WO2010010796A1 - Head mechanism, optical assist type magnetic recording device, and optical recording device - Google Patents

Head mechanism, optical assist type magnetic recording device, and optical recording device Download PDF

Info

Publication number
WO2010010796A1
WO2010010796A1 PCT/JP2009/061943 JP2009061943W WO2010010796A1 WO 2010010796 A1 WO2010010796 A1 WO 2010010796A1 JP 2009061943 W JP2009061943 W JP 2009061943W WO 2010010796 A1 WO2010010796 A1 WO 2010010796A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide
head mechanism
optical
incident
Prior art date
Application number
PCT/JP2009/061943
Other languages
French (fr)
Japanese (ja)
Inventor
耕 大澤
裕昭 上田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010521662A priority Critical patent/JPWO2010010796A1/en
Publication of WO2010010796A1 publication Critical patent/WO2010010796A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4833Structure of the arm assembly, e.g. load beams, flexures, parts of the arm adapted for controlling vertical force on the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4866Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising an optical waveguide, e.g. for thermally-assisted recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention relates to a head mechanism, an optically assisted magnetic recording apparatus, and an optical recording apparatus.
  • the present invention relates to a head mechanism that uses light for information recording, an optically assisted magnetic recording apparatus including the head mechanism, and an optical recording apparatus. Is.
  • Non-Patent Document 1 Various other proposals have been made for optical heads and recording / reproducing apparatuses that generate near-field light.
  • the length, width, and thickness of the femto slider are 0.85 mm and 0, respectively. .70mm, 0.23mm and so on.
  • a general magnetic recording apparatus disks are stacked in a narrow space, and a gap between the stacked disks is 1 mm or less. Therefore, the thickness of the recording head is limited, and it is impossible to irradiate light by arranging an optical system on the back surface of the head as in magneto-optical recording (MO). Therefore, in an optically assisted magnetic recording apparatus, it is desirable that the optical system that guides light from the light source to the recording head is thin and the light source, the optical system, and the recording head are arranged on the same plane.
  • the light is inclined at a certain angle with respect to the incident surface of the grating coupler as described later. It is necessary to enter.
  • prisms, diffraction gratings, and mirrors are conceivable as optical elements that tilt the light traveling direction, but it is difficult to reduce the thickness of the entire recording apparatus in order to secure the installation location of the optical elements and the tilted optical path. is there.
  • Non-Patent Document 1 it is necessary to place the laser in close contact with the plasmon probe, and there is a problem that it is difficult to fix the laser and the wiring becomes complicated.
  • the thickness of the apparatus is required to irradiate light from an oblique direction.
  • the optical system becomes complicated and the thickness of the apparatus is also required.
  • the present invention has been made in view of the above problems, and has an object to provide a head mechanism, an optically assisted magnetic recording apparatus, or an optical recording apparatus that has high light efficiency and can be thinned and integrated. To do.
  • a head mechanism includes a waveguide and an optical coupler provided on the waveguide for coupling light to the waveguide, and a recording medium
  • a head slider is provided so as to be movable relative to the recording medium while floating above.
  • the light propagation direction through the waveguide is inclined with respect to the bottom surface of the head slider facing the recording medium.
  • the head mechanism according to the second aspect is the head mechanism according to the first aspect, wherein the propagation direction forms an obtuse angle with respect to the bottom surface.
  • the head mechanism according to a third aspect is the head mechanism according to the first or second aspect, wherein the angle formed by the propagation direction and the bottom surface is determined by the light incident on the incident surface of the optical coupler and the angle The angle is such that the coupling efficiency with the waveguide is maximized.
  • a head mechanism according to a fourth aspect is the head mechanism according to any one of the first to third aspects, wherein the optical coupler is a grating coupler.
  • the head mechanism according to the fifth aspect is the head mechanism according to any one of the first to third aspects, wherein the optical coupler is a prism coupler.
  • the optically assisted magnetic recording device includes the head mechanism according to any one of the first to fifth aspects, and irradiates the recording medium with light from the waveguide. Information is magnetically recorded on the partial area in a state where the partial area of the recording medium is heated and heated.
  • An optical recording apparatus includes the head mechanism according to any one of the first to fifth aspects, and irradiates the recording medium with light from the waveguide, whereby the recording medium A light spot is formed in a partial area of the optical information, and information is optically recorded on the partial area by the light spot.
  • the head mechanism and the optically assisted magnetic recording apparatus that have high optical efficiency and can be thinned and integrated.
  • an optical recording device can be provided.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a head mechanism 10 and an optically assisted magnetic recording apparatus 100 including the head mechanism 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the head mechanism 10 as viewed from the side.
  • FIG. 3 is a schematic view of the waveguide 13 as viewed from the front.
  • FIG. 4 is a diagram showing the structure of the grating coupler 14.
  • FIG. 5 is a diagram showing a method for manufacturing the slider portion 3.
  • FIG. 6 is a diagram illustrating a method of dicing the substrate of the slider unit 3 diagonally.
  • FIG. 7 is a schematic cross-sectional view of the modified head mechanism 20 as viewed from the side.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a head mechanism 10 and an optically assisted magnetic recording apparatus 100 including the head mechanism 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the head mechanism 10 as viewed from the
  • FIG. 8 is a diagram showing a configuration of a waveguide 15 having a prism coupler 16 as an optical coupler.
  • FIG. 9 is a cross-sectional view of the waveguide 15 as viewed along the section line VIII-VIII in FIG.
  • FIG. 10 is a schematic cross-sectional view of a modified head mechanism 30 as viewed from the side.
  • FIG. 11 is a diagram showing the appearance of the emitted light when the microlens 18 is integrated on the VCSEL 17.
  • FIG. 12 is a diagram showing a photonic crystal surface emitting laser 19.
  • FIG. 13 is a diagram illustrating the structure of the grating coupler.
  • FIG. 14 is a diagram showing a configuration of a head mechanism using a normal incidence type grating coupler.
  • FIG. 15 is a cross-sectional view of the grating coupler in a case where light is perpendicularly incident on the incident surface.
  • FIG. 16 is a diagram illustrating a propagation state in the waveguide when light is perpendicularly incident on the incident surface.
  • FIG. 17 is a graph showing the relationship between the diffraction angle ⁇ and the period ⁇ / wavelength ⁇ 0 in the optical grating coupler.
  • FIG. 18 is a diagram showing a configuration of a head mechanism using a horizontal incidence type grating coupler.
  • FIG. 19 is a diagram showing a configuration of a head mechanism using a horizontal incidence type grating coupler.
  • FIG. 20 is a diagram showing a configuration of a head mechanism using a horizontal incidence type grating coupler.
  • FIG. 21 is a diagram showing a configuration of a head mechanism mounted with a bending optical system.
  • FIG. 22 is a diagram showing a configuration of a head mechanism using an oblique incidence
  • FIG. 13 is a diagram showing a structure of a grating coupler, and shows a structure in which the structure changes with a period ⁇ with respect to the propagation direction z1.
  • the optimum incident angle of light with respect to the incident surface can be designed in the range of 0 to 90 degrees by changing the period ⁇ .
  • the light is incident perpendicularly to the incident surface at a diffraction angle of 90 degrees, and the light is incident horizontally on the incident surface.
  • Horizontal incidence with a diffraction angle of 180 degrees is not suitable. This is due to the following reasons specific to the optically assisted magnetic recording head.
  • the diffraction angle is an angle formed by the incident wave and the traveling direction of the diffracted wave.
  • FIG. 14 is a diagram showing a configuration of a head mechanism that guides light emitted from a light source to a waveguide using a grating coupler having a diffraction angle of about 90 degrees.
  • the light propagation direction through the waveguide is perpendicular to the bottom surface of the slider (parallel to the top surface of the magnetic disk).
  • FIG. 15 is a cross-sectional view of the grating coupler when it is perpendicularly incident on a grating coupler having a diffraction angle of 90 degrees.
  • the normal incidence is incidence in which an incident angle that is an angle formed between incident light and a normal line of an incident surface is about 0 degree.
  • both the + 1st order light and the ⁇ 1st order light are coupled to the waveguide.
  • FIG. 16 is a diagram illustrating a propagation state in the waveguide when light is perpendicularly incident on the incident surface.
  • the component (A ′) of the ⁇ 1st order light traveling in the direction opposite to the light converging direction of the waveguide is reflected by the end face of the waveguide and the like.
  • FIG. 17 is a graph showing the relationship between the light diffraction angle ⁇ and the period ⁇ / the light wavelength ⁇ 0 in vacuum in the grating coupler.
  • the vertical axis of the graph indicates the diffraction angle ⁇
  • the horizontal axis indicates the period ⁇ of the grating coupler / wavelength ⁇ 0 of light in vacuum.
  • the grating coupler can design the diffraction angle in the range of 90 to 180 degrees by changing the period.
  • the diffraction angle ⁇ of the primary light in the grating coupler is expressed as follows, where the effective refractive index of the waveguide is n eff , the refractive index of the incident side medium is n c , the grating period ⁇ , and the incident wavelength is ⁇ 0 .
  • the period ⁇ / wavelength ⁇ 0 is changed in the range of 0.62 to 1.64.
  • FIG. 19 and FIG. 20 are diagrams showing a configuration of a head mechanism that guides light emitted from a light source to a waveguide using a grating coupler having a diffraction angle of about 180 degrees. Also in this case, the light propagation direction through the waveguide is perpendicular to the bottom surface of the slider (parallel to the top surface of the magnetic disk).
  • FIG. 19 is an enlarged schematic configuration diagram of the waveguide and the grating coupler shown in FIG. 18, and shows how the light from the light source is gradually coupled to the waveguide core in the grating coupler.
  • the optically assisted magnetic recording head be thin, but when light is incident horizontally on the incident surface, a light source or an optical system is required in the upper part of the head, which is disadvantageous in configuration.
  • FIG. 21 shows a bending in which the optical axis is bent so that light is incident obliquely with respect to the incident surface of the grating coupler of the oblique incidence type (when the diffraction angle is other than about 90 degrees and 180 degrees) with respect to the incident surface. It is a figure which shows the structure of the head mechanism which mounted the optical system. Also in this case, the light propagation direction through the waveguide is perpendicular to the bottom surface of the slider (parallel to the top surface of the magnetic disk).
  • FIG. 22 is a sectional view of an oblique incidence type grating coupler. As shown in FIG.
  • the light is incident obliquely with respect to the incident surface of the grating coupler.
  • the optical axis position shift or angle shift may occur depending on the position accuracy or angle accuracy.
  • the arrangement of the bending optical system hinders thinning of the apparatus.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a head mechanism 10 and an optically assisted magnetic recording apparatus 100 including the head mechanism 10 according to an embodiment of the present invention.
  • three axes XYZ orthogonal to each other are appropriately attached in order to clarify the azimuth relation.
  • the optically assisted magnetic recording device 100 is configured as a magnetic recording device including a slider unit 3 including an optically assisted magnetic recording head, and is applied to, for example, a hard disk device.
  • the optically assisted magnetic recording apparatus 100 includes a substantially rectangular parallelepiped housing 1, three recording disks (magnetic recording media) 2 and a head mechanism 10 disposed in the housing 1.
  • the recording disk 2 is a disk-shaped recording medium, and is disposed so that the disk surfaces are substantially parallel to each other by being separated from each other by a predetermined minute distance (for example, 1 mm or less). Specifically, three recording disks 2 are arranged sequentially from above (along the + Z direction to the ⁇ Z direction) and can be rotated with respect to the housing 1 by a predetermined rotating shaft and motor. It is supported.
  • the head mechanism 10 includes three slider parts 3, three suspension parts 4, three arm parts 5, and a rotating shaft 6.
  • the three suspension portions 4 have the same shape, are thin and long and thin so as to be flexible, and are arranged substantially parallel to each other. Specifically, the three suspension portions 4 are arranged sequentially in space from above (along the + Z direction to the ⁇ Z direction).
  • the three arm portions 5 are connected to each other by a rotating shaft 6 at one end side (here, the end portion in the ⁇ X direction), and in the arrow mA direction (tracking direction) with the rotating shaft 6 as a fulcrum.
  • the body 1 is rotatably supported.
  • Each arm unit 5 holds one suspension unit 4, and each suspension unit 4 held by each arm unit 5 is rotated with the rotation shaft 6 as a fulcrum by the rotation of the rotation shaft 6 by the actuator 8. Rotate in the mA direction.
  • the three slider portions 3 have the same configuration and include an optically assisted magnetic recording head.
  • One slider portion 3 is attached to each suspension portion 4.
  • the slider portion 3 has one main surface (here, the upper surface) of the recording disk 2 with respect to the lower surface on the other end side different from the one end side connected to the rotating shaft 6 of the suspension portion 4.
  • a motor (not shown) for rotating the recording disk 2 in the direction of the arrow mB is provided in the housing 1, and the slider portion 3 moves relatively while floating on the recording disk 2. It is configured to be able to.
  • FIG. 2 is a schematic cross-sectional view of the head mechanism 10 as viewed from the side (+ Y side). In FIG. 2, an optical path through which the laser light passes is shown.
  • the slider section 3 has a recording head (here, a magnetic recording head) that uses light for information recording on the recording disk 2.
  • the slider unit 3 is configured by using, for example, a ceramic substrate 24.
  • a grating coupler 14 that is an optical coupler is provided on one end surface of the substrate 24 (here, the end portion in the -X direction).
  • a waveguide 13 is formed.
  • the slider part 3 is attached to the lower surface of the other end vicinity opposite to the one end connected with respect to the arm part 5 of the suspension part 4 via the suspension member which consists of a spring member.
  • the bottom surface (the surface on the ⁇ Z side) of the slider portion 3 is opposed to the recording disk 2 and forms a sliding surface 3a that is a bottom surface that travels relatively away from the recording disk 2 by a predetermined distance. . Focusing on the head mechanism 10, the sliding surface 3 a forms a surface for facing the main surface of the recording disk 2.
  • the arm part 5 is made of a material that is thicker and more rigid than the suspension part 4, and the suspension part 4 is made of a flexible material, and the arm part 5 and the suspension part 4 The extending direction is substantially the same.
  • One end ( ⁇ X side end) of the arm portion 5 is fixed to the rotating shaft 6, and the suspension portion 4 is disposed on the lower surface ( ⁇ Z side surface) of the other end (+ X side end) of the arm portion 5.
  • the upper surface (the surface on the + Z side) at one end of each is connected.
  • the light source unit 7 is composed of, for example, a semiconductor laser element and emits laser light.
  • the light source unit 7 is attached to a predetermined optimum position via a suspension member made of a spring member with respect to the lower surface of the suspension unit 4.
  • the laser light emitted from the light source unit 7 and traveling substantially parallel to the sliding surface 3 a of the slider unit 3 is irradiated so as to be directly incident on the grating coupler 14.
  • the light source unit 7 emits light substantially parallel to the sliding surface 3a of the slider unit 3 by integrating microlenses on the end surface.
  • a resin molded product can be used, and droplet forming by ink jet suitable for mass production, photolithography, or the like can be used.
  • the waveguide 13 is for spot heating a partial region (that is, a recorded portion) of the recording disk 2 with a near infrared laser beam.
  • FIG. 3 is a schematic view of the waveguide 13 as viewed from the front ( ⁇ X side in FIG. 2).
  • the waveguide 13 for example, the one proposed in US Pat. No. 6,944,112 can be applied.
  • the waveguide 13 is a planar waveguide and has parabolic inner surfaces 21 and 22 whose thickness is small and whose width gradually decreases from the upper part toward the lower part.
  • a grating coupler 14 that is an optical coupler is disposed in front of the upper portion of the waveguide 13.
  • the grating coupler 14 is created by providing a periodic structure or a refractive index difference on the front surface of the upper portion of the waveguide 13.
  • the periodic structure is schematically represented by the horizontal line of the grating coupler 14, but actually a fine structure or refractive index distribution below the wavelength of light is formed.
  • the grating coupler 14 (that is, the incident surface) is inclined so as to form an obtuse angle with respect to the sliding surface 3a of the slider portion 3, that is, ABS (Air Bearing) Surface).
  • the laser beam is irradiated to the grating coupler 14 (specifically, the laser irradiation region in the thick broken line portion) disposed in front of the upper portion of the waveguide 13, the laser beam is introduced into the waveguide 13. As shown by the arrow 23, the laser beam is reflected by the inner surfaces 21 and 22, the laser beam is focused on the lowermost focal point F of the waveguide 13, and an electromagnetic wave is generated toward the recording disk 2, and recording is performed. A minute area of the working disk 2 is heated.
  • a plasmon head made of a metal microstructure may be integrated at the focal point F in order to collect light more.
  • the collection of light in the plasmon head is determined by the size of the metal microstructure, and the spot size is, for example, several tens of nm.
  • the light propagation direction through the waveguide 13 is inclined by an angle ⁇ 1 with respect to the sliding surface 3 a of the slider unit 3, and the light incident surface of the grating coupler 14 is the optical axis of the incident light beam and the slider unit 3. Is inclined with respect to the sliding surface 3a by an angle ⁇ 1.
  • the light incident surface refers to a surface of the grating coupler 14 in which a two-dimensional structure of unevenness on which light is incident is spread.
  • the diffraction angle of the grating coupler 14 is a constant angle ( ⁇ 1)
  • the coupling efficiency of light propagating in one direction is maximized.
  • the diffraction angle ⁇ 1 of the grating coupler 14 is guided with light. This corresponds to the angle that maximizes the coupling efficiency with the waveguide 13.
  • the diffraction angle means an angle formed by the incident wave and the traveling direction of the diffracted wave.
  • the diffraction angle ⁇ 1 of the grating coupler 14 is set to be an obtuse angle, and the diffraction angle ⁇ 1 can be arbitrarily designed according to the period, depth, and shape of the grating coupler 14. If the designed diffraction angle ⁇ 1 is deviated from the actual diffraction angle, the light coupling efficiency is greatly reduced.
  • the light source unit 7 emits light substantially parallel to the sliding surface 3 a of the slider unit 3.
  • the light incident surface of the grating coupler 14 is directed to the sliding surface 3 a of the slider unit 3. Inclined at about ⁇ 1 degree. More specifically, the light incident surface of the grating coupler 14 (which coincides with the light propagation direction through the waveguide 13) is set to form an obtuse angle with respect to the sliding surface 3a of the slider portion 3.
  • the grating coupler 14 is provided in the waveguide 13 formed on one end surface (end portion in the ⁇ X direction) of the slider portion 3, one end surface ( It can be said that the end portion in the ⁇ X direction) and the waveguide 13 are inclined by ⁇ 1 degree with respect to the sliding surface 3 a of the slider portion 3.
  • the grating coupler 14 will be described more specifically.
  • FIG. 4 is a diagram showing the structure of the grating coupler 14 and shows a structure in which the structure changes with a period ⁇ with respect to the propagation direction z1.
  • the waveguide 13 includes a waveguide substrate 18a serving as a lower cladding, a core 19 serving as an optical path, and an upper cladding 18b. If the wavelength of the incident light is 1.5 [mu] m, for example air having a refractive index n c is the upper clad 18b is 1.0, Si refractive index n f as the core 19 is 3.5, refraction as the lower cladding 18a SiO 2 with a rate n s of 1.44 is conceivable.
  • the refractive index of the core 19 needs to be higher than the refractive indexes of the lower cladding 18a and the upper cladding 18b.
  • the effective refractive index of the waveguide is n eff
  • the effective wavelength ⁇ eff in the waveguide is ⁇ 0 / n eff .
  • ⁇ 0 is the wavelength of the laser beam in vacuum.
  • the incident angle of light that can enter the grating coupler 14 from the air needs to satisfy the following Bragg diffraction conditional expressions (1) and (2).
  • k 0 is a wave number (2 ⁇ / ⁇ 0 ) in vacuum
  • ⁇ q is an incident angle that is an angle formed by light and a normal line of the incident surface.
  • ⁇ q 0 when perpendicularly incident on a grating coupler having a diffraction angle of about 90 degrees, the following equations (3) and (4) can be obtained from equations (1) and (2).
  • the primary light can be coupled to the waveguide 13 by making the period ⁇ coincide with ⁇ 0 / n eff .
  • the light is incident horizontally on a grating coupler having a diffraction angle of about 180 degrees, since the incident angle is 90 degrees, the following expressions (5) and (6) are established.
  • the primary light can be coupled to the waveguide 13.
  • the incident angle ⁇ q can be designed by changing the period of the diffraction grating in the equations (1) and (2), and perpendicular incidence to the incident surface is also possible as shown in FIG.
  • the + 1st order light and the ⁇ 1st order light are propagated equally in the light collecting direction of the waveguide 13 and in the direction opposite to the light collecting direction.
  • the grating coupler 14 may have a cross-sectional structure of a rectangular shape, a structure period of ⁇ , and a height ⁇ of 20 nm.
  • the width of one concave shape forming the unevenness was set to 1 ⁇ 2 of the period ⁇ .
  • the concave shape can be accurately manufactured using a semiconductor process such as an etching process using photolithography.
  • the equivalent refractive index n eff in the main mode of the TE wave which is a polarized wave parallel to the substrate of the waveguide 13, can be obtained as 1.61 by performing mode analysis.
  • mode analysis see Non-Patent Document 2 (K. Ogawa et al, “A Theoretical Analysis of Etched Grating Couplers for Integrated Optics,” IEEE J. Quantum Electron, vol. QE-9, No. 1, pp. 29 -42, 1973).
  • the diffraction angle in the range of 110 to 160 degrees, the influence of the shift of the period ⁇ caused by the manufacturing error on the fluctuation of the coupling efficiency of the grating coupler 14 is reduced. ing.
  • the incident angle to the grating coupler 14 is as shown in the equations (1) and (2), but the coupling efficiency depends on the diffraction angle and the structure.
  • the relationship between the diffraction angle and the coupling efficiency is shown, for example, in Non-Patent Document 2 described above.
  • the slider unit 3 aligns the magnetic recording surface of the recording disk 2 with the magnetic recording head with high accuracy.
  • the grating coupler 14 is laminated on the slider portion 3, the waveguide 13 having the grating coupler 14 is formed after the magnetic recording head is formed on the substrate for forming the slider portion 3.
  • the waveguide 13 provided with the magnetic recording head and the grating coupler 14 can be formed with high accuracy by applying a semiconductor process such as photolithography.
  • FIG. 5 is a diagram showing a method for manufacturing the slider portion 3.
  • FIG. 5A shows the substrate of the slider portion 3.
  • the substrate has a rectangular parallelepiped shape.
  • a magnetic recording head and a waveguide 13 provided with a grating coupler 14 are laminated on the upper surface of the substrate at a predetermined period.
  • dicing is performed diagonally so as to form a parallelogram having a pair of diagonal angles ⁇ 1 as viewed from the side. Thereby, each incident surface of the substrate after dicing is inclined at ⁇ 1 degree with respect to 3 a that becomes the sliding surface of the slider portion 3.
  • the angle ⁇ 1 in FIG. 5 corresponds to the diffraction angle ⁇ 1 in FIG.
  • FIG. 6 is a diagram illustrating a method of dicing the substrate of the slider unit 3 diagonally.
  • a method of dicing diagonally for example, as shown in FIG. 6A, the substrate is placed on a flat table 25 and dicing is performed while tilting the dicing device 26 at a predetermined angle ⁇ .
  • the substrate is placed on a table 27 inclined by (90- ⁇ ) degrees with respect to the horizontal plane, and the dicing apparatus 26 is moved vertically with respect to the horizontal plane. There is a way to do.
  • the sliding surface 3a is formed on the incident surface of the optical coupler provided on the waveguide. Even if light is incident in parallel, it is possible to efficiently couple the light into the waveguide. As a result, a space for arranging the bending optical system can be saved, and the light source unit 7 and the grating coupler 14 can be arranged on the same plane substantially parallel to the recording disk 2. Can be reduced in thickness and integrated. In addition, the configuration can be simplified, the manufacturing cost can be reduced, and the optical loss generated in the bending optical system can be eliminated.
  • the slider portion 3 is installed at the tip end side (the end portion on the + X side in FIG. 2) of the suspension portion 4, but emits laser light substantially parallel to the sliding surface 3 a of the slider portion 3.
  • the light source unit 7 may be installed on the distal end side of the suspension unit 4.
  • FIG. 7 is a schematic cross-sectional view of the head mechanism 20 of this modification as viewed from the side (+ Y side).
  • the head mechanism 20 (FIG. 7) of this modification is similar to the head mechanism 10 (FIG. 2) of the above-described embodiment, and corresponding components are denoted by the same reference numerals.
  • the diffraction angle is set to ⁇ 2 degrees.
  • the grating coupler is used as the optical coupler, but a prism coupler may be used.
  • the prism coupler is described in, for example, Non-Patent Document 3 (Hiroshi Nishihara, Masamitsu Haruna, Toshiaki Sugawara, “Optical Integrated Circuit”, Ohmsha, 1987).
  • FIG. 8 is a diagram showing a configuration of a waveguide 15 including a prism coupler 16 as an optical coupler.
  • FIG. 9 is a cross-sectional view of the waveguide 15 as viewed along the section line VIII-VIII in FIG.
  • a waveguide 15 in which the prism coupler 16 that is an optical coupler is provided is formed on one end surface of the substrate 36 of the slider portion 35.
  • the light propagation direction by the waveguide 15 is inclined with respect to the sliding surface 35 a of the slider portion 35.
  • the waveguide 15 is, for example, a planar waveguide, a high refractive index prism coupler 16 (refractive index n p ), a low refractive index core 37 (refractive index n d ), and a waveguide substrate.
  • the following conditions must be satisfied in order for light to enter the core.
  • n p > n d n d > n s n d > n cl
  • the prism coupler 16 is a hexahedron having an apex angle ⁇ on the + Z side, and a bottom surface 16 a facing the apex angle perpendicular to the normal line of the end surface 15 a on the ⁇ X side of the waveguide 15. .
  • the effective refractive index of the waveguide is n eff and the angle ⁇ 4 formed between the light incident on the prism coupler 16 and the bottom surface is set to satisfy the following expression (7), the prism clad 16 to the upper cladding 38b,
  • the evanescent wave that has leached in the direction of the core 37 is coupled to the waveguide 15.
  • the thickness of the upper clad 38b is preferably equal to or less than the wavelength of light, for example.
  • n eff n p sin ⁇ 4 (7) (N p > n d > n s )
  • the angle formed by the normal of the one end surface 15a on the ⁇ X side of the waveguide 15 and the incident light of the prism coupler 16 is ⁇ 3, and the light incident into the prism coupler 16 and the bottom surface 16a of the prism, that is, the waveguide 15 If the angle formed with the normal line of the one end face 15a on the ⁇ X side is ⁇ 4, the following equation (8) is established according to Snell's law.
  • n c sin ( ⁇ 4- ⁇ ) n p sin ( ⁇ 3- ⁇ ) (8)
  • n c is the refractive index of the external medium through which the incident light, for example, in the case of air, the n c is 1.0.
  • is the prism apex angle.
  • the bending optical system is used by inclining the waveguide 15 with respect to the sliding surface of the slider portion 35 and arranging the bottom surface 16a of the prism coupler 16 to be inclined with respect to the sliding surface of the slider portion 35. Without realizing it, a thin optical system is realized.
  • FIG. 10 is a schematic cross-sectional view of the head mechanism 30 of this modification as viewed from the side (+ Y side).
  • the head mechanism 30 of this modification is similar to the head mechanism 10 of the above embodiment, and is given the same reference numerals as the corresponding configuration.
  • the bottom surface 16a of the prism coupler 16 is disposed at an angle of ⁇ 3 degrees with respect to a plane parallel to the optical axis of the incident light beam and the sliding surface 35a of the slider portion 35, as shown in FIGS. 3 and the waveguide 13 are inclined by ( ⁇ 3 + 90) degrees with respect to the sliding surface 3 a of the slider portion 3.
  • This ( ⁇ 3 + 90) degree corresponds to ⁇ 1 degree in FIGS.
  • the light source unit 7 is attached to the lower surface of the suspension unit 4, but may be disposed on the lower surface of the arm unit 5.
  • FIG. 11 is a diagram showing the appearance of the emitted light when the microlens 18 is integrated on the VCSEL 17.
  • FIG. 11A shows light emitted from the VCSEL 17 before the microlenses 18 are integrated.
  • FIG. 11B is a side view of the VCSEL 17 in which the microlenses 18 are integrated, and FIG.
  • 11C is a front view of the VCSEL 17 in which the microlenses 18 are integrated.
  • the spot size of the beam is Wo and the wavelength is ⁇
  • the spread angle ⁇ 5 of the light emitted from the VCSEL 17 is expressed by the following equation.
  • the microlens 18 in the VCSEL 17, the light that spreads at the spread angle ⁇ 5 can be converted into parallel light.
  • a microlens not only a microlens but also a diffraction grating or a lens with a diffraction grating may be used, and a thin optical component having a beam shaping function. If it is.
  • FIG. 12 is a diagram showing a photonic crystal surface emitting laser 19.
  • FIG. 12A shows a side view of the photonic crystal surface emitting laser 19
  • FIG. 12B shows a front view of the photonic crystal surface emitting laser 19.
  • the photonic crystal surface laser 19 forms a photonic crystal having a photonic band gap in the active layer surface of the semiconductor layer, thereby obtaining a light output in a direction perpendicular to the photonic crystal surface.
  • FIG. 12 schematically shows a periodic structure in the photonic crystal plane.
  • the feature of the photonic crystal surface emitting laser 19 is that the size of the light emitting area can be controlled by changing the area of the region where the photonic crystal is provided in the active layer plane.
  • the spot size increases and the beam divergence angle decreases.
  • the emitted light is close to parallel light.
  • the spread angle is 0.14 degrees, which is close to parallel light.
  • information is recorded and reproduced magnetically while applying heat to the recording disk 2 as a recording medium with light.
  • the present invention is not limited to this.
  • a light spot is formed on a partial area of an optical disk by irradiating light from a light condensing part below a waveguide onto an optical disk as a recording medium without using magnetism.
  • the present invention may be applied to an optical recording apparatus that records information on a partial area.
  • light output from an optical fiber or a polymer waveguide may be used as a light source.
  • the light source unit 7 is disposed at another location, and light emitted from the light source unit 7 is sent by an optical fiber, a polymer waveguide, or the like, and output from the lower surface of the suspension unit 4.
  • an optical fiber When an optical fiber is used, light substantially parallel to the sliding surface 3a of the slider portion 3 can be emitted by forming a microlens or a diffraction grating on the end face of the optical fiber.
  • the spot size of the light beam output from the optical fiber is approximated by a Gaussian beam.
  • the spot size of the single mode optical fiber is, for example, 4.6 ⁇ m when the light wavelength is 1.3 ⁇ m, and is about 2.5 ⁇ m when the light wavelength is 850 nm. Therefore, the beam divergence angle is 5.1 degrees when the light wavelength is 1.3 ⁇ m, and 6.2 degrees when the light wavelength is 850 nm. In this case, it is possible to emit parallel light by polishing the end face of the optical fiber to form a microlens or using a GRIN lens having the same outer shape as the fiber.

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Optical Head (AREA)
  • Magnetic Heads (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

Provided are a head mechanism, an optical assist type magnetic recording medium, and an optical recording device which have a high optical efficiency and can be made with a small thickness and a high integration.  The head mechanism includes: a waveguide; an optical coupler arranged on the waveguide for optical connection to the waveguide; and a head slider floating above a recording medium and relatively movable against the recording medium.  In the head mechanism, the light propagation direction by the waveguide is inclined against the bottom surface of the head slider opposing to the recording medium.

Description

ヘッド機構、光アシスト式磁気記録装置、および光記録装置Head mechanism, optically assisted magnetic recording apparatus, and optical recording apparatus
 本発明は、ヘッド機構、光アシスト式磁気記録装置、および光記録装置に関するものであり、例えば、情報記録に光を利用するヘッド機構、それを備える光アシスト式磁気記録装置、および光記録装置に関するものである。 The present invention relates to a head mechanism, an optically assisted magnetic recording apparatus, and an optical recording apparatus. For example, the present invention relates to a head mechanism that uses light for information recording, an optically assisted magnetic recording apparatus including the head mechanism, and an optical recording apparatus. Is.
 近年、ハードディスク装置等に使用される記録媒体において記録密度を高めるための技術開発が進められている。記録密度を向上させるためには、1ビットの記録サイズを小さくする必要がある。しかし、磁気記録方式において、記録ビットサイズを小さくすると、記録情報を保持している磁化状態が、熱エネルギーによって不安定となり、熱揺らぎによって記録情報が消えてしまうので、安定に記録することができなくなる。そのため、高い保持力を有する記録媒体が必要になるが、そのような記録媒体を使用すると記録時に必要な磁界も大きくなる。また、記録ヘッドによって発生する磁界は、飽和磁束密度によって上限が決まるが、この値は材料限界に近づいており、飛躍的な増大は望めない。そこで、記録時に局所的に加熱して磁気軟化を生じせしめ、保持力が小さくなった状態で記録し、その後に加熱を止めて自然冷却することで記録した磁気ビットの安定性を保証する方式が提案されている。この方式は熱アシスト磁気記録方式と呼ばれている。 In recent years, technological development for increasing the recording density of recording media used in hard disk drives and the like has been advanced. In order to improve the recording density, it is necessary to reduce the recording size of 1 bit. However, in the magnetic recording method, if the recording bit size is reduced, the magnetization state holding the recorded information becomes unstable due to thermal energy, and the recorded information disappears due to thermal fluctuation, so that stable recording can be performed. Disappear. For this reason, a recording medium having a high holding force is required. However, when such a recording medium is used, a magnetic field required for recording increases. The upper limit of the magnetic field generated by the recording head is determined by the saturation magnetic flux density, but this value is approaching the material limit, and a dramatic increase cannot be expected. Therefore, there is a system that guarantees the stability of the recorded magnetic bit by locally heating at the time of recording, causing magnetic softening, recording in a state where the holding force is small, and then stopping the heating and naturally cooling. Proposed. This method is called a heat-assisted magnetic recording method.
 この熱アシスト磁気記録方式では、記録媒体の加熱を瞬間的に行うことが望ましく、加熱する機構と記録媒体とが接触することは許されない。このため、加熱は光の吸収を利用して行われるのが一般的であり、加熱に光を用いる方式は光アシスト式と呼ばれている。 In this heat-assisted magnetic recording system, it is desirable to instantaneously heat the recording medium, and the heating mechanism and the recording medium are not allowed to contact each other. For this reason, heating is generally performed using absorption of light, and a method using light for heating is called a light assist method.
 また、光アシスト式によって超高密度記録を行うためには、記録媒体に照射する光のスポット径を例えば20nm程度の超微小なものにする必要がある。しかしながら、通常の光学系では回折限界の存在により、光を超微小なものにまで集光することは難しい。そこで、非伝搬光であるいわゆる近接場光を用いて加熱を行う方式が提案されている(例えば、非特許文献1)。なお、近接場光を発生させる光ヘッドおよび記録再生装置については、その他の種々の提案がなされている(例えば、特許文献1,2)。 Also, in order to perform ultra-high density recording by the optical assist method, it is necessary to make the spot diameter of the light irradiating the recording medium very small, for example, about 20 nm. However, in a normal optical system, it is difficult to condense light to an extremely minute one due to the existence of a diffraction limit. Thus, a method of heating using so-called near-field light that is non-propagating light has been proposed (for example, Non-Patent Document 1). Various other proposals have been made for optical heads and recording / reproducing apparatuses that generate near-field light (for example, Patent Documents 1 and 2).
 一方、近年の磁気記録装置の高密度化に伴い、再生記録を行うヘッドを構成する部品であるスライダの大きさについては、たとえばフェムト・スライダの長さ、幅、厚みはそれぞれ0.85mm,0.70mm,0.23mm程度と小型化が進んでいる。また、一般的な磁気記録装置においては狭い空間にディスクを積層しており、積層されたディスクの隙間は1mm以下である。したがって、記録ヘッドの厚みが制限され、光磁気記録(MO)のようにヘッドの背面に光学系を配置して光を照射することはできない。従って、光アシスト式の磁気記録装置においては、光源から記録ヘッドまで光を導く光学系が薄型であり、かつ光源と光学系と記録ヘッドとが同一平面上に配置されることが望まれる。 On the other hand, with the recent increase in the density of magnetic recording apparatuses, for example, the length, width, and thickness of the femto slider are 0.85 mm and 0, respectively. .70mm, 0.23mm and so on. Further, in a general magnetic recording apparatus, disks are stacked in a narrow space, and a gap between the stacked disks is 1 mm or less. Therefore, the thickness of the recording head is limited, and it is impossible to irradiate light by arranging an optical system on the back surface of the head as in magneto-optical recording (MO). Therefore, in an optically assisted magnetic recording apparatus, it is desirable that the optical system that guides light from the light source to the recording head is thin and the light source, the optical system, and the recording head are arranged on the same plane.
 このような要求に対しては、空間光学系およびグレーティングカプラを用いて光をヘッドに設けられた平面導波路に結合する方法が提案されている(特許文献3参照)。 In response to such a requirement, a method has been proposed in which light is coupled to a planar waveguide provided in a head using a spatial optical system and a grating coupler (see Patent Document 3).
特開2000-149317号公報JP 2000-149317 A 特開2000-353336号公報JP 2000-353336 A 特開2005-116155号公報JP-A-2005-116155
 しかしながら、空間から光をグレーティングカプラに導き、平面導波路において光を一方向に向けて効率よく伝搬させるためには、後述するように、グレーティングカプラの入射面に対して光を一定の角度傾けて入射する必要がある。光の進行方向を傾ける光学素子としては、例えば、プリズム、回折格子、ミラーなどが考えられるが、光学素子の設置場所および傾けた光路を確保するためには、記録装置全体の薄型化が困難である。 However, in order to guide light from the space to the grating coupler and efficiently propagate the light in one direction in the planar waveguide, the light is inclined at a certain angle with respect to the incident surface of the grating coupler as described later. It is necessary to enter. For example, prisms, diffraction gratings, and mirrors are conceivable as optical elements that tilt the light traveling direction, but it is difficult to reduce the thickness of the entire recording apparatus in order to secure the installation location of the optical elements and the tilted optical path. is there.
 また、非特許文献1の技術では、プラズモンプローブに対してレーザを密着させて配置する必要があり、レーザの固定が難しく、配線が複雑になるという課題がある。 In the technique of Non-Patent Document 1, it is necessary to place the laser in close contact with the plasmon probe, and there is a problem that it is difficult to fix the laser and the wiring becomes complicated.
 また、特許文献1の技術では、斜めから光を照射するために装置の厚みが必要となる。また、特許文献2の技術では、光学系が複雑となり、装置の厚みも必要となる。さらに、特許文献3の技術では、グレーティングカプラに光を入射するための実用的な薄型光学系の構成については言及されておらず、他の技術と同様に、装置の薄型化に関しては課題が存在する。 Also, in the technique of Patent Document 1, the thickness of the apparatus is required to irradiate light from an oblique direction. Moreover, in the technique of Patent Document 2, the optical system becomes complicated and the thickness of the apparatus is also required. Furthermore, in the technique of Patent Document 3, there is no mention of a practical thin optical system configuration for making light incident on the grating coupler, and there is a problem with thinning the apparatus, as in other techniques. To do.
 本発明は、上記課題に鑑みてなされたものであり、光効率が高く、かつ薄型化および集積化が可能なヘッド機構、光アシスト式磁気記録装置、または光記録装置を提供することを目的とする。 The present invention has been made in view of the above problems, and has an object to provide a head mechanism, an optically assisted magnetic recording apparatus, or an optical recording apparatus that has high light efficiency and can be thinned and integrated. To do.
 上記課題を解決するために、第1の態様に係るヘッド機構は、導波路と、該導波路に光を結合するために導波路上に設けられた光結合器とを有し、かつ記録媒体上で浮上しながら該記録媒体に対して相対移動可能に設けられたヘッドスライダを備える。そして、該ヘッド機構では、前記導波路による光の伝搬方向が、前記記録媒体に対向する前記ヘッドスライダの底面に対して傾斜している。 In order to solve the above problem, a head mechanism according to a first aspect includes a waveguide and an optical coupler provided on the waveguide for coupling light to the waveguide, and a recording medium A head slider is provided so as to be movable relative to the recording medium while floating above. In the head mechanism, the light propagation direction through the waveguide is inclined with respect to the bottom surface of the head slider facing the recording medium.
 第2の態様に係るヘッド機構は、第1の態様に係るヘッド機構であって、前記伝搬方向が、前記底面に対して鈍角を成す。 The head mechanism according to the second aspect is the head mechanism according to the first aspect, wherein the propagation direction forms an obtuse angle with respect to the bottom surface.
 第3の態様に係るヘッド機構は、第1または第2の態様に係るヘッド機構であって、前記伝搬方向と前記底面とが成す角度は、前記光結合器の入射面に入射する光と前記導波路との結合効率が最大となる角度になっている。 The head mechanism according to a third aspect is the head mechanism according to the first or second aspect, wherein the angle formed by the propagation direction and the bottom surface is determined by the light incident on the incident surface of the optical coupler and the angle The angle is such that the coupling efficiency with the waveguide is maximized.
 第4の態様に係るヘッド機構は、第1から第3のいずれか1つの態様に係るヘッド機構であって、前記光結合器が、グレーティングカプラである。 A head mechanism according to a fourth aspect is the head mechanism according to any one of the first to third aspects, wherein the optical coupler is a grating coupler.
 第5の態様に係るヘッド機構は、第1から第3のいずれか1つの態様に係るヘッド機構であって、前記光結合器が、プリズムカプラである。 The head mechanism according to the fifth aspect is the head mechanism according to any one of the first to third aspects, wherein the optical coupler is a prism coupler.
 第6の態様に係る光アシスト式磁気記録装置は、第1から第5のいずれか1つの態様に係るヘッド機構を備えるとともに、前記導波路から前記記録媒体に対して光を照射することにより、前記記録媒体の一部領域を加熱昇温した状態で前記一部領域に対して情報の磁気的な記録を行う。 The optically assisted magnetic recording device according to the sixth aspect includes the head mechanism according to any one of the first to fifth aspects, and irradiates the recording medium with light from the waveguide. Information is magnetically recorded on the partial area in a state where the partial area of the recording medium is heated and heated.
 第7の態様に係る光記録装置は、第1から第5のいずれか1つの態様に係るヘッド機構を備えるとともに、前記導波路から前記記録媒体に対して光を照射することにより、前記記録媒体の一部領域に光スポットを形成し、該光スポットによって前記一部領域に対して情報の光学的な記録を行う。 An optical recording apparatus according to a seventh aspect includes the head mechanism according to any one of the first to fifth aspects, and irradiates the recording medium with light from the waveguide, whereby the recording medium A light spot is formed in a partial area of the optical information, and information is optically recorded on the partial area by the light spot.
 本発明によれば、導波路による光の伝搬方向がヘッドスライダの底面に対して傾斜しているため、光効率が高く、かつ薄型化および集積化が可能なヘッド機構、光アシスト式磁気記録装置または光記録装置を提供することができる。 According to the present invention, since the light propagation direction through the waveguide is inclined with respect to the bottom surface of the head slider, the head mechanism and the optically assisted magnetic recording apparatus that have high optical efficiency and can be thinned and integrated. Alternatively, an optical recording device can be provided.
図1は、本発明の実施形態に係るヘッド機構10とそれを備えた光アシスト式磁気記録装置100の概略構成例を示す図である。FIG. 1 is a diagram illustrating a schematic configuration example of a head mechanism 10 and an optically assisted magnetic recording apparatus 100 including the head mechanism 10 according to an embodiment of the present invention. 図2は、ヘッド機構10を側方から見た断面模式図である。FIG. 2 is a schematic cross-sectional view of the head mechanism 10 as viewed from the side. 図3は、導波路13を正面から見た模式図である。FIG. 3 is a schematic view of the waveguide 13 as viewed from the front. 図4は、グレーティングカプラ14の構造を示す図である。FIG. 4 is a diagram showing the structure of the grating coupler 14. 図5は、スライダ部3の製造方法を示す図である。FIG. 5 is a diagram showing a method for manufacturing the slider portion 3. 図6は、スライダ部3の基板を斜めにダイシングする方法を示す図である。FIG. 6 is a diagram illustrating a method of dicing the substrate of the slider unit 3 diagonally. 図7は、変形例のヘッド機構20を側方から見た断面模式図である。FIG. 7 is a schematic cross-sectional view of the modified head mechanism 20 as viewed from the side. 図8は、光結合器としてプリズムカプラ16を有する導波路15の構成を示す図である。FIG. 8 is a diagram showing a configuration of a waveguide 15 having a prism coupler 16 as an optical coupler. 図9は、導波路15を図8の切断面線VIII-VIIIから見た断面図である。FIG. 9 is a cross-sectional view of the waveguide 15 as viewed along the section line VIII-VIII in FIG. 図10は、変形例のヘッド機構30を側方から見た断面模式図である。FIG. 10 is a schematic cross-sectional view of a modified head mechanism 30 as viewed from the side. 図11は、VCSEL17に、マイクロレンズ18を集積した場合の出射光のようすを示す図である。FIG. 11 is a diagram showing the appearance of the emitted light when the microlens 18 is integrated on the VCSEL 17. 図12は、フォトニック結晶面発光レーザ19を示す図である。FIG. 12 is a diagram showing a photonic crystal surface emitting laser 19. 図13は、グレーティングカプラの構造を示す図である。FIG. 13 is a diagram illustrating the structure of the grating coupler. 図14は、垂直入射型のグレーティングカプラを用いたヘッド機構の構成を示す図である。FIG. 14 is a diagram showing a configuration of a head mechanism using a normal incidence type grating coupler. 図15は、光が入射面に対して垂直入射する場合のグレーティングカプラの断面図である。FIG. 15 is a cross-sectional view of the grating coupler in a case where light is perpendicularly incident on the incident surface. 図16は、光が入射面に対して垂直入射した場合における導波路内の伝搬状態を示す図である。FIG. 16 is a diagram illustrating a propagation state in the waveguide when light is perpendicularly incident on the incident surface. 図17は、光のグレーティングカプラにおける回折角度θと周期Λ/波長λ0との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the diffraction angle θ and the period Λ / wavelength λ 0 in the optical grating coupler. 図18は、水平入射型のグレーティングカプラを用いたヘッド機構の構成を示す図である。FIG. 18 is a diagram showing a configuration of a head mechanism using a horizontal incidence type grating coupler. 図19は、水平入射型のグレーティングカプラを用いたヘッド機構の構成を示す図である。FIG. 19 is a diagram showing a configuration of a head mechanism using a horizontal incidence type grating coupler. 図20は、水平入射型のグレーティングカプラを用いたヘッド機構の構成を示す図である。FIG. 20 is a diagram showing a configuration of a head mechanism using a horizontal incidence type grating coupler. 図21は、折り曲げ光学系を実装したヘッド機構の構成を示す図である。FIG. 21 is a diagram showing a configuration of a head mechanism mounted with a bending optical system. 図22は、斜め入射型のグレーティングカプラを用いたヘッド機構の構成を示す図である。FIG. 22 is a diagram showing a configuration of a head mechanism using an oblique incidence type grating coupler.
 本発明の実施形態を説明する前に、参考例を用いて、回折格子を用いた光結合器(グレーティングカプラ)に対する光の入射角に関する説明を行う。 Before describing the embodiment of the present invention, a reference example will be used to explain the incident angle of light with respect to an optical coupler (grating coupler) using a diffraction grating.
 まず、図13は、グレーティングカプラの構造を示す図であり、伝搬方向z1に対して構造が周期Λで変化する構造が示されている。グレーティングカプラについては、周期Λを変化させることで入射面に対する光の最適な入射角を0~90度の範囲で設計できる。しかし、光アシスト磁気記録ヘッドに光を導くために用いる場合には、入射面に対して垂直に光を入射させる回折角度が90度の垂直入射と、入射面に対して水平に光を入射させる回折角度が180度の水平入射は適さない。これは、光アシスト磁気記録ヘッド特有の以下の理由による。なお、回折角度とは、入射波と回折波の進行方向のなす角をいう。 First, FIG. 13 is a diagram showing a structure of a grating coupler, and shows a structure in which the structure changes with a period Λ with respect to the propagation direction z1. With respect to the grating coupler, the optimum incident angle of light with respect to the incident surface can be designed in the range of 0 to 90 degrees by changing the period Λ. However, when used to guide light to the optically assisted magnetic recording head, the light is incident perpendicularly to the incident surface at a diffraction angle of 90 degrees, and the light is incident horizontally on the incident surface. Horizontal incidence with a diffraction angle of 180 degrees is not suitable. This is due to the following reasons specific to the optically assisted magnetic recording head. The diffraction angle is an angle formed by the incident wave and the traveling direction of the diffracted wave.
 <(1)回折角度が約90度のグレーティングカプラに垂直入射させる場合>
 図14は、回折角度が約90度のグレーティングカプラを用いて光源から射出される光を導波路に導くヘッド機構の構成を示す図である。この場合、導波路による光の伝搬方向はスライダの底面(磁気ディスクの上面と平行)に対して垂直である。また、図15は、回折角度90度のグレーティングカプラに垂直入射させる場合のグレーティングカプラの断面図である。垂直入射とは、入射光と入射面の法線とのなす角度である入射角が約0度となる入射である。この場合、図15に示すとおり、グレーティングカプラにおいては+1次光と-1次光の両方が導波路に結合してしまう。
<(1) When entering perpendicularly to a grating coupler having a diffraction angle of about 90 degrees>
FIG. 14 is a diagram showing a configuration of a head mechanism that guides light emitted from a light source to a waveguide using a grating coupler having a diffraction angle of about 90 degrees. In this case, the light propagation direction through the waveguide is perpendicular to the bottom surface of the slider (parallel to the top surface of the magnetic disk). FIG. 15 is a cross-sectional view of the grating coupler when it is perpendicularly incident on a grating coupler having a diffraction angle of 90 degrees. The normal incidence is incidence in which an incident angle that is an angle formed between incident light and a normal line of an incident surface is about 0 degree. In this case, as shown in FIG. 15, in the grating coupler, both the + 1st order light and the −1st order light are coupled to the waveguide.
 図16は、光が入射面に対して垂直入射した場合における導波路内の伝搬状態を示す図である。図16に示すように、導波路の集光方向と逆方向に向かう-1次光の成分(A’)は導波路端面などで反射した結果、集光方向に向かう+1次光の成分(A)に対し、弱めあう干渉を及ぼす問題がある。図17は、グレーティングカプラにおける光の回折角度θと周期Λ/真空中の光の波長λ0との関係を示すグラフである。グラフの縦軸は回折角度θを示し、横軸はグレーティングカプラの周期Λ/真空中の光の波長λ0を示す。 FIG. 16 is a diagram illustrating a propagation state in the waveguide when light is perpendicularly incident on the incident surface. As shown in FIG. 16, the component (A ′) of the −1st order light traveling in the direction opposite to the light converging direction of the waveguide is reflected by the end face of the waveguide and the like. ) Has a problem of weakening interference. FIG. 17 is a graph showing the relationship between the light diffraction angle θ and the period Λ / the light wavelength λ 0 in vacuum in the grating coupler. The vertical axis of the graph indicates the diffraction angle θ, and the horizontal axis indicates the period Λ of the grating coupler / wavelength λ 0 of light in vacuum.
 グレーティングカプラは、周期を変化させることで90~180度の範囲で回折角度を設計できる。グレーティングカプラにおける1次光の回折角度θは導波路の実効屈折率をneff、入射側媒質の屈折率をnc、グレーティング周期Λ、入射波長をλ0として以下のように表される。 The grating coupler can design the diffraction angle in the range of 90 to 180 degrees by changing the period. The diffraction angle θ of the primary light in the grating coupler is expressed as follows, where the effective refractive index of the waveguide is n eff , the refractive index of the incident side medium is n c , the grating period Λ, and the incident wavelength is λ 0 .
 θ’=sin-1(neff/nc-Λ/λ0
 θ=θ’+90
θ ′ = sin −1 (n eff / n c −Λ / λ 0 )
θ = θ ′ + 90
 図17においては、周期Λ/波長λ0を0.62~1.64の範囲で変化させている。ここで導波路の実効屈折率をneff=1.61としている。式に従って微分係数を計算すると、特に、回折角度θが160~180度の領域(入射面に対して水平入射に近い領域)と回折角度θが90~110度の領域(入射面に対して垂直入射に近い領域)とにおいては、周期Λの変化に対する回折角度θの変化が大きいという特徴がある。このため、この二つの領域においては、製造された回折格子の周期Λが製造誤差によって設計値からずれた場合に、回折角が大きく設計値からずれてしまうという問題がある。 In FIG. 17, the period Λ / wavelength λ 0 is changed in the range of 0.62 to 1.64. Here, the effective refractive index of the waveguide is n eff = 1.61. When the differential coefficient is calculated according to the equation, in particular, a region where the diffraction angle θ is 160 to 180 degrees (region close to horizontal incidence with respect to the incident surface) and a region where the diffraction angle θ is 90 to 110 degrees (perpendicular to the incident surface). (Region close to incidence) is characterized by a large change in diffraction angle θ with respect to a change in period Λ. Therefore, in these two regions, there is a problem that the diffraction angle is greatly deviated from the design value when the period Λ of the manufactured diffraction grating is deviated from the design value due to a production error.
 <(2)回折角度が約180度のグレーティングカプラに入射させる場合>
 図18、図19、および図20は、回折角度が約180度のグレーティングカプラを用いて光源から射出される光を導波路に導くヘッド機構の構成を示す図である。この場合もまた、導波路による光の伝搬方向はスライダの底面(磁気ディスクの上面と平行)に対して垂直である。図19では、図18で示した導波路およびグレーティングカプラを拡大した概略構成図であり、グレーティングカプラにおいて、光源からの光が導波路コアに対して除々に結合していく様子を示している。回折角度180度の場合、光源もしくは光学系をヘッドの上部に配置する必要がある。一般的な磁気記録装置においては狭い空間にディスクを積層しており、積層されたディスクの隙間は1mm以下である。このため光学系をヘッドの上部に配置する構成はディスクの高密度実装や小型化の妨げになってしまう問題がある。また、入射面に対して光を垂直入射させる場合と同様、製造誤差に起因する周期Λのずれが、大きな回折角度の変動を生じさせてしまう問題もある。
<(2) When incident on a grating coupler having a diffraction angle of about 180 degrees>
18, FIG. 19, and FIG. 20 are diagrams showing a configuration of a head mechanism that guides light emitted from a light source to a waveguide using a grating coupler having a diffraction angle of about 180 degrees. Also in this case, the light propagation direction through the waveguide is perpendicular to the bottom surface of the slider (parallel to the top surface of the magnetic disk). FIG. 19 is an enlarged schematic configuration diagram of the waveguide and the grating coupler shown in FIG. 18, and shows how the light from the light source is gradually coupled to the waveguide core in the grating coupler. In the case of a diffraction angle of 180 degrees, it is necessary to arrange a light source or an optical system above the head. In a general magnetic recording apparatus, disks are stacked in a narrow space, and a gap between the stacked disks is 1 mm or less. For this reason, the configuration in which the optical system is arranged on the top of the head has a problem that it hinders high-density mounting and miniaturization of the disk. Further, similarly to the case where light is vertically incident on the incident surface, there is a problem that a shift in the period Λ caused by a manufacturing error causes a large fluctuation in diffraction angle.
 すなわち、光アシスト磁気記録ヘッドは薄型であることが望ましいが、入射面に対して光を水平入射させる場合には、ヘッドの上部の方向に光源または光学系が必要となり、構成上不利である。 That is, it is desirable that the optically assisted magnetic recording head be thin, but when light is incident horizontally on the incident surface, a light source or an optical system is required in the upper part of the head, which is disadvantageous in configuration.
 <(3)入射面に対する斜め入射型のグレーティングカプラに入射させる場合>
 図21は、入射面に対する斜め入射型(回折角度が、約90度および約180度以外の場合)のグレーティングカプラの入射面に対して斜めから光が入射されるように、光軸を折り曲げる折り曲げ光学系を実装したヘッド機構の構成を示す図である。この場合もまた、導波路による光の伝搬方向はスライダの底面(磁気ディスクの上面と平行)に対して垂直である。図22は、斜め入射型のグレーティングカプラの断面図である。製造誤差に起因する周期Λのずれがグレーティングカプラの回折角度の変動に与える影響は、図17に示したとおり、入射面に対して光を水平入射または垂直入射させる場合と比較して小さい。また、入射面に対する光の垂直入射で生じていた、-1次光が導波路に結合して、集光方向とは逆方向に向かう成分が導波路端面などで反射した結果、望ましくない干渉を起こしてしまう効果も無い。すなわち、図22に示しているように、入射面に対して光を斜めに入射をした場合には-1次光が基板側に透過し、集光方向とは逆方向に向かう成分に結合しないので、+1次光が導波路に結合した成分と干渉を起こさない。また周期Λの変化に対する回折角度の変化が小さいため、製造誤差による回折角度の変動が生じにくい。
<(3) Incident light incident on a grazing incidence type grating coupler with respect to the incident surface>
FIG. 21 shows a bending in which the optical axis is bent so that light is incident obliquely with respect to the incident surface of the grating coupler of the oblique incidence type (when the diffraction angle is other than about 90 degrees and 180 degrees) with respect to the incident surface. It is a figure which shows the structure of the head mechanism which mounted the optical system. Also in this case, the light propagation direction through the waveguide is perpendicular to the bottom surface of the slider (parallel to the top surface of the magnetic disk). FIG. 22 is a sectional view of an oblique incidence type grating coupler. As shown in FIG. 17, the influence of the shift of the period Λ due to the manufacturing error on the fluctuation of the diffraction angle of the grating coupler is small compared to the case where light is incident horizontally or vertically on the incident surface. In addition, as a result of −1st order light being coupled to the waveguide and reflected in the direction opposite to the condensing direction reflected by the waveguide end face, which is caused by the perpendicular incidence of light with respect to the incident surface, unwanted interference occurs. There is no effect to cause. That is, as shown in FIG. 22, when light is incident obliquely with respect to the incident surface, the −1st order light is transmitted to the substrate side and is not coupled to a component directed in the direction opposite to the light collecting direction. Therefore, the + 1st order light does not interfere with the component coupled to the waveguide. In addition, since the change in the diffraction angle with respect to the change in the period Λ is small, the diffraction angle does not easily vary due to manufacturing errors.
 したがって、グレーティングカプラの入射面に対して、光を斜めから入射することが好ましいと考えられる。しかし、折り曲げ光学系を実装する場合は位置精度や角度精度によって光軸の位置ずれや角度ずれが生じる可能性がある。また、折り曲げ光学系の配設によって、装置の薄型化が阻害される。 Therefore, it is considered preferable that the light is incident obliquely with respect to the incident surface of the grating coupler. However, when a bending optical system is mounted, there is a possibility that the optical axis position shift or angle shift may occur depending on the position accuracy or angle accuracy. Further, the arrangement of the bending optical system hinders thinning of the apparatus.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <実施形態>
 図1は、本発明の実施形態に係るヘッド機構10とそれを備えた光アシスト式磁気記録装置100の概略構成例を示す図である。なお、各図には、方位関係を明確化するためにXYZの直交する3軸が適宜付されている。
<Embodiment>
FIG. 1 is a diagram illustrating a schematic configuration example of a head mechanism 10 and an optically assisted magnetic recording apparatus 100 including the head mechanism 10 according to an embodiment of the present invention. In each figure, three axes XYZ orthogonal to each other are appropriately attached in order to clarify the azimuth relation.
 図1で示すように、光アシスト式磁気記録装置100は、光アシスト式の磁気記録ヘッドを含むスライダ部3を搭載した磁気記録装置として構成され、例えば、ハードディスク装置などに適用される。この光アシスト式磁気記録装置100は、略直方体状の筐体1と、該筐体1内に配置された3枚の記録用ディスク(磁気記録媒体)2およびヘッド機構10とを備えている。 As shown in FIG. 1, the optically assisted magnetic recording device 100 is configured as a magnetic recording device including a slider unit 3 including an optically assisted magnetic recording head, and is applied to, for example, a hard disk device. The optically assisted magnetic recording apparatus 100 includes a substantially rectangular parallelepiped housing 1, three recording disks (magnetic recording media) 2 and a head mechanism 10 disposed in the housing 1.
 記録用ディスク2は、円盤状の記録媒体であり、相互に所定の微小距離(例えば、1mm以下)だけ離隔されて盤面が略平行となるように配置される。具体的には、上方から(+Z方向から-Z方向に沿って)3枚の記録用ディスク2が空間順次に配置されており、筐体1に対して所定の回転軸およびモータによって回転可能に支持されている。 The recording disk 2 is a disk-shaped recording medium, and is disposed so that the disk surfaces are substantially parallel to each other by being separated from each other by a predetermined minute distance (for example, 1 mm or less). Specifically, three recording disks 2 are arranged sequentially from above (along the + Z direction to the −Z direction) and can be rotated with respect to the housing 1 by a predetermined rotating shaft and motor. It is supported.
 ヘッド機構10は、3つのスライダ部3と、3本のサスペンション部4と、3本のアーム部5と、回転軸6とを備えている。 The head mechanism 10 includes three slider parts 3, three suspension parts 4, three arm parts 5, and a rotating shaft 6.
 3本のサスペンション部4は、それぞれ同様な形状を有するとともに、それぞれ可撓性を有するように薄板状で且つ長細い形状を有し、相互に略平行に配置されている。具体的には、上方から(+Z方向から-Z方向に沿って)3本のサスペンション部4が空間順次に配置されている。 The three suspension portions 4 have the same shape, are thin and long and thin so as to be flexible, and are arranged substantially parallel to each other. Specifically, the three suspension portions 4 are arranged sequentially in space from above (along the + Z direction to the −Z direction).
 3本のアーム部5は、一端側(ここでは、-X方向の端部)において回転軸6によって相互に連結されるとともに、該回転軸6を支点として、矢印mA方向(トラッキング方向)に筐体1に対して回転可能に支持されている。各アーム部5は、それぞれ1本のサスペンション部4を保持しており、アクチュエータ8による回転軸6の回転により、各アーム部5に保持された各サスペンション部4が、回転軸6を支点として矢印mA方向に回転する。 The three arm portions 5 are connected to each other by a rotating shaft 6 at one end side (here, the end portion in the −X direction), and in the arrow mA direction (tracking direction) with the rotating shaft 6 as a fulcrum. The body 1 is rotatably supported. Each arm unit 5 holds one suspension unit 4, and each suspension unit 4 held by each arm unit 5 is rotated with the rotation shaft 6 as a fulcrum by the rotation of the rotation shaft 6 by the actuator 8. Rotate in the mA direction.
 3つのスライダ部3は、それぞれ同様な構成を有するとともに、光アシスト式の磁気記録ヘッドを含む。そして、1本のサスペンション部4ごとに、1つのスライダ部3が取り付けられている。具体的には、スライダ部3が、サスペンション部4のうちの回転軸6に連結されている一端側とは異なる他端側の下面に対して、記録用ディスク2の一方主面(ここでは上面)に対向するように設けられている。なお、ここでは、記録用ディスク2を矢印mB方向に回転させるモータ(不図示)が筐体1内に設けられており、スライダ部3が、記録用ディスク2上で浮上しながら相対的に移動し得るように構成されている。 The three slider portions 3 have the same configuration and include an optically assisted magnetic recording head. One slider portion 3 is attached to each suspension portion 4. Specifically, the slider portion 3 has one main surface (here, the upper surface) of the recording disk 2 with respect to the lower surface on the other end side different from the one end side connected to the rotating shaft 6 of the suspension portion 4. ). Here, a motor (not shown) for rotating the recording disk 2 in the direction of the arrow mB is provided in the housing 1, and the slider portion 3 moves relatively while floating on the recording disk 2. It is configured to be able to.
 図2は、ヘッド機構10を側方(+Y側)から見た断面模式図である。なお、図2では、レーザ光が通過する光路が示されている。 FIG. 2 is a schematic cross-sectional view of the head mechanism 10 as viewed from the side (+ Y side). In FIG. 2, an optical path through which the laser light passes is shown.
 スライダ部3は、記録用ディスク2に対する情報記録に光を利用する記録用ヘッド(ここでは、磁気記録ヘッド)を有する。そして、スライダ部3は、例えば、セラミック製などの基板24を用いて構成されており、基板24の一端面(ここでは、-X方向の端部)には光結合器であるグレーティングカプラ14を有する導波路13が形成されている。また、スライダ部3は、サスペンション部4のうちのアーム部5に対して連結されている一端とは逆の他端近傍の下面に対してバネ部材からなる懸架部材を介して取り付けられている。このスライダ部3の底面(-Z側の面)は、記録用ディスク2に対向し、該記録用ディスク2に対し所定距離離間した状態で相対的に走行する底面である滑走面3aを形成する。なお、ヘッド機構10に着目すると、滑走面3aは、記録用ディスク2の主面に対向させるための面を形成する。 The slider section 3 has a recording head (here, a magnetic recording head) that uses light for information recording on the recording disk 2. The slider unit 3 is configured by using, for example, a ceramic substrate 24. A grating coupler 14 that is an optical coupler is provided on one end surface of the substrate 24 (here, the end portion in the -X direction). A waveguide 13 is formed. Moreover, the slider part 3 is attached to the lower surface of the other end vicinity opposite to the one end connected with respect to the arm part 5 of the suspension part 4 via the suspension member which consists of a spring member. The bottom surface (the surface on the −Z side) of the slider portion 3 is opposed to the recording disk 2 and forms a sliding surface 3a that is a bottom surface that travels relatively away from the recording disk 2 by a predetermined distance. . Focusing on the head mechanism 10, the sliding surface 3 a forms a surface for facing the main surface of the recording disk 2.
 アーム部5は、サスペンション部4と比較して、厚みが厚く且つ剛性が高い素材で構成され、サスペンション部4は、可撓性を有する素材で構成されており、アーム部5とサスペンション部4の延設方向は略同一となっている。そして、アーム部5の一端(-X側の端部)が回転軸6に固設され、アーム部5の他端(+X側の端部)の下面(-Z側の面)にサスペンション部4の一端の上面(+Z側の面)が連結されている。 The arm part 5 is made of a material that is thicker and more rigid than the suspension part 4, and the suspension part 4 is made of a flexible material, and the arm part 5 and the suspension part 4 The extending direction is substantially the same. One end (−X side end) of the arm portion 5 is fixed to the rotating shaft 6, and the suspension portion 4 is disposed on the lower surface (−Z side surface) of the other end (+ X side end) of the arm portion 5. The upper surface (the surface on the + Z side) at one end of each is connected.
 光源部7は、例えば半導体レーザ素子によって構成され、レーザ光を出射する。光源部7は、サスペンション部4の下面に対してバネ部材からなる懸架部材を介し、所定の最適な位置に取り付けられている。そして、光源部7から出射され、スライダ部3の滑走面3aに対して略平行に進行するレーザ光は、グレーティングカプラ14に対して直接入射するように照射される。 The light source unit 7 is composed of, for example, a semiconductor laser element and emits laser light. The light source unit 7 is attached to a predetermined optimum position via a suspension member made of a spring member with respect to the lower surface of the suspension unit 4. The laser light emitted from the light source unit 7 and traveling substantially parallel to the sliding surface 3 a of the slider unit 3 is irradiated so as to be directly incident on the grating coupler 14.
 また、光源部7は端面にマイクロレンズを集積することによって、スライダ部3の滑走面3aに対して略平行な光を射出する。マイクロレンズについては樹脂成型品を用いることができるほか、大量生産に適したインクジェットによる液滴成形、またはフォトリソグラフィなどを用いることができる。光源部7から出射される光の光軸は、図2に示すように、スライダ部3の滑走面3aに対して平行とした場合に、装置の薄型化に対して最も有利となる。 Also, the light source unit 7 emits light substantially parallel to the sliding surface 3a of the slider unit 3 by integrating microlenses on the end surface. As the microlens, a resin molded product can be used, and droplet forming by ink jet suitable for mass production, photolithography, or the like can be used. When the optical axis of the light emitted from the light source unit 7 is parallel to the sliding surface 3a of the slider unit 3 as shown in FIG.
 導波路13は、記録用ディスク2の一部領域(すなわち被記録部分)を近赤外レーザ光によってスポット加熱するためのものである。図3は、導波路13を正面(図2の-X側)から見た模式図である。導波路13としては、例えば、米国特許第6,944,112号明細書で提案されたものを適用することができる。この導波路13は、平面型導波路であり、厚みが薄く、幅が上部から下部に向かって徐々に狭まるような放物線状の内面21,22を有する。導波路13の上部の正面には、光結合器であるグレーティングカプラ14が配設されている。 The waveguide 13 is for spot heating a partial region (that is, a recorded portion) of the recording disk 2 with a near infrared laser beam. FIG. 3 is a schematic view of the waveguide 13 as viewed from the front (−X side in FIG. 2). As the waveguide 13, for example, the one proposed in US Pat. No. 6,944,112 can be applied. The waveguide 13 is a planar waveguide and has parabolic inner surfaces 21 and 22 whose thickness is small and whose width gradually decreases from the upper part toward the lower part. A grating coupler 14 that is an optical coupler is disposed in front of the upper portion of the waveguide 13.
 グレーティングカプラ14は、導波路13の上部の正面上に周期的な構造あるいは屈折率差を設けることにより作成される。図3では、グレーティングカプラ14の横線によって周期的な構造が模式的に表わされているが、実際には光の波長以下の微細な構造や屈折率分布が形成される。また、グレーティングカプラ14(すなわち、入射面)は、スライダ部3の滑走面3a、すなわちABS(Air Bearing Surface)に対して、鈍角を成すように傾斜する。そして、導波路13の上部の正面に配設されたグレーティングカプラ14(具体的には、太破線部内のレーザ照射領域)にレーザ光が照射されて、導波路13にレーザ光が導入されると、矢印23で示すようにレーザ光が内面21,22で反射して、導波路13の最下部の焦点Fにレーザ光が集光し、記録用ディスク2に向けて電磁波が発生して、記録用ディスク2の微小領域が加熱される。 The grating coupler 14 is created by providing a periodic structure or a refractive index difference on the front surface of the upper portion of the waveguide 13. In FIG. 3, the periodic structure is schematically represented by the horizontal line of the grating coupler 14, but actually a fine structure or refractive index distribution below the wavelength of light is formed. Further, the grating coupler 14 (that is, the incident surface) is inclined so as to form an obtuse angle with respect to the sliding surface 3a of the slider portion 3, that is, ABS (Air Bearing) Surface). Then, when the laser beam is irradiated to the grating coupler 14 (specifically, the laser irradiation region in the thick broken line portion) disposed in front of the upper portion of the waveguide 13, the laser beam is introduced into the waveguide 13. As shown by the arrow 23, the laser beam is reflected by the inner surfaces 21 and 22, the laser beam is focused on the lowermost focal point F of the waveguide 13, and an electromagnetic wave is generated toward the recording disk 2, and recording is performed. A minute area of the working disk 2 is heated.
 また焦点Fにはより光を集光するために金属微小構造からなるプラズモンヘッドを集積してもよい。プラズモンヘッドにおける光の集光は、金属微細構造の大きさで決まり、スポットサイズはたとえば数十nmである。 Further, a plasmon head made of a metal microstructure may be integrated at the focal point F in order to collect light more. The collection of light in the plasmon head is determined by the size of the metal microstructure, and the spot size is, for example, several tens of nm.
 図2に示すとおり、導波路13による光の伝搬方向はスライダ部3の滑走面3aに対して角度θ1だけ傾斜されており、グレーティングカプラ14の光入射面が入射光線の光軸およびスライダ部3の滑走面3aに対して角度θ1だけ傾いて配置される。ここで、光入射面とは、グレーティングカプラ14のうち、光が入射する凹凸の2次元構造が広がっている面をいう。グレーティングカプラ14の回折角度は、一定の角度(θ1)のときに一方向へ伝搬する光の結合効率が最大となるが、本実施形態においては、グレーティングカプラ14の回折角度θ1が、光と導波路13との結合効率を最大化する角度に対応している。ここで、回折角度とは、入射波と回折波の進行方向のなす角をいう。 As shown in FIG. 2, the light propagation direction through the waveguide 13 is inclined by an angle θ1 with respect to the sliding surface 3 a of the slider unit 3, and the light incident surface of the grating coupler 14 is the optical axis of the incident light beam and the slider unit 3. Is inclined with respect to the sliding surface 3a by an angle θ1. Here, the light incident surface refers to a surface of the grating coupler 14 in which a two-dimensional structure of unevenness on which light is incident is spread. When the diffraction angle of the grating coupler 14 is a constant angle (θ1), the coupling efficiency of light propagating in one direction is maximized. In this embodiment, the diffraction angle θ1 of the grating coupler 14 is guided with light. This corresponds to the angle that maximizes the coupling efficiency with the waveguide 13. Here, the diffraction angle means an angle formed by the incident wave and the traveling direction of the diffracted wave.
 グレーティングカプラ14の回折角度θ1は、鈍角をなすように設定され、回折角度θ1は、グレーティングカプラ14の周期や深さや形状によって任意に設計できる。このとき設計された回折角度θ1と実際の回折角度がずれた場合には光の結合効率が大きく減少する。前述のとおり、光源部7は、スライダ部3の滑走面3aに対して略平行な光を射出するため、言い換えれば、グレーティングカプラ14における光の入射面がスライダ部3の滑走面3aに対して、約θ1度成して傾斜する。より具体的には、グレーティングカプラ14における光の入射面(導波路13による光の伝搬方向と一致する)がスライダ部3の滑走面3aに対して、鈍角をなすように設定される。 The diffraction angle θ1 of the grating coupler 14 is set to be an obtuse angle, and the diffraction angle θ1 can be arbitrarily designed according to the period, depth, and shape of the grating coupler 14. If the designed diffraction angle θ1 is deviated from the actual diffraction angle, the light coupling efficiency is greatly reduced. As described above, the light source unit 7 emits light substantially parallel to the sliding surface 3 a of the slider unit 3. In other words, the light incident surface of the grating coupler 14 is directed to the sliding surface 3 a of the slider unit 3. Inclined at about θ1 degree. More specifically, the light incident surface of the grating coupler 14 (which coincides with the light propagation direction through the waveguide 13) is set to form an obtuse angle with respect to the sliding surface 3a of the slider portion 3.
 さらに、図2に示すように、グレーティングカプラ14は、スライダ部3の一端面(-X方向の端部)に形成された導波路13に備えられていることから、スライダ部3の一端面(-X方向の端部)および導波路13は、スライダ部3の滑走面3aに対してθ1度傾斜しているといえる。 Further, as shown in FIG. 2, since the grating coupler 14 is provided in the waveguide 13 formed on one end surface (end portion in the −X direction) of the slider portion 3, one end surface ( It can be said that the end portion in the −X direction) and the waveguide 13 are inclined by θ1 degree with respect to the sliding surface 3 a of the slider portion 3.
 ここで、グレーティングカプラ14について、より具体的に説明する。 Here, the grating coupler 14 will be described more specifically.
 図4は、グレーティングカプラ14の構造を示す図であり、伝搬方向z1に対して構造が周期Λで変化する構造が示されている。導波路13は、下部クラッドとなる導波路基板18aと、光路となるコア19と、上部クラッド18bを有する。入射光の波長が1.5μmであれば、例えば上部クラッド18bとしては屈折率ncが1.0の空気、コア19としては屈折率nfが3.5のSi、下部クラッド18aとしては屈折率nsが1.44のSiO2が考えられる。なお、可視光線の波長帯域においては、Siが光の大きな損失を生じるために、コア19の材料としてはTa25などが適している。また、光が導波路から外側へ出ていかないようにするためには、コア19の屈折率を下部クラッド18a、上部クラッド18bの屈折率よりも高くすることが必要である。導波路の実効的な屈折率をneffとすると、導波路内における実効的な波長λeffは、λ0/neffである。ここでλ0は真空中におけるレーザ光の波長である。グレーティングカプラ14に空気中から入射されうる光の入射角は、下記のブラッグの回折条件式(1),(2)を満たす必要がある。ここでnc<neffであるので、qをグレーティングの回折次数とすると、q=0では光の結合は生じない。 FIG. 4 is a diagram showing the structure of the grating coupler 14 and shows a structure in which the structure changes with a period Λ with respect to the propagation direction z1. The waveguide 13 includes a waveguide substrate 18a serving as a lower cladding, a core 19 serving as an optical path, and an upper cladding 18b. If the wavelength of the incident light is 1.5 [mu] m, for example air having a refractive index n c is the upper clad 18b is 1.0, Si refractive index n f as the core 19 is 3.5, refraction as the lower cladding 18a SiO 2 with a rate n s of 1.44 is conceivable. In the visible light wavelength band, since Si causes a large loss of light, Ta 2 O 5 or the like is suitable as the material of the core 19. In order to prevent light from exiting from the waveguide, the refractive index of the core 19 needs to be higher than the refractive indexes of the lower cladding 18a and the upper cladding 18b. If the effective refractive index of the waveguide is n eff , the effective wavelength λ eff in the waveguide is λ 0 / n eff . Here, λ 0 is the wavelength of the laser beam in vacuum. The incident angle of light that can enter the grating coupler 14 from the air needs to satisfy the following Bragg diffraction conditional expressions (1) and (2). Here, since n c <n eff , if q is the diffraction order of the grating, no light coupling occurs when q = 0.
 neff0=nc0sinθq+qK(q=0,±1,±2,・・・)・・・(1)
 K=2π/Λ・・・(2)
n eff k 0 = n c k 0 sin θ q + qK (q = 0, ± 1, ± 2,...) (1)
K = 2π / Λ (2)
 ここでk0は真空中の波数(2π/λ0)、θqは、光と入射面の法線とが成す角度である入射角度である。また、q=±1が主な回折次数である。qの値が+1より大きい、またはq=-1より小さい場合の回折効率はq=±1次の回折効率よりも小さい。そして、結合効率を上げるためには回折効率の良いq=±1次光を導波路に結合するようにグレーティングカプラの周期Λを設計することが多く、0.1λeff~10λeffの範囲に設定される。回折角度が約90度のグレーティングカプラに垂直入射させる場合においてはθq=0であるので、式(1)および(2)から下式(3)および(4)が求まる。 Here, k 0 is a wave number (2π / λ 0 ) in vacuum, and θ q is an incident angle that is an angle formed by light and a normal line of the incident surface. Further, q = ± 1 is the main diffraction order. The diffraction efficiency when q is larger than +1 or smaller than q = −1 is smaller than q = ± 1st-order diffraction efficiency. And, often in order to increase the coupling efficiency of designing the period of the grating coupler Λ to combine good q = ± 1 order light diffraction efficiency into the waveguide, set in a range of 0.1 [lambda] eff ~ 10 [lambda] eff Is done. Since θ q = 0 when perpendicularly incident on a grating coupler having a diffraction angle of about 90 degrees, the following equations (3) and (4) can be obtained from equations (1) and (2).
 neff0=qK(q=0,±1,±2,・・・)・・・(3)
 Λ=qλ0/neff(q=0,±1,±2,・・・)・・・(4)
n eff k 0 = qK (q = 0, ± 1, ± 2,...) (3)
Λ = qλ 0 / n eff (q = 0, ± 1, ± 2,...) (4)
 つまり、周期Λをλ0/neffに一致させれば1次光を導波路13に結合させることが可能となる。また逆に、回折角度が約180度のグレーティングカプラに水平入射させる場合は入射角が90度であるため、下式(5),(6)が成立する。 That is, the primary light can be coupled to the waveguide 13 by making the period Λ coincide with λ 0 / n eff . On the other hand, when the light is incident horizontally on a grating coupler having a diffraction angle of about 180 degrees, since the incident angle is 90 degrees, the following expressions (5) and (6) are established.
 neff0-nc0=qk(q=0,±1,±2,・・・)・・・(5)
 Λ=qλ0/(neff-nc)(q=0,±1,±2,・・・)・・・(6)
n eff k 0 -n c k 0 = qk (q = 0, ± 1, ± 2, ···) ··· (5)
Λ = qλ 0 / (n eff −n c ) (q = 0, ± 1, ± 2,...) (6)
 つまり、周期Λをλ0/(neff-nc)とすれば1次光を導波路13に結合させることができる。 That is, if the period Λ is λ 0 / (n eff −n c ), the primary light can be coupled to the waveguide 13.
 さらに、グレーティングカプラ14への光の結合を定性的に説明する。入射面に対する斜め入射型のグレーティングカプラに入射させる場合を考えると、図22に示したように1次の回折光が導波路に結合し、-1次の回折光は基板方向に透過していく。入射角度θqは前に示したとおり、式(1),(2)において回折格子の周期を変化させることで設計でき、図15に示すように入射面に対する垂直入射も可能である。入射面に対する垂直入射の場合は+1次光と-1次光が導波路13の集光方向、集光方向とは逆の方向にそれぞれ均等に伝搬する。 Furthermore, light coupling to the grating coupler 14 will be qualitatively described. Considering a case where the light is incident on an oblique incidence type grating coupler with respect to the incident surface, as shown in FIG. 22, the first-order diffracted light is coupled to the waveguide, and the −1st-order diffracted light is transmitted in the direction of the substrate. . As described above, the incident angle θ q can be designed by changing the period of the diffraction grating in the equations (1) and (2), and perpendicular incidence to the incident surface is also possible as shown in FIG. In the case of normal incidence with respect to the incident surface, the + 1st order light and the −1st order light are propagated equally in the light collecting direction of the waveguide 13 and in the direction opposite to the light collecting direction.
 本実施形態では、例えば、グレーティングカプラ14への入射光の波長が633nmの場合において、ncを空気の屈折率(1.0)、nfをTa25コアの屈折率(2.09)、nsをSiO2クラッドの屈折率(1.47)、導波路の厚みTを0.1μmとする。グレーティングカプラ14については図4に示すように、断面構造が矩形形状であり、かつ構造の周期がΛで高さδが20nmとなるようにすればよい。ここで、凹凸を形成する1つの凹形状の幅は周期Λの1/2とした。凹形状はフォトリソグラフィを用いたエッチングプロセス等の半導体プロセスを用いて、精度よく作製することが可能である。このときの導波路13の基板に平行な偏波であるTE波の主モードにおける等価屈折率neffは、モード解析をすることによって、1.61と求めることができる。モード解析の詳細については、非特許文献2(K.Ogawa et al, “A Theoretical Analysis of Etched Grating Couplers for Integrated Optics,” IEEE J. Quantum Electron, vol. QE-9, No.1, pp. 29-42, 1973)を参考にした。 In the present embodiment, for example, when the wavelength of light incident on the grating coupler 14 is 633 nm, n c is the refractive index of air (1.0), and n f is the refractive index of the Ta 2 O 5 core (2.09). ), N s is the refractive index of the SiO 2 cladding (1.47), and the waveguide thickness T is 0.1 μm. As shown in FIG. 4, the grating coupler 14 may have a cross-sectional structure of a rectangular shape, a structure period of Λ, and a height δ of 20 nm. Here, the width of one concave shape forming the unevenness was set to ½ of the period Λ. The concave shape can be accurately manufactured using a semiconductor process such as an etching process using photolithography. At this time, the equivalent refractive index n eff in the main mode of the TE wave, which is a polarized wave parallel to the substrate of the waveguide 13, can be obtained as 1.61 by performing mode analysis. For details of mode analysis, see Non-Patent Document 2 (K. Ogawa et al, “A Theoretical Analysis of Etched Grating Couplers for Integrated Optics,” IEEE J. Quantum Electron, vol. QE-9, No. 1, pp. 29 -42, 1973).
 図17で説明したように、グレーティングカプラ14の回折角度θが160~180度の場合と回折角度θが90~110度の場合においては、周期Λの変化に対する回折角度θの変化が大きいという特徴がある。このため、この二つの領域においては、製造された回折格子の周期Λが製造誤差によって設計値からずれた場合に、回折角度θが大きく設計値からずれてしまうという問題がある。このため、グレーティングカプラ14の構造においては、回折角度を110~160度の範囲で設計することによって、製造誤差に起因する周期Λのずれがグレーティングカプラ14の結合効率の変動に与える影響を小さくしている。 As described with reference to FIG. 17, when the diffraction angle θ of the grating coupler 14 is 160 to 180 degrees and when the diffraction angle θ is 90 to 110 degrees, the change in the diffraction angle θ with respect to the change in the period Λ is large. There is. Therefore, in these two regions, there is a problem that the diffraction angle θ is greatly deviated from the design value when the period Λ of the manufactured diffraction grating is deviated from the design value due to a production error. Therefore, in the structure of the grating coupler 14, by designing the diffraction angle in the range of 110 to 160 degrees, the influence of the shift of the period Λ caused by the manufacturing error on the fluctuation of the coupling efficiency of the grating coupler 14 is reduced. ing.
 グレーティングカプラ14への入射角については、式(1),(2)に示したとおりであるが、結合効率は回折角や構造に依存する。回折角度と結合効率の関係については、例えば、上述の非特許文献2に示されている。 The incident angle to the grating coupler 14 is as shown in the equations (1) and (2), but the coupling efficiency depends on the diffraction angle and the structure. The relationship between the diffraction angle and the coupling efficiency is shown, for example, in Non-Patent Document 2 described above.
 次に、導波路13及びグレーティングカプラ14を傾けてスライダ部3に集積する方法の一例について説明する。光アシスト式磁気記録装置100においては、スライダ部3によって記録用ディスク2の磁気記録面と磁気記録ヘッドとを高精度に位置合わせしている。そして、スライダ部3にグレーティングカプラ14を積層する場合には、スライダ部3を形成するための基板上に磁気記録ヘッドを作成したあとにグレーティングカプラ14を配設した導波路13を形成する。磁気記録ヘッドおよびグレーティングカプラ14を配設した導波路13については、フォトリソグラフィなどの半導体プロセスを応用して高精度に作成できる。 Next, an example of a method in which the waveguide 13 and the grating coupler 14 are tilted and integrated in the slider unit 3 will be described. In the optically assisted magnetic recording apparatus 100, the slider unit 3 aligns the magnetic recording surface of the recording disk 2 with the magnetic recording head with high accuracy. When the grating coupler 14 is laminated on the slider portion 3, the waveguide 13 having the grating coupler 14 is formed after the magnetic recording head is formed on the substrate for forming the slider portion 3. The waveguide 13 provided with the magnetic recording head and the grating coupler 14 can be formed with high accuracy by applying a semiconductor process such as photolithography.
 図5は、スライダ部3の製造方法を示す図である。図5(a)は、スライダ部3の基板を示している。なお、基板は直方体状の形状を有する。まず、図5(b)に示すように、基板の上面に磁気記録ヘッドと、グレーティングカプラ14が配設された導波路13とを所定周期で積層する。次に、図5(c)に示すように、側方から見た形状が一組の対角がθ1である平行四辺形を形成するように、斜めにダイシングを行う。これによって、ダイシング後の基板の各々の入射面を、スライダ部3の滑走面となる3aに対して、θ1度で傾斜させる。図5における角度θ1は、図2における回折角度θ1に対応する。ダイシングの角度については、刃の角度あるいは基板の角度を制御することにより任意に設定できる。このため、θ1をグレーティングカプラ14に光を結合させるための最適な角度(110~160度)に設定できる。図6は、スライダ部3の基板を斜めにダイシングする方法を示す図である。斜めにダイシングする方法としては、例えば、図6(a)に示すように、基板を平らな台25の上に乗せて、ダイシング装置26を傾斜させたい所定の角度θに傾斜させつつダイシングを行う方法、また、図6(b)に示すように、水平面に対して(90-θ)度傾斜した台27の上に基板を乗せて、ダイシング装置26を水平面に対して垂直に移動させながらダイシングを行う方法がある。 FIG. 5 is a diagram showing a method for manufacturing the slider portion 3. FIG. 5A shows the substrate of the slider portion 3. The substrate has a rectangular parallelepiped shape. First, as shown in FIG. 5B, a magnetic recording head and a waveguide 13 provided with a grating coupler 14 are laminated on the upper surface of the substrate at a predetermined period. Next, as shown in FIG. 5C, dicing is performed diagonally so as to form a parallelogram having a pair of diagonal angles θ1 as viewed from the side. Thereby, each incident surface of the substrate after dicing is inclined at θ1 degree with respect to 3 a that becomes the sliding surface of the slider portion 3. The angle θ1 in FIG. 5 corresponds to the diffraction angle θ1 in FIG. The dicing angle can be arbitrarily set by controlling the blade angle or the substrate angle. Therefore, θ1 can be set to an optimum angle (110 to 160 degrees) for coupling light to the grating coupler 14. FIG. 6 is a diagram illustrating a method of dicing the substrate of the slider unit 3 diagonally. As a method of dicing diagonally, for example, as shown in FIG. 6A, the substrate is placed on a flat table 25 and dicing is performed while tilting the dicing device 26 at a predetermined angle θ. In the method, as shown in FIG. 6B, the substrate is placed on a table 27 inclined by (90-θ) degrees with respect to the horizontal plane, and the dicing apparatus 26 is moved vertically with respect to the horizontal plane. There is a way to do.
 次に、図5(d)に示すように、ダイシング後の基板を各々分離した後、図5(e)に示すように、滑走面3aを形成し、図5(f)に示す単体のスライダ部3に加工する。 Next, as shown in FIG. 5 (d), after dicing the substrates, the sliding surfaces 3a are formed as shown in FIG. 5 (e), and the single slider shown in FIG. 5 (f) is formed. Process to part 3.
 本実施形態によれば、導波路による光の伝搬方向がスライダ部3の滑走面3aに対して鈍角の角度で傾斜するので、導波路上に設けられた光結合器の入射面に滑走面3aと平行に光を入射しても効率的に導波路に光を結合することが可能となる。これにより、折り曲げ光学系を配置するための空間を節約でき、光源部7とグレーティングカプラ14とを記録用ディスク2と略平行な同一平面上に配置することが可能となり、光アシスト式磁気記録装置の薄型化および集積化が可能になる。また、構成が単純になり製造コストを低減でき、折り曲げ光学系で発生していた光損失をなくすことができる。また、折り曲げ光学系の実装精度によって生じる光軸ずれをなくすことができる。さらに、光を空間伝搬させる場合、間に折り曲げ光学系が不必要なため、光源を磁気記録ヘッドの近傍に配置させることができ、光損失を低減できる。 According to the present embodiment, since the light propagation direction through the waveguide is inclined at an obtuse angle with respect to the sliding surface 3a of the slider portion 3, the sliding surface 3a is formed on the incident surface of the optical coupler provided on the waveguide. Even if light is incident in parallel, it is possible to efficiently couple the light into the waveguide. As a result, a space for arranging the bending optical system can be saved, and the light source unit 7 and the grating coupler 14 can be arranged on the same plane substantially parallel to the recording disk 2. Can be reduced in thickness and integrated. In addition, the configuration can be simplified, the manufacturing cost can be reduced, and the optical loss generated in the bending optical system can be eliminated. Further, it is possible to eliminate the optical axis shift caused by the mounting accuracy of the bending optical system. Further, when light is propagated in space, a bending optical system is unnecessary, so that the light source can be arranged in the vicinity of the magnetic recording head, and light loss can be reduced.
 <変形例>
 以上、この発明の実施形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
<Modification>
As mentioned above, although embodiment of this invention was described, this invention is not limited to the thing of the content demonstrated above. The present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention.
 ◎例えば、上記実施形態では、スライダ部3がサスペンション部4の先端側(図2の+X側の端部)に設置されていたが、スライダ部3の滑走面3aに略平行なレーザ光を出射する光源部7を、サスペンション部4の先端側に設置してもよい。図7は、本変形例のヘッド機構20を側方(+Y側)から見た断面模式図である。本変形例のヘッド機構20(図7)は、上記実施形態のヘッド機構10(図2)と類似しており、対応する構成には同一の参照符号を付している。本変形例では回折角度をθ2度に設定している。 For example, in the above embodiment, the slider portion 3 is installed at the tip end side (the end portion on the + X side in FIG. 2) of the suspension portion 4, but emits laser light substantially parallel to the sliding surface 3 a of the slider portion 3. The light source unit 7 may be installed on the distal end side of the suspension unit 4. FIG. 7 is a schematic cross-sectional view of the head mechanism 20 of this modification as viewed from the side (+ Y side). The head mechanism 20 (FIG. 7) of this modification is similar to the head mechanism 10 (FIG. 2) of the above-described embodiment, and corresponding components are denoted by the same reference numerals. In this modification, the diffraction angle is set to θ2 degrees.
 ◎また、上記実施形態では、光結合器としてグレーティングカプラを用いたが、プリズムカプラを用いてもよい。プリズムカプラについては、例えば、非特許文献3(西原浩、春名正光、栖原利明,”光集積回路”,オーム社,1987)に記載されている。 In the above embodiment, the grating coupler is used as the optical coupler, but a prism coupler may be used. The prism coupler is described in, for example, Non-Patent Document 3 (Hiroshi Nishihara, Masamitsu Haruna, Toshiaki Sugawara, “Optical Integrated Circuit”, Ohmsha, 1987).
 図8は、光結合器としてプリズムカプラ16を備える導波路15の構成を示す図である。また、図9は、導波路15を図8の切断面線VIII-VIIIから見た断面図である。 FIG. 8 is a diagram showing a configuration of a waveguide 15 including a prism coupler 16 as an optical coupler. FIG. 9 is a cross-sectional view of the waveguide 15 as viewed along the section line VIII-VIII in FIG.
 スライダ部35の基板36の一端面に光結合器であるプリズムカプラ16が設けられる導波路15が形成されている。この導波路15による光の伝搬方向は、スライダ部35の滑走面35aに対して傾斜されている。図9に示すように、導波路15は、例えば、平面導波路であり、高屈折率のプリズムカプラ16(屈折率np)と屈折率の低いコア37(屈折率nd)そして導波路基板である下部クラッド38a(屈折率ns)、上部クラッド38b(屈折率ncl)で構成される。ここでそれぞれの屈折率については、コアに光がとじこめられるためには以下の条件を満たす必要がある。 A waveguide 15 in which the prism coupler 16 that is an optical coupler is provided is formed on one end surface of the substrate 36 of the slider portion 35. The light propagation direction by the waveguide 15 is inclined with respect to the sliding surface 35 a of the slider portion 35. As shown in FIG. 9, the waveguide 15 is, for example, a planar waveguide, a high refractive index prism coupler 16 (refractive index n p ), a low refractive index core 37 (refractive index n d ), and a waveguide substrate. The lower clad 38a (refractive index n s ) and the upper clad 38b (refractive index n cl ). Here, for each refractive index, the following conditions must be satisfied in order for light to enter the core.
 np>nd
 nd>ns
 nd>ncl
n p > n d
n d > n s
n d > n cl
 図9に示すように、プリズムカプラ16は、+Z側に頂角αを有し、頂角と対向する底面16aが導波路15の-X側の一端面15aの法線と垂直な六面体である。導波路の実効的な屈折率をneffとしてプリズムカプラ16の中に入射した光と底面とが成す角度θ4を下式(7)を満たすようにすれば、プリズムカプラ16から上部クラッド38b、さらにコア37の方向に浸み出したエバネッセント波が導波路15に結合する。エバネッセント波が効率良くコア37に浸み出すためには上部クラッド38bの厚さは、例えば光の波長以下であることが望ましい。 As shown in FIG. 9, the prism coupler 16 is a hexahedron having an apex angle α on the + Z side, and a bottom surface 16 a facing the apex angle perpendicular to the normal line of the end surface 15 a on the −X side of the waveguide 15. . If the effective refractive index of the waveguide is n eff and the angle θ4 formed between the light incident on the prism coupler 16 and the bottom surface is set to satisfy the following expression (7), the prism clad 16 to the upper cladding 38b, The evanescent wave that has leached in the direction of the core 37 is coupled to the waveguide 15. In order for the evanescent wave to ooze out into the core 37 efficiently, the thickness of the upper clad 38b is preferably equal to or less than the wavelength of light, for example.
 neff=npsinθ4・・・(7)
 (np>nd>ns
n eff = n p sin θ4 (7)
(N p > n d > n s )
 また、導波路15の-X側の一端面15aの法線とプリズムカプラ16の入射光との成す角度をθ3、プリズムカプラ16の中に入射した光とプリズムの底面16a、つまり導波路15の-X側の一端面15aの法線との成す角度をθ4とすると、スネルの法則により、下式(8)の関係がある。 Further, the angle formed by the normal of the one end surface 15a on the −X side of the waveguide 15 and the incident light of the prism coupler 16 is θ3, and the light incident into the prism coupler 16 and the bottom surface 16a of the prism, that is, the waveguide 15 If the angle formed with the normal line of the one end face 15a on the −X side is θ4, the following equation (8) is established according to Snell's law.
 ncsin(θ4-α)=npsin(θ3-α)・・・(8) n c sin (θ4-α) = n p sin (θ3-α) (8)
 ここで、ncは入射光が通る外部の媒質の屈折率であり、例えば空気の場合、ncは1.0である。また、αはプリズム頂角である。プリズムカプラ16を用いた場合には式(7)の条件により、角度θ3を0度とすることが難しい。したがって、光源部から出射され、スライダ部の滑走面に対して略平行に進行する光において、角度θ3が0度にならないようにする必要がある。本変形例では、導波路15をスライダ部35の滑走面に対して傾斜させ、プリズムカプラ16の底面16aをスライダ部35の滑走面に対して傾斜させて配置することによって、折り曲げ光学系を用いることなく、薄型の光学系を実現する。 Here, n c is the refractive index of the external medium through which the incident light, for example, in the case of air, the n c is 1.0. Α is the prism apex angle. When the prism coupler 16 is used, it is difficult to set the angle θ3 to 0 degrees due to the condition of the expression (7). Therefore, in the light emitted from the light source unit and traveling substantially parallel to the sliding surface of the slider unit, it is necessary to prevent the angle θ3 from becoming 0 degree. In this modification, the bending optical system is used by inclining the waveguide 15 with respect to the sliding surface of the slider portion 35 and arranging the bottom surface 16a of the prism coupler 16 to be inclined with respect to the sliding surface of the slider portion 35. Without realizing it, a thin optical system is realized.
 図10は、本変形例のヘッド機構30を側方(+Y側)から見た断面模式図である。本変形例のヘッド機構30は、上記実施形態のヘッド機構10と類似しており、対応する構成と同一の参照符号を付している。ヘッド機構30では、プリズムカプラ16の底面16aは、図9,10に示すとおり、入射光線の光軸およびスライダ部35の滑走面35aに平行な面に対してθ3度傾いて配置され、スライダ部3の一端面(-X方向の端部)および導波路13は、スライダ部3の滑走面3aに対して(θ3+90)度傾斜している。この(θ3+90)度は、図2,5のθ1度に対応するものである。 FIG. 10 is a schematic cross-sectional view of the head mechanism 30 of this modification as viewed from the side (+ Y side). The head mechanism 30 of this modification is similar to the head mechanism 10 of the above embodiment, and is given the same reference numerals as the corresponding configuration. In the head mechanism 30, the bottom surface 16a of the prism coupler 16 is disposed at an angle of θ3 degrees with respect to a plane parallel to the optical axis of the incident light beam and the sliding surface 35a of the slider portion 35, as shown in FIGS. 3 and the waveguide 13 are inclined by (θ3 + 90) degrees with respect to the sliding surface 3 a of the slider portion 3. This (θ3 + 90) degree corresponds to θ1 degree in FIGS.
 ◎また、上記実施形態では、光源部7はサスペンション部4の下面に取り付けられているが、アーム部5の下面に配置してもよい。 In the above embodiment, the light source unit 7 is attached to the lower surface of the suspension unit 4, but may be disposed on the lower surface of the arm unit 5.
 ◎また、光源部7として、製造工程が大量生産に適した面発光半導体レーザ(VCSEL)を用いてもよい。VCSELの利点の一つとして、発光面が基板に垂直であり、製造工程の途中のウェハの段階で様々な加工が可能な点があげられる。したがって、VCSELに、平行光を射出するためのマイクロレンズを製造工程の途中で集積することも可能である。図11は、VCSEL17に、マイクロレンズ18を集積した場合の出射光のようすを示す図である。図11(a)は、マイクロレンズ18を集積する前にVCSEL17から出射される光を示している。また、図11(b)は、マイクロレンズ18を集積したVCSEL17の側面図であり、図11(c)は、マイクロレンズ18を集積したVCSEL17の正面図である。ここで、ビームのスポットサイズをWo、波長をλとすると、VCSEL17から出射される光の広がり角θ5は、下式で表される。 As the light source unit 7, a surface emitting semiconductor laser (VCSEL) whose manufacturing process is suitable for mass production may be used. One advantage of the VCSEL is that the light emitting surface is perpendicular to the substrate, and various processes can be performed at the wafer stage during the manufacturing process. Therefore, it is possible to integrate microlenses for emitting parallel light in the VCSEL during the manufacturing process. FIG. 11 is a diagram showing the appearance of the emitted light when the microlens 18 is integrated on the VCSEL 17. FIG. 11A shows light emitted from the VCSEL 17 before the microlenses 18 are integrated. FIG. 11B is a side view of the VCSEL 17 in which the microlenses 18 are integrated, and FIG. 11C is a front view of the VCSEL 17 in which the microlenses 18 are integrated. Here, when the spot size of the beam is Wo and the wavelength is λ, the spread angle θ5 of the light emitted from the VCSEL 17 is expressed by the following equation.
 θ5=λ/(πWo)・・・(9) Θ5 = λ / (πWo) (9)
 したがって、VCSEL17にマイクロレンズ18を集積することによって、広がり角θ5で広がってしまう光を平行光に変換できる。なお、上記においては、マイクロレンズを用いてビームを整形する例について示したが、マイクロレンズに限らず回折格子あるいは回折格子付きレンズを用いてもよく、ビームを整形する機能を持つ薄型の光学部品であればよい。 Therefore, by integrating the microlens 18 in the VCSEL 17, the light that spreads at the spread angle θ5 can be converted into parallel light. In the above, an example of shaping a beam using a microlens has been shown. However, not only a microlens but also a diffraction grating or a lens with a diffraction grating may be used, and a thin optical component having a beam shaping function. If it is.
 ◎また、光源部7として、フォトニック結晶面発光レーザを用いてもよい。図12は、フォトニック結晶面発光レーザ19を示す図である。図12(a)は、フォトニック結晶面発光レーザ19の側面図、図12(b)は、フォトニック結晶面発光レーザ19の正面図を示している。フォトニック結晶面レーザ19は、半導体層の活性層面内にフォトニックバンドギャップを持つフォトニック結晶を形成することにより、フォトニック結晶面に垂直な方向に光出力が得られる。図12においては、フォトニック結晶面内の周期的構造を模式的に表している。フォトニック結晶面発光レーザ19の特徴は、活性層面内のフォトニック結晶を設ける領域の面積を変えることによって、発光面積の大きさを制御できることである。発光面積を増大させることによって、スポットサイズが大きくなり、ビームの広がり角が減少する。この結果、フォトニック結晶面発光レーザ19の近くにおいては、出射光は平行光に近くなる。例えば、スポットサイズを0.1mmで波長を780nmとしたときの広がり角は0.14度であり、平行光に近い。 A photonic crystal surface emitting laser may be used as the light source unit 7. FIG. 12 is a diagram showing a photonic crystal surface emitting laser 19. FIG. 12A shows a side view of the photonic crystal surface emitting laser 19 and FIG. 12B shows a front view of the photonic crystal surface emitting laser 19. The photonic crystal surface laser 19 forms a photonic crystal having a photonic band gap in the active layer surface of the semiconductor layer, thereby obtaining a light output in a direction perpendicular to the photonic crystal surface. FIG. 12 schematically shows a periodic structure in the photonic crystal plane. The feature of the photonic crystal surface emitting laser 19 is that the size of the light emitting area can be controlled by changing the area of the region where the photonic crystal is provided in the active layer plane. By increasing the light emitting area, the spot size increases and the beam divergence angle decreases. As a result, in the vicinity of the photonic crystal surface emitting laser 19, the emitted light is close to parallel light. For example, when the spot size is 0.1 mm and the wavelength is 780 nm, the spread angle is 0.14 degrees, which is close to parallel light.
 ◎また、上記実施形態では、記録媒体である記録用ディスク2に対して光で熱を付与しつつ、磁気で情報を記録および再生を行ったが、これに限られない。例えば、本発明を、磁気を用いることなく、記録媒体である光ディスク上に導波路下部の集光部から光を照射することによって、光ディスクの一部領域に光スポットを形成させて、光スポットによって一部領域に対して情報の記録を行う光記録装置に適用してもよい。 In the above embodiment, information is recorded and reproduced magnetically while applying heat to the recording disk 2 as a recording medium with light. However, the present invention is not limited to this. For example, according to the present invention, a light spot is formed on a partial area of an optical disk by irradiating light from a light condensing part below a waveguide onto an optical disk as a recording medium without using magnetism. The present invention may be applied to an optical recording apparatus that records information on a partial area.
 ◎また、光源として、光ファイバやポリマ導波路から出力される光を用いてもよい。具体的には、光源部7を他の場所に配置し、光源部7から出射される光を、光ファイバやポリマ導波路などによって送り、サスペンション部4の下面から出力させるようにする。光ファイバを用いた場合には、光ファイバの端面にマイクロレンズや回折格子を形成することによって、スライダ部3の滑走面3aに略平行な光を射出することができる。 ◎ In addition, light output from an optical fiber or a polymer waveguide may be used as a light source. Specifically, the light source unit 7 is disposed at another location, and light emitted from the light source unit 7 is sent by an optical fiber, a polymer waveguide, or the like, and output from the lower surface of the suspension unit 4. When an optical fiber is used, light substantially parallel to the sliding surface 3a of the slider portion 3 can be emitted by forming a microlens or a diffraction grating on the end face of the optical fiber.
 高速な信号処理に適したシングルモード光ファイバを用いる場合、光ファイバから出力される光線はスポットサイズがガウスビームで近似される。シングルモード光ファイバのスポットサイズは例えば光の波長が1.3μmのときに4.6μmとなるため、光の波長が850nmのときに2.5μm程度となる。このためビームの広がり角は光の波長が1.3μmのときに5.1度,光の波長が850nmのときに6.2度となってしまう。この場合は、光ファイバの端面を研磨してマイクロレンズを形成したり、外形がファイバと同一のGRINレンズを用いたりすることにより平行光を出射することが可能になる。 When a single mode optical fiber suitable for high-speed signal processing is used, the spot size of the light beam output from the optical fiber is approximated by a Gaussian beam. The spot size of the single mode optical fiber is, for example, 4.6 μm when the light wavelength is 1.3 μm, and is about 2.5 μm when the light wavelength is 850 nm. Therefore, the beam divergence angle is 5.1 degrees when the light wavelength is 1.3 μm, and 6.2 degrees when the light wavelength is 850 nm. In this case, it is possible to emit parallel light by polishing the end face of the optical fiber to form a microlens or using a GRIN lens having the same outer shape as the fiber.
 1 筐体
 2 記録用ディスク
 3,35 スライダ部
 4 サスペンション部
 5 アーム部
 7 光源部
 10,20,30 ヘッド機構
 13,15 導波路
 14 グレーティングカプラ
 16 プリズムカプラ
 100 光アシスト式磁気記録装置
DESCRIPTION OF SYMBOLS 1 Housing | casing 2 Recording disk 3,35 Slider part 4 Suspension part 5 Arm part 7 Light source part 10, 20, 30 Head mechanism 13,15 Waveguide 14 Grating coupler 16 Prism coupler 100 Optically assisted magnetic recording device

Claims (7)

  1.  導波路と、該導波路に光を結合するために導波路上に設けられた光結合器とを有し、記録媒体上で浮上しながら該記録媒体に対して相対移動可能に設けられたヘッドスライダを備え、
     前記導波路による光の伝搬方向が、前記記録媒体に対向する前記ヘッドスライダの底面に対して傾斜していることを特徴とするヘッド機構。
    A head having a waveguide and an optical coupler provided on the waveguide for coupling light to the waveguide, the head provided so as to be movable relative to the recording medium while floating on the recording medium With a slider,
    A head mechanism characterized in that a light propagation direction through the waveguide is inclined with respect to a bottom surface of the head slider facing the recording medium.
  2.  請求項1に記載のヘッド機構であって、
     前記伝搬方向が、前記底面に対して鈍角を成すことを特徴とするヘッド機構。
    The head mechanism according to claim 1,
    The head mechanism, wherein the propagation direction forms an obtuse angle with respect to the bottom surface.
  3.  請求項1または請求項2に記載のヘッド機構であって、
     前記伝搬方向と前記底面とが成す角度は、前記光結合器の入射面に入射する光と前記導波路との結合効率が最大となる角度になっていることを特徴とするヘッド機構。
    The head mechanism according to claim 1 or 2,
    An angle formed by the propagation direction and the bottom surface is an angle at which the coupling efficiency between the light incident on the incident surface of the optical coupler and the waveguide is maximized.
  4.  請求項1から請求項3のいずれか1つの請求項に記載のヘッド機構であって、
     前記光結合器が、グレーティングカプラであることを特徴とするヘッド機構。
    The head mechanism according to any one of claims 1 to 3, wherein
    A head mechanism wherein the optical coupler is a grating coupler.
  5.  請求項1または請求項3に記載のヘッド機構であって、
     前記光結合器が、プリズムカプラであることを特徴とするヘッド機構。
    The head mechanism according to claim 1 or 3, wherein
    A head mechanism wherein the optical coupler is a prism coupler.
  6.  請求項1から請求項5のいずれか1つの請求項に記載のヘッド機構を備えるとともに、前記導波路から前記記録媒体に対して光を照射することにより、前記記録媒体の一部領域を加熱昇温した状態で前記一部領域に対して情報の磁気的な記録を行うことを特徴とする光アシスト式磁気記録装置。 A head mechanism according to any one of claims 1 to 5 is provided, and a part of the recording medium is heated and heated by irradiating the recording medium with light from the waveguide. An optically assisted magnetic recording apparatus, wherein information is magnetically recorded in the partial area in a heated state.
  7.  請求項1から請求項5のいずれか1つの請求項に記載のヘッド機構を備えるとともに、前記導波路から前記記録媒体に対して光を照射することにより、前記記録媒体の一部領域に光スポットを形成し、該光スポットによって前記一部領域に対して情報の光学的な記録を行うことを特徴とする光記録装置。 A light spot is provided on a partial area of the recording medium by providing the head mechanism according to any one of claims 1 to 5 and irradiating the recording medium with light from the waveguide. , And optical recording of information is performed on the partial area by the light spot.
PCT/JP2009/061943 2008-07-25 2009-06-30 Head mechanism, optical assist type magnetic recording device, and optical recording device WO2010010796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010521662A JPWO2010010796A1 (en) 2008-07-25 2009-06-30 Head mechanism, optically assisted magnetic recording apparatus, and optical recording apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-192736 2008-07-25
JP2008192736 2008-07-25

Publications (1)

Publication Number Publication Date
WO2010010796A1 true WO2010010796A1 (en) 2010-01-28

Family

ID=41570262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061943 WO2010010796A1 (en) 2008-07-25 2009-06-30 Head mechanism, optical assist type magnetic recording device, and optical recording device

Country Status (2)

Country Link
JP (1) JPWO2010010796A1 (en)
WO (1) WO2010010796A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220174A (en) * 2006-02-15 2007-08-30 Fujitsu Ltd Magnetic head and information storage apparatus
JP2008059737A (en) * 2006-08-31 2008-03-13 Samsung Electronics Co Ltd Metal film having opening and its formation method, and light transmission module comprising metal film having opening and heat-assisted magnetic recording head comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220174A (en) * 2006-02-15 2007-08-30 Fujitsu Ltd Magnetic head and information storage apparatus
JP2008059737A (en) * 2006-08-31 2008-03-13 Samsung Electronics Co Ltd Metal film having opening and its formation method, and light transmission module comprising metal film having opening and heat-assisted magnetic recording head comprising the same

Also Published As

Publication number Publication date
JPWO2010010796A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5777585B2 (en) Apparatus, method, and system with waveguide
US20080117727A1 (en) Head, head gimbal assembly and information recording apparatus
US20080002529A1 (en) Optical head and optical recording apparatus
WO2007105393A1 (en) Recording head and recording device
US20120257490A1 (en) Gratings For Waveguide Coupling
WO2007132766A1 (en) Optical recording head, magneto-optical recording head, and optical recording device
US8599655B2 (en) Near field light generator, optical recording head and optical recording apparatus
JP4184570B2 (en) Information recording / reproducing device
US20100208557A1 (en) Optical Head and Optical Recording Device
KR20090037803A (en) Head slider
WO2010010806A1 (en) Optical recording head and optical recording device
WO2009139258A1 (en) Optical element, arm mechanism, and information recording device
WO2010010796A1 (en) Head mechanism, optical assist type magnetic recording device, and optical recording device
JP4093286B2 (en) Optical element, optical element manufacturing method, and optical head
WO2010104030A1 (en) Optical recording head and optical recording apparatus
JP2009176354A (en) Optical element, slider and optical head
JP2009104734A (en) Micro-spot formation structure and optical head
JPWO2008142917A1 (en) Optical recording head, optically assisted magnetic recording head, and optical recording apparatus
JP2009110562A (en) Optical element and optical head
WO2010016360A1 (en) Optical device, optical recording head and optical recording device
JP5692797B2 (en) Near-field optical element, recording head, information recording / reproducing apparatus, manufacturing method of near-field optical element, and manufacturing method of recording head
JP2009283051A (en) Optical element, optical recording head and optical recording device
JP2009048742A (en) Optical head and information storing apparatus
WO2007116723A1 (en) Optical recording head and optical recording device
JP4337951B2 (en) Optical head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521662

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800311

Country of ref document: EP

Kind code of ref document: A1