WO2010013428A1 - Process for production of poly(aluminum-inorganic monobasic acid salt hydrate) and/or aqueous alumina sol, and poly(aluminum inorganic monobasic acid salt hydrate) and/or aqueous alumina sol obtained by the process - Google Patents

Process for production of poly(aluminum-inorganic monobasic acid salt hydrate) and/or aqueous alumina sol, and poly(aluminum inorganic monobasic acid salt hydrate) and/or aqueous alumina sol obtained by the process Download PDF

Info

Publication number
WO2010013428A1
WO2010013428A1 PCT/JP2009/003498 JP2009003498W WO2010013428A1 WO 2010013428 A1 WO2010013428 A1 WO 2010013428A1 JP 2009003498 W JP2009003498 W JP 2009003498W WO 2010013428 A1 WO2010013428 A1 WO 2010013428A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
aqueous
alumina sol
monobasic
inorganic
Prior art date
Application number
PCT/JP2009/003498
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤護郎
佐藤正淳
Original Assignee
サトーリサーチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サトーリサーチ株式会社 filed Critical サトーリサーチ株式会社
Priority to JP2010522610A priority Critical patent/JPWO2010013428A1/en
Publication of WO2010013428A1 publication Critical patent/WO2010013428A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/66Nitrates, with or without other cations besides aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/447Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes
    • C01F7/448Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes using superatmospheric pressure, e.g. hydrothermal conversion of gibbsite into boehmite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to a method for producing a polyinorganic monobasic aluminum hydrate and an aqueous alumina sol by performing hydrothermal reaction using alumina having a ⁇ - and ⁇ - crystal structure, and a polycrystal obtained by the production method. It relates to inorganic monobasic aluminum hydrate and / or aqueous alumina sol. In particular, the present invention relates to a method for producing an aqueous alumina sol having a plurality of specific particle shapes.
  • Polyinorganic monobasic aluminum hydrate and aqueous alumina sol are used as a ceramic binder.
  • an aqueous alumina sol having a high surface area can be used as a binder functional material of a catalyst as a matrix of a zeolite of an R-FCC catalyst for producing gasoline.
  • Patent Document 1 discloses an FCC catalyst composed of 70% zeolite and 30% alumina sol, and an FCC catalyst composed of 70% zeolite and 30% silica sol.
  • Patent Document 2 uses FCC catalyst mixed with catalyst A and catalyst B, and catalyst B is 1 to 30 wt% zeolite, 10 to 70 wt% alumina, 5 to 30 wt% silica, And a residual kaolin composition, and the alumina component is described as an acidic boehmite suspension.
  • the poly aluminum hydrochloride hydrate is manufactured from aluminum hydroxide or aluminum metal as a raw material.
  • polyaluminum nitrate hydrate cannot be produced by the same method, and an example of synthesizing from other raw materials is disclosed in Patent Document 3, but polyaluminum nitrate hydrate produced by the synthesis method of the described example is disclosed. Is impractical and difficult to commercialize.
  • Patent Document 4 describes a method for obtaining a boehmite suspension by hydrothermal reaction using alumina having inorganic ⁇ - and ⁇ - crystal structures obtained by rapid thermal dehydration and inorganic monobasic acid. ing.
  • Patent Document 4 describes the characteristics of products obtained by converting raw materials to boehmite for 18 examples using nitric acid, and the higher the conversion rate as judged from the numerical value of the specific surface area.
  • the specific surface area of the produced boehmite is reduced.
  • the conversion rate of boehmite is at most 80%, which is insufficient from an industrial viewpoint.
  • Patent Document 5 filed by the present inventor, an alumina raw material having a ⁇ - and ⁇ - crystal structure is subjected to a hydrothermal reaction in the presence of an acid, and a catalyst is obtained via an alumina sol in which fibrous alumina particles are monodispersed.
  • a method for producing alumina for use in the field is disclosed.
  • alumina having a high specific surface area can be obtained, there is a problem that the manufacturing takes a long time.
  • Patent Document 6 of the present inventor discloses a method of adding an oxygen-containing organic compound or a polyvalent inorganic acid to an alumina raw material such as acid-containing aluminum hydroxide or alumina having a ⁇ - and ⁇ -crystal structure.
  • an alumina raw material such as acid-containing aluminum hydroxide or alumina having a ⁇ - and ⁇ -crystal structure.
  • this method is not suitable as a binder because it is easy to form a gel and it is difficult to obtain an aqueous alumina sol, and the resulting boehmite particles are associated with additives and are not sticky.
  • silica sol or the like was used as a matrix for a catalytic cracking catalyst for gasoline production in the oil refining industry, but the poisoning resistance of nickel and vanadium contained in feed oil is high, and the binder There is a need for a powerful alumina matrix.
  • an object of the present invention is to provide a poly inorganic monobasic aluminum hydrate and / or an aqueous alumina sol having a high conversion rate of raw material alumina to a target product and high performance as a binder.
  • the present inventors have used raw material alumina having a ⁇ - and ⁇ - crystal structure having a specific average particle size (D 50 ) or less and aged under specific conditions.
  • the inventors have found that the above-described problems can be solved by a novel production method in which a hydrothermal reaction is performed, and the present invention has been achieved.
  • the present invention relates to the following inventions.
  • ⁇ 4> Any one of ⁇ 1> to ⁇ 3>, wherein the alumina having the ⁇ - and ⁇ - crystal structures is obtained by wet pulverization in the presence of water and an inorganic monobasic acid or a salt thereof.
  • the inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.5 to 2.0, and is subjected to aging and / or hydrothermal reaction at a temperature of 40 ° C. or more and less than 130 ° C.
  • the inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.03 or more and less than 0.5, and is subjected to aging and / or hydrothermal reaction at a temperature of 40 ° C. or more and less than 130 ° C.
  • the inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.03 to 0.5, and the hydrothermal reaction is performed at a temperature of 130 ° C. to 250 ° C. to obtain an aqueous alumina sol ⁇ 1> to the manufacturing method of the poly inorganic monobasic-acid aluminum hydrate and / or aqueous
  • k (b / a) ⁇ (b / c) (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water) ⁇ 9>
  • k (b / a) ⁇ (b / c) (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water) ⁇ 10>
  • k (b / a) ⁇ (b / c) (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water) ⁇ 11>
  • k (b / a) ⁇ (b / c) (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water) ⁇ 12>
  • k (b / a) ⁇ (b / c) (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water) ⁇ 13>
  • the pore volume of the poly inorganic monobasic aluminum hydrate and / or aqueous alumina sol after firing at 550 ° C. for 2 hours is 0.40 mL / g or less, and the average pore diameter is 100 ⁇ m or less.
  • the method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alumina sol according to any one of ⁇ 8> to ⁇ 12>, wherein ⁇ 14> The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alumina sol according to any one of ⁇ 1> to ⁇ 13>, wherein the inorganic monobasic acid is nitric acid.
  • ⁇ 15> A polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol produced by the method according to any one of ⁇ 1> to ⁇ 14>.
  • ⁇ 16> An R-FCC catalyst using the aqueous alumina sol obtained by the production method according to any one of ⁇ 8> to ⁇ 15> as a binder.
  • the polyinorganic monobasic aluminum hydrate, aqueous alumina sol, or a mixture thereof obtained by the method of the present invention has a high binder strength, and when used as a binder in a powder molded product, has extremely high hardness.
  • the aqueous alumina sol produced by the method of the present invention has excellent binder power, and is used as a binder for various catalytic matrices and adsorbents such as catalytic cracking catalysts (R-FCC catalysts) for gasoline production in the petroleum refining industry. Or a heat-resistant adhesive.
  • FIG. 8 It is a figure which shows the production
  • the present invention comprises alumina having a ⁇ - and ⁇ - crystal structure with an average particle size (D 50 ) of 5 ⁇ m or less, water, and an inorganic monobasic acid or a salt thereof, and has an inorganic monobasic acid / alumina molar ratio of 0.03.
  • a polyinorganic monobase characterized by aging and / or hydrothermal reaction of an adjustment solution in which the alumina concentration is adjusted in the range of 3 wt% to 50 wt% in the range of 40 ° C. to 250 ° C.
  • the present invention relates to a method for producing aluminum acid hydrate and / or aqueous alumina sol (hereinafter sometimes referred to as “production method of the present invention”).
  • the average particle diameter (D 50 ) referred to in the present invention (hereinafter sometimes simply referred to as “average particle diameter”) can be measured using, for example, a laser diffraction / scattering particle size distribution analyzer.
  • the aqueous alumina sol in the present invention means an alumina sol comprising crystalline boehmite produced from alumina having ⁇ - and ⁇ - crystal structures using H + as a catalyst.
  • the alumina concentration is a ratio (% by weight) of alumina (in terms of Al 2 O 3 ) when the weight of the whole adjustment liquid is 100.
  • aging means holding the adjustment liquid at a temperature of less than 60 ° C.
  • hydrothermal reaction also referred to as “hydrothermal synthesis” means that the adjustment liquid remains sealed in a container. It is defined as heating at 60 ° C. or higher.
  • the raw material has an average particle diameter (D 50 ) of 5 ⁇ m or less as alumina having a ⁇ - and ⁇ - crystal structure (hereinafter sometimes referred to as “raw material alumina”).
  • the use of alumina is considered to be produced from raw alumina by the following mechanism. That is, the surface of the alumina raw material having a ⁇ - and ⁇ - crystal structure is dissolved by the reaction of water and H + ions derived from an inorganic monobasic acid, and various polymonobasic acids having different molecular weights from the surface of the alumina raw material powder.
  • boehmite nuclei are generated by collision or stimulation (electrical or mechanical) between dissolved molecules of polymonobasic aluminum hydrate.
  • H + ions are by-produced. It is known that boehmite nuclei have three different crystal planes: an a axis (bc plane), a b axis (ac plane with a wall opening), and a c axis (ab plane).
  • the by-produced H + ions dissolve the raw material alumina again to form polymonobasic aluminum hydrate, and diffuse into the solution.
  • polymonobasic aluminum hydrate approaches the boehmite nuclei even at a concentration below the saturation solubility, coordinates to a specific position of the nucleus, and then electrostatic bonding To do.
  • the bo + ite nucleus reacts with the polymonobasic aluminum hydrate to regenerate H + ions as a by-product.
  • boehmite grows, resulting in the formation of an aqueous alumina sol.
  • the particle diameter of the raw material alumina is too large, a large amount of undissolved raw material alumina remains as a powder in addition to the product poly inorganic monobasic aluminum hydrate and / or aqueous alumina sol. Therefore, in the present invention, by limiting the raw material alumina to an average particle diameter (D 50 ) of 5 ⁇ m or less, the unreacted raw material alumina is substantially eliminated, and even when it remains, it has a very small diameter. The quality of the intended product is not impaired. In particular, by setting the average particle diameter (D 50 ) of the raw material alumina to 1 ⁇ m or less, the reaction rate can be increased and unreacted raw material alumina in the final product can be eliminated.
  • the pulverization of the raw material alumina may be either dry pulverization or wet pulverization as long as the average particle diameter (D 50 ) of the raw material alumina can be 5 ⁇ m or less (preferably 1 ⁇ m or less).
  • wet pulverization is preferred in that the wet cake after washing the Na component can be used without drying.
  • wet pulverization of raw material alumina in the presence of water and an inorganic monobasic acid or a salt thereof is preferable because the inorganic monobasic acid penetrates into the raw material alumina and promotes the reaction. In this case, since the reaction of the raw material alumina is promoted, the raw material alumina is sufficiently dissolved even when the average particle diameter (D 50 ) is more than 1 ⁇ m and not more than 5 ⁇ m.
  • the production method of the present invention it is preferable to wet pulverize raw material alumina in the presence of an inorganic monobasic acid or a salt thereof.
  • a slurry in which a predetermined amount of raw material alumina, water and an inorganic monobasic acid are mixed is prepared.
  • this is supplied to a wet pulverizer.
  • the inorganic monobasic acid may be added in a predetermined amount from the beginning, or initially prepared to be less than the predetermined amount, and after the pulverization is started, the remaining acid may be added.
  • the viscosity of the slurry in the pulverizer may increase, but the pH value of the slurry is maintained at 5.5 or lower, or diluted with water, and the viscosity is suppressed to less than 100 mPa ⁇ s. Grinding can be continued.
  • a wet pulverizer with forced stirring is preferably used.
  • the slurry can be separated into two phases by a two-phase separation type centrifuge during the wet pulverization, and the pulverization can be performed again after separating the small particle portion.
  • unreacted raw material alumina may remain as relatively large particles (coarse particles). Separation of coarse unreacted material of such raw material alumina can be performed at a high speed of 8000-9000 revolutions / minute using a high-speed rotating centrifuge, and the alumina concentration is about 15% in order to increase the separation speed. Is preferable.
  • aqueous alumina sol having a low molar ratio of inorganic monobasic acid / alumina
  • the viscosity of the wet grinding liquid Increases, the pulverized liquid is hardened, and the pulverization operation becomes difficult.
  • the viscosity can be lowered by diluting with water, but there are problems that the pulverization efficiency is reduced by dilution and the concentration of the produced alumina sol is reduced.
  • the inorganic monobasic acid / alumina molar ratio in the wet pulverization process is performed in a stable composition region of 0.10 or more, and the inorganic monobasic acid / alumina molar ratio readjustment process is performed after the pulverization process is completed.
  • an excess of inorganic monobasic acid is 1. Neutralization by adding alkaline components such as ammonia, or 2. Neutralization by addition of alumina having ⁇ - and ⁇ - crystal structure obtained by dry grinding, or It can be removed by a method such as adsorption / desorption with an anion exchange resin for nitric acid.
  • the raw material alumina used in the production method of the present invention is alumina having a ⁇ - and ⁇ - crystal structure, and this raw material alumina is usually dehydrated by rapidly heating aluminum hydroxide in a hot air stream. Can be obtained.
  • Aluminum hydroxide is usually produced by the Bayer method, but ⁇ - and ⁇ - produced by rapid heating and dehydration of aluminum hydroxide (Bauxite Ore Concentration) produced by the Bayer method at about 1000 ° C.
  • Alumina having a crystal structure often contains about 0.25% by weight of Na 2 O as an impurity. Therefore, when using aluminum hydroxide produced by the Bayer method, it is preferable to reduce the Na concentration by washing in advance. Na can be reduced to about 0.06% by weight as Na by filtering and washing with acidic water containing carbonic acid.
  • the inorganic monobasic acid examples include hydrochloric acid and nitric acid, and nitric acid is preferably used.
  • a salt of an inorganic monobasic acid such as aluminum nitrate can also be used.
  • the inorganic monobasic acid / alumina molar ratio can be adjusted by mixing the powder comprising the raw material alumina with water and / or an inorganic monobasic acid or a salt thereof (which may be accompanied by wet pulverization).
  • An adjustment liquid adjusted to 0.03 to 2.0 (preferably 0.05 to 1.5) and alumina concentration in the range of 3% to 50% by weight (preferably 5% to 40% by weight).
  • the target product can be obtained by aging and / or hydrothermally reacting this adjustment liquid in the range of 40 ° C to 250 ° C.
  • the alumina concentration is less than 3% by weight, the concentration of the resulting product is too small, and extra cost is required for concentration. If it exceeds 50% by weight, the concentration is too high, Product handling becomes difficult.
  • the raw material alumina can be converted into a product with high efficiency. It can be converted.
  • the conversion rate depends on the reaction time, from the industrial viewpoint, the conversion rate of the product is preferably 90% or more, particularly preferably 95% or more.
  • the product obtained depends on the concentration of raw material alumina, water, inorganic acid or a salt thereof, and the temperature of aging and / or hydrothermal reaction.
  • the molar ratio of the inorganic monobasic acid / alumina in the adjustment liquid is in the range of 0.5 or more and 2.0 or less, and aging and / or hydrothermal reaction is performed at a temperature of 40 ° C. or more and less than 130 ° C.
  • Aluminum basic acid hydrate can be obtained.
  • the molar ratio of the inorganic monobasic acid / alumina in the adjustment liquid is in the range of 0.03 or more and less than 0.5, and aging and / or hydrothermal reaction is performed at a temperature of 40 ° C. or more and less than 130 ° C.
  • a mixture of aluminum basic acid hydrate and aqueous alumina sol can be obtained.
  • the molar ratio of the inorganic monobasic acid / alumina in the adjustment liquid is in the range of 0.03 or more and 0.5 or less, and a hydrothermal reaction is performed at a temperature of 130 ° C. or more and 250 ° C. or less to obtain an aqueous alumina sol. .
  • the shape of the aqueous alumina sol depends on the k value determined by the above formula (1) from the concentrations of the raw material alumina, water, inorganic acid or salt thereof. That is, if the k value of the adjustment liquid is in the composition range of 0.000005 ⁇ k ⁇ 0.03, and the temperature of aging and / or hydrothermal reaction is 130 ° C. or higher and 250 ° C. or lower, the aqueous alumina sol is a plate-like product. An aqueous alumina sol having a tape-like or fibrous particle shape is formed. In addition, it is preferable that the temperature of hydrothermal reaction is 160 degreeC or more and 250 degrees C or less, and aqueous alumina sol can be efficiently manufactured as it is this range.
  • the plate-like particle shape means that the a-axis (bc surface) and b-axis (ac surface) in boehmite are grown with an equal bonding force
  • the tape-like particle shape means the a-axis (in the boehmite) bc-plane) and co-grown with b-axis (ac-plane) with weak bonding force
  • the fibrous particle shape is strongly coordinated with a-axis (bc-plane) in boehmite Estimated.
  • Each specific shape is shown in the electron micrograph in the Example mentioned later.
  • the k value of the adjustment liquid is preferably within a composition range of 0.000005 ⁇ k ⁇ 0.0005
  • the k value of the adjustment liquid is preferably in the composition range of 0.0005 ⁇ k ⁇ 0.0015, and in terms of obtaining an aqueous alumina sol having mainly a fibrous particle shape, adjustment is performed.
  • the k value of the liquid is preferably in the composition range of 0.0015 ⁇ k ⁇ 0.03.
  • FIG. 1 shows a region where aqueous alumina sol having various particle shapes is formed.
  • the polyinorganic monobasic aluminum hydrate and aqueous alumina sol which are the products of the present invention, are also suitably used as binders for molded products such as catalysts and adsorbents after drying and firing. Moreover, it is used suitably as binders, such as a heat resistant adhesive agent.
  • the pore volume and average pore diameter after firing the polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol after heat treatment at a specific temperature can be used as indices.
  • the pore volume of the polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol of the present invention is 0.40 mL / g or less (especially 0.35 mL / g or less) after calcination at 550 ° C. for 2 hours. It is preferable that the average pore diameter is 100 ⁇ or less (particularly 75 ⁇ or less) because a particularly strong binder force can be obtained.
  • the aqueous alumina sol is particularly preferably used as a binder for R-FCC catalysts.
  • the R-FCC catalyst zeolite loses its activity due to poisoning of nickel and vanadium contained in the feed oil, but alumina is effective as its passivator. Therefore, when the product according to the production method of the present invention is used as a binder for an R-FCC catalyst, not only the aqueous alumina sol according to the present invention but also various characteristics such as the catalytic activity of the R-FCC catalyst are not impaired.
  • Poly inorganic aluminum monobasic acid hydrate or raw material alumina may be contained which has alumina having ⁇ - and ⁇ - crystal structures.
  • each measuring method is as follows.
  • Conversion rate 100 g of a product sample diluted to an alumina concentration of 1.0% by weight is placed in a 100 ml beaker and allowed to stand for 20 hours. After standing, the sediment is collected, the weight of the residue after heating is weighed, and the conversion rate of the measurement sample is calculated.
  • Centrifugal sediment 5 ml of a sample diluted to an alumina concentration of 1% by weight is collected in a centrifugal sedimentation tube of a centrifuge and measured for the amount of sediment after operating at 3000 rpm for 5 minutes.
  • Specific surface area A sample to be measured is dried at 200 ° C. and then measured by a nitrogen gas adsorption method.
  • Pore volume and average pore diameter A pore having a pore diameter of 40 to 10,000 mm is measured by a mercury intrusion method. (5) Average particle diameter (D 50 ) (weight average particle diameter) Measured with a laser diffraction / scattering particle size distribution analyzer (MT3300 manufactured by Nikkiso Co., Ltd.). (6) Compressive strength Measure the strength of the side surfaces of 200 cylindrical molded products with a Kiya-type compressive strength measuring device, and determine the average value. (7) Shape of Product A polyinorganic monobasic aluminum hydrate and an aqueous alumina sol dried at 200 ° C. were evaluated using a transmission microscope (manufactured by Hitachi, Ltd., model number: H-9000NAR).
  • Example 1 1200 g of alumina having a ⁇ - and ⁇ - crystal structure with an average particle size (D 50 ) of 15 ⁇ m was added to an aqueous nitric acid solution to prepare a slurry having an alumina concentration of 21% by weight and a nitric acid / alumina molar ratio of 0.15.
  • the slurry was supplied to a wet pulverizer with forced agitation using 0.3 mm zirconia beads and pulverized.
  • nitric acid was additionally added to adjust the pH of the slurry, and the pulverization was continued while maintaining the pH below 5.
  • the crushed slurry had an average particle diameter (D 50 ) of 0.11 ⁇ m, an alumina concentration of 20% by weight, a nitric acid / alumina molar ratio of 0.20, and a k value of 0.0018.
  • Nitric acid was added to 1000 g of the slurry to prepare an adjustment solution having an alumina concentration of 19.3% by weight, a nitric acid / alumina molar ratio of 0.40, and a k value of 0.0072.
  • this adjustment liquid As a result of hydrothermal reaction of this adjustment liquid at 98 ° C. for 14 hours, the conversion rate of the raw material alumina was 99.5%, and the centrifugal sediment was 2.6%.
  • Table 1 shows the specific surface area of the dried product at 200 ° C and the pore volume of the heat-treated product at 850 ° C for 5 hours.
  • USY zeolite, kaolin and the product of this example were kneaded at a weight ratio of 30/40/30 based on oxides, molded with a piston-type extruder, dried and then fired at 850 ° C. for 5 hours.
  • Table 1 also shows the diameter, pore structure, and side compression strength of the obtained cylindrical molded body.
  • Example 2 Nitric acid was added to 1000 g of the slurry obtained in Example 1, and an adjustment liquid having an alumina concentration of 17.4% by weight, a nitric acid / alumina molar ratio of 1.00, and a k value of 0.043 was prepared. As a result of hydrothermal reaction of this adjusted liquid at 98 ° C. for 14 hours, the conversion rate of the raw material alumina was 99.5%, and the centrifugal sediment was 3.8%. Table 1 shows the specific surface area of the dried product at 200 ° C and the pore volume of the heat-treated product at 850 ° C for 5 hours.
  • the main product is presumed to be polyinorganic monobasic aluminum hydrate from the fact that few alumina particles are observed and the properties of the 200 ° C. dried product.
  • Table 1 shows the pore structure and compressive strength of the molded product similar to Example 1.
  • Comparative Example 1 The specific surface area of a 200 ° C. dry product of alumina sol (trade name: Cataloid-AP) composed of pseudoboehmite, which is considered to have an excellent binder function among commercially available alumina sols, and the pore volume of the heat-treated product at 850 ° C. for 5 hours. The results are shown in Table 1. Table 1 shows the results of molding the same molded product as in Example 1 and measuring its pore structure and compressive strength.
  • Example 3 Alumina having an average particle size (D 50 ) of 15 ⁇ m and having a ⁇ and ⁇ crystal structure was dry-pulverized by a swirling force of air to prepare an alumina powder having an average particle size (D 50 ) of 0.7 ⁇ m. 500 g of this alumina powder was added to an aqueous nitric acid solution to prepare an adjustment solution having an alumina concentration of 20% by weight, a nitric acid / alumina molar ratio of 0.15, and a k value of 0.0010. As a result of hydrothermal reaction of this adjustment liquid at 140 ° C. for 14 hours, the conversion rate of raw material alumina was 96.3%, and the centrifugal sediment was 3.8%. According to electron microscope observation of this product, it was an aqueous alumina sol in which fibrous particles and plate-like particles were mixed, and the specific surface area of the 200 ° C. dried product was 290 m 2 / g.
  • Example 4 500 g of alumina having a ⁇ - and ⁇ - crystal structure with an average particle diameter (D 50 ) of 15 ⁇ m was added to an aqueous nitric acid solution, the alumina concentration was 30% by weight, the nitric acid / alumina molar ratio was 0.15, and the k value was 0.1.
  • a slurry of 00177 was prepared. This slurry was supplied to a 3.6 L magnetic pot mill, and 5 kg of 10 mm zirconia beads were inserted and wet pulverized for 68 hours. The average particle diameter (D 50 ) of the alumina after pulverization was 1.6 ⁇ m.
  • D 50 average particle diameter
  • the conversion rate of the raw material alumina was 96.5%
  • the product was an aqueous alumina sol mainly composed of fibrous particles according to electron microscope observation.
  • the specific surface area of the dried product at 200 ° C. was 310 m 2 / g.
  • Example 5 600 g of aluminum hydroxide having an average particle size (D 50 ) of 12.8 ⁇ m was added to an aqueous nitric acid solution to prepare a slurry having an alumina concentration of 20% by weight and a nitric acid / alumina molar ratio of 1.00. This slurry was supplied to a wet pulverizer with forced stirring and finely pulverized until the average particle size (D 50 ) became 1.4 ⁇ m. This was used as an adjustment solution, and after hydrothermal reaction at 98 ° C.
  • the conversion rate of the raw material alumina was 95.8%
  • the centrifugal sediment was 39.8%
  • a cloudy, viscous aqueous alumina sol and A gel was obtained. Since the specific surface area of the 200 ° C. dried product was 0 m 2 / g, it was estimated that polyaluminum nitrate hydrate was also contained.
  • Example 6 500 g of alumina having a ⁇ - and ⁇ - crystal structure with an average particle size (D 50 ) of 15 ⁇ m was added to an aqueous hydrochloric acid solution, the alumina concentration was 20% by weight, the molar ratio of hydrochloric acid / alumina was 1.00, and the k value was 0.052.
  • a slurry was prepared. This slurry was supplied to a 3.6 L magnetic pot mill, and 5 kg of 10 mm zirconia beads were inserted and wet pulverized for 1 week. The average particle size (D 50 ) of the pulverized alumina was 0.7 ⁇ m.
  • Example 7 Alumina having a ⁇ - and ⁇ - crystal structure with an average particle size (D 50 ) of 15 ⁇ m (hereinafter referred to as “raw alumina”) was added to an aqueous nitric acid solution, the alumina concentration was 12.5% by weight, and the nitric acid / alumina mole. A slurry with a ratio of 0.06 was prepared. This slurry was supplied to a wet pulverizer with forced stirring using 0.3 mm zirconia beads and wet pulverized for 1 hour 30 minutes. The slurry after pulverization had an average particle size (D 50 ) of 0.3 ⁇ m.
  • Example 8 The same raw material as in Example 7 was used, and a slurry having an alumina concentration of 15% by weight and a nitric acid / alumina molar ratio of 0.088 was prepared.
  • the raw material alumina was finely pulverized in the same manner as in Example 7 except that the pulverization time was 3 hours.
  • the slurry after pulverization had an average particle size (D 50 ) of 0.2 ⁇ m. Water was added to the obtained pulverized liquid so that the concentration of the alumina component was 12.5% and the k value was 0.000020, a part of which was inserted into a stainless steel 1-inch gas pipe, In addition, a hydrothermal reaction was performed by heating at 140 ° C.
  • FIG. 3 shows a pore size distribution diagram of the aqueous alumina sol by a mercury intrusion method for a product fired at 550 ° C. for 2 hours.
  • Table 3 shows the pore volume and average pore diameter determined from the pore size distribution chart.
  • Example 9 The same raw material alumina as in Example 7 was used to prepare a slurry having an alumina concentration of 25% by weight and a nitric acid / alumina molar ratio of 0.10.
  • the raw material alumina was finely pulverized while adding water to the slurry to dilute the alumina concentration to 15%.
  • the slurry after pulverization for 4 hours had an average particle diameter (D 50 ) of 0.14 ⁇ m. Water is added to the obtained pulverized liquid so that the concentration of the alumina component is 15% and the k value is 0.00045.
  • a part of the pulverized liquid is inserted into a stainless steel 1-inch gas pipe, and the temperature rise time is included in the air bath.
  • a hydrothermal reaction was carried out by heating at 140 ° C. for 14 hours to obtain an aqueous alumina sol product containing a small amount of liquid substance.
  • Table 2 shows the reaction conditions, the raw material alumina conversion rate, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • Example 10 The same raw material alumina as in Example 7 was used, and a slurry having an alumina concentration of 20% by weight and a nitric acid / alumina molar ratio of 0.12 was prepared.
  • the raw material alumina was finely pulverized in the same manner as in Example 7, except that the slurry was pulverized for 4 hours.
  • the slurry after pulverization had an average particle size (D 50 ) of 0.14 ⁇ m. Water and nitric acid were added to the pulverized liquid so that the concentration of the alumina component was 12.5%, the molar ratio of nitric acid / alumina was 0.14, and the k value was 0.00042.
  • the product was inserted into a gas pipe and subjected to a hydrothermal reaction by heating in an air bath at 140 ° C. for 14 hours including the temperature raising time to obtain a product of an aqueous alumina sol containing a trace amount of liquid substance.
  • Table 2 shows the reaction conditions, the raw material alumina conversion rate, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • Example 11 The same raw material alumina as in Example 7 was used, and a slurry having an alumina concentration of 25% by weight and a nitric acid / alumina molar ratio of 0.16 was prepared.
  • the raw material alumina was finely pulverized in the same manner as in Example 7 except that the pulverization time was 6 hours.
  • the slurry after pulverization had an average particle diameter (D 50 ) of 0.11 ⁇ m. Water was added to the pulverized liquid so that the concentration of the alumina component was 15.0%, the molar ratio of nitric acid / alumina was 0.16, and the k value was 0.00081. Then, the mixture was heated in an air bath at 140 ° C.
  • Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the shape of the product.
  • SA specific surface area
  • Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
  • Example 12 A product of an aqueous alumina sol containing a small amount of liquid substance was produced in the same manner as in Example 11 except that the reaction conditions of the hydrothermal reaction were 150 ° C. and 8 hours.
  • Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • Example 13 A product of an aqueous alumina sol containing a trace amount of liquid substance was produced in the same manner as in Example 11 except that the reaction conditions of the hydrothermal reaction were 160 ° C. and 4 hours.
  • Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • Example 14 An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 11 except that the reaction conditions for the hydrothermal reaction were 170 ° C. and 1 hour 30 minutes.
  • Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • SA specific surface area
  • Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
  • Example 15 Instead of using a stainless steel 1-inch gas pipe, a stainless steel 3 / 4-inch gas pipe is used, an oil bath is used instead of an air bath, and the reaction conditions of the hydrothermal reaction are 180 ° C. for 30 minutes.
  • a product of an aqueous alumina sol containing a small amount of liquid substance was produced.
  • Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • SA specific surface area
  • Example 16 An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 180 ° C. and 1 hour 30 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • SA specific surface area
  • Example 17 An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 180 ° C. and 2 hours and 30 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • SA specific surface area
  • Example 18 An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 200 ° C. and 6 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • SA specific surface area
  • Example 19 An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions of the hydrothermal reaction were 200 ° C. and 12 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • SA specific surface area
  • Example 20 A product of an aqueous alumina sol containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 220 ° C. and 2 minutes.
  • Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
  • SA specific surface area
  • Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
  • Example 21 The raw material alumina pulverized product having an average particle diameter (D 50 ) of Example 11 of 0.11 ⁇ m was used, and nitric acid and water were added to obtain an alumina component concentration of 14.9%, a nitric acid / alumina molar ratio of 0.20, A preparation having a k value of 0.00127 was added. The adjustment liquid was inserted into a 1 inch stainless steel gas pipe, and a hydrothermal reaction was performed in an air bath at 170 ° C. for 2 hours. The results are shown in Table 2. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape. A transmission micrograph is shown in FIG.
  • SA specific surface area
  • Example 22 The raw material alumina pulverized product having an average particle diameter (D 50 ) of Example 11 of 0.11 ⁇ m was used, and nitric acid and water were added to give an alumina component concentration of 14.8%, nitric acid / alumina molar ratio of 0.20, A preparation having a k value of 0.00184 was added. The adjustment liquid was inserted into a 1 inch stainless steel gas pipe, and a hydrothermal reaction was performed in an air bath at 170 ° C. for 2 hours. The results are shown in Table 2. A transmission micrograph is shown in FIG. Further, Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
  • D 50 average particle diameter
  • Example 11 The raw material alumina pulverized product having an average particle diameter (D 50 ) of Example 11 of 0.11 ⁇ m was used, and nitric acid and water
  • Comparative Example 2 Raw material alumina having a ⁇ - and ⁇ - crystal structure with an average particle diameter (D 50 ) of 6.1 ⁇ m was used, the alumina concentration was 45%, the molar ratio of nitric acid / the molar ratio of alumina was 0.16, and the k value was 0.0040. As a result of performing a hydrothermal reaction at 160 ° C. for 8 hours, the product has a conversion rate as low as 85.3%, and the specific surface area of the resulting boehmite after drying at 200 ° C. is 183 m 2. A low value of / g was shown.
  • Comparative Example 3 Raw material alumina having a ⁇ - and ⁇ - crystal structure with an average particle diameter (D 50 ) of 0.7 ⁇ m was used, the alumina concentration was 15%, the molar ratio of nitric acid / the molar ratio of alumina was 0.02, and the k value was 0.000012. As a result of filling in a stainless steel pipe and hydrothermal synthesis at 150 ° C. for 8 hours, the product showed the properties of a solidified gel, and a boehmite gel showing no binder property was obtained.
  • Comparative Example 4 Using the alumina raw material of Comparative Example 3, the alumina concentration was 55%, the molar ratio of nitric acid / alumina molar ratio was 0.10, and the k value was 0.0023, which was filled into a stainless steel pipe, and hydrothermal synthesis was performed at 160 ° C. for 8 hours. As a result, the product was a hardened mass and became a material that was extremely difficult to handle.
  • Comparative Example 5 Using the wet pulverized liquid of Example 11 having an alumina concentration of 15% and a molar ratio of nitric acid / alumina molar ratio of 0.16, oxalic acid was added in an amount of 2% by weight to the alumina, and then filled in a stainless steel pipe. As a result of hydrothermal synthesis at 150 ° C. for 8 hours, a product (boehmite gel) showing the properties of the solidified gel was obtained. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.
  • Comparative Example 6 A product (boehmite gel) was obtained in the same manner as in Comparative Example 5 except that 2% by weight of glycolic acid was added to alumina instead of oxalic acid. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.
  • Comparative Example 7 A product (boehmite gel) was obtained in the same manner as in Comparative Example 5 except that citric acid was added in an amount of 2% by weight based on alumina instead of oxalic acid. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.
  • Comparative Example 8 A product (boehmite gel) was obtained in the same manner as in Comparative Example 5 except that phosphoric acid (P 2 O 5 ) was added in an amount of 2% by weight based on alumina instead of oxalic acid. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

A process for producing a poly(aluminum-inorganic monobasic acid salt hydrate) and/or an aqueous alumina sol which have high binder performance from a raw material alumina having ρ- and χ- crystal structures at a high degree of conversion to an objective product. A poly(aluminum-inorganic monobasic acid salt hydrate) and/or an aqueous alumina sol which have high binder performance can be produced at a high degree of conversion by subjecting a liquid preparation to aging and/or hydrothermal reaction at a temperature of 40 to 250°C, said liquid preparation being a preparation which consists of an alumina having ρ- and χ-structures and a median particle diameter (D50) of 5μm or below, water, and an inorganic monobasic acid or a salt thereof and in which the inorganic monobasic acid/alumina molar ratio is adjusted to 0.03 to 2.0 and the alumina concentration is adjusted to 3 to 50wt%.  Further, the particle shape of aqueous alumina sol can be controlled to a plate-, tape- or fiber-like shape.

Description

ポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法および該製造方法により得られたポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルMethod for producing polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol, and polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol obtained by the production method
 本発明は、ρ-およびχ-結晶構造を有するアルミナを用い、水熱反応を行うことによる、ポリ無機一塩基酸アルミニウム水和物及び水性アルミナゾルの製造する方法および該製造方法により得られたポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルに関する。特に、複数の特定粒子形状を有する水性アルミナゾルの製造方法に関するものである。 The present invention relates to a method for producing a polyinorganic monobasic aluminum hydrate and an aqueous alumina sol by performing hydrothermal reaction using alumina having a ρ- and χ- crystal structure, and a polycrystal obtained by the production method. It relates to inorganic monobasic aluminum hydrate and / or aqueous alumina sol. In particular, the present invention relates to a method for producing an aqueous alumina sol having a plurality of specific particle shapes.
 ポリ無機一塩基酸アルミニウム水和物や水性アルミナゾルは、セラミック質バインダーとして用いられる。特に高表面積を有する水性アルミナゾルは触媒のバインダー機能材料として、ガソリンを製造するR-FCC触媒のゼオライトのマトリックスとして用いることができる。 Polyinorganic monobasic aluminum hydrate and aqueous alumina sol are used as a ceramic binder. In particular, an aqueous alumina sol having a high surface area can be used as a binder functional material of a catalyst as a matrix of a zeolite of an R-FCC catalyst for producing gasoline.
 例えば、特許文献1には、70%のゼオライトと30%のアルミナゾルからなるFCC触媒と、70%のゼオライトと30%のシリカゾルからなるFCC触媒が開示されている。 For example, Patent Document 1 discloses an FCC catalyst composed of 70% zeolite and 30% alumina sol, and an FCC catalyst composed of 70% zeolite and 30% silica sol.
 また、特許文献2には、FCC触媒に触媒Aと触媒Bを混合して使用し、触媒Bは1~30重量%のゼオライト、10~70重量%のアルミナ、5~30重量%のシリカ、及び残余カオリン組成を提案しており、アルミナ成分は酸性ベーマイト懸濁液の記載がある。 Patent Document 2 uses FCC catalyst mixed with catalyst A and catalyst B, and catalyst B is 1 to 30 wt% zeolite, 10 to 70 wt% alumina, 5 to 30 wt% silica, And a residual kaolin composition, and the alumina component is described as an acidic boehmite suspension.
 ところで、ポリ無機一塩基酸アルミニウム水和物の中で、ポリ塩酸アルミニウム水和物に関しては原料に水酸化アルミニウムやアルミニウム金属から製造している。しかしながら、ポリ硝酸アルミニウム水和物は同様な方法で製造できず、他原料から合成を試みた例が特許文献3で開示されているが、記載例の合成方法で作製したポリ硝酸アルミニウム水和物は不純分を含み商品化することは困難である。 By the way, among the poly inorganic monobasic aluminum hydrates, the poly aluminum hydrochloride hydrate is manufactured from aluminum hydroxide or aluminum metal as a raw material. However, polyaluminum nitrate hydrate cannot be produced by the same method, and an example of synthesizing from other raw materials is disclosed in Patent Document 3, but polyaluminum nitrate hydrate produced by the synthesis method of the described example is disclosed. Is impractical and difficult to commercialize.
 一方、水酸化アルミニウムを急速加熱脱水で得られるρ-およびχ-結晶構造を有するアルミナと無機一塩基酸を用い、水熱反応させてベーマイトの懸濁液を得る方法が特許文献4に記載されている。 On the other hand, Patent Document 4 describes a method for obtaining a boehmite suspension by hydrothermal reaction using alumina having inorganic ρ- and χ- crystal structures obtained by rapid thermal dehydration and inorganic monobasic acid. ing.
 特許文献4には、硝酸を用いた18件の実施例について、原料からベーマイトへ変換して得られた生成物の特性の記載があり、比表面積の数値から判断する限り変換率が高くなる程生成するベーマイトの比表面積が低下している。また、同特許文献の方法では、ベーマイトの変換率はせいぜい80%であり、工業的観点からは不十分である。 Patent Document 4 describes the characteristics of products obtained by converting raw materials to boehmite for 18 examples using nitric acid, and the higher the conversion rate as judged from the numerical value of the specific surface area. The specific surface area of the produced boehmite is reduced. Moreover, in the method of the patent document, the conversion rate of boehmite is at most 80%, which is insufficient from an industrial viewpoint.
 また、本発明者出願の特許文献5では、ρ-およびχ-結晶構造を有するアルミナ原料を酸の存在下で水熱反応を行わせ、繊維状アルミナ粒子が単分散したアルミナゾルを経由して触媒用アルミナの製造方法が開示されている。 同特許文献で開示された製造方法では、高比表面積のアルミナを得ることができるものの、その製造には長時間要すると云う問題があった。 Further, in Patent Document 5 filed by the present inventor, an alumina raw material having a ρ- and χ- crystal structure is subjected to a hydrothermal reaction in the presence of an acid, and a catalyst is obtained via an alumina sol in which fibrous alumina particles are monodispersed. A method for producing alumina for use in the field is disclosed. In the manufacturing method disclosed in the patent document, although alumina having a high specific surface area can be obtained, there is a problem that the manufacturing takes a long time.
 また、本発明者出願の特許文献6には、酸含有水酸化アルミニウムまたはρ-およびχ-結晶構造を有するアルミナなどのアルミナ原料に、含酸素有機化合物または多価無機酸を添加する方法が開示されている。しかしながら、この方法では、ゲルを形成しやすく、水性アルミナゾルを得にくいのに加え、その液の性質は生成したベーマイト粒子同士は添加物で会合し粘着性が無く、バインダーとして不向きである。 Patent Document 6 of the present inventor discloses a method of adding an oxygen-containing organic compound or a polyvalent inorganic acid to an alumina raw material such as acid-containing aluminum hydroxide or alumina having a ρ- and χ-crystal structure. Has been. However, this method is not suitable as a binder because it is easy to form a gel and it is difficult to obtain an aqueous alumina sol, and the resulting boehmite particles are associated with additives and are not sticky.
特表2004-525762号公報JP-T-2004-525762 特表2004-528963号公報JP-T-2004-528963 特公昭45-38121号公報Japanese Examined Patent Publication No. 45-38121 特公昭59-13446号公報Japanese Patent Publication No.59-13446 国際公開1997/32817号パンフレットInternational Publication No. 1997/32817 Pamphlet 国際公開2001/56951号パンフレットInternational Publication No. 2001/56951 Pamphlet
 以上のように従来の方法では、バインダーとしての機能を十分に備えた、ポリ無機一塩基酸アルミニウム水和物及び水性アルミナゾルを製造することができなかった。また、いずれの方法も煩雑な操作や長時間の処理を必要とするばかりでなく、原料アルミナの目的の生成物への変換率が低く、製造原価が高くなってしまうため、工業的に実施するには必ずしも適当なものとはいえなかった。 As described above, according to the conventional methods, it was not possible to produce a poly inorganic monobasic aluminum hydrate and an aqueous alumina sol having a sufficient function as a binder. In addition, both methods not only require complicated operations and long-time treatment, but also the conversion rate of raw material alumina to the target product is low, and the production cost is high, so that it is industrially implemented. It was not always appropriate.
 また、触媒用バインダーとしては、石油精製工業におけるガソリン製造用の接触分解用触媒にマトリックスとしてシリカゾルなどが使用されていたが、フィードオイル中に含有するニッケルとバナジウムの被毒対抗性が高く、バインダー力のあるアルミナ系マトリックスが求められている。 Moreover, as a catalyst binder, silica sol or the like was used as a matrix for a catalytic cracking catalyst for gasoline production in the oil refining industry, but the poisoning resistance of nickel and vanadium contained in feed oil is high, and the binder There is a need for a powerful alumina matrix.
 かかる状況下、本発明の目的は、原料アルミナの目的生成物への変換率が高く、バインダーとしての性能が高いポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルを提供することである。 Under such circumstances, an object of the present invention is to provide a poly inorganic monobasic aluminum hydrate and / or an aqueous alumina sol having a high conversion rate of raw material alumina to a target product and high performance as a binder.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特定の平均粒子径(D50)以下のρ-およびχ-結晶構造を有する原料アルミナを使用し、特定の条件で熟成および/または水熱反応を行わせるという新規な製造法によって前記のような問題点を解決するものであることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors have used raw material alumina having a ρ- and χ- crystal structure having a specific average particle size (D 50 ) or less and aged under specific conditions. The inventors have found that the above-described problems can be solved by a novel production method in which a hydrothermal reaction is performed, and the present invention has been achieved.
 すなわち、本発明は、以下の発明に係るものである。
 <1> 平均粒子径(D50)が5μm以下のρ-およびχ-結晶構造を有するアルミナ、水、および無機一塩基酸またはその塩からなり、無機一塩基酸/アルミナモル比を0.01から2.0、アルミナ濃度を2重量%から50重量%の範囲に調節した調整液を、40℃から250℃の範囲で熟成および/または水熱反応を行うことを特徴とするポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。
 <2> 前記アルミナの熟成および/または水熱反応後のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルへの変換率が、90%以上である前記<1>記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。
 <3> 前記ρ-およびχ-結晶構造を有するアルミナの平均粒子径(D50)が、1μm以下である前記<1>または<2>記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
 <4> 前記ρ-およびχ-結晶構造を有するアルミナが、水と無機一塩基酸またはその塩との存在下で湿式粉砕することにより得られてなる前記<1>から<3>のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。
 <5> 調整液の無機一塩基酸/アルミナのモル比が0.5以上2.0以下の範囲であり、40℃以上130℃未満の温度で熟成および/または水熱反応を行わせ、ポリ無機一塩基酸アルミニウム水和物を得る前記<1>から<4>のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
 <6> 調整液の無機一塩基酸/アルミナのモル比が0.03以上0.5未満の範囲であり、40℃以上130℃未満の温度で熟成および/または水熱反応を行わせ、ポリ無機一塩基酸アルミニウム水和物と水性アルミナゾルの混合物を得る前記<1>から<4>のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
 <7> 調整液の無機一塩基酸/アルミナのモル比が0.03以上0.5以下の範囲であり、130℃以上250℃以下の温度で水熱反応を行わせ、水性アルミナゾルを得る前記<1>から<4>のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
 <8> 前記調整液が下記の式で表されるk値の組成範囲を有する前記<1>から<4>のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。
  0.000005≦k≦0.30   ただし、k=(b/a)×(b/c)
(式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
 <9> 調整液のk値が下記の式で表される組成範囲を有し、無機一塩基酸/アルミナのモル比が0.03以上0.5以下の範囲を有する調製液を130℃以上250℃以下の温度で水熱反応を行わせ、板状、テープ状又は繊維状の粒子形状を有する水性アルミナゾルを得ることを特徴とする前記<8>記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
  0.000005≦k≦0.03   ただし、k=(b/a)×(b/c)
(式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
 <10> 調整液のk値が下記の式で表される組成範囲であり、主に板状の粒子形状を有する水性アルミナゾルを得る前記<8>または<9>記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
  0.000005≦k<0.0005   ただし、k=(b/a)×(b/c)
(式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
 <11> 調整液のk値が下記の式で表される組成範囲であり、主にテープ状の粒子形状を有する水性アルミナゾルを得る前記<8>または<9>記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
  0.0005≦k<0.0015   ただし、k=(b/a)×(b/c)
(式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
 <12> 調整液のk値が下記の式で表される組成範囲であり、主に繊維状の粒子形状を有する水性アルミナゾルを得る前記<8>または<9>記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
  0.0015≦k≦0.03   ただし、k=(b/a)×(b/c)
(式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
 <13> 前記ポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの550℃、2時間焼成後の細孔容量が、0.40mL/g以下であり、かつ、平均細孔径が、100Å以下である前記<8>から<12>のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。
 <14> 前記無機一塩基酸が、硝酸である前記<1>から<13>のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。
 <15> 前記<1>から<14>のいずれかに記載の方法により製造されてなることを特徴とするポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾル。
 <16> 前記<8>から<15>のいずれかの製造方法により得られた水性アルミナゾルをバインダーとして用いてなるR-FCC触媒。
That is, the present invention relates to the following inventions.
<1> Alumina, water, and an inorganic monobasic acid or salt thereof having an ρ- and χ-crystal structure with an average particle diameter (D 50 ) of 5 μm or less, and an inorganic monobasic acid / alumina molar ratio from 0.01 2.0, a polyinorganic monobasic acid characterized by aging and / or hydrothermal reaction of an adjustment solution in which the alumina concentration is adjusted to a range of 2 wt% to 50 wt% in a range of 40 ° C. to 250 ° C. A method for producing aluminum hydrate and / or aqueous alumina sol.
<2> Polyinorganic monobasic as described in <1> above, wherein the conversion rate to polyaluminum monobasic aluminum hydrate and / or aqueous alumina sol after aging and / or hydrothermal reaction of the alumina is 90% or more A method for producing aluminum hydrate and / or aqueous alumina sol.
<3> The polyinorganic monobasic aluminum hydrate according to the above <1> or <2>, wherein the average particle size (D 50 ) of the alumina having the ρ- and χ- crystal structures is 1 μm or less. A method for producing an aqueous arunamisol.
<4> Any one of <1> to <3>, wherein the alumina having the ρ- and χ- crystal structures is obtained by wet pulverization in the presence of water and an inorganic monobasic acid or a salt thereof. A method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alumina sol as described in 1 above.
<5> The inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.5 to 2.0, and is subjected to aging and / or hydrothermal reaction at a temperature of 40 ° C. or more and less than 130 ° C. The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous arnamisol according to any one of <1> to <4>, wherein an inorganic monobasic aluminum hydrate is obtained.
<6> The inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.03 or more and less than 0.5, and is subjected to aging and / or hydrothermal reaction at a temperature of 40 ° C. or more and less than 130 ° C. The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alnamisol according to any one of <1> to <4>, wherein a mixture of the inorganic monobasic aluminum hydrate and the aqueous alumina sol is obtained.
<7> The inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.03 to 0.5, and the hydrothermal reaction is performed at a temperature of 130 ° C. to 250 ° C. to obtain an aqueous alumina sol <1> to the manufacturing method of the poly inorganic monobasic-acid aluminum hydrate and / or aqueous | water-based namimisol in any one of <4>.
<8> The poly inorganic monobasic aluminum hydrate and / or the aqueous alumina sol according to any one of <1> to <4>, wherein the adjustment liquid has a composition range of k value represented by the following formula: Production method.
0.000005 ≦ k ≦ 0.30 where k = (b / a) × (b / c)
(Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
<9> A prepared solution having a composition range in which the k value of the adjustment solution is represented by the following formula and the molar ratio of inorganic monobasic acid / alumina is 0.03 or more and 0.5 or less is 130 ° C. or more. The polyinorganic monobasic aluminum hydrate according to the above <8>, wherein a hydrothermal reaction is performed at a temperature of 250 ° C. or less to obtain an aqueous alumina sol having a plate-like, tape-like or fibrous particle shape. And / or a method for producing an aqueous arunamisol.
0.000005 ≦ k ≦ 0.03 where k = (b / a) × (b / c)
(Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
<10> The polyinorganic monobasic aluminum according to the above <8> or <9>, wherein the k value of the adjustment liquid is a composition range represented by the following formula, and an aqueous alumina sol mainly having a plate-like particle shape is obtained. A method for producing a hydrate and / or an aqueous alnamisol.
0.000005 ≦ k <0.0005 where k = (b / a) × (b / c)
(Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
<11> The polyinorganic monobasic aluminum according to the above <8> or <9>, wherein the k value of the adjustment liquid is a composition range represented by the following formula, and an aqueous alumina sol mainly having a tape-like particle shape is obtained. A method for producing a hydrate and / or an aqueous alnamisol.
0.0005 ≦ k <0.0015 where k = (b / a) × (b / c)
(Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
<12> The polyinorganic monobasic aluminum salt according to <8> or <9>, wherein the k value of the adjustment liquid is a composition range represented by the following formula, and an aqueous alumina sol mainly having a fibrous particle shape is obtained. A method for producing a hydrate and / or an aqueous alnamisol.
0.0015 ≦ k ≦ 0.03 where k = (b / a) × (b / c)
(Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
<13> The pore volume of the poly inorganic monobasic aluminum hydrate and / or aqueous alumina sol after firing at 550 ° C. for 2 hours is 0.40 mL / g or less, and the average pore diameter is 100 μm or less. The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alumina sol according to any one of <8> to <12>, wherein
<14> The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alumina sol according to any one of <1> to <13>, wherein the inorganic monobasic acid is nitric acid.
<15> A polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol produced by the method according to any one of <1> to <14>.
<16> An R-FCC catalyst using the aqueous alumina sol obtained by the production method according to any one of <8> to <15> as a binder.
 本発明の方法によれば、ポリ無機一塩基酸アルミニウム水和物、水性アルミナゾルまたはこれらの混合物を、低温の水熱反応条件で得ることが可能となり、さらに高い変換率で原料アルミナから目的の生成物を得ることができる。 According to the method of the present invention, it becomes possible to obtain a poly inorganic monobasic aluminum hydrate, an aqueous alumina sol or a mixture thereof under low-temperature hydrothermal reaction conditions. You can get things.
 本発明の方法で得られた、ポリ無機一塩基酸アルミニウム水和物、水性アルミナゾルまたはこれらの混合物はそれぞれ高いバインダー力を有しており、粉末の成型物のバインダーとして用いると、きわめて高い硬度を有する成型物を得ることができる。
 特に本発明の方法で製造される水性アルミナゾルは、バインダー力に優れ、石油精製工業におけるガソリン製造用の接触分解触媒(R-FCC触媒)を初めとする各種触媒用マトリックスや吸着剤などのバインダーとして、または耐熱接着剤などにも好適である。
The polyinorganic monobasic aluminum hydrate, aqueous alumina sol, or a mixture thereof obtained by the method of the present invention has a high binder strength, and when used as a binder in a powder molded product, has extremely high hardness. The molding which has can be obtained.
In particular, the aqueous alumina sol produced by the method of the present invention has excellent binder power, and is used as a binder for various catalytic matrices and adsorbents such as catalytic cracking catalysts (R-FCC catalysts) for gasoline production in the petroleum refining industry. Or a heat-resistant adhesive.
各粒子形状の水性アルミナゾルの生成領域を示す図である。It is a figure which shows the production | generation area | region of the aqueous | water-based alumina sol of each particle shape. 実施例8(板状粒子)の透過型電子顕微鏡写真である。It is a transmission electron micrograph of Example 8 (plate-like particle). 実施例8の細孔径分布図である。10 is a pore size distribution diagram of Example 8. FIG. 実施例14(テープ状粒子)の透過型電子顕微鏡写真である。It is a transmission electron micrograph of Example 14 (tape-like particles). 実施例21(テープ粒子)の透過型電子顕微鏡写真である。It is a transmission electron micrograph of Example 21 (tape particles). 実施例22(繊維状粒子)の透過型電子顕微鏡写真である。It is a transmission electron micrograph of Example 22 (fibrous particles).
 以下、本発明につき詳細に説明する。
 本発明は、平均粒子径(D50)が5μm以下のρ-およびχ-結晶構造を有するアルミナ、水、および無機一塩基酸またはその塩からなり、無機一塩基酸/アルミナモル比を0.03から2.0、アルミナ濃度を3重量%から50重量%の範囲に調節した調整液を、40℃から250℃の範囲で熟成および/または水熱反応を行うことを特徴とするポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法(以下、「本発明の製造方法」と呼ぶことがある。)に係るものである。
 なお、本発明でいう平均粒子径(D50)(以下、単に「平均粒子径」と記載する場合がある。)は、例えばレーザ回折/散乱式粒度分布測定装置を用いて測定することができる。また、本発明における水性アルミナゾルとは、ρ-およびχ-結晶構造を有するアルミナから、H+を触媒として生成した結晶性ベーマイトを含んでなるアルミナゾルを意味する。
 また、アルミナ濃度は、調整液全体の重量を100としたときのアルミナ(Al23換算)の割合(重量%)である。
 また、本発明において、熟成とは、調整液を60℃未満の温度で保持することを意味し、水熱反応(「水熱合成」ともいう。)とは、調整液を容器へ密閉したまま60℃以上で加熱することと定義する。
Hereinafter, the present invention will be described in detail.
The present invention comprises alumina having a ρ- and χ- crystal structure with an average particle size (D 50 ) of 5 μm or less, water, and an inorganic monobasic acid or a salt thereof, and has an inorganic monobasic acid / alumina molar ratio of 0.03. A polyinorganic monobase characterized by aging and / or hydrothermal reaction of an adjustment solution in which the alumina concentration is adjusted in the range of 3 wt% to 50 wt% in the range of 40 ° C. to 250 ° C. The present invention relates to a method for producing aluminum acid hydrate and / or aqueous alumina sol (hereinafter sometimes referred to as “production method of the present invention”).
The average particle diameter (D 50 ) referred to in the present invention (hereinafter sometimes simply referred to as “average particle diameter”) can be measured using, for example, a laser diffraction / scattering particle size distribution analyzer. . The aqueous alumina sol in the present invention means an alumina sol comprising crystalline boehmite produced from alumina having ρ- and χ- crystal structures using H + as a catalyst.
The alumina concentration is a ratio (% by weight) of alumina (in terms of Al 2 O 3 ) when the weight of the whole adjustment liquid is 100.
In the present invention, aging means holding the adjustment liquid at a temperature of less than 60 ° C., and hydrothermal reaction (also referred to as “hydrothermal synthesis”) means that the adjustment liquid remains sealed in a container. It is defined as heating at 60 ° C. or higher.
 本発明の特徴の一つは、原料であるρ-およびχ-結晶構造を有するアルミナ(以下、「原料アルミナ」と呼ぶことがある。)として、平均粒子径(D50)が5μm以下の原料アルミナを使用することにある。
 目的の生成物であるポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルは、原料アルミナから以下の機構で生成すると考えられる。
 即ち、ρ-およびχ-結晶構造を有するアルミナ原料の表面が水と、無機一塩基酸由来のH+イオンとの反応で溶解し、アルミナ原料粉末の表面から分子量の異なる各種のポリ一塩基酸アルミニウム水和物が溶媒側へ溶出する。
 アルミナ原料からのポリ一塩基酸アルミニウム水和物の溶出が進行すると、その飽和溶解度の値を超える過飽和領域になる。この領域ではポリ一塩基酸アルミニウム水和物の溶解分子間の衝突や刺激(電気的や機械的)によりベーマイトの核が発生する。また、同時にH+イオンが副生する。なお、ベーマイトの核はa軸(bc面)、b軸(壁開面のあるac面)、c軸(ab面)の3つの異なる結晶面を有しているが知られている。
One of the features of the present invention is that the raw material has an average particle diameter (D 50 ) of 5 μm or less as alumina having a ρ- and χ- crystal structure (hereinafter sometimes referred to as “raw material alumina”). The use of alumina.
The target product, polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol, is considered to be produced from raw alumina by the following mechanism.
That is, the surface of the alumina raw material having a ρ- and χ- crystal structure is dissolved by the reaction of water and H + ions derived from an inorganic monobasic acid, and various polymonobasic acids having different molecular weights from the surface of the alumina raw material powder. Aluminum hydrate is eluted to the solvent side.
As elution of the polymonobasic aluminum hydrate from the alumina raw material proceeds, the supersaturated region exceeds the saturation solubility value. In this region, boehmite nuclei are generated by collision or stimulation (electrical or mechanical) between dissolved molecules of polymonobasic aluminum hydrate. At the same time, H + ions are by-produced. It is known that boehmite nuclei have three different crystal planes: an a axis (bc plane), a b axis (ac plane with a wall opening), and a c axis (ab plane).
 副生したH+イオンは再び原料アルミナを溶解してポリ一塩基酸アルミニウム水和物を生成し、溶液中へ拡散する。なお、すでにベーマイトの核が形成された後には、ポリ一塩基酸アルミニウム水和物は飽和溶解度以下の濃度であってもベーマイトの核と接近し、核の特定位置へ配位し次いで静電接合する。そして、ベーマイトの核とポリ一塩基酸アルミニウム水和物が反応することによって再びH+イオンを副生する。
 上記の反応サイクルを繰り返すことによって、ベーマイトが成長して、結果的に水性アルミナゾルを形成する。
The by-produced H + ions dissolve the raw material alumina again to form polymonobasic aluminum hydrate, and diffuse into the solution. After boehmite nuclei have already formed, polymonobasic aluminum hydrate approaches the boehmite nuclei even at a concentration below the saturation solubility, coordinates to a specific position of the nucleus, and then electrostatic bonding To do. Then, the bo + ite nucleus reacts with the polymonobasic aluminum hydrate to regenerate H + ions as a by-product.
By repeating the above reaction cycle, boehmite grows, resulting in the formation of an aqueous alumina sol.
 そのため、原料アルミナの粒径が大きすぎると、生成物であるポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの他に、未溶解の原料アルミナが粉状物として多量に残存する。そこで、本発明では、原料アルミナを平均粒子径(D50)が5μm以下に限定することによって、未反応の原料アルミナを実質的になくし、また残存した場合においても、極めて微小径であるため、目的の生成物の品質を損なうことはない。
 特に、原料アルミナの平均粒子径(D50)を1μm以下とすることにより、反応速度を高め、最終品中の未反応の原料アルミナをなくすことができる。
Therefore, if the particle diameter of the raw material alumina is too large, a large amount of undissolved raw material alumina remains as a powder in addition to the product poly inorganic monobasic aluminum hydrate and / or aqueous alumina sol. Therefore, in the present invention, by limiting the raw material alumina to an average particle diameter (D 50 ) of 5 μm or less, the unreacted raw material alumina is substantially eliminated, and even when it remains, it has a very small diameter. The quality of the intended product is not impaired.
In particular, by setting the average particle diameter (D 50 ) of the raw material alumina to 1 μm or less, the reaction rate can be increased and unreacted raw material alumina in the final product can be eliminated.
 市販の原料アルミナは、通常、6μmを超えている。例えば、住友化学株式会社より市販されているBK-540,BK-112,BK-105(品番)は、その平均粒子径(D50)は48μm、15μm、6.1μmである。そのため、本発明の製造方法に使用する場合には、原料アルミナを粉砕することが好ましい。
 原料アルミナの粉砕は、原料アルミナの平均粒子径(D50)を5μm以下(好適には1μm以下)にできるならば、乾式粉砕、湿式粉砕のいずれでもよい。
 一方で、湿式粉砕であれば、Na成分の洗浄後の湿潤ケーキを乾燥させずに使用できる点で好ましい。特に湿式粉砕の中でも、水と無機一塩基酸またはその塩との存在下で原料アルミナを湿式粉砕すると、原料アルミナの内部に無機一塩基酸が浸透し、反応を促進するため好ましい。この場合、原料アルミナの反応が促進されるため、平均粒子径(D50)が1μm超5μm以下の場合でも、十分に原料アルミナが溶解する。
Commercial raw material alumina usually exceeds 6 μm. For example, BK-540, BK-112, and BK-105 (product numbers) commercially available from Sumitomo Chemical Co., Ltd. have an average particle diameter (D 50 ) of 48 μm, 15 μm, and 6.1 μm. Therefore, when using it for the manufacturing method of this invention, it is preferable to grind | pulverize raw material alumina.
The pulverization of the raw material alumina may be either dry pulverization or wet pulverization as long as the average particle diameter (D 50 ) of the raw material alumina can be 5 μm or less (preferably 1 μm or less).
On the other hand, wet pulverization is preferred in that the wet cake after washing the Na component can be used without drying. Particularly in wet pulverization, wet pulverization of raw material alumina in the presence of water and an inorganic monobasic acid or a salt thereof is preferable because the inorganic monobasic acid penetrates into the raw material alumina and promotes the reaction. In this case, since the reaction of the raw material alumina is promoted, the raw material alumina is sufficiently dissolved even when the average particle diameter (D 50 ) is more than 1 μm and not more than 5 μm.
 本発明の製造方法では、無機一塩基酸またはその塩の存在下で原料アルミナを湿式粉砕することが好ましく、この場合、まず原料アルミナ、水および無機一塩基酸の所定量を混合したスラリーを調製し、これを湿式粉砕機に供給する。このとき、無機一塩基酸は所定量を最初から加えてもよく、また当初は所定量より少なめに調製し、粉砕を始めたのちに残りの酸を加えてもよい。 In the production method of the present invention, it is preferable to wet pulverize raw material alumina in the presence of an inorganic monobasic acid or a salt thereof. In this case, first, a slurry in which a predetermined amount of raw material alumina, water and an inorganic monobasic acid are mixed is prepared. Then, this is supplied to a wet pulverizer. At this time, the inorganic monobasic acid may be added in a predetermined amount from the beginning, or initially prepared to be less than the predetermined amount, and after the pulverization is started, the remaining acid may be added.
 粉砕が開始されると、粉砕機中のスラリーの粘度が上昇することがあるが、スラリーのpH値を5.5以下に保持、若しくは水の希釈を行ない、粘度を100mPa・s未満に抑えて粉砕を継続することができる。このような湿式粉砕を行うには、強制攪拌付湿式微粉砕機が好ましく用いられる。 When pulverization is started, the viscosity of the slurry in the pulverizer may increase, but the pH value of the slurry is maintained at 5.5 or lower, or diluted with water, and the viscosity is suppressed to less than 100 mPa · s. Grinding can be continued. In order to perform such wet pulverization, a wet pulverizer with forced stirring is preferably used.
 湿式微粉砕に於ける粉砕効率はアルミナ濃度が高い程高効率になるが、湿式粉砕機内の粉砕液の粘度限界の問題があり、濃度条件は粘度の制約を受ける。原料に対して無機一塩基酸が少ない場合には湿式微粉砕中のスラリーの粘度は高くなり易く、無機一塩基酸が多い場合にはスラリーの粘度は低くなり易いので、高効率粉砕を重視する場合には無機一塩基酸の比率を高めることが好ましい。 Grinding efficiency in wet pulverization increases as the alumina concentration increases, but there is a problem of the viscosity limit of the pulverized liquid in the wet pulverizer, and the concentration condition is limited by viscosity. When the amount of inorganic monobasic acid is small relative to the raw material, the viscosity of the slurry during wet pulverization tends to be high, and when the amount of inorganic monobasic acid is large, the viscosity of the slurry tends to be low. In some cases, it is preferable to increase the ratio of the inorganic monobasic acid.
 また、湿式粉砕の途中でスラリーを2相分離型遠心分離機により2相に分離し、小粒子部分を分離したのち再度粉砕を行うこともできる。これによって、粉砕中の粘度上昇に伴うトラブルの解消と粉砕効率の向上が期待される。
 なお、本発明の製造方法において、未反応の原料アルミナが比較的大きな粒子(粗粒)として残存する場合がある。
 このような原料アルミナの粗粒未反応物の分離は高速回転の遠心分離機を用い8000-9000回転/分の高速で行なうことができ、分離速度を高めるためにアルミナ濃度で15%程度の濃度で行なうことが好ましい。
In addition, the slurry can be separated into two phases by a two-phase separation type centrifuge during the wet pulverization, and the pulverization can be performed again after separating the small particle portion. This is expected to eliminate troubles associated with the increase in viscosity during grinding and improve grinding efficiency.
In the production method of the present invention, unreacted raw material alumina may remain as relatively large particles (coarse particles).
Separation of coarse unreacted material of such raw material alumina can be performed at a high speed of 8000-9000 revolutions / minute using a high-speed rotating centrifuge, and the alumina concentration is about 15% in order to increase the separation speed. Is preferable.
 無機一塩基酸/アルミナのモル比が低位の水性アルミナゾルの問題点として、湿式粉砕工程に於ける無機一塩基酸/アルミナのモル比が0.09以下と低い場合には、湿式粉砕液の粘度が増加して粉砕液の硬化が起こし粉砕操作が困難になる。その場合、水で薄めて粘度を低下させることができるが、希釈による粉砕効率の低下、生成アルミナゾルの低濃度化を余儀なくされる問題点がある。
 その解消法として湿式粉砕工程に於ける無機一塩基酸/アルミナのモル比を0.10以上の安定な組成領域で行い、粉砕工程の終了後無機一塩基酸/アルミナのモル比再調整工程に於いて、過剰の無機一塩基酸を、1.アンモニア等のアルカリ成分添加による中和、又は、2.乾式粉砕で得られたρ-およびχ-結晶構造を有するアルミナ添加による中和、又は、3.硝酸用陰イオン交換樹脂による吸着脱離、等の方法で除去することができる。
As a problem of aqueous alumina sol having a low molar ratio of inorganic monobasic acid / alumina, when the molar ratio of inorganic monobasic acid / alumina in the wet grinding process is as low as 0.09 or less, the viscosity of the wet grinding liquid Increases, the pulverized liquid is hardened, and the pulverization operation becomes difficult. In that case, the viscosity can be lowered by diluting with water, but there are problems that the pulverization efficiency is reduced by dilution and the concentration of the produced alumina sol is reduced.
In order to solve this problem, the inorganic monobasic acid / alumina molar ratio in the wet pulverization process is performed in a stable composition region of 0.10 or more, and the inorganic monobasic acid / alumina molar ratio readjustment process is performed after the pulverization process is completed. Wherein an excess of inorganic monobasic acid is 1. Neutralization by adding alkaline components such as ammonia, or 2. Neutralization by addition of alumina having ρ- and χ- crystal structure obtained by dry grinding, or It can be removed by a method such as adsorption / desorption with an anion exchange resin for nitric acid.
 上述のように本発明の製造方法で用いられる原料アルミナは、ρ-およびχ-結晶構造を有するアルミナであるが、この原料アルミナは、通常、水酸化アルミニウムを熱気流中で急速加熱して脱水することによって得ることができる。
 なお、水酸化アルミニウムは、バイヤー法で通常製造されるが、バイヤー法で製造された水酸化アルミニウム(欧米名:Bauxite Ore Concentration)を約1000℃の急速加熱脱水で製造されたρ-およびχ-結晶構造を有するアルミナは、不純物としてNa2Oを約0.25重量%含有している例が多い。
 そのため、バイヤー法で製造された水酸化アルミニウムを使用する場合には、事前に洗浄によって、Na濃度を減少させることが好ましい。Naの洗浄には炭酸を含有する酸性水で濾過掛水洗浄することによって、Naとして0.06重量%程度に減少させることが可能である。
As described above, the raw material alumina used in the production method of the present invention is alumina having a ρ- and χ- crystal structure, and this raw material alumina is usually dehydrated by rapidly heating aluminum hydroxide in a hot air stream. Can be obtained.
Aluminum hydroxide is usually produced by the Bayer method, but ρ- and χ- produced by rapid heating and dehydration of aluminum hydroxide (Bauxite Ore Concentration) produced by the Bayer method at about 1000 ° C. Alumina having a crystal structure often contains about 0.25% by weight of Na 2 O as an impurity.
Therefore, when using aluminum hydroxide produced by the Bayer method, it is preferable to reduce the Na concentration by washing in advance. Na can be reduced to about 0.06% by weight as Na by filtering and washing with acidic water containing carbonic acid.
 無機一塩基酸としては、具体的には塩酸,硝酸等が挙げられ、硝酸が好ましく使用される。また、硝酸アルミニウムなどの無機一塩基酸の塩も用いることができる。 Specific examples of the inorganic monobasic acid include hydrochloric acid and nitric acid, and nitric acid is preferably used. In addition, a salt of an inorganic monobasic acid such as aluminum nitrate can also be used.
 本発明の製造方法において、上記原料アルミナからなる粉末と、水、および/または無機一塩基酸またはその塩とを混合(湿式粉砕を伴ってよい)することによって、無機一塩基酸/アルミナモル比が0.03から2.0(好適には0.05から1.5)、アルミナ濃度を3重量%から50重量%(好適には5重量%から40重量%)の範囲に調節した調整液を形成する。そして、この調整液を、40℃から250℃の範囲で熟成および/または水熱反応させることにより、目的とする生成物を得ることできる。 In the production method of the present invention, the inorganic monobasic acid / alumina molar ratio can be adjusted by mixing the powder comprising the raw material alumina with water and / or an inorganic monobasic acid or a salt thereof (which may be accompanied by wet pulverization). An adjustment liquid adjusted to 0.03 to 2.0 (preferably 0.05 to 1.5) and alumina concentration in the range of 3% to 50% by weight (preferably 5% to 40% by weight). Form. The target product can be obtained by aging and / or hydrothermally reacting this adjustment liquid in the range of 40 ° C to 250 ° C.
 ここで、一塩基酸/アルミナモル比が0.03未満の場合には、調整液の粘度が高すぎて操作が困難となり、2.0超であると反応に関与しない無機一塩基酸が増加することになる。
 また、アルミナ濃度が、3重量%未満であると、得られる生成物の濃度が小さすぎて、濃縮に余計なコストがかかり、50重量%を超えると濃度が高すぎて、原料アルミナの粉砕や生成物のハンドリングが困難になる。
Here, when the monobasic acid / alumina molar ratio is less than 0.03, the viscosity of the adjustment liquid is too high, making the operation difficult, and if it exceeds 2.0, the amount of inorganic monobasic acid not involved in the reaction increases. It will be.
Further, if the alumina concentration is less than 3% by weight, the concentration of the resulting product is too small, and extra cost is required for concentration. If it exceeds 50% by weight, the concentration is too high, Product handling becomes difficult.
 本発明の製造方法の特徴の一つとして、原料アルミナの粒径、その他の成分の組成や熟成、水熱反応の温度を特定の範囲に調整することにより、原料アルミナが高効率に生成物に変換できるということが挙げられる。
 変換率は、反応時間にも依存するが、工業的観点からは、生成物の変換率は、90%以上が好ましく、95%以上が特に好ましい。
As one of the characteristics of the production method of the present invention, by adjusting the particle diameter of the raw material alumina, the composition and aging of other components, and the temperature of the hydrothermal reaction to a specific range, the raw material alumina can be converted into a product with high efficiency. It can be converted.
Although the conversion rate depends on the reaction time, from the industrial viewpoint, the conversion rate of the product is preferably 90% or more, particularly preferably 95% or more.
 本発明の製造方法において、得られる生成物は、原料アルミナ、水、無機酸またはその塩の濃度や、熟成および/または水熱反応の温度に依存する。 In the production method of the present invention, the product obtained depends on the concentration of raw material alumina, water, inorganic acid or a salt thereof, and the temperature of aging and / or hydrothermal reaction.
 すなわち、調整液の無機一塩基酸/アルミナのモル比が0.5以上2.0以下の範囲とし、40℃以上130℃未満の温度で熟成および/または水熱反応を行わせ、ポリ無機一塩基酸アルミニウム水和物を得ることができる。
 また、調整液の無機一塩基酸/アルミナのモル比が0.03以上0.5未満の範囲とし、40℃以上130℃未満の温度で熟成および/または水熱反応を行わせ、ポリ無機一塩基酸アルミニウム水和物と水性アルミナゾルの混合物を得ることができる。
 さらに、調整液の無機一塩基酸/アルミナのモル比が0.03以上0.5以下の範囲とし、130℃以上250℃以下の温度で水熱反応を行わせ、水性アルミナゾルを得ることができる。
That is, the molar ratio of the inorganic monobasic acid / alumina in the adjustment liquid is in the range of 0.5 or more and 2.0 or less, and aging and / or hydrothermal reaction is performed at a temperature of 40 ° C. or more and less than 130 ° C. Aluminum basic acid hydrate can be obtained.
In addition, the molar ratio of the inorganic monobasic acid / alumina in the adjustment liquid is in the range of 0.03 or more and less than 0.5, and aging and / or hydrothermal reaction is performed at a temperature of 40 ° C. or more and less than 130 ° C. A mixture of aluminum basic acid hydrate and aqueous alumina sol can be obtained.
Furthermore, the molar ratio of the inorganic monobasic acid / alumina in the adjustment liquid is in the range of 0.03 or more and 0.5 or less, and a hydrothermal reaction is performed at a temperature of 130 ° C. or more and 250 ° C. or less to obtain an aqueous alumina sol. .
 本発明の製造方法において、高品質な生成物を得るという観点から、上記調整液中のアルミナ、水および無機一塩基酸のモル比が、下記式(1)で定義されるk値が、0.000005≦k≦0.30の範囲を有するような調整液を調製することが好ましい。
  k=(b/a)×(b/c)  (1)
(式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
In the production method of the present invention, from the viewpoint of obtaining a high-quality product, the molar ratio of alumina, water and inorganic monobasic acid in the adjustment liquid is such that the k value defined by the following formula (1) is 0.000005. It is preferable to prepare an adjustment liquid having a range of ≦ k ≦ 0.30.
k = (b / a) x (b / c) (1)
(Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
 特に水性アルミナゾルを製造する条件において、水性アルミナゾルの形状は、原料アルミナ、水、無機酸またはその塩の濃度から上記式(1)により決定されるk値に依存する。すなわち、調整液のk値が0.000005≦k≦0.03の組成範囲であり、熟成および/または水熱反応の温度が、130℃以上250℃以下であると、生成物として、水性アルミナゾルは、板状、テープ状又は繊維状の粒子形状を有する水性アルミナゾルが形成される。なお、水熱反応の温度が、160℃以上250℃以下であることが好ましく、この範囲であると効率的に水性アルミナゾルを製造することができる。 Especially in the conditions for producing an aqueous alumina sol, the shape of the aqueous alumina sol depends on the k value determined by the above formula (1) from the concentrations of the raw material alumina, water, inorganic acid or salt thereof. That is, if the k value of the adjustment liquid is in the composition range of 0.000005 ≦ k ≦ 0.03, and the temperature of aging and / or hydrothermal reaction is 130 ° C. or higher and 250 ° C. or lower, the aqueous alumina sol is a plate-like product. An aqueous alumina sol having a tape-like or fibrous particle shape is formed. In addition, it is preferable that the temperature of hydrothermal reaction is 160 degreeC or more and 250 degrees C or less, and aqueous alumina sol can be efficiently manufactured as it is this range.
 ここで、板状の粒子形状とは、ベーマイトにおけるa軸(bc面)とb軸(ac面)との均等な結合力で成長したもの、テープ状の粒子形状とは、ベーマイトにおけるa軸(bc面)とい結合し、b軸(ac面)と弱い結合力で配位して成長したもの、繊維状の粒子形状とは、ベーマイトにおけるa軸(bc面)へ強く配位して成長したものと推定される。具体的なそれぞれの形状は、後述する実施例における電子顕微鏡写真にて示す。 Here, the plate-like particle shape means that the a-axis (bc surface) and b-axis (ac surface) in boehmite are grown with an equal bonding force, and the tape-like particle shape means the a-axis (in the boehmite) bc-plane) and co-grown with b-axis (ac-plane) with weak bonding force, and the fibrous particle shape is strongly coordinated with a-axis (bc-plane) in boehmite Estimated. Each specific shape is shown in the electron micrograph in the Example mentioned later.
 上記の水性アルミナゾルを形成する条件において、主に板状の粒子形状を有する水性アルミナゾルという観点では、調整液のk値が0.000005≦k<0.0005の組成範囲であることが好ましく、主にテープ状の粒子形状を有する水性アルミナゾルを得るという観点では、調整液のk値が0.0005≦k<0.0015の組成範囲であることが好ましく、主に繊維状の粒子形状を有する水性アルミナゾルを得るという観点では、調整液のk値が0.0015≦k≦0.03の組成範囲であることが好ましい。図1に各粒子形状の水性アルミナゾルの生成領域を示す。 In the above-mentioned conditions for forming the aqueous alumina sol, from the viewpoint of an aqueous alumina sol having mainly a plate-like particle shape, the k value of the adjustment liquid is preferably within a composition range of 0.000005 ≦ k <0.0005, From the viewpoint of obtaining an aqueous alumina sol having a particle shape, the k value of the adjustment liquid is preferably in the composition range of 0.0005 ≦ k <0.0015, and in terms of obtaining an aqueous alumina sol having mainly a fibrous particle shape, adjustment is performed. The k value of the liquid is preferably in the composition range of 0.0015 ≦ k ≦ 0.03. FIG. 1 shows a region where aqueous alumina sol having various particle shapes is formed.
 本発明の生成物であるポリ無機一塩基酸アルミニウム水和物や水性アルミナゾルは、乾燥、焼成後、触媒、吸着剤等の成型物のバインダーとしても好適に用いられる。また、耐熱性接着剤などのバインダーとして好適に用いられる。 The polyinorganic monobasic aluminum hydrate and aqueous alumina sol, which are the products of the present invention, are also suitably used as binders for molded products such as catalysts and adsorbents after drying and firing. Moreover, it is used suitably as binders, such as a heat resistant adhesive agent.
 ここで、バインダー性能という観点では、熱処理後のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルを特定の温度で焼成後の細孔容量および平均細孔径を指標とすることができる。
 本発明のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの細孔容量は、550℃2時間焼成後の細孔容量が、0.40mL/g以下(特に0.35mL/g以下)であり、かつ、平均細孔径が100Å以下(特に75Å以下)であると、特に強いバインダー力が得られるため好適である。
Here, in terms of binder performance, the pore volume and average pore diameter after firing the polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol after heat treatment at a specific temperature can be used as indices.
The pore volume of the polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol of the present invention is 0.40 mL / g or less (especially 0.35 mL / g or less) after calcination at 550 ° C. for 2 hours. It is preferable that the average pore diameter is 100 Å or less (particularly 75 Å or less) because a particularly strong binder force can be obtained.
 なお、本発明の生成物のうち、特に水性アルミナゾルは、R-FCC触媒用バインダーとして好適に使用される。なお、R-FCC触媒のゼオライトはフィードオイル中に含有しているニッケルとバナジウムの被毒で活性を失うが、そのパッシベーターとしてアルミナ質が有効である。そのため、本発明の製造方法に係る生成物をR-FCC触媒用バインダーとして使用する場合、本発明に係る水性アルミナゾルのみならず、R-FCC触媒の触媒活性などの諸特性を損なわない範囲で、ポリ無機一塩基酸アルミニウム水和物や原料アルミナであるρ-およびχ-結晶構造を有するアルミナを含有していてもよい。 Of the products of the present invention, the aqueous alumina sol is particularly preferably used as a binder for R-FCC catalysts. The R-FCC catalyst zeolite loses its activity due to poisoning of nickel and vanadium contained in the feed oil, but alumina is effective as its passivator. Therefore, when the product according to the production method of the present invention is used as a binder for an R-FCC catalyst, not only the aqueous alumina sol according to the present invention but also various characteristics such as the catalytic activity of the R-FCC catalyst are not impaired. Poly inorganic aluminum monobasic acid hydrate or raw material alumina may be contained which has alumina having ρ- and χ- crystal structures.
 以下、実施例により本発明を更に詳細に説明するが、本発明の要旨を越えない限り以下の実施例に限定されるものではない。なお、実施例において、原料アルミナとなるρ-およびχ-結晶構造を有するアルミナは、住友化学株式会社製のBK-540,BK-112,BK-105(品番)を使用した。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. In the examples, BK-540, BK-112, and BK-105 (product numbers) manufactured by Sumitomo Chemical Co., Ltd. were used as the alumina having ρ- and χ- crystal structures as raw material alumina.
 なお、それぞれの測定法は次のとおりである。
(1)変換率
 アルミナ濃度1.0重量%に希釈した生成物試料100gを、100mlのビーカーに入れ、20時間静置する。静置後沈降物を採取して灼熱後の残留物の重量を秤り、測定試料の変換率を計算する。
(2)遠心沈降物
 アルミナ濃度1重量%に希釈した試料5mlを、遠心分離機の遠心沈降管に採取し、3000回転で5分間運転したのちの沈降物の量を測定する。
(3)比表面積
 測定試料を200℃乾燥後、窒素ガス吸着法で測定する。
(4)細孔容積および平均細孔径
 水銀圧入法で細孔径40~10000Åの細孔を測定する。
(5)平均粒子径(D50)(重量平均粒子径)
 レーザ回折/散乱式粒度分布測定器(日機装社製 MT3300)で測定する。
(6)圧縮強度
 木屋式圧縮強度測定機で、円柱状成型物200個の側面の強度を測定し、その平均値を求める。
(7)生成物の形状
 ポリ無機一塩基酸アルミニウム水和物、水性アルミナゾルの200℃乾燥物を透過型顕微鏡(日立製作所社製、型番:H-9000NAR)を使用して評価した。
In addition, each measuring method is as follows.
(1) Conversion rate 100 g of a product sample diluted to an alumina concentration of 1.0% by weight is placed in a 100 ml beaker and allowed to stand for 20 hours. After standing, the sediment is collected, the weight of the residue after heating is weighed, and the conversion rate of the measurement sample is calculated.
(2) Centrifugal sediment 5 ml of a sample diluted to an alumina concentration of 1% by weight is collected in a centrifugal sedimentation tube of a centrifuge and measured for the amount of sediment after operating at 3000 rpm for 5 minutes.
(3) Specific surface area A sample to be measured is dried at 200 ° C. and then measured by a nitrogen gas adsorption method.
(4) Pore volume and average pore diameter A pore having a pore diameter of 40 to 10,000 mm is measured by a mercury intrusion method.
(5) Average particle diameter (D 50 ) (weight average particle diameter)
Measured with a laser diffraction / scattering particle size distribution analyzer (MT3300 manufactured by Nikkiso Co., Ltd.).
(6) Compressive strength Measure the strength of the side surfaces of 200 cylindrical molded products with a Kiya-type compressive strength measuring device, and determine the average value.
(7) Shape of Product A polyinorganic monobasic aluminum hydrate and an aqueous alumina sol dried at 200 ° C. were evaluated using a transmission microscope (manufactured by Hitachi, Ltd., model number: H-9000NAR).
 実施例1
 平均粒子径(D50)が15μmのρ-およびχ-結晶構造を有するアルミナ1200gを硝酸水溶液に添加し、アルミナ濃度21重量%、硝酸/アルミナのモル比が0.15のスラリーを調製した。このスラリーを0.3mmのジルコニアビーズを用いた強制攪拌付湿式微粉砕機に供給して微粉砕を行った。粉砕の途中でスラリーのpH調整のため硝酸の追加添加を行い、pHを5未満に維持して粉砕を続けた。粉砕後のスラリーは、平均粒子径(D50)が0.11μm、アルミナ濃度20重量%、硝酸/アルミナのモル比が0.20、k値が0.0018であった。
Example 1
1200 g of alumina having a ρ- and χ- crystal structure with an average particle size (D 50 ) of 15 μm was added to an aqueous nitric acid solution to prepare a slurry having an alumina concentration of 21% by weight and a nitric acid / alumina molar ratio of 0.15. The slurry was supplied to a wet pulverizer with forced agitation using 0.3 mm zirconia beads and pulverized. During the pulverization, nitric acid was additionally added to adjust the pH of the slurry, and the pulverization was continued while maintaining the pH below 5. The crushed slurry had an average particle diameter (D 50 ) of 0.11 μm, an alumina concentration of 20% by weight, a nitric acid / alumina molar ratio of 0.20, and a k value of 0.0018.
 上記スラリー1000gに硝酸を添加し、アルミナ濃度19.3重量%、硝酸/アルミナのモル比が0.40、k値が0.0072の調整液を調製した。
 この調整液を98℃で14時間水熱反応を行った結果、原料アルミナの変換率は99.5%、遠心沈降物が2.6%であった。200℃乾燥物の比表面積および850℃、5時間熱処理物の細孔容積を表1に示す。この生成物の電子顕微鏡観察によると、アルミナ粒子が多数観察されることおよび200℃乾燥物の性状などから、ポリ無機一塩基酸アルミニウム水和物と水性アルミナゾルとの混合物と推定される。
Nitric acid was added to 1000 g of the slurry to prepare an adjustment solution having an alumina concentration of 19.3% by weight, a nitric acid / alumina molar ratio of 0.40, and a k value of 0.0072.
As a result of hydrothermal reaction of this adjustment liquid at 98 ° C. for 14 hours, the conversion rate of the raw material alumina was 99.5%, and the centrifugal sediment was 2.6%. Table 1 shows the specific surface area of the dried product at 200 ° C and the pore volume of the heat-treated product at 850 ° C for 5 hours. According to electron microscope observation of this product, it is presumed to be a mixture of poly inorganic monobasic aluminum hydrate and aqueous alumina sol from the fact that a large number of alumina particles are observed and the properties of the dried product at 200 ° C.
 また、USYゼオライト、カオリンおよび本実施例の生成物を、酸化物基準で30/40/30の重量比で混練し、ピストン式押出成形機で成形、乾燥後850℃、5時間焼成して得られた円柱状成型体の直径、細孔構造、側面圧縮強度を表1に併せて示した。 Further, USY zeolite, kaolin and the product of this example were kneaded at a weight ratio of 30/40/30 based on oxides, molded with a piston-type extruder, dried and then fired at 850 ° C. for 5 hours. Table 1 also shows the diameter, pore structure, and side compression strength of the obtained cylindrical molded body.
 実施例2
 実施例1で得られたスラリーの1000gに硝酸を添加し、アルミナ濃度17.4重量%、硝酸/アルミナのモル比が1.00、k値が0.043の調整液を調製した。
 この調整液を98℃で14時間水熱反応を行った結果、原料アルミナの変換率は99.5%、遠心沈降物が3.8%であった。200℃乾燥物の比表面積および850℃,5時間熱処理物の細孔容積を表1に示した。この生成物の電子顕微鏡観察によると、わずかのアルミナ粒子が観察されることおよび200℃乾燥物の性状などから、主要生成物はポリ無機一塩基酸アルミニウム水和物と推定される。
 また、実施例1と同様の成型物の細孔構造、圧縮強度を表1に示した。
Example 2
Nitric acid was added to 1000 g of the slurry obtained in Example 1, and an adjustment liquid having an alumina concentration of 17.4% by weight, a nitric acid / alumina molar ratio of 1.00, and a k value of 0.043 was prepared.
As a result of hydrothermal reaction of this adjusted liquid at 98 ° C. for 14 hours, the conversion rate of the raw material alumina was 99.5%, and the centrifugal sediment was 3.8%. Table 1 shows the specific surface area of the dried product at 200 ° C and the pore volume of the heat-treated product at 850 ° C for 5 hours. According to electron microscopic observation of this product, the main product is presumed to be polyinorganic monobasic aluminum hydrate from the fact that few alumina particles are observed and the properties of the 200 ° C. dried product.
Table 1 shows the pore structure and compressive strength of the molded product similar to Example 1.
 比較例1
 市販のアルミナゾルの中でバインダー機能に優れていると見なされる、擬ベーマイトからなるアルミナゾル(商品名:カタロイド-AP)の200℃乾燥物の比表面積および850℃、5時間熱処理物の細孔容積を測定し、結果を表1に示した。また、実施例1と同様の成型物を成型し、その細孔構造、圧縮強度を測定した結果を表1に示した。
Comparative Example 1
The specific surface area of a 200 ° C. dry product of alumina sol (trade name: Cataloid-AP) composed of pseudoboehmite, which is considered to have an excellent binder function among commercially available alumina sols, and the pore volume of the heat-treated product at 850 ° C. for 5 hours. The results are shown in Table 1. Table 1 shows the results of molding the same molded product as in Example 1 and measuring its pore structure and compressive strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例3
 平均粒子径(D50)が15μmのρ-およびχ-結晶構造を有するアルミナを空気の旋回力で乾式粉砕し、平均粒子径(D50)が0.7μmのアルミナ粉末を調製した。このアルミナ粉末500gを硝酸水溶液に添加し、アルミナ濃度20重量%、硝酸/アルミナのモル比が0.15、k値が0.0010の調整液を調製した。
 この調整液を140℃で14時間水熱反応を行った結果、原料アルミナの変換率は96.3%、遠心沈降物が3.8%であった。この生成物の電子顕微鏡観察によると、繊維状粒子と板状粒子が混在する水性アルミナゾルであり、200℃乾燥物の比表面積は、290m2/gであった。
Example 3
Alumina having an average particle size (D 50 ) of 15 μm and having a ρ− and χ− crystal structure was dry-pulverized by a swirling force of air to prepare an alumina powder having an average particle size (D 50 ) of 0.7 μm. 500 g of this alumina powder was added to an aqueous nitric acid solution to prepare an adjustment solution having an alumina concentration of 20% by weight, a nitric acid / alumina molar ratio of 0.15, and a k value of 0.0010.
As a result of hydrothermal reaction of this adjustment liquid at 140 ° C. for 14 hours, the conversion rate of raw material alumina was 96.3%, and the centrifugal sediment was 3.8%. According to electron microscope observation of this product, it was an aqueous alumina sol in which fibrous particles and plate-like particles were mixed, and the specific surface area of the 200 ° C. dried product was 290 m 2 / g.
 実施例4
 平均粒子径(D50)が15μmのρ-およびχ-結晶構造を有するアルミナ500gを硝酸水溶液に添加し、アルミナ濃度30重量%、硝酸/アルミナのモル比が0.15、k値が0.00177のスラリーを調製した。このスラリーを3.6Lの磁性ポットミルに供給し、10mmのジルコニアビーズを5kg挿入して68時間湿式粉砕した。粉砕後のアルミナの平均粒子径(D50)は1.6μmであった。
 これを調整液として140℃で14時間水熱反応を行った結果、原料アルミナの変換率は96.5%であり、生成物は電子顕微鏡観察によると、主として繊維状粒子からなる水性アルミナゾルであり、200℃乾燥物の比表面積は、310m2/gであった。
Example 4
500 g of alumina having a ρ- and χ- crystal structure with an average particle diameter (D 50 ) of 15 μm was added to an aqueous nitric acid solution, the alumina concentration was 30% by weight, the nitric acid / alumina molar ratio was 0.15, and the k value was 0.1. A slurry of 00177 was prepared. This slurry was supplied to a 3.6 L magnetic pot mill, and 5 kg of 10 mm zirconia beads were inserted and wet pulverized for 68 hours. The average particle diameter (D 50 ) of the alumina after pulverization was 1.6 μm.
As a result of carrying out a hydrothermal reaction at 140 ° C. for 14 hours using this as the adjustment liquid, the conversion rate of the raw material alumina was 96.5%, and the product was an aqueous alumina sol mainly composed of fibrous particles according to electron microscope observation. The specific surface area of the dried product at 200 ° C. was 310 m 2 / g.
 実施例5
 平均粒子径(D50)12.8μmの水酸化アルミニウム600gを硝酸水溶液に添加し、アルミナ濃度20重量%、硝酸/アルミナのモル比が1.00のスラリーを調製した。
 このスラリーを強制攪拌付湿式粉砕機に供給し、平均粒子径(D50)が1.4μmになるまで微粉砕した。これを調整液とし、常温熟成後98℃で14時間水熱反応を行った結果、原料アルミナの変換率は95.8%、遠心沈降物が39.8%の白濁した粘凋な水性アルミナゾルおよびゲル状物が得られた。200℃乾燥物の比表面積は、0m2/gであったことからポリ硝酸アルミニウム水和物も含まれていることが推測された。
Example 5
600 g of aluminum hydroxide having an average particle size (D 50 ) of 12.8 μm was added to an aqueous nitric acid solution to prepare a slurry having an alumina concentration of 20% by weight and a nitric acid / alumina molar ratio of 1.00.
This slurry was supplied to a wet pulverizer with forced stirring and finely pulverized until the average particle size (D 50 ) became 1.4 μm. This was used as an adjustment solution, and after hydrothermal reaction at 98 ° C. for 14 hours after aging at room temperature, the conversion rate of the raw material alumina was 95.8%, the centrifugal sediment was 39.8%, a cloudy, viscous aqueous alumina sol and A gel was obtained. Since the specific surface area of the 200 ° C. dried product was 0 m 2 / g, it was estimated that polyaluminum nitrate hydrate was also contained.
 この調整液を、熟成あるいは水熱反応温度を60℃、140℃、200℃と変えてそれぞれ14時間反応させた後の200℃乾燥物の比表面積は、それぞれ0m2/g、0m2/g、61m2/g、であった。このことから水熱反応が高温になるほどポリ硝酸アルミニウム水和物が減少して粒子成長が進むことがわかる。 The adjusted solution, 60 ° C. aging or temperature of the hydrothermal reaction, 140 ° C., a specific surface area of 200 ° C. dried product after the reaction, respectively 14 hours by changing a 200 ° C., respectively 0m 2 / g, 0m 2 / g 61 m 2 / g. From this, it can be seen that as the hydrothermal reaction becomes higher, the polyaluminum nitrate hydrate decreases and the particle growth proceeds.
 実施例6
 平均粒子径(D50)15μmのρ-およびχ-結晶構造を有するアルミナ500gを塩酸水溶液に添加し、アルミナ濃度20重量%、塩酸/アルミナのモル比が1.00、k値が0.052のスラリーを調製した。このスラリーを3.6Lの磁性ポットミルに供給し、10mmのジルコニアビーズを5kg挿入して1週間湿式粉砕した。粉砕後のアルミナの平均粒子径(D50)は0.7μmであった。
Example 6
500 g of alumina having a ρ- and χ- crystal structure with an average particle size (D 50 ) of 15 μm was added to an aqueous hydrochloric acid solution, the alumina concentration was 20% by weight, the molar ratio of hydrochloric acid / alumina was 1.00, and the k value was 0.052. A slurry was prepared. This slurry was supplied to a 3.6 L magnetic pot mill, and 5 kg of 10 mm zirconia beads were inserted and wet pulverized for 1 week. The average particle size (D 50 ) of the pulverized alumina was 0.7 μm.
 ポットミルからスラリーを取り出し、超遠心分離機で沈降物を分離して得られた液状物を分析した結果、[Al2(OH)nCl6-nm (1≦n≦5, m≦10)の組成を有するポリ塩化アルミニウム水和物と同定された。 As a result of taking out the slurry from the pot mill and analyzing the liquid obtained by separating the sediment with an ultracentrifuge, [Al 2 (OH) n Cl 6-n ] m (1 ≦ n ≦ 5, m ≦ 10 ) Was identified as polyaluminum chloride hydrate.
 この生成物の水中懸濁物質に対する凝集試験を、カオリンの懸濁水で行った結果、良好な凝集効果があることが確認された。 As a result of conducting a coagulation test on the suspended substance in water with kaolin suspension water, it was confirmed that there was a good coagulation effect.
 実施例7
 平均粒子径(D50)が15μmのρ-およびχ-結晶構造を有するアルミナ(以下、「原料アルミナ」という。)を硝酸水溶液に添加し、アルミナ濃度12.5重量%、硝酸/アルミナのモル比が0.06のスラリーを調製した。このスラリーを0.3mmのジルコニアビーズを用いた強制攪拌付湿式微粉砕機に供給して1時間30分間、湿式粉砕を行った。粉砕後のスラリーは平均粒子径(D50)が0.3μmであった。
 この粉砕液へ水を添加してアルミナ成分の濃度5%、硝酸/アルミナのモル比が0.06、k値を0.000034に調整した調整液を得た。調整液の一部をステンレス製1インチのガス管へ挿入し、エアバス中で140℃、14時間水熱反応を行った。その結果、水性アルミナゾルの生成物を得た。
 反応条件、原料アルミナの変換率及び水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状の結果を表2に示す。
Example 7
Alumina having a ρ- and χ- crystal structure with an average particle size (D 50 ) of 15 μm (hereinafter referred to as “raw alumina”) was added to an aqueous nitric acid solution, the alumina concentration was 12.5% by weight, and the nitric acid / alumina mole. A slurry with a ratio of 0.06 was prepared. This slurry was supplied to a wet pulverizer with forced stirring using 0.3 mm zirconia beads and wet pulverized for 1 hour 30 minutes. The slurry after pulverization had an average particle size (D 50 ) of 0.3 μm.
Water was added to the pulverized liquid to obtain an adjusted liquid in which the concentration of the alumina component was adjusted to 5%, the nitric acid / alumina molar ratio was adjusted to 0.06, and the k value was adjusted to 0.000034. A part of the adjustment liquid was inserted into a stainless steel 1-inch gas pipe, and hydrothermal reaction was performed in an air bath at 140 ° C. for 14 hours. As a result, an aqueous alumina sol product was obtained.
Table 2 shows the reaction conditions, the raw material alumina conversion rate, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例8
 実施例7と同様の原料を使用し、アルミナ濃度15重量%、硝酸/アルミナのモル比が0.088のスラリーを調製した。このスラリーは粉砕時間を3時間とした以外は、実施例7と同様に原料アルミナの微粉砕を行った。粉砕後のスラリーは平均粒子径(D50)が0.2μmであった。得られた粉砕液へ水を添加してアルミナ成分の濃度12.5%、k値を0.000020とし、その一部をステンレス製1インチのガス管へ挿入し、エアバス中で昇温時間も含めて140℃、14時間加熱して水熱反応を行い、微量の液状物質を含む水性アルミナゾルの生成物を得た。反応条件、原料アルミナの変換率及び水性アルミナゾルの200℃乾燥物の比表面積(SA) 及び生成物の形状の結果を表2に示す。また、透過型顕微鏡写真を図2に示す。
 さらに水性アルミナゾルについて550℃、2時間焼成処理物の水銀圧入法による細孔径分布図を図3に示す。また、細孔径分布図から求めた細孔容量及び平均細孔径を表3に示す。
Example 8
The same raw material as in Example 7 was used, and a slurry having an alumina concentration of 15% by weight and a nitric acid / alumina molar ratio of 0.088 was prepared. The raw material alumina was finely pulverized in the same manner as in Example 7 except that the pulverization time was 3 hours. The slurry after pulverization had an average particle size (D 50 ) of 0.2 μm. Water was added to the obtained pulverized liquid so that the concentration of the alumina component was 12.5% and the k value was 0.000020, a part of which was inserted into a stainless steel 1-inch gas pipe, In addition, a hydrothermal reaction was performed by heating at 140 ° C. for 14 hours to obtain an aqueous alumina sol product containing a trace amount of liquid substance. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape. A transmission micrograph is shown in FIG.
Further, FIG. 3 shows a pore size distribution diagram of the aqueous alumina sol by a mercury intrusion method for a product fired at 550 ° C. for 2 hours. In addition, Table 3 shows the pore volume and average pore diameter determined from the pore size distribution chart.
 実施例9
 実施例7と同様の原料アルミナを使用し、アルミナ濃度25重量%、硝酸/アルミナのモル比が0.10のスラリーを調製した。このスラリーに水を添加してアルミナ濃度15%まで希釈しながら原料アルミナの微粉砕を行った。4時間粉砕したのちのスラリーは平均粒子径(D50)が0.14μmであった。得られた粉砕液へ水を添加してアルミナ成分の濃度15%、k値を0.00045とし、その一部をステンレス製1インチのガス管へ挿入し、エアバス中で昇温時間も含めて140℃、14時間加熱して水熱反応を行い、微量の液状物質を含む水性アルミナゾルの生成物が得た。反応条件、原料アルミナの変換率及び水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状の結果を表2に示す。
Example 9
The same raw material alumina as in Example 7 was used to prepare a slurry having an alumina concentration of 25% by weight and a nitric acid / alumina molar ratio of 0.10. The raw material alumina was finely pulverized while adding water to the slurry to dilute the alumina concentration to 15%. The slurry after pulverization for 4 hours had an average particle diameter (D 50 ) of 0.14 μm. Water is added to the obtained pulverized liquid so that the concentration of the alumina component is 15% and the k value is 0.00045. A part of the pulverized liquid is inserted into a stainless steel 1-inch gas pipe, and the temperature rise time is included in the air bath. A hydrothermal reaction was carried out by heating at 140 ° C. for 14 hours to obtain an aqueous alumina sol product containing a small amount of liquid substance. Table 2 shows the reaction conditions, the raw material alumina conversion rate, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例10
 実施例7と同様の原料アルミナを使用し、アルミナ濃度20重量%、硝酸/アルミナのモル比が0.12のスラリーを調製した。このスラリーを粉砕時間を4時間とした以外は、実施例7と同様に原料アルミナの微粉砕を行った。粉砕後のスラリーは平均粒子径(D50)が0.14μmであった。得られた粉砕液へ水及び硝酸を添加してアルミナ成分の濃度12.5%、硝酸/アルミナのモル比が0.14、k値を0.00042とし、その一部をステンレス製1インチのガス管へ挿入し、エアバス中で昇温時間も含めて140℃、14時間加熱して水熱反応を行い、微量の液状物質を含む水性アルミナゾルの生成物を得た。反応条件、原料アルミナの変換率及び水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状の結果を表2に示す。
Example 10
The same raw material alumina as in Example 7 was used, and a slurry having an alumina concentration of 20% by weight and a nitric acid / alumina molar ratio of 0.12 was prepared. The raw material alumina was finely pulverized in the same manner as in Example 7, except that the slurry was pulverized for 4 hours. The slurry after pulverization had an average particle size (D 50 ) of 0.14 μm. Water and nitric acid were added to the pulverized liquid so that the concentration of the alumina component was 12.5%, the molar ratio of nitric acid / alumina was 0.14, and the k value was 0.00042. The product was inserted into a gas pipe and subjected to a hydrothermal reaction by heating in an air bath at 140 ° C. for 14 hours including the temperature raising time to obtain a product of an aqueous alumina sol containing a trace amount of liquid substance. Table 2 shows the reaction conditions, the raw material alumina conversion rate, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例11
 実施例7と同様の原料アルミナを使用し、アルミナ濃度25重量%、硝酸/アルミナのモル比が0.16のスラリーを調製した。このスラリーを、粉砕時間を6時間とした以外は、実施例7と同様に原料アルミナの微粉砕を行った。粉砕後のスラリーは平均粒子径(D50)が0.11μmであった。得られた粉砕液へ水を添加してアルミナ成分の濃度15.0%、硝酸/アルミナのモル比が0.16、k値を0.00081とし、その一部をステンレス製1インチのガス管へ挿入し、エアバス中で昇温時間も含めて140℃、16時間加熱して水熱反応を行い、微量の液状物質を含む水性アルミナゾルの生成物を得た。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に示す。また、透過型顕微鏡写真を図3に示す。
 さらに水性アルミナゾルについて550℃、2時間焼成処理物の水銀圧入法による細孔径分布図から求めた細孔容量及び平均細孔径を表3に示す。
Example 11
The same raw material alumina as in Example 7 was used, and a slurry having an alumina concentration of 25% by weight and a nitric acid / alumina molar ratio of 0.16 was prepared. The raw material alumina was finely pulverized in the same manner as in Example 7 except that the pulverization time was 6 hours. The slurry after pulverization had an average particle diameter (D 50 ) of 0.11 μm. Water was added to the pulverized liquid so that the concentration of the alumina component was 15.0%, the molar ratio of nitric acid / alumina was 0.16, and the k value was 0.00081. Then, the mixture was heated in an air bath at 140 ° C. for 16 hours including the temperature rising time to perform a hydrothermal reaction to obtain an aqueous alumina sol product containing a small amount of liquid substance. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the shape of the product. A transmission micrograph is shown in FIG.
Further, Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
 実施例12
 水熱反応の反応条件を、150℃、8時間とした以外は、実施例11と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。
Example 12
A product of an aqueous alumina sol containing a small amount of liquid substance was produced in the same manner as in Example 11 except that the reaction conditions of the hydrothermal reaction were 150 ° C. and 8 hours. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例13
 水熱反応の反応条件を、160℃、4時間とした以外は、実施例11と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。
Example 13
A product of an aqueous alumina sol containing a trace amount of liquid substance was produced in the same manner as in Example 11 except that the reaction conditions of the hydrothermal reaction were 160 ° C. and 4 hours. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例14
 水熱反応の反応条件を、170℃、1時間30分とした以外は、実施例11と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。また、透過型顕微鏡写真を図4に示す。
 さらに水性アルミナゾルについて550℃、2時間焼成処理物の水銀圧入法による細孔径分布図から求めた細孔容量及び平均細孔径を表3に示す。
Example 14
An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 11 except that the reaction conditions for the hydrothermal reaction were 170 ° C. and 1 hour 30 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape. A transmission micrograph is shown in FIG.
Further, Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
 実施例15
 ステンレス製1インチのガス管に代わり、ステンレス製3/4インチのガス管を使用し、エアバスに代わり、オイルバスを使用し、水熱反応の反応条件を、180℃、30分とした以外は、実施例11と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。
Example 15
Instead of using a stainless steel 1-inch gas pipe, a stainless steel 3 / 4-inch gas pipe is used, an oil bath is used instead of an air bath, and the reaction conditions of the hydrothermal reaction are 180 ° C. for 30 minutes. In the same manner as in Example 11, a product of an aqueous alumina sol containing a small amount of liquid substance was produced. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例16
 水熱反応の反応条件を、180℃、1時間30分とした以外は、実施例15と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。
Example 16
An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 180 ° C. and 1 hour 30 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例17
 水熱反応の反応条件を、180℃、2時間30分とした以外は、実施例15と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。
Example 17
An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 180 ° C. and 2 hours and 30 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例18
 水熱反応の反応条件を、200℃、6分とした以外は、実施例15と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。
Example 18
An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 200 ° C. and 6 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例19
 水熱反応の反応条件を、200℃、12分とした以外は、実施例15と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。
Example 19
An aqueous alumina sol product containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions of the hydrothermal reaction were 200 ° C. and 12 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape.
 実施例20
 水熱反応の反応条件を、220℃、2分とした以外は、実施例15と同様にして、微量の液状物質を含む水性アルミナゾルの生成物を製造した。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。さらに水性アルミナゾルについて550℃、2時間焼成処理物の水銀圧入法による細孔径分布図から求めた細孔容量及び平均細孔径を表3に示す。
Example 20
A product of an aqueous alumina sol containing a trace amount of liquid substance was produced in the same manner as in Example 15 except that the reaction conditions for the hydrothermal reaction were 220 ° C. and 2 minutes. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape. Further, Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
 実施例21
 実施例11の平均粒子径(D50)が0.11μmの原料アルミナ粉砕物を用い、硝酸と水を添加してアルミナ成分の濃度14.9%、硝酸/アルミナのモル比が0.20、k値を0.00127である調製液を添加した。1インチステンレス製ガス管に調整液を挿入し、エアバス中で170℃、2時間水熱反応を行った。結果を表2に示す。反応条件、原料アルミナの変換率、水性アルミナゾルの200℃乾燥物の比表面積(SA)及び生成物の形状を表2に併せて示す。また、透過型顕微鏡写真を図5に示す。
Example 21
The raw material alumina pulverized product having an average particle diameter (D 50 ) of Example 11 of 0.11 μm was used, and nitric acid and water were added to obtain an alumina component concentration of 14.9%, a nitric acid / alumina molar ratio of 0.20, A preparation having a k value of 0.00127 was added. The adjustment liquid was inserted into a 1 inch stainless steel gas pipe, and a hydrothermal reaction was performed in an air bath at 170 ° C. for 2 hours. The results are shown in Table 2. Table 2 shows the reaction conditions, the conversion rate of the raw material alumina, the specific surface area (SA) of the 200 ° C. dry product of the aqueous alumina sol, and the product shape. A transmission micrograph is shown in FIG.
 実施例22
 実施例11の平均粒子径(D50)が0.11μmの原料アルミナ粉砕物を用い、硝酸と水を添加してアルミナ成分の濃度14.8%、硝酸/アルミナのモル比が0.20、k値を0.00184である調製液を添加した。1インチステンレス製ガス管に調整液を挿入し、エアバス中で170℃、2時間水熱反応を行った。結果を表2に示す。また、透過型顕微鏡写真を図6に示す。
 さらに水性アルミナゾルについて550℃、2時間焼成処理物の水銀圧入法による細孔径分布図から求めた細孔容量及び平均細孔径を表3に示す。
Example 22
The raw material alumina pulverized product having an average particle diameter (D 50 ) of Example 11 of 0.11 μm was used, and nitric acid and water were added to give an alumina component concentration of 14.8%, nitric acid / alumina molar ratio of 0.20, A preparation having a k value of 0.00184 was added. The adjustment liquid was inserted into a 1 inch stainless steel gas pipe, and a hydrothermal reaction was performed in an air bath at 170 ° C. for 2 hours. The results are shown in Table 2. A transmission micrograph is shown in FIG.
Further, Table 3 shows the pore volume and average pore diameter of the aqueous alumina sol obtained from the pore diameter distribution chart of the calcinated product at 550 ° C. for 2 hours by the mercury intrusion method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例2
 平均粒子径(D50)が6.1μmのρ-およびχ-結晶構造を有する原料アルミナを用い、アルミナ濃度を45%、硝酸のモル比/アルミナのモル比を0.16、k値が0.0040としてステンレスパイプ中に充填し、160℃で8時間水熱反応を行なった結果、その生成物はその変換率が85.3%と低位で、200℃乾燥後の生成ベーマイトの比表面積は183m2/gの低い値を示した。
Comparative Example 2
Raw material alumina having a ρ- and χ- crystal structure with an average particle diameter (D 50 ) of 6.1 μm was used, the alumina concentration was 45%, the molar ratio of nitric acid / the molar ratio of alumina was 0.16, and the k value was 0.0040. As a result of performing a hydrothermal reaction at 160 ° C. for 8 hours, the product has a conversion rate as low as 85.3%, and the specific surface area of the resulting boehmite after drying at 200 ° C. is 183 m 2. A low value of / g was shown.
 比較例3
 平均粒子径(D50)が0.7μmのρ-およびχ-結晶構造を有する原料アルミナを用い、アルミナ濃度を15%、硝酸のモル比/アルミナのモル比を0.02、k値が0.000012としてステンレスパイプ中に充填し、150℃で8時間水熱合成を行なった結果、その生成物は固化したゲル状物の性質を示し、バインダー性を示さないベーマイトゲルが得られた。
Comparative Example 3
Raw material alumina having a ρ- and χ- crystal structure with an average particle diameter (D 50 ) of 0.7 μm was used, the alumina concentration was 15%, the molar ratio of nitric acid / the molar ratio of alumina was 0.02, and the k value was 0.000012. As a result of filling in a stainless steel pipe and hydrothermal synthesis at 150 ° C. for 8 hours, the product showed the properties of a solidified gel, and a boehmite gel showing no binder property was obtained.
 比較例4
比較例3のアルミナ原料を用い、アルミナ濃度を55%、硝酸のモル比/アルミナのモル比を0.10、k値が0.0023としてステンレスパイプ中に充填し、160℃で8時間水熱合成を行なった結果、生成物は固結した塊状物でハンドリングに著しく困難な物質となっていた。
Comparative Example 4
Using the alumina raw material of Comparative Example 3, the alumina concentration was 55%, the molar ratio of nitric acid / alumina molar ratio was 0.10, and the k value was 0.0023, which was filled into a stainless steel pipe, and hydrothermal synthesis was performed at 160 ° C. for 8 hours. As a result, the product was a hardened mass and became a material that was extremely difficult to handle.
 比較例5
 実施例11のアルミナ濃度15%、硝酸のモル比/アルミナのモル比0.16の湿式粉砕液を用い、これに蓚酸をアルミナに対して2重量%添加したあと、ステンレスパイプ中に充填し、150℃で8時間水熱合成を行なった結果、固化したゲル状物の性質を示す生成物(ベーマイトゲル)が得られた。表4に生成物の諸性質を示す。生成物は、比較的高い比表面積を示すもののバインダー性を示さなかった。
Comparative Example 5
Using the wet pulverized liquid of Example 11 having an alumina concentration of 15% and a molar ratio of nitric acid / alumina molar ratio of 0.16, oxalic acid was added in an amount of 2% by weight to the alumina, and then filled in a stainless steel pipe. As a result of hydrothermal synthesis at 150 ° C. for 8 hours, a product (boehmite gel) showing the properties of the solidified gel was obtained. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.
 比較例6
 蓚酸の代わりにグリコール酸をアルミナに対して2重量%添加した以外は、比較例5と同様にして、生成物(ベーマイトゲル)を得た。表4に生成物の諸性質を示す。生成物は、比較的高い比表面積を示すもののバインダー性を示さなかった。
Comparative Example 6
A product (boehmite gel) was obtained in the same manner as in Comparative Example 5 except that 2% by weight of glycolic acid was added to alumina instead of oxalic acid. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.
 比較例7
 蓚酸の代わりにクエン酸をアルミナに対して2重量%添加した以外は、比較例5と同様にして、生成物(ベーマイトゲル)を得た。表4に生成物の諸性質を示す。生成物は、比較的高い比表面積を示すもののバインダー性を示さなかった。
Comparative Example 7
A product (boehmite gel) was obtained in the same manner as in Comparative Example 5 except that citric acid was added in an amount of 2% by weight based on alumina instead of oxalic acid. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.
 比較例8
 蓚酸の代わりに燐酸(P25)をアルミナに対して2重量%添加した以外は、比較例5と同様にして、生成物(ベーマイトゲル)を得た。表4に生成物の諸性質を示す。生成物は、比較的高い比表面積を示すもののバインダー性を示さなかった。
Comparative Example 8
A product (boehmite gel) was obtained in the same manner as in Comparative Example 5 except that phosphoric acid (P 2 O 5 ) was added in an amount of 2% by weight based on alumina instead of oxalic acid. Table 4 shows the properties of the product. Although the product showed a relatively high specific surface area, it did not show binder properties.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (16)

  1.  平均粒子径(D50)が5μm以下のρ-およびχ-結晶構造を有するアルミナ、水、および無機一塩基酸またはその塩からなり、無機一塩基酸/アルミナモル比を0.03から2.0、アルミナ濃度を3重量%から50重量%の範囲に調節した調整液を、40℃から250℃の範囲で熟成および/または水熱反応を行うことを特徴とするポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。 It consists of alumina having a ρ- and χ- crystal structure with an average particle size (D 50 ) of 5 μm or less, water, and an inorganic monobasic acid or a salt thereof, and has an inorganic monobasic acid / alumina molar ratio of 0.03 to 2.0. Polyhydric monobasic aluminum hydration characterized by aging and / or hydrothermal reaction of an adjustment liquid whose alumina concentration is adjusted in the range of 3 wt% to 50 wt% in the range of 40 ° C. to 250 ° C. And / or production method of aqueous alumina sol.
  2.  前記アルミナの熟成および/または水熱反応後のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルへの変換率が、90%以上である請求項1記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。 2. The polyinorganic monobasic aluminum hydrate according to claim 1, wherein the conversion rate to polyaluminum monobasic aluminum hydrate and / or aqueous alumina sol after aging and / or hydrothermal reaction of the alumina is 90% or more. And / or production method of aqueous alumina sol.
  3.  前記ρ-およびχ-結晶構造を有するアルミナの平均粒子径(D50)が、1μm以下である請求項1または2記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。 The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous arnamisol according to claim 1 or 2, wherein the alumina having the ρ- and χ- crystal structure has an average particle diameter (D 50 ) of 1 µm or less.
  4.  前記ρ-およびχ-結晶構造を有するアルミナが、水と無機一塩基酸またはその塩との存在下で湿式粉砕することにより得られてなる請求項1から3のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。 4. The polyinorganic one according to claim 1, wherein the alumina having the ρ- and χ- crystal structures is obtained by wet grinding in the presence of water and an inorganic monobasic acid or a salt thereof. A method for producing an aluminum basic acid hydrate and / or an aqueous alumina sol.
  5.  調整液の無機一塩基酸/アルミナのモル比が0.5以上2.0以下の範囲であり、40℃以上130℃未満の温度で熟成および/または水熱反応を行わせ、ポリ無機一塩基酸アルミニウム水和物を得ることを特徴とする請求項1から4のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。 The inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.5 or more and 2.0 or less, and is subjected to aging and / or hydrothermal reaction at a temperature of 40 ° C. or more and less than 130 ° C. The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous arnamisol according to any one of claims 1 to 4, wherein aluminum hydrate is obtained.
  6.  調整液の無機一塩基酸/アルミナのモル比が0.03以上0.5未満の範囲であり、40℃以上130℃未満の温度で熟成および/または水熱反応を行わせ、ポリ無機一塩基酸アルミニウム水和物と水性アルミナゾルの混合物を得ることを特徴とする請求項1から4のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。 The inorganic monobasic acid / alumina molar ratio of the adjustment liquid is in the range of 0.03 or more and less than 0.5, and is subjected to aging and / or hydrothermal reaction at a temperature of 40 ° C. or more and less than 130 ° C. A method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous arnamisol according to any one of claims 1 to 4, wherein a mixture of aluminum hydrate and aqueous alumina sol is obtained.
  7.  調整液の無機一塩基酸/アルミナのモル比が0.03以上0.5以下の範囲であり、130℃以上250℃以下の温度で水熱反応を行わせ、水性アルミナゾルを得ることを特徴とする請求項1から4のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。 The molar ratio of the inorganic monobasic acid / alumina in the adjustment liquid is in the range of 0.03 to 0.5, and a hydrothermal reaction is performed at a temperature of 130 ° C. to 250 ° C. to obtain an aqueous alumina sol. A method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous arnamisol according to any one of claims 1 to 4.
  8.  前記調整液が下記の式で表されるk値の組成範囲を有する請求項1から4のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。
      0.000005≦k≦0.30   ただし、k=(b/a)×(b/c)
    (式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
    The method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alumina sol according to any one of claims 1 to 4, wherein the adjustment liquid has a composition range of k value represented by the following formula.
    0.000005 ≦ k ≦ 0.30 where k = (b / a) × (b / c)
    (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
  9.  調整液のk値が下記の式で表される組成範囲を有し、無機一塩基酸/アルミナのモル比が0.03以上0.5以下の範囲を有する調製液を130℃以上250℃以下の温度で水熱反応を行わせ、板状、テープ状又は繊維状の粒子形状を有する水性アルミナゾルを得ることを特徴とする請求項8記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
      0.000005≦k≦0.03   ただし、k=(b/a)×(b/c)
    (式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
    A prepared liquid having a composition range in which the k value of the adjustment liquid is represented by the following formula and the molar ratio of inorganic monobasic acid / alumina is 0.03 or more and 0.5 or less is 130 ° C. or more and 250 ° C. or less. 9. A polyinorganic monobasic aluminum hydrate and / or aqueous solution according to claim 8, wherein a hydrothermal reaction is carried out at a temperature of to obtain an aqueous alumina sol having a plate-like, tape-like or fibrous particle shape. Arnamisol production method.
    0.000005 ≦ k ≦ 0.03 where k = (b / a) × (b / c)
    (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
  10.  調整液のk値が下記の式で表される組成範囲であり、主に板状の粒子形状を有する水性アルミナゾルを得ることを特徴とする請求項8または9記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
      0.000005≦k<0.0005   ただし、k=(b/a)×(b/c)
    (式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
    10. The polyinorganic monobasic aluminum aqueous solution according to claim 8, wherein an aqueous alumina sol having a k value of the adjustment liquid represented by the following formula and having mainly a plate-like particle shape is obtained. A method for producing a hydrate and / or an aqueous anamisol
    0.000005 ≦ k <0.0005 where k = (b / a) × (b / c)
    (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
  11.  調整液のk値が下記の式で表される組成範囲であり、主にテープ状の粒子形状を有する水性アルミナゾルを得ることを特徴とする請求項8または9記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
      0.0005≦k<0.0015   ただし、k=(b/a)×(b/c)
    (式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
    10. The polyinorganic monobasic aluminum aqueous solution according to claim 8, wherein an aqueous alumina sol having a k value of the adjustment liquid represented by the following formula and mainly having a tape-like particle shape is obtained. A method for producing a hydrate and / or an aqueous arnamisol.
    0.0005 ≦ k <0.0015 where k = (b / a) × (b / c)
    (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
  12.  調整液のk値が下記の式で表される組成範囲であり、主に繊維状の粒子形状を有する水性アルミナゾルを得ることを特徴とする請求項8または9記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルナミゾルの製造方法。
      0.0015≦k≦0.03   ただし、k=(b/a)×(b/c)
    (式中、aは調整液中のアルミナをAl23に換算したモル数、bは無機一塩基酸またはその塩のモル数、cは水のモル数)
    10. The polyinorganic monobasic aluminum aqueous solution according to claim 8, wherein an aqueous alumina sol having a k value of the adjustment liquid represented by the following formula and mainly having a fibrous particle shape is obtained. A method for producing a hydrate and / or an aqueous arnamisol.
    0.0015 ≦ k ≦ 0.03 where k = (b / a) × (b / c)
    (Wherein, a is the number of moles of alumina in the adjustment solution converted to Al 2 O 3 , b is the number of moles of inorganic monobasic acid or salt thereof, and c is the number of moles of water)
  13.  前記ポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの550℃、2時間焼成後の細孔容量が、0.40mL/g以下であり、かつ、平均細孔径が、100Å以下である請求項1から12のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。 The poly inorganic monobasic aluminum hydrate and / or the aqueous alumina sol has a pore volume after firing at 550 ° C. for 2 hours of 0.40 mL / g or less and an average pore diameter of 100 μm or less. Item 13. A method for producing a polyinorganic monobasic aluminum hydrate and / or an aqueous alumina sol according to any one of Items 1 to 12.
  14.  前記無機一塩基酸が、硝酸である請求項1から13のいずれかに記載のポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法。 The method for producing a poly inorganic monobasic aluminum hydrate and / or an aqueous alumina sol according to any one of claims 1 to 13, wherein the inorganic monobasic acid is nitric acid.
  15.  請求項1から14のいずれかに記載の方法により製造されてなることを特徴とするポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾル。 A polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol produced by the method according to any one of claims 1 to 14.
  16.  請求項8から15のいずれかの製造方法により得られた水性アルミナゾルをバインダーとして用いてなるR-FCC触媒。 An R-FCC catalyst using the aqueous alumina sol obtained by the production method according to any one of claims 8 to 15 as a binder.
PCT/JP2009/003498 2008-07-28 2009-07-24 Process for production of poly(aluminum-inorganic monobasic acid salt hydrate) and/or aqueous alumina sol, and poly(aluminum inorganic monobasic acid salt hydrate) and/or aqueous alumina sol obtained by the process WO2010013428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010522610A JPWO2010013428A1 (en) 2008-07-28 2009-07-24 Method for producing polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol, and polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol obtained by the production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-193360 2008-07-28
JP2008193360 2008-07-28

Publications (1)

Publication Number Publication Date
WO2010013428A1 true WO2010013428A1 (en) 2010-02-04

Family

ID=41610143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003498 WO2010013428A1 (en) 2008-07-28 2009-07-24 Process for production of poly(aluminum-inorganic monobasic acid salt hydrate) and/or aqueous alumina sol, and poly(aluminum inorganic monobasic acid salt hydrate) and/or aqueous alumina sol obtained by the process

Country Status (2)

Country Link
JP (1) JPWO2010013428A1 (en)
WO (1) WO2010013428A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659149A (en) * 2012-02-28 2012-09-12 山东大学 Preparation method for monodisperse high-purity alpha-Al2O3 powder
CN111233490A (en) * 2020-02-21 2020-06-05 鞍山腾泰耐火材料有限公司 Aluminum-based binder for sintering high-alumina bricks and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256100A (en) * 1994-03-24 1995-10-09 Agency Of Ind Science & Technol Production of heat-resistant alumina carrier for catalytic combustion
JPH10231120A (en) * 1996-12-20 1998-09-02 Asahi Glass Co Ltd Alumina sol, alumina hydrate powder, and recording medium
WO2001056951A1 (en) * 2000-01-06 2001-08-09 Goro Sato Alumina composition, method for preparation thereof and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256100A (en) * 1994-03-24 1995-10-09 Agency Of Ind Science & Technol Production of heat-resistant alumina carrier for catalytic combustion
JPH10231120A (en) * 1996-12-20 1998-09-02 Asahi Glass Co Ltd Alumina sol, alumina hydrate powder, and recording medium
WO2001056951A1 (en) * 2000-01-06 2001-08-09 Goro Sato Alumina composition, method for preparation thereof and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659149A (en) * 2012-02-28 2012-09-12 山东大学 Preparation method for monodisperse high-purity alpha-Al2O3 powder
CN111233490A (en) * 2020-02-21 2020-06-05 鞍山腾泰耐火材料有限公司 Aluminum-based binder for sintering high-alumina bricks and preparation method thereof

Also Published As

Publication number Publication date
JPWO2010013428A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5039288B2 (en) Mesostructured aluminosilicate material
TWI583444B (en) Zeolite adsorbent based on mesoporous zeolite
RU2463108C2 (en) Amorphous aluminium silicate composition, its production and application
JP4925086B2 (en) Thin or fibrous organic / inorganic porous silica particles and method for producing the same
KR101800562B1 (en) Zeolite material made from mesoporous zeolite
JP4831663B2 (en) Thin plate-like porous silica metal composite particles and production method thereof
JP2009525248A (en) Oxide mixture
KR20170115088A (en) Method for producing beta type zeolite
JP4630537B2 (en) Use of catalysts based on crystalline aluminosilicates
KR20190018493A (en) FCC catalyst with alumina derived from crystalline boehmite
EP3883684A2 (en) Silica alumina composition with improved stability and method for making same
JP2004517020A (en) Zirconia in the form of fine powder, zirconia hydroxycarbonate and methods for producing them
WO2010013428A1 (en) Process for production of poly(aluminum-inorganic monobasic acid salt hydrate) and/or aqueous alumina sol, and poly(aluminum inorganic monobasic acid salt hydrate) and/or aqueous alumina sol obtained by the process
JP2021151942A (en) Porous silica alumina particles and method for producing the same
JP6080980B2 (en) Preparation of silica-alumina composition
JP6814433B2 (en) Method for producing beta-type zeolite
JP2008247714A (en) Method for producing metal oxide powder
JP2019099451A (en) Manufacturing method of zeolite
JP6905459B2 (en) Method for producing beta-type zeolite
US11577964B2 (en) Method for producing an alumina gel having a high dispersibility and a specific crystallite size
JP5483814B2 (en) Colloidal faujasite type zeolite and its synthesis method
JP2017178745A (en) Zsm-5 type zeolite having almond shape and manufacturing method therefor
WO2023176493A1 (en) Porous silica-alumina particles and manufacturing method therefor
JP2022145476A (en) Method for producing porous silica-alumina particles
JPS60166219A (en) Novel alumina powder and preparation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802677

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010522610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802677

Country of ref document: EP

Kind code of ref document: A1