WO2010012688A1 - Augmentation de la résistance à l’hydrolyse de polyesters biodégradables - Google Patents

Augmentation de la résistance à l’hydrolyse de polyesters biodégradables Download PDF

Info

Publication number
WO2010012688A1
WO2010012688A1 PCT/EP2009/059672 EP2009059672W WO2010012688A1 WO 2010012688 A1 WO2010012688 A1 WO 2010012688A1 EP 2009059672 W EP2009059672 W EP 2009059672W WO 2010012688 A1 WO2010012688 A1 WO 2010012688A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
increasing
acid ester
polylactic acid
containing copolymer
Prior art date
Application number
PCT/EP2009/059672
Other languages
German (de)
English (en)
Inventor
Dietrich Scherzer
Björn DIETRICH
Volker Frenz
Roelof Van Der Meer
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2010012688A1 publication Critical patent/WO2010012688A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups

Definitions

  • the present invention relates to a method for increasing the hydrolysis resistance of biodegradable polyesters selected from the group consisting of polylactic acid and polyhydroxyalkanoate, characterized in that
  • the biodegradable polyester are mixed 0.1 to 5 wt .-% of an epoxy group-containing copolymer based on styrene, acrylate and / or methacrylate in the extruder at 160 to 220 0 C.
  • Biodegradable polyester mixtures selected from the group consisting of polylactic acid and polyhydroxyalkanoate have the great disadvantage that they degrade under processing conditions - for example in the extruder. The degradation is so rapid at temperatures above 150 0 C that the biopolymers are not suitable for many applications.
  • the higher hydrolysis resistance is accompanied by an increased viscosity and improved shear stability of the biopolymer melts.
  • the epoxide group-containing copolymers react under branching and chain extension with the resulting from the thermal or hydrolytic degradation fragments of the processed polyester. On the one hand, this leads to an increased molecular weight, but on the other hand also to a reduction in functional end groups, such as, for example, carboxyl end groups.
  • polylactic acid As a biodegradable polyester, for example, polylactic acid is suitable.
  • Polylactic acid having the following property profile is preferably used: a melt volume rate (MVR at 190 ° C and 2.16 kg according to ISO 1133 of 0.5 - preferably 2 - to 9 ml / 10 minutes a melting point below 175 ° C; a glass transition point (Tg) greater than 55 ° C a water content of less than 1000 ppm of a residual monomer content (L-lactide) of less than 0.3%. a molecular weight greater than 80,000 daltons.
  • MVR melt volume rate
  • Tg glass transition point
  • Preferred polylactic acids are, for example, NatureWorks® 4020 or 4042D (polylactic acid from NatureWorks).
  • Polyhydroxyalkanoates are understood as meaning primarily poly-4-hydroxybutyrates and poly-3-hydroxybutyrates, and furthermore copolyesters of the abovementioned hydroxybutyrates with 3-hydroxyvalerates.
  • Poly-4-hydroxybutyrates are known in particular from the company Metabolix. They are sold under the trade name Mirel®.
  • Poly-3-hydroxybutyrates are sold, for example, by PHB Industrial under the brand name Biocycle® and by Tianan under the name Enmat®.
  • the polyhydroxyalkanoates generally have a molecular weight M w of from 100,000 to 1,000,000, and preferably from 300,000 to 600,000.
  • epoxy group-containing copolymer based on styrene acrylic acid ester and / or methacrylic acid esters are particularly suitable.
  • the epoxy groups bearing units are preferably glycidyl (meth) acrylates.
  • Copolymers having a glycidyl methacrylate content of greater than 20, particularly preferably greater than 30 and especially preferably greater than 50% by weight, of the copolymer have proven to be advantageous.
  • the epoxy equivalent weight (EEW) in these polymers is preferably 150 to 3000, and more preferably 200 to 500 g / equivalent.
  • the weight average molecular weight Mw of the polymers is preferably from 2,000 to 25,000, in particular from 3,000 to 8,000.
  • the number-average molecular weight M n of the polymers is preferably from 400 to 6,000, in particular from 1,000 to 4,000.
  • the polydispersity (Q) is copolymers of the above type are for example marketed by BASF Resins BV under the trademark Joncryl ® ADR generally between 1.5 and 5 containing epoxy groups.
  • Epoxide group-containing copolymers of the abovementioned type are dissolved in 0.1 to 5
  • Wt .-% preferably in 0.1 to 2 wt .-%, and particularly preferably in 0.2 to 1 wt .-%, based on the biopolymer used.
  • the polymer melts may contain the usual additives.
  • the effect found here of stabilizing the melts of biopolymers by adding epoxies xid tendency-containing copolymers is not affected.
  • Usual additives are, for example
  • Nucleating agents such as talc, chalk, carbon black, graphite, calcium or zinc stearate, poly-
  • compatibilizers such as silanes, maleic anhydride, fumaric anhydride, isocyanates, diacid chlorides, antifog agents,
  • Fillers such as glass fibers, starch, starch derivatives, cereals, cellulose derivatives, talc,
  • the melting temperatures of the biopolymers were determined by DSC measurements with a device Exstet DSC 6200R from Seiko:
  • the viscosity numbers were measured with a Miko Ubbelohde device type: M-II at 25 ° C, in phenol / o-dichlorobenzene 1: 1 according to DIN EN ISO 1628-1.
  • melt viscosity of the samples over time was measured using a shear-tension controlled plate-plate rotation rheometer SR2 from Rheometric Scientific in
  • the plate diameter was 25 mm, the plate spacing 1 mm.
  • the set shear stress was 100 Pa, the measurement time was 30 min, it was preheated for 5 min.
  • the measuring temperature is indicated in each case.
  • Polylactic acid (PLA). Nature Works 4042D ® of the company Nature Works was 24 hours in vacuum at 5 mbar, the residual water content of 0.09 wt .-% epoxy groups-containing copolymer: Joncryl ® ADR 4368 from BASF Resins BV. Table: Melt viscosity of PLA with / without addition of Joncryl
  • the copolymer of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) used consisted of 97% HB (3-hydroxybutyrate) and 3% HV (3-hydroxyvalerate) and was manufactured by Tianan.
  • the melting point was 161 0 C
  • the melt volume index was 11 ml / 10 min (2.16 kg at 170 0 C, according to ISO 1133).
  • the present experiments clearly show that the melt viscosity of the pure PLA and PHB / V-C decreases rapidly melt already at 180 0, while the melt viscosity of 1 wt% with Joncryl ADR 4368 remains staggered melting constant and even increases slightly.
  • these epoxies also show in relation to the hydrolysis resistance. While the viscosity (or molecular weight) of at 70 0 C in 95% humidity stored samples rapidly decreases, the viscosity numbers of the samples with 1% Joncryl ADR offset 4368 are significantly higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un procédé d'augmentation de la résistance à l'hydrolyse de polyesters biodégradables choisis dans le groupe constitué de l'acide polylactique et du polyhydroxyalcanoate, caractérisé en ce que 0,1 à 5 % en poids d'un copolymère contenant des groupes époxyde à base de styrène, d'un ester de l'acide acrylique et/ou d'un ester de l'acide méthacrylique sont mélangés avec le polyester biodégradable dans une extrudeuse à 160 à 220 °C.
PCT/EP2009/059672 2008-08-01 2009-07-27 Augmentation de la résistance à l’hydrolyse de polyesters biodégradables WO2010012688A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08161645 2008-08-01
EP08161645.0 2008-08-01

Publications (1)

Publication Number Publication Date
WO2010012688A1 true WO2010012688A1 (fr) 2010-02-04

Family

ID=41078127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059672 WO2010012688A1 (fr) 2008-08-01 2009-07-27 Augmentation de la résistance à l’hydrolyse de polyesters biodégradables

Country Status (1)

Country Link
WO (1) WO2010012688A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980160A (zh) * 2021-03-18 2021-06-18 合聚高分子材料科技(广东)有限公司 一种缓降解pbat材料及其制备方法和应用
CN115895204A (zh) * 2022-11-16 2023-04-04 中国石油化工股份有限公司 一种聚乙醇酸增强增透光聚酯材料、可降解地膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050154114A1 (en) * 2003-12-22 2005-07-14 Hale Wesley R. Compatibilized blends of biodegradable polymers with improved rheology
WO2006002372A2 (fr) * 2004-06-23 2006-01-05 Natureworks Llc Polymeres ramifies d'acide polylactique et leur procede de preparation
WO2006074815A1 (fr) * 2005-01-12 2006-07-20 Basf Aktiengesellschaft Melanges de polyesters biodegradables
WO2009089398A1 (fr) * 2008-01-09 2009-07-16 E. I. Du Pont De Nemours And Company Composition de polyester résistant à l'hydrolyse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050154114A1 (en) * 2003-12-22 2005-07-14 Hale Wesley R. Compatibilized blends of biodegradable polymers with improved rheology
WO2006002372A2 (fr) * 2004-06-23 2006-01-05 Natureworks Llc Polymeres ramifies d'acide polylactique et leur procede de preparation
WO2006074815A1 (fr) * 2005-01-12 2006-07-20 Basf Aktiengesellschaft Melanges de polyesters biodegradables
WO2009089398A1 (fr) * 2008-01-09 2009-07-16 E. I. Du Pont De Nemours And Company Composition de polyester résistant à l'hydrolyse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980160A (zh) * 2021-03-18 2021-06-18 合聚高分子材料科技(广东)有限公司 一种缓降解pbat材料及其制备方法和应用
CN115895204A (zh) * 2022-11-16 2023-04-04 中国石油化工股份有限公司 一种聚乙醇酸增强增透光聚酯材料、可降解地膜及其制备方法

Similar Documents

Publication Publication Date Title
Ferri et al. The effect of maleinized linseed oil as biobased plasticizer in poly (lactic acid)‐based formulations
EP2350162B1 (fr) Polyesters aliphatiques
Garcia-Garcia et al. Improvement of the compatibility between poly (3-hydroxybutyrate) and poly (ε-caprolactone) by reactive extrusion with dicumyl peroxide
EP2310453B1 (fr) Augmentation de la résistance à l hydrolyse de polyesters biodégradables
Liu et al. Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly (lactic acid) via dynamic vulcanization
Zhang et al. Toughening of polylactide with natural rubber grafted with poly (butyl acrylate)
Mahendra Rosin product review
EP1838784A1 (fr) Melanges de polyesters biodegradables
EP2710076B1 (fr) Composition polymère biodégradable dotée d'une aptitude à la déformabilité élevée
EP0021042B1 (fr) Copolyétheresters élastomères segmentés thermoplastiques et leur utilisation comme colles
KR20180072481A (ko) 바이오폴리머 조성물
Song et al. Study on Tough Blends of Polylactide and Acrylic Impact Modifier.
Feng et al. Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly (ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate
EP2350149A1 (fr) Copolymères comprenant des acrylates à longue chaîne
EP2758474A1 (fr) Matière à mouler thermoplastique présentant une résistance au choc sur éprouvette entaillée améliorée
WO2010012688A1 (fr) Augmentation de la résistance à l’hydrolyse de polyesters biodégradables
CN111087789B (zh) 一种高抗冲聚碳酸酯/聚乳酸树脂组合物及其制备方法
DE69708755T2 (de) Temperatur stabile thermoplastische elastomerzusammensetzung mit niedriger loesungsmittelquellung
EP3560980B1 (fr) Polyester à chaîne allongée, dérivés prépolymérisés dudit polyester et leur utilisation ainsi que masses de résine époxyde
EP2596044B1 (fr) Procédé pour élever le poids moléculaire de polyesters
KR101768319B1 (ko) 생분해성 수지 조성물 및 그 제조방법
Ning et al. Enhanced crystallization rate and mechanical properties of poly (l‐lactic acid) by stereocomplexation with four‐armed poly (ϵ‐caprolactone)‐block‐poly (d‐lactic acid) diblock copolymer
CN113831711B (zh) 一种高韧聚乳酸组合物及其制备方法
Ma et al. Partially bio-based thermoplastic elastomers by physical blending of poly (hydroxyalkanoate) s and poly (ethylene-co-vinyl acetate).
Yan et al. Crystallization behavior, rheology, mechanical properties, and enzymatic degradation of poly (L-lactide)/poly (D-lactide)/glycidyl methacrylate grafted poly (ethylene octane) blends

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09781133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09781133

Country of ref document: EP

Kind code of ref document: A1