WO2010020427A1 - Système de commande hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses hydrauliques, et procédé de commande hydraulique d'un consommateur sans utilisation d'un accumulateur de pression - Google Patents

Système de commande hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses hydrauliques, et procédé de commande hydraulique d'un consommateur sans utilisation d'un accumulateur de pression Download PDF

Info

Publication number
WO2010020427A1
WO2010020427A1 PCT/EP2009/006088 EP2009006088W WO2010020427A1 WO 2010020427 A1 WO2010020427 A1 WO 2010020427A1 EP 2009006088 W EP2009006088 W EP 2009006088W WO 2010020427 A1 WO2010020427 A1 WO 2010020427A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
pressure
main working
consumer
hydraulic
Prior art date
Application number
PCT/EP2009/006088
Other languages
German (de)
English (en)
Inventor
Manfred Mitze
Original Assignee
MAE Maschinen- und Apparatebau Götzen GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAE Maschinen- und Apparatebau Götzen GmbH & Co. KG filed Critical MAE Maschinen- und Apparatebau Götzen GmbH & Co. KG
Priority to EP09778039.9A priority Critical patent/EP2328747B1/fr
Priority to ES09778039.9T priority patent/ES2541670T3/es
Publication of WO2010020427A1 publication Critical patent/WO2010020427A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members

Definitions

  • the invention relates to a pressure accumulator-free hydraulic drive assembly with the features of the preamble of claim 1. Accordingly, the drive arrangement a consumer with two oppositely acting pressure chambers, one of which via a first pressure line and a pump assembly and the other via a second pressure line and the Pump assembly can be supplied with pressure medium, for example, to actuate a consumer in the form of a piston / cylinder unit in a power stroke and retrieve in a return stroke to the starting position.
  • the invention further relates to a method for accumulatorless hydraulic driving a consumer according to the features of the preamble of claim 12.
  • Circuits for the motion control of hydraulic consumers are today realized in the vast majority in such a way that a work pump is constantly driven by an asynchronous motor.
  • the pumped hydraulic oil flows to a directional valve, in its rest position (closed state), the hydraulic oil, which conveys the pump, flows back to the storage tank without pressure.
  • the controlling directional valve is switched to a first working position, in which the hydraulic oil flows into the first pressure chamber (piston chamber) of the working cylinder, so that the piston rod extends.
  • the oil displaced in the pressure space opposite the piston chamber with respect to the piston flows back into the tank via the directional control valve.
  • the directional control valve is transferred to a second working position, in which the hydraulic oil conveyed by the working pump is conveyed into the annular space of the piston / cylinder unit instead of into the piston space, while the piston space is now connected to the hydraulic oil tank via the return line.
  • a pressure limiting valve limits the system pressure to the permissible level. If the limit pressure is exceeded, hydraulic oil can flow off into the tank without pressure.
  • the electrically driven drive motor continues to run and consumes energy
  • the working pump is now connected switching valveless with the piston chamber of a piston / cylinder unit.
  • the electric drive motor of the pump can be freely parameterized via a converter control in relation to speed and direction of rotation up to standstill.
  • the oil flow delivered by the working pump behaves almost proportionally to the engine speed. In this way, the hydraulic oil flow and thus also the piston movement can be influenced freely.
  • the annular space side of the piston is connected to an accumulator whose pressure is set slightly higher than the counterpressure required to overcome the frictional losses and the gravity of the piston and any appended masses.
  • the actual position of the piston rod is transmitted via a travel sensor to the control device.
  • the electric drive motor is stationary and there is no hydraulic oil conveyed and thus triggered no piston movement. If the working piston is to extend, the electric drive motor begins to rotate, the hydraulic oil flows into the piston chamber and the piston rod extends. The annular space side hydraulic oil volume flows into the accumulator and raises its pressure slightly. After reaching the desired piston position, the electric drive motor comes to a standstill via a corresponding control and the piston position is held.
  • the ability of the system for precise angular control of the electric drive motor allows a very accurate positioning of the working piston.
  • the setpoint positions are approached and held under full pressure with an accuracy of up to 1 ⁇ m without throttle losses. For the return stroke of the piston, the direction of rotation of the electric drive motor is now changed.
  • the energy stored in the compressed hydraulic oil in the accumulator supports the acceleration of the electric drive motor in the opposite direction, on the other hand, excess compression energy can be converted by the regenerative effect of the electric drive motor into electrical energy and electronically stored either in capacitors of the inverter or fed back into the electrical network.
  • This pressure accumulator hydraulic drive arrangement has many advantages over accumulatorless hydraulic drive arrangements of the type described above, such as a high overall efficiency, a very simple system structure, very low thermal load of the hydraulic oil and less noise emission by the variable speed of the drive motor.
  • Such an accumulator-hydraulic drive arrangement is known from DE 103 29 067 A1 or US 6,379,119 A.
  • a hydraulic drive device in which the accumulator or the passive pressure accumulator is replaced by an active pneumatic component, can be found in JP 2001-2 14 903 A.
  • Also with two pumps operates a device for fall protection hydraulically lifted loads according to JP 08-0 14 208 A.
  • the hydraulic controls the stroke and the return stroke of a piston / cylinder unit with a first pump and a conventional multi-way valve.
  • the function of the directional valve is to switch between the lifting and the return stroke.
  • a hydraulically operated piston / cylinder unit in which the piston chamber and the annular space are each supplied by a pump and a respective directional control valve, can be taken from DE 40 30 950 A1.
  • the control device described there can be changed by operating multi-way valves either between a lifting or gearhubfunktion.
  • a lifting function can be superimposed targeted.
  • a drive device with two pumps which are operated by one or two variable speed and direction of rotation variable motors.
  • the engine (s) do not operate continuously but only when the piston / cylinder unit is to be moved, whereby directional valves in the pressure lines for reversing the pressure direction are in principle not required. Only an arrangement of a plurality of conventional valves or, alternatively, a multiway valve can be provided only for limiting the pressure in the pressure lines.
  • the object of the invention is to make variable-speed and rotationally variable hydraulic drive arrangements usable for large consumers, in particular for hydraulic presses with a need for large delivery volumes, without pressure accumulators.
  • a pressure accumulator hydraulic drive assembly with the features of claim 1 is proposed. Accordingly, a pump assembly of a variable speed driven main working pump for working strokes and further provided from a variable speed driven auxiliary pump for return strokes, the conveying direction of the auxiliary pump reversible and the auxiliary pump via a directional control valve with either the first and / or the second pressure chamber of the consumer hydraulically connected or is connectable.
  • a pump assembly of a variable speed driven main working pump for working strokes and further provided from a variable speed driven auxiliary pump for return strokes, the conveying direction of the auxiliary pump reversible and the auxiliary pump via a directional control valve with either the first and / or the second pressure chamber of the consumer hydraulically connected or is connectable.
  • the object is achieved by the features of claim 12.
  • an accumulatorless hydraulic drive assembly with the features of claim 4 is proposed, which is also of independent inventive significance, so that the applicant reserves the right to make this solution the subject of a divisional application.
  • This solution provides that in a generic accumulatorless hydraulic drive assembly, the pump assembly consists of a variable speed driven main working pump for working strokes and a variable speed driven auxiliary pump for return strokes, and that a control device is provided, which is to be established by the auxiliary pump, against the pressure in the Working space of the consumer acting back pressure in the auxiliary pump associated pressure chamber controls or regulates.
  • auxiliary pump at the same volume flow as the main working pump, for example, only 1/10 of the power of the main working pump needed and that the costs incurred by the additional and independently driven auxiliary pump effort is significantly lower than the cost of a suitably designed accumulator. In this case, more favorable space and weight ratios are possible than in a suitably large accumulator.
  • it can be provided to realize switching-valveless direct connections between the main working pump and the first pressure chamber or the auxiliary pump and the second pressure chamber of the consumer and thus to avoid the potentially dangerous shocks in the system when using directional control valves in the pressure lines.
  • the electric drive motor of the main working pump simultaneously drives two hydraulic oil pumps whose combined flow allows the working piston to extend faster.
  • the rapid traverse pump can be connected by switching a directional control valve with the return tank for hydraulic oil. Then only the second pump delivers.
  • the required torque of the electric drive motor can be limited to an economically reasonable amount.
  • Another possible application of the accumulator-free hydraulic drive arrangement according to the invention is to combine the piston / cylinder unit of the consumer with a per se known rapid traverse piston and filling valves, as they are known from conventional hydraulic controls per se.
  • the necessary filling valves with the necessarily large pipes so-called rapid traverse piston are relatively expensive.
  • a mechanical gear in particular a transmission gear, is provided between the main working pump and a drive motor associated with the main work pump.
  • the rotational speed of the main working pump can be changed with respect to the rotational speed of the drive motor assigned to the main working pump.
  • Due to the interposed, mechanical transmission which may have a constant ratio, it is possible to increase the usable speed range of the drive motor significantly.
  • a low-cost, lower-torque motor can be used, or alternatively, a higher-flow pump.
  • the pump assembly consists of a variable speed driven main working pump for working strokes and a variable speed driven auxiliary pump for return strokes, wherein the per revolution funded volume of the main working pump and / or the auxiliary pump is variable.
  • the change in the volume delivered per revolution can preferably be regulated as a function of the pressure generated by the main working pump and / or the auxiliary pump.
  • the main working pump and / or the auxiliary pump may be formed in this solution as per se known axial piston pump or vane pump with per revolution variable volume flow.
  • the adjustment of the displacement of the pump can be done mechanically-hydraulically depending on the process pressure or a servo motor.
  • the load-dependent change in the delivery volume per revolution or the Pumpenhubraums for controlling the flow rate - ie the delivery volume per time - has the advantage that at low load, a high flow rate is achieved. This is expedient in particular for large consumers connected to the drive arrangement, since these then reach long distances or strokes in a short time.
  • the operation of the pump can be changed such that by reducing the Pumpenhubraums a lower torque of the drive motor is required, whereby the size of the drive motor can be reduced.
  • the possibility is given to achieve large volumes as needed.
  • an electrical converter in particular a frequency converter
  • a switchable brake between the electric drive motor of the pump arrangement Installation and the inverter are installed, easily higher-quality risk categories can be achieved with little effort.
  • the Applicant reserves the right to make that combination the subject of a divisional application.
  • inverters which are certified according to the requirements of the second highest CE risk category 3.
  • FIG. 1 shows the block diagram of a first embodiment of a pressure-less hydraulic drive arrangement
  • FIG. 2 shows the block diagram of a second embodiment of a pressure accumulator-free hydraulic drive assembly.
  • FIG. 3 A / B / C the block diagram of a third embodiment of a pressure accumulator-free hydraulic drive assembly in three different valve positions.
  • FIG. 4 shows the block diagram of a fourth embodiment of a pressure-saving hydraulic drive arrangement without pressure, an increased safety category being achieved.
  • Figure 1 shows a pressure accumulator-free hydraulic drive assembly in which a driven by an electric variable speed drive motor M1 hydraulic see main pump P1 with the piston chamber K acting as a consumer 1 piston / cylinder unit via a pressure line D1 switching valveless directly connected.
  • an auxiliary pump P2 driven by an electric variable-speed drive motor M2 is connected to the annular space R of the load 1 via a switch valve-free direct connection D2.
  • the motor / pump unit M1 / P1 determines as a guide unit, the piston movement at least during its working stroke, as is customary even with accumulator-prone hydraulic drive assemblies.
  • a back pressure is generated, which simulates the function of an accumulator, as it is used in the accumulator hydraulic drive assemblies.
  • the torque of the motor M2 is controlled so that a certain, required for the process back pressure against the working pressure is generated and maintained.
  • This back pressure can be arbitrarily controlled or regulated regardless of the position of the piston or the piston rod.
  • it is possible to generate high stripping forces at the beginning of the return stroke for example in the case of a forming process of a workpiece carried out by the consumer, e.g. are required to retrieve a forming die during the return stroke from the mold.
  • long return strokes in particular with constant backpressure, can be realized.
  • the moment of the drive motor M1 can be reduced to save energy.
  • the motor / pump unit M2 / P2 requires only a low drive power, which is between 2% and 50% of the rated output, compared to the main work pump. tion, which is required by the main working pump. In many cases, about 1/10 of the rated power of the main working pump for the auxiliary pump is cheap and sufficient.
  • control lines 5A, 5B connect the controller 6 to the variable speed electric drive motors M1, M2.
  • the variable speed motors M1 and M2 are via the control device 6, in particular in the form of a known converter, preferably in the form of a frequency converter, with respect to speed and direction of rotation - if desired, to a standstill - freely parameterized.
  • the control device 6 in particular in the form of a known converter, preferably in the form of a frequency converter, with respect to speed and direction of rotation - if desired, to a standstill - freely parameterized.
  • the drives can work in all four quadrants of a speed-torque diagram.
  • the drives can either drive right-handed or left-handed (quadrants I and II or quadrants IM and IV) (quadrant I or IM) or brake (quadrant II or IV). Since the hydraulic oil flow conveyed by the pumps P1 and P2 behaves approximately proportionally to the engine speed, in this way the oil flow and thus also the piston movement can be influenced freely. Pressure relief valves 4A and 4B limit the system pressure to the permissible level, so that when the set pressure is exceeded, hydraulic oil flows back into the hydraulic oil tank T via the returns 2A and 2B, respectively. The actual position of the piston rod is transmitted via the encoder 8 to the inverter control 6.
  • a preferred mode of operation is the following: When the load is at a standstill, the motors M1 and M2 are generally approximately at rest, unless a leak or the like is to be compensated. When the engine is stopped, no oil is pumped and thus no piston movement is initiated.
  • the motor M1 starts to rotate and the hydraulic oil flows into the piston chamber K (filling mode of the pump P1), so that the piston rod S extends.
  • the torque of the motor M2 running in the discharge mode of the pump P2 can be limited to a relatively low value.
  • the running in the emptying mode of the pump P2 motor M2 prevents, for example, that a hanging on the load load is lowered uncontrollably.
  • the direction of rotation of the motor M2 thus corresponds to the emptying mode of the pump P2, ie hydraulic oil is withdrawn from the annulus controlled while maintaining a certain back pressure against the piston of the consumer or drained.
  • the pump P2 is therefore from the hydraulic fluid flowing out on the annular space side.
  • the motor M1 in turn drives the motor M2 and the motor M2 decelerates this driving force, since it runs slower than would correspond to the drive torque of the motor M1.
  • the oil flows back to the tank T without pressure after flowing through the pump P2.
  • the motor braking torque of the motor M2 can be varied and a predefinable counterpressure can thus be maintained. Since both electric motors M1 and M2 can be controlled with precision, this enables a very exact positioning of the piston rod, whose target positions can be approached and held under full pressure and without throttle losses with an accuracy of up to 1 ⁇ m. If necessary, a position of the piston can be approached exactly at a speed close to 0 with high or even full pressure.
  • the flow rate of the pump P2 generated by the limited drive torque of the motor M2 is just as high as that of the pump P2 is replaced by the reversed pump P1 from the piston chamber K funded amount of oil on the annular space side R. By stopping the motor M1, the piston comes to a precise stop position.
  • the embodiment of Figure 2 differs from that of Figure 1 by the use of a known so-called rapid traverse piston 3 'and a filling valve 9 and a third pressure line D3, which via an on / off Valve 11 can be connected in bypass to switch valve-free pressure line D1.
  • the rapid traverse piston 3 ' is inserted into the piston of the piston-cylinder unit 1.
  • the pump current of the main working pump P1 is not directed to the main piston but to the much smaller diameter piston in the diameter.
  • the piston rod S extends so much faster. Hydraulic oil for filling the piston chamber K is sucked out of the tank T via a non-returnable, serving as a filling valve 9 check valve.
  • the main piston surface is switched with the valve 11, so that the full piston force can be achieved.
  • the filling valve 9 is also opened in order to drive at high speed here too.
  • Figures 3A to 3C differs from that of Figure 1 by the use of the switching valve 13 and the additional pressure line D4, with the annular space R of the piston rod S with the valve 13 and depending on the switching position of the valve 13 with the piston chamber K of the piston / cylinder unit 1 can be connected.
  • the valve 13 can be switched to the "crossed arrows" position shown in FIGURE 3C.
  • the piston chamber K is now directly connected to the tank T via the line 12.
  • the usually quite high flow rate of the pump P2 is used for a high return speed, which is no longer limited by the relatively high resistance of the pump P1 permitting the draining of the piston space K according to the concept according to Figure 1.
  • the motor M2 filling mode
  • the speed are again operated synchronously with the motor M1 (discharge mode)
  • the valve 13 switches to the middle position according to Fig. 3A.
  • FIG. 4 shows a hydraulic control for a machine that corresponds to the highest CE risk category 4.
  • the picture shows a control similar to that shown in FIG. 1; Controls of pictures 2 to 3 can be changed in the same way. The actual hydraulic control remains completely unchanged.
  • an electrically switchable brake B is installed between the motor M1 and the pump P1, an electrically switchable brake B is installed.
  • the braking torque is applied via springs, the ventilation is carried out by an electrically operated coil.
  • the brake is released by switching on the coil, for safe standstill it remains closed. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

L'invention concerne un système de commande hydraulique sans accumulateur de pression et un procédé de commande hydraulique d'un consommateur (1) sans utilisation d'un accumulateur de pression. Ce système de commande comprend un consommateur (1) présentant deux chambres de pression (K, R) à action inverse, une de ces chambres pouvant être alimentée en fluide sous pression par l'intermédiaire d'une première conduite de pression (D1) et d'un ensemble de pompes (20) et l'autre chambre par l'intermédiaire d'une deuxième conduite de pression (D2) et de l'ensemble de pompes (20). Selon l'invention, l'ensemble de pompes (20) comprend une pompe de travail principale (P1) à vitesse de rotation variable pour les courses de travail et une pompe auxiliaire (P2) à vitesse de rotation variable pour les courses de retour. Par ailleurs, le sens de refoulement de la pompe auxiliaire (P2) peut être inversé et la pompe auxiliaire (P2) est ou peut être reliée hydrauliquement à la première (K) et/ou à la seconde (R) chambre de pression du consommateur (1) de façon sélective par l'intermédiaire d'un distributeur (13).
PCT/EP2009/006088 2008-08-21 2009-08-21 Système de commande hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses hydrauliques, et procédé de commande hydraulique d'un consommateur sans utilisation d'un accumulateur de pression WO2010020427A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09778039.9A EP2328747B1 (fr) 2008-08-21 2009-08-21 Système de commande hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses hydrauliques, et procédé de commande hydraulique d'un consommateur sans utilisation d'un accumulateur de pression
ES09778039.9T ES2541670T3 (es) 2008-08-21 2009-08-21 Disposición de accionamiento hidráulico sin acumulador de presión para y con un consumidor, en particular para prensas hidráulicas, así como procedimiento para el accionamiento hidráulico sin acumulador de presión de un consumidor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008039011.9 2008-08-21
DE102008039011.9A DE102008039011B4 (de) 2008-08-21 2008-08-21 Druckspeicherlose hydraulische Antriebsanordnung sowie Verfahren zum druckspeicherlosen hydraulischen Antreiben eines Verbrauchers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP13005011.5A Previously-Filed-Application EP2732959B1 (fr) 2008-08-21 2009-08-21 Agencement d'entraînement hydraulique sans accumulateur de pression pour et avec un consommateur, notamment pour presse hydraulique, et procédé d'entraînement hydraulique sans accumulateur de pression d'un consommateur

Publications (1)

Publication Number Publication Date
WO2010020427A1 true WO2010020427A1 (fr) 2010-02-25

Family

ID=41394906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/006088 WO2010020427A1 (fr) 2008-08-21 2009-08-21 Système de commande hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses hydrauliques, et procédé de commande hydraulique d'un consommateur sans utilisation d'un accumulateur de pression

Country Status (4)

Country Link
EP (2) EP2732959B1 (fr)
DE (1) DE102008039011B4 (fr)
ES (2) ES2693422T3 (fr)
WO (1) WO2010020427A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011011750A1 (de) 2011-02-18 2012-08-23 MAE Maschinen- u. Apparatebau Götzen GmbH Druckspeicherlose hydraulische Antriebsanordnung für und mit einem Verbraucher, insbesondere für Pressen sowie Verfahren zum Betreiben einer solchen druckspeicherlosen hydraulischen Antriebsanordnung
EP2678570B1 (fr) 2011-02-23 2015-04-29 Schaeffler Technologies AG & Co. KG Dispositif hydraulique pour actionner un embrayage
CN106762871A (zh) * 2017-03-09 2017-05-31 桂林星辰科技股份有限公司 一种单电机双泵的伺服泵控液压直线驱动***及控制方法
WO2017186712A1 (fr) 2016-04-25 2017-11-02 Robert Bosch Gmbh Arbre hydraulique pour une presse
DE102017003963A1 (de) 2016-08-11 2018-02-15 M A E Maschinen- Und Apparatebau Götzen Gmbh Hydraulische, insbesondere druckspeicherlose, Antriebsanordnung für und mit einem Verbraucher, insbesondere für Pressen, sowie Verfahren zum Betreiben einer hydraulischen Antriebsanordnung
EP3690258A4 (fr) * 2017-11-02 2020-12-23 Daikin Industries, Ltd. Dispositif hydraulique
US11384777B2 (en) 2018-08-21 2022-07-12 Siemens Energy, Inc. Double-acting hydraulic actuator with different pumps for each actuation direction

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017912B4 (de) * 2010-04-21 2022-08-25 Voith Patent Gmbh Hydraulischer Antrieb und Verfahren zum Betreiben eines hydraulischen Antriebs
DE102010034610A1 (de) 2010-08-18 2012-02-23 Robert Bosch Gmbh Hydraulischer Linearantrieb
DE102011000473B4 (de) 2011-02-02 2017-07-13 Langenstein & Schemann Gmbh Pressmaschine und Verfahren zum Pressen von Werkstücken
DE102011053615A1 (de) * 2011-09-14 2013-03-14 Ring Maschinenbau Gmbh & Co.Kg Verfahren zum Betreiben einer Stanze
EP2824334A1 (fr) 2013-07-08 2015-01-14 Siemens Aktiengesellschaft Entraînement linéaire hydraulique
DE102014218884B4 (de) 2014-09-19 2020-12-10 Voith Patent Gmbh Hydraulischer Antrieb mit Eilhub und Lasthub
CN105172196B (zh) * 2015-09-30 2017-04-12 天津市天锻压力机有限公司 高速连杆多工位压力机的自动化上料控制***及控制方法
ES2944319T3 (es) * 2018-09-10 2023-06-20 Maschf Bermatingen Gmbh & Co Kg Prensa de balas y procedimiento de control para esta
CN109372828B (zh) * 2018-10-15 2022-09-09 中国北方车辆研究所 一种用于综合传动装置的液压控制***
JP6662445B1 (ja) * 2018-12-26 2020-03-11 ダイキン工業株式会社 ダイクッション装置およびプレス機械

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205780B1 (en) * 1996-01-10 2001-03-27 Aeroquip-Vickers International Gmbh Low-loss drive system for a plurality of hydraulic actuators

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030950A1 (de) * 1990-09-29 1992-04-02 Bosch Gmbh Robert Hydraulische steuereinrichtung
JPH0814208A (ja) * 1994-06-29 1996-01-16 Sumitomo Constr Mach Co Ltd ブ−ム伸縮・起伏シリンダの自然縮み防止装置
CA2195301C (fr) 1995-05-16 2005-03-15 Rolf Truninger Dispositif comportant au moins un axe hydraulique
DE19600650C2 (de) * 1996-01-10 2003-05-28 Trinova Gmbh Antrieb für einen hydraulischen doppelwirkenden Aktuator
JP2001090704A (ja) * 1999-09-21 2001-04-03 Tokimec Inc 駆動装置
JP2001214903A (ja) * 2000-02-02 2001-08-10 Kayaba Ind Co Ltd 油圧式駆動装置
WO2002004820A1 (fr) * 2000-07-10 2002-01-17 Kobelco Construction Machinery Co., Ltd. Circuit de verin hydraulique
DE10329067A1 (de) 2002-08-02 2004-02-12 Bosch Rexroth Ag Hydraulischer Antrieb
DE10359067A1 (de) 2003-12-16 2005-07-21 Ina-Schaeffler Kg Arretierelement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205780B1 (en) * 1996-01-10 2001-03-27 Aeroquip-Vickers International Gmbh Low-loss drive system for a plurality of hydraulic actuators

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011011750A1 (de) 2011-02-18 2012-08-23 MAE Maschinen- u. Apparatebau Götzen GmbH Druckspeicherlose hydraulische Antriebsanordnung für und mit einem Verbraucher, insbesondere für Pressen sowie Verfahren zum Betreiben einer solchen druckspeicherlosen hydraulischen Antriebsanordnung
WO2012110259A1 (fr) 2011-02-18 2012-08-23 M A E Maschinen- Und Apparatebau Götzen Gmbh Système d'entraînement hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses, et procédé permettant de faire fonctionner un tel système d'entraînement hydraulique sans accumulateur de pression
EP2678570B1 (fr) 2011-02-23 2015-04-29 Schaeffler Technologies AG & Co. KG Dispositif hydraulique pour actionner un embrayage
DE112012000961B4 (de) 2011-02-23 2023-07-20 Schaeffler Technologies AG & Co. KG Hydraulische Einrichtung zur Betätigung einer Kupplung
WO2017186712A1 (fr) 2016-04-25 2017-11-02 Robert Bosch Gmbh Arbre hydraulique pour une presse
DE102017003963A1 (de) 2016-08-11 2018-02-15 M A E Maschinen- Und Apparatebau Götzen Gmbh Hydraulische, insbesondere druckspeicherlose, Antriebsanordnung für und mit einem Verbraucher, insbesondere für Pressen, sowie Verfahren zum Betreiben einer hydraulischen Antriebsanordnung
WO2018028832A1 (fr) 2016-08-11 2018-02-15 M A E Maschinen- Und Apparatebau Götzen Gmbh Système d'entraînement hydraulique, en particulier sans accumulateur de pression, pour un consommateur et comprenant un consommateur, en particulier pour des presses, et procédé permettant de faire fonctionner un tel système d'entraînement hydraulique
DE102016011778A1 (de) 2016-08-11 2018-02-15 M A E Maschinen- Und Apparatebau Götzen Gmbh Hydraulische, insbesondere druckspeicherlose, Antriebsanordnung für und mit einem Verbraucher, insbesondere für Pressen, sowie Verfahren zum Betreiben einer solchen hydraulischen Antriebsanordnung
CN106762871A (zh) * 2017-03-09 2017-05-31 桂林星辰科技股份有限公司 一种单电机双泵的伺服泵控液压直线驱动***及控制方法
EP3690258A4 (fr) * 2017-11-02 2020-12-23 Daikin Industries, Ltd. Dispositif hydraulique
US11384777B2 (en) 2018-08-21 2022-07-12 Siemens Energy, Inc. Double-acting hydraulic actuator with different pumps for each actuation direction

Also Published As

Publication number Publication date
DE102008039011A1 (de) 2010-02-25
ES2541670T3 (es) 2015-07-23
EP2732959A3 (fr) 2014-06-11
EP2732959A2 (fr) 2014-05-21
DE102008039011B4 (de) 2020-01-16
EP2328747A1 (fr) 2011-06-08
EP2328747B1 (fr) 2015-04-08
EP2732959B1 (fr) 2018-05-02
ES2693422T3 (es) 2018-12-11

Similar Documents

Publication Publication Date Title
EP2732959B1 (fr) Agencement d'entraînement hydraulique sans accumulateur de pression pour et avec un consommateur, notamment pour presse hydraulique, et procédé d'entraînement hydraulique sans accumulateur de pression d'un consommateur
DE102015209356B3 (de) Lastabhängige regelung von hydraulikmotoren
DE3716200C2 (de) Steuer- und Regeleinrichtung für ein hydrostatisches Antriebsaggregat und Verfahren zum Betreiben eines solchen
EP2050961B1 (fr) Système d'entraînement hydraulique
EP2267317B1 (fr) Système hydraulique
EP2676036B1 (fr) Système d'entraînement hydraulique sans accumulateur de pression pour un consommateur et comprenant un consommateur, en particulier pour des presses, et procédé permettant de faire fonctionner un tel système d'entraînement hydraulique sans accumulateur de pression
EP2838719B1 (fr) Presse
DE102015209074B3 (de) Vorrichtung und verfahren zum steuern einer hydraulikmaschine
DE4308344A1 (de) Verfahren zur Regelung des Antriebs einer hydraulischen Presse und Vorrichtung zur Durchführung des Verfahrens
DE3217527A1 (de) Steuereinrichtung fuer hydraulische doppelt wirkende arbeitszylinder
WO2015185644A1 (fr) Système hydraulique
EP2420681B1 (fr) Entraînement linéaire hydraulique
DE102011078241B3 (de) Hydraulikeinheit und Verfahren zum Betreiben einer Hydraulikeinheit
WO2018177640A1 (fr) Dispositif de régulation d'une machine hydraulique
DE102010014071B4 (de) Hydraulische Anlage
EP2981458B1 (fr) Machine à gouvernail
DE102017106700B3 (de) Vorrichtung zum Regeln einer hydraulischen Maschine
EP3517790B1 (fr) Machine de travail pourvu d'hydraulique destinée à la récupération d'énergie
DE19654781A1 (de) Hilfseinrichtung zur Realisierung einer Redundanz für die Energieversorgung von Flugsteuerungsantrieben
DE10329067A1 (de) Hydraulischer Antrieb
DE102015222672A1 (de) Verfahren zum Betreiben einer elektro-hydraulischen Achse und elektro-hydraulische Achse
DE10214225C1 (de) Verfahren zur Steuerung einer hydraulischen Betätigungseinheit
DE19844001B4 (de) Hydraulisch betätigbare Armatur
DE102021209477B4 (de) Elektrohydraulische Einheit zur Druckmittelversorgung und Verfahren zur Steuerung einer elektrohydraulischen Einheit
DE102013216160B4 (de) Verfahren und vorrichtung zum verstellen von hydraulikmaschinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009778039

Country of ref document: EP