WO2010010019A1 - Verfahren zum schnellen entleeren des aktivkohlefilters unter einbeziehung eines hc-sensors (konzentrationsänderung) - Google Patents

Verfahren zum schnellen entleeren des aktivkohlefilters unter einbeziehung eines hc-sensors (konzentrationsänderung) Download PDF

Info

Publication number
WO2010010019A1
WO2010010019A1 PCT/EP2009/059052 EP2009059052W WO2010010019A1 WO 2010010019 A1 WO2010010019 A1 WO 2010010019A1 EP 2009059052 W EP2009059052 W EP 2009059052W WO 2010010019 A1 WO2010010019 A1 WO 2010010019A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
activated carbon
carbon filter
sensor
valve
Prior art date
Application number
PCT/EP2009/059052
Other languages
English (en)
French (fr)
Inventor
Wolfgang Mai
Paul Rodatz
Rudolf Bierl
Stephan Heinrich
Manfred Weigl
Andreas Wildgen
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to CN200990100406XU priority Critical patent/CN202091061U/zh
Priority to US13/055,318 priority patent/US8394172B2/en
Publication of WO2010010019A1 publication Critical patent/WO2010010019A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the invention relates to a device for a tank system, a motor vehicle having a device according to the invention for a tank system, and an emptying method of an activated carbon filter for a tank system according to the invention.
  • a tank system in particular the tank system of a motor vehicle, usually has an activated carbon filter for filtering volatile fuel components, for example hydrocarbon emissions (HC). Since the activated carbon filter has a certain capacity, it must be regenerated. If the absorption capacity is exceeded, the volatile fuel components pass through the activated carbon filter and get into the environment. The regeneration of the activated carbon filter is usually carried out in the motor vehicle with fresh air while driving. After the air has passed through the activated carbon filter, it is fed to the intake tract of the engine. An arranged in the exhaust stream of the engine lambda sensor detects the ratio of air to fuel and transmits this to the control unit. From the determined ratio, the hydrocarbon emissions (HC) can be determined. Depending on these values, the control unit then regulates the flow through the activated carbon filter with air.
  • volatile fuel components for example hydrocarbon emissions (HC). Since the activated carbon filter has a certain capacity, it must be regenerated. If the absorption capacity is exceeded, the volatile fuel components pass through the activated carbon filter and get into the environment. The regeneration
  • a disadvantage of this method is the time-delayed response of the controller. If the motor vehicle is shaken, for example due to a curb, a greater outgassing of hydrocarbons occurs in the fuel tank. These get into the activated carbon filter, which is purged with a constant flow rate. As the concentration of hydrocarbons in the activated carbon filter has increased, but the flow rate remains constant, increases the concentration of hydrocarbons that are flushed out of the activated charcoal filter. This gas with a higher hydrocarbon concentration is now fed to the engine. This leads to a disturbance in the mixture formation and thus to a disturbance in the combustion process. Only after the combustion, the lambda sensor detects the change in the combustion mixture in the exhaust stream and then can transmit this to the control unit to lower the flow rate of the activated carbon filter.
  • a consequent disadvantage is that the flow rate is below the maximum flow rate. If the activated carbon filter in this process with the maximum possible flow rate flowing, this would lead to a more unfavorable mixture formation in a vibration. This can cause the mixture to stop igniting and the engine to stop.
  • Another disadvantage of this method is that it is not suitable for motor vehicles with start / stop function and vehicles with hybrid drive. This is due to the fact that the phases in which the engine is not running, the regeneration of the activated carbon filter is limited.
  • the device according to the invention for a tank system has the following features: an activated carbon filter in which volatile fuel components, in particular hydrocarbons (HC) are receivable and which has a supply line for the volatile fuel components, a purge gas device, with a purge gas, in particular air, the Activated carbon filter is fed, an outlet with a valve over which volatile fuel components are purifiable by purge gas from the activated carbon filter and the valve is connected to a controller, while a concentration sensor for volatile fuel components is arranged in the outlet to flush in conjunction with the control unit of the activated carbon filter.
  • HC hydrocarbons
  • the purging or emptying of an activated carbon filter is carried out in dependence on a concentration sensor which is connected to a control unit.
  • the concentration sensor is arranged in the outlet line of the activated carbon filter.
  • the concentration sensor detects the concentration and / or concentration change of the volatile components.
  • HC sensor is described in the still unpublished German patent application with the official file number 10 2007 033 144.6.
  • the detected values or changes are transmitted by the concentration sensor to the control unit.
  • a valve is also arranged, which is also connected to the control unit.
  • the control unit can thus respond to the valve in dependence on the values detected by the concentration sensor. For example, due to an increase in concentration, a partial or complete closing of the valve can be initiated.
  • this device is used in a motor vehicle, an advantage of this device is the faster reactivity compared to conventional systems. Thus, a disturbance in the mixture formation by a Timing correct injection quantity prevented and realized the flow through the activated carbon filter with the maximum flow rate. If such a system is used in a vehicle with start / stop function or hybrid drive, the complete regeneration of the activated carbon filter on the basis of a controlled purging of the activated carbon filter can also be implemented here.
  • the device comprises a container, in particular for the storage of fuel, which is connected to the feed line of the activated carbon filter, and a valve which is arranged on the purge gas device of the activated carbon filter.
  • This valve is also connected to the control unit.
  • the concentration sensor in front of the valve in the outlet line. This allows the valve to be closed before the gas has passed through it with a higher concentration of volatile component. If this device is used in a motor vehicle, the change in concentration does not interfere with the mixture formation in the engine.
  • the concentration sensor is arranged in the outlet line behind the valve. Thereby, the device can be set to a certain concentration rate. If this embodiment is used in the motor vehicle, the limitation to a predetermined concentration, which, for example, must not be exceeded, can be realized.
  • control unit controls the valves connected to it as a function of the values detected by the concentration sensor. For example causes an increase in concentration closing the valve in the purge line and / or in the outlet line. Thereafter, for example, after a predetermined time, a reopening of one or both valves.
  • a motor vehicle according to the invention has a device for a tank system described above. By using the tank system according to the invention within a motor vehicle, the motor vehicle also has all the advantages described above.
  • a lambda sensor in the motor vehicle, which is connected to the control unit. This is particularly advantageous when the concentration sensor detects a change in concentration. With the help of the lambda sensor, the ratio between air and fuel is determined and transmitted to the control unit. On this basis, the hydrocarbon emission can be determined. This can selectively control one or both valves on the basis of the detected change in concentration and the emission value.
  • the emptying method according to the invention of an activated carbon filter for a tank system comprises the following steps:
  • the emptying process according to the invention regenerates the activated carbon filter of a device according to the invention of a tank system.
  • the activated carbon filter is completely or partially emptied. Accordingly, the volatile components collected in the activated carbon filter are completely or partially purged.
  • the activated carbon filter filters volatile components, in particular hydrocarbons (HC).
  • HC hydrocarbons
  • the activated carbon filter flows through a purge gas.
  • concentration and / or concentration change of the volatile component is detected by a concentration sensor.
  • the sensor transmits the recorded values to a control unit. This control unit carries out the regeneration of the activated carbon filter as a function of the values detected by the concentration sensor.
  • control unit controls the valve in the flushing line and / or in the outlet line of the activated carbon filter.
  • valve in the outlet line of the activated carbon filter closes due to an increase in the concentration of volatile components detected by the concentration sensor.
  • control unit regulates the position of one or both valves as a function of the concentration sensor detected. values.
  • the control unit uses the air / fuel ratio detected by a lambda sensor to determine the emissions.
  • the concentration sensor senses changes in concentration and the controller closes a valve due to, for example, an increase in concentration
  • the values provided by the lambda sensor are used to detect a drop in the concentration of hydrocarbons. Then the controller can again open the valves to flow through the activated carbon filter.
  • the concentration sensor also detects a concentration
  • the values of the concentration sensor and the values can be compared on the basis of the lambda sensor detected air / fuel ratio in the control unit.
  • a corresponding control which realizes the highest possible flow rate with a low disturbance of the mixture formation, is thus feasible.
  • This embodiment comprises a motor vehicle in which the device for a tank system is mounted. Show it:
  • Fig. 1 is a schematic representation of an embodiment of a device for a tank system
  • Fig. 2 is a flow chart of the preferred method for cleaning an activated carbon filter for a tank system.
  • FIG. 1 schematically shows a preferred embodiment of the device according to the invention for a tank system 1.
  • the tank system 1 is part of a motor vehicle.
  • the device for a tank system 1 comprises an activated carbon filter 10 with a volatile component supply line 12, a purge gas device 14, an exhaust line 16 with a valve 22, and a concentration sensor 30 connected to a controller 40. If volatile components from a fuel tank 50 enter the activated carbon filter 10 via the supply line 12, they are filtered there and accumulate. Since the activated carbon filter 10 can accommodate only a certain amount of volatile components, the flushing or emptying of the activated carbon filter 10 is necessary to avoid the breakdown of the volatile components. This is done via a purge gas device 14, in which preferably a valve 20 is located.
  • the gas now laden with volatile components leaves the activated carbon filter 10 via the outlet line 16.
  • a concentration sensor 30 for the volatile components for example a hydrocarbon sensor
  • the exhaust pipe 16 is connected to the intake pipe 62 of an engine 60. Behind the engine is a lambda sensor 70 in the exhaust stream of the engine. The lambda sensor 70 determines the air / fuel ratio in the exhaust stream of the engine and communicates the values to the controller 40. Based on this
  • Ratio can make a statement about the hydrocarbon emissions.
  • the concentration of hydrocarbon in the outlet line 16 increases. This increase is detected by the concentration sensor 30 and transmitted to the control unit 40. The controller then closes, for example, the valve 20 and / or valve 22 for a certain period of time in whole or in part. Another option is to regulate the flow through the activated carbon filter 10. The aim here is to keep the concentration of hydrocarbon in the outlet line at a predetermined value. This is stored, for example, in the control unit 50.
  • the lambda sensor 70 arranged behind the engine 60 serves as a check.
  • the valves 20, 22 are activated as a function of the concentrations determined there.
  • the concentration sensor 30 serves as a pre-warning sensor for checking whether the opening or closing of the valves was too large. In this way, a high flow rate of the activated carbon filter 10 can be achieved without this leading to disturbances in the mixture formation of the motor 60.
  • Fig. 2 shows the flow chart of a preferred embodiment of the method according to the invention. Starting from the device described above for a tank system, the method steps are set out below:
  • step A the filtering of the volatile components in an activated carbon filter takes place.
  • step B the activated carbon filter with a purge gas, in particular air, flows through and thereby completely or partially emptied.
  • concentration of the volatile components in the purge gas behind the activated carbon filter is detected by a concentration sensor (step C).
  • step D these values are transmitted to a control unit. As a result, rinsing of the activated carbon filter is provided via the concentration sensor in conjunction with the control unit.
  • the flow or purging of the activated carbon filter can be regulated or controlled.
  • the flow through the activated carbon filter is controlled, for example, the valve in the outlet line and / or in the rinsing device at a detected concentration increase or the
  • the regulation of one or both valves takes place as a function of the concentration change or concentration detected by the concentration sensor. For example, the valves are closed at a detected increase in concentration. As soon as the concentration sensor detects a decrease in the concentration, the valves are opened so far that there is no further decrease in the concentration but also no renewed increase in concentration. Alternatively or additionally, a comparison with concentration setpoints can take place in the control unit. In this way, the purging gas rate can be specifically adapted to the values measured by the concentration sensor.
  • step E determination of the air / fuel ratio by a lambda sensor. These values are transmitted to the control unit in step F. On the basis of this ratio, the hydrocarbon emissions can be determined (step G). These can be compared in step H with the detected values of the concentration sensor. As a result of this comparison, both a control and a regulation of the flow through the activated carbon filter can optionally be implemented.
  • the concentration sensor detects the change in the concentration and with the help of the lambda sensor, the value of the hydrocarbon emissions is determined.
  • a threshold value for the hydrocarbon emission is stored in the control unit. If the concentration sensor detects an increase in concentration, the valves are closed. If the hydrocarbon emissions determined on the basis of the lambda sensor transmitted air / fuel ratio below the threshold, the valves are opened and the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Verfahren zum schnellen Entleeren des Aktivkohlefilters unter Einbeziehung eines HC-Sensors (Konzentrationsänderung). In dieser Beschreibung sind eine Vorrichtung für ein Tanksystem (1), ein Kraftfahrzeug mit einer erfindungsgemäßen Vorrichtung für ein Tanksystem (1) sowie ein Entleerungsverfahren eines Aktivkohlefilters (10) für ein Tanksystem offenbart. Die Konzentration von flüchtigen Komponenten, die aus dem Aktivkohlefilter ausgespült werden, wird mit einem Konzentrationssensor (30) erfasst. Der Konzentrationssensor (30) dient als Vorwarnsensor, um eine Störung in der Gemischbildung eines Motors (60) zu verhindern.

Description

Beschreibung
Verfahren zum schnellen Entleeren des Aktivkohlefilters unter Einbeziehung eines HC-Sensors (Konzentrationsänderung)
Die Erfindung betrifft eine Vorrichtung für ein Tanksystem, ein Kraftfahrzeug mit einer erfindungsgemäßen Vorrichtung für ein Tanksystem sowie ein Entleerungsverfahren eines Aktivkohlefilters für ein erfindungsgemäßes Tanksystem.
Ein Tanksystem, insbesondere das Tanksystem eines Kraftfahrzeugs, weist üblicherweise einen Aktivkohlefilter zum Filtern flüchtiger Kraftstoffkomponenten, beispielsweise Kohlenwas- serstoffemissionen (HC) , auf. Da der Aktivkohlefilter eine bestimmte Aufnahmekapazität besitzt, muss er regeneriert werden. Wird die Aufnahmekapazität überschritten, schlagen die flüchtigen Kraftstoffkomponenten durch den Aktivkohlefilter durch und gelangen in die Umwelt. Die Regenerierung des Aktivkohlefilters erfolgt im Kraftfahrzeug üblicherweise mit Frischluft während der Fahrt. Nachdem die Luft den Aktivkohlefilter durchströmt hat, wird sie dem Ansaugtrakt des Motors zugeführt. Ein im Abgasstrom des Motors angeordneter Lambda- Sensor erfasst das Verhältnis von Luft zu Kraftstoff und übermittelt dieses an das Steuergerät. Aus dem ermittelten Verhältnis lassen sich die Kohlenwasserstoffemissionen (HC) ermitteln. In Abhängigkeit von diesen Werten regelt das Steuergerät dann die Durchströmung des Aktivkohlefilters mit Luft.
Ein Nachteil dieses Verfahrens ist die zeitverzögerte Reaktion des Steuergeräts. Wird das Kraftfahrzeug erschüttert, beispielsweise durch eine Bordsteinkante, kommt es im Kraftstofftank zu einer größeren Ausgasung von Kohlenwasserstoffen. Diese gelangen in den Aktivkohlefilter, der mit einer konstanten Durchströmungsrate gespült wird. Da sich die Konzentration der Kohlenwasserstoffe im Aktivkohlefilter erhöht hat, die Durchströmungsrate aber konstant bleibt, erhöht sich die Konzentration der Kohlenwasserstoffe, die aus dem Aktivkohlefilter ausgespült werden. Dieses Gas mit einer höheren Kohlenwasserstoffkonzentration wird nun dem Motor zugeführt. Dies führt zu einer Störung in der Gemischbildung und damit zu einer Störung im Verbrennungsprozess . Erst nach der Verbrennung erkennt der Lambda-Sensor im Abgasstrom die Veränderung im Verbrennungsgemisch und kann diese dann an das Steuergerät übermitteln, um die Durchströmungsrate des Aktivkohlefilters abzusenken.
Ein sich daraus ergebender Nachteil ist, dass die Durchströmungsrate unter der maximalen Durchströmungsrate liegt. Würde der Aktivkohlefilter in diesem Verfahren mit der maximal möglichen Durchströmungsrate angeströmt, würde dies bei einer Erschütterung zu einer noch ungünstigeren Gemischbildung führen. Dies kann dazu führen, dass das Gemisch nicht mehr gezündet werden kann und der Motor stoppt.
Ein weiterer Nachteil dieses Verfahrens ist, dass es nicht für Kraftfahrzeuge mit Start-/Stop-Funktion sowie Fahrzeuge mit Hybridantrieb geeignet ist. Dies ist dadurch begründet, dass durch die Phasen, in denen der Motor nicht läuft, die Regenerierung des Aktivkohlefilters eingeschränkt ist.
Es ist daher die Aufgabe der vorliegenden Erfindung, das Regenerierungsverfahren eines Aktivkohlefilters im Vergleich zum Stand der Technik zu optimieren.
Die oben genannte Aufgabe wird durch eine Vorrichtung für ein Tanksystem gemäß Anspruch 1, ein Kraftfahrzeug mit einer erfindungsgemäßen Vorrichtung für ein Tanksystem gemäß Anspruch 7 sowie ein Entleerungsverfahren eines Aktivkohlefilters für ein Tanksystem gemäß Anspruch 9 gelöst. Weitere vorteilhafte Ausführungen gehen aus der Beschreibung, den Zeichnungen so- wie den Unteransprüchen hervor. Die erfindungsgemäße Vorrichtung für ein Tanksystem weist die folgenden Merkmale auf: einen Aktivkohlefilter, in dem flüchtige Kraftstoffkomponenten, insbesondere Kohlenwasserstoffe (HC) , aufnehmbar sind und der eine Zuführleitung für die flüchtigen Kraftstoffkomponenten aufweist, eine Spülgasvorrichtung, mit der ein Spülgas, insbesondere Luft, dem Aktivkohlefilter zuführbar ist, eine Auslassleitung mit einem Ventil, über die flüchtige Kraftstoffkomponenten mittels Spülgas aus dem Aktivkohlefilter abführbar sind und dessen Ventil mit einem Steuergerät verbunden ist, während ein Konzentrationssensor für flüchtige Kraftstoffkomponenten in der Auslassleitung angeordnet ist, um in Verbindung mit dem Steuergerät ein Spülen des Aktivkohlefilters bereitzustellen.
Das Spülen oder Entleeren eines Aktivkohlefilters erfolgt in Abhängigkeit von einem Konzentrationssensor, der mit einem Steuergerät verbunden ist. Der Konzentrationssensor ist in der Auslassleitung des Aktivkohlefilters angeordnet. Vorteilhafterweise erfasst der Konzentrationssensor die Konzentrati- on und/oder Konzentrationsänderung der flüchtigen Komponenten. Ein derartiger HC-Sensor ist in der noch unveröffentlichten deutschen Patentanmeldung mit dem amtlichen Aktenzeichen 10 2007 033 144.6 beschrieben.
Die erfassten Werte oder Änderungen übermittelt der Konzentrationssensor an das Steuergerät. In der Auslassleitung ist zudem ein Ventil angeordnet, das auch mit dem Steuergerät verbunden ist. Das Steuergerät kann somit in Abhängigkeit der vom Konzentrationssensor erfassten Werte das Ventil anspre- chen . Beispielsweise kann aufgrund eines Konzentrationsanstiegs ein teilweises oder vollständiges Schließen des Ventils veranlasst werden.
Wird diese Vorrichtung in einem Kraftfahrzeug eingesetzt, er- gibt sich als ein Vorteil dieser Vorrichtung die im Vergleich zu konventionellen Systemen schnellere Reaktionsfähigkeit. Somit wird eine Störung in der Gemischbildung durch eine zeitrichtige Korrektur der Einspritzmenge verhindert und die Durchströmung des Aktivkohlefilters mit der maximalen Durchströmungsrate realisiert. Wird ein solches System in einem Fahrzeug mit Start-/Stop-Funktion oder Hybridantrieb einge- setzt, ist auch hier die vollständige Regenerierung des Aktivkohlefilters auf Grundlage eines kontrollierten Spülens des Aktivkohlefilters realisierbar.
In einer vorteilhaften Ausführungsform umfasst die Vorrich- tung einen Behälter, insbesondere zur Lagerung von Kraftstoff, der mit der Zuführleitung des Aktivkohlefilters verbunden ist, und ein Ventil, das an der Spülgasvorrichtung des Aktivkohlefilters angeordnet ist. Dieses Ventil ist auch mit dem Steuergerät verbunden. Durch diesen Aufbau kann das Spü- len des Aktivkohlefilters gezielt durchgeführt werden, da das Steuergerät nun in Abhängigkeit der vom Konzentrationssensor erfassten Werte beide Ventile ansprechen kann.
Weiterhin vorteilhaft ist die Anordnung des Konzentrations- sensors vor dem Ventil in der Auslassleitung. Dadurch kann das Ventil geschlossen werden, bevor das Gas mit einer höheren Konzentration einer flüchtigen Komponente durchgeströmt ist. Wird diese Vorrichtung in einem Kraftfahrzeug eingesetzt, wirkt sich die Konzentrationsänderung nicht störend auf die Gemischbildung im Motor aus.
In einer weiteren vorteilhaften Ausführungsform ist der Konzentrationssensor in der Auslassleitung hinter dem Ventil angeordnet. Dadurch kann die Vorrichtung auf eine bestimmte Konzentrationsrate eingestellt werden. Wird diese Ausführungsform im Kraftfahrzeug verwendet, ist somit die Begrenzung auf eine vorgegebene Konzentration, die beispielsweise nicht überschritten werden darf, realisierbar.
In einer weiteren vorteilhaften Ausführungsform steuert das Steuergerät die mit ihm verbundenen Ventile in Abhängigkeit der vom Konzentrationssensor erfassten Werte. Beispielsweise bewirkt eine Konzentrationserhöhung ein Schließen des Ventils in der Spülleitung und/oder in der Auslassleitung. Danach erfolgt, beispielsweise nach Ablauf einer vorgegebenen Zeit, ein erneutes Öffnen eines oder beider Ventile.
Weiterhin vorteilhaft ist die Regelung der beiden Ventile in Abhängigkeit von der vom Konzentrationssensor erfassten Konzentration. Ein Vorteil dabei ist die Überwachung der Konzentration oder Konzentrationsänderung in der Auslassleitung und die direkt daran gekoppelte Regelung der Ventile. Auf diese Weise kann die Ventilstellung laufend korrigiert und den jeweiligen Gegebenheiten angepasst werden. Hierdurch wird eine schnellere Reaktion im Vergleich zu konventionellen Vorrichtungen bei einer höheren Durchströmungsrate des Aktivkoh- lefilters erzielt.
Ein erfindungsgemäßes Kraftfahrzeug weist eine oben beschriebene Vorrichtung für ein Tanksystem auf. Durch die Verwendung des erfindungsgemäßen Tanksystems innerhalb eines Kraftfahr- zeugs weist auch das Kraftfahrzeug alle vorher beschriebenen Vorteile auf.
Weiterhin vorteilhaft ist ein Lambda-Sensor im Kraftfahrzeug, der mit dem Steuergerät verbunden ist. Dies ist besonders dann vorteilhaft, wenn der Konzentrationssensor eine Konzentrationsänderung erfasst. Mit Hilfe des Lambda-Sensors wird das Verhältnis zwischen Luft und Kraftstoff ermittelt und an das Steuergerät übertragen. Auf dieser Grundlage kann die Kohlenwasserstoffemission ermittelt werden. Dieses kann an- hand der erfassten Konzentrationsänderung und des Emissionswertes eines oder beide Ventil gezielt ansteuern.
Das erfindungsgemäße Entleerungsverfahren eines Aktivkohlefilters für ein Tanksystem umfasst die folgenden Schritte:
Filtern flüchtiger Komponenten, insbesondere Kohlenwasserstoffe (HC) , in einem Aktivkohlefilter, Durchströmen des Aktivkohlefilters mit einem Spülgas, Erfassen einer Konzentration und/oder einer Konzentrationsänderung der flüchtigen Komponente in einer Auslassleitung des Aktivkohlefilters mittels eines Konzentrations- sensors und
Übermitteln der Konzentration und/oder der Konzentrationsänderung im Konzentrationssensor an ein Steuergerät, um in Verbindung mit dem Steuergerät ein Spülen des Aktivkohlefilters bereitzustellen.
Das erfindungsgemäße Entleerungsverfahren regeneriert den Aktivkohlefilter einer erfindungsgemäßen Vorrichtung eines Tanksystems. Durch die Regenerierung wird der Aktivkohlefilter vollständig oder teilweises entleert. Dementsprechend werden die im Aktivkohlefilter gesammelten flüchtigen Komponenten ganz oder teilweise ausgespült. Im Betrieb filtert der Aktivkohlefilter flüchtige Komponenten, insbesondere Kohlenwasserstoffe (HC) . Um ein Durchschlagen der flüchtigen Komponenten durch den Aktivkohlefilter zu vermeiden, wird der Ak- tivkohlefilter mit einem Spülgas durchströmt. In der Auslassvorrichtung des Aktivkohlefilters wird die Konzentration und/oder Konzentrationsänderung der flüchtigen Komponente durch einen Konzentrationssensor erfasst. Der Sensor übermittelt die erfassten Werte an ein Steuergerät. Dieses Steuerge- rät führt in Abhängigkeit der vom Konzentrationssensor erfassten Werte die Regenerierung des Aktivkohlefilters durch.
Vorteilhafterweise steuert das Steuergerät das Ventil in der Spülleitung und/oder in der Auslassleitung des Aktivkohlefil- ters . Beispielsweise schließt das Ventil in der Auslassleitung des Aktivkohlefilters aufgrund einer Erhöhung der Konzentration an flüchtigen Komponenten, die vom Konzentrationssensor erfasst wurde.
In einer weiteren vorteilhaften Ausführungsform des Verfahrens regelt das Steuergerät die Stellung eines oder beider Ventile in Abhängigkeit der vom Konzentrationssensor erfass- ten Werte. Somit sind ein gezieltes Spülen sowie das Einstellen auf eine vorgegebene Konzentration der flüchtigen Komponente im Gas hinter dem Aktivkohlefilter realisierbar.
Vorteilhafterweise nutzt das Steuergerät das von einem Lamb- da-Sensor erfasste Luft-/Kraftstoff-Verhältnis zur Ermittlung der Emissionen. Während der Konzentrationssensor beispielsweise Änderungen der Konzentration erfasst und das Steuergerät aufgrund beispielsweise einer Konzentrationserhöhung ein Ventil schließt, werden die vom Lambda-Sensor übermittelten Werte genutzt, um einen Abfall in der Konzentration der Kohlenwasserstoffe festzustellen. Daraufhin kann das Steuergerät erneut die Ventile zum Durchströmen des Aktivkohlefilters öffnen. Erfasst der Konzentrationssensor beispielsweise auch eine Konzentration, können die Werte des Konzentrationssensors und die Werte auf Basis des vom Lambda-Sensor erfassten Luft-/Kraftstoff-Verhältnisses im Steuergerät verglichen werden. Eine entsprechende Ansteuerung, die eine möglichst hohe Durchflussrate bei einer niedrigen Störung der Gemischbildung realisiert, ist somit durchführbar.
Im Folgenden wird die vorliegende Erfindung unter Bezugnahme auf die begleitende Zeichnung anhand einer bevorzugten Ausführungsform erläutert. Diese Ausführungsform umfasst ein Kraftfahrzeug, in dem die Vorrichtung für ein Tanksystem montiert ist. Es zeigen:
Fig. 1 eine schematische Darstellung einer Ausführungsform einer Vorrichtung für ein Tanksystem und
Fig. 2 ein Fließschema des bevorzugten Verfahrens zum Reinigen eines Aktivkohlefilters für ein Tanksystem.
In Fig. 1 ist eine bevorzugte Ausführungsform der erfindungs- gemäßen Vorrichtung für ein Tanksystem 1 schematisch dargestellt. Das Tanksystem 1 ist Teil eines Kraftfahrzeugs. Die Vorrichtung für ein Tanksystem 1 umfasst einen Aktivkohlefilter 10 mit einer Zuführleitung 12 für flüchtige Komponenten, eine Spülgasvorrichtung 14, eine Auslassleitung 16 mit einem Ventil 22 sowie einen Konzentrationssensor 30, der mit einem Steuergerät 40 verbunden ist. Gelangen über die Zuführleitung 12 flüchtige Komponenten aus einem Kraftstoffbehälter 50 in den Aktivkohlefilter 10, werden diese dort gefiltert und reichern sich an. Da der Aktivkohlefilter 10 nur eine bestimmte Menge an flüchtigen Komponenten aufnehmen kann, ist zur Vermeidung des Durchschlagens der flüchtigen Komponenten das Spülen oder Entleeren des Aktivkohlefilters 10 notwendig. Dies geschieht über eine Spülgasvorrichtung 14, in der sich vorzugsweise ein Ventil 20 befindet. Wird über diese Spülgasvorrichtung ein Gas, insbesondere Luft, dem Ak- tivkohlefilter 10 zugeführt, verlässt das nun mit flüchtigen Komponenten beladene Gas den Aktivkohlefilter 10 über die Auslassleitung 16. In der Auslassleitung 16 befindet sich ein Konzentrationssensor 30 für die flüchtigen Komponenten, beispielsweise ein Kohlenwasserstoffsensor . Dieser kann vor oder hinter dem Ventil 22 angeordnet sein. Die Auslassleitung 16 ist mit der Ansaugleitung 62 eines Motors 60 verbunden. Hinter dem Motor befindet sich ein Lambda-Sensor 70 im Abgasstrom des Motors. Der Lambda-Sensor 70 ermittelt das Luft- /Kraftstoff-Verhältnis im Abgasstrom des Motors und übermit- telt die Werte an das Steuergerät 40. Auf der Basis dieses
Verhältnisses lässt sich eine Aussage über die Kohlenwasserstoffemissionen treffen.
Wird im Betrieb der Tank 50 erschüttert, gast mehr Kohlenwas- serstoff aus. Da der Aktivkohlefilter mit einer unveränderten Rate an Spülgas durchströmt wird, erhöht sich die Konzentration an Kohlenwasserstoff in der Auslassleitung 16. Diese Erhöhung wird durch den Konzentrationssensor 30 detektiert und an das Steuergerät 40 übermittelt. Das Steuergerät schließt dann beispielsweise das Ventil 20 und/oder Ventil 22 für einen bestimmten Zeitraum ganz oder teilweise. Eine weitere Option ist die Regelung der Durchströmung des Aktivkohlefilters 10. Ziel hierbei ist es, die Konzentration von Kohlenwasserstoff in der Auslassleitung auf einem vorgegebenen Wert zu halten. Dieser ist beispielsweise im Steuer- gerät 50 hinterlegt. Zur Überprüfung dient zusätzlich der hinter dem Motor 60 angeordnete Lambda-Sensor 70. In Abhängigkeit von den dort ermittelten Konzentrationen werden die Ventile 20, 22 angesprochen. Der Konzentrationssensor 30 dient als Vorwarnsensor zur Überprüfung, ob die Öffnung oder Schließung der Ventile zu groß war. Auf diese Weise kann eine hohe Durchströmungsrate des Aktivkohlefilters 10 erreicht werden, ohne dass dies zu Störungen in der Gemischbildung des Motors 60 führt.
Fig. 2 zeigt das Fließschema einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens. Ausgehend von der oben beschriebenen Vorrichtung für ein Tanksystem werden die Verfahrensschritte im Folgenden dargelegt:
In Schritt A erfolgt das Filtern der flüchtigen Komponenten in einem Aktivkohlefilter. In Schritt B wird der Aktivkohlefilter mit einem Spülgas, insbesondere Luft, durchströmt und dadurch ganz oder teilweise entleert. Die Konzentration der flüchtigen Komponenten im Spülgas hinter dem Aktivkohlefilter wird über einen Konzentrationssensor erfasst (Schritt C) . In Schritt D werden diese Werte an ein Steuergerät übermittelt. Dadurch wird über den Konzentrationssensor in Verbindung mit dem Steuergerät ein Spülen des Aktivkohlefilters bereitgestellt.
Optional kann das Durchströmen oder Spülen des Aktivkohlefilters geregelt oder gesteuert werden. Wenn das Durchströmen des Aktivkohlefilters gesteuert wird, werden beispielsweise das Ventil in der Auslassleitung und/oder in der Spülvorrich- tung bei einer erfassten Konzentrationserhöhung oder dem
Überschreiten eines bestimmten Konzentrationswerts geschlos- sen und erst nach einer bestimmten Zeit, unabhängig von der nun erfassten Konzentrationsänderung, geöffnet.
Alternativ erfolgt das Regeln eines oder beider Ventile in Abhängigkeit der vom Konzentrationssensor erfassten Konzentrationsänderung oder Konzentration. Beispielsweise werden die Ventile bei einer erfassten Konzentrationserhöhung geschlossen. Sobald der Konzentrationssensor ein Absinken der Konzentration erfasst, werden die Ventile so weit geöffnet, dass es zu keinem weiteren Absinken der Konzentration aber auch zu keinem erneuten Ansteigen der Konzentration kommt. Alternativ oder ergänzend kann ein Vergleich mit Konzentrationssollwerten im Steuergerät stattfinden. Auf diese Weise ist die Spülgasrate gezielt an die vom Konzentrationssensor gemessenen Werte anpassbar.
Weiterhin vorteilhaft ist ein Ermitteln (Schritt E) des Luft- /Kraftstoff-Verhältnisses durch einen Lambda-Sensor . Diese Werte werden in Schritt F an das Steuergerät übermittelt. Auf der Basis dieses Verhältnisses sind die Kohlenwasserstoffemissionen ermittelbar (Schritt G) . Diese können in Schritt H mit den erfassten Werten des Konzentrationssensors verglichen werden. Aufgrund dieses Vergleichs ist optional sowohl eine Steuerung, als auch eine Regelung des Durchströmens des Ak- tivkohlefilters realisierbar.
Beispielsweise erfasst der Konzentrationssensor die Änderung der Konzentration und mit Hilfe des Lambda-Sensors wird der Wert der Kohlenwasserstoffemissionen ermittelt. Im Steuerge- rät ist ein Schwellenwert für die Kohlenwasserstoffemission hinterlegt. Erfasst der Konzentrationssensor einen Anstieg der Konzentration, werden die Ventile geschlossen. Liegen die auf Basis des vom Lambda-Sensors übermittelten Luft-/Kraft- stoff-Verhältnisses ermittelten Kohlenwasserstoffemission un- ter dem Schwellenwert, werden die Ventile geöffnet und der
Anstieg der Konzentration erneut durch den Konzentrationssensor erfasst. Je nach der Stärke des Anstiegs erfolgt ein er- neutes Schließen der Ventile oder die Durchströmung wird fortgesetzt .

Claims

Patentansprüche
1. Vorrichtung für ein Tanksystem (1) , die die folgenden Merkmale aufweist: a) einen Aktivkohlefilter (10) , in dem flüchtige Kraftstoffkomponenten, insbesondere Kohlenwasserstoffe (HC) , aufnehmbar sind und der eine Zuführleitung (12) für die flüchtigen Kraftstoffkomponenten aufweist, b) eine Spülgasvorrichtung (14) , mit der ein Spülgas, insbesondere Luft, dem Aktivkohlefilter (10) zuführbar ist, c) eine Auslassleitung (16) mit einem Ventil (22) , über die flüchtige Kraftstoffkomponenten mittels Spülgas aus dem Aktivkohlefilter (10) abführbar sind und des- sen Ventil (22) mit einem Steuergerät (40) verbunden ist, während d) ein Konzentrationssensor (30) für flüchtige Kraftstoffkomponenten in der Auslassleitung (16) angeordnet ist, um in Verbindung mit dem Steuergerät (40) ein Spülen des Aktivkohlefilters (10) bereitzustellen, d a d u r c h g e k e n n z e i c h n e t , dass e) über eine vom Konzentrationssensor (30) erfasste Konzentration und/oder Konzentrationsänderung ein Ventil (20) in der Spülgasleitung (14) steuerbar oder regel- bar ist.
2. Vorrichtung gemäß einem der vorhergehenden Ansprüche, in der der Konzentrationssensor (30) eine Konzentration und/oder Konzentrationsänderung der Kohlenwasserstoffe erfasst.
3. Vorrichtung gemäß einem der vorhergehenden Ansprüche, weiterhin umfassend: a) einen Behälter (50) , insbesondere zur Lagerung von Kraftstoff, der mit der Zuführleitung (12) des Aktivkohlefilters (10) verbunden ist.
4. Vorrichtung gemäß einem der vorhergehenden Ansprüche, in der der Konzentrationssensor (30) in der Auslassleitung (16) vor oder nach dem Ventil (22) angeordnet ist.
5. Vorrichtung gemäß einem der vorhergehenden Ansprüche, in der über die erfasste Konzentration und/oder Konzentrationsänderung das Ventil (22) in der Auslassleitung (16) gesteuert oder geregelt wird.
6. Kraftfahrzeug mit einer Vorrichtung für ein Tanksystem (1) gemäß einem der Ansprüche 1 bis 5.
7. Kraftfahrzeug gemäß Anspruch 6, das weiterhin einen Lambda-Sensor (70) im Abgasstrom eines Motors (60) auf- weist, der mit dem Steuergerät (40) verbunden ist.
8. Entleerungsverfahren eines Aktivkohlefilters (10) für ein Tanksystem (1) , das die folgenden Schritte umfasst: a) Filtern (A) flüchtiger Komponenten, insbesondere Koh- lenwasserstoffe (HC) , in einem Aktivkohlefilter (10) , b) Durchströmen (B) des Aktivkohlefilters (10) mit einem Spülgas, c) Erfassen (C) einer Konzentration und/oder einer Konzentrationsänderung der flüchtigen Komponente in ei- ner Auslassleitung (16) des Aktivkohlefilters (10) mittels eines Konzentrationssensors (30) und d) Übermitteln (D) der Konzentration und/oder der Konzentrationsänderung vom Konzentrationssensor (30) an ein Steuergerät (40) , um in Verbindung mit dem Steu- ergerät (40) ein Spülen des Aktivkohlefilters (10) bereitzustellen, das Verfahren ist g e k e n n z e i c h n e t d u r c h den Schritt: e) Steuern oder Regeln eines Ventils (20) in einer Spülgasleitung (14) in Abhängigkeit von der vom Konzent- rationssensor (30) erfassten Konzentration und/oder
Konzentrationsänderung .
9. Entleerungsverfahren gemäß Anspruch 9, in dem ein Ventil
(22) in der Auslassleitung (16) in Abhängigkeit von der vom Konzentrationssensor (30) gemessenen Konzentration und/oder Konzentrationsänderung gesteuert oder geregelt wird.
10. Entleerungsverfahren gemäß einem der Ansprüche 8 bis 9, das die weiteren Schritte umfasst: a) Ermitteln (E) des Luft-/Kraftstoff-Verhältnisses durch einen Lambda-Sensor (70) , b) Übermitteln (F) des Luft-/Kraftstoff-Verhältnisses an das Steuergerät (40) , c) Ermitteln (G) von Kohlenwasserstoffemissionen auf Grundlage des vom Lambda-Sensor (70) übermittelten Verhältnisses und d) Vergleichen (H) der vom Konzentrationssensor (30) er- fassten Konzentration und/oder Konzentrationsänderung mit den Kohlenwasserstoffemissionen, um das Durchströmen des Aktivkohlefilters (10) bereitzustellen.
11. Entleerungsverfahren gemäß Anspruch 10, in dem auf Basis des vom Lambda-Sensor (70) erfassten Verhältnisses und des Konzentrationssensors (30) die Durchströmung des Aktivkohlefilters (10) gesteuert wird.
12. Entleerungsverfahren gemäß Anspruch 11, in dem auf Basis des vom Lambda-Sensor (70) erfassten Verhältnisses und des Konzentrationssensors (30) die Durchströmung des Aktivkohlefilters (10) geregelt wird.
PCT/EP2009/059052 2008-07-24 2009-07-15 Verfahren zum schnellen entleeren des aktivkohlefilters unter einbeziehung eines hc-sensors (konzentrationsänderung) WO2010010019A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200990100406XU CN202091061U (zh) 2008-07-24 2009-07-15 用于油箱***的装置以及具有该装置的机动车
US13/055,318 US8394172B2 (en) 2008-07-24 2009-07-15 Method for rapidly emptying the activated carbon filter while using an HC sensor (concentration change)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008034487A DE102008034487A1 (de) 2008-07-24 2008-07-24 Verfahren zum schnellen Entleeren des Aktivkohlefilters unter Einbeziehung eines HC-Sensors (Konzentrationsänderung)
DE102008034487.7 2008-07-24

Publications (1)

Publication Number Publication Date
WO2010010019A1 true WO2010010019A1 (de) 2010-01-28

Family

ID=41278563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059052 WO2010010019A1 (de) 2008-07-24 2009-07-15 Verfahren zum schnellen entleeren des aktivkohlefilters unter einbeziehung eines hc-sensors (konzentrationsänderung)

Country Status (4)

Country Link
US (1) US8394172B2 (de)
CN (1) CN202091061U (de)
DE (1) DE102008034487A1 (de)
WO (1) WO2010010019A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063788A1 (de) * 2008-12-04 2010-06-10 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer brennkraftmaschine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033058A1 (de) * 2008-07-14 2010-02-04 Continental Automotive Gmbh Brennkraftmaschine und Verfahren zum Betreiben einer solchen Brennkraftmaschine
DE102010055319A1 (de) * 2010-12-21 2012-06-21 Audi Ag Einrichtung zum Be- und Entlüften eines Kraftstofftanks
DE102013209716A1 (de) * 2013-05-24 2014-11-27 Continental Automotive Gmbh Kraftstofftanksystem
DE102013219231A1 (de) * 2013-09-25 2015-03-26 Bayerische Motoren Werke Aktiengesellschaft Tankentlüftungsvorrichtung, Kraftfahrzeug, Verfahren zur Steuerung einer Kraftstoffgemischzusammensetzung und Steuervorrichtung dafür
US10232685B2 (en) 2017-02-03 2019-03-19 Ford Global Technologies, Llc Automotive interior air quality carbon canister status and replacement/regeneration control
DE102018200990A1 (de) * 2018-01-23 2019-07-25 Robert Bosch Gmbh System zum Entlüften eines Kraftstofftanks
DE102018104622A1 (de) 2018-02-28 2019-08-29 Volkswagen Aktiengesellschaft Verfahren zum Entlüften eines Kraftstofftanksystems einer Brennkraftmaschine basierend auf dem Messsignal eines Lambdasensors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735255A (en) * 1997-04-03 1998-04-07 Ford Global Technologies, Inc. Engine control system for a lean burn engine having fuel vapor recovery
WO2000061937A1 (en) * 1999-04-08 2000-10-19 Engelhard Corporation Dynamic infrared sensor for automotive pre-vaporized fueling control
US6227177B1 (en) * 1998-07-07 2001-05-08 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine equipped with evaporative emission control system
US20020162457A1 (en) * 2001-05-02 2002-11-07 Toyota Jidosha Kabushiki Kaisha Fuel vapor handling apparatus and diagnostic apparatus thereof
JP2004156495A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
DE102007002188A1 (de) * 2007-01-16 2008-07-17 Dr.Ing.H.C. F. Porsche Ag Hybrid-Fahrzeug
WO2009010102A1 (de) * 2007-07-13 2009-01-22 Continental Automotive Gmbh Sensor zur messung des kohlenwasserstoffgehalts in einem gasstrom in einer spülleitung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922066B2 (ja) * 1979-03-08 1984-05-24 日産自動車株式会社 内燃機関の蒸発燃料処理装置
DE4427688C2 (de) * 1994-08-04 1998-07-23 Siemens Ag Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
DE19509310C2 (de) * 1995-03-15 2001-02-08 Iav Motor Gmbh Verfahren und Einrichtung zur Entlastung des Absorptionsspeichers einer Tankentlüftung bei Verbrennungsmotoren
JP3274064B2 (ja) * 1996-04-26 2002-04-15 本田技研工業株式会社 キャニスタの防塵フィルタ
US6499476B1 (en) * 2000-11-13 2002-12-31 General Motors Corporation Vapor pressure determination using galvanic oxygen meter
US6453887B1 (en) * 2001-03-14 2002-09-24 Nissan Motor Co., Ltd. Fuel vapor emission control device for an engine
JP2004360553A (ja) * 2003-06-04 2004-12-24 Suzuki Motor Corp 内燃機関の蒸発燃料制御装置
JP2007218122A (ja) * 2006-02-14 2007-08-30 Denso Corp 漏れ診断装置
DE102007046482B4 (de) * 2007-09-28 2009-07-23 Continental Automotive Gmbh Verfahren und Vorrichtung zur Korrektur der Kraftstoffkonzentration im Regeneriergasstrom einer Tankentlüftungsvorrichtung
US7942134B2 (en) * 2009-03-12 2011-05-17 Ford Global Technologies Llc Evaporative emission system and method for controlling same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735255A (en) * 1997-04-03 1998-04-07 Ford Global Technologies, Inc. Engine control system for a lean burn engine having fuel vapor recovery
US6227177B1 (en) * 1998-07-07 2001-05-08 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine equipped with evaporative emission control system
WO2000061937A1 (en) * 1999-04-08 2000-10-19 Engelhard Corporation Dynamic infrared sensor for automotive pre-vaporized fueling control
US20020162457A1 (en) * 2001-05-02 2002-11-07 Toyota Jidosha Kabushiki Kaisha Fuel vapor handling apparatus and diagnostic apparatus thereof
JP2004156495A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
DE102007002188A1 (de) * 2007-01-16 2008-07-17 Dr.Ing.H.C. F. Porsche Ag Hybrid-Fahrzeug
WO2009010102A1 (de) * 2007-07-13 2009-01-22 Continental Automotive Gmbh Sensor zur messung des kohlenwasserstoffgehalts in einem gasstrom in einer spülleitung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063788A1 (de) * 2008-12-04 2010-06-10 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer brennkraftmaschine

Also Published As

Publication number Publication date
CN202091061U (zh) 2011-12-28
DE102008034487A1 (de) 2010-02-04
US8394172B2 (en) 2013-03-12
US20110226804A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2010010019A1 (de) Verfahren zum schnellen entleeren des aktivkohlefilters unter einbeziehung eines hc-sensors (konzentrationsänderung)
EP2627889A1 (de) Verfahren und vorrichtung zum betreiben eines tankentlüftungssystems
DE112008000679B4 (de) Abgasreinigungsvorrichtung für einen Verbrennungsmotor
DE112009000112B4 (de) Verfahren und Vorrichtung zur Abgasreinigung
DE102007013993B4 (de) Steuerverfahren für eine Brennkraftmaschine
DE102008041612B4 (de) Verfahren und Vorrichtung zur Ansteuerung einer Dosiereinrichtung
DE102008000691A1 (de) Verfahren und Vorrichtung zur Überwachung eines Zuluftsystems einer Brennkraftmaschine
DE102006002717B3 (de) Verfahren und Vorrichtung zum Ansteuern eines Ventils eines Kraftstoffdampf-Rückhaltesystems
DE112004000447B4 (de) Detektion der Kohlenwasserstoffkonzentration bei der Regenerierung eines Kraftstoffdampfspeicherbehälters
DE102011086118B4 (de) Verfahren und System für einen Abgaspartikelfilter
EP2199586A2 (de) Verfahren zur Prüfung der Funktion eines Tankentlüftungsventils
DE10252225A1 (de) Verfahren zur Bestimmung des Kraftstoff-Dampfdrucks in einem Kraftfahrzeug mit Bordmitteln
WO2003100227A1 (de) Verfahren zur regenerierung eines verstopften partikelfilters
DE102018219978B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
EP2358983B1 (de) Verfahren zur regeneration eines offenen partikelabscheiders
DE102009027010A1 (de) Verfahren zur Diagnose eines Aktors eines Ladedrucksystems einer Brennkraftmaschine
WO2019197110A1 (de) Veraschung eines partikelfilters in einem kraftfahrzeug
DE10033160B4 (de) Brennkraftmaschine, insbesondere für Kraftfahrzeuge
EP0484657B1 (de) Vorrichtung zum vorübergehenden Speichern und dosierten Einspeisen flüchtiger Kraftstoffbestandteile in das Ansaugrohr einer Brennkraftmaschine
WO2021052747A1 (de) Verfahren und vorrichtung zur diagnose der entlüftungsleitung des kraftstofftanks eines verbrennungsmotorisch betreibbaren kraftfahrzeugs
DE10323869A1 (de) Verfahren zum Ansteuern eines Regenerierventils eines Kraftstoffdampf-Rückhaltesystems
DE102016221901A1 (de) Verfahren zur Steuerung einer Tankentlüftung für einen Kraftstofftank
DE10126520C2 (de) Verfahren und Vorrichtung zur quantitativen Ermittlung einer Brennstoffausgasung in einer Brennstofftankanlage
WO2011051440A1 (de) Verfahren zum spülen eines aktivkohlefilters
DE102009003738A1 (de) Abgasreinigungsanlage sowie Verfahren zum Zuführen von thermischer Energie zum Auslösen und/oder Unterstützen eines in einer Abgasreinigungsanlage ablaufenden Prozesses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200990100406.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09780622

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13055318

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09780622

Country of ref document: EP

Kind code of ref document: A1