and fuel generation method
 本発明は、廃棄物等から液体燃料を生成するためのガス化装置、燃料生成システム、ガス化方法および燃料生成装置に関する。 The present invention relates to a gasifier, a fuel generation system, a gasification method, and a fuel generator for generating liquid fuel from waste or the like.
 従来、低カロリー廃棄物をメタン発酵処理するメタン発酵槽と、高カロリー廃棄物をガス化するガス化炉と、ガス化炉で発生したガスからタールや煤などを除去するガス精製装置と、ガス精製装置で精製されたガスの水素及び一酸化炭素をフィッシャー・トロプシュ合成(FT合成)する液体燃料合成装置とを備え、メタン発酵槽にて発生したバイオガスをガス化炉に助燃剤として送給する複合廃棄物処理システムがある(特許文献1)。 Conventionally, a methane fermentation tank for methane fermentation of low-calorie waste, a gasifier for gasifying high-calorie waste, a gas purification device for removing tar and soot from the gas generated in the gasifier, and gas It is equipped with a liquid fuel synthesizer that performs Fischer-Tropsch synthesis (FT synthesis) of hydrogen and carbon monoxide purified from the refiner, and the biogas generated in the methane fermentation tank is sent to the gasifier as a combustion aid There is a composite waste treatment system (Patent Document 1).
特開2006-205135号公報JP 2006-205135 A
 しかしながら、このシステムでは、高カロリー廃棄物をガス化炉でガス化した後、当該ガスからタールや煤などをガス精製装置で除去しなければならないことから、FT合成前の処理設備が複雑かつ大型化し、また処理効率も悪くなるという問題があった。 However, in this system, after high-calorie waste is gasified in a gasification furnace, tar and soot must be removed from the gas with a gas purifier, so that the processing equipment before FT synthesis is complicated and large. In addition, there is a problem that the processing efficiency is deteriorated.
 そこで本発明は、全体の構成が簡単かつ小型で、処理効率を高くすることができるガス化装置、燃料生成システム、ガス化方法および燃料生成方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a gasification apparatus, a fuel generation system, a gasification method, and a fuel generation method that have a simple and small overall configuration and that can increase the processing efficiency.
 本発明の発明者等が鋭意研究した結果、タール分を水素と一酸化炭素に改質する反応は吸熱反応であるため、単に加熱しただけでは、ガス化炉内の温度が下がったり、不均一になることがわかった。ガス化炉内の温度が下がったり、不均一になると、ガス中に未反応のタール分が多く残ることになる。そこで本発明者等は、ガス化炉内の温度をタールの分解温度以上に維持する方法を考え、次の発明を完成させた。 As a result of intensive studies by the inventors of the present invention, the reaction for reforming the tar content into hydrogen and carbon monoxide is an endothermic reaction. I found out that When the temperature in the gasification furnace decreases or becomes non-uniform, a large amount of unreacted tar remains in the gas. Therefore, the present inventors have considered a method for maintaining the temperature in the gasification furnace above the decomposition temperature of tar and completed the following invention.
 すなわち、本発明は、炭素化合物を含有する原料から水素及び一酸化炭素を主体とするガスを生成するためのガス化装置であって、原料を供給するための供給口とガスを排出するための排出口とを有するガス化炉と、前記ガス化炉に水蒸気を供給する水蒸気供給手段と、前記ガス化炉を加熱する加熱手段と、前記ガス化炉の温度を検出する温度検出手段と、前記温度検出手段が検出した温度に基づいて前記加熱手段を制御し、前記ガス化炉の少なくとも排出口側をタールの分解温度以上に維持する温度制御手段と、を具備することを特徴とする。 That is, the present invention is a gasification device for generating a gas mainly composed of hydrogen and carbon monoxide from a raw material containing a carbon compound, and a supply port for supplying the raw material and for discharging the gas A gasification furnace having a discharge port; steam supply means for supplying steam to the gasification furnace; heating means for heating the gasification furnace; temperature detection means for detecting the temperature of the gasification furnace; Temperature control means for controlling the heating means based on the temperature detected by the temperature detection means and maintaining at least the outlet side of the gasification furnace at or above the decomposition temperature of tar.
 この場合、前記加熱手段は、断熱手段を挟んでガス化炉の内部に形成される方が好ましい。また、前記加熱手段は、円筒状に形成される方が好ましい。また、前記加熱手段は電気ヒータである方が好ましい。また、前記ガス化炉内の原料を撹拌する撹拌手段を具備する方が好ましい。また、前記ガス化炉の内部に、タールの分解温度を下げる触媒が配置される方が好ましい。また、前記水蒸気供給手段が供給する水蒸気は過熱水蒸気である方が好ましい。また、前記ガス化炉は、前記供給口から前記排出口に向かって下向きに傾斜するように形成されている方が好ましい。また、前記排出口は、前記ガス化炉の一端側上部に、ガス化炉内の圧力が一定以上になるのを防止し得る大きさに形成される方が好ましい。また、前記ガス化炉内で生成されたガスを前記排出口から吸引する吸引手段と、前記ガス化炉内の圧力を検出する圧力検出手段と、前記圧力検出手段が検出した圧力に基づいて前記吸引手段を制御し、前記ガス化炉内の圧力を一定範囲に維持する圧力制御手段と、を具備する方が好ましい。また、前記水蒸気供給手段は、前記供給口から水蒸気を供給するように形成される方が好ましい。また、前記排出口から排出された水素及び一酸化炭素と前記水蒸気供給手段が供給する水蒸気の元となる水との間で熱を交換する熱交換手段を具備する方が好ましい。 In this case, it is preferable that the heating means is formed inside the gasification furnace with the heat insulating means interposed therebetween. The heating means is preferably formed in a cylindrical shape. The heating means is preferably an electric heater. Moreover, it is preferable to provide a stirring means for stirring the raw material in the gasification furnace. Further, it is preferable that a catalyst for lowering the decomposition temperature of tar is disposed inside the gasification furnace. Moreover, it is preferable that the water vapor supplied by the water vapor supply means is superheated water vapor. The gasification furnace is preferably formed so as to be inclined downward from the supply port toward the discharge port. In addition, it is preferable that the discharge port is formed in a size capable of preventing the pressure in the gasification furnace from exceeding a certain level at the upper end on one end side of the gasification furnace. Further, the suction means for sucking the gas generated in the gasification furnace from the discharge port, the pressure detection means for detecting the pressure in the gasification furnace, and the pressure detected by the pressure detection means It is preferable to comprise pressure control means for controlling the suction means and maintaining the pressure in the gasification furnace in a certain range. Further, it is preferable that the water vapor supply means is formed so as to supply water vapor from the supply port. Moreover, it is preferable to provide a heat exchanging means for exchanging heat between hydrogen and carbon monoxide discharged from the discharge port and water which is a source of water vapor supplied by the water vapor supplying means.
 また、本発明の燃料生成システムは、上述した本発明のガス化装置と、前記ガス化装置で生成された水素及び一酸化炭素を合成して液体燃料を生成する液体燃料化装置と、を具備することを特徴とする。 The fuel generation system of the present invention includes the above-described gasifier of the present invention, and a liquid fuelizer that generates liquid fuel by synthesizing hydrogen and carbon monoxide generated by the gasifier. It is characterized by doing.
 この場合、前記液体燃料化装置で生じた余剰ガスを燃料として発電する発電機を具備し、当該発電機が、エンジン式発電機、マイクロガスタービン発電機、燃料電池のいずれかである方が好ましい。また、前記液体燃料を前記発電機に供給する補助燃料供給装置を具備する方が好ましい。また、前記ガス化装置の加熱手段は、前記発電機によって発電された電気を使用して加熱する電気ヒータである方が好ましい。 In this case, it is preferable to provide a generator that generates power using the surplus gas generated in the liquid fuel generator as a fuel, and the generator is any of an engine generator, a micro gas turbine generator, and a fuel cell. . Moreover, it is preferable to provide an auxiliary fuel supply device that supplies the liquid fuel to the generator. Moreover, it is preferable that the heating means of the gasifier is an electric heater that heats using electricity generated by the generator.
 また、本発明のガス化方法は、炭素化合物を含有する原料と水蒸気とを空気遮断状態でタールの分解温度以上に維持することを特徴とする。 The gasification method of the present invention is characterized in that the carbon compound-containing raw material and water vapor are maintained at a temperature equal to or higher than the decomposition temperature of tar in an air-blocked state.
 この場合、タールの分解温度を下げる触媒を用いる方が好ましい。また、前記水蒸気は過熱水蒸気である方が好ましい。 In this case, it is preferable to use a catalyst that lowers the decomposition temperature of tar. The water vapor is preferably superheated water vapor.
 また、本発明の燃料生成方法は、炭素化合物を含有する原料と水蒸気とを空気遮断状態でタールの分解温度以上に維持して水素及び一酸化炭素を主体とするガスを生成するガス生成工程と、前記ガス生成工程で生成された水素及び一酸化炭素を合成して液体燃料化する液体燃料化工程と、を有することを特徴とする。 The fuel generation method of the present invention includes a gas generation step of generating a gas mainly composed of hydrogen and carbon monoxide by maintaining a raw material containing a carbon compound and water vapor at a temperature equal to or higher than the decomposition temperature of tar in an air shut-off state. And a liquid fuel conversion step of synthesizing hydrogen and carbon monoxide generated in the gas generation step into a liquid fuel.
 この場合、前記ガス化生成工程は、タールの分解温度を下げる触媒を用いる方が好ましい。また、前記液体燃料化工程で生じた余剰ガスを燃料として発電機で電気を発電する発電工程を有する方が好ましい。また、前記ガス生成工程は、前記発電工程で発電した電気を使用して前記原料と前記水蒸気とを加熱する方が好ましい。また、前記ガス生成工程で生成した水素及び一酸化炭素と、前記水蒸気の元となる水との間で熱を交換する熱交換工程を有する方が好ましい。 In this case, it is preferable to use a catalyst that lowers the decomposition temperature of tar in the gasification production step. Further, it is preferable to have a power generation step of generating electricity with a generator using the surplus gas generated in the liquid fuel step as fuel. In the gas generation step, it is preferable to heat the raw material and the water vapor using electricity generated in the power generation step. Moreover, it is preferable to have a heat exchange step of exchanging heat between the hydrogen and carbon monoxide generated in the gas generation step and the water that is the source of the water vapor.
 本発明は、ガス化炉の排出口側をタールの分解温度以上に維持するので、ガス化炉内の温度が上下するのを防止し、生成されたガスにタール分が残ることを防止することができる。したがって、タールを除去するガス精製装置等を不要とすることができ、ガス化装置や燃料生成システム全体の構成を簡単かつ小型とすることができる。また、処理効率を高めることができる。 Since the present invention maintains the gasification furnace outlet side above the decomposition temperature of tar, it prevents the temperature in the gasification furnace from rising and falling and prevents the tar content from remaining in the generated gas. Can do. Therefore, a gas purifier or the like that removes tar can be dispensed with, and the configuration of the gasifier and the entire fuel generation system can be simplified and reduced in size. Further, the processing efficiency can be increased.
本発明のガス化装置を示す概略図である。It is the schematic which shows the gasification apparatus of this invention. 本発明の燃料生成システムを示す概略図である。It is the schematic which shows the fuel production | generation system of this invention. 本発明の液体燃料化装置及びエンジン式発電機を示す概略図である。It is the schematic which shows the liquid fuel conversion apparatus and engine type generator of this invention.
符号の説明Explanation of symbols
 1 ガス化装置
 3 液体燃料化装置
 4 発電機
 11 ガス化炉
 11A 供給口
 11B 排出口
 13 水蒸気供給手段
 14 加熱手段
 15 温度検出手段
 16 温度制御手段
 17 圧力検出手段
 19 熱交換手段
 91 原料
 93 ガス
DESCRIPTION OF SYMBOLS 1 Gasifier 3 Liquid fuelizer 4 Generator 11 Gasifier 11A Supply port 11B Discharge port 13 Water vapor supply means 14 Heating means 15 Temperature detection means 16 Temperature control means 17 Pressure detection means 19 Heat exchange means 91 Raw material 93 Gas
 本発明は、炭素化合物を含有する原料91から水素及び一酸化炭素を主体とするガス93を生成するためのガス化装置1であって、原料91を供給するための供給口11Aとガス93を排出するための排出口11Bとを有するガス化炉11と、供給口11Aから原料91を供給する原料供給手段12と、ガス化炉11に水蒸気を供給する水蒸気供給手段13と、ガス化炉11を加熱する加熱手段14と、ガス化炉11の温度を検出する温度検出手段15と、温度検出手段15が検出した温度に基づいて加熱手段14を制御し、ガス化炉11の少なくとも排出口側をタールの分解温度以上に維持する温度制御手段16と、で主に構成される。 The present invention is a gasification apparatus 1 for generating a gas 93 mainly composed of hydrogen and carbon monoxide from a raw material 91 containing a carbon compound, comprising a supply port 11A for supplying the raw material 91 and a gas 93. A gasification furnace 11 having a discharge port 11B for discharging, a raw material supply means 12 for supplying a raw material 91 from a supply port 11A, a steam supply means 13 for supplying water vapor to the gasification furnace 11, and a gasification furnace 11 A heating means 14 for heating the gasification furnace 11, a temperature detection means 15 for detecting the temperature of the gasification furnace 11, and the heating means 14 are controlled based on the temperature detected by the temperature detection means 15, and at least the outlet side of the gasification furnace 11 And temperature control means 16 for maintaining the temperature above the decomposition temperature of tar.
 原料91としては、少なくとも炭素化合物を含有するものであればどのようなものでも良く、食品残渣、木質バイオマス、籾殻、農業残渣、活性汚泥、廃プラスチック等の廃棄物を用いることができる。また、これらの廃棄物は、ガス化炉11内で熱分解を起こし易くするために、粉砕機2で所定の大きさに粉砕しておく方が好ましい。また、粉砕機2をガス化炉11の供給口11Aに設けることも可能である。 The raw material 91 may be any material as long as it contains at least a carbon compound, and waste such as food residue, woody biomass, rice husk, agricultural residue, activated sludge, and waste plastic can be used. These wastes are preferably pulverized to a predetermined size by the pulverizer 2 in order to easily cause thermal decomposition in the gasification furnace 11. It is also possible to provide the pulverizer 2 at the supply port 11A of the gasification furnace 11.
 ガス化炉11は、内部で原料91と水蒸気とを空気遮断状態で加熱し、原料91を熱分解して水素と一酸化炭素を主体とするガス93を生成するための炉で、例えば、横長円筒形に形成される。また、ガス化炉11の材質としては、この熱分解を行う際の温度と圧力に耐えられるものであればどのようなものでも良い。 The gasification furnace 11 internally heats the raw material 91 and water vapor in an air-blocked state, and thermally decomposes the raw material 91 to generate a gas 93 mainly composed of hydrogen and carbon monoxide. It is formed in a cylindrical shape. Further, as the material of the gasification furnace 11, any material can be used as long as it can withstand the temperature and pressure at the time of the thermal decomposition.
 ガス化炉11の供給口11Aには、例えば、空気圧や油圧等で作動するピストン、コンベア、回転するスクリュー等の原料供給手段12を設け、これにより、原料91をガス化炉11内に定量的に連続供給すれば良い。 The supply port 11A of the gasification furnace 11 is provided with raw material supply means 12 such as a piston, a conveyor, and a rotating screw that are operated by air pressure or hydraulic pressure, for example, whereby the raw material 91 is quantitatively introduced into the gasification furnace 11. Can be supplied continuously.
 また、ガス化炉内の反応を均一にするために、ガス化炉内の原料を撹拌する撹拌手段を具備する方が好ましい。 Further, in order to make the reaction in the gasification furnace uniform, it is preferable to provide a stirring means for stirring the raw material in the gasification furnace.
 また、ガス化炉11は、図1に示すように、供給口11Aから排出口11Bに向かって下向きに傾斜し、モータ等の回転駆動装置によって回転する回転炉として形成することもできる。このように形成すると、ガス化炉11に供給された原料91や炭化物92は自然に排出口11Bへ流れ、排出口11Bからオーバーフローして排出されるので、その堆積量は排出口11Bに向かって多くなり、逆に、その上に形成されるガス化のための空間は排出口11Bへ向かって小さくなる。これにより、メタン等のタール分は排出口側で高温の炭化物92に多く触れることになる。すると、当該炭化物92が触媒として作用し、タール等を水素及び一酸化炭素に改質する反応が助長される。また、排出口側に炭化物92が多くなることで、排出口側の熱容量が大きくなり、ガス化炉11の排出口側の温度変化を小さくすることができる。したがって、ガス化炉11内の温度をタールの分解温度以上に安定して維持することができる。 Further, as shown in FIG. 1, the gasification furnace 11 can be formed as a rotary furnace that is inclined downward from the supply port 11A toward the discharge port 11B and is rotated by a rotary drive device such as a motor. When formed in this way, the raw material 91 and carbide 92 supplied to the gasification furnace 11 naturally flow to the discharge port 11B and overflow and are discharged from the discharge port 11B. On the contrary, the space for gasification formed thereon becomes smaller toward the discharge port 11B. Thereby, a large amount of tar such as methane touches the high-temperature carbide 92 on the outlet side. Then, the carbide 92 acts as a catalyst, and a reaction for reforming tar or the like into hydrogen and carbon monoxide is promoted. Further, since the amount of the carbide 92 increases on the discharge port side, the heat capacity on the discharge port side increases, and the temperature change on the discharge port side of the gasification furnace 11 can be reduced. Therefore, the temperature in the gasification furnace 11 can be stably maintained above the decomposition temperature of tar.
 なお、排出口側に向かって炭化物92を多くすることでガス93の改質を効率良く行うことが可能になるが、炭化物92を多くし過ぎると炭化物92が排出口11Bをふさいでしまい、生成したガス93が排出口11Bから排出され難くなる。そこで、排出口11Bの大きさは、ガス化炉11の一端側上部に、ガス化炉11内の圧力が一定以上になるのを防止し得る大きさに形成するのが良い。また、ガス化炉内で生成されたガスを排出口から吸引する吸引手段(図示せず)と、ガス化炉11内の圧力を検出する圧力検出手段17と、圧力検出手段17が検出した圧力に基づいて吸引手段を制御し、ガス化炉11内の圧力を一定範囲に維持する圧力制御手段を設けても良い。例えば、ガス化炉の供給口側近傍や排出口に圧力センサを設けて圧力を検出し、ガス化炉11内の圧力を、大気圧に対して0~0.3kPa陽圧に調節すれば良い。 In addition, it becomes possible to efficiently reform the gas 93 by increasing the amount of the carbide 92 toward the discharge port side. However, if the amount of the carbide 92 is excessive, the carbide 92 blocks the discharge port 11B and is generated. It becomes difficult to discharge the gas 93 from the discharge port 11B. Therefore, the size of the discharge port 11B is preferably formed at the upper end of the gasification furnace 11 so as to prevent the pressure in the gasification furnace 11 from exceeding a certain level. Further, a suction means (not shown) for sucking the gas generated in the gasification furnace from the discharge port, a pressure detection means 17 for detecting the pressure in the gasification furnace 11, and a pressure detected by the pressure detection means 17 The pressure control means for controlling the suction means based on the above and maintaining the pressure in the gasification furnace 11 in a certain range may be provided. For example, a pressure sensor may be provided near the supply port side or the discharge port of the gasification furnace to detect the pressure, and the pressure in the gasification furnace 11 may be adjusted to a positive pressure of 0 to 0.3 kPa with respect to the atmospheric pressure.
 また、ガス化炉11の排出口11Bには、排出されたガス93に含まれる灰等のダストを水等の液体によって集塵するスクラバー18(集塵手段)が設けられる。 Also, a scrubber 18 (dust collecting means) that collects dust such as ash contained in the discharged gas 93 with a liquid such as water is provided at the discharge port 11B of the gasification furnace 11.
 水蒸気供給手段13は、ガス化炉11内に水蒸気を供給するためのものである。なお、ガス化炉11内の温度をタールの分解温度以上に維持するという観点からは、適切に加熱された過熱水蒸気を用いる方が好ましい。例えば、170℃以上、好ましくは、タールの分解温度以上まで加熱された過熱水蒸気を用いることができる。また、水蒸気供給手段13は、ガス化炉11の供給口11Aから水蒸気を供給するように形成する方が好ましい。これは、ガス化炉11内に空気が入り込むのを抑制し、ガス化炉11内を空気遮断状態に維持するためである。 The water vapor supply means 13 is for supplying water vapor into the gasification furnace 11. From the viewpoint of maintaining the temperature in the gasification furnace 11 at or above the decomposition temperature of tar, it is preferable to use superheated steam appropriately heated. For example, superheated steam heated to 170 ° C. or higher, preferably to the decomposition temperature of tar or higher can be used. Further, it is preferable that the water vapor supply means 13 is formed so as to supply water vapor from the supply port 11A of the gasification furnace 11. This is to prevent air from entering the gasification furnace 11 and maintain the gasification furnace 11 in an air shut-off state.
 加熱手段14は、ガス化炉11内をタールの分解温度以上、例えば1000℃以上に加熱するもので、例えばガス化炉11を包囲する電気ヒータを用いることができる。このように電気ヒータを用いることにより、ガス化炉11内の温度を正確に調節することができる。 The heating means 14 heats the inside of the gasification furnace 11 to a temperature higher than the decomposition temperature of tar, for example, 1000 ° C. or more. For example, an electric heater surrounding the gasification furnace 11 can be used. By using the electric heater in this way, the temperature in the gasification furnace 11 can be accurately adjusted.
 また、加熱手段14は、断熱手段を挟んでガス化炉の内部に形成される方が好ましい。なぜなら、ガス化炉の外側に加熱手段を配置する外熱式の構造では、ガス化炉のまわりの種々の機構を熱膨張に合わせて調節する必要があり、装置全体が複雑になるためである。また、ガス化炉を介して内部に熱を伝えることになるため、ガス化炉内の温度の微妙な調節が困難となるためである。なお、加熱手段14は、円筒形に形成される方がより好ましい。これにより、ガス化炉内を均一に加熱することができ、ガス化炉11内をタールの分解温度以上に確実に維持することができる。なお、加熱手段14への電気の供給は、例えば、ガス化炉11の外側に、ガス化炉の回転軸を中心とする回転子を設け、これを介して加熱手段14(電気ヒータ)へ電気を供給すればよい。 Further, it is preferable that the heating means 14 is formed inside the gasification furnace with the heat insulating means interposed therebetween. This is because, in the external heating type structure in which the heating means is arranged outside the gasification furnace, various mechanisms around the gasification furnace need to be adjusted in accordance with the thermal expansion, and the entire apparatus becomes complicated. . Moreover, since heat is transferred to the inside through the gasification furnace, it is difficult to finely adjust the temperature in the gasification furnace. The heating means 14 is more preferably formed in a cylindrical shape. Thereby, the inside of the gasification furnace can be heated uniformly, and the inside of the gasification furnace 11 can be reliably maintained at a temperature equal to or higher than the decomposition temperature of tar. In addition, for the supply of electricity to the heating means 14, for example, a rotor centering on the rotation axis of the gasification furnace is provided outside the gasification furnace 11, and electricity is supplied to the heating means 14 (electric heater) through this. Can be supplied.
 温度検出手段15は、ガス化炉11の温度を検出するもので、例えば熱電対を用いることができる。また、温度検出手段15は、後述する温度制御手段16と電気的に接続されており、その検出情報を温度制御手段16に送るように形成される。なお、ガス化炉11内全体の温度を正確に把握するためには、温度検出手段15を複数箇所に設ける方が好ましい。 The temperature detection means 15 detects the temperature of the gasification furnace 11, and for example, a thermocouple can be used. Further, the temperature detection means 15 is electrically connected to a temperature control means 16 described later, and is formed so as to send the detection information to the temperature control means 16. In order to accurately grasp the temperature inside the gasification furnace 11, it is preferable to provide the temperature detection means 15 at a plurality of locations.
 温度制御手段16は、温度検出手段15が検出した温度に基づいて加熱手段14を制御し、ガス化炉11内の少なくとも排出口側をタールの分解温度以上に維持するものである。例えば、温度制御手段16としてコンピュータを用い、このコンピュータに予めタールの分解温度以上の所定の温度を設定しておく。次に、設定温度と実際に熱電対が検出した温度の偏差に基づいてPID制御等により加熱手段14に信号を送り、加熱手段14の出力を調節して、ガス化炉11内の温度を制御する。設定温度としては、タールの分解温度以上、例えば1000℃以上に設定すれば良い。なお、ガス化炉11の耐熱温度を考慮して、加熱温度の上限値も設定しておくことができる。例えば、ステンレス製のガス化炉11であれば、温度を下限値1000℃、上限値1100℃の範囲に設定することができる。好ましくは1070~1090℃に設定するのが良い。また、ガス化炉11内にタールの分解温度を下げる触媒を配置した場合には、タールの分解温度を低下させることができる。この場合には、更に低い設定温度を選択することも可能であり、触媒を用いた際のタールの分解温度以上に維持するようにすれば良い。これにより、ガス化炉11内の温度をタールの分解温度以上に正確に維持できるので、タールの熱分解を確実に行うことができ、生成されたガス93にタール等が含まれるのを抑制することができる。したがって、ガス化装置1は、タール分等を除去するためのガス精製装置を不要とすることができる。 The temperature control means 16 controls the heating means 14 based on the temperature detected by the temperature detection means 15, and maintains at least the outlet side in the gasification furnace 11 at or above the decomposition temperature of tar. For example, a computer is used as the temperature control means 16, and a predetermined temperature equal to or higher than the decomposition temperature of tar is set in advance in the computer. Next, based on the deviation between the set temperature and the temperature actually detected by the thermocouple, a signal is sent to the heating means 14 by PID control or the like, and the output of the heating means 14 is adjusted to control the temperature in the gasifier 11 To do. The set temperature may be set to a tar decomposition temperature or higher, for example, 1000 ° C. or higher. In consideration of the heat resistant temperature of the gasification furnace 11, an upper limit value of the heating temperature can also be set. For example, in the case of the gasification furnace 11 made of stainless steel, the temperature can be set in a range of a lower limit value of 1000 ° C. and an upper limit value of 1100 ° C. The temperature is preferably set to 1070 to 1090 ° C. Further, when a catalyst for lowering the tar decomposition temperature is disposed in the gasification furnace 11, the tar decomposition temperature can be lowered. In this case, it is possible to select a lower set temperature, and it is sufficient to maintain the tar decomposition temperature or higher when the catalyst is used. Thereby, since the temperature in the gasification furnace 11 can be accurately maintained above the decomposition temperature of tar, the thermal decomposition of tar can be performed reliably, and the generated gas 93 is prevented from containing tar or the like. be able to. Therefore, the gasifier 1 can eliminate the need for a gas purifier for removing tar and the like.
 また、本発明のガス化装置1は、生成された水素及び一酸化炭素と水蒸気供給手段13が供給する水蒸気の元となる水との間で熱を交換する熱交換手段19を具備しても良い。例えば、ガス化炉11の排出口11Bから排出された高温(例えば1000℃)のガス93の顕熱を熱交換器等で回収して、ガス93の温度を200~300℃まで冷却し、回収した熱を利用して水を加熱し、水蒸気供給手段13が供給する水蒸気を生成すれば良い(熱交換工程)。 The gasifier 1 of the present invention also includes a heat exchanging means 19 for exchanging heat between the generated hydrogen and carbon monoxide and water that is the source of water vapor supplied by the water vapor supply means 13. good. For example, the sensible heat of the high temperature (eg 1000 ° C) gas 93 discharged from the outlet 11B of the gasification furnace 11 is recovered with a heat exchanger, etc., and the temperature of the gas 93 is cooled to 200 to 300 ° C and recovered. It is only necessary to heat the water using the generated heat to generate water vapor supplied by the water vapor supply means 13 (heat exchange step).
 次に、本発明のガス化方法(ガス生成工程)について、上述したガス化装置1を用いて説明する。 Next, the gasification method (gas generation step) of the present invention will be described using the gasification apparatus 1 described above.
 本発明のガス化方法は、炭素化合物を含有する原料91と、水蒸気と、を空気遮断状態でタールの分解温度以上に維持するものである。 In the gasification method of the present invention, the raw material 91 containing a carbon compound and water vapor are maintained at a temperature equal to or higher than the decomposition temperature of tar in an air-blocked state.
 まず、食品残渣や木質バイオマス等の原料91は、粉砕機2で所定の大きさに粉砕され、ガス化炉11の供給口11Aから連続的に定量投入される。その際、原料91の供給経路から水蒸気を同時に供給する。 First, the raw material 91 such as food residue and woody biomass is pulverized to a predetermined size by the pulverizer 2 and is continuously metered in from the supply port 11A of the gasifier 11. At that time, water vapor is simultaneously supplied from the supply path of the raw material 91.
 ガス化炉11に供給された原料91と水蒸気は、空気遮断状態で、加熱手段14によって加熱される。すると、原料91は燃焼することなく炭化物92やガス93に熱分解される。更に、ガス93をタールの分解温度、例えば1000℃以上に加熱すると、ガス93は水素と一酸化炭素を主体とするガスに改質される。 The raw material 91 and water vapor supplied to the gasification furnace 11 are heated by the heating means 14 in an air shut-off state. Then, the raw material 91 is thermally decomposed into the carbide 92 and the gas 93 without burning. Further, when the gas 93 is heated to a tar decomposition temperature, for example, 1000 ° C. or more, the gas 93 is reformed into a gas mainly composed of hydrogen and carbon monoxide.
 ここで、水蒸気を温度の高い過熱水蒸気としておけば、炭化物92やガス93を速やかにタールの分解温度以上に加熱することができ、生成されるガス中に含まれるタール分を更に少なくすることができる。 Here, if the steam is high-temperature superheated steam, the carbide 92 and the gas 93 can be quickly heated to a temperature higher than the decomposition temperature of tar, and the tar content contained in the generated gas can be further reduced. it can.
 次に、本発明のガス化装置1を組み込んだ燃料生成システム100について説明する。 Next, the fuel generation system 100 incorporating the gasifier 1 of the present invention will be described.
 本発明の燃料生成システム100は、上述した本発明のガス化装置1と、ガス化装置1で生成された水素及び一酸化炭素を合成して液体燃料を生成する液体燃料化装置3と、液体燃料化装置3で生じた余剰ガスを燃料として発電する発電機4と、で主に構成される。 The fuel generation system 100 of the present invention includes the above-described gasifier 1 of the present invention, a liquid fuelizer 3 that synthesizes hydrogen and carbon monoxide generated by the gasifier 1, and generates a liquid fuel, and a liquid And a generator 4 that generates power using surplus gas generated in the fueling device 3 as fuel.
 液体燃料化装置3は、ガス化装置1で得られた水素と一酸化炭素とをフィッシャー・トロプシュ(以下FTと記載する)法を用いて液体燃料化するものである。液体燃料化装置3としては、FT合成ができるものであれば一般的に用いられている物で構わない。図3を用いて液体燃料化装置3を用いた処理の流れ(液体燃料化工程)の一例を示す。 The liquid fuel conversion device 3 converts hydrogen and carbon monoxide obtained in the gasification device 1 into liquid fuel using a Fischer-Tropsch (hereinafter referred to as FT) method. The liquid fuel conversion device 3 may be a generally used device as long as it can perform FT synthesis. An example of a processing flow (liquid fuel conversion process) using the liquid fuel conversion apparatus 3 will be described with reference to FIG.
 ガス化装置1で生成したガス93をサイクロン31からFT合成部33へ吹き込み、FT合成触媒34に通してFT合成を行うと、液体燃料となる軽質油94と水が生成される。FT合成は、FT合成触媒34の性能により品質が大きく左右されるため、FT合成触媒34としては、高い一酸化炭素転化率と高い連鎖成長確率が得られるものが好ましい。 When the gas 93 generated by the gasifier 1 is blown from the cyclone 31 to the FT synthesis unit 33 and is passed through the FT synthesis catalyst 34 to perform FT synthesis, light oil 94 and water as liquid fuel are produced. Since the quality of FT synthesis is greatly affected by the performance of the FT synthesis catalyst 34, it is preferable that the FT synthesis catalyst 34 has a high carbon monoxide conversion rate and a high chain growth probability.
 軽質油94と水は冷却分離部35へ導入して分離する。分離した軽質油94は油タンク36に回収し、水は熱交換器37を介して温水として回収し、分離しなかったものはFT合成部33へ戻して繰り返す。冷却分離部35には、熱交換器38を介して冷却水を供給する。 Light oil 94 and water are introduced into the cooling separation unit 35 and separated. The separated light oil 94 is collected in the oil tank 36, the water is collected as warm water through the heat exchanger 37, and the unseparated one is returned to the FT synthesis unit 33 and repeated. Cooling water is supplied to the cooling separation unit 35 via the heat exchanger 38.
 また燃料生成システム100には、液体燃料化装置3で生じた余剰ガスを燃料として電気を発電する(発電工程)発電機4を組み合わせても良い。これにより、冷却分離部35で生じた余剰ガスを発電機4の燃料として有効利用することができる。この場合、当該発電機としては、エンジン式発電機、マイクロガスタービン発電機、燃料電池等を用いれば良い。 Further, the fuel generation system 100 may be combined with a generator 4 that generates electricity using the surplus gas generated in the liquid fueling device 3 as fuel (power generation process). Thus, surplus gas generated in the cooling separation unit 35 can be effectively used as fuel for the generator 4. In this case, an engine generator, a micro gas turbine generator, a fuel cell, or the like may be used as the generator.
 また、ガス化装置1の加熱手段14を電気ヒータとし、この電気ヒータに発電機4が発電した電気を用いれば、ガス化装置1に別途電源を用意する必要が無くなり、燃料生成システム100を外部と独立したシステムにすることができる。これにより、例えば、発展途上国の農村部等、木質バイオマスや農業残渣等の原料は十分にあるが、電気関連設備が不十分な地域においても、本発明の燃料生成システム100を利用することが可能となる。 Further, if the heating means 14 of the gasifier 1 is an electric heater and the electricity generated by the generator 4 is used for the electric heater, it is not necessary to prepare a separate power source for the gasifier 1, and the fuel generation system 100 is externally provided. And can be an independent system. As a result, the fuel generation system 100 of the present invention can be used even in areas where there are sufficient raw materials such as woody biomass and agricultural residues, such as rural areas in developing countries, but electrical facilities are insufficient. It becomes possible.
 なお、液体燃料を発電機4に供給する補助燃料供給装置を設ければ、更に安定した電気エネルギーを供給することが可能である。この場合、補助燃料供給装置は、液体燃料をガス化して供給しても良いし、液体燃料を余剰ガスにそのまま混ぜて混焼させるものでも良い。 If an auxiliary fuel supply device that supplies liquid fuel to the generator 4 is provided, it is possible to supply more stable electric energy. In this case, the auxiliary fuel supply device may supply the liquid fuel by gasification, or may mix and mix the liquid fuel with the surplus gas as it is.

Claims (24)

  1.  炭素化合物を含有する原料から水素及び一酸化炭素を主体とするガスを生成するためのガス化装置であって、
     原料を供給するための供給口とガスを排出するための排出口とを有するガス化炉と、
     前記ガス化炉に水蒸気を供給する水蒸気供給手段と、
     前記ガス化炉を加熱する加熱手段と、
     前記ガス化炉の温度を検出する温度検出手段と、
     前記温度検出手段が検出した温度に基づいて前記加熱手段を制御し、前記ガス化炉の少なくとも排出口側をタールの分解温度以上に維持する温度制御手段と、
    を具備することを特徴とするガス化装置。
    A gasifier for generating a gas mainly composed of hydrogen and carbon monoxide from a raw material containing a carbon compound,
    A gasification furnace having a supply port for supplying raw materials and an exhaust port for discharging gas;
    Water vapor supply means for supplying water vapor to the gasification furnace;
    Heating means for heating the gasification furnace;
    Temperature detecting means for detecting the temperature of the gasifier,
    Temperature control means for controlling the heating means based on the temperature detected by the temperature detection means, and maintaining at least the outlet side of the gasification furnace above the decomposition temperature of tar;
    The gasifier characterized by comprising.
  2.  前記加熱手段は、断熱手段を挟んでガス化炉の内部に形成されることを特徴とする請求項1記載のガス化装置。 The gasifier according to claim 1, wherein the heating means is formed inside a gasification furnace with a heat insulating means interposed therebetween.
  3.  前記加熱手段は、円筒状に形成されることを特徴とする請求項2記載のガス化装置。 The gasifier according to claim 2, wherein the heating means is formed in a cylindrical shape.
  4.  前記加熱手段は電気ヒータであることを特徴とする請求項1ないし3のいずれかに記載のガス化装置。 The gasifier according to any one of claims 1 to 3, wherein the heating means is an electric heater.
  5.  前記ガス化炉内の原料を撹拌する撹拌手段を具備することを特徴とする請求項1ないし4のいずれかに記載のガス化装置。 The gasifier according to any one of claims 1 to 4, further comprising stirring means for stirring the raw material in the gasification furnace.
  6.  前記ガス化炉の内部に、タールの分解温度を下げる触媒が配置されることを特徴とする請求項1ないし5のいずれかに記載のガス化装置。 The gasifier according to any one of claims 1 to 5, wherein a catalyst for lowering the decomposition temperature of tar is disposed inside the gasifier.
  7.  前記水蒸気供給手段が供給する水蒸気は過熱水蒸気であることを特徴とする請求項1ないし6のいずれかに記載のガス化装置。 The gasifier according to any one of claims 1 to 6, wherein the steam supplied by the steam supply means is superheated steam.
  8.  前記ガス化炉は、前記供給口から前記排出口に向かって下向きに傾斜するように形成されることを特徴とする請求項1ないし7のいずれかに記載のガス化装置。 The gasification apparatus according to any one of claims 1 to 7, wherein the gasification furnace is formed to be inclined downward from the supply port toward the discharge port.
  9.  前記排出口は、前記ガス化炉の一端側上部に、ガス化炉内の圧力が一定以上になるのを防止し得る大きさに形成されることを特徴とする請求項1ないし8のいずれかに記載のガス化装置。 9. The discharge port according to any one of claims 1 to 8, wherein the discharge port is formed at an upper portion on one end side of the gasification furnace so as to prevent the pressure in the gasification furnace from exceeding a certain level. The gasifier described in 1.
  10.  前記ガス化炉内で生成されたガスを前記排出口から吸引する吸引手段と、
     前記ガス化炉内の圧力を検出する圧力検出手段と、
     前記圧力検出手段が検出した圧力に基づいて前記吸引手段を制御し、前記ガス化炉内の圧力を一定範囲に維持する圧力制御手段と、
    を具備することを特徴とする請求項1ないし9のいずれかに記載のガス化装置。
    Suction means for sucking gas generated in the gasification furnace from the discharge port;
    Pressure detecting means for detecting the pressure in the gasification furnace;
    Pressure control means for controlling the suction means based on the pressure detected by the pressure detection means, and maintaining the pressure in the gasification furnace in a certain range;
    The gasifier according to claim 1, comprising:
  11.  前記水蒸気供給手段は、前記供給口から水蒸気を供給するように形成されていることを特徴とする請求項1ないし10のいずれかに記載のガス化装置。 The gasifier according to any one of claims 1 to 10, wherein the water vapor supply means is configured to supply water vapor from the supply port.
  12.  前記排出口から排出された水素及び一酸化炭素と前記水蒸気供給手段が供給する水蒸気の元となる水との間で熱を交換する熱交換手段を具備することを特徴とする請求項1ないし11のいずれかに記載のガス化装置。 12. A heat exchanging means for exchanging heat between hydrogen and carbon monoxide discharged from the discharge port and water which is a source of water vapor supplied by the water vapor supply means. The gasifier according to any one of the above.
  13.  請求項1ないし12のいずれかに記載のガス化装置と、
     前記ガス化装置で生成された水素及び一酸化炭素を合成して液体燃料を生成する液体燃料化装置と、
    を具備することを特徴とする燃料生成システム。
    A gasifier according to any one of claims 1 to 12,
    A liquid fueling device for synthesizing hydrogen and carbon monoxide produced in the gasifier and producing a liquid fuel;
    A fuel generation system comprising:
  14.  前記液体燃料化装置で生じた余剰ガスを燃料として発電する発電機を具備し、当該発電機が、エンジン式発電機、マイクロガスタービン発電機、燃料電池のいずれかであることを特徴とする請求項13記載の燃料生成システム。 A generator is provided that generates electricity using surplus gas generated in the liquid fueling device as fuel, and the generator is any of an engine generator, a micro gas turbine generator, and a fuel cell. Item 14. The fuel generation system according to Item 13.
  15.  前記液体燃料を前記発電機に供給する補助燃料供給装置を具備することを特徴とする請求項14記載の燃料生成システム。 15. The fuel generation system according to claim 14, further comprising an auxiliary fuel supply device that supplies the liquid fuel to the generator.
  16.  前記ガス化装置の加熱手段は、前記発電機によって発電された電気を使用して加熱する電気ヒータであることを特徴とする請求項14又は15記載の燃料生成システム。 16. The fuel generation system according to claim 14, wherein the heating means of the gasifier is an electric heater that heats using electricity generated by the generator.
  17.  炭素化合物を含有する原料と水蒸気とを空気遮断状態でタールの分解温度以上に維持することを特徴とするガス化方法。 A gasification method characterized by maintaining a carbon compound-containing raw material and water vapor at or above the decomposition temperature of tar in an air-blocked state.
  18.  タールの分解温度を下げる触媒を用いることを特徴とする請求項17記載のガス化方法。 The gasification method according to claim 17, wherein a catalyst that lowers the decomposition temperature of tar is used.
  19.  前記水蒸気は過熱水蒸気であることを特徴とする請求項17又は18記載のガス化方法。 The gasification method according to claim 17 or 18, wherein the water vapor is superheated water vapor.
  20.  炭素化合物を含有する原料と水蒸気とを空気遮断状態でタールの分解温度以上に維持して水素及び一酸化炭素を主体とするガスを生成するガス生成工程と、
     前記ガス生成工程で生成された水素及び一酸化炭素を合成して液体燃料化する液体燃料化工程と、
    を有することを特徴とする燃料生成方法。
    A gas generation step of generating a gas mainly composed of hydrogen and carbon monoxide by maintaining a raw material containing a carbon compound and water vapor at a temperature higher than the decomposition temperature of tar in an air shut-off state;
    A liquid fuel conversion step of synthesizing hydrogen and carbon monoxide generated in the gas generation step into a liquid fuel;
    A fuel generation method comprising:
  21.  前記ガス化生成工程は、タールの分解温度を下げる触媒を用いることを特徴とする請求項20記載の燃料生成方法。 21. The fuel generation method according to claim 20, wherein the gasification generation step uses a catalyst that lowers the decomposition temperature of tar.
  22.  前記液体燃料化工程で生じた余剰ガスを燃料として発電機で電気を発電する発電工程を有することを特徴とする請求項20又は21記載の燃料生成方法。 The fuel generation method according to claim 20 or 21, further comprising a power generation step of generating electricity with a generator using the surplus gas generated in the liquid fuel conversion step as fuel.
  23.  前記ガス生成工程は、前記発電工程で発電した電気を使用して前記原料と前記水蒸気とを加熱することを特徴とする請求項20ないし22のいずれかに記載の燃料生成方法。 23. The fuel generation method according to claim 20, wherein the gas generation step uses the electricity generated in the power generation step to heat the raw material and the water vapor.
  24.  前記ガス生成工程で生成した水素及び一酸化炭素と、前記水蒸気の元となる水との間で熱を交換する熱交換工程を有することを特徴とする請求項20ないし23のいずれかに記載の燃料生成方法。 The heat exchange step of exchanging heat between the hydrogen and carbon monoxide produced in the gas production step and the water that is the source of the water vapor is provided. Fuel generation method.
PCT/JP2009/003928 2008-08-22 2009-08-18 Gasification device, fuel generation system, gasification method, and fuel generation method WO2010021123A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010525591A JP5527743B2 (en) 2008-08-22 2009-08-18 Gasification apparatus, fuel generation system, gasification method, and fuel generation method
CN2009801412788A CN102186954A (en) 2008-08-22 2009-08-18 Gasification device, fuel generation system, gasification method, and fuel generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008213947 2008-08-22
JP2008-213947 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021123A1 true WO2010021123A1 (en) 2010-02-25

Family

ID=41707014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003928 WO2010021123A1 (en) 2008-08-22 2009-08-18 Gasification device, fuel generation system, gasification method, and fuel generation method

Country Status (3)

Country Link
JP (1) JP5527743B2 (en)
CN (1) CN102186954A (en)
WO (1) WO2010021123A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104342784A (en) * 2013-08-02 2015-02-11 中国石油天然气股份有限公司 A waste gas controlling and discharging method of a low-temperature carbonization furnace during carbon fiber production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699289A (en) * 2017-10-31 2018-02-16 农业部规划设计研究院 A kind of inside spin many condition Electromagnetic Heating biomass efficient pyrolysis gasification furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296378A (en) * 1999-04-13 2000-10-24 Mitsubishi Heavy Ind Ltd Waste treatment
JP2001139303A (en) * 1999-11-04 2001-05-22 Hitachi Ltd Method and device for producing hydrogen/carbon monoxide mixed gas, and fuel/power combination plant provided with the device
JP2004115688A (en) * 2002-09-27 2004-04-15 Jfe Plant & Service Corp Method and apparatus for gasifying waste
JP2004188294A (en) * 2002-12-10 2004-07-08 Toshiba Corp Waste treatment system
JP2004209314A (en) * 2002-12-27 2004-07-29 Kogi Corp Treatment method and treatment apparatus of waste or the like by superheated steam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342588A (en) * 2002-05-27 2003-12-03 Setec:Kk Biomass gasification equipment
JP2005112956A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp Gasification method for biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296378A (en) * 1999-04-13 2000-10-24 Mitsubishi Heavy Ind Ltd Waste treatment
JP2001139303A (en) * 1999-11-04 2001-05-22 Hitachi Ltd Method and device for producing hydrogen/carbon monoxide mixed gas, and fuel/power combination plant provided with the device
JP2004115688A (en) * 2002-09-27 2004-04-15 Jfe Plant & Service Corp Method and apparatus for gasifying waste
JP2004188294A (en) * 2002-12-10 2004-07-08 Toshiba Corp Waste treatment system
JP2004209314A (en) * 2002-12-27 2004-07-29 Kogi Corp Treatment method and treatment apparatus of waste or the like by superheated steam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104342784A (en) * 2013-08-02 2015-02-11 中国石油天然气股份有限公司 A waste gas controlling and discharging method of a low-temperature carbonization furnace during carbon fiber production

Also Published As

Publication number Publication date
JP5527743B2 (en) 2014-06-25
JPWO2010021123A1 (en) 2012-01-26
CN102186954A (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5877237B2 (en) Method and apparatus for producing low tar synthesis gas from biomass
JP2008260832A (en) Method for waste regeneration treatment and system for waste regeneration treatment
JP4679212B2 (en) High temperature reformer
US20110162278A1 (en) System for removing fine particulates from syngas produced by gasifier
JP4547244B2 (en) Organic gasifier
MX2008011654A (en) Thermal reduction gasification process for generating hydrogen and electricity.
MX2014007803A (en) Biomass gasification island process under high temperature and atmospheric pressure.
JP2007229563A (en) Treatment method of organic waste
JP5527743B2 (en) Gasification apparatus, fuel generation system, gasification method, and fuel generation method
JP2004051717A (en) Biomass gasifier
US20110041404A1 (en) Plasma-based apparatus for gasifying bio-waste into synthetic gas
JP2004204106A (en) Gasifier of organic material
JP2004051718A (en) Biomass gasification method
JP2009051956A (en) Elevated temperature reduction thermochemical decomposition plant for biomass
KR101032178B1 (en) Gasification system for converting carbonaceous feedstock into synthesis gas and method thereof
JP2009102594A (en) Gasification furnace system
JP5750054B2 (en) Self-generated output integration for gasification
JP3850431B2 (en) Pyrolysis gasification method and pyrolysis gasification apparatus
JP2009234829A (en) Method and apparatus for recycling magnesium hydroxide
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system
JP2011068893A5 (en)
JP7401148B1 (en) Gasifier, gasification method, hydrogen production system, fuel generation system and power generation system
EP2666845A1 (en) Gas producing apparatus
JP2006335937A (en) Heating apparatus for organic compound
JP7118341B2 (en) Hydrogen production equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141278.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525591

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808059

Country of ref document: EP

Kind code of ref document: A1