WO2010013952A2 - 염료감응 태양전지 또는 이의 서브모듈 - Google Patents

염료감응 태양전지 또는 이의 서브모듈 Download PDF

Info

Publication number
WO2010013952A2
WO2010013952A2 PCT/KR2009/004241 KR2009004241W WO2010013952A2 WO 2010013952 A2 WO2010013952 A2 WO 2010013952A2 KR 2009004241 W KR2009004241 W KR 2009004241W WO 2010013952 A2 WO2010013952 A2 WO 2010013952A2
Authority
WO
WIPO (PCT)
Prior art keywords
dye
solar cell
sensitized solar
electrode
photoelectrode
Prior art date
Application number
PCT/KR2009/004241
Other languages
English (en)
French (fr)
Other versions
WO2010013952A3 (ko
Inventor
박태진
문형돈
배호기
김종복
양회택
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2010013952A2 publication Critical patent/WO2010013952A2/ko
Publication of WO2010013952A3 publication Critical patent/WO2010013952A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell or a submodule thereof, and more particularly, to form a photoelectrode and a catalyst electrode on a single substrate, thereby providing a transparent conductive oxide coating area, which occupies the most cost part in the production of a dye-sensitized solar cell. In half, the dye-sensitized solar cell manufacturing cost can be reduced.
  • the opposite side of the substrate on which the electrode is formed can be used as the opposing substrate, such as general glass, metal thin plate, polymer substrate, etc., in which the transparent conductive oxide thin film is not coated, thereby increasing the range of selection of the opposing substrate according to the use.
  • the present invention relates to a dye-sensitized solar cell or a dye-sensitized solar cell submodule.
  • Dye-sensitized solar cells have the potential to replace conventional amorphous silicon solar cells because their manufacturing cost is significantly lower than conventional silicon-based solar cells. Unlike silicon solar cells, dye-sensitized solar cells absorb visible light It is a photoelectrochemical solar cell mainly composed of a dye molecule capable of generating electron-hole pairs and a transition metal oxide that transfers generated electrons.
  • the unit cell structure of a general dye-sensitized solar cell is based on a conductive transparent electrode made of a transparent conductive oxide (TCO) formed on the upper and lower transparent substrates and the surface of the transparent substrate, as shown in FIG. 1.
  • a transition metal oxide porous layer on which a dye is adsorbed is formed on a conductive transparent electrode on one side corresponding to the first electrode, and a catalyst thin film electrode is formed on the other conductive transparent electrode corresponding to the second electrode.
  • the transition metal oxide for example, TiO2, has a structure in which an electrolyte is filled between the porous electrode and the catalyst thin film electrode.
  • a dye-sensitized solar cell is an electrolyte that supplies electrons to an oxidized dye between a photoelectrode substrate coated with a dye-doped photoelectrode (TiO 2) material that receives electrons and a catalytic electrode substrate that supplies electrons.
  • the general dye-sensitized solar cell is composed of substrates having these two functions facing each other, as shown in FIG. 1, so that the upper and lower substrates are all coated with a conductive material. It is made of transparent conductive oxide (TCO).
  • the formation of the TCO thin film has a problem that the process is expensive and difficult to control, so that a ratio of close to 50% of the dye-sensitized solar cell manufacturing cost is required for the formation of the TCO thin film, thereby preventing the development of an inexpensive dye-sensitized solar cell. It is becoming.
  • the present invention requires the development of a dye-sensitized solar cell structure that can be configured without using such an expensive substrate.
  • the present invention forms a photoelectrode and a catalytic electrode on a single substrate, thereby reducing the area of the transparent conductive oxide coating, which occupies the most cost part in the production of the dye-sensitized solar cell, by half the dye-sensitization.
  • the solar cell manufacturing cost can be reduced.
  • the opposite side of the substrate on which the electrode is formed can be used as a counter substrate, such as general glass, a metal thin plate, a polymer substrate, etc., which is not coated with a transparent conductive oxide thin film, thereby obtaining an effect of widening the selection of the counter substrate according to the use.
  • An object of the present invention is to provide a dye-sensitized solar cell or a dye-sensitized solar cell submodule.
  • the dye-sensitized solar cell comprising a photoelectrode, a transparent electrode and an electrolyte electrically connecting the two electrodes
  • dye-sensitized solar cell sub-module is coupled to each other dye-sensitized solar cell comprising a photoelectrode, a transparent electrode and an electrolyte electrically connecting the two electrodes,
  • a dye-sensitized solar cell submodule which is formed by integrating the above-described dye-sensitized solar cell as a unit cell.
  • the submodule refers to a cell and an integrated form of the cell, and includes not only a submodule that is actually used in the configuration of the solar cell, but also a module. If the cell and the cell are in contact with each other, the submodule may be included in any form. do.
  • Inexpensive dye-sensitized solar cells can reduce the manufacturing cost of dye-sensitized solar cells by reducing the area of the transparent conductive oxide coating, which forms the largest cost in the production of dye-sensitized solar cells, by forming a photoelectrode and a catalyst electrode on a single substrate. Production of the battery is possible, and thus, there is an effect of expanding the base of the solar cell.
  • the opposite side of the substrate on which the electrode is formed can be used as the opposite substrate, such as general glass, metal thin plate, polymer substrate, which is not coated with a transparent conductive oxide thin film, and thus the choice of the opposite substrate according to the application becomes wider. The effect of diversifying the form can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a conventional dye-sensitized solar cell (cell unit).
  • FIG. 2 is a plan view showing a cross-sectional view schematically showing a cross-sectional structure of one embodiment of the dye-sensitized solar cell (cell unit) of the present invention and a top plate showing various embodiments of the planar structure.
  • FIG. 3 is a plan view showing a cross-sectional view schematically showing a cross-sectional structure of another embodiment of the dye-sensitized solar cell (cell unit) of the present invention and a top plate showing a planar structure thereof.
  • Figure 4 is a plan view showing a cross-sectional view schematically showing a cross-sectional structure of an embodiment of the dye-sensitized solar cell submodule of the present invention and a top plate showing a planar structure thereof.
  • TCO transparent conductive oxide
  • transition metal oxide with dye adsorbed e.g. TiO2 + dye
  • catalytic material eg Pt
  • the dye-sensitized solar cell of the present invention includes a photoelectrode, a transparent electrode, and an electrolyte 40 electrically connecting the two electrodes, wherein the photoelectrode and the catalyst are electrically insulated except for the electrolyte. It consists of the structure in which an electrode is formed in the same surface.
  • dye-sensitized solar cell of the present invention here, means a cell unit
  • a submodule the form in which the solar potential cells of the cell unit are integrated
  • the upper substrate 10a and the lower substrate 10b in which the photoelectrode and the catalyst electrode are formed on the same surface to form the dye-sensitized solar cell since the transparent conductive oxide layer needs to be formed on only one substrate (a lower substrate in this case), the manufacturing cost of the solar cell can be reduced.
  • the photoelectrode and the catalyst electrode are electrically insulated except for the electrolyte and are formed on the same surface.
  • the photoelectrode is an electrode in which a transparent conductive oxide (TCO) layer 20, for example, ITO or the like, has a transition metal oxide (for example, TiO 2) porous layer 30 having a dye adsorbed thereon.
  • the catalyst electrode is an electrode in which a catalyst material, for example platinum (Pt), and a layer 60 are stacked on a transparent conductive oxide (TCO) layer 20, and the photoelectrode and the catalyst electrode are solar cells. On one inner surface of the cell may be separated from each other to achieve electrical insulation.
  • the electron is transferred from the TCO 20 existing under the catalyst material 60 to the catalyst material layer 60-> electrolyte 40-> the transition metal oxide layer 30 including the dye-> lower transition metal oxide layer.
  • a battery flowing in the order of TCO 20 is formed.
  • the catalyst electrode may be configured to have a relatively smaller area than the photoelectrode in order to minimize the reduction in the light receiving area of the photoelectrode. (Because the catalyst electrode can accommodate high current density)
  • the separation of the photoelectrode and the catalyst electrode may be simply divided into two, as shown in the middle of Figure 2, more preferably to facilitate the electron transfer of the electrolyte, and to increase the electron transfer path, the catalyst electrode It may be configured in the form having at least one protrusion protruding toward the photoelectrode side on one inner surface of the solar cell. As shown in the last drawing of FIG. 2, the photoelectrode and the catalyst electrode may be alternately arranged to enable the entire electrolyte to be used as a movement path of electrons. Another example of this is shown in FIG. 3.
  • Figure 3 illustrates a configuration that removes the region consisting of only a separate catalyst electrode or photoelectrode in the vicinity of the encapsulant, and cross the photoelectrode and the catalyst electrode alternately with respect to the entire cell.
  • the present invention also provides a dye-sensitized solar cell submodule, in which the dye-sensitized solar cells (cell units) as described above are integrated.
  • the dye-sensitized solar cell sub-module in which the dye-sensitized solar cell including the photoelectrode, the transparent electrode and the electrolyte electrically connecting the two electrodes are coupled to each other, the dye-sensitized solar cell described above is integrated as a unit cell.
  • a dye-sensitized solar cell submodule to be formed a specific example thereof is as shown in FIG.
  • the photoelectrode of each cell is an electrode in which a dye-adsorbed transition metal oxide porous layer is stacked on a transparent conductive oxide layer, and the catalyst electrode is a catalyst material layer laminated on the transparent conductive oxide layer.
  • the substrates forming the upper surface of the lower surface of the unit cell is an integrated substrate, and the transparent conductive oxide layer constituting the photoelectrode is integrally formed with the transparent conductive oxide layer constituting the catalyst electrode of a neighboring solar cell.
  • the transparent conductive oxide layer constituting the catalyst electrode is formed integrally with the transparent conductive oxide layer constituting the photoelectrode of a neighboring solar cell.
  • TCO is coated on only one substrate, thereby reducing manufacturing costs.
  • the formation of a separate TCO thin film is not required. Not only can be used without forming a separate TCO thin film, but also a metal thin plate, a polymer substrate, or the like can be used, so that flexibility in material selection can be obtained.
  • the present invention provides a dye-sensitized solar cell (cell unit) as described above, or a solar cell module in which the sub-modules in which these cells are integrated are integrated. This can be performed in the same manner as in the case of forming a unit cell or a sub-module in a conventional solar cell module, so a detailed description thereof will be omitted.
  • Inexpensive dye-sensitized solar cells can reduce the manufacturing cost of dye-sensitized solar cells by reducing the area of the transparent conductive oxide coating, which forms the largest cost in the production of dye-sensitized solar cells, by forming a photoelectrode and a catalyst electrode on a single substrate. Production of the battery is possible, and thus, there is an effect of expanding the base of the solar cell.
  • the opposite side of the substrate on which the electrode is formed can be used as the opposite substrate, such as general glass, metal thin plate, polymer substrate, which is not coated with a transparent conductive oxide thin film, and thus the choice of the opposite substrate according to the application becomes wider. The effect of diversifying the form can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 염료감응 태양전지 또는 이의 서브모듈에 관한 것으로, 광전극과 투명전극 및 상기 두 전극을 전기적으로 연결하는 전해질을 포함하는 염료감응 태양전지에 있어서, 상기 전해질을 제외하면 전기적으로 절연되는 상기 광전극과 촉매전극이 동일한 면에 형성되는 것을 특징으로 하는 염료감응 태양전지에 관한 것이다. 이를 통하여 한 장의 기판에서 광전극과 촉매전극을 형성하므로 염료감응 태양전지의 생산에서 가장 많은 비용 부분을 차지하는 투명 전도성 산화물 코팅 면적을 절반으로 줄여 염료감응 태양전지 제조코스트를 저감할 수 있다. 또한 상기 전극이 형성된 기판의 반대편이 대향 기판으로서 투명전도성 산화물 박막이 코팅되지 않은 일반 유리, 금속박판, 폴리머 기판 등의 사용이 가능하여 용도에 따른 대향 기판의 선택의 폭이 넓어지는 효과를 얻을 수 있다.

Description

염료감응 태양전지 또는 이의 서브모듈
본 발명은 염료감응 태양전지 또는 이의 서브모듈에 관한 것으로, 더욱 상세하게는 한 장의 기판에서 광전극과 촉매전극을 형성하므로 염료감응 태양전지의 생산에서 가장 많은 비용 부분을 차지하는 투명 전도성 산화물 코팅 면적을 절반으로 줄여 염료감응 태양전지 제조코스트를 저감할 수 있다. 또한 상기 전극이 형성된 기판의 반대편이 대향 기판으로서 투명전도성 산화물 박막이 코팅되지 않은 일반 유리, 금속박판, 폴리머 기판 등의 사용이 가능하여 용도에 따른 대향 기판의 선택의 폭이 넓어지는 효과를 얻을 수 있는 염료감응 태양전지 또는 염료감응 태양전지 서브모듈에 관한 것이다.
1991년도 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael Gratzel) 연구팀에 의해 염료감응 나노입자 산화티타늄 태양전지가 개발된 이후 이 분야에 관한 많은 연구가 진행되고 있다. 염료감응태양전지는 기존의 실리콘계 태양전지에 비해 제조단가가 현저기 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성을 가지고 있으며, 실리콘 태양전지와 달리 염료감응태양전지는 가시광선을 흡수하여 전자-홀 쌍을 생성할 수 있는 염료분자와, 생성된 전자를 전달하는 전이금속 산화물을 주 구성 재료로 하는 광전기화학적 태양전지이다.
일반적인 염료감응 태양전지의 단위 셀 구조는 도 1에 그 구체적인 예를 도시한 바와 같이, 상, 하부 투명한 기판과 그 투명기판의 표면에 각각 형성되는 투명 도전성 산화물(TCO)로 이루어진 도전성 투명전극을 기본으로 하여, 제1전극에 해당하는 일 측의 도전성 투명전극위에는 그 표면에 염료가 흡착된 전이금속 산화물 다공질 층이 형성되어지고, 제2전극에 해당하는 타 측 도전성 투명전극 위에는 촉매박막전극이 형성되어지며, 상기 전이금속 산화물, 예를 들면 TiO2, 다공질 전극과 촉매박막전극 사이에는 전해질이 충진되어지는 구조를 가진다. 즉, 염료감응 태양전지는 빛을 받아 전자를 발생시키는 염료가 부착된 광전극(TiO2) 재료가 코팅된 광전극 기판과 전자를 공급하는 촉매전극기판 사이에 산화된 염료에 전자를 공급하여 주는 전해질을 기본으로 구성되어 지는데, 일반적인 염료감응 태양전지는 도 1에 도시한 바와 같이 이들 두 기능을 가지는 기판이 서로 마주보는 형태로 구성되어 있으며, 따라서 상하 기판은 모두 전도성 물질이 코팅되어 있고 이는 일반적으로 투명 전도성 산화물(TCO)로 이루어져 있다.
그런데 상기 TCO 박막의 형성은 공정이 고가이며, 제어가 어려운 문제점이 있어서 염료감응 태양전지 제조코스트의 50%가까운 비중이 상기 TCO박막의 형성에 소요되어 저렴한 염료감응 태양전지의 개발을 저해하는 요소가 되고 있다.
따라서 본 발명은 이와 같은 고가의 기판을 사용하지 않아도 구성할 수 있는 염료감응 태양전지 구조의 개발이 필요한 실정이다.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 한 장의 기판에서 광전극과 촉매전극을 형성하므로 염료감응 태양전지의 생산에서 가장 많은 비용 부분을 차지하는 투명 전도성 산화물 코팅 면적을 절반으로 줄여 염료감응 태양전지 제조코스트를 저감할 수 있다. 또한 상기 전극이 형성된 기판의 반대편이 대향 기판으로서 투명전도성 산화물 박막이 코팅되지 않은 일반 유리, 금속박판, 폴리머 기판 등의 사용이 가능하여 용도에 따른 대향 기판의 선택의 폭이 넓어지는 효과를 얻을 수 있는 염료감응 태양전지 또는 염료감응 태양전지 서브모듈을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은
광전극과 투명전극 및 상기 두 전극을 전기적으로 연결하는 전해질을 포함하는 염료감응 태양전지에 있어서,
상기 전해질을 제외하면 전기적으로 절연되는 상기 광전극과 촉매전극이 동일한 면에 형성되는 것을 특징으로 하는 염료감응 태양전지를 제공한다.
또한 본 발명은
광전극과 투명전극 및 상기 두 전극을 전기적으로 연결하는 전해질을 포함하는 염료감응 태양전지 셀이 서로 결합되는 염료감응 태양전지 서브모듈에 있어서,
상기 기술한 염료감응 태양전지를 단위 셀로 하여 집적되어 형성되는 염료감응 태양전지 서브모듈을 제공한다.
상기 서브모듈은 셀과 셀이 집적된 형태를 의미하는 것으로 태양전지의 구성에서 사용되는 실질적인 서브모듈뿐만 아니라 모듈도 모두 포함하는 의미로서, 셀과 셀이 서로 접하여 집적되면 어떤 형태이든 무관하게 이에 포함된다.
본 발명의 염료감응 태양전지(셀) 또는 서브모듈에 따르면. 한 장의 기판에서 광전극과 촉매전극을 형성하므로 염료감응 태양전지의 생산에서 가장 많은 비용 부분을 차지하는 투명 전도성 산화물 코팅 면적을 절반으로 줄여 염료감응 태양전지 제조코스트를 저감할 수 있어서 저가의 염료감응 태양전지의 제작이 가능하고, 이에 따라 태양전지의 저변을 확대할 수 있는 효과가 있다.
또한 상기 전극이 형성된 기판의 반대편이 대향 기판으로서 투명전도성 산화물 박막이 코팅되지 않은 일반 유리, 금속박판, 폴리머 기판 등의 사용이 가능하여 용도에 따른 대향 기판의 선택의 폭이 넓어져 적용분야 및 적용형태를 다양화할 수 있는 효과를 얻을 수 있다.
도 1은 종래의 염료감응 태양전지 (셀 단위)의 단면구조를 개략적으로 도시한 단면도이다.
도 2는 본 발명의 염료감응 태양전지 (셀 단위)의 일 실시예에 대한 단면구조를 개략적으로 도시한 단면도와 평면구조의 다양한 실시예를 도시하는 상판을 제거한 상태의 평면도이다.
도 3은 본 발명의 염료감응 태양전지 (셀 단위)의 다른 실시예에 대한 단면구조를 개략적으로 도시한 단면도와 이의 평면구조를 도시하는 상판을 제거한 상태의 평면도이다.
도 4는 본 발명의 염료감응 태양전지 서브모듈의 일 실시예에 대한 단면구조를 개략적으로 도시한 단면도와 이의 평면구조를 도시하는 상판을 제거한 상태의 평면도이다.
* 도면의 주요부분에 대한 부호의 설명 *
10a: 상면 기판
10b: 하면 기판
20: 투명 전도성 산화물(TCO) (예, ITO)
30: 염료가 흡착된 전이금속 산화물(예, TiO2+염료)
40: 전해질 또는 전해질 충진부
50: 절연 분리막 또는 봉지재
60: 촉매물질(예, Pt)
이하 본 발명을 상세하게 설명한다.
본 발명의 염료감응 태양전지는 광전극과 투명전극 및 상기 두 전극을 전기적으로 연결하는 전해질(40)을 포함하는 염료감응 태양전지에 있어서, 상기 전해질을 제외하면 전기적으로 절연되는 상기 광전극과 촉매전극이 동일한 면에 형성되는 구성으로 이루어진다.
이에 대한 상세한 설명은 도면을 참고하여 설명한다.
본 발명의 염료감응 태양전지(여기서는 셀 단위를 의미함.) 또는 서브모듈(상기 셀 단위의 태양전위 셀이 집적된 형태)에 대한 구체적인 예는 도 2 내지 도 4에 도시한 바와 같다.
즉, 도 2에 그 구체적인 예를 도시한 바와 같이, 염료감응 태양전지에 있어서, 상기 광전극과 촉매전극이 동일한 면에 형성되어 염료감응 태양전지를 이루는 상부기판(10a) 및 하부기판(10b) 중에서 하나의 기판(도시한 경우는 하부기판)에만 투명 전도성 산화물 층을 형성하면 되므로, 태양전지의 제조비용을 절감할 수 있다. 여기서, 전지의 기본적인 작동을 위해서는 상기 광전극과 촉매전극은 상기 전해질을 제외하면 전기적으로 절연되어 동일한 면에 형성되어진다. 더욱 구체적으로는 상기 광전극은 투명 전도성 산화물(TCO)층(20), 예를 들면 ITO 등, 위에 염료가 흡착된 전이금속 산화물(예를 들면 TiO2) 다공질 층(30)이 적층된 전극으로 이를 구성할 수 있고, 상기 촉매전극은 투명 전도성 산화물(TCO)층(20) 위에 촉매물질, 예를 들면 백금(Pt), 층(60)이 적층된 전극이고, 상기 광전극과 촉매전극은 태양전지 셀의 일 내면에서 서로 이격되어 분리되어 전기적 절연을 이룰 수 있다.
이를 통하여 전자는 촉매물질(60) 하부에 존재하는 TCO(20)로부터 촉매물질층(60) -> 전해질(40) -> 염료를 포함하는 전이금속 산화물층(30) -> 전이금속 산화물층 하부의 TCO(20)의 순서로 흐르는 전지가 형성되어진다.
이와 같이, 일 면에 두 전극을 모두 형성하는 경우에 광전극의 수광 면적 감소를 최소화하기 위하여 상기 촉매전극은 그 면적을 광전극에 비하여 상대적으로 훨씬 적게 구성할 수 있다. (촉매전극의 경우는 높은 전류밀도를 수용할 수 있으므로)
또한 상기 광전극 및 촉매전극의 구분은 도 2의 중간 도면과 같이 단순하게 이를 양분할 수도 있으며, 더욱 바람직하게는 전해질의 전자이동을 보다 원활히 하고, 전자이동 경로의 증대를 위하여, 상기 촉매전극은 태양전지 셀의 일 내면 상에서 상기 광전극 측으로 돌출하는 적어도 하나의 돌출부를 가지는 형태로 이를 구성할 수 있다. 이는 도 2의 마지막 도면에서와 같이, 광전극과 촉매전극이 서로 엇갈려 배치되어 전체 전해질을 전자의 이동경로로 사용하는 것이 가능하도록 할 수 있다. 이에 대한 또 다른 예는 도 3에 도시한 바와 같다. 도 3의 경우에는 봉지재 근방에 별도의 촉매전극 또는 광전극만으로 이루어진 영역을 없애고, 셀 전체에 대하여 광전극 및 촉매전극이 서로 엇갈려 교차하도록 하는 구성을 예시한 것이다. 이와 같은 구성을 통하여 전해질의 전자 이동 경로로서의 역할을 최대화할 수 있다.
또한 본 발명은 상기 기술한 바와 같은 염료감응 태양전지(셀 단위)들이 집적되어 이루어진 염료감응 태양전지 서브모듈을 제공한다. 이는 광전극과 투명전극 및 상기 두 전극을 전기적으로 연결하는 전해질을 포함하는 염료감응 태양전지 셀이 서로 결합되는 염료감응 태양전지 서브모듈에 있어서, 상기 기술한 염료감응 태양전지를 단위 셀로 하여 집적되어 형성되는 염료감응 태양전지 서브모듈로서, 이에 대한 구체적인 예는 도 4에 도시한 바와 같다.
더욱 구체적으로는 상기 기술한 바와 같이 각 셀의 상기 광전극은 투명 전도성 산화물층 위에 염료가 흡착된 전이금속 산화물 다공질 층이 적층된 전극이고, 상기 촉매전극은 투명 전도성 산화물층 위에 촉매물질 층이 적층된 전극이며, 이와 같은 상기 단위 셀의 상면을 하면을 이루는 기판은 각각 일체형 기판이고, 상기 광전극을 이루는 투명 전도성 산화물층은 이웃하는 태양전지의 촉매전극을 이루는 투명 전도성 산화물층과 일체로 형성되고, 상기 촉매전극을 이루는 투명 전도성 산화물층은 이웃하는 태양전지의 광전극을 이루는 투명 전도성 산화물층과 일체로 형성되어 이루어진다. 이를 통하여 서브모듈의 경우에도 하나의 기판에만 TCO가 코팅되어지므로 제작비용을 절감할 수 있고, 상기 TCO가 코팅된 기판의 반대편의 경우에는 별도의 TCO박막의 형성이 요구되지 않으므로, 기존의 유리 기판을 별도의 TCO 박막 형성 없이 사용할 수 있을 뿐만 아니라, 이외에도 금속박판이나 폴리머 기판 등을 사용할 수 있어서, 재료 선정의 융통성이 넓어지는 효과를 얻을 수 있다.
이외에도 본 발명은 상기 기술한 바와 같은 염료감응 태양전지(셀 단위) 또는 이러한 셀 들이 집적된 서브모듈이 집적되어 이루어진 태양전지 모듈을 제공한다. 이는 통상의 태양전지 모듈에서 단위 셀 또는 서브모듈을 집적하여 이를 형성하는 경우와 동일한 방법으로 이를 수행할 수 있으므로 이에 대한 상세한 설명은 생략하도록 한다.
이상에서 설명한 본 발명은 전술한 상세한 설명, 실시예에 의하여 한정되는 것은 아니고, 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 해당 기술분야의 당업자가 다양하게 수정 및 변경시킨 것 또한 본 발명의 범위 내에 포함됨은 물론이다.
본 발명의 염료감응 태양전지(셀) 또는 서브모듈에 따르면. 한 장의 기판에서 광전극과 촉매전극을 형성하므로 염료감응 태양전지의 생산에서 가장 많은 비용 부분을 차지하는 투명 전도성 산화물 코팅 면적을 절반으로 줄여 염료감응 태양전지 제조코스트를 저감할 수 있어서 저가의 염료감응 태양전지의 제작이 가능하고, 이에 따라 태양전지의 저변을 확대할 수 있는 효과가 있다.
또한 상기 전극이 형성된 기판의 반대편이 대향 기판으로서 투명전도성 산화물 박막이 코팅되지 않은 일반 유리, 금속박판, 폴리머 기판 등의 사용이 가능하여 용도에 따른 대향 기판의 선택의 폭이 넓어져 적용분야 및 적용형태를 다양화할 수 있는 효과를 얻을 수 있다.

Claims (6)

  1. 광전극과 투명전극 및 상기 두 전극을 전기적으로 연결하는 전해질을 포함하는 염료감응 태양전지에 있어서,
    상기 전해질을 제외하면 전기적으로 절연되는 상기 광전극과 촉매전극이 동일한 면에 형성되는 것을 특징으로 하는 염료감응 태양전지.
  2. 제1항에 있어서,
    상기 광전극은 투명 전도성 산화물층 위에 염료가 흡착된 전이금속 산화물 다공질 층이 적층된 전극이고,
    상기 촉매전극은 투명 전도성 산화물층 위에 촉매물질 층이 적층된 전극이고,
    상기 광전극과 촉매전극은 태양전지 셀의 일 내면에서 서로 이격되어 분리되는 것을 특징으로 하는 염료감응 태양전지.
  3. 제1항 또는 제2항에 있어서,
    상기 촉매전극은 태양전지 셀의 일 내면 상에서 상기 광전극 측으로 돌출하는 적어도 하나의 돌출부를 가지는 것을 특징으로 하는 염료감응 태양전지.
  4. 광전극과 투명전극 및 상기 두 전극을 전기적으로 연결하는 전해질을 포함하는 염료감응 태양전지 셀이 서로 결합되는 염료감응 태양전지 서브모듈에 있어서,
    제1항의 염료감응 태양전지를 단위 셀로 하여 집적되어 형성되는 염료감응 태양전지 서브모듈.
  5. 제4항에 있어서,
    상기 광전극은 투명 전도성 산화물층 위에 염료가 흡착된 전이금속 산화물 다공질 층이 적층된 전극이고,
    상기 촉매전극은 투명 전도성 산화물층 위에 촉매물질 층이 적층된 전극이고,
    상기 단위 셀의 상면을 하면을 이루는 기판은 각각 일체형 기판이고,
    상기 광전극을 이루는 투명 전도성 산화물층은 이웃하는 태양전지의 촉매전극을 이루는 투명 전도성 산화물층과 일체로 형성되고, 상기 촉매전극을 이루는 투명 전도성 산화물층은 이웃하는 태양전지의 광전극을 이루는 투명 전도성 산화물층과 일체로 형성되는 것을 특징으로 하는 염료감응 태양전지 서브모듈.
  6. 제4항 또는 제5항의 염료감응 태양전지 서브모듈이 집적되어 형성되는 염료감응 태양전지 모듈.
PCT/KR2009/004241 2008-08-01 2009-07-30 염료감응 태양전지 또는 이의 서브모듈 WO2010013952A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080075470A KR20100013792A (ko) 2008-08-01 2008-08-01 염료감응 태양전지 또는 이의 서브모듈
KR10-2008-0075470 2008-08-01

Publications (2)

Publication Number Publication Date
WO2010013952A2 true WO2010013952A2 (ko) 2010-02-04
WO2010013952A3 WO2010013952A3 (ko) 2010-03-25

Family

ID=41610851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004241 WO2010013952A2 (ko) 2008-08-01 2009-07-30 염료감응 태양전지 또는 이의 서브모듈

Country Status (2)

Country Link
KR (1) KR20100013792A (ko)
WO (1) WO2010013952A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241015B1 (ko) * 2011-09-01 2013-03-11 현대자동차주식회사 집전극을 갖는 염료감응 태양전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125421A1 (en) * 2005-12-07 2007-06-07 Park Young J Method for fabricating flexible semiconductor electrode, semiconductor electrode fabricated thereby, and solar cell using the semiconductor electrode
KR100764362B1 (ko) * 2005-11-01 2007-10-08 삼성전자주식회사 태양전지용 투명 전극, 그의 제조방법 및 그를 포함하는반도체 전극
US20080083454A1 (en) * 2006-07-13 2008-04-10 Samsung Electronics Co., Ltd Photovoltaic Cell Using Catalyst-Supporting Carbon Nanotube and Method for Producing the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764362B1 (ko) * 2005-11-01 2007-10-08 삼성전자주식회사 태양전지용 투명 전극, 그의 제조방법 및 그를 포함하는반도체 전극
US20070125421A1 (en) * 2005-12-07 2007-06-07 Park Young J Method for fabricating flexible semiconductor electrode, semiconductor electrode fabricated thereby, and solar cell using the semiconductor electrode
US20080083454A1 (en) * 2006-07-13 2008-04-10 Samsung Electronics Co., Ltd Photovoltaic Cell Using Catalyst-Supporting Carbon Nanotube and Method for Producing the Same

Also Published As

Publication number Publication date
WO2010013952A3 (ko) 2010-03-25
KR20100013792A (ko) 2010-02-10

Similar Documents

Publication Publication Date Title
Asano et al. Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes
KR100842265B1 (ko) 수직 적층형 염료감응 태양전지 모듈의 제조 방법
WO2010082794A2 (ko) 직/병렬 혼합형 염료감응형 태양전지 모듈
JP5240942B2 (ja) 封止モノリシック光電気化学システムおよびその封止モノリシック光電気化学システムを製造するための方法
EP1183698B1 (en) Methods to implement interconnects in multi-cell regenerative photovoltaic photoelectrochemical devices
WO2009139565A2 (ko) 염료감응 태양전지 모듈
Lan et al. Durability test of PVP‐capped Pt nanoclusters counter electrode for highly efficiency dye‐sensitized solar cell
KR100384893B1 (ko) 나노입자 산화물 태양전지 및 그 제조 방법과 그를 이용한태양전지 모듈 및 투명 전기창
WO2010013952A2 (ko) 염료감응 태양전지 또는 이의 서브모듈
US20150357123A1 (en) Series/parallel mixed module structure of dye-sensitized solar cell and method of manufacturing the same
Mohanty et al. Magnesia nanoparticles in liquid electrolyte for dye sensitized solar cells: An effective recombination suppressant?
KR20130006088A (ko) 염료감응 태양전지 단위 모듈을 이용한 타일
EP2359406B1 (en) Photovoltaic devices
KR101432022B1 (ko) 염료감응 태양전지 서브모듈
WO2010005212A9 (ko) 염료감응 태양전지 또는 서브모듈 및 서브모듈 봉지방법
JP2003123855A (ja) 光電変換素子用光電極
WO2010067995A2 (ko) 집전 그리드형 염료감응 태양전지
KR20100005559A (ko) 염료감응 태양전지 서브모듈
KR101206040B1 (ko) 외부전극의 극성을 용이하게 변경할 수 있는 구조의 염료감응 태양전지 서브모듈
WO2013050373A1 (en) Dye-sensitised solar cell module, component for a dye sensitised solar cell module and method of manufacturing the same
AU761370B2 (en) Methods to implement interconnects in multi-cell regenerative photovoltaic photoelectrochemical devices
KR101221154B1 (ko) 양전극 단자와 음전극 단자가 인접하여 형성된 염료감응 태양전지 모듈을 이용한 시계
WO2014034978A1 (ko) 전도성 블록을 이용한 염료감응 태양전지 어셈블리
KR20120119852A (ko) 양전극 단자와 음전극 단자가 인접하여 형성된 염료감응 태양전지 모듈
ITRM20110653A1 (it) Contatti elettrochimici verticali di celle fotoelettrochimiche a basso impatto visivo.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803157

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09803157

Country of ref document: EP

Kind code of ref document: A2