WO2010005050A1 - 信号分析装置、信号制御装置及びその方法と、プログラム - Google Patents

信号分析装置、信号制御装置及びその方法と、プログラム Download PDF

Info

Publication number
WO2010005050A1
WO2010005050A1 PCT/JP2009/062522 JP2009062522W WO2010005050A1 WO 2010005050 A1 WO2010005050 A1 WO 2010005050A1 JP 2009062522 W JP2009062522 W JP 2009062522W WO 2010005050 A1 WO2010005050 A1 WO 2010005050A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
separation
sound source
unit
Prior art date
Application number
PCT/JP2009/062522
Other languages
English (en)
French (fr)
Inventor
嶋田 修
野村 俊之
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/003,522 priority Critical patent/US20110112843A1/en
Priority to EP20090794494 priority patent/EP2312578A4/en
Priority to JP2010519814A priority patent/JPWO2010005050A1/ja
Priority to CN2009801341797A priority patent/CN102138176B/zh
Publication of WO2010005050A1 publication Critical patent/WO2010005050A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing

Definitions

  • the present invention relates to a signal analysis device, a signal control device and method, and a program.
  • the encoding unit 900 generates an encoded multi-channel signal by encoding the multi-channel input signal.
  • the AAC method disclosed in Non-Patent Document 1 is known.
  • Encoding section 900 outputs the encoded multi-channel signal as a transmission signal. The transmission signal is supplied to the decoding unit 910 via the transmission path.
  • the decoding unit 910 decodes the received transmission signal into a multi-channel decoded signal.
  • Decoding section 910 then supplies the multi-channel decoded signal to signal recombining section 920.
  • decoding section 910 When encoding is performed using AAC, decoding section 910 generates a multi-channel decoded signal by decoding information encoded by the AAC scheme.
  • the signal re-synthesizing unit 920 receives the multi-channel decoded signal and the output signal information, and re-synthesizes the multi-channel output signal by localizing the multi-channel decoded signal to a desired position based on the output signal information. Then, the signal recombining unit 920 outputs a multi-channel output signal.
  • Enhanced Matrix Mode disclosed in Non-Patent Document 2 can be used.
  • the output signal information is information representing the relationship between the multi-channel decoded signal and the multi-channel output signal.
  • the related technology described above has a problem that the sound source signals constituting the multi-channel input signal cannot be controlled independently. This is because the related technique described above controls a multi-channel input signal in which sound source signals are mixed, and does not control each sound source signal. That is, it is not possible to perform control such as changing the localization of a specific sound source signal included in the multi-channel input signal or suppressing or enhancing only the specific sound source signal included in the multi-channel input signal.
  • the present invention has been invented in view of the above problems, and its object is to provide a signal analysis apparatus and signal control capable of independently controlling one or a plurality of sound source signals constituting a multi-channel input signal.
  • An apparatus, a method thereof, and a program are provided.
  • the present invention that solves the above-described problem has a separation information calculation unit that generates separation information for separating an input signal mixed with a sound source signal into the sound source signal, and transmits the input signal and the separation information
  • a separation information calculation unit that generates separation information for separating an input signal mixed with a sound source signal into the sound source signal, and transmits the input signal and the separation information
  • the present invention for solving the above-described problems generates separation information for separating an input signal mixed with sound source signals into the sound source signal, and recombination information representing the relationship between the input signal and the sound source signal.
  • a recombination information calculation unit and a signal separation unit that generates a separation signal by separating the input signal into the sound source signal based on the separation information, and sends the separation signal and the recombination information.
  • This is a signal analyzing apparatus characterized by
  • the present invention that solves the above-described problems includes a separation information calculation unit that generates separation information for separating an input signal mixed with a sound source signal into the sound source signal, and the input signal based on the separation information.
  • a signal analyzing apparatus comprising: a signal separating unit that generates a separated signal by separating into a sound source signal; and an encoding unit that encodes the separated signal.
  • the present invention for solving the above-mentioned problems is a signal that receives a mixed signal in which sound source signals are mixed, separation information for separating the mixed signal into the sound source signals, and output signal information for controlling a specific sound source signal.
  • a control device a separation / recombination information generating unit for generating separation / recombination information for controlling the sound source signal from the output signal information and the separation information, and based on the separation / recombination information, And a signal recombining unit that corrects the mixed signal.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the mixed signal, and the mixed signal as the sound source signal.
  • a signal control device that receives separation information for separating the output signal information and output signal information for controlling a specific sound source signal, and controls the sound source signal from the output signal information, the analysis information, and the separation information
  • a signal control apparatus comprising: a separation / recombination information generation unit that generates modified separation / recombination information for performing a signal; and a signal recombination unit that modifies the downmix signal based on the modified separation / recombination information It is.
  • the present invention that solves the above-described problems includes a separated signal obtained by separating a mixed signal in which sound source signals are mixed, recombination information that represents a relationship between the mixed signal and the separated signal, and an output signal that controls a specific sound source signal.
  • a re-synthesizing information integration unit that generates integrated re-synthesizing information for controlling the sound source signal from the output signal information and the re-synthesizing information;
  • a signal control apparatus comprising: a signal re-synthesis unit that corrects the separated signal based on synthesis information.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information indicating a relationship between the downmix signal and the separated signal, and the mixing
  • a signal control device that receives recombination information representing a relationship between a signal and the separated signal and output signal information for controlling a specific sound source signal, the output signal information, the analysis information, and the resynthesis information
  • a re-synthesis information correcting unit that generates corrected re-synthesizing information for controlling the sound source signal, and a signal re-synthesizing unit that corrects the downmix signal based on the corrected re-synthesizing information. It is a signal control apparatus.
  • the present invention for solving the above-mentioned problems is a signal control device for receiving a separated signal obtained by separating a mixed signal mixed with a sound source signal and output signal information for controlling a specific sound source signal.
  • a signal control device comprising a signal recombining unit for correcting the separated signal based on the signal recombination unit.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information that represents a relationship between the downmix signal and the separated signal, and a specific signal.
  • a signal control apparatus for receiving output signal information for controlling a sound source signal, wherein the resynthesis information correcting unit generates corrected resynthesis information for controlling the sound source signal from the output signal information and the analysis information.
  • a signal re-synthesizing unit that corrects the downmix signal based on the modified re-synthesis information.
  • the present invention for solving the above-mentioned problems is a signal control device for receiving a mixed signal in which sound source signals are mixed, output signal information for controlling a specific sound source signal, and for separating the mixed signal into the sound source signals.
  • a separation information calculation unit for generating separation information
  • a separation / recombination information generation unit for generating separation / recombination information for controlling the sound source signal from the output signal information and the separation information
  • the separation / resynthesis And a signal recombining unit configured to correct the mixed signal based on the information.
  • the present invention that solves the above-described problem generates separation information for separating an input signal mixed with a sound source signal into the sound source signal, and sends the input signal and the separation information. It is an analysis method.
  • the present invention for solving the above problems generates separation information for separating an input signal mixed with a sound source signal into the sound source signal, and recombination information representing a relationship between the input signal and the sound source signal.
  • a signal analysis method characterized in that, based on the separation information, the separation signal is generated by separating the input signal into the sound source signal, and the separation signal and the re-synthesis information are transmitted.
  • the present invention for solving the above problems generates separation information for separating an input signal mixed with sound source signals into the sound source signals, and separates the input signals into the sound source signals based on the separation information.
  • the signal analysis method is characterized in that a separated signal is generated by this and the separated signal is encoded.
  • the present invention that solves the above problems receives a mixed signal in which sound source signals are mixed, separation information for separating the mixed signal into the sound source signals, and output signal information for controlling a specific sound source signal,
  • a signal control method comprising generating separation / recombination information for controlling the sound source signal from the output signal information and the separation information, and correcting the mixed signal based on the separation / resynthesis information It is.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the mixed signal, and the mixed signal as the sound source signal.
  • the separation information for separating the sound source signal and the output signal information for controlling the specific sound source signal are received, and the modified separation signal for controlling the sound source signal is controlled from the output signal information, the analysis information, and the separation information.
  • the signal control method is characterized by generating synthesis information and modifying the downmix signal based on the modified separation / recombination information.
  • the present invention that solves the above-described problems includes a separated signal obtained by separating a mixed signal in which sound source signals are mixed, recombination information that represents a relationship between the mixed signal and the separated signal, and an output signal that controls a specific sound source signal.
  • Information is generated, integrated re-synthesis information for controlling the sound source signal is generated from the output signal information and the re-synthesis information, and the separation signal is corrected based on the corrected separation re-synthesis information.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information indicating a relationship between the downmix signal and the separated signal, and the mixing Recombining information representing the relationship between the signal and the separated signal, output signal information for controlling a specific sound source signal, and receiving the signal, controlling the sound source signal from the output signal information, the analysis information, and the recombining information
  • the signal control method is characterized in that modified re-synthesizing information is generated and the downmix signal is modified based on the modified re-synthesizing information.
  • the present invention for solving the above problems receives a separated signal obtained by separating a mixed signal in which sound source signals are mixed, and output signal information for controlling a specific sound source signal, and converts the separated signal based on the output signal information. It is a signal control method characterized by correcting.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information that represents a relationship between the downmix signal and the separated signal, and a specific signal.
  • a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal
  • analysis information that represents a relationship between the downmix signal and the separated signal
  • a specific signal Receiving the output signal information for controlling the sound source signal, generating corrected recombination information for controlling the sound source signal from the output signal information and the analysis information, and based on the corrected resynthesis information,
  • a signal control method characterized by correcting a downmix signal.
  • the present invention that solves the above problems receives a mixed signal in which sound source signals are mixed and output signal information for controlling a specific sound source signal, and generates separation information for separating the mixed signal into the sound source signals. Then, separation recombination information for controlling the sound source signal is generated from the output signal information and the separation information, and the mixed signal is corrected based on the separation recombination information. It is a control method.
  • the present invention that solves the above problem is a program that causes an information processing apparatus to execute separation information calculation processing for generating separation information for separating an input signal mixed with a sound source signal into the sound source signal.
  • the present invention for solving the above-described problems generates separation information for separating an input signal mixed with sound source signals into the sound source signal, and recombination information representing the relationship between the input signal and the sound source signal.
  • a program for causing an information processing device to execute a resynthesis information calculation process and a signal separation process for generating a separation signal by separating the input signal into the sound source signal based on the separation information.
  • the present invention for solving the above-described problems is based on separation information calculation processing for generating separation information for separating an input signal mixed with a sound source signal into the sound source signal, and the input signal based on the separation information.
  • This is a program for causing an information processing apparatus to execute signal separation processing for generating a separation signal by separating into sound source signals and encoding processing for encoding the separation signal.
  • the present invention that solves the above-described problems is inputted with a mixed signal in which sound source signals are mixed, separation information for separating the mixed signal into the sound source signals, and output signal information for controlling a specific sound source signal, Separation / resynthesis information generation processing for generating separation / resynthesis information for controlling the sound source signal from the output signal information and the separation information, and a signal for correcting the mixed signal based on the separation / resynthesis information
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the mixed signal, and the mixed signal as the sound source signal.
  • the separation information for separating the sound source signal and the output signal information for controlling a specific sound source signal are input, and the modified separation signal for controlling the sound source signal is controlled from the output signal information, the analysis information, and the separation information.
  • This is a program for causing an information processing device to execute separation / resynthesis information generation processing for generating synthesis information and signal resynthesis processing for correcting the downmix signal based on the corrected separation / resynthesis information.
  • the present invention that solves the above-described problems includes a separated signal obtained by separating a mixed signal in which sound source signals are mixed, recombination information that represents a relationship between the mixed signal and the separated signal, and an output signal that controls a specific sound source signal.
  • Information is input, based on the recombination information integration process for generating integrated resynthesis information for controlling the sound source signal from the output signal information and the resynthesis information, and the modified separation resynthesis information,
  • a program for causing an information processing apparatus to execute a signal recombining process for correcting the separated signal.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information indicating a relationship between the downmix signal and the separated signal, and the mixing Resynthesis information representing the relationship between the signal and the separated signal and output signal information for controlling a specific sound source signal are input, and the sound source signal is converted from the output signal information, the analysis information, and the resynthesis information.
  • This is a program for causing an information processing apparatus to execute a resynthesis information correction process for generating corrected resynthesis information for control and a signal resynthesis process for correcting the downmix signal based on the corrected resynthesis information.
  • the present invention that solves the above-described problem is inputted with a separated signal obtained by separating a mixed signal in which sound source signals are mixed and output signal information for controlling a specific sound source signal, and the separated signal is converted based on the output signal information.
  • This is a program for causing an information processing apparatus to execute a signal recombining process to be corrected.
  • the present invention that solves the above-described problems includes a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information that represents a relationship between the downmix signal and the separated signal, and a specific signal.
  • a program for causing an information processing apparatus to execute signal recombining processing for correcting the downmix signal based on information.
  • the present invention that solves the above-described problems is generated by inputting a mixed signal in which sound source signals are mixed and output signal information for controlling a specific sound source signal, and generating separation information for separating the mixed signal into the sound source signals. Based on the separation / recombination information generation processing, separation / recombination information generation processing for generating separation / recombination information for controlling the sound source signal from the output signal information and the separation information, A program for causing an information processing apparatus to execute signal re-synthesis processing for correcting the mixed signal.
  • one or a plurality of sound source signals constituting the multi-channel input signal can be independently controlled based on the output signal information.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a configuration example of the separation / recombination information generation unit 320.
  • FIG. 3 is a block diagram showing a second embodiment of the present invention.
  • FIG. 4 is a configuration example of the low bit rate encoding unit 400.
  • FIG. 5 is a configuration example of the separation / recombination information generation unit 420.
  • FIG. 6 is a block diagram showing a third embodiment of the present invention.
  • FIG. 7 shows a first configuration example of the resynthesis information calculation unit 510.
  • FIG. 8 shows a second configuration example of the resynthesis information calculation unit 510.
  • FIG. 9 is a block diagram showing a fourth embodiment of the present invention.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a configuration example of the separation / recombination information generation unit 320.
  • FIG. 3 is a block diagram showing a
  • FIG. 10 shows a configuration example of the resynthesis information correction unit 620.
  • FIG. 11 is a block diagram showing a fifth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a sixth embodiment of the present invention.
  • FIG. 13 is a configuration example of the low bit rate encoding unit 210.
  • FIG. 14 is a block diagram showing a seventh embodiment of the present invention.
  • FIG. 15 is a block diagram showing an eighth embodiment of the present invention.
  • FIG. 16 is a block diagram showing a ninth embodiment of the present invention.
  • FIG. 17 is a block diagram showing a technique related to the present invention.
  • the signal analysis control system of the present invention has a configuration in which a transmission unit 30 and a reception unit 31 are connected via a transmission path.
  • the transmission unit 30 receives a multi-channel input signal in which one or a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission signal is input to the receiving unit 31 via the transmission path.
  • the receiving unit 31 receives the transmission signal and the output signal information, and outputs a multi-channel output signal.
  • the transmission unit, the transmission path, and the reception unit may be a recording unit, a storage medium, and a reproduction unit, respectively.
  • the multi-channel input signal when a multi-channel input signal is acquired by a plurality of microphones, the multi-channel input signal can include information on the installation positions and directivities of the plurality of microphones.
  • the multi-channel input signal when the multi-channel input signal is a digital signal, information on the sampling frequency can be included. These pieces of information can be used when calculating information for separating a multi-channel input signal described later into a sound source signal.
  • the transmission unit 30 receives a multi-channel input signal in which a plurality of sound source signals are mixed and outputs a transmission signal.
  • the transmission unit 30 includes a separation information calculation unit 102 and an encoding unit 300.
  • the multi-channel input signal is input to the separation information calculation unit 102 and the encoding unit 300.
  • the separation information calculation unit 102 generates separation information for separating the multi-channel input signal into a plurality of sound source signals. Separation information calculation section 102 then outputs the separation information to encoding section 300.
  • Encoding section 300 generates a transmission signal by encoding the multi-channel input signal and the separation information received from separation information calculation section 102. Encoding section 300 then outputs the transmission signal to the transmission path.
  • the receiving unit 31 receives a transmission signal and output signal information and outputs a multi-channel output signal.
  • the receiving unit 31 includes a decoding unit 310, a separation / recombination information generation unit 320, and a signal recombination unit 330.
  • the transmission signal is input to the decoding unit 310.
  • the output signal information is input to the separation / recombination information generation unit 320.
  • decoding section 310 decodes the received transmission signal into a multi-channel decoded signal and decoded separation information.
  • the decoding unit 310 outputs the multi-channel decoded signal to the signal recombining unit 330 and the decoded separation information to the demultiplexing / recombining information generating unit 320, respectively.
  • the separation / recombination information generation unit 320 integrates the output signal information and the decoded separation information received from the decoding unit 310 to generate separation / recombination information. Then, the separation / recombination information generation unit 320 outputs the separation / recombination information to the signal recombination unit 330.
  • the signal re-synthesizing unit 330 re-synthesizes the multi-channel output signal by modifying the multi-channel decoded signal received from the decoding unit 310 based on the de-multiplexing / re-synthesizing information received from the de-separating / re-synthesizing information generating unit 320.
  • the signal recombining unit 330 outputs a multi-channel output signal.
  • the output signal information is information for outputting a plurality of sound source signals included in the multi-channel input signal to a plurality of output channels, respectively. That is, the output signal information is information representing the relationship between each sound source signal and the multi-channel output signal for each frequency component.
  • the output signal information may include localization information of each sound source signal.
  • the output signal information may include information for operating the sense of localization by blurring the sound image.
  • the output signal to each output channel can be controlled for each sound source signal.
  • Each sound source signal may be output from one specific output channel (for example, a speaker), or may be distributed and output to a plurality of output channels. For example, by outputting a specific sound source signal only from a specific output channel, it is possible to clearly localize and improve the sense of presence. Further, a specific sound source signal may be suppressed or enhanced.
  • the output signal information may be input based on information obtained from the outside by the user.
  • information input from the outside includes personal information such as user preferences registered in advance in the receiving unit, the operating state of the receiving unit (including external environment information such as the speaker being turned off), and reception. There are part types and types, power supply and battery usage and remaining capacity, antenna types and conditions (folded shape, orientation, etc.).
  • the output signal information may be automatically acquired in another format.
  • the output signal information may be input based on information automatically acquired via a sensor installed in or near the receiving unit. For example, the amount of external noise, brightness, time zone, geographical location, temperature, synchronization information with video, barcode information through a camera, and the like may be used as information automatically acquired.
  • the output signal information may be information in units of a sound source signal group including a plurality of sound source signals instead of each sound source signal. Further, the output signal information may be information in which a plurality of frequency components are used instead of information represented for each frequency component, or may be information in which all frequency components are collected.
  • the separation information calculation unit 102 generates separation information by analyzing the received multi-channel input signal. Then, the separation information calculation unit 102 outputs the separation information.
  • the separation information is information representing the relationship between the multi-channel input signal and the sound source signal, and is used to separate the multi-channel input signal into a plurality of sound source signals.
  • a technique for generating the separation information a technique called blind signal source separation (Blind Source Separation) or independent component analysis (Independent Component Analysis) can be used. Techniques related to blind source separation and independent component analysis methods are described in Reference 1 (2005, “Speech Enhancement”, Springer, (Speech Enhancer, Springer, 2005, pp. 299-327), pages 299-327. .).
  • the separation information calculation unit 102 configures one block by collecting a plurality of input signal samples, and applies frequency conversion to this block.
  • frequency conversion Fourier transform, cosine transform, KL (Kalunen label) transform, and the like are known. Technologies related to the specific operations of these transformations and their properties are described in Reference 2 (1990, “Digital Coding of Waveforms”, Prentice Hall (DIGITAL CODING OF WAVEFORMS, PRINCIPLES AND APPLICATIONS TO SPEECH AND VIDEO, PRENTICE-HALL, 1990.)).
  • the above-described transformation can be applied to the result of weighting one block of input signal samples with a window function.
  • window functions such as Hamming, Hanning (Han), Kaiser, and Blackman are known. A more complicated window function can also be used. Techniques related to these window functions are described in Reference 3 (1975, “Digital Signal Processing”, Prentice Hall (DIGITAL SIGNAL PROCESSING, PRENTICE-HALL, 1975.)) and Reference 4 (1993, “Multiple "Rate Systems and Filterbanks", Prentice Hall (MULTIRATE SYSTEMS AND AND FILTER BANKS, PRENTICE-HALL, 1993)). Further, when one block is formed from a plurality of input signal samples, each block may be allowed to overlap. For example, when an overlap of 30% of the block length is applied, the last 30% of the signal samples belonging to one block are used by multiple blocks as the first 30% of the signal samples belonging to the next block. . A technique related to blocking and conversion having overlap is disclosed in Document 2.
  • a band division filter bank may be used.
  • the band division filter bank is composed of a plurality of band pass filters.
  • the band division filter bank divides the received input signal into a plurality of frequency bands.
  • Each frequency band of the band division filter bank may be equally spaced or unequal.
  • the time resolution can be reduced by dividing the band into a narrow band in the low band and the time resolution can be increased by dividing the band into a wide band in the high band.
  • Typical examples of unequal interval division include octave division in which the band is successively halved toward the low band and critical band division corresponding to human auditory characteristics.
  • the separation information calculation unit 102 generates separation information using the multi-channel input signal frequency-converted by the above method.
  • the separation information calculation unit 102 outputs the separation matrix W (f) calculated in each frequency band as separation information.
  • the encoding unit 300 receives the multi-channel input signal and the separation information and encodes the multi-channel input signal and the separation information, thereby using the encoded multi-channel input signal and the encoded separation information as a transmission signal. Generate. Encoding section 300 then outputs the transmission signal to the transmission path.
  • the encoding unit 300 can encode the multi-channel input signal using an encoding method such as AAC.
  • AAC encoding method
  • the multi-channel input signal is subjected to frequency conversion, and then the auditory characteristics such as a masking effect and the redundancy of the frequency-converted signal using Huffman coding are removed, and the encoded multi-channel input is used.
  • a signal is generated.
  • Encoding section 300 generates encoded separation information by quantizing and encoding separation matrix W (f) that is separation information.
  • a quantization method a quantization method such as linear quantization or nonlinear quantization is known. Redundancy can be removed from the quantized separation information using Huffman coding or the like. Furthermore, auditory characteristics such as the audible limit frequency can be used to remove the redundancy of the separation information. For example, separation information in a high frequency band that is difficult to be perceived by hearing may not be quantized and encoded.
  • the separation information can be integrated in a plurality of frequency bands using an auditory characteristic such as a critical bandwidth and then quantized and encoded.
  • the frequency band to be integrated may be equally spaced or unequal. By dividing the band at unequal intervals, it is possible to divide into a narrow band in the low band and to divide into a wide band in the high band to match the auditory characteristics. All the frequency bands may be combined into one.
  • an integration method an average of elements included in a frequency band to be integrated can be used.
  • the elements when the separation information is a complex signal, the elements may be integrated after being divided into an amplitude term and a phase term.
  • the amplitude term can be the average of the amplitude terms of the elements included in the frequency band to be integrated, and the phase terms of the elements can be used as they are without being integrated.
  • Decoding section 310 decodes the received transmission signal into a multi-channel decoded signal and decoded separation information.
  • Decoding section 310 outputs the multi-channel decoded signal to signal resynthesis section 330 and the decoded separation information to demultiplexing / resynthesis information generation section 320.
  • the decoding unit 310 generates a multi-channel decoded signal by decoding the encoded multi-channel input signal.
  • a decoding method corresponding to the encoding method of the multi-channel input signal used in the encoding unit 300 is used.
  • AAC AAC is used, first, the encoded multi-channel input signal is subjected to Huffman decoding and inverse quantization, thereby generating a decoded conversion signal of each channel composed of a plurality of frequency components. The decoded conversion signal of each channel is subjected to inverse frequency conversion for each channel.
  • an inverse transform corresponding to the frequency transform applied to the multi-channel input signal is used in the encoding unit 300.
  • the encoding unit 300 collects a plurality of multi-channel input signal samples to form one block and applies frequency conversion to this block, the inverse frequency conversion processing also supports the same number of samples. Apply the inverse transform.
  • the encoding unit 300 configures one block from a plurality of multi-channel input signal samples and allows an overlap (overlap) in each block, correspondingly, in the inverse frequency conversion process, The same overlap is applied to the signal after inverse transformation.
  • the inverse frequency transform is configured with a band synthesis filter bank. A technique related to the band synthesis filter bank and its design method is disclosed in Document 4.
  • the inverse frequency converted signal is output as a multi-channel decoded signal.
  • the decoding unit 310 generates decoded separation information by decoding the encoded separation information.
  • decoding the encoded separation information a decoding method corresponding to the separation information encoding method used in the encoding unit 300 is used.
  • the encoded separation information is decoded and dequantized to generate decoding separation information.
  • the separation / recombination information generation unit 320 receives the decoded separation information and the output signal information, and outputs the separation / recombination information.
  • the separation / recombination information generation unit 320 includes a resynthesis information conversion unit 321, a resynthesis information integration unit 322, and a synthesis unit 323.
  • the decoded separation information is input to the resynthesis information conversion unit 321 and the synthesis unit 323, and the output signal information is input to the resynthesis information integration unit 322.
  • the resynthesis information conversion unit 321 generates decoded resynthesis information by converting the received decoding separation information. Then, the resynthesis information conversion unit 321 outputs the decoded resynthesis information to the resynthesis information integration unit 322.
  • the decoding recombination information represents a relationship between a plurality of sound source signals included in the multi-channel input signal and the multi-channel input signal. That is, the decoding recombination information represents how each sound source signal is mixed with the multi-channel input signal received by the transmission unit, and includes localization information of each sound source signal.
  • the frequency component of the decoding separation information in the frequency band f is WD (f)
  • the inverse matrix of the decoding separation information Can be expressed as
  • the decoding recombination information UD (f) is a matrix of M rows and P columns, where M represents the number of channels of the multi-channel input signal and P represents the number of excitation signals.
  • the resynthesis information integration unit 322 generates integrated resynthesis information by integrating the received decoded resynthesis information and output signal information. Then, the resynthesis information integration unit 322 outputs the integrated resynthesis information to the synthesis unit 323. First, the resynthesis information integration unit 322 converts the decoded resynthesis information into converted resynthesis information.
  • the conversion recombination information represents a relationship between a plurality of sound source signals included in the multichannel input signal and the multichannel output signal.
  • the frequency component UT (f) of the transform recombination information in the frequency band f uses the frequency component H (f) of the transform matrix and the frequency component UD (f) of the decoded recombination information,
  • M, N, and P represent the number of channels of the multi-channel input signal, the number of channels of the multi-channel output signal, and the number of sound source signals, respectively.
  • H (f) is a matrix of N rows and M columns
  • UT (f) is a matrix of N rows and P columns.
  • the conversion matrix may be configured such that there are no more output channels than the number of input channels, or the conversion matrix may be configured to be a mixture of a plurality of input channels.
  • the conversion matrix performs a downmix operation.
  • the transformation matrix may be configured such that a mixture of a plurality of input channels becomes an output channel, or the transformation matrix may be configured so that a selected input channel becomes an output channel. Also good.
  • a predetermined matrix may be used, or a matrix that changes according to the characteristics of the multichannel input signal and the multichannel output signal may be used. Moreover, you may change with progress of time.
  • the resynthesis information integration unit 322 generates integrated resynthesis information by integrating the converted resynthesis information and the output signal information. Then, the resynthesis information integration unit 322 outputs integrated resynthesis information.
  • the integrated re-synthesis information represents the relationship between the sound source signal and the multi-channel output signal.
  • As a method of integration it is possible to integrate by selecting which information of conversion resynthesis information or output signal information is used for each sound source signal.
  • a sound source signal group including a plurality of sound source signals may be integrated as a unit.
  • either one of the information may always be selected and used as integrated re-synthesis information for all the sound source signals. For example, the intention of the sender can be reflected by always using the conversion recombination information.
  • the frequency component U (f) of the output signal information in the frequency band f and the frequency component UT (f) of the transform recombination information are expressed as follows.
  • Equation 4 the frequency component UC (f) of the integrated resynthesis information is
  • UC (f) is a matrix of N rows and P columns. Whether to use output signal information or conversion recombination information for each sound source signal may be selected according to the user's preference or may be selected by a predetermined method. Furthermore, for a specific sound source signal, an integration method in which conversion recombination information is always selected may be used.
  • the synthesizing unit 323 generates separation / recombination information by synthesizing the received decoded separation information and the integrated resynthesis information. Then, the synthesis unit 323 outputs the separation / recombination information.
  • the signal re-synthesizing unit 330 receives the multi-channel decoded signal and the separated re-synthesizing information, and independently modifies a plurality of sound source signals constituting the multi-channel decoded signal based on the separated re-synthesizing information. Is generated.
  • the signal recombining unit 330 outputs a multi-channel output signal.
  • UW (f) is a matrix of N rows and M columns.
  • the signal re-synthesis unit 330 performs inverse frequency conversion on the frequency component of the controlled signal.
  • the inverse frequency conversion method is the same as the inverse frequency conversion described in the decoding unit 310, and thus the description thereof is omitted.
  • the signal re-synthesis unit 330 outputs the signal subjected to inverse frequency conversion as a multi-channel output signal.
  • the signal recombining unit 330 performs inverse frequency conversion on the frequency component of the separated recombining information to generate an impulse response (filter coefficient).
  • the inverse frequency conversion method is the same as the inverse frequency conversion described in the decoding unit 310, and thus the description thereof is omitted.
  • the signal re-synthesizing unit 330 generates a multi-channel output signal by convolving an impulse response with the multi-channel decoded signal.
  • PCM pulse code modulation
  • ADPCM adaptive differential pulse code modulation
  • CELP Analysis / synthesis coding represented by CELP or the like
  • PCM pulse code modulation
  • ADPCM adaptive differential pulse code modulation
  • CELP Analysis / synthesis coding represented by CELP or the like
  • PCM pulse code modulation
  • ADPCM adaptive differential pulse code modulation
  • CELP Analysis / synthesis coding represented by CELP or the like
  • a technique related to PCM / ADPCM is disclosed in Document 2.
  • the technology related to CELP is described in Reference 5 (March 1985, IEE International Conference on Acoustic Speech and Signal Processing, 25.1.1, (IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 25.1.1, MAR, 1985, pp.937-940) (pp.937-940).
  • the encoding unit 300 transmits the multi-channel input signal as it is without performing the encoding process of the multi-channel input signal, and the decoding unit 310 converts the multi-channel input signal as the multi-channel decoded signal without performing the decoding process. Alternatively, it may be output to the signal recombining unit 330 as it is. With this configuration, it is possible to eliminate signal distortion associated with encoding / decoding processing. With this configuration, the signal recombining unit 330 can receive a multi-channel decoded signal without causing distortion in the multi-channel input signal.
  • each sound source signal in the receiving unit based on the output signal information and the separation information output from the transmitting unit. That is, a desired sound source signal can be localized at a desired position, or suppressed and emphasized by the receiving unit.
  • the localization information of each sound source signal constituting the multi-channel input signal received by the transmitter can be held, the same localization information as the multi-channel input signal received by the transmitter can be easily reproduced in the receiver. it can.
  • a transmission unit 40 and a reception unit 41 are connected via a transmission path.
  • the transmission unit 40 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission signal is input to the receiving unit 41 via the transmission path.
  • the receiving unit 41 receives a transmission signal and output signal information, and outputs a multi-channel output signal.
  • the transmission unit 40 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission unit 40 includes a separation information calculation unit 102 and a low bit rate encoding unit 400.
  • the multi-channel input signal is input to the separation information calculation unit 102 and the low bit rate encoding unit 400.
  • the separation information calculation unit 102 generates separation information for separating the multi-channel input signal into a plurality of sound source signals. Separation information calculation section 102 then outputs the separation information to low bit rate encoding section 400.
  • the low bit rate encoding unit 400 generates a transmission signal by encoding the multi-channel input signal and the separation information received from the separation information calculation unit 102. Then, the low bit rate encoding unit 400 outputs the transmission signal to the transmission path.
  • the transmission unit 40 is different from the transmission unit 30 of FIG. 1 representing the first embodiment in that the encoding unit 300 is configured with a low bit rate encoding unit 400.
  • the receiving unit 41 receives a transmission signal and output signal information, and outputs a multi-channel output signal.
  • the receiving unit 41 includes a low bit rate decoding unit 410, a separation / recombination information generation unit 420, and a signal recombination unit 430.
  • the transmission signal is input to the low bit rate decoding unit 410.
  • the output signal information is input to the separation / recombination information generation unit 420.
  • the low bit rate decoding unit 410 decodes the received transmission signal into a downmix decoded signal, decoding analysis information, and decoding separation information.
  • the low bit rate decoding unit 410 outputs the downmix decoded signal to the signal recombining unit 430 and the decoding analysis information and the decoded separation information to the demultiplexing / recombining information generating unit 420, respectively.
  • the separation / recombination information generation unit 420 integrates the output signal information, the decoding analysis information received from the low bit rate decoding unit 410, and the decoding separation information, thereby generating modified separation / resynthesis information. Then, the separation / recombination information generation unit 420 outputs the corrected separation / resynthesis information to the signal re-synthesis unit 430.
  • the signal recombining unit 430 modifies the downmix decoded signal received from the low bit rate decoding unit 410 based on the modified separated recombining information received from the demultiplexing / recombining information generating unit 420, thereby Re-synthesize. Then, the signal recombining unit 430 outputs a multi-channel output signal.
  • the receiving unit 41 includes a decoding unit 300, a separate recombining information generation unit 320, and a signal recombining unit 330. The difference is that the decoding unit 400, the separation / recombination information generation unit 420, and the signal re-synthesis unit 430 are configured.
  • the output signal information is information for outputting a plurality of sound source signals included in the multi-channel input signal to a plurality of output channels, respectively, as described in the first embodiment.
  • the description of the same parts as those in the first embodiment will be omitted, and the low bit rate encoding unit 400, the low bit rate decoding unit 400, the separation / recombination information generation unit 420, the signal, which are features of the present embodiment, will be described.
  • a configuration example of the re-synthesis unit 430 will be described.
  • the low bit rate encoding unit 400 generates a transmission signal by encoding the received multi-channel input signal and separation information. Then, the low bit rate encoding unit 400 outputs a transmission signal.
  • the low bit rate encoding unit 400 includes a downmix unit 211, a signal analysis unit 213, and an encoding unit 401.
  • the multi-channel input signal is input to the signal analysis unit 213 and the downmix unit 211, and the separation information is input to the encoding unit 401.
  • the downmix unit 211 generates a downmix signal by downmixing the multi-channel input signal. Then, the downmix unit 211 outputs the downmix signal to the encoding unit 401.
  • all multichannel input signals can be added to generate a single channel downmix signal.
  • a multi-channel input signal may be divided into a plurality of groups and a multi-channel input signal belonging to each group may be added to generate a multi-channel downmix signal.
  • the multi-channel input signals may not be added as they are, but may be added after compensating for the phase difference / correlation of the multi-channel input signals.
  • a multichannel input signal is frequency-converted, and a multichannel input signal that is frequency-converted for each frequency component can be added to generate a downmix signal. Since the frequency conversion can use the same process as the frequency conversion in the separation information calculation unit 102, the description thereof is omitted. At this time, energy correction or phase difference compensation that differs for each frequency component may be applied to the converted multi-channel input signal and then added. Since the downmix processing is performed in the frequency domain, detailed downmix processing can be realized as compared with the configuration performed in the time domain.
  • the signal analysis unit 213 generates analysis information by analyzing the received multi-channel input signal. Then, the signal analysis unit 213 outputs the analysis information to the encoding unit 401.
  • the analysis information is information that represents the relationship between the multi-channel input signal and the downmix signal for each frequency component, and can be expressed using an energy difference, a time difference, a correlation, or the like between the signals.
  • the information disclosed in Reference 6 (2007, IS / 23003-1: 2007 Part 1 mpeg Surround, (ISO / IEC 23003-1: 2007 Part 1 MPEG MPEG Surround)) is known. .
  • the received multi-channel input signal is frequency converted.
  • the signal analysis unit 213 analyzes the frequency-converted signal to calculate an energy difference, a time difference, a correlation, and the like between the signals. Then, the signal analysis unit 213 generates analysis information based on the calculated energy difference between signals, time difference, correlation, and the like.
  • a technique related to generation of analysis information is disclosed in Document 6.
  • the encoding unit 401 generates the encoded downmix signal, the encoded analysis information, and the encoded separation information as a transmission signal by encoding the received downmix signal, the analysis information, and the separation information. To do. Then, encoding section 401 outputs the transmission signal to the transmission path.
  • the encoding unit 401 generates an encoded downmix signal by encoding the downmix signal. Since the method for encoding the downmix signal can use the same process as the process for encoding the multi-channel input signal described in the encoding unit 300 of the first embodiment, the description thereof is omitted.
  • the encoding unit 401 generates encoded analysis information by encoding the analysis information.
  • a method of encoding analysis information there is a quantization method disclosed in Document 6.
  • a quantization method a quantization method such as linear quantization or nonlinear quantization is known. Redundancy can be removed from the quantized analysis information using Huffman coding or the like.
  • auditory characteristics such as the audible limit frequency can be used to remove the redundancy of the analysis information. For example, separation information in a high frequency band that is difficult to be perceived by hearing may not be quantized and encoded.
  • analysis information can be integrated in a plurality of frequency bands using auditory characteristics such as a critical bandwidth and then quantized and encoded.
  • the frequency band to be integrated may be equally spaced or unequal. By dividing the band at unequal intervals, it is possible to divide into a narrow band in the low band and to divide into a wide band in the high band to match the auditory characteristics. All the frequency bands may be combined into one.
  • an integration method an average of elements included in a frequency band to be integrated can be used.
  • the information amount of the encoded analysis information can be encoded with a small amount of information compared to the case where the multi-channel input signal is encoded for each channel.
  • the encoding unit 401 generates encoded separation information by encoding the separation information. Since the process of encoding the separation information is as described in the encoding unit 300 of the first embodiment, the description is saved.
  • the low bit rate decoding unit 410 decodes the received transmission signal into a downmix decoded signal, decoding analysis information, and decoding separation information.
  • the low bit rate decoding unit 410 outputs the downmix decoded signal to the signal recombining unit 430 and the decoding analysis information and the decoded separation information to the demultiplexing / recombining information generating unit 420, respectively.
  • the low bit rate decoding unit 410 generates a downmix decoded signal by decoding the encoded downmix signal.
  • the encoded downmix signal is decoded using a decoding method corresponding to the downmix signal encoding method used in the encoding unit 401. Since the process for decoding the encoded downmix signal can use the same process as the process for decoding the encoded multi-channel input signal in the decoding unit 310 of the first embodiment, the description is omitted. To do.
  • the low bit rate decoding unit 410 generates decoded analysis information by decoding the encoded analysis information.
  • decoding the encoded analysis information a decoding method corresponding to the analysis information encoding method used in the encoding unit 401 is used.
  • the encoded analysis information is decoded and dequantized to generate decoding analysis information.
  • the low bit rate decoding unit 410 generates decoded separation information by decoding the encoded separation information.
  • decoding the encoded separation information a decoding method corresponding to the separation information encoding method used in the encoding unit 401 is used.
  • the process of decoding the encoded separation information is the same as that described in the decoding unit 310 of the first embodiment, and thus description thereof is omitted.
  • the separation / resynthesis information generation unit 420 receives the decoding analysis information, the decoded separation information, and the output signal information, and outputs the modified separation / resynthesis information.
  • the separation / resynthesis information generation unit 420 includes a resynthesis information conversion unit 321, a resynthesis information integration unit 322, a synthesis unit 323, and a correction unit 421.
  • the decryption analysis information is input to the correction unit 421.
  • the decoding / separating information is input to the re-synthesis information conversion unit 321 and the synthesis unit 323.
  • the output signal information is input to the resynthesis information integration unit 322.
  • the separation / resynthesis information generation unit 420 is different in that a correction unit 421 is newly added.
  • the correction unit 421 will be described.
  • the correction unit 421 receives the separation / resynthesis information and the decoding / analysis information, and corrects the separation / resynthesis information based on the decoding / analysis information, thereby outputting the corrected separation / resynthesis information.
  • the number of channels of the multi-channel input signal, the number of channels of the downmix signal, the number of sound source signals, and the number of channels of the multi-channel output signal are M, Q, P, and N, respectively
  • a (f) and UW (f ) Is a matrix of M rows and Q columns and N rows and M columns, respectively
  • UWA (f) is a matrix of N rows and Q columns.
  • the signal re-synthesizing unit 430 receives the downmix decoded signal and the modified separation / recombination information, and independently modifies a plurality of excitation signals constituting the downmix decoded signal based on the modified separation / recombination information. Generate an output signal.
  • the signal recombining unit 430 outputs a multi-channel output signal.
  • UWA (f) is a matrix of N rows and Q columns.
  • the signal re-synthesis unit 430 performs inverse frequency conversion on the frequency component of the controlled signal.
  • the method of performing the inverse frequency conversion is the same as the inverse frequency conversion described in the decoding unit 310 of the first embodiment, and thus description thereof is omitted.
  • the signal re-synthesizing unit 430 outputs the signal subjected to inverse frequency conversion as a multi-channel output signal.
  • the signal re-synthesis unit 430 performs inverse frequency conversion on the modified separation re-synthesis information to generate an impulse response (filter coefficient).
  • the inverse frequency conversion method is the same as the inverse frequency conversion described in the decoding unit 310, and thus the description thereof is omitted.
  • the signal re-synthesizing unit 430 can generate a multi-channel output signal by convolving the impulse response with the downmix decoded signal.
  • each sound source signal at the receiving unit based on the output signal information and the separation information output from the transmitting unit. That is, a desired sound source signal can be localized at a desired position, or suppressed and emphasized by the receiving unit.
  • the localization information of each sound source signal constituting the multi-channel input signal received by the transmitter can be held, the same localization information as the multi-channel input signal received by the transmitter can be easily reproduced in the receiver. it can. Further, since the multi-channel input signal is encoded with a small amount of information compared to the first embodiment, the amount of information of the transmission signal can be reduced.
  • the third embodiment has a configuration in which a transmission unit 50 and a reception unit 51 are connected via a transmission path.
  • the transmission unit 50 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission signal is input to the receiving unit 51 via the transmission path.
  • the receiving unit 51 receives a transmission signal and output signal information, and outputs a multi-channel output signal.
  • the transmission unit 50 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission unit 50 includes a resynthesis information calculation unit 500, a signal separation unit 101, and an encoding unit 510.
  • the multi-channel input signal is input to the resynthesis information calculation unit 500 and the signal separation unit 101.
  • the resynthesis information calculation unit 500 includes separation information for separating the multi-channel input signal into a plurality of sound source signals, and re-synthesis information indicating the relationship between the plurality of sound source signals and the multi-channel input signal that constitute the multi-channel input signal. Is generated.
  • re-synthesis information calculation section 500 outputs the separation information to signal separation section 101 and the re-synthesis information to encoding section 510.
  • the signal separation unit 101 receives a multi-channel input signal and separation information, and generates a separation signal by separating the multi-channel input signal. Then, the signal separation unit 101 outputs the separated signal to the encoding unit 510.
  • Encoding section 510 generates a transmission signal by encoding the separated signal received from signal separating section 101 and the recombined information received from recombined information calculating section 500. Then, encoding section 510 outputs to the transmission path.
  • the transmission unit 50 includes a re-synthesis information calculation unit 500 and an encoding unit 510, respectively. The difference is that a signal separation unit 101 is newly provided.
  • the receiving unit 51 receives a transmission signal and output signal information and outputs a multi-channel output signal.
  • the receiving unit 51 includes a decoding unit 520, a resynthesis information integration unit 322, and a signal resynthesis unit 530.
  • the transmission signal is input to the decoding unit 520.
  • the output signal information is input to the resynthesis information integration unit 322.
  • decoding section 520 decodes the received transmission signal into a decoded separated signal and decoded recombining information.
  • the decoding unit 520 outputs the decoded separated signal to the signal recombining unit 530 and the decoded recombining information to the recombining information integrating unit 322, respectively.
  • the resynthesis information integration unit 322 generates integrated resynthesis information by integrating the output signal information and the decoded resynthesis information received from the decoding unit 520. Then, the resynthesis information integration unit 322 outputs the integrated resynthesis information to the signal resynthesis unit 530.
  • the signal re-synthesis unit 530 re-synthesizes the multi-channel output signal by correcting the decoded separated signal received from the decoding unit 520 based on the integrated re-synthesis information received from the re-synthesis information integration unit 322.
  • the signal recombining unit 530 outputs a multi-channel output signal. Compared with the receiving unit 31 of FIG.
  • the receiving unit 51 includes a decoding unit 310, a separate recombining information generation unit 320, and a signal recombining unit 330, and a decoding unit 520 and a recombining unit, respectively.
  • the difference is that the information integrating unit 322 and the signal recombining unit 530 are configured.
  • the recombination information is information representing the relationship between a plurality of sound source signals included in the multi-channel input signal and the multi-channel input signal. That is, the re-synthesis information represents how each sound source signal is mixed with the multi-channel input signal, and includes localization information of each sound source signal. Unlike the first and second embodiments in which the separation information is transmitted to the reception unit, the present embodiment is characterized in that the recombination information is transmitted.
  • the output signal information is as described in the first embodiment.
  • the output signal information of the present embodiment can be input according to the user's preference after the user listens to the multi-channel output signal generated based on the transmitted recombination information. In this case, it is not necessary to input the output signal information for each sound source from the beginning, and the convenience for the user is improved.
  • the recombination information calculation unit 500 receives a multi-channel input signal and outputs separation information and recombination information.
  • the resynthesis information calculation unit 500 includes a separation information calculation unit 102 and a resynthesis information conversion unit 321.
  • the separation information calculation unit 102 receives the multi-channel input signal and analyzes the multi-channel input signal, thereby generating separation information that is information for separating the multi-channel input signal into a plurality of sound source signals. Then, the separation information calculation unit 102 outputs the separation information.
  • the separation information calculation unit 102 is the same as that used in the first embodiment, and a description thereof will be omitted.
  • the resynthesis information conversion unit 321 generates resynthesis information by converting the received separation information. Then, the separation information calculation unit 102 outputs resynthesis information.
  • the resynthesis information conversion unit 321 is the same as that used in the first embodiment, and a description thereof will be omitted.
  • the recombination information conversion unit 321 according to the present embodiment converts the recombination information into recombination information based on the separation information to which encoding / decoding is not applied. For this reason, accurate re-synthesis information can be generated.
  • the recombination information calculation unit 500 receives a multi-channel input signal and outputs separation information and recombination information.
  • the second configuration example is characterized in that a re-synthesis information shaping unit 501 is newly added as compared with the first configuration example of FIG.
  • the resynthesis information shaping unit 501 shapes the resynthesis information received from the resynthesis information conversion unit 321 and outputs the shaped resynthesis information.
  • the resynthesis information shaping unit 501 estimates the arrival direction of each sound source from the received resynthesis information.
  • the resynthesis information shaping unit 501 estimates the arrival direction of each sound source from the received resynthesis information.
  • a method for estimating the arrival direction localization information of each sound source included in the resynthesis information can be used.
  • a specific example of arrival direction calculation will be described.
  • the frequency component UE (f) of the resynthesis information in the frequency band f is expressed as follows.
  • P represents the number of sound source signals
  • M represents the number of channels of the multi-channel input signal.
  • UE (f) is a matrix of M rows and P columns, and each column of the resynthesis information represents a relationship between each sound source and a multi-channel input signal. That is, the arrival direction of the sound source signal i can be calculated using ue i (f).
  • d i (f) ue 2i (f) / ue 1i (f) can be used as information for calculating the arrival direction of the sound source signal i.
  • the amplitude term of d i (f) represents the ratio of the signal magnitude of the sound source signal i arriving at the left channel and the right channel.
  • the phase term represents the time difference between the sound source signals i arriving at the left channel and the right channel.
  • the frequency component doa i (f) in the arrival direction can be calculated based on the amplitude and phase terms of d i (f).
  • it may be generated using either the amplitude term or the phase term, or may be generated using both.
  • the value of d i (f) is larger than 1 or smaller than 1, the sound source exists in the left or right direction.
  • a method of calculating the arrival direction there is a method of converting d i (f) into the arrival direction according to a predetermined function. This function may be linear or non-linear. Moreover, you may change according to the characteristic of a multichannel input signal.
  • a technique related to the calculation of the arrival direction using the resynthesis information UE (f) is disclosed in Document 1.
  • the direction of arrival can be calculated from a specific channel pair.
  • the arrival directions may be calculated for a plurality of pairs, and the calculated arrival directions may be integrated. By calculating using a plurality of pairs, it is possible to calculate a highly accurate direction of arrival.
  • a common direction of arrival for a plurality of frequency bands may be calculated from the direction of arrival estimated in each frequency band.
  • a common arrival direction for a plurality of frequency bands may be calculated by performing weighted averaging of the arrival directions of each frequency band using a weight according to the estimation accuracy of the arrival direction of each frequency band. As the weight according to the estimation accuracy, the energy of each frequency band of the separated signal can be used.
  • weights can be calculated based on human auditory characteristics such as masking effects. For example, auditory importance calculated for each frequency component using the masking effect may be used as the weight. With this weighting, the direction of arrival that matches the human auditory characteristics can be estimated. Furthermore, since the sound sources are oscillated from a common point regardless of the frequency, the direction of arrival may be estimated in common for all frequency bands.
  • the resynthesis information shaping unit 501 regenerates resynthesis information based on the estimated arrival direction of each sound source. Then, the resynthesis information shaping unit 501 outputs the regenerated resynthesis information. Using the frequency component doa i (f) in the direction of arrival, the frequency component UE ′ (f) of the re-synthesis information regenerated is
  • g i (x) is a function for converting the arrival direction x into recombination information, and is a function defined for each channel according to the channel configuration of the multi-channel input signal.
  • the conversion function g i (x) may be linear or non-linear.
  • the output of the conversion function g i (x) is generally a complex value.
  • the conversion function is a function that determines the phase term and / or the amplitude term of the resynthesis information UE ′ (f) according to the arrival direction.
  • the conversion function g i (x) may be determined based on human auditory characteristics. For example, as a human auditory characteristic, a signal in the low frequency band recognizes the direction of arrival of the sound source mainly using the phase difference of the signal, and a signal in the high frequency band mainly uses the amplitude difference of the signal. It is known to recognize the direction of arrival.
  • the conversion function is a function that mainly determines the phase term of the re-synthesis information UE ′ (f) in the low frequency band according to the direction of arrival of the sound source.
  • the conversion function is a function that mainly determines the amplitude term of the resynthesis information UE ′ (f) according to the arrival direction of the sound source.
  • the conversion function may be a function in which the amplitude term and the phase term are arbitrarily determined according to the arrival direction of the sound source without depending on the auditory characteristics.
  • This conversion function reshapes the recombination information output from the recombination information conversion unit 321 according to the direction of arrival in order to improve the coding efficiency or to improve the localization of each sound source in the reception unit. It corresponds to.
  • the transformation function regenerates the effect of the phase term included in the resynthesis information output by the resynthesis information conversion unit 321 on the arrival direction.
  • the output of the conversion function is a real value.
  • the transformation function g i (x) when the output of the transformation function g i (x) is represented only by the phase term, the transformation function affects the arrival direction by the amplitude term included in the resynthesis information output by the resynthesis information conversion unit 321.
  • the amplitude term included in the recombination information corresponds to a function represented by the phase term so as to compensate by the phase term of the regenerated recombination information.
  • the magnitude of the output of the conversion function is 1.
  • the conversion function g i (x) can also be configured as a head-related transfer function. By using the head-related transfer function corresponding to the arrival direction, the arrival direction of the sound source can be pseudo-converted into re-synthesis information. In this case, the output of the conversion function g i (x) is a complex value.
  • the resynthesis information shaping unit 501 can reshape the resynthesis information output from the resynthesis information conversion unit 321 according to a predetermined function.
  • shaped recombination information can be generated by using a predetermined shaping function that receives an amplitude term and a phase term included in the recombination information.
  • the shaping function compensates the influence of the amplitude term included in the resynthesis information on the localization of the sound source signal by the phase term of the shaped resynthesis information.
  • the phase term of the recombination information is a function expressed by the amplitude term.
  • the output of the shaping function is a real value.
  • the shaping function compensates the influence of the amplitude term included in the resynthesis information on the localization of the sound source signal by the phase term of the shaped resynthesis information.
  • the amplitude term of the recombining information is a function expressed by the phase term.
  • the output size of the shaping function is 1.
  • the shaping function may be a function in which the amplitude term and the phase term are arbitrarily determined.
  • the re-synthesis information can be shaped based on the human auditory characteristics such as the masking effect. For example, due to the masking effect, the output of the shaping function in the frequency band that cannot be recognized by humans can be made zero.
  • the method performed for each frequency component has been described. However, the calculation may be performed after combining recombination information of a plurality of frequency bands.
  • the resynthesis information represents the relationship between a plurality of sound source signals and a multi-channel input signal, that is, localization information, and the arrangement position of a microphone that records the multi-channel input signal is greatly involved.
  • the resynthesis information output from the resynthesis information conversion unit 321 represents the localization information of the sound source signal between the adjacent microphones. For this reason, even if a person listens to a re-synthesized signal using re-synthesis information between adjacent microphones, it is difficult to obtain a sense of localization. Even in such a case, using the above-described method, recombination information that can be sensed in terms of audibility can be generated.
  • resynthesis information may be generated using the method described above. Even when the number of output channels and the speaker arrangement position are unknown, a plurality of recombination information may be generated assuming a predetermined number of output channels and a plurality of speaker arrangement positions.
  • the signal separation unit 101 receives the multi-channel input signal and the separation information, and generates the separation signal by separating the multi-channel input signal into each sound source signal based on the separation information. Then, the signal separation unit 101 outputs the separated signal to the encoding unit 510. First, the multi-channel input signal is frequency converted. Since the frequency conversion method is the same as the frequency conversion described in the separation information calculation unit 102 of the first embodiment, the description thereof is omitted.
  • the signal separation unit 101 performs inverse frequency conversion on the frequency component of the separated signal.
  • the inverse frequency conversion method is the same as the frequency conversion described in the decoding unit 320 of the first embodiment, and thus description thereof is omitted. Then, the signal separation unit 101 outputs the signal subjected to inverse frequency conversion as a separated signal.
  • the signal separation unit 101 performs inverse frequency conversion on the separation information to generate an impulse response (filter coefficient).
  • the inverse frequency conversion method is the same as the frequency conversion described in the decoding unit 320 of the first embodiment, and thus description thereof is omitted.
  • the signal separation unit 101 generates a signal from the separated signal by convolving the impulse response with the multi-channel input signal.
  • Encoding section 510 receives the separated signal and the recombining information, and encodes the separated signal and the recombining information, thereby generating the encoded separated signal and the encoded recombining information as a transmission signal. . Encoding section 510 then outputs the transmission signal to the transmission path.
  • Encoding section 510 generates an encoded separated signal by encoding the separated signal. Since the method for encoding the separated signal can use the same process as the process for encoding the multi-channel input signal described in the encoding unit 300 of the first embodiment, the description thereof is omitted.
  • Encoding section 510 generates encoded recombination information by encoding the recombination information. Since the method for encoding the re-synthesis information can use the same process as the process for encoding the separation information described in the encoding unit 300 of the first embodiment, the description thereof is omitted.
  • Decoding section 520 decodes the received transmission signal into a decoded separated signal and decoded recombination information.
  • Decoding section 520 outputs the decoded separated signal to re-synthesis section 530 and the decoded re-synthesis information to re-synthesis information integration section 322, respectively.
  • Decoding section 520 generates a decoded separated signal by decoding the encoded separated signal.
  • the encoded separated signal is decoded using a decoding method corresponding to the separated signal encoding method used in the encoding unit 510. Since the process for decoding the encoded separated signal can use the same process as the process for decoding the encoded multi-channel input signal in the decoding unit 310 of the first embodiment, the description thereof is omitted. .
  • Decoding section 520 generates decoded recombination information by decoding the encoded recombination information.
  • the decoding of the encoded recombination information uses a decoding method corresponding to the encoding method of the recombination information used in the encoding unit 401. Since the process for decoding the encoded recombination information can use the same process as the process for decoding the separation information described in the decoding unit 310 of the first embodiment, the description thereof is omitted.
  • the resynthesis information integration unit 322 generates integrated resynthesis information by integrating the received output signal information and the decoded resynthesis information.
  • the resynthesis information integration unit 322 is the same as that described with reference to FIG.
  • When there are a plurality of recombination information one is selected from the plurality of recombination information.
  • a person on the receiving side may select, or may be selected automatically according to the number of channels of the output signal and the speaker arrangement position.
  • the signal re-synthesizing unit 530 receives the decoded separated signal and the integrated re-synthesized information, and generates a multi-channel output signal by independently modifying a plurality of sound source signals constituting the decoded separated signal based on the integrated re-synthesized information To do.
  • the signal recombining unit 530 outputs a multi-channel output signal.
  • UC (f) is a matrix with N rows and P columns.
  • the signal re-synthesis unit 530 performs inverse frequency conversion on the frequency component of the controlled signal.
  • the method of performing the inverse frequency conversion is the same as the inverse frequency conversion described in the decoding unit 310 of the first embodiment, and thus description thereof is omitted.
  • the signal re-synthesis unit 530 outputs the signal subjected to inverse frequency conversion as a multi-channel output signal.
  • the signal re-synthesis unit 530 performs inverse frequency conversion on the integrated re-synthesis information to generate an impulse response (filter coefficient).
  • the method of performing the inverse frequency conversion is the same as the inverse frequency conversion described in the decoding unit 310 of the first embodiment, and thus description thereof is omitted.
  • the signal re-synthesis unit 530 generates a multi-channel output signal by performing a convolution operation on the impulse response to the decoded separated signal.
  • the receiving unit can control each sound source signal based on the output signal information and the resynthesis information output from the transmitting unit. That is, a desired sound source signal can be localized at a desired position, or suppressed and emphasized by the receiving unit.
  • the reception unit performs the same localization as the multi-channel input signal received by the transmission unit. Multi-channel output signals can be easily reproduced.
  • the recombination information since recombination information is transmitted, there is no need to convert the decoded recombination information in the reception unit, and the amount of computation in the reception unit can be reduced.
  • the re-synthesis information can be shaped to represent only the localization information of each sound source signal, so it has better quantization efficiency and reduces the amount of information in the transmission signal compared to quantizing the separation information can do.
  • the recombination information represents localization information of each sound source signal, when the output signal information cannot be obtained at the start of generating a multi-channel output signal such as when the power is turned on, the resynthesis information is used as an initial value of the output signal information.
  • the user can input the output signal information according to the user's preference after listening to the multi-channel output signal generated based on the resynthesis information. For this reason, it is not necessary to input the output signal information for each sound source from the beginning, and the convenience for the user is improved.
  • the fourth embodiment of the present invention will be described with reference to FIG.
  • the fourth embodiment has a configuration in which a transmission unit 60 and a reception unit 61 are connected via a transmission path.
  • the transmission unit 60 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission signal is input to the receiving unit 61 via the transmission path.
  • the receiving unit 61 receives a transmission signal and output signal information, and outputs a multi-channel output signal.
  • the transmission unit 60 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission unit 60 includes a resynthesis information calculation unit 500, a signal separation unit 101, and a low bit rate encoding unit 600.
  • the multi-channel input signal is input to the resynthesis information calculation unit 500 and the signal separation unit 101.
  • the resynthesis information calculation unit 500 includes separation information for separating the multi-channel input signal into a plurality of sound source signals, and re-synthesis information indicating the relationship between the plurality of sound source signals and the multi-channel input signal that constitute the multi-channel input signal. Is generated.
  • the recombination information calculation unit 500 outputs the separation information to the signal separation unit 101 and the recombination information to the low bit rate encoding unit 600.
  • the signal separation unit 101 receives a multi-channel input signal and separation information, and generates a separation signal by separating the multi-channel input signal. Then, the signal separation unit 101 outputs the separated signal to the low bit rate encoding unit 600.
  • the low bit rate encoding unit 600 generates a transmission signal by encoding the separated signal received from the signal separation 101 and the recombination information received from the recombination information calculation unit 500. Then, the low bit rate encoding unit 600 outputs the transmission signal to the transmission path.
  • the transmission unit 60 is different from the transmission unit 50 of FIG. 6 representing the third embodiment in that an encoding unit 510 is configured by a low bit rate encoding unit 600.
  • the receiving unit 61 receives a transmission signal and output signal information, and outputs a multi-channel output signal.
  • the receiving unit 61 includes a low bit rate decoding unit 610, a resynthesis information correction unit 620, and a signal resynthesis unit 630.
  • the transmission signal is input to the low bit rate decoding unit 610.
  • the output signal information is input to the resynthesis information correction unit 620.
  • the low bit rate decoding unit 610 decodes the received transmission signal into a downmix decoded signal, decoding analysis information, and decoding recombining information.
  • the low bit rate decoding unit 610 outputs the downmix decoded signal to the signal recombining unit 630 and the decoding analysis information and the decoded recombining information to the recombining information correcting unit 620, respectively.
  • the resynthesis information correction unit 620 integrates the output signal information, the decoding analysis information received from the low bit rate decoding unit 610, and the decoded resynthesis information to generate corrected resynthesis information. Then, the resynthesis information correction unit 620 outputs the correction resynthesis information to the signal resynthesis unit 630.
  • the signal re-synthesizing unit 630 re-synthesizes the multi-channel output signal by correcting the downmix decoded signal received from the low bit rate decoding unit 610 based on the modified re-synthesizing information received from the re-synthesizing information correcting unit 620. To do. Then, the signal recombining unit 630 outputs a multi-channel output signal.
  • the receiving unit 61 includes a decoding unit 520, a recombining information integration unit 322, and a signal recombining unit 530. The difference is that the unit 610, the resynthesis information correction unit 620, and the signal resynthesis unit 630 are configured.
  • the resynthesis information is information representing the relationship between a plurality of sound source signals included in the multichannel input signal and the multichannel input signal.
  • the output signal information is as described in the first embodiment.
  • the output signal information of this embodiment is the user's preference after listening to the multi-channel output signal generated based on the transmitted recombining information. Can be entered according to
  • the description of the parts overlapping with those of the third embodiment will be omitted, and the low bit rate encoding unit 600, the low bit rate decoding unit 610, the resynthesis information correction unit 620, the signal reconfiguration, which are features of the present embodiment, will be omitted.
  • a configuration example of the synthesis unit 630 will be described.
  • the low bit rate encoding unit 600 receives the separated signal and the recombining information, and outputs the transmission signal to the transmission path.
  • the low bit rate encoding unit 600 performs the same processing as the low bit rate encoding unit 400 of FIG. 3 described in the second embodiment.
  • the separated signal and the recombination information respectively correspond to the multi-channel input signal and the separation information that are inputs of the low bit rate encoding unit 400 in the second embodiment.
  • the low bit rate encoding unit 600 generates an encoded downmix signal, encoded analysis information, and encoded recombination information as a transmission signal. Then, the low bit rate encoding unit 600 outputs a transmission signal.
  • the low bit rate decoding unit 610 decodes the received transmission signal into a downmix decoded signal, decoding analysis information, and decoding information.
  • the low bit rate decoding unit 610 outputs the downmix decoded signal to the signal recombining unit 630 and the decoding analysis information and the decoded recombining information to the recombining information correcting unit 620, respectively.
  • the low bit rate decoding unit 610 performs the same processing as the low bit rate decoding unit 410 of FIG. 3 described in the second embodiment.
  • the decoding recombination information corresponds to the decoding separation information that is the output of the low bit rate decoding unit 410 in the second embodiment.
  • the resynthesis information correction unit 620 receives the decoding analysis information, the decoding resynthesis information, and the output signal information, and outputs the corrected resynthesis information.
  • the resynthesis information correction unit 620 includes a resynthesis information integration unit 322 and a correction unit 621.
  • the decoding analysis information is input to the correction unit 621, and the decoded resynthesis information and the output signal information are input to the resynthesis information integration unit 322.
  • the resynthesis information integration unit 322 generates integrated resynthesis information by integrating the received decoded resynthesis information and resynthesis information. Since the resynthesis information integration unit 322 is as described in the first embodiment, the description thereof is omitted.
  • the correction unit 621 receives the integrated resynthesis information and the decoding analysis information, and corrects the integrated resynthesis information based on the decoding analysis information to output the corrected resynthesis information.
  • a (f) and UC (f) are P row Q column and N row P, respectively.
  • UCA (f) is a matrix of N rows and Q columns.
  • the signal recombining unit 630 receives the downmix decoded signal and the modified recombining information, and generates a multi-channel output signal by modifying the downmix decoded signal based on the modified recombining information.
  • the signal recombining unit 630 outputs a multi-channel output signal.
  • the signal re-synthesis unit 630 performs frequency conversion on the downmix decoded signal. Since the frequency conversion method is the same as the frequency conversion described in the encoding unit 300 of the first embodiment, the description thereof is omitted.
  • UCA (f) is a matrix of N rows and Q columns.
  • the signal re-synthesis unit 630 performs inverse frequency conversion on the frequency component of the controlled signal.
  • the method of performing the inverse frequency conversion is the same as the inverse frequency conversion described in the decoding unit 310 of the first embodiment, and thus description thereof is omitted.
  • the signal re-synthesizing unit 630 outputs the signal subjected to inverse frequency conversion as a multi-channel output signal.
  • the signal re-synthesizing unit 630 performs inverse frequency conversion on the frequency component of the modified re-synthesizing information to generate an impulse response (filter coefficient).
  • the inverse frequency conversion method is the same as the inverse frequency conversion described in the decoding unit 310, and thus the description thereof is omitted.
  • the signal re-synthesizing unit 630 generates a multi-channel output signal by convolving the impulse response with the downmix decoded signal.
  • each sound source signal in the receiving unit based on the output signal information and the recombining information output from the transmitting unit. That is, a desired sound source signal can be localized at a desired position, or suppressed and emphasized by the receiving unit.
  • the reception unit performs the same localization as the multi-channel input signal received by the transmission unit. Multi-channel output signals can be easily reproduced.
  • the recombination information since recombination information is transmitted, there is no need to convert the decoded recombination information in the reception unit, and the amount of computation in the reception unit can be reduced.
  • the re-synthesis information can be shaped to represent only the localization information of each sound source signal, so it has better quantization efficiency and reduces the amount of information in the transmission signal compared to quantizing the separation information can do.
  • the recombination information represents localization information of each sound source signal, the user listens to the multi-channel output signal generated based on the transmitted recombination information, and then outputs the output signal information according to the user's preference. Can be entered.
  • the multi-channel input signal is encoded with a small amount of information compared to the third embodiment, the amount of information of the transmission signal can be reduced.
  • the fifth embodiment has a configuration in which a transmission unit 10 and a reception unit 11 are connected via a transmission path.
  • the transmission unit 10 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission signal is input to the receiving unit 11 via the transmission path.
  • the receiving unit 11 receives a transmission signal and output signal information and outputs a multi-channel output signal.
  • the transmission unit 10 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission unit 10 includes a separation information calculation unit 102, a signal separation unit 101, and an encoding unit 110.
  • the multi-channel input signal is input to the separation information calculation unit 102 and the signal separation unit 101.
  • the separation information calculation unit 102 generates separation information for separating the multi-channel input signal into a plurality of sound source signals by analyzing the multi-channel input signal. Then, the separation information calculation unit 102 outputs the separation information to the signal separation unit 101.
  • the signal separator 101 receives the multi-channel input signal and the separation information, and generates the separated signal by separating the multi-channel input signal into each sound source signal.
  • the signal separation unit 101 outputs the separated signal to the encoding unit 110.
  • Encoding section 110 generates a transmission signal by encoding the separated signal received from signal separation 101.
  • Encoding section 110 then outputs the transmission signal to the transmission path.
  • the transmission unit 10 includes a coding unit 300 that includes the coding unit 110, and a signal separation unit 101. Is different.
  • the signal separation unit 101 is as described in the third embodiment.
  • the encoding unit 110 receives the separated signal and encodes the separated signal to generate an encoded separated signal. Then, encoding section 110 outputs the encoded separated signal as a transmission signal. Since the process of encoding the separated signal is as described in the encoding unit 510 of the third embodiment, the description thereof is omitted.
  • the receiving unit 11 receives the transmission signal and the output signal information and outputs a multi-channel output signal.
  • the receiving unit 11 includes a decoding unit 120 and a signal recombining unit 130.
  • the transmission signal is input to the decoding unit 120.
  • the output signal information is input to the signal recombining unit 130.
  • the decoding unit 120 decodes the received transmission signal into a decoded separated signal.
  • the decoding unit 120 outputs the decoded separated signal to the signal recombining unit 130.
  • the signal re-synthesizing unit 130 re-synthesizes the multi-channel output signal by modifying the decoded separated signal received from the decoding unit 120 based on the output signal information. Output.
  • the receiving unit 11 includes a decoding unit 310 and a signal recombining unit 330, each of which includes a decoding unit 120 and a signal recombining unit 130.
  • the difference is that the separation / recombination information generation unit 320 is not provided.
  • the decoding unit 120 decodes the received transmission signal into a decoded separated signal. Decoding section 120 then outputs the decoded separated signal to signal recombining section 130. Since the decoding of the encoded separated signal is as described in the decoding unit 520 of the third embodiment, the description is omitted.
  • the signal re-synthesizing unit 130 receives the decoded separated signal and the output signal information, and generates a multi-channel output signal by independently modifying a plurality of sound source signals constituting the decoded separated signal based on the output signal information.
  • the signal recombining unit 130 outputs a multi-channel output signal.
  • the signal recombining unit 130 performs frequency conversion on the decoded separated signal.
  • U (f) is a matrix of N rows and P columns.
  • the signal recombining unit 130 performs inverse frequency conversion on the frequency component of the controlled signal.
  • the method of performing the inverse frequency conversion is the same as the inverse frequency conversion described in the decoding unit 310 of the first embodiment, and thus description thereof is omitted.
  • the signal recombining unit 130 outputs the inverse frequency converted signal as a multi-channel output signal.
  • the signal recombining unit 130 performs inverse frequency conversion on the frequency component of the output signal information to generate an impulse response (filter coefficient).
  • the method of performing the inverse frequency conversion is the same as the inverse frequency conversion described in the decoding unit 310 of the first embodiment, and thus description thereof is omitted.
  • the signal re-synthesizing unit 130 generates a multi-channel output signal by convolving the decoded response with the impulse response.
  • the fifth embodiment of the present invention it is possible to control each sound source signal by the receiving unit based on the output signal information. That is, a desired sound source signal can be localized at a desired position, or suppressed and emphasized by the receiving unit. Further, as compared with the first to fourth embodiments, since the separation information or the recombination information is not transmitted, the information amount of the transmission signal can be reduced. Further, compared with the first to fourth embodiments, since the separation information or recombination information is not transmitted, the receiving side does not perform the process of integrating the separation information or recombination information and the output signal information. The processing of the receiving unit is simplified, and the calculation amount of the receiving unit can be reduced.
  • the sixth embodiment has a configuration in which a transmission unit 20 and a reception unit 21 are connected via a transmission path.
  • the transmission unit 20 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission signal is input to the receiving unit 21 via the transmission path.
  • the receiving unit 21 receives a transmission signal and output signal information, and outputs a multi-channel output signal.
  • the transmission unit 20 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission unit 20 includes a separation information calculation unit 102, a signal separation unit 101, and a low bit rate encoding unit 210.
  • the multi-channel input signal is input to the separation information calculation unit 102 and the signal separation unit 101.
  • the separation information calculation unit 102 generates separation information for separating the multi-channel input signal into a plurality of sound source signals by analyzing the multi-channel input signal. Then, the separation information calculation unit 102 outputs the separation information to the signal separation unit 101.
  • the signal separator 101 receives the multi-channel input signal and the separation information, and generates the separated signal by separating the multi-channel input signal into each sound source signal.
  • the signal separation unit 101 outputs the separated signal to the low bit rate encoding unit 210.
  • the low bit rate encoding unit 210 generates a transmission signal by encoding the separated signal received from the signal separating unit 101. Then, the low bit rate encoding unit 210 outputs the transmission signal to the transmission path.
  • the transmission unit 10 is different from the transmission unit 10 of FIG. 11 representing the fifth embodiment in that the encoding unit 110 is configured by a low bit rate encoding unit 210.
  • the receiving unit 21 receives a transmission signal and output signal information and outputs a multi-channel output signal.
  • the receiving unit 21 includes a low bit rate decoding unit 220, a correction unit 240, and a signal recombining unit 630.
  • the transmission signal is input to the low bit rate decoding unit 220.
  • the output signal information is input to the correction unit 240.
  • the low bit rate decoding unit 220 decodes the received transmission signal into a downmix decoded signal and decoding analysis information. Subsequently, the low bit rate decoding unit 220 outputs the downmix decoded signal to the signal recombining unit 630 and the decoding analysis information to the correcting unit 240.
  • the correcting unit 240 corrects the output signal information based on the decoding analysis information, thereby generating corrected recombination information. Then, the correction unit 240 outputs the correction recombination information to the signal recombination unit 230.
  • the signal re-synthesis unit 630 re-synthesizes the multi-channel output signal by modifying the downmix decoded signal received from the low bit rate decoding unit 220 based on the modified re-synthesis information.
  • the signal recombining unit 630 outputs a multi-channel output signal. Compared with the receiving unit 11 of FIG.
  • the receiving unit 21 includes a decoding unit 120 and a signal recombining unit 130, each of which includes a low bit rate decoding unit 220 and a signal recombining unit 630. This is different from the point that the correction unit 240 is newly provided.
  • the signal recombining unit 630 is as described in the fourth embodiment.
  • the low bit rate encoding unit 210 receives the separated signal and outputs the transmission signal to the transmission path.
  • the low bit rate encoding unit 210 includes a downmix unit 211, a signal analysis unit 213, and an encoding unit 212.
  • the separated signal is input to the signal analysis unit 213 and the downmix unit 211.
  • the downmix unit 211 generates a downmix signal by downmixing the separated signal.
  • the signal analysis unit 213 generates analysis information by analyzing the separated signal. Since the downmix unit 211 and the signal analysis unit 213 are the same as those described with reference to FIG. 4 in the second embodiment, the description thereof is omitted.
  • the encoding unit 212 generates the encoded downmix signal and the encoded analysis information as a transmission signal by encoding the received downmix signal and the analysis information. Since the downmix signal is encoded as described in the second embodiment, the description thereof is omitted. Moreover, since the analysis information is encoded as described in the second embodiment, the description thereof is omitted. Then, encoding section 212 outputs the transmission signal to the transmission path.
  • the low bit rate decoding unit 220 decodes the received transmission signal into a downmix decoded signal and decoding analysis information. Since the decoding of the encoded downmic signal is as described in the second embodiment, the description thereof is omitted. Also, since the decoding of the encoded analysis information is as described in the second embodiment, the description thereof is omitted. Then, the low bit rate decoding unit 220 outputs the downmix decoded signal to the signal recombining unit 230 and the decoding analysis information to the correcting unit 240, respectively.
  • the correction unit 240 receives the output signal information and the decoding analysis information, and corrects the partial output signal information based on the decoding analysis information, thereby generating corrected recombination information. Then, the correction unit 240 outputs the correction recombination information.
  • a (f) and U (f) are P row Q column and N row P, respectively.
  • UCA (f) is a matrix of N rows and Q columns.
  • the sixth embodiment of the present invention it is possible to control each sound source signal by the receiving unit based on the output signal information. That is, a desired sound source signal can be localized at a desired position, or suppressed and emphasized by the receiving unit. Further, as compared with the first to fourth embodiments, since the separation information or the recombination information is not transmitted, the information amount of the transmission signal can be reduced. Further, compared with the first to fourth embodiments, since the separation information or recombination information is not transmitted, the receiving side does not perform the process of integrating the separation information or recombination information and the output signal information. The processing of the receiving unit is simplified, and the calculation amount of the receiving unit can be reduced. Further, since the multi-channel input signal is encoded with a small amount of information as compared with the fifth embodiment, the amount of information of the transmission signal can be reduced.
  • the seventh embodiment has a configuration in which a transmission unit 70 and a reception unit 71 are connected via a transmission path.
  • the transmission unit 70 receives a multi-channel input signal in which a plurality of sound source signals are mixed and outputs a transmission signal.
  • the transmission signal is input to the receiving unit 71 via the transmission path.
  • the receiving unit 71 receives a transmission signal and output signal information, and outputs a multi-channel output signal.
  • the transmitting unit 70 receives a multi-channel input signal in which a plurality of sound source signals are mixed, and outputs a transmission signal.
  • the transmission unit 70 includes an encoding unit 110.
  • the multi-channel input signal is input to the encoding unit 110.
  • the encoding unit 110 generates a transmission signal by encoding the multi-channel input signal. Encoding section 110 then outputs the transmission signal to the transmission path. Since the process of encoding the multi-channel input signal is as described in the encoding unit 300 of the first embodiment, the description is omitted.
  • the receiving unit 71 receives the transmission signal and the output signal information, and outputs a multi-channel output signal.
  • the receiving unit 71 includes a decoding unit 120, a separation information calculation unit 102, a separation / recombination information generation unit 320, and a signal recombination unit 330.
  • the transmission signal is input to the decoding unit 120.
  • the output signal information is input to the separation / recombination information generation unit 320.
  • the decoding unit 120 decodes the received transmission signal into a multi-channel decoded signal. Subsequently, the decoding unit 120 outputs the multi-channel decoded signal to the separation information calculation unit 102 and the signal recombining unit 330.
  • the separation information calculation unit 102 generates separation information for separating the multi-channel decoded signal into a plurality of sound source signals. Then, the separation information calculation unit 102 outputs the separation information to the separation / recombination information generation unit 320.
  • the separation / recombination information generation unit 320 generates separation / recombination information by integrating the output signal information and the separation information received from the separation information calculation unit 102. Then, the separation / recombination information generation unit 320 outputs the separation / recombination information to the signal recombination unit 330.
  • the signal re-synthesizing unit 330 re-synthesizes the multi-channel output signal by modifying the multi-channel decoded signal received from the decoding unit 120 based on the de-multiplexing / re-synthesizing information received from the de-multiplexing / re-synthesizing information generating unit 320.
  • the signal recombining unit 330 outputs a multi-channel output signal.
  • the receiving unit 71 includes a decoding unit 310 configured by the decoding unit 120 and a new separation information calculation unit 102. Different.
  • the decoding unit 120 decodes the received transmission signal into a multi-channel decoded signal. Decoding section 120 then outputs the multi-channel decoded signal to separation information calculation section 102 and signal recombining section 330. Since the decoding of the encoded multi-channel input signal is as described in the decoding unit 310 of the first embodiment, the description thereof is omitted.
  • the separation information calculation unit 102 generates separation information by analyzing the received multi-channel decoded signal. Then, the separation information calculation unit 102 outputs the separation information.
  • the separation information is information representing the relationship between the multi-channel decoded signal and the sound source signal, and is used for separating the multi-channel decoded signal into a plurality of sound source signals. Since the operation of the separation information calculation unit 102 is as described in the first embodiment, the description is omitted.
  • the seventh embodiment of the present invention it is possible to control each sound source signal by the receiving unit based on the output signal information. That is, a desired sound source signal can be localized at a desired position, or suppressed and emphasized by the receiving unit. Further, as compared with the first to fourth embodiments, since the separation information or the recombination information is not transmitted, the information amount of the transmission signal can be reduced. Further, compared with the first to fourth embodiments, since no separation information or recombination information is generated, the calculation amount of the transmission unit can be reduced. Further, as compared with the first to sixth embodiments, even if the receiving unit receives only signals that are not separated into sound source signals, the receiving unit can control each sound source signal.
  • the signal analysis control system of the present invention can also be applied when one-way audio communication such as broadcasting is performed.
  • the transmission terminal of the broadcast station may use any of the transmission units in the first to sixth embodiments of the present invention.
  • Broadcasting stations include not only broadcasting stations with broadcasting licenses but also points that transmit audio and receive little, such as the main venue of multipoint video conferences.
  • the signal analysis control system of the present invention can be applied to a point where only reception is performed.
  • the receiving terminal at the point where only reception is performed any of the receiving units in the first to seventh embodiments of the present invention may be used.
  • the ninth embodiment of the present invention includes computers 1300 and 1301 that operate under program control.
  • the computer may be any of a central processing unit, a processor, and a data processing device.
  • the computer 1300 performs processing according to any of the first to sixth embodiments, and operates based on a program for receiving a multi-channel input signal and outputting a transmission signal.
  • the computer 1301 performs processing according to any of the first to eighth embodiments, operates based on a program for receiving a transmission signal and outputting a multi-channel output signal.
  • the transmission process and the reception process may be executed using the same computer.
  • the operations of the transmission unit, the transmission path, and the reception unit have been described.
  • the operations may be replaced with a recording unit, a storage medium, and a reproduction unit, respectively.
  • the transmission unit 30 shown in FIG. 1 may output the transmission signal as a bit stream to a storage medium and record the bit stream on the storage medium.
  • the reception unit 31 may extract the bit stream recorded on the storage medium, decode the bit stream, and perform processing to generate an output signal.
  • the first embodiment of the present invention includes a separation information calculation unit that generates separation information for separating an input signal mixed with a sound source signal into the sound source signal, and the input signal and the separation information are This is a signal analysis device characterized by being transmitted.
  • the second embodiment of the present invention includes an encoding unit that generates encoded information by encoding the input signal and the separation information in the above-described embodiment, and transmits the encoded information. It is characterized by doing.
  • the encoding unit has a downmix unit that generates a downmix signal from the input signal, and a relationship between the input signal and the downmix signal.
  • a signal analysis unit that generates analysis information to be expressed; and a second encoding unit that generates encoded information by encoding the downmix signal, the analysis information, and the separation information.
  • the resynthesis information calculation unit includes a separation information calculation unit that generates the separation information for separating the input signal into the sound source signal, It has a recombination information conversion part which produces
  • the recombination information calculation unit generates the separation information for separating the input signal into the sound source signal;
  • a recombination information conversion unit that generates the recombination information representing the relationship between the input signal and the sound source signal based on the separation information, and a recombination information shaping unit that shapes the recombination information.
  • the seventh embodiment of the present invention includes an encoding unit that generates encoded information by encoding the separated signal and the recombined information in the above-described embodiment, and transmits the encoded information. It is characterized by doing.
  • the encoding unit includes a downmix unit that generates a downmix signal from the separated signal, and the input signal and the downmix signal from the input signal.
  • a signal analysis unit that generates analysis information representing the relationship between the second mix unit, and a second encoding unit that generates encoded information by encoding the downmix signal, the analysis information, and the resynthesis information.
  • a separation information calculation unit for generating separation information for separating an input signal mixed with sound source signals into the sound source signal, and the input signal based on the separation information.
  • a signal analysis apparatus comprising: a signal separation unit that generates a separation signal by separating the sound source signal; and an encoding unit that encodes the separation signal.
  • the tenth embodiment of the present invention is the above-described embodiment, wherein the encoding unit includes a downmix unit that generates a downmix signal from the separated signal, and the input signal and the downmix signal from the input signal. And a second encoding unit that encodes the downmix signal and the analysis information.
  • the eleventh embodiment of the present invention receives a mixed signal in which sound source signals are mixed, separation information for separating the mixed signal into the sound source signals, and output signal information for controlling a specific sound source signal.
  • a signal control device based on the separation and recombination information, a separation and recombination information generation unit that generates separation and recombination information for controlling the sound source signal from the output signal information and the separation information, And a signal re-synthesizing unit that corrects the mixed signal.
  • the separation / recombination information generation unit generates re-synthesis information representing a relationship between the mixed signal and the sound source signal from the separation information.
  • a synthesis information conversion unit a resynthesis information integration unit that generates integrated resynthesis information by integrating the output signal information and the resynthesis information, and combining the integrated resynthesis information and the separation information
  • a combining unit that generates the separation / recombination information.
  • a downmix signal obtained by downmixing a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the mixed signal, and the mixed signal as the sound source.
  • a signal control device that receives separation information for separating a signal and output signal information for controlling a specific sound source signal, wherein the sound source signal is obtained from the output signal information, the analysis information, and the separation information.
  • a signal comprising: a separation / recombination information generation unit that generates modified separation / recombination information for control; and a signal recombination unit that modifies the downmix signal based on the modified separation / recombination information. It is a control device.
  • the separation / recombination information generation unit generates re-synthesis information representing a relationship between the mixed signal and the sound source signal from the separation information.
  • a synthesis information conversion unit a resynthesis information integration unit that generates integrated resynthesis information by integrating the output signal information and the resynthesis information, and combining the integrated resynthesis information and the separation information
  • a synthesis unit that generates separation / resynthesis information
  • a correction unit that generates the modified separation / resynthesis information by correcting the separation / resynthesis information based on the analysis information.
  • a separated signal obtained by separating a mixed signal in which sound source signals are mixed, recombination information indicating a relationship between the mixed signal and the separated signal, and an output for controlling a specific sound source signal
  • a signal control device that receives signal information, a resynthesis information integration unit that generates integrated resynthesis information for controlling the sound source signal from the output signal information and the resynthesis information, and the correction separation And a signal re-synthesis unit that corrects the separated signal based on re-synthesis information.
  • a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information indicating a relationship between the downmix signal and the separated signal
  • a signal control device that receives recombination information representing a relationship between a mixed signal and the separated signal and output signal information for controlling a specific sound source signal, the output signal information, the analysis information, and the resynthesis information
  • a re-synthesis information correction unit that generates correction re-synthesis information for controlling the sound source signal
  • a signal re-synthesis unit that corrects the downmix signal based on the correction re-synthesis information.
  • the resynthesis information correction unit generates integrated resynthesis information by integrating the output signal information and the resynthesis information.
  • An eighteenth embodiment of the present invention is a signal control apparatus for receiving a separated signal obtained by separating a mixed signal in which sound source signals are mixed and output signal information for controlling a specific sound source signal, wherein the output signal information A signal re-synthesizing unit that modifies the separated signal based on the signal control device.
  • a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the separated signal, and specification A signal control device for receiving output signal information for controlling a sound source signal of the recombination information, wherein recombination information correction for generating correction recombination information for controlling the sound source signal from the output signal information and the analysis information And a signal recombining unit that corrects the downmix signal based on the modified recombining information.
  • a twentieth embodiment of the present invention is a signal control device that receives a mixed signal in which sound source signals are mixed, output signal information for controlling a specific sound source signal, and separates the mixed signal into the sound source signal.
  • a signal control apparatus comprising: a signal re-synthesis unit that corrects the mixed signal based on synthesis information.
  • the separation / recombination information generation unit generates re-synthesis information indicating a relationship between the mixed signal and the sound source signal from the separation information.
  • a synthesizing unit that generates the separation / resynthesis information.
  • the twenty-second embodiment of the present invention is characterized in that, in the above-described embodiment, the integrated re-synthesis information is generated using only the re-synthesis information.
  • a twenty-third embodiment of the present invention is characterized in that separation information for separating an input signal mixed with sound source signals into the sound source signal is generated, and the input signal and the separation information are transmitted. This is a signal analysis method.
  • the twenty-fourth embodiment of the present invention is characterized in that, in the above-described embodiment, the input information and the separation information are encoded to generate encoded information, and the encoded information is transmitted. .
  • the encoding generates a downmix signal from the input signal and generates analysis information indicating a relationship between the input signal and the downmix signal.
  • the encoded information is generated by encoding the downmix signal, the analysis information, and the separation information.
  • a twenty-sixth embodiment of the present invention generates separation information for separating an input signal mixed with sound source signals into the sound source signal, and recombination information representing a relationship between the input signal and the sound source signal. Then, based on the separation information, a separation signal is generated by separating the input signal into the sound source signal, and the separation signal and the resynthesis information are transmitted.
  • the twenty-seventh embodiment of the present invention generates the separation information for separating the input signal into the sound source signal in the above-described embodiment, and generates the recombination information based on the separation information. It is characterized by that.
  • the separation information for separating the input signal into the sound source signal is generated, and the recombination information is generated based on the separation information.
  • the re-synthesis information is shaped.
  • the 29th embodiment of the present invention is characterized in that, in the above embodiment, encoding information is generated by encoding the separated signal and the recombining information, and the encoding information is transmitted. .
  • the thirtieth embodiment of the present invention in the above embodiment, generates a downmix signal from the separated signal, generates analysis information representing a relationship between the input signal and the downmix signal from the input signal,
  • the encoded information is generated by encoding the downmix signal, the analysis information, and the re-synthesis information.
  • separation information for separating an input signal mixed with a sound source signal into the sound source signal is generated, and the input signal is separated into the sound source signal based on the separation information.
  • the signal analysis method is characterized in that a separated signal is generated by encoding and the separated signal is encoded.
  • a downmix signal is generated from the separated signal, and analysis information representing a relationship between the input signal and the downmix signal is generated from the input signal.
  • the downmix signal and the analysis information are encoded.
  • a thirty-third embodiment of the present invention receives a mixed signal in which sound source signals are mixed, separation information for separating the mixed signal into the sound source signals, and output signal information for controlling a specific sound source signal. Generating signal separation / recombination information for controlling the sound source signal from the output signal information and the separation information, and correcting the mixed signal based on the separation / resynthesis information Is the method.
  • recombination information representing the relationship between the mixed signal and the sound source signal is generated from the separation information, and the output signal information and the resynthesis information are Are combined to generate integrated resynthesis information, and the combined resynthesis information and the separation information are combined to generate the separation resynthesis information.
  • a downmix signal obtained by downmixing a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the mixed signal, and the mixed signal as the sound source.
  • Receiving separation information for separating into signals and output signal information for controlling a specific sound source signal, and correcting separation for controlling the sound source signal from the output signal information, the analysis information, and the separation information The signal control method is characterized by generating recombination information and correcting the downmix signal based on the modified separation recombination information.
  • recombination information representing a relationship between the mixed signal and the sound source signal is generated from the separation information, and the output signal information and the recombination information are generated.
  • To generate integrated resynthesis information combine the integrated resynthesis information and the separation information to generate separation resynthesis information, and correct the separation resynthesis information based on the analysis information By doing so, the modified separation / resynthesis information is generated.
  • the thirty-seventh embodiment of the present invention controls a separated signal obtained by separating a mixed signal in which sound source signals are mixed, recombination information indicating the relationship between the mixed signal and the separated signal, and a specific sound source signal.
  • Output signal information to be generated, and from the output signal information and the resynthesis information, integrated resynthesis information for controlling the sound source signal is generated, and based on the modified separation resynthesis information, the separated signal Is a signal control method characterized by correcting the above.
  • the thirty-eighth embodiment of the present invention provides a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, and analysis information indicating a relationship between the downmix signal and the separated signal, Receiving the recombination information representing the relationship between the mixed signal and the separated signal, the output signal information for controlling a specific sound source signal, and the sound source from the output signal information, the analysis information, and the resynthesis information.
  • the signal control method is characterized in that modified re-synthesis information for controlling a signal is generated, and the downmix signal is modified based on the modified re-synthesis information.
  • integrated resynthesis information is generated by integrating the output signal information and the resynthesis information, and the integrated resynthesis information is converted into the analysis information.
  • the modified re-synthesizing information is generated by modifying based on the modified information.
  • the 40th embodiment of the present invention receives a separated signal obtained by separating a mixed signal mixed with a sound source signal and output signal information for controlling a specific sound source signal, and the separated signal based on the output signal information.
  • a signal control method characterized by correcting the above.
  • a forty-first embodiment of the present invention relates to a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the separated signal, and identification Output signal information for controlling the sound source signal, and from the output signal information and the analysis information, generate corrected recombination information for controlling the sound source signal, based on the corrected resynthesis information, A signal control method for correcting the downmix signal.
  • the forty-second embodiment of the present invention receives a mixed signal in which sound source signals are mixed and output signal information for controlling a specific sound source signal, and uses separation information for separating the mixed signal into the sound source signal. Generating separation recombination information for controlling the sound source signal from the output signal information and the separation information, and correcting the mixed signal based on the separation recombination information. This is a signal control method.
  • re-synthesis information indicating a relationship between the mixed signal and the sound source signal is generated from the separation information, and the output signal information and the re-synthesis information Are combined to generate integrated resynthesis information, and the combined resynthesis information and the separation information are combined to generate the separation resynthesis information.
  • the forty-fourth embodiment of the present invention is characterized in that, in the above-described embodiment, the integrated re-synthesis information is generated using only the re-synthesis information.
  • the forty-fifth embodiment of the present invention is a program for causing an information processing apparatus to execute separation information calculation processing for generating separation information for separating an input signal mixed with sound source signals into the sound source signals.
  • the forty-sixth embodiment of the present invention generates separation information for separating an input signal mixed with sound source signals into the sound source signal, and recombination information representing the relationship between the input signal and the sound source signal. And a signal separation process for generating a separated signal by separating the input signal into the sound source signal based on the separation information.
  • a separation information calculation process for generating separation information for separating an input signal mixed with a sound source signal into the sound source signal, and the input signal based on the separation information.
  • a program for causing an information processing device to execute a signal separation process for generating a separated signal by separating the sound source signal and an encoding process for encoding the separated signal.
  • a mixed signal obtained by mixing sound source signals, separation information for separating the mixed signal into the sound source signals, and output signal information for controlling a specific sound source signal are input.
  • the mixed signal is corrected based on the separation / recombination information generation process for generating separation / recombination information for controlling the sound source signal from the output signal information and the separation information, and the separation / recombination information.
  • This is a program for causing an information processing apparatus to execute signal resynthesis processing.
  • a forty-ninth embodiment of the present invention relates to a downmix signal obtained by downmixing a mixed signal in which sound source signals are mixed, analysis information indicating a relationship between the downmix signal and the mixed signal, and the mixed signal as the sound source.
  • Separation information for separation into signals and output signal information for controlling a specific sound source signal are input, and correction separation for controlling the sound source signal from the output signal information, the analysis information, and the separation information.
  • This is a program for causing an information processing device to execute separation / resynthesis information generation processing for generating resynthesis information and signal resynthesis processing for correcting the downmix signal based on the corrected separation / resynthesis information.
  • a separated signal obtained by separating a mixed signal in which sound source signals are mixed, recombination information representing a relationship between the mixed signal and the separated signal, and an output for controlling a specific sound source signal
  • re-synthesis information integration process for generating integrated re-synthesis information for controlling the sound source signal from the output signal information and the re-synthesis information, and the corrected separated re-synthesis information
  • a program for causing an information processing apparatus to execute signal recombination processing for correcting the separated signal.
  • a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information indicating a relationship between the downmix signal and the separated signal, Resynthesis information indicating the relationship between the mixed signal and the separated signal and output signal information for controlling a specific sound source signal are input, and the sound source signal is obtained from the output signal information, the analysis information, and the resynthesis information.
  • a separated signal obtained by separating a mixed signal in which sound source signals are mixed and output signal information for controlling a specific sound source signal are input, and the separated signal is based on the output signal information.
  • a program for causing an information processing apparatus to execute a signal recombining process for correcting.
  • the 53rd embodiment of the present invention relates to a downmix signal obtained by downmixing a separated signal obtained by separating a mixed signal mixed with a sound source signal, analysis information indicating the relationship between the downmix signal and the separated signal, Output signal information for controlling the sound source signal of the input signal, re-synthesis information correction processing for generating corrected re-synthesis information for controlling the sound source signal from the output signal information and the analysis information;
  • a program for causing an information processing apparatus to execute signal re-synthesis processing for correcting the downmix signal based on synthesis information.
  • a mixed signal obtained by mixing sound source signals and output signal information for controlling a specific sound source signal are input, and separation information for separating the mixed signal into the sound source signals is obtained.
  • the separation / recombination information generation process for generating separation / resynthesis information for controlling the sound source signal from the output signal information and the separation information, and the separation / resynthesis information .
  • the present invention can be applied to applications such as a device for performing signal analysis or control, a program for realizing signal analysis or control in a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Stereophonic System (AREA)
  • Telephonic Communication Services (AREA)

Abstract

音源信号が混合された入力信号を、音源信号に分離するための分離情報を生成する分離情報計算部を有し、前記入力信号と前記分離情報とを送出することを特徴とする信号分析装置である。

Description

信号分析装置、信号制御装置及びその方法と、プログラム
 本発明は信号分析装置、信号制御装置及びその方法と、プログラムに関する。
 1つまたは複数の音源信号が混合された多チャンネル入力信号を伝送し、受信側で復号信号を制御するシステムとして図17に示す技術がある。図17を参照して、関連する技術について説明する。図17のシステムにおいて、符号化部900が多チャンネル入力信号を符号化することにより、符号化された多チャンネル信号を生成する。多チャンネル信号を符号化する方法としては、非特許文献1に開示されているAAC方式が知られている。符号化部900は、符号化された多チャンネル信号を伝送信号として出力する。伝送信号は伝送路を介して、復号部910へ供給される。
 復号部910は受信した伝送信号を、多チャンネル復号信号に復号する。そして、復号部910は、多チャンネル復号信号を信号再合成部920へ供給する。AACを用いて符号化した場合、復号部910は、AAC方式で符号化された情報を復号することにより、多チャンネル復号信号を生成する。信号再合成部920は、多チャンネル復号信号と出力信号情報を受け、出力信号情報に基づいて多チャンネル復号信号を所望の位置に定位させることにより、多チャンネル出力信号を再合成する。そして、信号再合成部920は、多チャンネル出力信号を出力する。多チャンネル出力信号を再合成する方法としては、非特許文献2に開示されているEnhanced Matrix Modeを用いることができる。ここで、出力信号情報は、多チャンネル復号信号と多チャンネル出力信号との関係を表す情報である。
2005年、アイエスオー/アイイシー 14496-3:2005 パート3 オーディオ、(ISO/IEC 14496-3:2005 Part 3 Audio) 2007年、アイエスオー/アイイシー 23003-1:2007 パート1 エムペグ サラウンド、(ISO/IEC 23003-1:2007 Part 1 MPEG Surround)
 しかしながら、上述の関連する技術では、多チャンネル入力信号を構成する音源信号を独立に制御することができないという問題があった。なぜなら、上述の関連する技術では、音源信号が混合されている多チャンネル入力信号を制御しているのであって、音源信号ごとに制御していないからである。すなわち、多チャンネル入力信号に含まれる特定の音源信号の定位を変更したり、多チャンネル入力信号に含まれる特定の音源信号だけを抑圧または強調するといった制御ができない。
 そこで、本発明は上記課題に鑑みて発明されたものであって、その目的は、多チャンネル入力信号を構成する1つまたは複数の音源信号を独立に制御することのできる信号分析装置、信号制御装置及びその方法と、プログラムを提供することである。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算部を有し、前記入力信号と前記分離情報とを送出することを特徴とする信号分析装置である。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成する再合成情報計算部と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離部とを有し、前記分離信号と前記再合成情報とを送出することを特徴とする信号分析装置である。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算部と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離部と、前記分離信号を符号化する符号化部とを有することを特徴とする信号分析装置である。
 上記課題を解決する本発明は、音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成部と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 上記課題を解決する本発明は、音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成する分離再合成情報生成部と前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成する再合成情報統合部と、前記修正分離再合成情報に基づいて、前記分離信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正部と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報に基づいて前記分離信号を修正する信号再合成部を有することを特徴とする信号制御装置である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正部と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 上記課題を解決する本発明は、音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報と受信する信号制御装置であって、前記混合信号を前記音源信号に分離するための分離情報を生成する分離情報計算部と、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成部と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成し、前記入力信号と前記分離情報とを送出することを特徴とする信号分析方法である。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成し、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成し、前記分離信号と前記再合成情報とを送出することを特徴とする信号分析方法である。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成し、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成し、前記分離信号を符号化することを特徴とする信号分析方法である。
 上記課題を解決する本発明は、音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成し、前記分離再合成情報に基づいて、前記混合信号を修正することを特徴とする信号制御方法である。
 上記課題を解決する本発明は、音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成し、前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正することを特徴とする信号制御方法である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成し、前記修正分離再合成情報に基づいて、前記分離信号を修正することを特徴とする信号制御方法である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報と受信し、前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成し、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正することを特徴とする信号制御方法である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報に基づいて前記分離信号を修正することを特徴とする信号制御方法である。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成し、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正することを特徴とする信号制御方法である。
 上記課題を解決する本発明は、音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報とを受信し、前記混合信号を前記音源信号に分離するための分離情報を生成し、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成し、前記分離再合成情報に基づいて、前記混合信号を修正することを特徴とする信号制御方法である。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算処理を情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成する再合成情報計算処理と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離処理とを情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算処理と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離処理と、前記分離信号を符号化する符号化処理とを情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成処理と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成する分離再合成情報生成処理と、前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成する再合成情報統合処理と、前記修正分離再合成情報に基づいて、前記分離信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正処理と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報に基づいて前記分離信号を修正する信号再合成処理を情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正処理と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 上記課題を解決する本発明は、音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報とが入力され、前記混合信号を前記音源信号に分離するための分離情報を生成する分離情報計算処理と、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成処理と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 本発明によれば、出力信号情報に基づいて、多チャンネル入力信号を構成する1つまたは複数の音源信号を独立に制御することができる。
図1は本発明の第一の実施の形態を示すブロック図である。 図2は分離再合成情報生成部320の構成例である。 図3は本発明の第二の実施の形態を示すブロック図である。 図4は低ビットレート符号化部400の構成例である。 図5は分離再合成情報生成部420の構成例である。 図6は本発明の第三の実施の形態を示すブロック図である。 図7は再合成情報計算部510の第一の構成例である。 図8は再合成情報計算部510の第二の構成例である。 図9は本発明の第四の実施の形態を示すブロック図である。 図10は再合成情報修正部620の構成例である。 図11は本発明の第五の実施の形態を示すブロック図である。 図12は本発明の第六の実施の形態を示すブロック図である。 図13は低ビットレート符号化部210の構成例である。 図14は本発明の第七の実施の形態を示すブロック図である。 図15は本発明の第八の実施の形態を示すブロック図である。 図16は本発明の第九の実施の形態を示すブロック図である。 図17は本発明に関連する技術を示すブロック図である。
 本発明の信号分析制御システムの実施の形態について図面を参照して詳細に説明する。
 <第一の実施の形態>
 図1を参照し、本発明の信号分析制御システムの第一の実施の形態について説明する。本発明の信号分析制御システムは、送信部30と受信部31とが伝送路を介して接続された構成である。送信部30は、1つまたは複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。伝送信号は、伝送路を介して、受信部31に入力される。受信部31は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。また、送信部、伝送路、受信部をそれぞれ、録音部、蓄積媒体、再生部としてもよい。
 以下、本発明の説明では、複数の音源信号が混合された多チャンネル入力信号の場合について説明するが、本発明は、1つの音源信号が混合された多チャンネル入力信号の場合についても適用できる。
 多チャンネル入力信号を、例えば、複数のマイクロホンで取得した場合、多チャンネル入力信号には、複数のマイクロホンの設置位置や指向性の情報を含むことができる。また、多チャンネル入力信号がデジタル信号の場合には、サンプリング周波数の情報を含むことができる。これら情報は、後述する多チャンネル入力信号を音源信号に分離するための情報を算出するさいに、利用することができる。
 送信部30は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。送信部30は、分離情報計算部102、符号化部300から構成される。多チャンネル入力信号は、分離情報計算部102と符号化部300に入力される。分離情報計算部102は、多チャンネル入力信号を複数の音源信号に分離するための分離情報を生成する。そして、分離情報計算部102は、分離情報を符号化部300に出力する。符号化部300は、多チャンネル入力信号と、分離情報計算部102から受信した分離情報を符号化することにより、伝送信号を生成する。そして、符号化部300は、伝送信号を伝送路に出力する。
 受信部31は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。受信部31は、復号部310と分離再合成情報生成部320と信号再合成部330から構成される。伝送信号は復号部310に入力される。出力信号情報は分離再合成情報生成部320に入力される。まず、復号部310は、受信した伝送信号を、多チャンネル復号信号と復号分離情報とに復号する。続いて、復号部310は、多チャンネル復号信号を信号再合成部330に、復号分離情報を分離再合成情報生成部320に、それぞれ出力する。分離再合成情報生成部320は、出力信号情報と、復号部310から受信した復号分離情報を統合することにより、分離再合成情報を生成する。そして、分離再合成情報生成部320は、分離再合成情報を信号再合成部330に出力する。信号再合成部330は、分離再合成情報生成部320から受信した分離再合成情報に基づいて、復号部310から受信した多チャンネル復号信号を修正することにより、多チャンネル出力信号を再合成する。信号再合成部330は、多チャンネル出力信号を出力する。
 出力信号情報は、多チャンネル入力信号に含まれる複数の音源信号を複数の出力チャネルにそれぞれ出力するための情報である。つまり、出力信号情報は、各音源信号と多チャンネル出力信号との関係を周波数成分毎に表した情報である。例えば、出力信号情報は、各音源信号の定位情報を含んでいても良い。出力信号情報は、音像をぼかしたりして定位感を操作するための情報を含んでいてもよい。出力信号情報を利用することにより、音源信号ごとに各出力チャネルへの出力信号を制御することができる。各音源信号は、特定の1つの出力チャネル(例えばスピーカ)から出力してもよいし、複数の出力チャネルに分配して出力してもよい。例えば、特定の音源信号を特定の出力チャネルのみから出力させることにより、明確に定位させることができ、臨場感を向上させることができる。また、特定の音源信号を抑圧または強調してもよい。
 出力信号情報は、利用者によって外部から得られる情報に基づいて入力してもよい。例えば、外部から入力される情報としては、受信部に予め登録されていた利用者の嗜好などの個人情報、受信部の動作状態(スピーカをオフにしてあるなどの外部環境情報を含む)、受信部の種類や形式、電源や電池の利用状態や残量、アンテナの種類や状態(折りたたまれているなどの形状、向きなど)がある。また、出力信号情報は、別の形式で自動的に獲得されることとしてもよい。出力信号情報は、受信部内部または近傍に設置されたセンサを経由して、自動的に獲得される情報を元に入力してもよい。例えば、自動的に獲得される情報として、外部雑音量、明るさ、時間帯、地理的な位置、気温、映像との同期情報、カメラを通じたバーコード情報などを用いてもよい。
 出力信号情報は、各音源信号の代わりに、複数の音源信号からなる音源信号群を単位とした情報でもよい。また、出力信号情報は、周波数成分毎に表した情報の代わりに、複数の周波数成分を単位とした情報でもよいし、全周波数成分をまとめた情報でもよい。
 続いて、図10における分離情報計算部102の構成例を詳細に説明する。分離情報計算部102は、受信した多チャンネル入力信号を分析することにより、分離情報を生成する。そして、分離情報計算部102は、分離情報を出力する。分離情報は、多チャンネル入力信号と音源信号の関係を表す情報であり、多チャンネル入力信号を複数の音源信号に分離するために利用される。分離情報を生成する方法として、ブラインド信号源分離(Blind Source Separation)や、独立成分分析(Independent Component Analysis)と呼ばれる手法を用いることができる。ブラインド信号源分離および独立成分分析の方法に関連する技術は、文献1(2005年、「スピーチ・エンハンスメント」、シュプリンガー、(Speech Enhancement, Springer, 2005, pp. 299 - 327)、299ページから327ページ。)に開示されている。
 以下、分離情報計算部102の動作例を説明する。まず、分離情報計算部102は、複数の入力信号サンプルをまとめて、1ブロックを構成し、このブロックに対して周波数変換を適用する。周波数変換の例としては、フーリエ変換、コサイン変換、KL(カルーネンレーベ)変換などが知られている。これらの変換の具体的な演算に関連する技術及びその性質は、文献2(1990 年、「ディジタル・コーディング・オブ・ウェーブフォームス」、プレンティス・ホール (DIGITAL CODING OF WAVEFORMS, PRINCIPLES AND APPLICATIONS TO SPEECH AND VIDEO, PRENTICE-HALL, 1990.))に開示されている。また、1ブロックの入力信号サンプルを窓関数で重み付けした結果に対して、前述の変換を適用することができる。このような窓関数としては、ハミング、ハニング(ハン)、ケイザー、ブラックマンなどの窓関数が知られている。また、さらに複雑な窓関数を用いることもできる。これらの窓関数に関連する技術は、文献3(1975 年、「ディジタル・シグナル・プロセシング」、プレンティス・ホール (DIGITAL SIGNAL PROCESSING, PRENTICE-HALL, 1975.))及び文献4(1993 年、「マルチレートシステムズ・アンド・フィルタバンクス」、プレンティス・ホール (MULTIRATE SYSTEMS AND FILTER BANKS, PRENTICE-HALL, 1993.))に開示されている。さらに、複数の入力信号サンプルから1ブロックを構成する際に、各ブロックに重なり(オーバラップ)を許容してもよい。例えば、ブロック長の30%のオーバラップを適用する場合には、あるブロックに属する信号サンプルの最後30%は、次のブロックに属する信号サンプルの最初30%として複数のブロックで重複して用いられる。オーバラップを有するブロック化と変換に関連する技術は、文献2に開示されている。
 さらに、他の周波数変換の例としては、帯域分割フィルタバンクで構成してもよい。帯域分割フィルタバンクは、複数の帯域通過フィルタから構成される。帯域分割フィルタバンクは、受信した入力信号を複数の周波数帯域に分割する。帯域分割フィルタバンクの各周波数帯域は等間隔であってもよいし、不等間隔であってもよい。不等間隔に帯域分割することによって、低域では狭帯域に分割して時間分解能を低く、高域では広い帯域に分割して時間分解能を高くすることができる。不等間隔分割の代表例には、低域に向かって帯域が逐次半分になるオクターブ分割や人間の聴覚特性に対応した臨界帯域分割などがある。帯域分割フィルタバンクとその設計法に関連する技術は、文献4に開示されている。
 続いて、分離情報計算部102は、上述の方法で周波数変換した多チャンネル入力信号を用いて分離情報を生成する。ある周波数帯域fにおける多チャンネル入力信号の周波数成分をXi(f), i=1,2,…M (Mは入力チャンネル数)、分離信号の周波数成分をYi(f), i=1,2,…P (Pは音源信号数)とし、分離行列の周波数成分をW(f)とすると、
Figure JPOXMLDOC01-appb-M000001
となる分離行列W(f)を計算する。ここで、分離行列W(f)は、
Figure JPOXMLDOC01-appb-M000002
となるP行M列の行列である。分離信号Yi(f)は一般的に未知であるため、分離信号Yi(f)の独立性を最大化するような分離行列W(f)を計算する。分離行列W(f)の計算法に関連する技術は、文献1に開示されている。分離情報計算部102は、各周波数帯域で算出した分離行列W(f)を分離情報として出力する。
 次に、図1における符号化部300の構成例を詳細に説明する。符号化部300は、多チャンネル入力信号と分離情報を受信し、多チャンネル入力信号と分離情報を符号化することにより、符号化された多チャンネル入力信号と符号化された分離情報を伝送信号として生成する。そして、符号化部300は、伝送信号を伝送路に出力する。
 まず、多チャンネル入力信号の符号化の具体例を説明する。符号化部300は、多チャンネル入力信号を、AACなどの符号化方法を用いて符号化することができる。AACを用いた場合、多チャンネル入力信号は周波数変換された後、マスキング効果などの聴覚特性とハフマン符号化を利用して周波数変換された信号の冗長性が除去され、符号化された多チャンネル入力信号が生成される。
 続いて、分離情報の符号化の具体例を説明する。符号化部300は、分離情報である分離行列W(f)を量子化および符号化することにより、符号化された分離情報を生成する。量子化方法としては、線形量子化、非線形量子化などの量子化方法が知られている。量子化された分離情報は、ハフマン符号化などを用いて冗長性を取り除くことができる。さらに、分離情報の冗長性を除去するために、可聴限界周波数などの聴覚特性を利用することができる。例えば、聴覚上認知され難い高周波数帯域の分離情報は量子化および符号化しなくても良い。さらに、分離情報の冗長性を除去する方法として、臨界帯域幅などの聴覚特性を利用して分離情報を複数の周波数帯域で統合してから量子化および符号化することができる。統合する周波数帯域の間隔は等間隔であってもよいし、不等間隔であってもよい。不等間隔に帯域分割することによって、低域では狭帯域に分割して、高域では広い帯域に分割して、聴覚特性に合わせることができる。全ての、周波数帯域をまとめて1つにしてもよい。統合する方法としては、統合する周波数帯域に含まれる各要素の平均を用いることができる。統合する他の方法として、分離情報が複素数信号である場合、各要素を振幅項と位相項に分けてから統合してもよい。例えば、振幅項は、統合する周波数帯域に含まれる各要素の振幅項の平均を用いて、位相項は統合せずに各要素の位相項をそのまま用いることができる。
 次に、図1における復号部310の構成例を詳細に説明する。復号部310は、受信した伝送信号を多チャンネル復号信号と復号分離情報とに復号する。復号部310は、多チャンネル復号信号を信号再合成部330に、復号分離情報を分離再合成情報生成部320に、それぞれ出力する。
 まず、符号化された多チャンネル入力信号の復号の具体例を説明する。復号部310は、符号化された多チャンネル入力信号を復号することにより、多チャンネル復号信号を生成する。符号化された多チャンネル入力信号の復号は、符号化部300に用いられた多チャンネル入力信号の符号化方法に対応する復号方法を用いる。AACを用いた場合、まず、符号化された多チャンネル入力信号はハフマン復号および逆量子化されることにより、複数の周波数成分から構成される各チャンネルの復号変換信号が生成される。そして、各チャンネルの復号変換信号はチャンネルごとに逆周波数変換される。ここで適用する逆周波数変換は、符号化部300において、多チャンネル入力信号に適用した周波数変換に対応する逆変換が用いられる。例えば、符号化部300が、複数の多チャンネル入力信号サンプルをまとめて1ブロックを構成し、このブロックに対して周波数変換を適用するときには、逆周波数変換処理でも、同一数のサンプルに対して対応する逆変換を適用する。また、符号化部300が複数の多チャンネル入力信号サンプルから1ブロックを構成する際に、各ブロックに重なり(オーバラップ)を許容する場合には、これに対応して、逆周波数変換処理でも、逆変換後の信号に対して同一のオーバラップを適用する。さらに、符号化部300を帯域分割フィルタバンクで構成するときには、逆周波数変換を帯域合成フィルタバンクで構成する。帯域合成フィルタバンクとその設計法に関連する技術は、文献4に開示されている。逆周波数変換された信号は、多チャンネル復号信号として出力される。
 続いて、符号化された分離情報の復号の具体例を説明する。復号部310は、符号化された分離情報を復号することにより、復号分離情報を生成する。符号化された分離情報の復号は、符号化部300に用いられた分離情報の符号化方法に対応する復号方法を用いる。符号化された分離情報は、復号および逆量子化されることにより、復号分離情報が生成される。
 次に、図2を参照して、図1における分離再合成生成部320の構成例を詳細に説明する。分離再合成情報生成部320は、復号分離情報と出力信号情報を受信し、分離再合成情報を出力する。分離再合成情報生成部320は、再合成情報変換部321、再合成情報統合部322、合成部323から構成される。復号分離情報は、再合成情報変換部321と合成部323に入力され、出力信号情報は、再合成情報統合部322に入力される。
 再合成情報変換部321は、受信した復号分離情報を変換することにより、復号再合成情報を生成する。そして、再合成情報変換部321は、復号再合成情報を再合成情報統合部322に出力する。ここで、復号再合成情報は、多チャンネル入力信号に含まれる複数の音源信号と多チャンネル入力信号との関係を表す。すなわち、復号再合成情報は、送信部において受信した多チャンネル入力信号に各音源信号がどのように混合されているかを表し、各音源信号の定位情報を含む。
 復号再合成情報を算出する具体的な例を説明する。周波数帯域fにおける復号分離情報の周波数成分をWD(f)とすると、復号再合成情報の周波数成分UD(f)は、UD(f)=WD-1(f)となり、復号分離情報の逆行列で表すことができる。ここで、復号再合成情報UD(f)は、M行P列の行列であり、Mは多チャンネル入力信号のチャンネル数、Pは音源信号数を表す。
 再合成情報統合部322は、受信した復号再合成情報と出力信号情報を統合することにより、統合再合成情報を生成する。そして、再合成情報統合部322は、統合再合成情報を合成部323に出力する。まず、再合成情報統合部322は、復号再合成情報を変換再合成情報に変換する。変換再合成情報は、多チャンネル入力信号に含まれる複数の音源信号と多チャンネル出力信号との関係を表す。周波数帯域fにおける変換再合成情報の周波数成分UT(f)は、変換行列の周波数成分H(f)と、復号再合成情報の周波数成分UD(f)を用いて、
Figure JPOXMLDOC01-appb-M000003
となる。ここで、M,N,Pはそれぞれ、多チャンネル入力信号のチャンネル数、多チャンネル出力信号のチャンネル数、音源信号数を表す。H(f)は、N行M列の行列であり、UT(f)は、N行P列の行列となる。変換行列は、多チャンネル入力信号のチャンネル構成を多チャンネル出力信号のチャンネル構成に変換する行列である。例えば、多チャンネル入力信号のチャンネル構成と多チャンネル出力信号のチャンネル構成が同一であれば、H(f)は単位行列となり、UT(f)=UD(f)となる。入力チャンネル数のほうが出力チャンネル数より小さい場合には、変換行列はアップミックス動作となる。このとき、入力チャンネル数よりも多い出力チャンネルが無音となるように変換行列を構成してもよいし、複数の入力チャンネルを混合したものとなるように変換行列を構成してもよい。一方で、入力チャンネル数のほうが出力チャンネル数より多い場合には、変換行列はダウンミックス動作となる。ことのき、複数の入力チャンネルを混合したものが出力チャンネルとなるように変換行列を構成してもよいし、特定の入力チャンネルを選択したものが出力チャンネルとなるように変換行列を構成してもよい。変換行列は、あらかじめ定めれた行列を用いてもよいし、多チャンネル入力信号と多チャンネル出力信号の特性に応じて変化する行列を用いてもよい。また、時間の経過とともに変化してもよい。
 続いて、再合成情報統合部322は、変換再合成情報と出力信号情報を統合することにより、統合再合成情報を生成する。そして、再合成情報統合部322は、統合再合成情報を出力する。統合再合成情報は、音源信号と多チャンネル出力信号との関係を表す。統合する方法としては、各音源信号ごとに、変換再合成情報と出力信号情報のどちらの情報を用いるかを選択することにより統合することができる。他の方法として、各音源信号ごとに選択するのではなく、複数の音源信号をまとめた音源信号群を単位として統合してもよい。また、音源信号ごとに選択するのではなく、全音源信号に対して、常にどちらか一方の情報を選択して統合再合成情報として用いてもよい。例えば、常に変換再合成情報を用いることにより、送信者の意図を反映させることができる。
 統合再合成情報算出の具体的な例を説明する。周波数帯域fにおける出力信号情報の周波数成分U(f)と、変換再合成情報の周波数成分UT(f)を次のように表す。
Figure JPOXMLDOC01-appb-M000004
 ここで、Pは、音源信号の個数を表し、Nは、多チャンネル出力信号のチャンネル数を表す。周波数帯域fにおける統合再合成情報の周波数成分をUC(f)とすると、数4を用いて、統合再合成情報の周波数成分UC(f)は、
Figure JPOXMLDOC01-appb-M000005
となる。ここで、UC(f)は、N行P列の行列である。音源信号ごとに出力信号情報または変換再合成情報のどちらを用いるかは、利用者の嗜好に応じて選択してもよいし、あらかじめ決められた方法で選択してもよい。さらに、特定の音源信号に関しては、変換再合成情報を常に選択するといった統合方法を用いてもよい。
 合成部323は、受信した復号分離情報と統合再合成情報を合成することにより、分離再合成情報を生成する。そして、合成部323は、分離再合成情報を出力する。分離再合成情報は、多チャンネル復号信号を各音源信号に分離し、各音源信号ごとに制御するための情報を表す。周波数帯域fにおける復号分離情報の周波数成分をWD(f)、統合再合成情報の周波数成分をUC(f)とすると、分離再合成情報の周波数成分UW(f)は、UW(f)=UC(f)×WD(f)となる。UW(f)は、N行M列となる。
 次に、図1に戻り、信号再合成部330の構成例を詳細に説明する。信号再合成部330は、多チャンネル復号信号と分離再合成情報を受信し、分離再合成情報に基づき、多チャンネル復号信号を構成する複数の音源信号を独立に修正することにより、多チャンネル出力信号を生成する。信号再合成部330は、多チャンネル出力信号を出力する。
 以下、信号再合成部330の動作例を説明する。まず、信号再合成部330は、多チャンネル復号信号を周波数変換する。周波数変換する方法については、分離情報計算部102で説明した周波数変換と同様であるため、説明を省略する。周波数帯域fにおける多チャンネル復号信号の周波数成分をXDi(f), i=1,2,…M (Mは入力チャンネル数)、分離再合成情報の周波数成分をUW(f)とすると、制御された信号の周波数成分Zi(f), i=1,2,…N (Nは出力チャンネル数)は、
Figure JPOXMLDOC01-appb-M000006
となる。UW(f)は、N行M列の行列である。続いて、信号再合成部330は、制御された信号の周波数成分を逆周波数変換する。逆周波数変換する方法については、復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部330は、逆周波数変換された信号を多チャンネル出力信号として出力する。
 信号再合成部330の他の動作例を説明する。まず、信号再合成部330は、分離再合成情報の周波数成分を逆周波数変換し、インパルス応答(フィルタ係数)を生成する。逆周波数変換する方法については、復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部330は、多チャンネル復号信号にインパルス応答を畳み込み演算することで、多チャンネル出力信号を生成する。
 上記符号化部300および復号部310の説明では、多チャンネル入力信号の符号化および復号に、AACを想定して説明したが、パルス符号変調(PCM)、適応差分パルス符号変調(ADPCM)、さらにCELPなどに代表される分析合成符号化を適用してもよい。PCM/ADPCMに関連する技術は文献2に開示されている。また、CELPに関連する技術は文献5(1985年3月、アイ・イー・イー・イー・インターナショナル・カンファレンス・オン・アクースティック・スピーチ・アンド・シグナル・プロセシング、25.1.1、 (IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 25.1.1, MAR, 1985, pp.937-940) 937~940ページ)に開示されている。また、符号化部300は、多チャンネル入力信号の符号化処理を行わずに多チャンネル入力信号をそのまま伝送し、復号部310は、復号処理を行わずに多チャンネル入力信号を多チャンネル復号信号として、そのまま信号再合成部330に出力してもよい。この構成により、符号化・復号処理に伴う信号の歪をなくすことができる。この構成により、信号再合成部330は、多チャンネル入力信号に歪を生じさせることなく多チャンネル復号信号を受信することができる。
 以上説明したように、本発明の第一の実施の形態によれば、出力信号情報と送信部から出力される分離情報に基づいて、受信部で音源信号ごとに制御することができる。すなわち、受信部で所望の音源信号を所望の位置に定位させたり、抑圧および強調させることができる。また、送信部で受信した多チャンネル入力信号を構成する各音源信号の定位情報を保持することができるため、受信部において、送信部で受信した多チャンネル入力信号と同一の定位情報を容易に再現できる。
 <第二の実施の形態>
 図3を参照して、本発明の第二の実施の形態について説明する。第二の実施の形態は、送信部40と受信部41とが伝送路を介して接続された構成である。送信部40は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。伝送信号は、伝送路を介して、受信部41に入力される。受信部41は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。
 送信部40は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。送信部40は、分離情報計算部102、低ビットレート符号化部400から構成される。多チャンネル入力信号は、分離情報計算部102と低ビットレート符号化部400に入力される。分離情報計算部102は、多チャンネル入力信号を複数の音源信号に分離するための分離情報を生成する。そして、分離情報計算部102は、分離情報を低ビットレート符号化部400に出力する。低ビットレート符号化部400は、多チャンネル入力信号と、分離情報計算部102から受信した分離情報を符号化することにより、伝送信号を生成する。そして、低ビットレート符号化部400は、伝送信号を伝送路に出力する。送信部40は、第一の実施の形態を表す図1の送信部30と比べて、符号化部300が、低ビットレート符号化部400で構成されている点が異なる。
 受信部41は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。受信部41は、低ビットレート復号部410と分離再合成情報生成部420と信号再合成部430から構成される。伝送信号は低ビットレート復号部410に入力される。出力信号情報は分離再合成情報生成部420に入力される。まず、低ビットレート復号部410は、受信した伝送信号を、ダウンミックス復号信号と復号分析情報と復号分離情報とに復号する。続いて、低ビットレート復号部410は、ダウンミックス復号信号を信号再合成部430に、復号分析情報と復号分離情報を分離再合成情報生成部420に、それぞれ出力する。分離再合成情報生成部420は、出力信号情報と、低ビットレート復号部410から受信した復号分析情報と復号分離情報を統合することにより、修正分離再合成情報を生成する。そして、分離再合成情報生成部420は、修正分離再合成情報を信号再合成部430に出力する。信号再合成部430は、分離再合成情報生成部420から受信した修正分離再合成情報に基づいて、低ビットレート復号部410から受信したダウンミックス復号信号を修正することにより、多チャンネル出力信号を再合成する。そして、信号再合成部430は、多チャンネル出力信号を出力する。受信部41は、第一の実施の形態を表す図1の受信部31と比べて、復号部300、分離再合成情報生成部320、信号再合成部330が、ぞれぞれ、低ビットレート復号部400、分離再合成情報生成部420、信号再合成部430で構成されている点が異なる。
 出力信号情報は、第一の実施の形態で説明したとおり、多チャンネル入力信号に含まれる複数の音源信号を複数の出力チャネルにそれぞれ出力するための情報である。
 以下、第一の実施の形態と重複する部分の説明は省略し、本実施の形態の特徴である低ビットレート符号化部400、低ビットレート復号部400、分離再合成情報生成部420、信号再合成部430の構成例について説明する。
 まず、図4を参照して、低ビットレート符号化部400の構成例を詳細に説明する。低ビットレート符号化部400は、受信した多チャンネル入力信号と分離情報を符号化することにより、伝送信号を生成する。そして、低ビットレート符号化部400は伝送信号を出力する。低ビットレート符号化部400は、ダウンミックス部211、信号分析部213、符号化部401から構成される。多チャンネル入力信号は、信号分析部213とダウンミックス部211に入力され、分離情報は符号化部401に入力される。
 ダウンミックス部211は、多チャンネル入力信号をダウンミックスすることにより、ダウンミックス信号を生成する。そして、ダウンミックス部211は、ダウンミックス信号を符号化部401に出力する。
 ダウンミックス部211におけるダウンミックス処理は、例えば、全ての多チャンネル入力信号を加算して1チャンネルのダウンミックス信号を生成することができる。また、多チャンネル入力信号を複数のグループに分け、各グループに属する多チャンネル入力信号を加算することにより、複数チャンネルのダウンミックス信号を生成してもよい。なお、多チャンネル入力信号をそのまま加算するのではなく、多チャンネル入力信号の位相差・相関を補償してから加算しても良い。
 ダウンミックス部211における他のダウンミックス処理として、多チャンネル入力信号を周波数変換し、周波数成分毎に周波数変換した多チャンネル入力信号を加算することによりダウンミックス信号を生成することができる。周波数変換は、分離情報計算部102における周波数変換と同様な処理用いることができるため、説明を省略する。このとき、周波数成分毎に異なるエネルギ補正あるいは位相差補償を変換された多チャンネル入力信号に施してから加算しても良い。ダウンミックス処理を周波数領域で行うため、時間領域で行う構成に比べて、詳細なダウンミックス処理が実現できる。
 信号分析部213は、受信した多チャンネル入力信号を分析することにより、分析情報を生成する。そして、信号分析部213は、分析情報を符号化部401に出力する。ここで、分析情報は、多チャンネル入力信号とダウンミックス信号との関係を周波数成分毎に表した情報であり、信号間のエネルギ差、時間差や相関などを用いて表すことができる。分析情報の一例として文献6(2007年、アイエスオー/アイイシー 23003-1:2007 パート1 エムペグ サラウンド、(ISO/IEC 23003-1:2007 Part 1 MPEG Surround))に開示された情報が知られている。まず、受信した多チャンネル入力信号を周波数変換する。周波数変換は、分離情報計算部102における周波数変換と同様な処理用いることができるため、説明を省略する。続いて、信号分析部213は、周波数変換された信号を分析することにより、信号間のエネルギ差、時間差や相関などを算出する。そして、信号分析部213は、算出した信号間のエネルギ差、時間差や相関などに基づいて、分析情報を生成する。分析情報の生成に関連する技術は、文献6に開示されている。
 符号化部401は、受信したダウンミックス信号と分析情報と分離情報を符号化することにより、符号化されたダウンミックス信号と符号化された分析情報と符号化された分離情報を伝送信号として生成する。そして、符号化部401は、伝送信号を伝送路に出力する。
 まず、ダウンミックス信号の符号化の具体例を説明する。符号化部401は、ダウンミックス信号を符号化することにより、符号化されたダウンミックス信号を生成する。ダウンミックス信号を符号化する方法は、第一の実施の形態の符号化部300で説明した多チャンネル入力信号を符号化する処理と同様な処理を用いることができるため、説明を省略する。
 続いて、分析情報の符号化の具体例を説明する。符号化部401は、分析情報を符号化することにより、符号化された分析情報を生成する。分析情報を符号化する方法として、文献6に開示されている量子化方法がある。量子化方法としては、線形量子化、非線形量子化などの量子化方法が知られている。量子化された分析情報は、ハフマン符号化などを用いて冗長性を取り除くことができる。さらに、分析情報の冗長性を除去するために、可聴限界周波数などの聴覚特性を利用することができる。例えば、聴覚上認知され難い高周波数帯域の分離情報は量子化および符号化しなくても良い。さらに、分析情報の冗長性を除去する方法として、臨界帯域幅などの聴覚特性を利用して分析情報を複数の周波数帯域で統合してから量子化および符号化することができる。統合する周波数帯域の間隔は等間隔であってもよいし、不等間隔であってもよい。不等間隔に帯域分割することによって、低域では狭帯域に分割して、高域では広い帯域に分割して、聴覚特性に合わせることができる。全ての、周波数帯域をまとめて1つにしてもよい。統合する方法としては、統合する周波数帯域に含まれる各要素の平均を用いることができる。符号化された分析情報の情報量は、多チャンネル入力信号をチャンネルごとに符号化する場合と比較して、少ない情報量で符号化することができる。
 続いて、分離情報の符号化の具体例を説明する。符号化部401は、分離情報を符号化することにより、符号化された分離情報を生成する。分離情報を符号化する処理は、第一の実施の形態の符号化部300において説明したとおりであるため、説明を省力する。
 次に、図3に戻り、低ビットレート復号部410の構成例を詳細に説明する。低ビットレート復号部410は、受信した伝送信号を、ダウンミックス復号信号と復号分析情報と復号分離情報とに復号する。低ビットレート復号部410は、ダウンミックス復号信号を信号再合成部430に、復号分析情報と復号分離情報を分離再合成情報生成部420に、それぞれ出力する。
 まず、符号化されたダウンミックス信号の復号の具体例を説明する。低ビットレート復号部410は、符号化されたダウンミックス信号を復号することにより、ダウンミックス復号信号を生成する。符号化されたダウンミックス信号の復号は、符号化部401に用いられたダウンミックス信号の符号化方法に対応する復号方法を用いる。符号化されたダウンミックス信号を復号する処理は、第一の実施の形態の復号部310における符号化された多チャンネル入力信号を復号する処理と同様な処理を用いることができるため、説明を省略する。
 続いて、符号化された分析情報の復号の具体例を説明する。低ビットレート復号部410は、符号化された分析情報を復号することにより、復号分析情報を生成する。符号化された分析情報の復号は、符号化部401に用いられた分析情報の符号化方法に対応する復号方法を用いる。符号化された分析情報は、復号および逆量子化されることにより、復号分析情報が生成される。
 続いて、符号化された分離情報の復号の具体例を説明する。低ビットレート復号部410は、符号化された分離情報を復号することにより、復号分離情報を生成する。符号化された分離情報の復号は、符号化部401に用いられた分離情報の符号化方法に対応する復号方法を用いる。符号化された分離情報を復号する処理は、第一の実施の形態の復号部310において説明したとおりであるため、説明を省略する。
 続いて、図5を参照して、図3における分離再合成情報生成部420の構成例を詳細に説明する。分離再合成情報生成部420は、復号分析情報と復号分離情報と出力信号情報を受信し、修正分離再合成情報を出力する。分離再合成情報生成部420は、再合成情報変換部321、再合成情報統合部322、合成部323、修正部421から構成される。復号分析情報は、修正部421に入力される。復号分離情報は、再合成情報変換部321と合成部323に入力される。出力信号情報は、再合成情報統合部322に入力される。図2の第一の実施の形態の分離再合成情報生成部320と比較すると、分離再合成情報生成部420は、修正部421が新たに追加されていることが異なる。以下、修正部421について説明する。
 修正部421は、分離再合成情報と復号分析情報を受信し、復号分析情報に基づき分離再合成情報を修正することにより、修正分離再合成情報を出力する。修正分離再合成情報は、ダウンミックス復号信号を各音源信号に分離し、分離した各音源信号ごとに制御するための情報を表す。復号分析情報の周波数帯域fの周波数成分をA(f)、分離再合成情報の周波数成分をUW(f)とすると、修正分離再合成情報の周波数成分UWA(f)は、UWA(f)=UW(f)×A(f)となる。ここで、多チャンネル入力信号のチャンネル数、ダウンミックス信号のチャンネル数、音源信号数、多チャンネル出力信号のチャンネル数を、それぞれM、Q、P、Nとすると、A(f)とUW(f)は、それぞれ、、M行Q列の行列とN行M列となり、UWA(f)は、N行Q列の行列となる。
 次に、図3に戻り、信号再合成部430の構成例を詳細に説明する。信号再合成部430は、ダウンミックス復号信号と修正分離再合成情報を受信し、修正分離再合成情報に基づき、ダウンミックス復号信号を構成する複数の音源信号を独立に修正することにより、多チャンネル出力信号を生成する。信号再合成部430は、多チャンネル出力信号を出力する。
 以下、信号再合成部430の動作例を説明する。まず、信号再合成部430は、ダウンミックス復号信号を周波数変換する。周波数変換する方法については、第一の実施の形態の符号化部300で説明した周波数変換と同様であるため、説明を省略する。周波数帯域fにおけるダウンミックス復号信号の周波数成分をMDi(f), i=1,2,…Q (Qはダウンミック信号のチャンネル数)、修正分離再合成情報の周波数成分をUWA(f)とすると、制御された信号の周波数成分Zi(f), i=1,2,…N (Nは出力チャンネル数)は、
Figure JPOXMLDOC01-appb-M000007
となる。ここで、UWA(f)は、N行Q列の行列である。続いて、信号再合成部430は、制御された信号の周波数成分を逆周波数変換する。逆周波数変換する方法については、第一の実施の形態の復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部430は、逆周波数変換された信号を多チャンネル出力信号として出力する。
 信号再合成部430の他の動作例を説明する。まず、信号再合成部430は、修正分離再合成情報を逆周波数変換し、インパルス応答(フィルタ係数)を生成する。逆周波数変換する方法については、復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部430は、ダウンミックス復号信号にインパルス応答を畳み込み演算することで、多チャンネル出力信号を生成することができる。
 以上説明したように、本発明の第二の実施の形態によれば、出力信号情報と送信部から出力される分離情報に基づいて、受信部で音源信号ごとに制御することができる。すなわち、受信部で所望の音源信号を所望の位置に定位させたり、抑圧および強調させることができる。また、送信部で受信した多チャンネル入力信号を構成する各音源信号の定位情報を保持することができるため、受信部において、送信部で受信した多チャンネル入力信号と同一の定位情報を容易に再現できる。さらに、第一の実施の形態と比べて、多チャンネル入力信号を少ない情報量で符号化するため、伝送信号の情報量を削減することができる。
 <第三の実施の形態>
 図6を参照して、本発明の第三の実施の形態について説明する。第三の実施の形態は、送信部50と受信部51とが伝送路を介して接続された構成である。送信部50は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。伝送信号は、伝送路を介して、受信部51に入力される。受信部51は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。
 送信部50は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。送信部50は、再合成情報計算部500、信号分離部101、符号化部510から構成される。多チャンネル入力信号は、再合成情報計算部500と信号分離部101に入力される。再合成情報計算部500は、多チャンネル入力信号を複数の音源信号に分離するための分離情報と、多チャンネル入力信号を構成する複数の音源信号と多チャンネル入力信号との関係を表す再合成情報を生成する。そして、再合成情報計算部500は、分離情報を信号分離部101に、再合成情報を符号化部510に出力する。信号分離部101は、多チャンネル入力信号と分離情報を受信し、多チャンネル入力信号を分離することにより、分離信号を生成する。そして、信号分離部101は、分離信号を符号化部510に出力する。符号化部510は、信号分離部101から受信した分離信号と、再合成情報計算部500から受信した再合成情報を符号化することにより、伝送信号を生成する。そして、符号化部510は、伝送路に出力する。送信部50は、第一の実施の形態を表す図1の送信部30と比べて、分離情報計算部102と符号化部300が、それぞれ、再合成情報計算部500と符号化部510で構成されている点と、新たに信号分離部101を具備していることが異なる。
 受信部51は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。受信部51は、復号部520と再合成情報統合部322と信号再合成部530から構成される。伝送信号は復号部520に入力される。出力信号情報は再合成情報統合部322に入力される。まず、復号部520は、受信した伝送信号を、復号分離信号と復号再合成情報とに復号する。続いて、復号部520は、復号分離信号を信号再合成部530に、復号再合成情報を再合成情報統合部322に、それぞれ出力する。再合成情報統合部322は、出力信号情報と、復号部520から受信した復号再合成情報を統合することにより、統合再合成情報を生成する。そして、再合成情報統合部322は、統合再合成情報を信号再合成部530に出力する。信号再合成部530は、再合成情報統合部322から受信した統合再合成情報に基づいて、復号部520から受信した復号分離信号を修正することにより、多チャンネル出力信号を再合成する。信号再合成部530は、多チャンネル出力信号を出力する。受信部51は、第一の実施の形態を表す図1の受信部31と比べて、復号部310と分離再合成情報生成部320と信号再合成部330が、それぞれ、復号部520と再合成情報統合部322と信号再合成部530で構成されている点が異なる。
 再合成情報は、多チャンネル入力信号に含まれる複数の音源信号と多チャンネル入力信号との関係を表す情報である。つまり、再合成情報は、多チャンネル入力信号に各音源信号がどのように混合されているかを表し、各音源信号の定位情報を含む。本実施の形態は、分離情報を受信部へ伝送する第一および第二の実施の形態と異なり、再合成情報を伝送することを特徴とする。
 出力信号情報は、第一の実施の形態で説明したとおりである。なお、本実施の形態の出力信号情報は、伝送された再合成情報に基づき生成された多チャンネル出力信号を利用者が聴取した後に、利用者の好みに応じて入力することができる。この場合、最初から出力信号情報を各音源ごとに入力する必要がなく、利用者の利便性が向上される。
 続いて、図7を参照して、図6における再合成情報計算部500の第一の構成例を詳細に説明する。再合成情報計算部500は、多チャンネル入力信号を受信し、分離情報と再合成情報を出力する。再合成情報計算部500は、分離情報計算部102と再合成情報変換部321から構成される。分離情報計算部102は、多チャンネル入力信号を受信し、多チャンネル入力信号を分析することにより、多チャンネル入力信号を複数の音源信号に分離するための情報である分離情報を生成する。そして、分離情報計算部102は、分離情報を出力する。分離情報計算部102は、第一の実施の形態において用いたものと同様であり、説明は省略する。再合成情報変換部321は、受信した分離情報を変換することにより、再合成情報を生成する。そして、分離情報計算部102は、再合成情報を出力する。再合成情報変換部321は、第一の実施の形態において用いたものと同様であり、説明は省略する。本実施の形態の再合成情報変換部321は、符号化復号を適用していない分離情報に基づいて再合成情報に変換している。このため、精度のよい再合成情報を生成することができる。
 次に、図8を参照して、再合成情報計算部500の第二の構成例を詳細に説明する。再合成情報計算部500は、多チャンネル入力信号を受信し、分離情報と再合成情報を出力する。第二の構成例は、図7の第一の構成例と比較して、再合成情報整形部501が新たに追加されていることを特徴とする。再合成情報整形部501は、再合成情報変換部321から受信した再合成情報を整形し、整形した再合成情報を出力する。
 以下、第二の構成例の特徴である再合成情報整形部501の動作例について詳細に説明する。まず、再合成情報整形部501は、受信した再合成情報から各音源の到来方向を推定する。到来方向を推定する方法として、再合成情報に含まれる各音源の定位情報を用いることができる。到来方向算出の具体的な例を説明する。周波数帯域fにおける再合成情報の周波数成分UE(f)を次のように表す。
Figure JPOXMLDOC01-appb-M000008
ここで、Pは、音源信号の個数を表し、Mは、多チャンネル入力信号のチャンネル数を表す。UE(f)は、M行P列の行列であり、再合成情報の各列がそれぞれの音源と多チャンネル入力信号との関係を表す。すなわち、uei(f)を用いて、音源信号iの到来方向を算出することができる。
 例えば、多チャンネル入力信号を左チャンネルと右チャンネルの2つ(M=2)とし、音源信号iが空気中などを伝播して2つのチャンネルに到来することとする。このとき、di(f)=ue2i(f)/ue1i(f)を音源信号iの到来方向を算出するための情報として用いることができる。di(f)が複素数信号である場合、di(f)の振幅項が、左チャンネルと右チャンネルに到来した音源信号iの信号の大きさの比を表す。一方で、位相項が左チャンネルと右チャンネルに到来した音源信号iの時間差を表す。到来方向の周波数成分doai(f)は、di(f)の振幅項と位相項に基づいて算出することができる。到来方向を算出するさいには、振幅項と位相項のいずれかを用いて生成してもよいし、両方を用いて生成してもよい。例えば、位相項を用いず、振幅項のみを用いた場合、di(f)の振幅項の値が1に近ければ近いほど、音源信号iは中央付近に存在することになる。一方で、di(f)の値が1より大きくなればなるほど、または1より小さくなればなるほど、左または右方向に音源が存在することになる。到来方向を算出する方法として、あらかじめ決められた関数に従って、di(f)を到来方向に変換する方法がある。この関数は、線形であってもよいし、非線形であってもよい。また、多チャンネル入力信号の特性に応じて変更してもよい。再合成情報UE(f)を用いて、到来方向の算出に関連する技術は、文献1に開示されている。
 多チャンネル入力信号のチャンネル数が2個以上の場合は、特定のチャンネルのペアから到来方向を算出することができる。また、複数のペアで到来方向を算出し、算出した到来方向を統合してもよい。複数のペアを用いて算出することにより、精度の高い到来方向を算出することができる。
 上記の到来方向の推定の説明では、周波数成分毎に行う方法について説明してきたが、複数の周波数帯域の再合成情報をまとめてから算出してもよい。あるいは、各周波数帯域で推定した到来方向から、複数の周波数帯域に対する共通の到来方向を算出しても良い。例えば、各周波数帯域の到来方向の推定精度に応じた重みを用いて、各周波数帯域の到来方向を重み付け平均することにより、複数の周波数帯域に対する共通の到来方向を算出してもよい。推定精度に応じた重みとしては、分離信号の各周波数帯域のエネルギを用いることができる。例えば、エネルギの大きい周波数帯域の重みは大きくし、エネルギが小さい周波数帯域の重みは小さくすることにより、聞こえにくい小さなエネルギ成分が到来方向に及ぼす影響を取り除くことができる。さらに、マスキング効果などの人の聴覚特性に基づいて重みを算出することができる。例えば、マスキング効果を利用して周波数成分毎に算出した聴感的な重要度を重みとして用いてもよい。この重み付けにより、人の聴覚特性に合致した到来方向を推定できる。さらに、音源は周波数に拠らず共通の一点から発振されるため、その到来方向も全周波数帯域に対して共通に推定しても良い。
 続いて、再合成情報整形部501は、推定した各音源の到来方向に基づいて再合成情報を再生成する。そして、再合成情報整形部501は、再生成した再合成情報を出力する。到来方向の周波数成分doai(f)を用いて、再生成された再合成情報の周波数成分UE’(f)は、
Figure JPOXMLDOC01-appb-M000009
となる。ここで、gi(x)は、到来方向xを再合成情報に変換する関数であり、多チャンネル入力信号のチャンネルの構成に応じて、チャンネル毎に規定される関数である。変換関数gi(x)は、線形であってもよいし、非線形であってもよい。
 変換関数gi(x) の出力は一般に複素数値となる。変換関数は、到来方向により再合成情報UE’(f)の位相項と振幅項の両方あるいはどちらか一方を定める関数となる。変換関数gi(x)は、人の聴覚特性に基づいて定めてもよい。例えば、人の聴覚特性として、低周波数帯域の信号は、信号の位相差を主に用いて音源の到来方向を認知し、高周波数帯域の信号は、信号の振幅差を主に用いて音源の到来方向を認知することが知られている。この特性を利用すると、変換関数は音源の到来方向に応じて低域周波数帯域の再合成情報UE’(f)の位相項を主に定める関数となる。一方で、高域周波数帯域では、変換関数は、音源の到来方向により再合成情報UE’(f)の振幅項を主に定める関数となる。なお、変換関数は、上記の聴覚特性に依らず、音源の到来方向に応じて振幅項と位相項を任意に定めた関数としても良い。
 この変換関数は、再合成情報変換部321が出力した再合成情報を、符号化効率を向上させるため、あるいは、受信部での各音源の定位感を向上させるために、到来方向により整形することに相当する。例えば、変換関数の出力が振幅項のみで表される場合、変換関数は、再合成情報変換部321が出力した再合成情報に含まれる位相項が到来方向に及ぼす影響を、再生成した再合成情報の振幅項により補償するように、再合成情報に含まれる位相項を振幅項で表す関数に相当する。この場合、変換関数の出力は実数値となる。一方で、変換関数gi(x)の出力が位相項のみで表される場合、変換関数は、再合成情報変換部321が出力した再合成情報に含まれる振幅項が到来方向に及ぼす影響を、再生成した再合成情報の位相項により補償するように、再合成情報に含まれる振幅項を位相項で表す関数に相当する。この場合、変換関数の出力の大きさは1となる。また、変換関数gi(x)は、頭部伝達関数として構成することもできる。到来方向に対応した頭部伝達関数を用いることにより、音源の到来方向を擬似的に再合成情報に変換することができる。この場合、変換関数gi(x)の出力は複素数値となる。
 再合成情報整形部501の他の動作例を説明する。本動作例は、到来方向を推定することなく、再合成情報を整形することを特徴とする。再合成情報整形部501は、再合成情報変換部321が出力した再合成情報をあらかじめ定めれた関数に従って、整形することができる。例えば、再合成情報に含まれる振幅項と位相項を入力とするあらかじめ定めれた整形関数を用いることにより、整形した再合成情報を生成することができる。このとき、整形関数の出力が振幅項のみで表される場合、整形関数は、再合成情報に含まれる振幅項が音源信号の定位に及ぼす影響を、整形した再合成情報の位相項により補償するように、再合成情報の位相項を振幅項で表す関数となる。この場合、整形関数の出力は実数値となる。一方で、整形関数の出力が位相項のみで表される場合、整形関数は、再合成情報に含まれる振幅項が音源信号の定位に及ぼす影響を、整形した再合成情報の位相項により補償するように、再合成情報の振幅項を位相項で表す関数となる。この場合、整形関数の出力の大きさは1となる。もちろん、整形関数は、振幅項と位相項を任意に定めた関数としても良い。さらに、マスキング効果などの人の聴覚特性に基づいて再合成情報を整形することができる。例えば、マスキング効果により、人が認知できない周波数帯域の整形関数の出力を0とすることができる。上記の整形関数の説明では、周波数成分毎に行う方法について説明してきたが、複数の周波数帯域の再合成情報をまとめてから算出してもよい。
 なお、前述したように再合成情報は複数の音源信号と多チャンネル入力信号との関係、すなわち、定位情報を表しており、多チャンネル入力信号を収録したマイクロホンの配置位置が大きく関与する。例えば、マイクロホンが近接して配置されている場合、再合成情報変換部321が出力した再合成情報は、近接したマイクロホン間における音源信号の定位情報を表している。このため、近接したマイクロホン間の再合成情報を用いて再合成した信号を人間が聴取しても、その定位感を得ることは難しい。このような場合でも、上述した方法を用いて、聴感上、定位感が分かる再合成情報を生成することができる。また、受信部での出力信号のチャンネル数や、出力信号をスピーカから出力する場合でスピーカ配置位置が既知の場合、受信部で再合成した信号を人間が聴取したときに、聴感上、定位感が分かるように、上述した方法を用いて、再合成情報を生成してもよい。出力チャンネル数や、スピーカ配置位置が未知の場合でも、あらかじめ定められた出力チャンネル数や、スピーカ配置位置を複数仮定して複数の再合成情報を生成してもよい。
 次に、図6に戻り、信号分離部101の構成例を詳細に説明する。信号分離部101は、多チャンネル入力信号と分離情報を受信し、分離情報に基づき、多チャンネル入力信号を各音源信号に分離することにより、分離信号を生成する。そして、信号分離部101は、分離信号を符号化部510に出力する。まず、多チャンネル入力信号を周波数変換する。周波数変換する方法については、第一の実施の形態の分離情報計算部102で説明した周波数変換と同様であるため、説明を省略する。周波数帯域fにおける多チャンネル入力信号の周波数成分をX (f)、分離情報の周波数成分をW(f)とすると、分離信号の周波数成分Y(f)は、Y(f)= W(f)×X(f)となる。続いて、信号分離部101は、分離信号の周波数成分を逆周波数変換する。逆周波数変換する方法については、第一の実施の形態の復号部320で説明した周波数変換と同様であるため、説明を省略する。そして、信号分離部101は、逆周波数変換した信号を分離信号として出力する。
 信号分離部101の他の構成例を説明する。まず、信号分離部101は、分離情報を逆周波数変換し、インパルス応答(フィルタ係数)を生成する。逆周波数変換する方法については、第一の実施の形態の復号部320で説明した周波数変換と同様であるため、説明を省略する。そして、信号分離部101は、多チャンネル入力信号にインパルス応答を畳み込み演算することにより、分離信号を信号を生成すること。
 続いて、符号化部510の構成例を詳細に説明する。符号化部510は、分離信号と再合成情報を受信し、分離信号と再合成情報を符号化することにより、、符号化された分離信号と符号化された再合成情報を伝送信号として生成する。そして、符号化部510は伝送信号を伝送路に出力する。
 まず、分離信号の符号化の具体例を説明する。符号化部510は、分離信号を符号化することにより、符号化された分離信号を生成する。分離信号を符号化する方法は、第一の実施の形態の符号化部300で説明した多チャンネル入力信号を符号化する処理と同様な処理を用いることができるため、説明を省略する。
 続いて、再合成情報の符号化の具体例を説明する。符号化部510は、再合成情報を符号化することにより、符号化された再合成情報を生成する。再合成情報を符号化する方法は、第一の実施の形態の符号化部300で説明した分離情報を符号化する処理と同様な処理を用いることができるため、説明を省略する。
 次に、復号部520の構成例を詳細に説明する。復号部520は、受信した伝送信号を、復号分離信号と復号再合成情報とに復号する。復号部520は、復号分離信号を再合成部530に、復号再合成情報を再合成情報統合部322に、それぞれ出力する。
 まず、符号化された分離信号の復号の具体例を説明する。復号部520は、符号化された分離信号を復号することにより、復号分離信号を生成する。符号化された分離信の復号は、符号化部510に用いられた分離信号の符号化方法に対応する復号方法を用いる。符号化された分離信号を復号する処理は、第一の実施の形態の復号部310における符号化された多チャンネル入力信号を復号する処理と同様な処理を用いることができるため、説明を省略する。
 続いて、符号化された再合成情報の復号の具体例を説明する。復号部520は、符号化された再合成情報を復号することにより、復号再合成情報を生成する。符号化された再合成情報の復号は、符号化部401に用いられた再合成情報の符号化方法に対応する復号方法を用いる。符号化された再合成情報を復号する処理は、第一の実施の形態の復号部310において説明した分離情報を復号する処理と同様な処理を用いることができるため、説明を省略する。
 再合成情報統合部322は、受信した出力信号情報と復号再合成情報を統合することにより、統合再合成情報を生成する。再合成情報統合部322は、第一の実施の形態において、図2を用いて説明したとおりであるため、説明を省略する。なお、再合成情報が複数ある場合には、複数ある再合成情報から1つを選択して用いる。選択する方法としては、受信側の人間が選択してもよいし、出力信号のチャンネル数やスピーカ配置位置に応じて、自動的に選択してもよい。
 次に、信号再合成部530の構成例を詳細に説明する。信号再合成部530は、復号分離信号と統合再合成情報を受信し、統合再合成情報に基づき、復号分離信号を構成する複数の音源信号を独立に修正することにより、多チャンネル出力信号を生成する。信号再合成部530は、多チャンネル出力信号を出力する。
 以下、信号再合成部530の動作例を説明する。まず、信号再合成部530は、復号分離信号を周波数変換する。周波数変換する方法については、第一の実施の形態の符号化部300で説明した周波数変換と同様であるため、説明を省略する。周波数帯域fにおける復号分離信号の周波数成分をYDi(f), i=1,2,…P (Pは音源信号数)とし、統合再合成情報の周波数成分をUC(f)とすると、制御された信号の周波数成分Zi(f), i=1,2,…N (Nは出力チャンネル数)は、
Figure JPOXMLDOC01-appb-M000010
となる。UC(f)は、N行P列の行列である。続いて、信号再合成部530は、制御された信号の周波数成分を逆周波数変換する。逆周波数変換する方法については、第一の実施の形態の復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部530は、逆周波数変換された信号を多チャンネル出力信号として出力する。
 信号再合成部530の他の動作例を説明する。まず、信号再合成部530は、統合再合成情報を逆周波数変換し、インパルス応答(フィルタ係数)を生成する。逆周波数変換する方法については、第一の実施の形態の復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部530は、復号分離信号にインパルス応答を畳み込み演算することで、多チャンネル出力信号を生成する。
 以上説明したように、本発明の第三の実施の形態によれば、出力信号情報と送信部から出力される再合成情報に基づいて、受信部で音源信号ごとに制御することができる。すなわち、受信部で所望の音源信号を所望の位置に定位させたり、抑圧および強調させることができる。また、送信部で受信した多チャンネル入力信号を構成する各音源信号の定位情報を含む再合成情報を伝送するため、受信部において、送信部で受信した多チャンネル入力信号と同一の定位を施した多チャンネル出力信号を容易に再現できる。さらに、第一の実施の形態とは異なり、再合成情報が伝送されるため、受信部で復号再合成情報に変換する必要がなく、受信部の演算量を削減できる。なお、再合成情報は、各音源信号の定位情報のみを表すように整形することができるので、分離情報を量子化する場合と比較して、量子化効率がよく、伝送信号の情報量を削減することができる。さらに、再合成情報は、各音源信号の定位情報を表すので、電源投入時などの多チャンネル出力信号の生成開始時に出力信号情報が入手できない場合、再合成情報を出力信号情報の初期値として用いることができ、利用者は再合成情報に基づき生成された多チャンネル出力信号を聴取した後に、利用者の好みに応じて出力信号情報を入力することができる。このため、最初から出力信号情報を音源ごとに入力する必要がなく、利用者の利便性が向上される。
 <第四の実施の形態>
 図9を参照して、本発明の第四の実施の形態について説明する。第四の実施の形態は、送信部60と受信部61とが伝送路を介して接続された構成である。送信部60は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。伝送信号は、伝送路を介して、受信部61に入力される。受信部61は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。
 送信部60は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。送信部60は、再合成情報計算部500、信号分離部101、低ビットレート符号化部600から構成される。多チャンネル入力信号は、再合成情報計算部500と信号分離部101に入力される。再合成情報計算部500は、多チャンネル入力信号を複数の音源信号に分離するための分離情報と、多チャンネル入力信号を構成する複数の音源信号と多チャンネル入力信号との関係を表す再合成情報を生成する。そして、再合成情報計算部500は、分離情報を信号分離部101に、再合成情報を低ビットレート符号化部600に出力する。信号分離部101は、多チャンネル入力信号と分離情報を受信し、多チャンネル入力信号を分離することにより、分離信号を生成する。そして、信号分離部101は、分離信号を低ビットレート符号化部600に出力する。低ビットレート符号化部600は、信号分離101から受信した分離信号と、再合成情報計算部500から受信した再合成情報を符号化することにより、伝送信号を生成する。そして、低ビットレート符号化部600は、伝送信号を伝送路に出力する。送信部60は、第三の実施の形態を表す図6の送信部50と比べて、符号化部510が、低ビットレート符号化部600で構成されている点が異なる。
 受信部61は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。受信部61は、低ビットレート復号部610と再合成情報修正部620と信号再合成部630から構成される。伝送信号は低ビットレート復号部610に入力される。出力信号情報は再合成情報修正部620に入力される。まず、低ビットレート復号部610は、受信した伝送信号を、ダウンミックス復号信号と復号分析情報と復号再合成情報をとに復号する。続いて、低ビットレート復号部610は、ダウンミックス復号信号を信号再合成部630に、復号分析情報と復号再合成情報を再合成情報修正部620に、それぞれ出力する。再合成情報修正部620は、出力信号情報と、低ビットレート復号部610から受信した復号分析情報と復号再合成情報とを統合することにより、修正再合成情報を生成する。そして、再合成情報修正部620は、修正再合成情報を信号再合成部630に出力する。信号再合成部630は、再合成情報修正部620から受信した修正再合成情報に基づいて、低ビットレート復号部610から受信したダウンミックス復号信号を修正することにより、多チャンネル出力信号を再合成する。そして、信号再合成部630は、多チャンネル出力信号を出力する。受信部61は、第三の実施の形態を表す図6の受信部51と比べて、復号部520、再合成情報統合部322、信号再合成部530が、ぞれぞれ、低ビットレート復号部610、再合成情報修正部620、信号再合成部630で構成されている点が異なる。
 再合成情報は、第三の実施の形態で説明したとおり、多チャンネル入力信号に含まれる複数の音源信号と多チャンネル入力信号との関係を表す情報である。また、出力信号情報は、第一の実施の形態で説明したとおりである。なお、本実施の形態の出力信号情報は、第三の実施の形態で説明したとおり、伝送された再合成情報に基づき生成された多チャンネル出力信号を利用者が聴取した後に、利用者の好みに応じて入力することができる。
 以下、第三の実施の形態と重複する部分の説明は省略し、本実施の形態の特徴である低ビットレート符号化部600、低ビットレート復号部610、再合成情報修正部620、信号再合成部630の構成例について説明する。
 低ビットレート符号化部600は、分離信号と再合成情報を受信し、伝送信号を伝送路に出力する。低ビットレート符号化部600は、第二の実施の形態で説明した図3の低ビットレート符号化部400と同様の処理を行う。ここで、分離信号と再合成情報は、それぞれ、第二の実施の形態における低ビットレート符号化部400の入力である多チャンネル入力信号と分離情報に対応する。低ビットレート符号化部600は、符号化されたダウンミックス信号と符号化された分析情報と符号化された再合成情報を伝送信号として生成する。そして、低ビットレート符号化部600は、伝送信号を出力する。
 低ビットレート復号部610は、受信した伝送信号を、ダウンミックス復号信号と復号分析情報と復号情報とに復号する。低ビットレート復号部610は、ダウンミックス復号信号を信号再合成部630に、復号分析情報と復号再合成情報を再合成情報修正部620に、それぞれ出力する。低ビットレート復号部610は、第二の実施の形態で説明した図3の低ビットレート復号部410と同様の処理を行う。ここで、復号再合成情報が第二の実施の形態における低ビットレート復号部410の出力である復号分離情報に対応する。
 次に、図10を参照して、図9における再合成情報修正部620の構成例を詳細に説明する。再合成情報修正部620は、復号分析情報と復号再合成情報と出力信号情報を受信し、修正再合成情報を出力する。再合成情報修正部620は、再合成情報統合部322、修正部621から構成される。復号分析情報は、修正部621に入力され、復号再合成情報と出力信号情報は、再合成情報統合部322に入力される。再合成情報統合部322は、受信した復号再合成情報と再合成情報を統合することにより、統合再合成情報を生成する。再合成情報統合部322は、第一の実施の形態で説明したとおりであるため、説明を省略する。
 修正部621は、統合再合成情報と復号分析情報を受信し、復号分析情報に基づき統合再合成情報を修正することにより、修正再合成情報を出力する。修正再合成情報は、ダウンミックス信号を分離信号に復元し、各音源信号ごとに制御するための情報を表す。周波数帯域fにおける復号分析情報の周波数成分をA(f)、統合再合成情報の周波数成分をUC(f)とすると、修正再合成情報の周波数成分UCA(f)は、 UCA(f)=UC(f)×A(f)となる。ここで、ダウンミックス信号、音源信号数、多チャンネル出力信号のチャンネル数を、それぞれQ、P、Nとすると、A(f)とUC(f)は、それぞれ、P行Q列とN行P列の行列であり、UCA(f)は、N行Q列の行列となる。
 次に、図9に戻り、信号再合成部630の構成例を詳細に説明する。信号再合成部630は、ダウンミックス復号信号と修正再合成情報を受信し、修正再合成情報に基づき、ダウンミックス復号信号を修正することにより、多チャンネル出力信号を生成する。信号再合成部630は、多チャンネル出力信号を出力する。
 以下、信号再合成部630の動作例を説明する。まず、信号再合成部630は、ダウンミックス復号信号を周波数変換する。周波数変換する方法については、第一の実施の形態の符号化部300で説明した周波数変換と同様であるため、説明を省略する。周波数帯域fにおけるダウンミックス復号信号の周波数成分をMDi(f), i=1,2,…Q (Qはダウンミック信号のチャンネル数)、修正再合成情報の周波数成分をUCA(f)とすると、制御された信号の周波数成分Zi(f), i=1,2,…N (Nは出力チャンネル数)は、
Figure JPOXMLDOC01-appb-M000011
となる。UCA(f)は、N行Q列の行列である。続いて、信号再合成部630は、制御された信号の周波数成分を逆周波数変換する。逆周波数変換する方法については、第一の実施の形態の復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部630は、逆周波数変換された信号を多チャンネル出力信号として出力する。
 信号再合成部630の他の動作例を説明する。まず、信号再合成部630は、修正再合成情報の周波数成分を逆周波数変換し、インパルス応答(フィルタ係数)を生成する。逆周波数変換する方法については、復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部630は、ダウンミックス復号信号にインパルス応答を畳み込み演算することで、多チャンネル出力信号を生成する。
 以上説明したように、本発明の第四の実施の形態によれば、出力信号情報と送信部から出力される再合成情報に基づいて、受信部で音源信号ごとに制御することができる。すなわち、受信部で所望の音源信号を所望の位置に定位させたり、抑圧および強調させることができる。また、送信部で受信した多チャンネル入力信号を構成する各音源信号の定位情報を含む再合成情報を伝送するため、受信部において、送信部で受信した多チャンネル入力信号と同一の定位を施した多チャンネル出力信号を容易に再現できる。さらに、第一の実施の形態とは異なり、再合成情報が伝送されるため、受信部で復号再合成情報に変換する必要がなく、受信部の演算量を削減できる。なお、再合成情報は、各音源信号の定位情報のみを表すように整形することができるので、分離情報を量子化する場合と比較して、量子化効率がよく、伝送信号の情報量を削減することができる。さらに、再合成情報は、各音源信号の定位情報を表すので、伝送された再合成情報に基づき生成された多チャンネル出力信号を利用者が聴取した後に、利用者の好みに応じて出力信号情報を入力することができる。このため、最初から出力信号情報を各音源ごとに入力する必要がなく、利用者の利便性が向上される。また、第三の実施の形態と比べて、多チャンネル入力信号を少ない情報量で符号化するため、伝送信号の情報量を削減することができる。
 <第五の実施の形態>
 図11を参照して、本発明の第五の実施の形態について説明する。第五の実施の形態は、送信部10と受信部11とが伝送路を介して接続された構成である。送信部10は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。伝送信号は、伝送路を介して、受信部11に入力される。受信部11は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。
 送信部10は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。送信部10は、分離情報計算部102、信号分離部101、符号化部110から構成される。多チャンネル入力信号は、分離情報計算部102と信号分離部101に入力される。分離情報計算部102は、多チャンネル入力信号を分析することにより、多チャンネル入力信号を複数の音源信号に分離するための分離情報を生成する。そして、分離情報計算部102は、分離情報を信号分離部101に出力する。信号分離部101は、多チャンネル入力信号と分離情報を受信し、多チャンネル入力信号を各音源信号に分離することにより、分離信号を生成する。そして、信号分離部101は、分離信号を符号化部110に出力する。符号化部110は、信号分離101から受信した分離信号を符号化することにより、伝送信号を生成する。そして、符号化部110は、伝送信号を伝送路に出力する。送信部10は、第一の実施の形態を表す図1の送信部30と比べて、符号化部300が符号化部110で構成されている点と、新たに信号分離部101を具備していることが異なる。信号分離部101は、第三の実施の形態で説明したとおりである。
 符号化部110は、分離信号を受信し、分離信号を符号化することにより、符号化された分離信号を生成する。そして、符号化部110は、符号化された分離信号を伝送信号として出力する。分離信号を符号化する処理は、第三の実施の形態の符号化部510において説明したとおりであるため、説明を省略する。
 受信部11は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。受信部11は、復号部120と信号再合成部130から構成される。伝送信号は復号部120に入力される。出力信号情報は信号再合成部130に入力される。まず、復号部120は、受信した伝送信号を、復号分離信号に復号する。続いて、復号部120は、復号分離信号を信号再合成部130に出力する。信号再合成部130は、出力信号情報に基づいて、復号部120から受信した復号分離信号を修正することにより、多チャンネル出力信号を再合成する、信号再合成部130は、多チャンネル出力信号を出力する。受信部11は、第一の実施の形態を表す図1の受信部31と比べて、復号部310と信号再合成部330が、それぞれ、復号部120と信号再合成部130で構成されている点と、分離再合成情報生成部320を具備しないことが異なる。
 復号部120は、受信した伝送信号を、復号分離信号に復号する。そして、復号部120は、復号分離信号を信号再合成部130に出力する。符号化された分離信号の復号は、第三の実施の形態の復号部520におい説明したとおりであるため、説明を省略する。
 信号再合成部130は、復号分離信号と出力信号情報を受信し、出力信号情報に基づき、復号分離信号を構成する複数の音源信号を独立に修正することにより、多チャンネル出力信号を生成する。信号再合成部130は、多チャンネル出力信号を出力する。
 以下、信号再合成部130の動作例を説明する。まず、信号再合成部130は、復号分離信号を周波数変換する。周波数変換する方法については、第三の実施の形態の符号化部510で説明したとおりであるため、説明を省略する。周波数帯域fにおける復号分離信号の周波数成分をYDi(f), i=1,2,…P (Pは音源信号数)とし、出力信号情報の周波数成分をU (f)とすると、制御された信号の周波数成分Zi(f), i=1,2,…N (Nは出力チャンネル数)は、
Figure JPOXMLDOC01-appb-M000012
となる。U (f)は、N行P列の行列である。続いて、信号再合成部130は、制御された信号の周波数成分を逆周波数変換する。逆周波数変換する方法については、第一の実施の形態の復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部130は、逆周波数変換された信号を多チャンネル出力信号として出力する。
 信号再合成部130の他の動作例を説明する。まず、信号再合成部130は、出力信号情報の周波数成分を逆周波数変換し、インパルス応答(フィルタ係数)を生成する。逆周波数変換する方法については、第一の実施の形態の復号部310で説明した逆周波数変換と同様であるため、説明を省略する。そして、信号再合成部130は、復号分離信号にインパルス応答を畳み込み演算することで、多チャンネル出力信号を生成する。
 以上説明したように、本発明の第五の実施の形態によれば、出力信号情報に基づいて、受信部で音源信号ごとに制御することができる。すなわち、受信部で所望の音源信号を所望の位置に定位させたり、抑圧および強調させることができる。また、第一から第四の実施の形態と比べると、分離情報または再合成情報を伝送しないため、伝送信号の情報量を削減することができる。また、第一から第四の実施の形態と比べると、分離情報または再合成情報を伝送しないため、受信側において、分離情報または再合成情報と出力信号情報とを統合する処理を行わないので、受信部の処理が簡単になり、受信部の演算量を削減することができる。
 <第六の実施の形態>
 図12を参照して、本発明の第六の実施の形態について説明する。第六の実施の形態は、送信部20と受信部21とが伝送路を介して接続された構成である。送信部20は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。伝送信号は、伝送路を介して、受信部21に入力される。受信部21は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。
 送信部20は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。送信部20は、分離情報計算部102、信号分離部101、低ビットレート符号化部210から構成される。多チャンネル入力信号は、分離情報計算部102と信号分離部101に入力される。分離情報計算部102は、多チャンネル入力信号を分析することにより、多チャンネル入力信号を複数の音源信号に分離するための分離情報を生成する。そして、分離情報計算部102は、分離情報を信号分離部101に出力する。信号分離部101は、多チャンネル入力信号と分離情報を受信し、多チャンネル入力信号を各音源信号に分離することにより、分離信号を生成する。そして、信号分離部101は、分離信号を低ビットレート符号化部210に出力する。低ビットレート符号化部210は、信号分離部101から受信した分離信号を符号化することにより、伝送信号を生成する。そして、低ビットレート符号化部210は、伝送信号を伝送路に出力する。送信部10は、第五の実施の形態を表す図11の送信部10と比べて、符号化部110が、低ビットレート符号化部210で構成されている点が異なる。
 受信部21は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。受信部21は、低ビットレート復号部220と修正部240と信号再合成部630から構成される。伝送信号は低ビットレート復号部220に入力される。出力信号情報は修正部240に入力される。まず、低ビットレート復号部220は、受信した伝送信号を、ダウンミックス復号信号と復号分析情報とに復号する。続いて、低ビットレート復号部220は、ダウンミックス復号信号を信号再合成部630に、復号分析情報を修正部240に出力する。修正部240は、復号分析情報に基づいて、出力信号情報を修正することにより、修正再合成情報を生成する。そして、修正部240は、修正再合成情報を信号再合成部230に出力する。信号再合成部630は、修正再合成情報に基づいて、低ビットレート復号部220から受信したダウンミックス復号信号を修正することにより、多チャンネル出力信号を再合成する。信号再合成部630は、多チャンネル出力信号を出力する。受信部21は、第五の実施の形態を表す図11の受信部11と比べて、復号部120と信号再合成部130が、それぞれ、低ビットレート復号部220と信号再合成部630で構成されている点と、新たに修正部240を具備することが異なる。信号再合成部630は、第四の実施の形態で説明したとおりである。
 以下、第五の実施の形態と重複する部分の説明は省略し、本実施の形態の特徴である低ビットレート符号化部210、低ビットレート復号部220、修正部240の構成例について説明する。
 図13を参照して、図12の低ビットレート符号化部210の構成例を詳細に説明する。低ビットレート符号化部210は、分離信号を受信し、伝送信号を伝送路に出力する。低ビットレート符号化部210は、ダウンミックス部211、信号分析部213、符号化部212から構成される。分離信号は、信号分析部213とダウンミックス部211に入力される。ダウンミックス部211は、分離信号をダウンミックすることによりダウンミックス信号を生成する。信号分析部213は、分離信号を分析することにより、分析情報を生成する。ダウンミックス部211および、信号分析部213は、第二の実施の形態において、図4を用いて説明したとおりであるので、説明を省略する。符号化部212は、受信したダウンミックス信号と分析情報を符号化することにより、符号化されたダウンミックス信号と符号化された分析情報を伝送信号として生成する。ダウンミックス信号の符号化は、第二の実施の形態で説明したとおりであるため、説明を省略する。また、分析情報の符号化も第二の実施の形態で説明したとおりであるため、説明を省略する。そして、符号化部212は、伝送信号を伝送路に出力する。
 次に、図12に戻り、低ビットレート復号部220の構成例を詳細に説明する。低ビットレート復号部220は、受信した伝送信号を、ダウンミックス復号信号と復号分析情報とに復号する。符号化されたダウンミック信号の復号は、第二の実施の形態で説明したとおりであるため、説明を省略する。また、符号化された分析情報の復号も第二の実施の形態で説明したとおりであるため、説明を省略する。そして、低ビットレート復号部220は、ダウンミックス復号信号を信号再合成部230に、復号分析情報を修正部240に、それぞれ出力する。
 修正部240は、出力信号情報と復号分析情報を受信し、復号分析情報に基づき分出力信号情報を修正することにより、修正再合成情報を生成する。そして、修正部240は、修正再合成情報を出力する。修正再合成情報は、ダウンミックス復号信号を分離信号に復元し、各音源信号ごとに制御するための情報を表す。周波数帯域fにおける復号分析情報の周波数成分をA(f)、出力信号情報の周波数成分をU(f)とすると、修正再合成情報の周波数成分をUCA(f)は、 UCA(f)=U(f)×A(f)となる。ここで、ダウンミックス信号、音源信号数、多チャンネル出力信号のチャンネル数を、それぞれQ、P、Nとすると、A(f)とU(f)は、それぞれ、P行Q列とN行P列の行列であり、UCA(f)は、N行Q列の行列となる。
 以上説明したように、本発明の第六の実施の形態によれば、出力信号情報に基づいて、受信部で音源信号ごとに制御することができる。すなわち、受信部で所望の音源信号を所望の位置に定位させるたり、抑圧および強調させことができる。また、第一から第四の実施の形態と比べると、分離情報または再合成情報を伝送しないため、伝送信号の情報量を削減することができる。また、第一から第四の実施の形態と比べると、分離情報または再合成情報を伝送しないため、受信側において、分離情報または再合成情報と出力信号情報とを統合する処理を行わないので、受信部の処理が簡単になり、受信部の演算量を削減することができる。また、第五の実施の形態と比べて、多チャンネル入力信号を少ない情報量で符号化するため、伝送信号の情報量を削減することができる。
 <第七の実施の形態>
 図14を参照して、本発明の第七の実施の形態について説明する。第七の実施の形態は、送信部70と受信部71とが伝送路を介して接続された構成である。送信部70は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。伝送信号は、伝送路を介して、受信部71に入力される。受信部71は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。
 送信部70は、複数の音源信号が混合された多チャンネル入力信号を受信し、伝送信号を出力する。送信部70は、符号化部110から構成される。多チャンネル入力信号は、符号化部110に入力される。符号化部110は、多チャンネル入力信号を符号化することにより、伝送信号を生成する。そして、符号化部110は、伝送信号を伝送路に出力する。多チャンネル入力信号を符号化する処理は、第一の実施の形態の符号化部300において説明したとおりであるため、説明を省略する。
 受信部71は、伝送信号と出力信号情報を受信し、多チャンネル出力信号を出力する。受信部71は、復号部120と分離情報計算部102と分離再合成情報生成部320と信号再合成部330から構成される。伝送信号は復号部120に入力される。出力信号情報は分離再合成情報生成部320に入力される。まず、復号部120は、受信した伝送信号を、多チャンネル復号信号に復号する。続いて、復号部120は、多チャンネル復号信号を分離情報計算部102と信号再合成部330に出力する。分離情報計算部102は、多チャンネル復号信号を複数の音源信号に分離するための分離情報を生成する。そして、分離情報計算部102は、分離情報を分離再合成情報生成部320に出力する。分離再合成情報生成部320は、出力信号情報と、分離情報計算部102から受信した分離情報を統合することにより、分離再合成情報を生成する。そして、分離再合成情報生成部320は、分離再合成情報を信号再合成部330に出力する。信号再合成部330は、分離再合成情報生成部320から受信した分離再合成情報に基づいて、復号部120から受信した多チャンネル復号信号を修正することにより、多チャンネル出力信号を再合成する。信号再合成部330は、多チャンネル出力信号を出力する。受信部71は、第一の実施の形態を表す図1の受信部31と比べて、復号部310が復号部120で構成されている点と、新たに分離情報計算部102を具備することが異なる。
 復号部120は、受信した伝送信号を、多チャンネル復号信号に復号する。そして、復号部120は、多チャンネル復号信号を分離情報計算部102と信号再合成部330に出力する。符号化された多チャンネル入力信号の復号は、第一の実施の形態の復号部310におい説明したとおりであるため、説明を省略する。
 分離情報計算部102は、受信した多チャンネル復号信号を分析することにより、分離情報を生成する。そして、分離情報計算部102は、分離情報を出力する。分離情報は、多チャンネル復号信号と音源信号の関係を表す情報であり、多チャンネル復号信号を複数の音源信号に分離するために利用される。分離情報計算部102の動作は、第一の実施の形態で説明したとおりであるため、説明を省略する。
 以上説明したように、本発明の第七の実施の形態によれば、出力信号情報に基づいて、受信部で音源信号ごとに制御することができる。すなわち、受信部で所望の音源信号を所望の位置に定位させるたり、抑圧および強調させことができる。また、第一から第四の実施の形態と比べると、分離情報または再合成情報を伝送しないため、伝送信号の情報量を削減することができる。また、第一から第四の実施の形態と比べると、分離情報または再合成情報を生成しないため、送信部の演算量を削減することができる。また、第一から第六の実施の形態と比べると、受信部が音源信号に分離されていない信号のみを受信しても、受信部で音源信号ごとに制御することができる。
 <第八の実施の形態>
 図15を参照して、本発明の第八の実施の形態を説明する。第一の実施の形態乃至第六の実施の形態まで、一方向通信のみを考慮してきた。すなわち、端末に内蔵された送信部から、別の端末に内蔵された受信部との間での通信について説明してきた。第八の実施の形態は、双方向の通信を考慮し、一台の送受信端末に本発明を適用した送信部と受信部との両方を内蔵しているものである。本発明の第八の実施の形態では、送信部と受信部との両方を持つことにより、テレビ会議端末や携帯電話などの双方向通信に利用した際に、本発明の効果が得られる。
 放送など、一方向の音声通信が行われる場合にも本発明の信号分析制御システムを適用することができる。放送局の送信端末は、本発明の第一の実施の形態乃至第六の実施の形態における送信部のいずれを用いてもよい。放送局とは、放送免許を持つ放送局のみならず、多地点テレビ会議のメイン会場など、音声を送信し、受信をほとんど行わない地点を含む。
 また、受信のみを行う地点においても、本発明の信号分析制御システムを適用することができる。受信のみを行う地点における受信端末では、本発明の第一の実施の形態乃至第七の実施の形態における受信部のいずれを用いてもよい。
 <第九の実施の形態>
 図16を参照して、本発明の第九の実施の形態に基づく信号処理装置を詳細に説明する。本発明の第九の実施の形態は、プログラム制御により動作するコンピュータ1300、1301から構成される。コンピュータは、中央処理装置、プロセッサ、データ処理装置のいずれでもよい。
 コンピュータ1300は、第一の実施の形態乃至第六の実施の形態のいずれかに係る処理を行い、多チャンネル入力信号を受け伝送信号を出力するためのプログラムに基づき動作する。一方、コンピュータ1301は、第一の実施の形態乃至第八の実施の形態のいずれかに係る処理を行い、伝送信号を受け、多チャンネル出力信号を出力するためのプログラムに基づき動作する。なお、第八の実施の形態で説明した送信部および受信部を両方もつ場合、送信処理と受信処理を同一のコンピュータを用いて処理を実行してもよい。
 上記で説明してきた第一の実施の形態乃至第九の実施の形態では、送信部、伝送路、受信部の動作として説明してきたが、それぞれ、録音部、蓄積媒体、再生部と置き換えてもよい。たとえば、図1に示す送信部30は、伝送信号をビットストリームとして蓄積媒体に出力し、蓄積媒体にビットストリームを記録してもよい。また、受信部31は、蓄積媒体に記録されているビットストリームを取出し、ビットストリームを復号して処理を行うことにより出力信号を生成してもよい。
 本発明の第1の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算部を有し、前記入力信号と前記分離情報とを送出することを特徴とする信号分析装置である。
 また、本発明の第2の実施例は、上記実施例において、前記入力信号と前記分離情報とを符号化することにより符号化情報を生成する符号化部を有し、前記符号化情報を送出することを特徴とする。
 また、本発明の第3の実施例は、上記実施例において、前記符号化部は、前記入力信号からダウンミックス信号を生成するダウンミックス部と、前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成する信号分析部と、前記ダウンミックス信号と前記分析情報と前記分離情報を符号化することにより符号化情報を生成する第二の符号化部とを有することを特徴とする。
 本発明の第4の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成する再合成情報計算部と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離部とを有し、前記分離信号と前記再合成情報とを送出することを特徴とする信号分析装置である。
 また、本発明の第5の実施例は、上記実施例において、前記再合成情報計算部は、前記入力信号を前記音源信号に分離するための前記分離情報を生成する分離情報計算部と、前記分離情報に基づいて、前記入力信号と前記音源信号との関係を表す前記再合成情報を生成する再合成情報変換部とを有することを特徴とする。
 また、本発明の第6の実施例は、上記実施例において、前記再合成情報計算部は、前記入力信号を前記音源信号に分離するための前記分離情報を生成する分離情報計算部と、前記分離情報に基づいて、前記入力信号と前記音源信号との関係を表す前記再合成情報を生成する再合成情報変換部と、前記再合成情報を整形する再合成情報整形部とを有することを特徴とする。
 また、本発明の第7の実施例は、上記実施例において、前記分離信号と前記再合成情報を符号化することにより符号化情報を生成する符号化部を有し、前記符号化情報を送出することを特徴とする。
 また、本発明の第8の実施例は、上記実施例において、前記符号化部は、前記分離信号からダウンミックス信号を生成するダウンミックス部と、前記入力信号から前記入力信号と前記ダウンミックス信号の関係を表す分析情報を生成する信号分析部と、前記ダウンミックス信号と前記分析情報と前記再合成情報を符号化することにより符号化情報を生成する第二の符号化部とを有することを特徴とする。
 本発明の第9の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算部と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離部と、前記分離信号を符号化する符号化部とを有することを特徴とする信号分析装置である。
 また、本発明の第10の実施例は、上記実施例において、前記符号化部は、前記分離信号からダウンミックス信号を生成するダウンミックス部と、前記入力信号から前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成する信号分析部と、前記ダウンミックス信号と前記分析情報とを符号化する第二の符号化部とを有することを特徴とする。
 本発明の第11の実施例は、音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成部と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 また、本発明の第12の実施例は、上記実施例において、前記分離再合成情報生成部は、前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成する再合成情報変換部と、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成する合成部とを有することを特徴とする。
 本発明の第13の実施例は、音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成する分離再合成情報生成部と、前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 また、本発明の第14の実施例は、上記実施例において、前記分離再合成情報生成部は、前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成する再合成情報変換部と、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、前記統合再合成情報と前記分離情報とを合成することにより分離再合成情報を生成する合成部と、前記分離再合成情報を前記分析情報に基づいて修正することにより前記修正分離再合成情報を生成する修正部とを有することを特徴とする。
 本発明の第15の実施例は、音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成する再合成情報統合部と、前記修正分離再合成情報に基づいて、前記分離信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 本発明の第16の実施例は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正部と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 また、本発明の第17の実施例は、上記実施例において、前記再合成情報修正部は、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、前記統合再合成情報を前記分析情報に基づいて修正することにより前記修正再合成情報を生成する修正部とを有することを特徴とする。
 本発明の第18の実施例は、音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報に基づいて前記分離信号を修正する信号再合成部を有することを特徴とする信号制御装置である。
 本発明の第19の実施例は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正部と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 本発明の第20の実施例は、音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報と受信する信号制御装置であって、前記混合信号を前記音源信号に分離するための分離情報を生成する分離情報計算部と、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成部と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成部とを有することを特徴とする信号制御装置である。
 また、本発明の第21の実施例は、上記実施例において、前記分離再合成情報生成部は、前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報とから生成する再合成情報変換部と、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成する合成部とを有することを特徴とする。
 また、本発明の第22の実施例は、上記実施例において、前記統合再合成情報を前記再合成情報のみを用いて生成することを特徴とする。
 本発明の第23の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成し、前記入力信号と前記分離情報とを送出することを特徴とする信号分析方法である。
 また、本発明の第24の実施例は、上記実施例において、前記入力信号と前記分離情報とを符号化することにより符号化情報を生成し、前記符号化情報を送出することを特徴とする。
 また、本発明の第25の実施例は、上記実施例において、前記符号化は、前記入力信号からダウンミックス信号を生成し、前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成し、前記ダウンミックス信号と前記分析情報と前記分離情報を符号化することにより符号化情報を生成することを特徴とする。
 本発明の第26の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成し、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成し、前記分離信号と前記再合成情報とを送出することを特徴とする信号分析方法である。
 また、本発明の第27の実施例は、上記実施例において、前記入力信号を前記音源信号に分離するための前記分離情報を生成し、前記分離情報に基づいて、前記再合成情報を生成することを特徴とする。
 また、本発明の第28の実施例は、上記実施例において、前記入力信号を前記音源信号に分離するための前記分離情報を生成し、前記分離情報に基づいて、前記再合成情報を生成し、前記再合成情報を整形することを特徴とする。
 また、本発明の第29の実施例は、上記実施例において、前記分離信号と前記再合成情報を符号化することにより符号化情報を生成し、前記符号化情報を送出することを特徴とする。
 また、本発明の第30の実施例は、上記実施例において、前記分離信号からダウンミックス信号を生成し、前記入力信号から前記入力信号と前記ダウンミックス信号の関係を表す分析情報を生成し、前記ダウンミックス信号と前記分析情報と前記再合成情報を符号化することにより前記符号化情報を生成することを特徴とする。
 本発明の第30の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成し、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成し、前記分離信号を符号化することを特徴とする信号分析方法である。
 また、本発明の第32の実施例は、上記実施例において、前記分離信号からダウンミックス信号を生成し、前記入力信号から前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成し、前記ダウンミックス信号と前記分析情報とを符号化することを特徴とする。
 本発明の第33の実施例は、音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成し、前記分離再合成情報に基づいて、前記混合信号を修正することを特徴とする信号制御方法である。
 また、本発明の第34の実施例は、上記実施例において、前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成し、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成することを特徴とする。
 本発明の第35の実施例は、音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成し、前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正することを特徴とする信号制御方法である。
 また、本発明の第36の実施例は、上記実施例において、前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成し、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、前記統合再合成情報と前記分離情報とを合成することにより分離再合成情報を生成し、前記分離再合成情報を前記分析情報に基づいて修正することにより前記修正分離再合成情報を生成することを特徴とする。
 また、本発明の第37の実施例は、音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成し、前記修正分離再合成情報に基づいて、前記分離信号を修正することを特徴とする信号制御方法である。
 また、本発明の第38の実施例は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報と受信し、前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成し、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正することを特徴とする信号制御方法である。
 また、本発明の第39の実施例は、上記実施例において、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、前記統合再合成情報を前記分析情報に基づいて修正することにより前記修正再合成情報を生成することを特徴とする。
 本発明の第40の実施例は、音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報に基づいて前記分離信号を修正することを特徴とする信号制御方法である。
 本発明の第41の実施例は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とを受信し、前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成し、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正することを特徴とする信号制御方法である。
 本発明の第42の実施例は、音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報とを受信し、前記混合信号を前記音源信号に分離するための分離情報を生成し、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成し、前記分離再合成情報に基づいて、前記混合信号を修正することを特徴とする信号制御方法である。
 また、本発明の第43の実施例は、上記実施例において、前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成し、前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成することを特徴とする。
 また、本発明の第44の実施例は、上記実施例において、前記統合再合成情報を前記再合成情報のみを用いて生成することを特徴とする。
 本発明の第45の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算処理を情報処理装置に実行させるプログラムである。
 本発明の第46の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成する再合成情報計算処理と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離処理とを情報処理装置に実行させるプログラムである。
 本発明の第47の実施例は、音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算処理と、前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離処理と、前記分離信号を符号化する符号化処理とを情報処理装置に実行させるプログラムである。
 本発明の第48の実施例は、音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成処理と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 本発明の第49の実施例は、音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成する分離再合成情報生成処理と、前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 本発明の第50の実施例は、音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成する再合成情報統合処理と、前記修正分離再合成情報に基づいて、前記分離信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 本発明の第51の実施例は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正処理と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 本発明の第52の実施例は、音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報に基づいて前記分離信号を修正する信号再合成処理を情報処理装置に実行させるプログラムである。
 本発明の第53の実施例は、音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とが入力され、前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正処理と、前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 本発明の第54の実施例は、音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報とが入力され、前記混合信号を前記音源信号に分離するための分離情報を生成する分離情報計算処理と、前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成処理と、前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成処理とを情報処理装置に実行させるプログラムである。
 以上、実施の形態及び実施例をあげて本発明を説明したが、本発明は必ずしも上記実施の形態及び実施例に限定されるものではなく、その技術的思想の範囲内において様々に変形し実施することが出来る。
 本出願は、2008年7月11日に出願された日本出願特願2008-181242号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明によれば、信号分析又は制御を行う装置、信号分析又は制御をコンピュータに実現するためのプログラムといった用途に適用できる。
10, 20, 30, 40, 50, 60, 70 送信部
11, 21, 31, 41, 51, 61, 71 受信部
101 信号分離部
102 分離情報計算部 
110, 212, 300, 401, 510, 900 符号化部
120, 310, 520, 910 復号部
130, 330, 430, 530, 630, 920 信号再合成部
210, 400, 600 低ビットレー符号化部
211 ダウンミックス部 

213 信号分析部
220, 410, 610 低ビットレート復号部
240, 421, 621 修正部
320, 420 分離再合成情報生成部
321 再合成情報変換部
322 再合成情報統合部
323 合成部
500 再合成情報計算部
501 再合成情報整形部
620 再合成情報修正部
1300, 1301 コンピュータ

Claims (54)

  1.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算部を有し、
     前記入力信号と前記分離情報とを送出する
    ことを特徴とする信号分析装置。
  2.  前記入力信号と前記分離情報とを符号化することにより符号化情報を生成する符号化部を有し、
     前記符号化情報を送出する
    ことを特徴とする請求項1に記載の信号分析装置。
  3.  前記符号化部は、
     前記入力信号からダウンミックス信号を生成するダウンミックス部と、
     前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成する信号分析部と、
     前記ダウンミックス信号と前記分析情報と前記分離情報を符号化することにより符号化情報を生成する第二の符号化部と
    を有することを特徴とする請求項2に記載の信号分析装置。
  4.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成する再合成情報計算部と、
     前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離部とを有し、
     前記分離信号と前記再合成情報とを送出する
    ことを特徴とする信号分析装置。
  5.  前記再合成情報計算部は、
     前記入力信号を前記音源信号に分離するための前記分離情報を生成する分離情報計算部と、
     前記分離情報に基づいて、前記入力信号と前記音源信号との関係を表す前記再合成情報を生成する再合成情報変換部と
    を有することを特徴とする請求項4に記載の信号分析装置。
  6.  前記再合成情報計算部は、
     前記入力信号を前記音源信号に分離するための前記分離情報を生成する分離情報計算部と、
     前記分離情報に基づいて、前記入力信号と前記音源信号との関係を表す前記再合成情報を生成する再合成情報変換部と、
     前記再合成情報を整形する再合成情報整形部と
    を有することを特徴とする請求項4に記載の信号分析装置。
  7.  前記分離信号と前記再合成情報を符号化することにより符号化情報を生成する符号化部を有し、
     前記符号化情報を送出する
    ことを特徴とする請求項4から請求項6のいずれかに記載の信号分析装置。
  8.  前記符号化部は、
     前記分離信号からダウンミックス信号を生成するダウンミックス部と、
     前記入力信号から前記入力信号と前記ダウンミックス信号の関係を表す分析情報を生成する信号分析部と、
     前記ダウンミックス信号と前記分析情報と前記再合成情報を符号化することにより符号化情報を生成する第二の符号化部と
    を有することを特徴とする請求項7に記載の信号分析装置。
  9.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算部と、
     前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離部と、
     前記分離信号を符号化する符号化部と
    を有することを特徴とする信号分析装置。
  10.  前記符号化部は、
     前記分離信号からダウンミックス信号を生成するダウンミックス部と、
     前記入力信号から前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成する信号分析部と、
     前記ダウンミックス信号と前記分析情報とを符号化する第二の符号化部と
    を有することを特徴とする請求項9に記載の信号分析装置。
  11.  音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、
     前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成部と、
     前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成部と
    を有することを特徴とする信号制御装置。
  12.  前記分離再合成情報生成部は、
     前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成する再合成情報変換部と、
     前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、
     前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成する合成部と
    を有することを特徴とする請求項11に記載に信号制御装置。
  13.  音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、
     前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成する分離再合成情報生成部と、
     前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部と
    を有することを特徴とする信号制御装置。
  14.  前記分離再合成情報生成部は、
     前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成する再合成情報変換部と、
     前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、
     前記統合再合成情報と前記分離情報とを合成することにより分離再合成情報を生成する合成部と、
     前記分離再合成情報を前記分析情報に基づいて修正することにより前記修正分離再合成情報を生成する修正部と
    を有することを特徴とする請求項13に記載に信号制御装置。
  15.  音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、
     前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成する再合成情報統合部と、
     前記修正分離再合成情報に基づいて、前記分離信号を修正する信号再合成部と
    を有することを特徴とする信号制御装置。
  16.  音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、
     前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正部と、
     前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部と
    を有することを特徴とする信号制御装置。
  17.  前記再合成情報修正部は、
     前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、
     前記統合再合成情報を前記分析情報に基づいて修正することにより前記修正再合成情報を生成する修正部と
    を有することを特徴とする請求項16に記載の信号制御装置。
  18.  音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、
     前記出力信号情報に基づいて前記分離信号を修正する信号再合成部を有することを特徴とする信号制御装置。
  19.  音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とを受信する信号制御装置であって、
     前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正部と、
     前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成部と
    を有することを特徴とする信号制御装置。
  20.  音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報と受信する信号制御装置であって、
     前記混合信号を前記音源信号に分離するための分離情報を生成する分離情報計算部と、
     前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成部と、
     前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成部と
    を有することを特徴とする信号制御装置。
  21.  前記分離再合成情報生成部は、
     前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報とから生成する再合成情報変換部と、
     前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成する再合成情報統合部と、
     前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成する合成部と
    を有することを特徴とする請求項20に記載に信号制御装置。
  22.  前記統合再合成情報を前記再合成情報のみを用いて生成することを特徴とする請求項12、は請求項14、請求項15、請求項17、又は請求項21のいずれかに記載の信号制御装置。
  23.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成し、
     前記入力信号と前記分離情報とを送出する
    ことを特徴とする信号分析方法。
  24.  前記入力信号と前記分離情報とを符号化することにより符号化情報を生成し、
    前記符号化情報を送出する
    ことを特徴とする請求項23に記載の信号分析方法。
  25.  前記符号化は、
     前記入力信号からダウンミックス信号を生成し、
     前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成し、
    前記ダウンミックス信号と前記分析情報と前記分離情報を符号化することにより符号化情報を生成する
    ことを特徴とする請求項24に記載の信号分析方法。
  26.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成し、
     前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成し、
     前記分離信号と前記再合成情報とを送出する
    ことを特徴とする信号分析方法。
  27.  前記入力信号を前記音源信号に分離するための前記分離情報を生成し、
     前記分離情報に基づいて、前記再合成情報を生成する
    ことを特徴とする請求項26に記載の信号分析方法。
  28.  前記入力信号を前記音源信号に分離するための前記分離情報を生成し、
     前記分離情報に基づいて、前記再合成情報を生成し、
     前記再合成情報を整形する
    ことを特徴とする請求項26に記載の信号分析方法。
  29.  前記分離信号と前記再合成情報を符号化することにより符号化情報を生成し、
     前記符号化情報を送出する
    ことを特徴とする請求項26から請求項28のいずれかに記載の信号分析方法。
  30.  前記分離信号からダウンミックス信号を生成し、
     前記入力信号から前記入力信号と前記ダウンミックス信号の関係を表す分析情報を生成し、
     前記ダウンミックス信号と前記分析情報と前記再合成情報を符号化することにより前記符号化情報を生成する
    ことを特徴とする請求項29に記載の信号分析方法。
  31.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成し、
     前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成し、
     前記分離信号を符号化する
    ことを特徴とする信号分析方法。
  32.  前記分離信号からダウンミックス信号を生成し、
     前記入力信号から前記入力信号と前記ダウンミックス信号との関係を表す分析情報を生成し、
     前記ダウンミックス信号と前記分析情報とを符号化する
    ことを特徴とする請求項31に記載の信号分析方法。
  33.  音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信し、
     前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成し、
     前記分離再合成情報に基づいて、前記混合信号を修正する
    ことを特徴とする信号制御方法。
  34.  前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成し、
     前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、
     前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成する
    ことを特徴とする請求項33に記載に信号制御方法。
  35.  音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とを受信し、
     前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成し、
     前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正する
    ことを特徴とする信号制御方法。
  36.  前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成し、
     前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、
     前記統合再合成情報と前記分離情報とを合成することにより分離再合成情報を生成し、
     前記分離再合成情報を前記分析情報に基づいて修正することにより前記修正分離再合成情報を生成する
    ことを特徴とする請求項35に記載に信号制御方法。
  37.  音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とを受信し、
     前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成し、
     前記修正分離再合成情報に基づいて、前記分離信号を修正する
    ことを特徴とする信号制御方法。
  38.  音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報と受信し、
     前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成し、
     前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する
    ことを特徴とする信号制御方法。
  39.  前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、
     前記統合再合成情報を前記分析情報に基づいて修正することにより前記修正再合成情報を生成する
    ことを特徴とする請求項38に記載の信号制御方法。
  40.  音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とを受信し、
     前記出力信号情報に基づいて前記分離信号を修正することを特徴とする信号制御方法。
  41.  音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とを受信し、
     前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成し、
     前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する
    ことを特徴とする信号制御方法。
  42.  音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報とを受信し、
     前記混合信号を前記音源信号に分離するための分離情報を生成し、
     前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成し、
     前記分離再合成情報に基づいて、前記混合信号を修正する
    ことを特徴とする信号制御方法。
  43.  前記混合信号と前記音源信号との関係を表す再合成情報を、前記分離情報から生成し、
     前記出力信号情報と前記再合成情報とを統合することにより統合再合成情報を生成し、
     前記統合再合成情報と前記分離情報とを合成することにより前記分離再合成情報を生成する
    ことを特徴とする請求項42に記載に信号制御方法。
  44.  前記統合再合成情報を前記再合成情報のみを用いて生成することを特徴とする請求項34、は請求項36、請求項37、請求項39、又は請求項43のいずれかに記載の信号制御方法。
  45.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算処理を情報処理装置に実行させるプログラム。
  46.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報と、前記入力信号と前記音源信号との関係を表す再合成情報とを生成する再合成情報計算処理と、
     前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離処理と
    を情報処理装置に実行させるプログラム。
  47.  音源信号が混合された入力信号を、前記音源信号に分離するための分離情報を生成する分離情報計算処理と、
     前記分離情報に基づいて、前記入力信号を前記音源信号に分離することにより分離信号を生成する信号分離処理と、
     前記分離信号を符号化する符号化処理と
    を情報処理装置に実行させるプログラム。
  48.  音源信号が混合された混合信号と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とが入力され、
     前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成処理と、
     前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成処理と
    を情報処理装置に実行させるプログラム。
  49.  音源信号が混合された混合信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記混合信号との関係を表す分析情報と、前記混合信号を前記音源信号に分離するための分離情報と、特定の音源信号を制御する出力信号情報とが入力され、
     前記出力信号情報と前記分析情報と前記分離情報とから、前記音源信号を制御するための修正分離再合成情報を生成する分離再合成情報生成処理と、
     前記修正分離再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理と
    を情報処理装置に実行させるプログラム。
  50.  音源信号が混合された混合信号を分離した分離信号と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とが入力され、
     前記出力信号情報と前記再合成情報とから、前記音源信号を制御するための統合再合成情報を生成する再合成情報統合処理と、
     前記修正分離再合成情報に基づいて、前記分離信号を修正する信号再合成処理と
    を情報処理装置に実行させるプログラム。
  51.  音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、前記混合信号と前記分離信号との関係を表す再合成情報と、特定の音源信号を制御する出力信号情報とが入力され、
     前記出力信号情報と前記分析情報と前記再合成情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正処理と、
     前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理と
    を情報処理装置に実行させるプログラム。
  52.  音源信号が混合された混合信号を分離した分離信号と、特定の音源信号を制御する出力信号情報とが入力され、
     前記出力信号情報に基づいて前記分離信号を修正する信号再合成処理を情報処理装置に実行させるプログラム。
  53.  音源信号が混合された混合信号を分離した分離信号をダウンミックスしたダウンミックス信号と、前記ダウンミックス信号と前記分離信号との関係を表す分析情報と、特定の音源信号を制御する出力信号情報とが入力され、
     前記出力信号情報と前記分析情報とから、前記音源信号を制御するための修正再合成情報を生成する再合成情報修正処理と、
     前記修正再合成情報に基づいて、前記ダウンミックス信号を修正する信号再合成処理と
    を情報処理装置に実行させるプログラム。
  54.  音源信号が混合された混合信号と、特定の音源信号を制御する出力信号情報とが入力され、
     前記混合信号を前記音源信号に分離するための分離情報を生成する分離情報計算処理と、
     前記出力信号情報と前記分離情報とから、前記音源信号を制御するための分離再合成情報を生成する分離再合成情報生成処理と、
     前記分離再合成情報に基づいて、前記混合信号を修正する信号再合成処理と
    を情報処理装置に実行させるプログラム。
PCT/JP2009/062522 2008-07-11 2009-07-09 信号分析装置、信号制御装置及びその方法と、プログラム WO2010005050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/003,522 US20110112843A1 (en) 2008-07-11 2009-07-09 Signal analyzing device, signal control device, and method and program therefor
EP20090794494 EP2312578A4 (en) 2008-07-11 2009-07-09 SIGNAL ANALYSIS DEVICE, SIGNAL CONTROL DEVICE AND METHOD AND PROGRAM THEREFOR
JP2010519814A JPWO2010005050A1 (ja) 2008-07-11 2009-07-09 信号分析装置、信号制御装置及びその方法と、プログラム
CN2009801341797A CN102138176B (zh) 2008-07-11 2009-07-09 信号分析装置、信号控制装置及其方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008181242 2008-07-11
JP2008-181242 2008-07-11

Publications (1)

Publication Number Publication Date
WO2010005050A1 true WO2010005050A1 (ja) 2010-01-14

Family

ID=41507161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062522 WO2010005050A1 (ja) 2008-07-11 2009-07-09 信号分析装置、信号制御装置及びその方法と、プログラム

Country Status (5)

Country Link
US (1) US20110112843A1 (ja)
EP (1) EP2312578A4 (ja)
JP (1) JPWO2010005050A1 (ja)
CN (1) CN102138176B (ja)
WO (1) WO2010005050A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543987A (ja) * 2010-10-22 2013-12-09 クゥアルコム・インコーポレイテッド 遠距離場マルチ音源追跡および分離のためのシステム、方法、装置およびコンピュータ可読媒体
JP2013545137A (ja) * 2010-10-25 2013-12-19 クゥアルコム・インコーポレイテッド マルチチャネルオーディオ信号を分解するための方法、装置および機械可読記憶媒体
JP2015527609A (ja) * 2012-07-09 2015-09-17 コーニンクレッカ フィリップス エヌ ヴェ オーディオ信号の符号化及び復号
JP2021503627A (ja) * 2017-11-17 2021-02-12 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 様々な時間/周波数分解能を使用して指向性オーディオコーディングパラメータを符号化または復号するための装置および方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090019A1 (ja) * 2009-02-04 2010-08-12 パナソニック株式会社 結合装置、遠隔通信システム及び結合方法
JP6162254B2 (ja) * 2013-01-08 2017-07-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 背景ノイズにおけるスピーチ了解度を増幅及び圧縮により向上させる装置と方法
US20140379333A1 (en) * 2013-02-19 2014-12-25 Max Sound Corporation Waveform resynthesis
WO2015048070A1 (en) * 2013-09-24 2015-04-02 Analog Devices, Inc. Time-frequency directional processing of audio signals
KR20150056120A (ko) * 2013-11-14 2015-05-26 삼성전자주식회사 오디오 출력 제어 방법 및 이를 지원하는 장치
CN104978967B (zh) * 2015-07-09 2018-11-13 武汉大学 用于降低空间参数误码率的三维音频编码方法及装置
JP6591477B2 (ja) * 2017-03-21 2019-10-16 株式会社東芝 信号処理システム、信号処理方法及び信号処理プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084793A (ja) * 2001-09-14 2003-03-19 Nippon Telegr & Teleph Corp <Ntt> 独立成分分析方法及び装置並びに独立成分分析プログラム及びそのプログラムを記録した記録媒体
WO2005024788A1 (ja) * 2003-09-02 2005-03-17 Nippon Telegraph And Telephone Corporation 信号分離方法、信号分離装置、信号分離プログラム及び記録媒体
WO2006041137A1 (ja) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. 音響信号符号化装置及び音響信号復号装置
JP2007178684A (ja) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd マルチチャンネルオーディオ復号装置
WO2007083960A1 (en) * 2006-01-19 2007-07-26 Lg Electronics Inc. Method and apparatus for processing a media signal
JP2008181242A (ja) 2007-01-23 2008-08-07 Yahoo Japan Corp 情報提示サーバ
JP2008536184A (ja) * 2005-04-15 2008-09-04 コーディング テクノロジーズ アクチボラゲット 適応残差オーディオ符号化
JP2009527792A (ja) * 2006-02-23 2009-07-30 エルジー エレクトロニクス インコーポレイティド オーディオ信号の処理方法及び装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035553A1 (en) * 2001-08-10 2003-02-20 Frank Baumgarte Backwards-compatible perceptual coding of spatial cues
AU2003273981A1 (en) * 2002-10-14 2004-05-04 Thomson Licensing S.A. Method for coding and decoding the wideness of a sound source in an audio scene
JP2005031169A (ja) * 2003-07-08 2005-02-03 Kobe Steel Ltd 音声信号処理装置,その方法,そのプログラム
KR101117336B1 (ko) * 2004-05-19 2012-03-08 파나소닉 주식회사 오디오 신호 부호화 장치 및 오디오 신호 복호화 장치
US20070135952A1 (en) * 2005-12-06 2007-06-14 Dts, Inc. Audio channel extraction using inter-channel amplitude spectra
WO2007080211A1 (en) * 2006-01-09 2007-07-19 Nokia Corporation Decoding of binaural audio signals
JP4556875B2 (ja) * 2006-01-18 2010-10-06 ソニー株式会社 音声信号分離装置及び方法
WO2007097551A1 (en) * 2006-02-23 2007-08-30 Lg Electronics Inc. Method and apparatus for processing an audio signal
US8379868B2 (en) * 2006-05-17 2013-02-19 Creative Technology Ltd Spatial audio coding based on universal spatial cues
KR101396140B1 (ko) * 2006-09-18 2014-05-20 코닌클리케 필립스 엔.브이. 오디오 객체들의 인코딩과 디코딩
US8295494B2 (en) * 2007-08-13 2012-10-23 Lg Electronics Inc. Enhancing audio with remixing capability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084793A (ja) * 2001-09-14 2003-03-19 Nippon Telegr & Teleph Corp <Ntt> 独立成分分析方法及び装置並びに独立成分分析プログラム及びそのプログラムを記録した記録媒体
WO2005024788A1 (ja) * 2003-09-02 2005-03-17 Nippon Telegraph And Telephone Corporation 信号分離方法、信号分離装置、信号分離プログラム及び記録媒体
WO2006041137A1 (ja) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. 音響信号符号化装置及び音響信号復号装置
JP2008536184A (ja) * 2005-04-15 2008-09-04 コーディング テクノロジーズ アクチボラゲット 適応残差オーディオ符号化
JP2007178684A (ja) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd マルチチャンネルオーディオ復号装置
WO2007083960A1 (en) * 2006-01-19 2007-07-26 Lg Electronics Inc. Method and apparatus for processing a media signal
JP2009527792A (ja) * 2006-02-23 2009-07-30 エルジー エレクトロニクス インコーポレイティド オーディオ信号の処理方法及び装置
JP2008181242A (ja) 2007-01-23 2008-08-07 Yahoo Japan Corp 情報提示サーバ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"DIGITAL CODING OF WAVEFORMS, PRINCIPLES AND APPLICATIONS TO SPEECH AND VIDEO", 1990, PRENTICE-HALL
"DIGITAL SIGNAL PROCESSING", 1975, PRENTICE-HALL
"MULTIRATE SYSTEMS AND FILTER BANKS", 1993, PRENTICE-HALL
"Speech Enhancement", 2005, SPRINGER, pages: 299 - 327
IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, March 1985 (1985-03-01), pages 937 - 940

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543987A (ja) * 2010-10-22 2013-12-09 クゥアルコム・インコーポレイテッド 遠距離場マルチ音源追跡および分離のためのシステム、方法、装置およびコンピュータ可読媒体
US9100734B2 (en) 2010-10-22 2015-08-04 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for far-field multi-source tracking and separation
JP2013545137A (ja) * 2010-10-25 2013-12-19 クゥアルコム・インコーポレイテッド マルチチャネルオーディオ信号を分解するための方法、装置および機械可読記憶媒体
KR101521368B1 (ko) * 2010-10-25 2015-05-18 퀄컴 인코포레이티드 다중 채널 오디오 신호를 분해하는 방법, 장치 및 머신 판독가능 저장 매체
US9111526B2 (en) 2010-10-25 2015-08-18 Qualcomm Incorporated Systems, method, apparatus, and computer-readable media for decomposition of a multichannel music signal
JP2015527609A (ja) * 2012-07-09 2015-09-17 コーニンクレッカ フィリップス エヌ ヴェ オーディオ信号の符号化及び復号
JP2021503627A (ja) * 2017-11-17 2021-02-12 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 様々な時間/周波数分解能を使用して指向性オーディオコーディングパラメータを符号化または復号するための装置および方法
US11367454B2 (en) 2017-11-17 2022-06-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding or decoding directional audio coding parameters using quantization and entropy coding
JP2022171686A (ja) * 2017-11-17 2022-11-11 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 様々な時間/周波数分解能を使用して指向性オーディオコーディングパラメータを符号化または復号するための装置および方法
JP7175979B2 (ja) 2017-11-17 2022-11-21 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 様々な時間/周波数分解能を使用して指向性オーディオコーディングパラメータを符号化または復号するための装置および方法
US11783843B2 (en) 2017-11-17 2023-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding or decoding directional audio coding parameters using different time/frequency resolutions

Also Published As

Publication number Publication date
CN102138176B (zh) 2013-11-06
US20110112843A1 (en) 2011-05-12
CN102138176A (zh) 2011-07-27
JPWO2010005050A1 (ja) 2012-01-05
EP2312578A4 (en) 2012-09-12
EP2312578A1 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2010005050A1 (ja) 信号分析装置、信号制御装置及びその方法と、プログラム
JP5773124B2 (ja) 信号分析制御及び信号制御のシステム、装置、方法及びプログラム
JP5174973B2 (ja) ダウンミックスオーディオ信号をアップミックスするための装置、方法およびコンピュータ・プログラム
JP4944029B2 (ja) オーディオデコーダおよびオーディオ信号の復号方法
JP4963962B2 (ja) マルチチャネル信号符号化装置およびマルチチャネル信号復号装置
RU2639952C2 (ru) Гибридное усиление речи с кодированием формы сигнала и параметрическим кодированием
JP5163545B2 (ja) オーディオ復号装置及びオーディオ復号方法
RU2008114359A (ru) Аудиокодирование
WO2006041137A1 (ja) 音響信号符号化装置及び音響信号復号装置
TW201103008A (en) Parametric stereo encoding and decoding
WO2010090019A1 (ja) 結合装置、遠隔通信システム及び結合方法
EP1779385B1 (en) Method and apparatus for encoding and decoding multi-channel audio signal using virtual source location information
WO2007029412A1 (ja) マルチチャンネル音響信号処理装置
JP5282906B2 (ja) 多地点接続装置、信号分析及び装置と、その方法及びプログラム
CN117136406A (zh) 组合空间音频流
CN112567765B (zh) 空间音频捕获、传输和再现
JP5668923B2 (ja) 信号分析制御システム及びその方法と、信号制御装置及びその方法と、プログラム
US8825495B2 (en) Acoustic signal processing system, acoustic signal decoding apparatus, processing method in the system and apparatus, and program
EP2293292B1 (en) Quantizing apparatus, quantizing method and encoding apparatus
JP2007187749A (ja) マルチチャンネル符号化における頭部伝達関数をサポートするための新装置
JP2006323314A (ja) マルチチャネル音声信号をバイノーラルキュー符号化する装置
WO2009087923A1 (ja) 信号分析制御、信号分析、信号制御のシステム、装置、方法及びプログラム
JP5556175B2 (ja) 信号分析装置と、信号制御装置と、そのシステム、方法及びプログラム
KR101607334B1 (ko) 멀티 채널 오디오 디코딩 방법 및 멀티 채널 오디오 코덱
JP2009151183A (ja) マルチチャネル音声音響信号符号化装置および方法、並びにマルチチャネル音声音響信号復号装置および方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134179.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794494

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010519814

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13003522

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009794494

Country of ref document: EP