WO2010005032A1 - Pattern-forming method - Google Patents

Pattern-forming method Download PDF

Info

Publication number
WO2010005032A1
WO2010005032A1 PCT/JP2009/062464 JP2009062464W WO2010005032A1 WO 2010005032 A1 WO2010005032 A1 WO 2010005032A1 JP 2009062464 W JP2009062464 W JP 2009062464W WO 2010005032 A1 WO2010005032 A1 WO 2010005032A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
gas
transfer material
material layer
pattern
Prior art date
Application number
PCT/JP2009/062464
Other languages
French (fr)
Japanese (ja)
Inventor
信支 坂井
玉乃 平澤
Original Assignee
東洋合成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋合成工業株式会社 filed Critical 東洋合成工業株式会社
Publication of WO2010005032A1 publication Critical patent/WO2010005032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0053Moulding articles characterised by the shape of the surface, e.g. ribs, high polish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0003Discharging moulded articles from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the present invention relates to a pattern forming method using imprint lithography, and more particularly to a pattern forming method suitable for manufacturing a fine pattern such as a semiconductor integrated circuit or an optical element.
  • Nanoimprint lithography is a process for filling a material to be transferred by pressing a mold having a fine uneven pattern against the material to be transferred such as a resist, and then releasing the mold from the material to be transferred. A pattern is formed (see, for example, Patent Document 1).
  • an object of the present invention is to provide a pattern forming method by imprint lithography that is excellent in mold releasability.
  • the present inventors have solved the above problems by generating a gas or supplying a gas to the interface region between the mold and the transfer material layer. We have found that we can do it and have arrived at the present invention.
  • the first aspect of the present invention is a filling step in which a transfer material layer made of a transfer material and a mold on which an uneven pattern is formed are brought into contact with each other to fill the transferred material into the uneven pattern of the mold,
  • a gas application step of applying a gas to an interface region between the mold and the transfer material layer in a state in which the transfer material layer and the mold are brought into contact with each other and the uneven material pattern of the mold is filled with the transfer material;
  • a pattern forming method comprising: a mold release step of releasing the mold from the transfer material layer.
  • the material to be transferred contains a gas generating agent that generates gas by stimulation, and in the gas application step, the gas generating agent is stimulated to give the mold and the transferred material.
  • the pattern forming method according to the first aspect is characterized in that gas is generated in an interface region with the material layer.
  • a third aspect of the present invention is the pattern forming method according to the second aspect, wherein the gas generating agent generates gas by light stimulation.
  • the transfer material is a photocurable composition
  • the transfer material layer and the mold are brought into contact with each other to fill the uneven material pattern of the mold with the transfer material.
  • the pattern forming method according to any one of the first to third aspects, further comprising a photocuring step of exposing the transfer material layer to a photocured layer.
  • the photocurable composition contains a compound having a photopolymerizable group, a photopolymerization initiator, and the gas generating agent. Is in the way.
  • a sixth aspect of the present invention is the pattern forming method according to the fourth or fifth aspect, characterized in that the gas applying step is performed simultaneously with the photocuring step or after the photocuring step.
  • the gas generating agent generates gas by light stimulation, and the wavelength region of light for curing the photocurable composition in the photocuring step is gas in the gas applying step.
  • the pattern forming method according to any one of the fourth to sixth aspects, which is different from the wavelength region of the light that generates the light.
  • the transfer material is solid, and in the filling step, the transfer material layer is heated and softened, and then the transfer material layer and the mold are brought into contact with each other. 4.
  • a ninth aspect of the present invention is the pattern forming method according to any one of the first to third aspects, wherein the transfer material is solid and the filling step is performed at room temperature.
  • a tenth aspect of the present invention is the pattern forming method according to any one of the first to ninth aspects, wherein the mold has an uneven pattern with a pitch of 1 ⁇ m or less.
  • An eleventh aspect of the present invention is the pattern forming method according to any one of the first to tenth aspects, wherein the mold has an uneven pattern having an aspect ratio of 1.0 or more. .
  • the mold releasability from the transfer material layer is improved, There is an effect that a pattern in which the concave / convex pattern of the mold is precisely transferred to the transfer material layer can be easily formed.
  • the pattern forming method of the present invention includes a filling step of bringing a transfer material layer made of a transfer material into contact with a mold on which an uneven pattern is formed and filling the transfer material with the uneven pattern of the mold, and a transfer material layer The mold is released from the transfer material layer, and a gas application step for causing a gas to be present in the interface region between the mold and the transfer material layer in a state where the transfer material is filled in the uneven pattern of the mold by bringing the mold into contact with the mold And a mold release step.
  • a transfer material layer 2 made of a transfer material formed on a substrate 1 and a mold 3 having an uneven pattern are prepared.
  • the material to be transferred is filled into the concave / convex pattern of the mold 3 by bringing the material layer 2 and the mold 3 into contact with each other by pressing or the like (filling step).
  • the mold 3, the transferred material layer 2, and the transfer material layer 2 are brought into contact with the mold 3 and the uneven material pattern of the mold 3 is filled with the transferred material.
  • a gas is generated or supplied to the interface region 4 to apply the gas to the interface region 4 (gas application step).
  • the mold 3 is released from the transfer material layer 2 to form a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2 (release). Process).
  • gas is intentionally introduced into the interface region 4 between the mold 3 and the transfer material layer 2, that is, the region existing between the surface of the transfer material layer 2 and the surface where the uneven pattern of the mold 3 is in contact.
  • the interface region 4 between the mold 3 and the transfer material layer 2 can be brought into a pressurized state or the like by performing a gas application process in which gas is generated by supplying or supplying gas. Therefore, the mold 3 and the transferred material layer 2 have good releasability, so that a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold is easily released. be able to.
  • the transfer material layer 2 is cured with light, and thus the transfer material layer 2 contracts due to the curing, and the interface region 4 may be in a reduced pressure state, which may make release difficult.
  • the depressurized state of the interface region 4 is eliminated or a pressurized state is achieved by the gas application step, so that the mold 3 is easily released.
  • the transfer material constituting the transfer material layer 2 contains a gas generating agent that generates gas by stimulation, and the gas generating agent is stimulated in the gas application step.
  • the gas is generated from the method of generating the gas from the transfer material layer 2, the method of generating the gas from the substrate 1 or any layer provided on the substrate 1, and the mold itself or the mold release treatment agent applied to the mold.
  • a method of applying gas to the interface region 4 can be used.
  • a gas permeable mold 3 is used, or a gas supply port for supplying gas to the interface region 4 is provided in the mold 3.
  • a method of generating gas and a method of supplying gas to the interface region 4 may be used in combination. Note that it is preferable to generate gas from the transfer material layer 2 in terms of ease of process.
  • the type of gas generated or supplied to the interface region 4 is not particularly limited, but is preferably an inert gas such as N 2 or CO 2 from the viewpoint of safety.
  • imprint lithography is roughly classified into optical imprint lithography, thermal imprint lithography, and room temperature imprint lithography.
  • the present invention will be described in detail below for each imprint lithography.
  • optical imprint lithography In optical imprint lithography, first, as shown in FIG. 2 (a), a substrate 1 at least one of which is transparent and a mold 3 on which an uneven pattern is formed are prepared, and a transfer material comprising a photocurable composition is prepared. Layer 2 is formed on substrate 1 (transfer material layer forming step). In FIG. 2, the transfer material layer 2 is formed on the substrate 1. However, the transfer material layer 2 may be provided on the mold 3, or provided on both the substrate 1 and the mold 3. May be.
  • the mold 3 may have a desired uneven pattern on the surface.
  • the material of the mold 3 include transparent materials such as quartz glass and synthetic resin, as well as materials that do not transmit light such as metals such as silicon, silicon carbide, silicon oxide, and nickel, and metal oxides.
  • a material that generates gas from the mold itself such as a resin containing a gas generating agent, may be used.
  • the appearance of the mold 3 may be the same as that of the mold 3 used in normal optical imprint lithography. For example, the appearance may be a rectangular parallelepiped shape or a roll shape.
  • the uneven pattern formed on the surface of the mold 3 may be the same as the uneven pattern formed on the surface of the mold 3 used in normal optical imprint lithography, but is not limited thereto. It is not what is done. For example, it is good also as the mold 3 which formed the recessed part by forming the hollow in the surface of the material of a mold, and the part which protruded relatively to the surface side becomes a convex part in this case. Moreover, it is good also as the mold 3 which formed the convex part by providing a permite
  • each concave portion of the concave / convex pattern may be a square, a rectangle, a half moon shape, or a shape similar to those shapes.
  • Each concave portion has a depth of about 1 nm to 100 ⁇ m and an opening width of 1 nm, for example. It may be about 100 ⁇ m.
  • the mold release property is particularly bad, and the uneven pattern of the mold 3 is precisely The problem that it is impossible to obtain a transfer material layer having a transferred pattern is likely to occur.
  • the pattern pitch is 1 ⁇ m or less, and the unevenness of the aspect ratio is 1.0 or more. Even if the mold 3 having a pattern is used, the releasability is improved. Accordingly, the uneven pattern can be transferred to the transfer material, and can be easily released without applying a large force to the release.
  • the aspect ratio represents y / x where x is the diameter or the minimum length of one side of the concave portion or convex portion, and y is the depth of the concave portion or the height of the convex portion. Further, the pitch is the width of the concave portion and the convex portion represented by P in FIG.
  • the surface of the mold 3 may be subjected to a mold release treatment.
  • a known release treatment agent exemplified by a perfluoro- or hydrocarbon-based polymer compound, an alkoxysilane compound or a trichlorosilane compound, diamond-like carbon, or the like is used by a gas phase method or a liquid phase method. Can be done.
  • gas when gas is generated from the mold release treatment agent in the gas application step described later, it is replaced with a mold release treatment agent that generates a gas such as an azide compound or an azo compound having a functional group such as perfluoro or hydrocarbon. That's fine.
  • the mold 3 is made into gas permeable materials, such as a silicon
  • gas permeable materials such as a silicon
  • the substrate 1 may be any substrate as long as the material to be transferred 2 can be provided by applying or dropping the material to be transferred.
  • the substrate used in a pattern forming method by normal optical imprint lithography it is preferable that the transfer material layer 2 can be applied with a substantially uniform thickness.
  • Specific examples include semiconductor substrates such as silicon wafers, compound semiconductors such as GaAs, InAs, and GaN, transparent inorganic substrates such as glass, quartz, and sapphire, ceramic substrates, polycarbonate, PET (polyethylene terephthalate), and triacetyl cellulose.
  • a synthetic resin substrate, a metal, a metal oxide, etc. are mentioned.
  • the transparent substrate 1 examples include a glass substrate, a quartz substrate, a sapphire substrate, and a transparent synthetic resin substrate.
  • the surface of the substrate 1 may be subjected to pretreatment in order to improve adhesion to the transfer material layer 2 or to improve the application state of the transfer material layer 2.
  • Specific examples of the pretreatment include wet surface cleaning, surface modification by plasma and ozone cleaning, treatment with an adhesion improver such as a silane coupling agent, and the like.
  • the transfer material layer 2 may be provided directly on the substrate 1, or the transfer material layer 2 may be formed on a single layer or a plurality of arbitrary layers provided on the substrate 1.
  • the optional layer include a novolac resin layer and a layer made of a spin-on-glass material. Moreover, you may generate gas from these arbitrary layers.
  • the transfer material constituting the transfer material layer 2 is a solid, liquid, or fluid photocurable composition.
  • the photocurable composition include a photodimer type having a photodimer group such as a cinnamate ester resin, a photocrosslink type containing a photocrosslinker such as a cyclized rubber resist, an ene / thiol type, a radical, and a cation. And photopolymerization type. From the viewpoint of ease of the filling step and miscibility with the gas generating agent described later, the photocurable composition is more preferably liquid or fluid, and the photopolymerization type is most preferable from the viewpoint of versatility.
  • the photopolymerizable photocurable composition contains a compound having a photopolymerizable group and a photopolymerization initiator.
  • the compound having a photopolymerizable group refers to a compound having a radical polymerizable group or a cationic polymerizable group.
  • the radical polymerizable group include acryloyl group, methacryloyl group and vinyl group.
  • Examples of the cationically polymerizable group include epoxy groups, vinyl ethers, oxetanes, oxolanes, spirooxoesters, and thiiranes.
  • the compounds having a photopolymerizable group may be used alone or in combination of two or more, and a compound having a radical polymerizable group and a compound having a cationic polymerizable group may be used in combination.
  • the photopolymerization initiator refers to a compound that generates an active species such as a radical or a cation capable of initiating polymerization of the compound having the photopolymerizable group upon irradiation with light.
  • Photopolymerization initiators can be classified into radical polymerization initiators and cationic polymerization initiators.
  • radical polymerization initiators include benzophenone, benzyldimethyl ketal, ⁇ -hydroxyalkylphenones, ⁇ -aminoalkylphenones, acylphosphine oxides, titanocenes and oxime esters, trihalomethyltriazines, and other trihalomethyls And a compound having a group.
  • Examples of the cationic polymerization initiator include aromatic sulfonium salts and aromatic iodonium salts.
  • the polymerization initiators may be used alone or in combination of two or more, and a radical polymerization initiator and a cationic polymerization initiator may be used in combination. Furthermore, you may use a sensitizer with a photoinitiator.
  • the content of the compound having a photopolymerizable group in the photocurable composition is preferably 50 to 99.99 parts by weight with respect to 100 parts by weight of the total amount of the photocurable composition.
  • the amount is less than 50 parts by weight, the amount of the photopolymerizable group is small.
  • the amount exceeds 99.99 parts by weight the ratio of the photopolymerization initiator to the compound having the photopolymerizable group is decreased. This is because of a decrease.
  • the compound having a photopolymerizable group having two or more photopolymerizable groups in one molecule is contained in an amount of 5 parts by weight or more, preferably 20 parts by weight or more with respect to 100 parts by weight of the total amount of the photocurable composition. Is desirable.
  • the content of the photopolymerization initiator in the photocurable composition is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the compound having a photopolymerizable group. If it is less than 0.01 part by weight, the ratio of the photopolymerization initiator to the compound having a photopolymerizable group is lowered, and the photocurability is lowered. Moreover, when it exceeds 20 weight part, it is because the solubility of the photoinitiator with respect to a photocurable composition falls and it is not practical.
  • the photocurable composition includes a nonphotocurable oligomer, a nonphotocurable polymer, an adhesion-imparting agent (for example, a silane coupling agent), an organic solvent, and a leveling agent as long as the performance is not adversely affected.
  • Additives such as plasticizers, fillers, antifoaming agents, flame retardants, stabilizers, antioxidants, fragrances, thermal crosslinking agents, and polymerization inhibitors may be contained. In addition, these may be contained alone or in combination of two or more.
  • the photocurable composition when generating gas in the interface area
  • Stimulation includes light, heat, impact, etc., but the process is easy and can be applied to heat-sensitive substrates and transfer materials, so use a gas generating agent that generates gas by light stimulation. Is preferred.
  • the gas generating agent that generates gas by thermal stimulation for example, a gas generating agent that generates gas by thermal stimulation at 40 to 200 ° C. is preferable.
  • gas may be generated in steps other than the gas application step, and if it is higher than 200 ° C., there is a risk of thermal decomposition when the material to be transferred is an organic substance when thermally stimulated. Because.
  • Gas generating agents include azide compounds that generate gas by light stimulation, thermal stimulation or impact, azo compounds, diazo compounds, diazonium salts, nitrobenzyl carbamate compounds that generate gas by light stimulation or thermal stimulation, and gas by heat stimulation. And organic or inorganic peroxides generating ⁇ -ketocarboxylic acid or derivatives thereof. Specific examples include azidobenzaldehyde that generates nitrogen, azidobenzalmethylcyclohexanones, azobisisobutyronitrile, azobis compounds such as dimethyl 2,2′-azobis (2-methylpropionate), and aromatic diazonium salts.
  • Naphthoquinonediazide compounds Naphthoquinonediazide compounds, diazomer drum acids that generate nitrogen, carbon monoxide and acetone, nitrobenzyl carbamate compounds that generate carbon monoxide, t-BOC compounds and photoacids of hydroxystyrene that generate isobutylene and carbon dioxide
  • Examples include combinations of generators.
  • the addition amount of the gas generating agent is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the photocurable composition. If it is less than 0.1, the improvement in releasability may not be significant, and if it exceeds 50 parts by weight, the mixing property with the transfer material may be insufficient.
  • the gas generant may be the same as or different from the photodimer group, photocrosslinker or photopolymerization initiator contained in the photocurable composition, but the photodimer group, photocrosslinker or photopolymerization may be used.
  • the photocuring step and the gas application step described later can be made different steps. If the photocuring step and the gas application step are separate steps, the respective functions can be exhibited in each step, and problems that occur when photocuring and gas generation occur simultaneously, for example, the transferred material in which the generated gas is cured This is preferable because there is no inconvenience such as trapping inside the layer 2 and causing bubble defects.
  • the photocuring step and the gas application step are separate steps.
  • the wavelength region of light that the photocurable composition cures is the same as the wavelength region of light that generates gas from the gas generating agent.
  • the photocuring step and the gas application step can be made separate steps. .
  • the photocurable composition is preferably in a liquid state near room temperature. Specifically, it is preferable that the photocurable composition has fluidity enough to fill the uneven pattern of the mold 3.
  • the viscosity is 10 Pa ⁇ s or less at 25 ° C.
  • the method of measuring using the B-type viscometer made from TOKIMEC is mentioned, for example.
  • a method for forming the transfer material layer 2 on the substrate or the mold using the transfer material made of such a photocurable composition is not particularly limited.
  • the transfer material diluted with a solvent or the like as necessary is used.
  • the application and dripping include spin coating, roll coating, dip coating, gravure coating, die coating, curtain coating, inkjet coating, and dispenser coating.
  • the thickness of the transfer material layer 2 may be set in consideration of the amount of the photocurable composition filled in the concave portion of the concave / convex pattern formed on the mold 3, for example, the depth of the concave portion of the concave / convex pattern. Good. Further, the transfer material layer 2 may be provided so as to cover the entire surface of the mold 3 and the substrate 1, or may be provided so as to cover only a part thereof.
  • the transfer material layer 2 and the mold 3 are opposed to each other, as shown in FIG.
  • the surface on which the uneven pattern of the mold 3 is formed is brought into contact with the material to be transferred into the uneven pattern of the mold 3 (filling step).
  • a conventional apparatus for optical imprint lithography can be used.
  • the transfer material layer 2 is exposed and cured in a state where the transfer material layer 2 and the mold 3 are brought into contact with each other and the uneven pattern of the mold 3 is filled in the transfer material.
  • a photocured layer photocuring step
  • the transfer material layer 2 may be cured and contracted to form a space at the interface between the transfer material layer 2 and the mold 3.
  • the light source used for exposure may be any light source that can irradiate light having a wavelength at which the photocurable composition is cured.
  • Examples of light sources include low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, xenon lamps, carbon arcs, mercury xenon lamps, excimer lasers such as XeCl, KrF and ArF, ultraviolet or visible light lasers, and ultraviolet light. Or visible light LED etc. are mentioned.
  • the light irradiation amount may be an amount that can cure the transfer material layer 2. When industrially carrying out the present invention, it is usually preferable to select an irradiation dose within a range of 10 J / cm 2 or less.
  • the photocurable composition contains a gas generating agent that generates gas by light stimulation
  • the wavelength region of light irradiated in the photocuring step is preferably light in a wavelength region that does not generate gas. This is to prevent the generated gas from being trapped inside the cured transfer material layer 2 and causing bubble defects.
  • the transferred material layer (photocured layer) 2 and the mold 3 are brought into contact with each other, and the mold 3 and the transferred material layer are filled with the uneven pattern of the mold 3 in the transferred material layer.
  • Gas is applied to the interface region 4 with the material layer 2 (gas application step).
  • the gas generating step may be performed with light having a wavelength that allows the gas generating agent to sensitize and generate gas.
  • the exposure method may be the same as the photocuring step, but the wavelength region of light for curing the photocurable composition is not the same as the wavelength region of light for generating gas from the gas generating agent,
  • the sensitivity to light of the wavelength is different between the gas generating agent and the photodimeric group, the photocrosslinking agent, or the photopolymerization initiator, the wavelength of the light that generates the gas in the wavelength region of light that photocures the photocurable composition.
  • substantially only photo-curing proceeds and substantially no gas is generated from the gas generating agent.
  • substantially only gas generation proceeds and substantially no gas is generated.
  • the transfer material layer 2 contains a gas generating agent that generates gas by thermal stimulation
  • the transfer material layer 2 is heated to a temperature at which the gas generating agent can generate gas in the gas application step. do it.
  • the photocuring step only photocuring substantially proceeds and gas is not generated from the gas generating agent.
  • the gas application step only gas generation proceeds substantially and photocuring does not proceed substantially.
  • the transfer material layer 2 contains a gas generating agent that generates gas by impact
  • the transfer material layer 2 is given an impact that can generate gas in the gas application step. Good.
  • the mold release treatment agent applied to the mold 3, or the substrate 1 or any layer on the substrate 1 to supply the gas to the interface region 4 the mold 3 A gas may be generated in the interface region 4 by applying a stimulus such as light, heat or impact to the agent, the substrate 1 or any layer on the substrate 1.
  • the gas when gas is supplied to the interface region 4 between the mold 3 and the transfer material layer 2, the gas passes through the mold 3 having a gas permeable mold 3 or a supply port for supplying gas to the interface region 4. Then, the gas may be supplied to the interface region 4 from the outside.
  • the transfer material layer 2 is cured and contracted during the photocuring process, and the interface region 4 between the mold 3 and the transfer material layer 2 is in a reduced pressure state.
  • the mold 3 tends to be difficult to release due to the close contact between the mold 3 and the mold 3 or the like.
  • the gas is applied to the interface region 4 in the gas application step, so that the interface region 4 is released from the reduced pressure state or is in a pressurized state. As a result, a precise pattern can be easily formed.
  • the gas application process may be performed after or after the photocuring process, and the gas application process and the photocuring process may be the same process, but the generated gas is confined within the cured transfer material layer 2.
  • a gas application step after the photocuring step.
  • a gas generating agent that generates gas by thermal stimulation is used, and in the photocuring process, the photocurable composition is cured so that no gas is substantially generated from the gas generating agent, thereby completing the curing of the transfer material layer 2.
  • a gas provision process can be performed after a photocuring process by generating gas from a gas generating agent by thermal stimulation in a gas provision process.
  • the wavelength region of light for photocuring the photocurable composition is different from the wavelength region of light for generating gas.
  • the gas application step can be performed after the photocuring step by causing the gas generating agent to be exposed to light in the gas application step to generate a gas.
  • the mold 3 is released from the transfer material layer 2, thereby forming on the substrate 1 a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2.
  • the pattern forming method of the present invention includes a gas application step for intentionally generating gas or supplying gas to the interface region 4 between the mold 3 and the transfer material layer 1, the mold 3 and the transfer material Since the mold releasability with the layer 2 is improved, a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold can be easily released.
  • thermal imprint lithography ⁇ Thermal imprint lithography>
  • thermal imprint lithography first, as shown in FIG. 3A, a substrate 1 and a mold 3 on which an uneven pattern is formed are prepared, and a transfer material layer 2 that is a solid is disposed on the substrate 1.
  • the transfer material layer 2 is formed on the substrate 1 (transfer material layer forming step).
  • the transfer material layer 2 is formed on the substrate 1.
  • the transfer material layer 2 may be provided on the mold 3, or provided on both the substrate 1 and the mold 3. Also good.
  • the solid material 2 to be transferred is a solid plate or the like having sufficient mechanical strength and thickness, the material layer 2 need not be formed on the substrate 1 or the mold 3.
  • the transfer material layer forming step can be omitted.
  • the mold 3 may have a desired uneven pattern on the surface.
  • the material of the mold 3 include transparent materials such as quartz glass and synthetic resin, as well as materials that do not transmit light such as metals such as silicon, silicon carbide, silicon oxide, and nickel, and metal oxides.
  • a material that generates gas from the mold itself such as a resin containing a gas generating agent, may be used.
  • the appearance of the mold 3 may be the same as the appearance of the mold 3 used in normal thermal imprint lithography. For example, the appearance may be a rectangular parallelepiped shape or a roll shape.
  • the uneven pattern formed on the surface of the mold 3 may be the same as the uneven pattern formed on the surface of the mold 3 used in normal thermal imprint lithography, but is not limited thereto. It is not what is done. For example, it is good also as the mold 3 which formed the recessed part by forming the hollow in the surface of the material of a mold, and the part which protruded relatively to the surface side becomes a convex part in this case. Moreover, it is good also as the mold 3 which formed the convex part by providing a permite
  • each concave portion of the concave / convex pattern may be a square, a rectangle, a half moon, or a shape similar to those shapes.
  • Each concave portion has a depth of about 1 nm to 100 ⁇ m and an opening width of 1 nm, for example. It may be about 100 ⁇ m.
  • the mold release property is particularly bad, and the uneven pattern of the mold 3 is precisely The problem that it is impossible to obtain a transfer material layer having a transferred pattern is likely to occur.
  • the pattern pitch is 1 ⁇ m or less, and the unevenness of the aspect ratio is 1.0 or more. Even if the mold 3 having a pattern is used, the releasability is improved. Accordingly, the uneven pattern can be transferred to the transfer material, and can be easily released without applying a large force to the release.
  • the surface of the mold 3 may be subjected to a mold release treatment.
  • a known release treatment agent exemplified by a perfluoro- or hydrocarbon-based polymer compound, an alkoxysilane compound or a trichlorosilane compound, diamond-like carbon, or the like is used by a gas phase method or a liquid phase method. Can be done.
  • a mold release treatment agent that generates a gas such as an azide compound or azo compound having a functional group such as perfluoro type or hydrocarbon type is used. That's fine.
  • the mold 3 is made into gas permeable materials, such as a silicon
  • gas permeable materials such as a silicon
  • the substrate 1 may be any substrate as long as the material to be transferred 2 can be provided by applying or dropping the material to be transferred.
  • a substrate used in a pattern forming method by normal thermal imprint lithography it is preferable that the transfer material layer 2 has a substantially uniform thickness.
  • Specific examples include semiconductor substrates such as silicon wafers, compound semiconductors such as GaAs, InAs, and GaN, transparent inorganic substrates such as glass, quartz, and sapphire, ceramic substrates, synthetic resin substrates such as polycarbonate, PET, and triacetyl cellulose, metals Or a metal oxide etc. are mentioned.
  • the transparent substrate 1 include a glass substrate, a quartz substrate, a sapphire substrate, and a transparent synthetic resin substrate.
  • the surface of the substrate 1 may be subjected to pretreatment in order to improve adhesion to the transfer material layer 2 or to improve the application state of the transfer material layer 2.
  • pretreatment include wet surface cleaning, surface modification by plasma and ozone cleaning, treatment with an adhesion improver such as a silane coupling agent, and the like.
  • the transfer material layer 2 may be provided directly on the substrate 1, or the transfer material layer 2 may be formed on a single layer or a plurality of arbitrary layers provided on the substrate 1.
  • the optional layer include a novolac resin layer and a layer made of a spin-on-glass material. Moreover, you may generate gas from these arbitrary layers.
  • the transfer material constituting the transfer material layer 2 may be any material that is softened by heating and has a property that the transfer material layer 2 and the mold 3 can be brought into contact with each other to fill the uneven material pattern of the mold 3 with the transfer material. Good. Examples thereof include thermoplastic resins such as polymethyl methacrylate and polylactic acid, thermoplastic resin compositions containing these, and inorganic substances such as glass and metals.
  • the transfer material may have a reactive group such as a photopolymerizable group.
  • a non-photocurable oligomer, a non-photocurable polymer, an adhesion-imparting agent (for example, a silane coupling agent), an organic solvent, a leveling agent, Additives such as a plasticizer, a filler, an antifoaming agent, a flame retardant, a stabilizer, an antioxidant, a fragrance, a thermal crosslinking agent, and a polymerization inhibitor may be contained. In addition, these may be contained alone or in combination of two or more.
  • the transfer material when gas is generated in the interface region 4 between the mold 3 and the transfer material layer 2 in the subsequent gas application step, the transfer material contains a gas generating agent that generates gas by stimulation.
  • Stimulation includes light, heat, impact, etc., but the process is easy and can be applied to heat-sensitive substrates and transfer materials, so use a gas generating agent that generates gas by light stimulation. Is preferred.
  • the gas generating agent that generates gas by thermal stimulation for example, a gas generating agent that generates gas by thermal stimulation at 40 to 200 ° C. is preferable.
  • gas may be generated in steps other than the gas application step, and if it is higher than 200 ° C., there is a risk of thermal decomposition when the material to be transferred is an organic substance when thermally stimulated. Because.
  • Gas generating agents include azide compounds that generate gas by light stimulation, thermal stimulation or impact, azo compounds, diazo compounds, diazonium salts, nitrobenzyl carbamate compounds that generate gas by light stimulation or thermal stimulation, and gas by heat stimulation. And organic or inorganic peroxides generating ⁇ -ketocarboxylic acid or derivatives thereof. Specific examples include azidobenzaldehyde that generates nitrogen, azidobenzalmethylcyclohexanones, azobisisobutyronitrile, azobis compounds such as dimethyl 2,2′-azobis (2-methylpropionate), and aromatic diazonium salts.
  • Naphthoquinonediazide compounds Naphthoquinonediazide compounds, diazomer drum acids that generate nitrogen, carbon monoxide and acetone, nitrobenzyl carbamate compounds that generate carbon monoxide, t-BOC compounds and photoacids of hydroxystyrene that generate isobutylene and carbon dioxide
  • Examples include combinations of generators.
  • the addition amount of the gas generating agent is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the transfer material. If it is less than 0.1, the improvement in releasability may not be significant, and if it exceeds 50 parts by weight, the mixing property with the transfer material may be insufficient.
  • the gas generating agent is preferably one that can make the filling step for heating and the gas application step separate from each other. If the filling step and the gas application step are separate steps, the respective functions can be performed in each step, and problems that occur when filling and gas generation occur simultaneously, for example, the generated gas is generated inside the transfer material layer 2. This is preferable because there is no inconvenience such as a bubble defect trapped in
  • the gas application step is a step of irradiating light, which is a separate step from the filling step of heating.
  • the temperature at which the transfer material is softened in the filling step and the temperature at which gas is generated from the gas generating agent in the gas applying step are different.
  • the filling step and the gas application step can be made separate.
  • the thickness of the transfer material layer 2 may be set in consideration of the amount of the transfer material filled in the concave portion of the uneven pattern formed on the mold 3, for example, the depth of the concave portion of the uneven pattern. Further, the transfer material layer 2 may be provided so as to cover the entire surface of the mold 3 and the substrate 1, or may be provided so as to cover only a part thereof.
  • the solid transfer material layer 2 is heated. By heating, the transferred material layer 2 is softened more than before heating. After the softening, as shown in FIG. 3B, the transferred material layer 2 is brought into contact with the surface on which the uneven pattern of the mold 3 is formed, and the uneven material pattern of the mold 3 is filled with the transferred material. Thereafter, the transfer material layer 2 is cooled to near room temperature to cure the transfer material layer 2 (filling step).
  • the heating temperature depends on the characteristics of the material to be transferred, but may be heated until the material to be transferred becomes viscoelastic enough to fill the uneven pattern of the mold 3.
  • the temperature heated in the filling step is a temperature that does not generate gas. This is to prevent the generated gas from being trapped inside the transfer material and causing bubble defects.
  • both the transfer material layer 2 and the mold 3 horizontal to bring the transfer material layer 2 and the mold 3 into contact with each other. There is no need to limit it to keeping.
  • a force of about 0.01 to 100 MPa may be applied as necessary.
  • a conventional apparatus for thermal imprint lithography can be used.
  • the transfer material layer 2 and the mold 3 are brought into contact with each other and the uneven pattern of the mold 3 is filled with the transfer material layer. Gas is generated or supplied to the interface region 4 (gas application step).
  • the gas generating step may be performed with light having a wavelength that allows the gas generating agent to sensitize and generate gas.
  • the light source used for exposure may be any light source that can irradiate light having a wavelength generated by gas. Examples of light sources include low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, xenon lamps, carbon arcs, mercury xenon lamps, excimer lasers such as XeCl, KrF and ArF, ultraviolet or visible light lasers, and ultraviolet light. Or visible light LED etc. are mentioned.
  • the irradiation amount of light may be an amount that can generate gas. When the present invention is industrially carried out, it is usually preferable to select an irradiation dose within a range of 10 J / cm 2 or less.
  • the transfer material layer 2 contains a gas generating agent that generates gas by thermal stimulation
  • the transfer material layer 2 is heated to a temperature at which the gas generating agent can generate gas in the gas application step. do it.
  • the transfer material layer 2 contains a gas generating agent that generates gas by impact
  • the transfer material layer 2 is given an impact that can generate gas in the gas application step. Good.
  • the mold release treatment agent applied to the mold 3, or the substrate 1 or any layer on the substrate 1 to supply the gas to the interface region 4 the mold 3 A gas may be generated in the interface region 4 by applying a stimulus such as light, heat or impact to the agent, the substrate 1 or any layer on the substrate 1.
  • the gas when gas is supplied to the interface region 4 between the mold 3 and the transfer material layer 2, the gas passes through the mold 3 having a gas permeable mold 3 or a supply port for supplying gas to the interface region 4. Then, the gas may be supplied to the interface region 4 from the outside.
  • the mold 3 and the transfer material layer 2 are closely adhered to each other, so that the mold 3 is released. May be difficult.
  • the gas is applied to the interface region 4 by the gas application step, the interface region 4 is in a pressurized state or the like, so that the mold 3 can be easily released and a precise pattern can be easily formed. Can be formed.
  • the gas application step may be performed after the cooling in the filling step or before, but the generated gas is confined inside the cured transfer material layer 2 and is cooled after the cooling in order to avoid bubble defects. More preferably, the applying step is performed.
  • the mold 3 is released from the transfer material layer 2, thereby forming on the substrate 1 a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2.
  • the pattern forming method of the present invention includes a gas application step for intentionally generating gas or supplying gas to the interface region 4 between the mold 3 and the transfer material layer 1, the mold 3 and the transfer material Since the mold releasability with the layer 2 is improved, a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold can be easily released.
  • the transfer material has a reactive group such as a photopolymerizable group, in order to improve the strength of the molded product after cooling in the filling step, gas application step or release step.
  • An optional step such as photocuring may be performed.
  • room temperature imprint lithography In room temperature imprint lithography, first, as shown in FIG. 4A, a substrate 1 and a mold 3 on which an uneven pattern is formed are prepared, and a transfer material layer 2 that is a solid is disposed on the substrate 1. In the same manner, the transfer material layer 2 is formed on the substrate 1 (transfer material layer forming step). In FIG. 4, the transfer material layer 2 is formed on the substrate 1. However, the transfer material layer 2 may be provided on the mold 3, or provided on both the substrate 1 and the mold 3. Also good. Furthermore, if the solid material 2 to be transferred is a solid plate or the like having sufficient mechanical strength and thickness, the material layer 2 need not be formed on the substrate 1 or the mold 3. The transfer material layer forming step can be omitted.
  • the mold 3 may have a desired uneven pattern on the surface.
  • the material of the mold 3 include transparent materials such as quartz glass and synthetic resin, as well as materials that do not transmit light such as metals such as silicon, silicon carbide, silicon oxide, and nickel, and metal oxides.
  • a material that generates gas from the mold itself such as a resin containing a gas generating agent, may be used.
  • the appearance of the mold 3 may be the same as that of the mold 3 used in normal room temperature imprint lithography. For example, the appearance may be a rectangular parallelepiped shape or a roll shape.
  • the uneven pattern formed on the surface of the mold 3 may be the same as the uneven pattern formed on the surface of the mold 3 used in normal room temperature imprint lithography, but is not limited thereto. It is not what is done. For example, it is good also as the mold 3 which formed the recessed part by forming the hollow in the surface of the material of a mold, and the part which protruded relatively to the surface side becomes a convex part in this case. Moreover, it is good also as the mold 3 which formed the convex part by providing a permite
  • each concave portion of the concave / convex pattern may be a square, a rectangle, a half moon shape, or a shape similar to those shapes.
  • Each concave portion has a depth of about 1 nm to 100 ⁇ m and an opening width of 1 nm, for example. It may be about 100 ⁇ m.
  • the mold release property is particularly bad, and the uneven pattern of the mold 3 is precisely The problem that it is impossible to obtain a transfer material layer having a transferred pattern is likely to occur.
  • the pattern pitch is 1 ⁇ m or less, and the unevenness of the aspect ratio is 1.0 or more. Even if the mold 3 having a pattern is used, the releasability is improved. Accordingly, the uneven pattern can be transferred to the transfer material, and can be easily released without applying a large force to the release.
  • the surface of the mold 3 may be subjected to a mold release treatment.
  • a known release treatment agent exemplified by a perfluoro- or hydrocarbon-based polymer compound, an alkoxysilane compound or a trichlorosilane compound, diamond-like carbon, or the like is used by a gas phase method or a liquid phase method. Can be done.
  • a mold release treatment agent that generates a gas such as an azide compound or azo compound having a functional group such as perfluoro type or hydrocarbon type is used. That's fine.
  • gas supply material such as a silicon
  • the substrate 1 may be any substrate as long as the material to be transferred 2 can be provided by applying or dropping the material to be transferred.
  • a substrate used in a pattern forming method by normal room temperature imprint lithography it is preferable that the transfer material layer 2 can be applied with a substantially uniform thickness.
  • Specific examples include semiconductor substrates such as silicon wafers, compound semiconductors such as GaAs, InAs, and GaN, transparent inorganic substrates such as glass, quartz, and sapphire, ceramic substrates, synthetic resin substrates such as polycarbonate, PET, and triacetyl cellulose, metals Or a metal oxide etc. are mentioned.
  • the transparent substrate 1 include a glass substrate, a quartz substrate, a sapphire substrate, and a transparent synthetic resin substrate.
  • the surface of the substrate 1 may be subjected to pretreatment in order to improve adhesion to the transfer material layer 2 or to improve the application state of the transfer material layer 2.
  • pretreatment include wet surface cleaning, surface modification by plasma and ozone cleaning, treatment with an adhesion improver such as a silane coupling agent, and the like.
  • the transfer material layer 2 may be provided directly on the substrate 1, or the transfer material layer 2 may be formed on a single layer or a plurality of arbitrary layers provided on the substrate 1.
  • the optional layer include a novolac resin layer and a layer made of a spin-on-glass material. Moreover, you may generate gas from these arbitrary layers.
  • the transfer material constituting the transfer material layer 2 may be any material that can be filled in the shape of the concave-convex pattern of the mold 3 by pressing near room temperature.
  • the transfer material may have a reactive group such as a heat crosslinkable group or a polymerizable group, and may contain other polymer, monomer, crosslinker, or the like as necessary.
  • room temperature means about 20 to 30 ° C.
  • a non-photocurable oligomer, a non-photocurable polymer, an adhesion-imparting agent (for example, a silane coupling agent), an organic solvent, a leveling agent, a plastic is used for the material to be transferred as long as the performance is not adversely affected.
  • Additives such as an agent, a filler, an antifoaming agent, a flame retardant, a stabilizer, an antioxidant, a fragrance, a thermal crosslinking agent, and a polymerization inhibitor may be contained. In addition, these may be contained alone or in combination of two or more.
  • the transfer material contains a gas generating agent that generates gas by stimulation.
  • Stimulation includes light, heat, impact, etc., but the process is easy and can be applied to heat-sensitive substrates and transfer materials, so use a gas generating agent that generates gas by light stimulation. Is preferred.
  • the gas generating agent that generates gas by thermal stimulation for example, a gas generating agent that generates gas by thermal stimulation at 40 to 200 ° C. is preferable.
  • gas may be generated in steps other than the gas application step, and if it is higher than 200 ° C., there is a risk of thermal decomposition when the material to be transferred is an organic substance when thermally stimulated. Because.
  • Gas generating agents include azide compounds that generate gas by light stimulation, thermal stimulation or impact, azo compounds, diazo compounds, diazonium salts, nitrobenzyl carbamate compounds that generate gas by light stimulation or thermal stimulation, and gas by heat stimulation. And organic or inorganic peroxides generating ⁇ -ketocarboxylic acid or derivatives thereof. Specific examples include azidobenzaldehyde that generates nitrogen, azidobenzalmethylcyclohexanones, azobisisobutyronitrile, azobis compounds such as dimethyl 2,2′-azobis (2-methylpropionate), and aromatic diazonium salts.
  • Naphthoquinonediazide compounds Naphthoquinonediazide compounds, diazomer drum acids that generate nitrogen, carbon monoxide and acetone, nitrobenzyl carbamate compounds that generate carbon monoxide, t-BOC compounds and photoacids of hydroxystyrene that generate isobutylene and carbon dioxide
  • Examples include combinations of generators.
  • the addition amount of the gas generating agent is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the transfer material. If it is less than 0.1, the improvement in releasability may not be significant, and if it exceeds 50 parts by weight, the mixing property with the transfer material may be insufficient.
  • the thickness of the transfer material layer 2 may be set in consideration of the amount of the transfer material filled in the concave portion of the uneven pattern formed on the mold 3, for example, the depth of the concave portion of the uneven pattern. Further, the transfer material layer 2 may be provided so as to cover the entire surface of the mold 3 and the substrate 1, or may be provided so as to cover only a part thereof.
  • the transfer material layer 2 and the mold 3 are made to face each other, and as shown in FIG. 4B, the transfer material layer 2 and the surface of the mold 3 on which the uneven pattern is formed are brought into contact with each other. Then, the material to be transferred is filled in the uneven pattern of the mold 3 (filling step).
  • room temperature imprint lithography when the mold 3 and the transfer material layer 2 are brought into contact with each other, a force of about 0.01 to 100 MPa is applied to bring the mold 3 and the transfer material layer 2 into close contact with each other. A conventional apparatus for room temperature imprint lithography can be used. Further, it is preferable to keep both the transfer material layer 2 and the mold 3 horizontal to bring the transfer material layer 2 and the mold 3 into contact with each other. However, if there is no problem in the pattern to be obtained, the transfer material layer 2 and the mold 3 are limited to being kept horizontal. do not have to.
  • the transferred material layer 2 and the mold 3 are brought into contact with each other and the mold 3 and the transferred material layer 2 are filled with the uneven pattern of the mold 3 in the transferred material layer.
  • Gas is generated or supplied to the interface region 4 (gas application step).
  • the transfer material layer 2 contains a gas generating agent that generates a gas by light stimulation
  • the gas application step if the gas generating agent is exposed to light in a wavelength region where the gas generating agent can be exposed to generate gas.
  • the light source used for exposure may be any light source that can irradiate light having a wavelength generated by gas. Examples of light sources include low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, xenon lamps, carbon arcs, mercury xenon lamps, excimer lasers such as XeCl, KrF and ArF, ultraviolet or visible light lasers, and ultraviolet light. Or visible light LED etc. are mentioned.
  • the irradiation amount of light may be an amount that can generate gas. When the present invention is industrially carried out, it is usually preferable to select an irradiation dose within a range of 10 J / cm 2 or less.
  • the transfer material layer 2 contains a gas generating agent that generates gas by thermal stimulation
  • the transfer material layer 2 is heated to a temperature at which the gas generating agent can generate gas in the gas application step. do it.
  • the transfer material layer 2 contains a gas generating agent that generates gas by impact
  • the transfer material layer 2 is given an impact that can generate gas in the gas application step. Good.
  • the mold release treatment agent applied to the mold 3, or the substrate 1 or any layer on the substrate 1 to supply the gas to the interface region 4 the mold 3 A gas may be generated in the interface region 4 by applying a stimulus such as light, heat or impact to the agent, the substrate 1 or any layer on the substrate 1.
  • the gas when gas is supplied to the interface region 4 between the mold 3 and the transfer material layer 2, the gas passes through the mold 3 having a gas permeable mold 3 or a supply port for supplying gas to the interface region 4. Then, the gas may be supplied to the interface region 4 from the outside.
  • the mold 3 is released from the transfer material layer 2, thereby forming on the substrate 1 a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2.
  • the pattern forming method of the present invention includes a gas application step that intentionally generates gas or supplies gas to the interface region 4 between the mold 3 and the transfer material layer 2, the mold 3 and the transfer material Since the mold releasability with the layer 2 is improved, a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold can be easily released.
  • the material to be transferred contains a component that is cured by light or a component that is cured by heat, in order to improve the strength of the molded product, as shown in FIG. Or you may have the process of hardening the to-be-transferred material layer 2 with a heat
  • thermoplastic composition B Polymethylmethacrylate (Mw 120,000) was dissolved in propylene glycol methyl ether acetate while stirring to prepare 20% by weight of thermoplastic composition B.
  • Photocurable composition 1 10 parts by weight of azidobenzaldehyde was blended as a gas generating agent that generates gas by light stimulation with respect to 100 parts by weight of the photocurable composition A, and the mixture was stirred and mixed at room temperature to prepare a photocurable composition 1.
  • Room temperature imprint composition 4 10 parts by weight of azidobenzaldehyde as a gas generating agent that generates gas by light stimulation is mixed with 100 parts by weight of a solid content of a spin-on-glass material (trade name: Accuglass 512B, manufactured by Honeywell), and stirred at room temperature. Room temperature imprint composition 4 was prepared.
  • Example 1 The photocurable composition 1 was applied on a PET substrate with a bar coater so as to have a thickness of about 20 ⁇ m, and a transfer material layer made of the photocurable composition 1 was formed. Next, a nickel mold having a line and space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm (no mold release treatment) is pressed against the transfer material layer to bring the mold into close contact, and the photocurable composition is put into the pattern. 1 is fully filled, and then exposed to light from the PET substrate side using an ultra-high pressure mercury lamp, and the photocuring and gas generation steps of the transfer material layer made of the photocurable composition 1 are performed at the same time.
  • the material layer was photocured and a gas was generated from the gas generating agent to give the gas to the interface region between the mold and the transfer material layer.
  • the exposure amount was 1000 mJ / cm 2 .
  • Example 2 The photocurable composition 2 was applied onto a glass substrate with a bar coater so as to have a thickness of about 20 ⁇ m, and a transfer material layer made of the photocurable composition 2 was formed. Next, a nickel mold having a line and space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm (no mold release treatment) is pressed against the transfer material layer to bring the mold into close contact, and the photocurable composition is put into the pattern. 2 was sufficiently filled, and then the transfer material layer made of the photocurable composition 2 was photocured by exposure from the glass substrate side using an ultrahigh pressure mercury lamp. The exposure amount was 200 mJ / cm 2 .
  • the glass substrate is heated on a hot plate at 100 ° C. for 10 minutes, and gas is generated from dimethyl 2,2′-azobis (2-methylpropionate), which is a gas generating agent. Gas was applied to the interface area with the layer. When the mold was released after cooling, the mold was easily released, and no defects were found in the formed photocured product.
  • Example 3 The photocurable composition 1 was applied on a PET substrate with a bar coater so as to have a thickness of about 20 ⁇ m, and a transfer material layer made of the photocurable composition 1 was formed. Next, a nickel mold having a line and space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm (no mold release treatment) is pressed against the transfer material layer to bring the mold into close contact, and the photocurable composition is put into the pattern.
  • Example 4 The thermoplastic composition 3 was applied onto a glass substrate with a bar coater, and then baked on a hot plate at 80 ° C. for 5 minutes to form a transfer material layer made of the thermoplastic composition 3.
  • the thickness of the transfer material layer was about 20 ⁇ m.
  • the glass substrate on which the transfer material layer was formed was heated to 150 ° C. to soften the transfer material layer made of the thermoplastic composition 3.
  • a nickel mold having a line-and-space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm is pressed and adhered thereto, and the thermoplastic composition 3 is applied to the pattern by pressing with a force of 10 MPa for 5 minutes. After filling, it was cooled to near room temperature.
  • Example 5 The room temperature imprint composition 4 was spin-coated on a glass substrate and then baked on a hot plate at 80 ° C. for 5 minutes to form a transfer material layer composed of the room temperature imprint composition 4.
  • the thickness of the transfer material layer was about 10 ⁇ m.
  • a nickel mold having a line-and-space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm is pressed against the transfer material layer to bring the mold into close contact with the transfer material layer, and a force of 30 MPa.
  • the pattern was filled with the room temperature imprint composition 4 under pressure for 5 minutes.
  • Example 1 The same operation as in Example 1 was performed except that the photocurable composition A containing no gas generating agent was used instead of the photocurable composition 1. As a result, it was difficult to release the mold, and a part of the photocured material adhered to the mold side and a defect occurred.
  • thermoplastic resin solution B containing no gas generating agent was used instead of the thermoplastic composition 3.
  • Example 3 The same operation as in Example 5 was performed except that a spin-on glass material (trade name: Accuglass 512B, manufactured by Honeywell) containing no gas generant was used instead of the room temperature imprint composition 4. As a result, it was difficult to release the mold, and a part of the spin-on-glass material adhered to the mold side and a defect occurred.
  • a spin-on glass material trade name: Accuglass 512B, manufactured by Honeywell

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Disclosed is a pattern-forming method by imprint lithography having excellent mold releasability.  The pattern-forming method comprises: a filling step wherein a transfer-receiving material layer (2) composed of a transfer-receiving material and a mold (3) provided with a recessed and projected pattern are brought into contact with each other, thereby filling the recessed and projected pattern of the mold (3) with the transfer-receiving material; a gas-supplying step wherein a gas is supplied to an interface region (4) between the mold (3) and the transfer-receiving material layer (2), while maintaining the transfer-receiving material layer (2) and the mold (3) in contact with each other with the recessed and projected pattern of the mold (3) being filled with the transfer-receiving material; and a mold-releasing step wherein the mold (3) is released from the transfer-receiving material layer (2).

Description

パターン形成方法Pattern formation method
 本発明はインプリントリソグラフィによるパターン形成方法に関するものであり、特に、半導体集積回路、光学素子等の微細なパターンの製造に適したパターン形成方法に関する。 The present invention relates to a pattern forming method using imprint lithography, and more particularly to a pattern forming method suitable for manufacturing a fine pattern such as a semiconductor integrated circuit or an optical element.
 半導体集積回路の高密度化、高速化に伴い、集積回路のパターン線幅が縮小されているため微細なパターンを製造できる技術が求められている。微細なパターンの形成方法として、ナノインプリントリソグラフィが注目されている。ナノインプリントリソグラフィとは、微細な凹凸パターンを有するモールドをレジスト等の被転写材に押し付けることによって被転写材をモールドのパターンに充填した後、モールドを被転写材から離型することにより、被転写材にパターンを形成するものである(例えば特許文献1等参照)。 With the increase in density and speed of semiconductor integrated circuits, since the pattern line width of integrated circuits is reduced, a technology capable of manufacturing fine patterns is required. Nanoimprint lithography has attracted attention as a method for forming a fine pattern. Nanoimprint lithography is a process for filling a material to be transferred by pressing a mold having a fine uneven pattern against the material to be transferred such as a resist, and then releasing the mold from the material to be transferred. A pattern is formed (see, for example, Patent Document 1).
 ところが、このようなナノインプリントリソグラフィでは、被転写材とモールドが密着等することにより被転写材からモールドを良好に離型できず、モールドの凹凸パターンを精密に転写したパターンを形成することができなかったり、離型に大きな力が必要になり容易に離型できない場合があるという問題を有する。このような問題を解決するために、モールドへ離型剤を塗布する等モールドへ離型処理を施すことが考えられるが、モールドへの離型処理では転写回数に伴い劣化する傾向が見られるため十分ではない。なお、このような問題は、ナノインプリントリソグラフィに限定されず、ナノインプリントリソグラフィよりもパターンサイズの大きい場合においても存在する。 However, in such nanoimprint lithography, the mold cannot be released from the material to be transferred due to close contact between the material to be transferred and the mold, and a pattern in which the uneven pattern of the mold is accurately transferred cannot be formed. In addition, there is a problem that a large force is required for mold release and the mold cannot be easily released. In order to solve such problems, it is conceivable to perform a mold release process such as applying a mold release agent to the mold, but the mold release process tends to deteriorate with the number of transfers. Not enough. Such a problem is not limited to nanoimprint lithography, and also exists when the pattern size is larger than that of nanoimprint lithography.
米国特許第5772905号明細書US Pat. No. 5,772,905
 本発明は、このような事情に鑑み、モールドの離型性に優れたインプリントリソグラフィによるパターン形成方法を提供することを課題とする。 In view of such circumstances, an object of the present invention is to provide a pattern forming method by imprint lithography that is excellent in mold releasability.
 本発明者等は、上記課題を解決するために種々検討した結果、モールドと被転写材層との界面領域にガスを発生させる又はガスを供給してガスを付与することにより、上記課題を解決することができることを見出し、本発明に到達した。 As a result of various studies to solve the above problems, the present inventors have solved the above problems by generating a gas or supplying a gas to the interface region between the mold and the transfer material layer. We have found that we can do it and have arrived at the present invention.
 かかる本発明の第1の態様は、被転写材からなる被転写材層と凹凸のパターンが形成されたモールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填する充填工程と、前記被転写材層と前記モールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填した状態で前記モールドと前記被転写材層との界面領域にガスを付与するガス付与工程と、前記被転写材層から前記モールドを離型する離型工程とを有することを特徴とするパターン形成方法にある。 The first aspect of the present invention is a filling step in which a transfer material layer made of a transfer material and a mold on which an uneven pattern is formed are brought into contact with each other to fill the transferred material into the uneven pattern of the mold, A gas application step of applying a gas to an interface region between the mold and the transfer material layer in a state in which the transfer material layer and the mold are brought into contact with each other and the uneven material pattern of the mold is filled with the transfer material; A pattern forming method comprising: a mold release step of releasing the mold from the transfer material layer.
 本発明の第2の態様は、前記被転写材は刺激によりガスを発生するガス発生剤を含有するものであり、前記ガス付与工程では前記ガス発生剤に刺激を与えて前記モールドと前記被転写材層との界面領域にガスを発生させることを特徴とする第1の態様に記載のパターン形成方法にある。 In a second aspect of the present invention, the material to be transferred contains a gas generating agent that generates gas by stimulation, and in the gas application step, the gas generating agent is stimulated to give the mold and the transferred material. The pattern forming method according to the first aspect is characterized in that gas is generated in an interface region with the material layer.
 本発明の第3の態様は、前記ガス発生剤は光刺激によりガスを発生するものであることを特徴とする第2の態様に記載のパターン形成方法にある。 A third aspect of the present invention is the pattern forming method according to the second aspect, wherein the gas generating agent generates gas by light stimulation.
 本発明の第4の態様は、前記被転写材が光硬化性組成物であり、前記被転写材層と前記モールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填した状態で、前記被転写材層を露光して光硬化層とする光硬化工程を有することを特徴とする第1~3のいずれかの態様に記載のパターン形成方法にある。 In a fourth aspect of the present invention, the transfer material is a photocurable composition, and the transfer material layer and the mold are brought into contact with each other to fill the uneven material pattern of the mold with the transfer material. The pattern forming method according to any one of the first to third aspects, further comprising a photocuring step of exposing the transfer material layer to a photocured layer.
 本発明の第5の態様は、前記光硬化性組成物は光重合性基を有する化合物、光重合開始剤及び前記ガス発生剤を含有することを特徴とする第4の態様に記載のパターン形成方法にある。 According to a fifth aspect of the present invention, in the pattern formation according to the fourth aspect, the photocurable composition contains a compound having a photopolymerizable group, a photopolymerization initiator, and the gas generating agent. Is in the way.
 本発明の第6の態様は、前記ガス付与工程を、前記光硬化工程と同時又は前記光硬化工程の後に有することを特徴とする第4又は5の態様に記載のパターン形成方法にある。 A sixth aspect of the present invention is the pattern forming method according to the fourth or fifth aspect, characterized in that the gas applying step is performed simultaneously with the photocuring step or after the photocuring step.
 本発明の第7の態様は、前記ガス発生剤は光刺激によりガスを発生するものであり、前記光硬化工程で光硬化性組成物を硬化させる光の波長領域は、前記ガス付与工程でガスを発生させる光の波長領域と異なることを特徴とする第4~6のいずれかの態様に記載のパターン形成方法にある。 In a seventh aspect of the present invention, the gas generating agent generates gas by light stimulation, and the wavelength region of light for curing the photocurable composition in the photocuring step is gas in the gas applying step. The pattern forming method according to any one of the fourth to sixth aspects, which is different from the wavelength region of the light that generates the light.
 本発明の第8の態様は、前記被転写材が固体であり、前記充填工程では、前記被転写材層を加熱して軟化させた後、前記被転写材層と前記モールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填し、その後前記被転写材層を冷却することを特徴とする第1~3のいずれかの態様に記載のパターン形成方法にある。 In an eighth aspect of the present invention, the transfer material is solid, and in the filling step, the transfer material layer is heated and softened, and then the transfer material layer and the mold are brought into contact with each other. 4. The pattern forming method according to any one of the first to third aspects, wherein the uneven material pattern of the mold is filled with the material to be transferred, and then the material layer to be transferred is cooled.
 本発明の第9の態様は、前記被転写材が固体であり、前記充填工程は室温で行うことを特徴とする第1~3のいずれかの態様に記載のパターン形成方法にある。 A ninth aspect of the present invention is the pattern forming method according to any one of the first to third aspects, wherein the transfer material is solid and the filling step is performed at room temperature.
 本発明の第10の態様は、前記モールドは、ピッチが1μm以下の凹凸のパターンを有することを特徴とする第1~9のいずれかの態様に記載のパターン形成方法にある。 A tenth aspect of the present invention is the pattern forming method according to any one of the first to ninth aspects, wherein the mold has an uneven pattern with a pitch of 1 μm or less.
 本発明の第11の態様は、前記モールドは、アスペクト比が1.0以上の凹凸パターンを有するものであることを特徴とする第1~10のいずれかの態様に記載のパターン形成方法にある。 An eleventh aspect of the present invention is the pattern forming method according to any one of the first to tenth aspects, wherein the mold has an uneven pattern having an aspect ratio of 1.0 or more. .
 本発明によれば、モールドと被転写材層との界面領域にガスを発生させる又はガスを供給してガスを付与することにより、被転写材層からのモールドの離型性が良好になり、被転写材層にモールドの凹凸パターンを精密に転写したパターンを容易に形成することができるという効果を奏する。 According to the present invention, by generating gas in the interface region between the mold and the transfer material layer or supplying gas by supplying gas, the mold releasability from the transfer material layer is improved, There is an effect that a pattern in which the concave / convex pattern of the mold is precisely transferred to the transfer material layer can be easily formed.
本発明のパターン形成方法の概略を示す図である。It is a figure which shows the outline of the pattern formation method of this invention. 本発明の光インプリントリソグラフィによるパターン形成方法の概略を示す図である。It is a figure which shows the outline of the pattern formation method by the optical imprint lithography of this invention. 本発明の熱インプリントリソグラフィによるパターン形成方法の概略を示す図である。It is a figure which shows the outline of the pattern formation method by the hot imprint lithography of this invention. 本発明の室温インプリントリソグラフィによるパターン形成方法の概略を示す図である。It is a figure which shows the outline of the pattern formation method by room temperature imprint lithography of this invention.
 以下、本発明をさらに詳細に説明する。
 本発明のパターン形成方法は、被転写材からなる被転写材層と凹凸のパターンが形成されたモールドとを接触させてモールドの凹凸パターンを被転写材に充填する充填工程と、被転写材層とモールドとを接触させてモールドの凹凸パターンに被転写材を充填した状態でモールドと被転写材層との界面領域にガスを存在させるガス付与工程と、被転写材層からモールドを離型する離型工程とを有するものである。
Hereinafter, the present invention will be described in more detail.
The pattern forming method of the present invention includes a filling step of bringing a transfer material layer made of a transfer material into contact with a mold on which an uneven pattern is formed and filling the transfer material with the uneven pattern of the mold, and a transfer material layer The mold is released from the transfer material layer, and a gas application step for causing a gas to be present in the interface region between the mold and the transfer material layer in a state where the transfer material is filled in the uneven pattern of the mold by bringing the mold into contact with the mold And a mold release step.
 具体的には、図1(a)に示すように、基板1上に形成等された被転写材からなる被転写材層2と凹凸のパターンが形成されたモールド3とを用意し、図1(b)に示すように、被転写材層2とモールド3とを押し付ける等して接触させることにより、モールド3の凹凸パターンに被転写材を充填する(充填工程)。次に、図1(c)に示すように、被転写材層2とモールド3とを接触させてモールド3の凹凸パターンに被転写材を充填した状態で、モールド3と被転写材層2との界面領域4にガスを発生させるかガスを供給させて界面領域4にガスを付与する(ガス付与工程)。そして、図1(d)に示すように、被転写材層2からモールド3を離型することにより、モールド3の凹凸パターンが被転写材層2に転写されたものが形成される(離型工程)。 Specifically, as shown in FIG. 1A, a transfer material layer 2 made of a transfer material formed on a substrate 1 and a mold 3 having an uneven pattern are prepared. As shown in (b), the material to be transferred is filled into the concave / convex pattern of the mold 3 by bringing the material layer 2 and the mold 3 into contact with each other by pressing or the like (filling step). Next, as shown in FIG. 1C, the mold 3, the transferred material layer 2, and the transfer material layer 2 are brought into contact with the mold 3 and the uneven material pattern of the mold 3 is filled with the transferred material. A gas is generated or supplied to the interface region 4 to apply the gas to the interface region 4 (gas application step). Then, as shown in FIG. 1 (d), the mold 3 is released from the transfer material layer 2 to form a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2 (release). Process).
 このように、モールド3と被転写材層2との界面領域4、すなわち、被転写材層2の表面とモールド3の凹凸パターンが接触した面の間に存在する領域に、意図的にガスを発生させるかガスを供給してガスを存在させるガス付与工程を行うことにより、モールド3と被転写材層2との界面領域4を系外よりも加圧された状態等にすることができる。したがって、モールド3と被転写材層2との離型性が良好になるため、パターン欠陥がなくモールド3の凹凸パターンを精密に転写したパターンを形成することができ、また、容易に離型することができる。特に、光インプリントリソグラフィでは、被転写材層2を光で硬化させるため、その硬化により被転写材層2が収縮して界面領域4が減圧状態になり離型が困難になる場合があるが、本発明においては、ガス付与工程により、界面領域4は減圧状態が解消されるか又は加圧状態になるので、モールド3の離型性が良好になる。 In this way, gas is intentionally introduced into the interface region 4 between the mold 3 and the transfer material layer 2, that is, the region existing between the surface of the transfer material layer 2 and the surface where the uneven pattern of the mold 3 is in contact. The interface region 4 between the mold 3 and the transfer material layer 2 can be brought into a pressurized state or the like by performing a gas application process in which gas is generated by supplying or supplying gas. Therefore, the mold 3 and the transferred material layer 2 have good releasability, so that a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold is easily released. be able to. In particular, in optical imprint lithography, the transfer material layer 2 is cured with light, and thus the transfer material layer 2 contracts due to the curing, and the interface region 4 may be in a reduced pressure state, which may make release difficult. In the present invention, the depressurized state of the interface region 4 is eliminated or a pressurized state is achieved by the gas application step, so that the mold 3 is easily released.
 界面領域4にガスを発生させる方法としては、被転写材層2を構成する被転写材を刺激によりガスを発生するガス発生剤を含有するものとし、ガス付与工程でガス発生剤に刺激を与えて被転写材層2からガスを発生させる方法や、基板1又は基板1上に設けた任意の層からガスを発生させる方法や、モールド自体やモールドに塗布等した離型処理剤からガスを発生させて界面領域4にガスを付与する方法が挙げられる。界面領域4にガスを供給する方法としては、ガス透過性のモールド3を用いることや、界面領域4にガスを供給するための供給口をモールド3に設ける等して外部から界面領域4にガスを注入する等、モールド3を経由して界面領域4にガスを供給する方法が挙げられる。また、ガスを発生させる方法と、界面領域4にガスを供給する方法とを併用してもよい。なお、プロセスの容易性から、被転写材層2からガスを発生させることが好ましい。また、界面領域4に発生させるか供給するガスの種類は特に限定されないが、安全面等の観点からNやCO等の不活性ガスであることが好ましい。 As a method of generating gas in the interface region 4, the transfer material constituting the transfer material layer 2 contains a gas generating agent that generates gas by stimulation, and the gas generating agent is stimulated in the gas application step. The gas is generated from the method of generating the gas from the transfer material layer 2, the method of generating the gas from the substrate 1 or any layer provided on the substrate 1, and the mold itself or the mold release treatment agent applied to the mold. And a method of applying gas to the interface region 4 can be used. As a method for supplying the gas to the interface region 4, a gas permeable mold 3 is used, or a gas supply port for supplying gas to the interface region 4 is provided in the mold 3. And a method of supplying gas to the interface region 4 through the mold 3. Further, a method of generating gas and a method of supplying gas to the interface region 4 may be used in combination. Note that it is preferable to generate gas from the transfer material layer 2 in terms of ease of process. The type of gas generated or supplied to the interface region 4 is not particularly limited, but is preferably an inert gas such as N 2 or CO 2 from the viewpoint of safety.
 ここで、インプリントリソグラフィは、光インプリントリソグラフィ、熱インプリントリソグラフィ、室温インプリントリソグラフィに大別される。本発明について、各インプリントリソグラフィに分けて、以下にさらに詳述する。 Here, imprint lithography is roughly classified into optical imprint lithography, thermal imprint lithography, and room temperature imprint lithography. The present invention will be described in detail below for each imprint lithography.
 <光インプリントリソグラフィ>
 光インプリントリソグラフィにおいては、まず、図2(a)に示すように、少なくとも一方が透明な基板1及び凹凸のパターンが形成されたモールド3を用意し、光硬化性組成物からなる被転写材層2を基板1上に形成する(被転写材層形成工程)。なお、図2では基板1上に被転写材層2を形成したものを記載したが、被転写材層2はモールド3上に設けてもよく、また、基板1とモールド3との両方に設けてもよい。
<Optical imprint lithography>
In optical imprint lithography, first, as shown in FIG. 2 (a), a substrate 1 at least one of which is transparent and a mold 3 on which an uneven pattern is formed are prepared, and a transfer material comprising a photocurable composition is prepared. Layer 2 is formed on substrate 1 (transfer material layer forming step). In FIG. 2, the transfer material layer 2 is formed on the substrate 1. However, the transfer material layer 2 may be provided on the mold 3, or provided on both the substrate 1 and the mold 3. May be.
 モールド3は、表面に所望の凹凸のパターンが形成されていればよい。モールド3の材質の例としては、石英ガラス、合成樹脂等の透明なものの他、シリコン、シリコンカーバイド、酸化シリコン、ニッケル等の金属や金属酸化物等の光を透過しないものも挙げられる。後述するガス付与工程でモールドからガスを発生させる場合は、ガス発生剤を含有する樹脂等、モールド自体からガスが発生する材質にすればよい。モールド3の外観は、通常の光インプリントリソグラフィにおいて用いられているモールド3の外観と同様のものでよく、例えば外観が直方体状又はロール状であってよい。 The mold 3 may have a desired uneven pattern on the surface. Examples of the material of the mold 3 include transparent materials such as quartz glass and synthetic resin, as well as materials that do not transmit light such as metals such as silicon, silicon carbide, silicon oxide, and nickel, and metal oxides. When gas is generated from the mold in the gas application step described later, a material that generates gas from the mold itself, such as a resin containing a gas generating agent, may be used. The appearance of the mold 3 may be the same as that of the mold 3 used in normal optical imprint lithography. For example, the appearance may be a rectangular parallelepiped shape or a roll shape.
 また、モールド3表面に形成されている凹凸のパターンは、通常の光インプリントリソグラフィにおいて用いられているモールド3の表面に形成されている凹凸のパターンと同様のものであってよいが、それに限定されるものでない。例えば、モールドの材料の表面に窪みを形成することにより凹部を形成したモールド3としてもよく、この場合、相対的に表面側に突出した部分が凸部となる。また、モールド3の材料の表面に突起を設けることにより凸部を形成したモールド3としてもよく、この場合、相対的に内側に窪んだ部分が凹部となる。さらに、原盤の材料の表面に窪みまたは突起を設けることにより形成した凹凸パターンを有する原盤を用い、この原盤を鋳型として形成したモールド3としてもよい。凹凸のパターンの各凹部の断面の形状は、正方形、長方形、半月形、またはそれら形状に類似した形状等でもよく、各凹部は、例えば、深さが1nm~100μm程度、開口部の幅が1nm~100μm程度のものであってよい。そして、凹凸のパターンのピッチが1μm以下や、アスペクト比が1.0以上の微細なパターンを有するモールド3を用いるいわゆるナノインプリントリソグラフィでは、特に離型性が悪く、モールド3の凹凸のパターンが精密に転写されたパターンを有する被転写材層を得ることができないという問題が生じやすいが、本発明のパターン形成方法によれば、パターンのピッチが1μm以下や、アスペクト比が1.0以上の凹凸のパターンを有するモールド3を用いても、離型性が良好になる。したがって、凹凸のパターンを被転写材に転写することができ、また、離型に大きな力をかけることなく容易に離型することができる。なお、本明細書において、アスペクト比とは、凹部又は凸部の直径もしくは最小の1辺の長さをx、凹部の深さ又は凸部の高さをyとしたときのy/xを表し、また、ピッチは図1(a)のPで表される凹部及び凸部の幅である。 Further, the uneven pattern formed on the surface of the mold 3 may be the same as the uneven pattern formed on the surface of the mold 3 used in normal optical imprint lithography, but is not limited thereto. It is not what is done. For example, it is good also as the mold 3 which formed the recessed part by forming the hollow in the surface of the material of a mold, and the part which protruded relatively to the surface side becomes a convex part in this case. Moreover, it is good also as the mold 3 which formed the convex part by providing a processus | protrusion on the surface of the material of the mold 3, In this case, the recessed part relatively inside becomes a recessed part. Furthermore, it is good also as the mold 3 which used the original disk which has the uneven | corrugated pattern formed by providing the hollow or protrusion on the surface of the original material, and formed this original disk as a casting_mold | template. The cross-sectional shape of each concave portion of the concave / convex pattern may be a square, a rectangle, a half moon shape, or a shape similar to those shapes. Each concave portion has a depth of about 1 nm to 100 μm and an opening width of 1 nm, for example. It may be about 100 μm. In the so-called nanoimprint lithography using the mold 3 having a fine pattern with an uneven pattern pitch of 1 μm or less or an aspect ratio of 1.0 or more, the mold release property is particularly bad, and the uneven pattern of the mold 3 is precisely The problem that it is impossible to obtain a transfer material layer having a transferred pattern is likely to occur. However, according to the pattern forming method of the present invention, the pattern pitch is 1 μm or less, and the unevenness of the aspect ratio is 1.0 or more. Even if the mold 3 having a pattern is used, the releasability is improved. Accordingly, the uneven pattern can be transferred to the transfer material, and can be easily released without applying a large force to the release. In the present specification, the aspect ratio represents y / x where x is the diameter or the minimum length of one side of the concave portion or convex portion, and y is the depth of the concave portion or the height of the convex portion. Further, the pitch is the width of the concave portion and the convex portion represented by P in FIG.
 また、本発明においてはモールド3と被転写材層2との界面領域にガスを発生させるかガスを供給してガスを付与するガス付与工程を有するので離型性が良好であるが、離型性をさらに良好にするために、モールド3の表面に、離型処理が施されていてもよい。離型処理は気相法や液相法等により、パーフルオロ系又は炭化水素系の高分子化合物、アルコキシシラン化合物又はトリクロロシラン化合物、ダイヤモンドライクカーボン等に例示される公知の離型処理剤を用いて行うことができる。なお、後述するガス付与工程で離型処理剤からガスを発生させる場合は、パーフルオロ系又は炭化水素系等の官能基を有するアジド化合物やアゾ化合物等のガスが発生する離型処理剤にすればよい。 Further, in the present invention, since there is a gas application step in which gas is generated or supplied by supplying gas to the interface region between the mold 3 and the transfer material layer 2, the releasability is good. In order to further improve the properties, the surface of the mold 3 may be subjected to a mold release treatment. For the release treatment, a known release treatment agent exemplified by a perfluoro- or hydrocarbon-based polymer compound, an alkoxysilane compound or a trichlorosilane compound, diamond-like carbon, or the like is used by a gas phase method or a liquid phase method. Can be done. In addition, when gas is generated from the mold release treatment agent in the gas application step described later, it is replaced with a mold release treatment agent that generates a gas such as an azide compound or an azo compound having a functional group such as perfluoro or hydrocarbon. That's fine.
 そして、後述するガス付与工程でガスを供給する場合は、モールド3を、シリコン、セラミックス、多孔質物質等ガス透過性の材質とするか、又は、界面領域4にガスを供給するための供給口を設けたものとすればよい。 And when supplying gas at the gas provision process mentioned later, the mold 3 is made into gas permeable materials, such as a silicon | silicone, ceramics, a porous substance, or the supply port for supplying gas to the interface area | region 4 May be provided.
 基板1は、被転写材を塗布や滴下等することによって被転写材層2を設けることができるものであればよく、例えば、通常の光インプリントリソグラフィによるパターンの形成方法において用いられている基板でよいが、被転写材層2を実質的に均一な厚さで塗布することができるものであることが好ましい。具体例としては、シリコンウエハー等の半導体基板、GaAs、InAs、GaN等の化合物半導体、ガラス、石英、サファイア等の透明無機基板、セラミック基板、ポリカーボネート、PET(ポリエチレンテレフタラート)、トリアセチルセルロース等の合成樹脂基板、金属又は金属酸化物等が挙げられる。また、透明な基板1としては、ガラス基板、石英基板、サファイア基板、透明合成樹脂基板等が挙げられる。そして、基板1の表面は、被転写材層2との接着性の向上やその被転写材層2の塗布状態改良等のために、前処理が施されていてもよい。前処理の具体例としては、湿式の表面洗浄やプラズマ、オゾン洗浄等による表面改質、シランカップリング剤のような接着性向上剤による処理等が挙げられる。 The substrate 1 may be any substrate as long as the material to be transferred 2 can be provided by applying or dropping the material to be transferred. For example, the substrate used in a pattern forming method by normal optical imprint lithography. However, it is preferable that the transfer material layer 2 can be applied with a substantially uniform thickness. Specific examples include semiconductor substrates such as silicon wafers, compound semiconductors such as GaAs, InAs, and GaN, transparent inorganic substrates such as glass, quartz, and sapphire, ceramic substrates, polycarbonate, PET (polyethylene terephthalate), and triacetyl cellulose. A synthetic resin substrate, a metal, a metal oxide, etc. are mentioned. Examples of the transparent substrate 1 include a glass substrate, a quartz substrate, a sapphire substrate, and a transparent synthetic resin substrate. The surface of the substrate 1 may be subjected to pretreatment in order to improve adhesion to the transfer material layer 2 or to improve the application state of the transfer material layer 2. Specific examples of the pretreatment include wet surface cleaning, surface modification by plasma and ozone cleaning, treatment with an adhesion improver such as a silane coupling agent, and the like.
 さらに、被転写材層2は基板1上に直接設けてもよく、基板1上に設けた単層あるいは複数の任意の層の上に被転写材層2を形成してもよい。任意の層としては、ノボラック系樹脂層や、スピンオングラス材料からなる層等が挙げられる。また、これらの任意の層からガスを発生させてもよい。 Furthermore, the transfer material layer 2 may be provided directly on the substrate 1, or the transfer material layer 2 may be formed on a single layer or a plurality of arbitrary layers provided on the substrate 1. Examples of the optional layer include a novolac resin layer and a layer made of a spin-on-glass material. Moreover, you may generate gas from these arbitrary layers.
 被転写材層2を構成する被転写材は、固体、液状又は流動性のある光硬化性組成物である。光硬化性組成物としては、桂皮酸エステル系樹脂等の光二量性基を有する光二量化型、環化ゴム系レジスト等の光架橋剤を含有する光架橋型、エン/チオール型、ラジカル、カチオン等の光重合型等がある。前記充填工程の容易性及び後述するガス発生剤との混合性の点から、光硬化性組成物は液状又は流動性を有するものがより好ましく、汎用性等の面から光重合型が最も好ましい。 The transfer material constituting the transfer material layer 2 is a solid, liquid, or fluid photocurable composition. Examples of the photocurable composition include a photodimer type having a photodimer group such as a cinnamate ester resin, a photocrosslink type containing a photocrosslinker such as a cyclized rubber resist, an ene / thiol type, a radical, and a cation. And photopolymerization type. From the viewpoint of ease of the filling step and miscibility with the gas generating agent described later, the photocurable composition is more preferably liquid or fluid, and the photopolymerization type is most preferable from the viewpoint of versatility.
 光重合型の光硬化性組成物は、光重合性基を有する化合物及び光重合開始剤を含有する。光重合性基を有する化合物とは、ラジカル重合性基又はカチオン重合性基を有する化合物をいう。ラジカル重合性基の例としては、アクリロイル基、メタアクリロイル基及びビニル基等が挙げられる。カチオン重合性基の例としては、エポキシ基、ビニルエーテル類、オキセタン類、オキソラン類、スピロオキソエステル類及びチイラン類等が挙げられる。光重合性基を有する化合物は単独で用いても2種以上を組み合わせて用いてもよく、また、ラジカル重合性基を有する化合物とカチオン重合性基を有する化合物とを併用してもよい。 The photopolymerizable photocurable composition contains a compound having a photopolymerizable group and a photopolymerization initiator. The compound having a photopolymerizable group refers to a compound having a radical polymerizable group or a cationic polymerizable group. Examples of the radical polymerizable group include acryloyl group, methacryloyl group and vinyl group. Examples of the cationically polymerizable group include epoxy groups, vinyl ethers, oxetanes, oxolanes, spirooxoesters, and thiiranes. The compounds having a photopolymerizable group may be used alone or in combination of two or more, and a compound having a radical polymerizable group and a compound having a cationic polymerizable group may be used in combination.
 光重合開始剤とは、光の照射により、上記光重合性基を有する化合物の重合を開始させることができるラジカル、カチオン等の活性種を発生する化合物をいう。光重合開始剤は、ラジカル重合開始剤とカチオン重合開始剤とに分類できる。ラジカル重合開始剤の例としては、ベンゾフェノン、ベンジルジメチルケタール、α-ヒドロキシアルキルフェノン類、α-アミノアルキルフェノン類、アシルフォスフィンオキサイド類、チタノセン類及びオキシムエステル類、トリハロメチルトリアジン類、その他トリハロメチル基を有する化合物等が挙げられる。カチオン重合開始剤の例としては、芳香族スルホニウム塩及び芳香族ヨードニウム塩等が挙げられる。重合開始剤は単独で用いても2種以上を組み合わせて用いてもよく、また、ラジカル重合開始剤とカチオン重合開始剤とを併用してもよい。さらに、光重合開始剤と共に増感剤を用いてもよい。 The photopolymerization initiator refers to a compound that generates an active species such as a radical or a cation capable of initiating polymerization of the compound having the photopolymerizable group upon irradiation with light. Photopolymerization initiators can be classified into radical polymerization initiators and cationic polymerization initiators. Examples of radical polymerization initiators include benzophenone, benzyldimethyl ketal, α-hydroxyalkylphenones, α-aminoalkylphenones, acylphosphine oxides, titanocenes and oxime esters, trihalomethyltriazines, and other trihalomethyls And a compound having a group. Examples of the cationic polymerization initiator include aromatic sulfonium salts and aromatic iodonium salts. The polymerization initiators may be used alone or in combination of two or more, and a radical polymerization initiator and a cationic polymerization initiator may be used in combination. Furthermore, you may use a sensitizer with a photoinitiator.
 光硬化性組成物における光重合性基を有する化合物の含有率は、光硬化性組成物の総量100重量部に対して、50~99.99重量部が好ましい。50重量部未満では光重合性基の量が少ないことにより、99.99重量部を超えると、光重合性基を有する化合物に対する光重合開始剤の割合が低くなることにより、いずれも光硬化性が低下するためである。さらに、光重合性基を1分子中に2つ以上有する光重合性基を有する化合物を、光硬化性組成物の総量100重量部に対して5重量部以上、好ましくは20重量部以上含有するのが望ましい。光架橋により光硬化物の機械的強度を向上させるためである。また、光硬化性組成物における光重合開始剤の含有率は、光重合性基を有する化合物100重量部に対して、0.01~20重量部が好ましい。0.01重量部未満では光重合性基を有する化合物に対する光重合開始剤の割合が低くなり、光硬化性が低下する。また20重量部を超えると、光硬化性組成物に対する光重合開始剤の溶解性が低下し、実用的でないためである。 The content of the compound having a photopolymerizable group in the photocurable composition is preferably 50 to 99.99 parts by weight with respect to 100 parts by weight of the total amount of the photocurable composition. When the amount is less than 50 parts by weight, the amount of the photopolymerizable group is small. When the amount exceeds 99.99 parts by weight, the ratio of the photopolymerization initiator to the compound having the photopolymerizable group is decreased. This is because of a decrease. Furthermore, the compound having a photopolymerizable group having two or more photopolymerizable groups in one molecule is contained in an amount of 5 parts by weight or more, preferably 20 parts by weight or more with respect to 100 parts by weight of the total amount of the photocurable composition. Is desirable. This is to improve the mechanical strength of the photocured product by photocrosslinking. The content of the photopolymerization initiator in the photocurable composition is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the compound having a photopolymerizable group. If it is less than 0.01 part by weight, the ratio of the photopolymerization initiator to the compound having a photopolymerizable group is lowered, and the photocurability is lowered. Moreover, when it exceeds 20 weight part, it is because the solubility of the photoinitiator with respect to a photocurable composition falls and it is not practical.
 また、光硬化性組成物には、その性能に悪影響を及ぼさない範囲で非光硬化性オリゴマーや非光硬化性ポリマー、密着性付与剤(例えば、シランカップリング剤等)、有機溶剤、レベリング剤、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、香料、熱架橋剤、及び重合禁止剤等の添加物が含有されていてもよい。なお、これらは、単独で又は2種類以上を組み合わせて含有されていてもよい。 In addition, the photocurable composition includes a nonphotocurable oligomer, a nonphotocurable polymer, an adhesion-imparting agent (for example, a silane coupling agent), an organic solvent, and a leveling agent as long as the performance is not adversely affected. Additives such as plasticizers, fillers, antifoaming agents, flame retardants, stabilizers, antioxidants, fragrances, thermal crosslinking agents, and polymerization inhibitors may be contained. In addition, these may be contained alone or in combination of two or more.
 そして、本発明において、ガス付与工程でモールド3と被転写材層2との界面領域4にガスを発生させる場合は、光硬化性組成物に、刺激によりガスを発生するガス発生剤を含有させる。刺激としては、光、熱、衝撃などが挙げられるが、プロセスが容易であり、熱に弱い基板や被転写材に対しても適用できるため、光刺激によりガスを発生するガス発生剤を用いることが好ましい。熱刺激によりガスを発生するガス発生剤としては、例えば、40~200℃の熱刺激でガスを発生するガス発生剤が好ましい。40℃未満ではガス付与工程以外の工程でガスが発生する可能性があり、また、200℃よりも高いと熱刺激を与える際に、被転写材が有機物の場合には熱分解するおそれがあるためである。 And in this invention, when generating gas in the interface area | region 4 of the mold 3 and the to-be-transferred material layer 2 by a gas provision process, the photocurable composition is made to contain the gas generating agent which generate | occur | produces gas by irritation | stimulation. . Stimulation includes light, heat, impact, etc., but the process is easy and can be applied to heat-sensitive substrates and transfer materials, so use a gas generating agent that generates gas by light stimulation. Is preferred. As the gas generating agent that generates gas by thermal stimulation, for example, a gas generating agent that generates gas by thermal stimulation at 40 to 200 ° C. is preferable. If it is lower than 40 ° C., gas may be generated in steps other than the gas application step, and if it is higher than 200 ° C., there is a risk of thermal decomposition when the material to be transferred is an organic substance when thermally stimulated. Because.
 ガス発生剤としては、光刺激、熱刺激又は衝撃によりガスを発生するアジド化合物、光刺激又は熱刺激によりガスを発生するアゾ化合物、ジアゾ化合物、ジアゾニウム塩、ニトロベンジルカルバメート系化合物、熱刺激によりガスを発生する有機又は無機過酸化物、β-ケトカルボン酸又はその誘導体などが挙げられる。具体例としては、窒素を発生するアジドベンズアルデヒド、アジドベンザルメチルシクロヘキサノン類、アゾビスイソブチロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)等のアゾビス化合物、芳香族ジアゾニウム塩、ナフトキノンジアジド化合物や、窒素、一酸化炭素及びアセトンを発生するジアゾメルドラム酸、一酸化炭素を発生するニトロベンジルカルバメート系化合物、イソブチレン及び二酸化炭素を発生するヒドロキシスチレンのt-BOC化物と光酸発生剤の組み合わせ等が挙げられる。なお、光重合性基を有する化合物や光重合開始剤等と均一に混合しうる性質であることが好ましい。 Gas generating agents include azide compounds that generate gas by light stimulation, thermal stimulation or impact, azo compounds, diazo compounds, diazonium salts, nitrobenzyl carbamate compounds that generate gas by light stimulation or thermal stimulation, and gas by heat stimulation. And organic or inorganic peroxides generating β-ketocarboxylic acid or derivatives thereof. Specific examples include azidobenzaldehyde that generates nitrogen, azidobenzalmethylcyclohexanones, azobisisobutyronitrile, azobis compounds such as dimethyl 2,2′-azobis (2-methylpropionate), and aromatic diazonium salts. , Naphthoquinonediazide compounds, diazomer drum acids that generate nitrogen, carbon monoxide and acetone, nitrobenzyl carbamate compounds that generate carbon monoxide, t-BOC compounds and photoacids of hydroxystyrene that generate isobutylene and carbon dioxide Examples include combinations of generators. In addition, it is preferable that it is a property which can mix uniformly with the compound which has a photopolymerizable group, a photoinitiator, etc.
 ガス発生剤の添加量は特に限定されないが、光硬化性組成物100重量部に対し0.1~50重量部とすることが好ましい。0.1未満では離型性の向上が顕著ではなくなる場合があり、また、50重量部より多いと被転写材との混合性が不十分となる場合があるためである。 The addition amount of the gas generating agent is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the photocurable composition. If it is less than 0.1, the improvement in releasability may not be significant, and if it exceeds 50 parts by weight, the mixing property with the transfer material may be insufficient.
 ここで、ガス発生剤は、光硬化性組成物に含まれる光二量性基、光架橋剤又は光重合開始剤と同じでも異なっていてもよいが、光二量性基、光架橋剤又は光重合開始剤とガス発生剤とが異なる物質であると、後述する光硬化工程とガス付与工程とを別の工程にすることができる。光硬化工程とガス付与工程とを別の工程にすると、各工程でそれぞれの機能を発揮でき、光硬化とガス発生とが同時に起こる場合に生じる問題、例えば、発生したガスが硬化した被転写材層2の内部に閉じ込められ気泡欠陥となる等の不都合も生じないため好ましい。例えば、ガス発生剤として熱刺激によりガスを発生するものを用いると、光硬化工程とガス付与工程とが別工程になる。また、例えば、ガス発生剤として光刺激によりガスが発生するものを用いたとしても、光硬化性組成物が硬化する光の波長領域とガス発生剤からガスが発生する光の波長領域とが同一でなかったり、所定の波長の光に対する感度が光二量性基、光架橋剤又は光重合開始剤とガス発生剤とで異なっていると、光硬化させる光、すなわち光硬化工程で照射する光の波長領域を、ガス発生させる光、すなわちガス付与工程で被転写材層2に照射する光の波長領域と異なるものとすることで、光硬化工程とガス付与工程とを別工程にすることができる。 Here, the gas generant may be the same as or different from the photodimer group, photocrosslinker or photopolymerization initiator contained in the photocurable composition, but the photodimer group, photocrosslinker or photopolymerization may be used. When the initiator and the gas generating agent are different substances, the photocuring step and the gas application step described later can be made different steps. If the photocuring step and the gas application step are separate steps, the respective functions can be exhibited in each step, and problems that occur when photocuring and gas generation occur simultaneously, for example, the transferred material in which the generated gas is cured This is preferable because there is no inconvenience such as trapping inside the layer 2 and causing bubble defects. For example, when a gas generating agent that generates gas by thermal stimulation is used, the photocuring step and the gas application step are separate steps. For example, even if a gas generating agent that generates gas by light stimulation is used, the wavelength region of light that the photocurable composition cures is the same as the wavelength region of light that generates gas from the gas generating agent. If the sensitivity to light of a predetermined wavelength is different between the photodimer group, the photocrosslinking agent or the photopolymerization initiator, and the gas generating agent, the light to be photocured, that is, the light irradiated in the photocuring step By making the wavelength region different from the wavelength region of the light that generates gas, that is, the light that irradiates the transferred material layer 2 in the gas application step, the photocuring step and the gas application step can be made separate steps. .
 また、光硬化性組成物は室温付近で液状であることが好ましい。具体的には、光硬化性組成物がモールド3の凹凸パターンに充填できる程度の流動性を有することが好ましい。例えば、粘度が25℃で10Pa・s以下である。粘度の測定方法としては、例えば、TOKIMEC社製のB型粘度計を用いて測定する方法が挙げられる。なお、基板1やモールド3への塗膜形成性を良好にする上では、大気圧環境下、室温ないし室温近辺の温度にて液状を呈しているものを用いることが好ましい。 Further, the photocurable composition is preferably in a liquid state near room temperature. Specifically, it is preferable that the photocurable composition has fluidity enough to fill the uneven pattern of the mold 3. For example, the viscosity is 10 Pa · s or less at 25 ° C. As a measuring method of a viscosity, the method of measuring using the B-type viscometer made from TOKIMEC is mentioned, for example. In order to improve the film-forming property on the substrate 1 or the mold 3, it is preferable to use a material that is in a liquid state at room temperature or near room temperature in an atmospheric pressure environment.
 このような光硬化性組成物からなる被転写材を用いて、基板又はモールドに被転写材層2を形成する方法は特に限定されず、例えば、必要に応じ溶剤等で希釈した被転写材の塗布や滴下、具体的には、スピンコート、ロールコート、ディップコート、グラビアコート、ダイコート、カーテンコート、インクジェット塗布及びディスペンサー塗布等が挙げられる。 A method for forming the transfer material layer 2 on the substrate or the mold using the transfer material made of such a photocurable composition is not particularly limited. For example, the transfer material diluted with a solvent or the like as necessary is used. Examples of the application and dripping include spin coating, roll coating, dip coating, gravure coating, die coating, curtain coating, inkjet coating, and dispenser coating.
 被転写材層2の厚さは、モールド3に形成された凹凸のパターンの凹部に充填される光硬化性組成物の量、例えば凹凸のパターンの凹部の深さなどを考慮して設定すればよい。また、モールド3や基板1の全面を覆うように被転写材層2を設けてもよく、一部のみを覆うように設けてもよい。 The thickness of the transfer material layer 2 may be set in consideration of the amount of the photocurable composition filled in the concave portion of the concave / convex pattern formed on the mold 3, for example, the depth of the concave portion of the concave / convex pattern. Good. Further, the transfer material layer 2 may be provided so as to cover the entire surface of the mold 3 and the substrate 1, or may be provided so as to cover only a part thereof.
 このように、基板1又はモールド3に被転写材層2を形成した後、被転写材層2とモールド3とを対向させて、図2(b)に示すように、被転写材層2とモールド3の凹凸のパターンが形成された面を接触させて、モールド3の凹凸パターンに被転写材を充填する(充填工程)。被転写材層2とモールド3とを共に水平に保って被転写材層2とモールド3とを接触させることが好ましいが、得られるパターンに支障が生じなければ、水平に保つことに限定する必要はない。また、接触させる際に、必要に応じて、0.01~100MPa程度の力をかけてもよい。なお、従来の光インプリントリソグラフィにおける装置を用いることができる。 In this way, after the transfer material layer 2 is formed on the substrate 1 or the mold 3, the transfer material layer 2 and the mold 3 are opposed to each other, as shown in FIG. The surface on which the uneven pattern of the mold 3 is formed is brought into contact with the material to be transferred into the uneven pattern of the mold 3 (filling step). Although it is preferable to keep the transfer material layer 2 and the mold 3 both horizontal and contact the transfer material layer 2 and the mold 3, it is necessary to limit the transfer material layer 2 and the mold 3 to keep horizontal if there is no problem with the pattern to be obtained. There is no. Further, when contacting, a force of about 0.01 to 100 MPa may be applied as necessary. A conventional apparatus for optical imprint lithography can be used.
 次いで、図2(c)に示すように、被転写材層2とモールド3とを接触させてモールド3の凹凸パターンを被転写材に充填した状態で被転写材層2を露光し、硬化させて光硬化層とする(光硬化工程)。なお、この光硬化工程では、被転写材層2が硬化収縮して、被転写材層2とモールド3との界面に空間が形成される場合がある。 Next, as shown in FIG. 2C, the transfer material layer 2 is exposed and cured in a state where the transfer material layer 2 and the mold 3 are brought into contact with each other and the uneven pattern of the mold 3 is filled in the transfer material. To obtain a photocured layer (photocuring step). In this photocuring step, the transfer material layer 2 may be cured and contracted to form a space at the interface between the transfer material layer 2 and the mold 3.
 露光に用いる光源は、光硬化性組成物が硬化する波長の光を照射できるものであればよい。光源の例としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ、カーボンアーク、水銀キセノンランプ、XeCl、KrFやArF等のエキシマーレーザ、紫外あるいは可視光レーザー、及び紫外あるいは可視光LED等が挙げられる。光の照射量は、被転写材層2を硬化させることができる量であればよい。本発明を工業的に実施する際には、通常、10J/cm以下の範囲内で照射量を選定するとよい。なお、基板1及びモールド3のうち、照射する光に対して実質的に透明である部材の側から被転写材層2に光を照射する。また、光硬化性組成物が光刺激によりガスを発生するガス発生剤を含有する場合は、光硬化工程で照射する光の波長領域は、ガスを発生させない波長領域の光であることが好ましい。発生したガスが硬化した被転写材層2の内部に閉じ込められ気泡欠陥となることを防ぐためである。 The light source used for exposure may be any light source that can irradiate light having a wavelength at which the photocurable composition is cured. Examples of light sources include low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, xenon lamps, carbon arcs, mercury xenon lamps, excimer lasers such as XeCl, KrF and ArF, ultraviolet or visible light lasers, and ultraviolet light. Or visible light LED etc. are mentioned. The light irradiation amount may be an amount that can cure the transfer material layer 2. When industrially carrying out the present invention, it is usually preferable to select an irradiation dose within a range of 10 J / cm 2 or less. In addition, light is irradiated to the to-be-transferred material layer 2 from the member side which is substantially transparent with respect to the light irradiated among the board | substrate 1 and the mold 3. FIG. Moreover, when the photocurable composition contains a gas generating agent that generates gas by light stimulation, the wavelength region of light irradiated in the photocuring step is preferably light in a wavelength region that does not generate gas. This is to prevent the generated gas from being trapped inside the cured transfer material layer 2 and causing bubble defects.
 その後、図2(d)に示すように、被転写材層(光硬化層)2とモールド3とを接触させてモールド3の凹凸パターンを被転写材層に充填した状態でモールド3と被転写材層2との界面領域4にガスを付与する(ガス付与工程)。 Thereafter, as shown in FIG. 2D, the transferred material layer (photocured layer) 2 and the mold 3 are brought into contact with each other, and the mold 3 and the transferred material layer are filled with the uneven pattern of the mold 3 in the transferred material layer. Gas is applied to the interface region 4 with the material layer 2 (gas application step).
 被転写材層2が光刺激によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤が感光してガスを発生することができる波長の光で露光すればよい。なお、露光方法は、上記光硬化工程と同様でよいが、光硬化性組成物が硬化する光の波長領域とガス発生剤からガスが発生する光の波長領域とが同一でない場合や、所定の波長の光に対する感度がガス発生剤と光二量性基、光架橋剤又は光重合開始剤とで異なっている場合は、光硬化組成物を光硬化させる光の波長領域をガス発生させる光の波長領域と異なるものにして、光硬化工程では実質的に光硬化のみが進行し実質的にガス発生剤からガスが発生しないようにし、ガス付与工程では実質的にガス発生のみが進行し実質的に光硬化が進行しないようにすることにより、光硬化工程とガス付与工程とを別工程にすることができる。なお、光硬化させる光の波長領域とガス発生させる光の波長領域とは一部重複していてもよい。 When the transfer material layer 2 contains a gas generating agent that generates gas by light stimulation, the gas generating step may be performed with light having a wavelength that allows the gas generating agent to sensitize and generate gas. . The exposure method may be the same as the photocuring step, but the wavelength region of light for curing the photocurable composition is not the same as the wavelength region of light for generating gas from the gas generating agent, When the sensitivity to light of the wavelength is different between the gas generating agent and the photodimeric group, the photocrosslinking agent, or the photopolymerization initiator, the wavelength of the light that generates the gas in the wavelength region of light that photocures the photocurable composition. In the photo-curing process, substantially only photo-curing proceeds and substantially no gas is generated from the gas generating agent. In the gas application process, substantially only gas generation proceeds and substantially no gas is generated. By preventing the photocuring from proceeding, the photocuring step and the gas application step can be made separate steps. Note that the wavelength region of light to be photocured and the wavelength region of light to generate gas may partially overlap.
 また、被転写材層2が熱刺激によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤がガスを発生することができる温度に被転写材層2を加熱すればよい。なお、光硬化工程では実質的に光硬化のみが進行し実質的にガス発生剤からガスが発生しないようにし、ガス付与工程では実質的にガス発生のみが進行し実質的に光硬化が進行しないようにすることで、光硬化工程とガス付与工程とを別工程にすることができる。 Further, when the transfer material layer 2 contains a gas generating agent that generates gas by thermal stimulation, the transfer material layer 2 is heated to a temperature at which the gas generating agent can generate gas in the gas application step. do it. In the photocuring step, only photocuring substantially proceeds and gas is not generated from the gas generating agent. In the gas application step, only gas generation proceeds substantially and photocuring does not proceed substantially. By doing so, a photocuring process and a gas provision process can be made into a separate process.
 そして、被転写材層2が衝撃によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤がガスを発生することができる衝撃を被転写材層2に与えればよい。また、モールド3自体、モールド3に塗布等した離型処理剤、基板1や基板1上の任意の層からガスを発生させて界面領域4にガスを供給する場合は、モールド3、離型処理剤、基板1や基板1上の任意の層に光、熱や衝撃等の刺激を与えることにより、界面領域4にガスを発生させればよい。 When the transfer material layer 2 contains a gas generating agent that generates gas by impact, the transfer material layer 2 is given an impact that can generate gas in the gas application step. Good. In addition, when the gas is generated from the mold 3 itself, the mold release treatment agent applied to the mold 3, or the substrate 1 or any layer on the substrate 1 to supply the gas to the interface region 4, the mold 3 A gas may be generated in the interface region 4 by applying a stimulus such as light, heat or impact to the agent, the substrate 1 or any layer on the substrate 1.
 また、モールド3と被転写材層2との界面領域4にガスを供給する場合は、ガス透過性のモールド3や、界面領域4にガスを供給するための供給口を設けたモールド3を経由して外部から界面領域4にガスを供給するようにすればよい。 Further, when gas is supplied to the interface region 4 between the mold 3 and the transfer material layer 2, the gas passes through the mold 3 having a gas permeable mold 3 or a supply port for supplying gas to the interface region 4. Then, the gas may be supplied to the interface region 4 from the outside.
 ここで、光インプリントリソグラフィでは、光硬化工程の際に被転写材層2が硬化収縮してモールド3と被転写材層2との界面領域4が減圧状態になったり、被転写材層2とモールド3とが密着すること等により、モールド3の離型が困難になる傾向がある。しかし、本発明においては、ガス付与工程により界面領域4にガスが付与されることにより、界面領域4は減圧状態が解消されるか又は加圧状態等になるので、モールド3の離型性が良好になり、精密なパターンを容易に形成することができる。 Here, in the photoimprint lithography, the transfer material layer 2 is cured and contracted during the photocuring process, and the interface region 4 between the mold 3 and the transfer material layer 2 is in a reduced pressure state. The mold 3 tends to be difficult to release due to the close contact between the mold 3 and the mold 3 or the like. However, in the present invention, the gas is applied to the interface region 4 in the gas application step, so that the interface region 4 is released from the reduced pressure state or is in a pressurized state. As a result, a precise pattern can be easily formed.
 なお、ガス付与工程は光硬化工程の後でも先でもよく、また、ガス付与工程と光硬化工程とを同一プロセスとしても構わないが、発生したガスが硬化した被転写材層2の内部に閉じ込められ、気泡欠陥となるのを避けるために、光硬化工程の後にガス付与工程を行うのがより好ましい。例えば、熱刺激によりガスを発生するガス発生剤を用い、光硬化工程では実質的にガス発生剤からガスが発生しないようにし光硬化性組成物を硬化させて被転写材層2の硬化を完了し、その後、ガス付与工程で熱刺激によりガス発生剤からガスを発生することで、光硬化工程の後にガス付与工程を行うことができる。また、光刺激によりガスを発生するガス発生剤を用い、光硬化組成物を光硬化させる光の波長領域をガス発生させる光の波長領域と異なるものにして、光硬化工程では実質的に光硬化のみを進行させて被転写材層2の硬化を完了し、その後、ガス付与工程でガス発生剤を感光させてガスを発生することで、光硬化工程の後にガス付与工程を行うことができる。 The gas application process may be performed after or after the photocuring process, and the gas application process and the photocuring process may be the same process, but the generated gas is confined within the cured transfer material layer 2. In order to avoid bubble defects, it is more preferable to perform a gas application step after the photocuring step. For example, a gas generating agent that generates gas by thermal stimulation is used, and in the photocuring process, the photocurable composition is cured so that no gas is substantially generated from the gas generating agent, thereby completing the curing of the transfer material layer 2. And after that, a gas provision process can be performed after a photocuring process by generating gas from a gas generating agent by thermal stimulation in a gas provision process. In addition, by using a gas generating agent that generates gas by light stimulation, the wavelength region of light for photocuring the photocurable composition is different from the wavelength region of light for generating gas. The gas application step can be performed after the photocuring step by causing the gas generating agent to be exposed to light in the gas application step to generate a gas.
 次いで、図2(e)に示すように、被転写材層2からモールド3を離型することにより、モールド3の凹凸パターンが被転写材層2に転写されたものを基板1上に形成することができる(離型工程)。本発明のパターン形成方法は、モールド3と被転写材層1との界面領域4に意図的にガスを発生させるかガスを供給するガス付与工程を有しているので、モールド3と被転写材層2との離型性が良好になるため、パターン欠陥がなくモールド3の凹凸パターンを精密に転写したパターンを形成することができ、また、容易に離型することができる。なお、離型する際には、基板とモールドとを共に水平に保って離型することが好ましいが、水平に保つことに限定する必要はない。 Next, as shown in FIG. 2 (e), the mold 3 is released from the transfer material layer 2, thereby forming on the substrate 1 a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2. (Mold release process). Since the pattern forming method of the present invention includes a gas application step for intentionally generating gas or supplying gas to the interface region 4 between the mold 3 and the transfer material layer 1, the mold 3 and the transfer material Since the mold releasability with the layer 2 is improved, a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold can be easily released. When releasing, it is preferable to release the substrate and the mold while keeping them both horizontal, but it is not necessary to be limited to keeping them horizontal.
 なお、ガス付与工程又は、離型工程の後に、成型物の強度を向上させるために後露光や熱硬化などの任意の工程を行ってもよい。 In addition, you may perform arbitrary processes, such as post-exposure and thermosetting, in order to improve the intensity | strength of a molding after a gas provision process or a mold release process.
<熱インプリントリソグラフィ>
 以下に熱インプリントリソグラフィについて説明する。
 熱インプリントリソグラフィにおいては、まず、図3(a)に示すように、基板1及び凹凸のパターンが形成されたモールド3を用意し、固体である被転写材層2を基板1上に配置する等して、被転写材層2を基板1上に形成する(被転写材層形成工程)。なお、図1では基板1上に被転写材層2を形成したものを記載したが、被転写材層2はモールド3上に設けてもよく、また、基板1とモールド3の両方に設けてもよい。さらに、固体である被転写材層2が十分な機械的強度や厚さを有する板状等の固体であれば、被転写材層2は基板1やモールド3上に形成する必要は無く、この被転写材層形成工程は省略することができる。
<Thermal imprint lithography>
Hereinafter, thermal imprint lithography will be described.
In the thermal imprint lithography, first, as shown in FIG. 3A, a substrate 1 and a mold 3 on which an uneven pattern is formed are prepared, and a transfer material layer 2 that is a solid is disposed on the substrate 1. In the same manner, the transfer material layer 2 is formed on the substrate 1 (transfer material layer forming step). In FIG. 1, the transfer material layer 2 is formed on the substrate 1. However, the transfer material layer 2 may be provided on the mold 3, or provided on both the substrate 1 and the mold 3. Also good. Further, if the solid material 2 to be transferred is a solid plate or the like having sufficient mechanical strength and thickness, the material layer 2 need not be formed on the substrate 1 or the mold 3. The transfer material layer forming step can be omitted.
 モールド3は、表面に所望の凹凸のパターンが形成されていればよい。モールド3の材質の例としては、石英ガラス、合成樹脂等の透明なものの他、シリコン、シリコンカーバイド、酸化シリコン、ニッケル等の金属や金属酸化物等の光を透過しないものも挙げられる。後述するガス付与工程でモールドからガスを発生させる場合は、ガス発生剤を含有する樹脂等、モールド自体からガスが発生する材質にすればよい。モールド3の外観は、通常の熱インプリントリソグラフィにおいて用いられているモールド3の外観と同様のものでよく、例えば外観が直方体状又はロール状であってよい。 The mold 3 may have a desired uneven pattern on the surface. Examples of the material of the mold 3 include transparent materials such as quartz glass and synthetic resin, as well as materials that do not transmit light such as metals such as silicon, silicon carbide, silicon oxide, and nickel, and metal oxides. When gas is generated from the mold in the gas application step described later, a material that generates gas from the mold itself, such as a resin containing a gas generating agent, may be used. The appearance of the mold 3 may be the same as the appearance of the mold 3 used in normal thermal imprint lithography. For example, the appearance may be a rectangular parallelepiped shape or a roll shape.
 また、モールド3表面に形成されている凹凸のパターンは、通常の熱インプリントリソグラフィにおいて用いられているモールド3の表面に形成されている凹凸のパターンと同様のものであってよいが、それに限定されるものでない。例えば、モールドの材料の表面に窪みを形成することにより凹部を形成したモールド3としてもよく、この場合、相対的に表面側に突出した部分が凸部となる。また、モールド3の材料の表面に突起を設けることにより凸部を形成したモールド3としてもよく、この場合、相対的に内側に窪んだ部分が凹部となる。さらに、原盤の材料の表面に窪みまたは突起を設けることにより形成した凹凸パターンを有する原盤を用い、この原盤を鋳型として形成したモールド3としてもよい。凹凸のパターンの各凹部の断面の形状は、正方形、長方形、半月形、又はそれら形状に類似した形状等でもよく、各凹部は、例えば、深さが1nm~100μm程度、開口部の幅が1nm~100μm程度のものであってよい。そして、凹凸のパターンのピッチが1μm以下や、アスペクト比が1.0以上の微細なパターンを有するモールド3を用いるいわゆるナノインプリントリソグラフィでは、特に離型性が悪く、モールド3の凹凸のパターンが精密に転写されたパターンを有する被転写材層を得ることができないという問題が生じやすいが、本発明のパターン形成方法によれば、パターンのピッチが1μm以下や、アスペクト比が1.0以上の凹凸のパターンを有するモールド3を用いても、離型性が良好になる。したがって、凹凸のパターンを被転写材に転写することができ、また、離型に大きな力をかけることなく容易に離型することができる。 Further, the uneven pattern formed on the surface of the mold 3 may be the same as the uneven pattern formed on the surface of the mold 3 used in normal thermal imprint lithography, but is not limited thereto. It is not what is done. For example, it is good also as the mold 3 which formed the recessed part by forming the hollow in the surface of the material of a mold, and the part which protruded relatively to the surface side becomes a convex part in this case. Moreover, it is good also as the mold 3 which formed the convex part by providing a processus | protrusion on the surface of the material of the mold 3, In this case, the recessed part relatively inside becomes a recessed part. Furthermore, it is good also as the mold 3 which used the original disk which has the uneven | corrugated pattern formed by providing the hollow or protrusion on the surface of the original material, and formed this original disk as a casting_mold | template. The cross-sectional shape of each concave portion of the concave / convex pattern may be a square, a rectangle, a half moon, or a shape similar to those shapes. Each concave portion has a depth of about 1 nm to 100 μm and an opening width of 1 nm, for example. It may be about 100 μm. In the so-called nanoimprint lithography using the mold 3 having a fine pattern with an uneven pattern pitch of 1 μm or less or an aspect ratio of 1.0 or more, the mold release property is particularly bad, and the uneven pattern of the mold 3 is precisely The problem that it is impossible to obtain a transfer material layer having a transferred pattern is likely to occur. However, according to the pattern forming method of the present invention, the pattern pitch is 1 μm or less, and the unevenness of the aspect ratio is 1.0 or more. Even if the mold 3 having a pattern is used, the releasability is improved. Accordingly, the uneven pattern can be transferred to the transfer material, and can be easily released without applying a large force to the release.
 また、本発明においてはモールド3と被転写材層2との界面領域にガスを発生させるかガスを供給してガスを付与するガス付与工程を有するので離型性が良好であるが、離型性をさらに良好にするために、モールド3の表面に、離型処理が施されていてもよい。離型処理は気相法や液相法等により、パーフルオロ系又は炭化水素系の高分子化合物、アルコキシシラン化合物又はトリクロロシラン化合物、ダイヤモンドライクカーボン等に例示される公知の離型処理剤を用いて行うことができる。なお、後述するガス付与工程で離型処理剤からガスを発生させる場合は、パーフルオロ系又は炭化水素系等の官能基を有するアジド化合物やアゾ化合物等のガスが発生する離型処理剤を用いればよい。 Further, in the present invention, since there is a gas application step in which gas is generated or supplied by supplying gas to the interface region between the mold 3 and the transfer material layer 2, the releasability is good. In order to further improve the properties, the surface of the mold 3 may be subjected to a mold release treatment. For the release treatment, a known release treatment agent exemplified by a perfluoro- or hydrocarbon-based polymer compound, an alkoxysilane compound or a trichlorosilane compound, diamond-like carbon, or the like is used by a gas phase method or a liquid phase method. Can be done. In addition, when gas is generated from the mold release treatment agent in the gas application step described later, a mold release treatment agent that generates a gas such as an azide compound or azo compound having a functional group such as perfluoro type or hydrocarbon type is used. That's fine.
 そして、後述するガス付与工程でガスを供給する場合は、モールド3を、シリコン、セラミックス、多孔質物質等ガス透過性の材質とするか、又は、界面領域4にガスを供給するための供給口を設けたものとすればよい。 And when supplying gas at the gas provision process mentioned later, the mold 3 is made into gas permeable materials, such as a silicon | silicone, ceramics, a porous substance, or the supply port for supplying gas to the interface area | region 4 May be provided.
 基板1は、被転写材を塗布や滴下等することによって被転写材層2を設けることができるものであればよく、例えば、通常の熱インプリントリソグラフィによるパターンの形成方法において用いられている基板でよいが、被転写材層2を実質的に均一な厚さとすることができるものであることが好ましい。具体例としては、シリコンウエハー等の半導体基板、GaAs、InAs、GaN等の化合物半導体、ガラス、石英、サファイア等の透明無機基板、セラミック基板、ポリカーボネート、PET、トリアセチルセルロース等の合成樹脂基板、金属又は金属酸化物等が挙げられる。また、透明な基板1としては、ガラス基板、石英基板、サファイア基板、透明合成樹脂基板等が挙げられる。そして、基板1の表面は、被転写材層2との接着性の向上やその被転写材層2の塗布状態改良等のために、前処理が施されていてもよい。前処理の具体例としては、湿式の表面洗浄やプラズマ、オゾン洗浄等による表面改質、シランカップリング剤のような接着向上剤による処理等が挙げられる。 The substrate 1 may be any substrate as long as the material to be transferred 2 can be provided by applying or dropping the material to be transferred. For example, a substrate used in a pattern forming method by normal thermal imprint lithography. However, it is preferable that the transfer material layer 2 has a substantially uniform thickness. Specific examples include semiconductor substrates such as silicon wafers, compound semiconductors such as GaAs, InAs, and GaN, transparent inorganic substrates such as glass, quartz, and sapphire, ceramic substrates, synthetic resin substrates such as polycarbonate, PET, and triacetyl cellulose, metals Or a metal oxide etc. are mentioned. Examples of the transparent substrate 1 include a glass substrate, a quartz substrate, a sapphire substrate, and a transparent synthetic resin substrate. The surface of the substrate 1 may be subjected to pretreatment in order to improve adhesion to the transfer material layer 2 or to improve the application state of the transfer material layer 2. Specific examples of the pretreatment include wet surface cleaning, surface modification by plasma and ozone cleaning, treatment with an adhesion improver such as a silane coupling agent, and the like.
 さらに、被転写材層2は基板1上に直接設けてもよく、基板1上に設けた単層あるいは複数の任意の層の上に被転写材層2を形成してもよい。任意の層としては、ノボラック系樹脂層や、スピンオングラス材料からなる層等が挙げられる。また、これらの任意の層からガスを発生させてもよい。 Furthermore, the transfer material layer 2 may be provided directly on the substrate 1, or the transfer material layer 2 may be formed on a single layer or a plurality of arbitrary layers provided on the substrate 1. Examples of the optional layer include a novolac resin layer and a layer made of a spin-on-glass material. Moreover, you may generate gas from these arbitrary layers.
 被転写材層2を構成する被転写材は、加熱により軟化し、被転写材層2とモールド3とを接触させてモールド3の凹凸パターンに被転写材を充填できる性質を有するものであればよい。例えばポリメチルメタクリレート、ポリ乳酸等の熱可塑性樹脂やこれらを含む熱可塑性樹脂組成物、ガラス、金属等の無機物が挙げられる。なお、被転写材中に光重合性基等の反応性基を有していてもよい。 The transfer material constituting the transfer material layer 2 may be any material that is softened by heating and has a property that the transfer material layer 2 and the mold 3 can be brought into contact with each other to fill the uneven material pattern of the mold 3 with the transfer material. Good. Examples thereof include thermoplastic resins such as polymethyl methacrylate and polylactic acid, thermoplastic resin compositions containing these, and inorganic substances such as glass and metals. The transfer material may have a reactive group such as a photopolymerizable group.
 また、被転写材中には、その性能に悪影響を及ぼさない範囲で非光硬化性オリゴマーや非光硬化性ポリマー、密着性付与剤(例えば、シランカップリング剤等)、有機溶剤、レベリング剤、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、香料、熱架橋剤、及び重合禁止剤等の添加物が含有されていてもよい。なお、これらは、単独で又は2種類以上を組み合わせて含有されていてもよい。 In addition, in the material to be transferred, a non-photocurable oligomer, a non-photocurable polymer, an adhesion-imparting agent (for example, a silane coupling agent), an organic solvent, a leveling agent, Additives such as a plasticizer, a filler, an antifoaming agent, a flame retardant, a stabilizer, an antioxidant, a fragrance, a thermal crosslinking agent, and a polymerization inhibitor may be contained. In addition, these may be contained alone or in combination of two or more.
 そして、本発明において、後段のガス付与工程でモールド3と被転写材層2との界面領域4にガスを発生させる場合は、被転写材に、刺激によりガスを発生するガス発生剤を含有させる。刺激としては、光、熱、衝撃などが挙げられるが、プロセスが容易であり、熱に弱い基板や被転写材に対しても適用できるため、光刺激によりガスを発生するガス発生剤を用いることが好ましい。熱刺激によりガスを発生するガス発生剤としては、例えば、40~200℃の熱刺激でガスを発生するガス発生剤が好ましい。40℃未満ではガス付与工程以外の工程でガスが発生する可能性があり、また、200℃よりも高いと熱刺激を与える際に、被転写材が有機物の場合には熱分解するおそれがあるためである。 In the present invention, when gas is generated in the interface region 4 between the mold 3 and the transfer material layer 2 in the subsequent gas application step, the transfer material contains a gas generating agent that generates gas by stimulation. . Stimulation includes light, heat, impact, etc., but the process is easy and can be applied to heat-sensitive substrates and transfer materials, so use a gas generating agent that generates gas by light stimulation. Is preferred. As the gas generating agent that generates gas by thermal stimulation, for example, a gas generating agent that generates gas by thermal stimulation at 40 to 200 ° C. is preferable. If it is lower than 40 ° C., gas may be generated in steps other than the gas application step, and if it is higher than 200 ° C., there is a risk of thermal decomposition when the material to be transferred is an organic substance when thermally stimulated. Because.
 ガス発生剤としては、光刺激、熱刺激又は衝撃によりガスを発生するアジド化合物、光刺激又は熱刺激によりガスを発生するアゾ化合物、ジアゾ化合物、ジアゾニウム塩、ニトロベンジルカルバメート系化合物、熱刺激によりガスを発生する有機又は無機過酸化物、β-ケトカルボン酸又はその誘導体などが挙げられる。具体例としては、窒素を発生するアジドベンズアルデヒド、アジドベンザルメチルシクロヘキサノン類、アゾビスイソブチロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)等のアゾビス化合物、芳香族ジアゾニウム塩、ナフトキノンジアジド化合物や、窒素、一酸化炭素及びアセトンを発生するジアゾメルドラム酸、一酸化炭素を発生するニトロベンジルカルバメート系化合物、イソブチレン及び二酸化炭素を発生するヒドロキシスチレンのt-BOC化物と光酸発生剤の組み合わせ等が挙げられる。 Gas generating agents include azide compounds that generate gas by light stimulation, thermal stimulation or impact, azo compounds, diazo compounds, diazonium salts, nitrobenzyl carbamate compounds that generate gas by light stimulation or thermal stimulation, and gas by heat stimulation. And organic or inorganic peroxides generating β-ketocarboxylic acid or derivatives thereof. Specific examples include azidobenzaldehyde that generates nitrogen, azidobenzalmethylcyclohexanones, azobisisobutyronitrile, azobis compounds such as dimethyl 2,2′-azobis (2-methylpropionate), and aromatic diazonium salts. , Naphthoquinonediazide compounds, diazomer drum acids that generate nitrogen, carbon monoxide and acetone, nitrobenzyl carbamate compounds that generate carbon monoxide, t-BOC compounds and photoacids of hydroxystyrene that generate isobutylene and carbon dioxide Examples include combinations of generators.
 ガス発生剤の添加量は特に限定されないが、被転写材100重量部に対し0.1~50重量部とすることが好ましい。0.1未満では離型性の向上が顕著ではなくなる場合があり、また、50重量部より多いと被転写材との混合性が不十分となる場合があるためである。 The addition amount of the gas generating agent is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the transfer material. If it is less than 0.1, the improvement in releasability may not be significant, and if it exceeds 50 parts by weight, the mixing property with the transfer material may be insufficient.
 ここで、ガス発生剤は、加熱を行う充填工程とガス付与工程とを別の工程にすることができるものが好ましい。充填工程とガス付与工程とを別の工程にすると、各工程でそれぞれの機能を発揮でき、充填とガス発生とが同時に起こる場合に生じる問題、例えば、発生したガスが被転写材層2の内部に閉じ込められ気泡欠陥となる等の不都合も生じないため好ましい。例えば、ガス発生剤として光刺激によりガスを発生するものを用いると、ガス付与工程は光を照射する工程になり、加熱を行う充填工程とは別工程になる。また、例えば、ガス発生剤を熱刺激によりガスが発生するものとしても、充填工程で被転写材が軟化する温度とガス付与工程でガス発生剤からガスが発生する温度とが異なっていると、充填工程で加熱する温度をガス付与工程で加熱する温度と異なるものにすることで、充填工程とガス付与工程とを別工程にすることができる。 Here, the gas generating agent is preferably one that can make the filling step for heating and the gas application step separate from each other. If the filling step and the gas application step are separate steps, the respective functions can be performed in each step, and problems that occur when filling and gas generation occur simultaneously, for example, the generated gas is generated inside the transfer material layer 2. This is preferable because there is no inconvenience such as a bubble defect trapped in For example, when a gas generating agent that generates gas by light stimulation is used, the gas application step is a step of irradiating light, which is a separate step from the filling step of heating. Further, for example, even if the gas generating agent generates gas by thermal stimulation, the temperature at which the transfer material is softened in the filling step and the temperature at which gas is generated from the gas generating agent in the gas applying step are different. By making the temperature heated in the filling step different from the temperature heated in the gas application step, the filling step and the gas application step can be made separate.
 被転写材層2の厚さは、モールド3に形成された凹凸のパターンの凹部に充填される被転写材の量、例えば凹凸のパターンの凹部の深さなどを考慮して設定すればよい。また、モールド3や基板1の全面を覆うように被転写材層2を設けてもよく、一部のみを覆うように設けてもよい。 The thickness of the transfer material layer 2 may be set in consideration of the amount of the transfer material filled in the concave portion of the uneven pattern formed on the mold 3, for example, the depth of the concave portion of the uneven pattern. Further, the transfer material layer 2 may be provided so as to cover the entire surface of the mold 3 and the substrate 1, or may be provided so as to cover only a part thereof.
 次に、固体の被転写材層2を加熱する。加熱することにより、加熱前よりも被転写材層2が軟化する。軟化させた後、図3(b)に示すように、被転写材層2とモールド3の凹凸のパターンが形成された面とを接触させて、モールド3の凹凸パターンに被転写材を充填した後、被転写材層2を室温付近まで冷却して被転写材層2を硬化させる(充填工程)。加熱する温度は被転写材の特性に依るが、被転写材をモールド3の凹凸パターンに充填するのに十分な程度の粘弾性になるまで加熱すればよい。なお、被転写材が熱刺激によりガスが発生するガス発生剤を含有する場合は、充填工程で加熱する温度は、ガスを発生させない温度であることが好ましい。発生したガスが被転写材の内部に閉じ込められ気泡欠陥となることを防ぐためである。 Next, the solid transfer material layer 2 is heated. By heating, the transferred material layer 2 is softened more than before heating. After the softening, as shown in FIG. 3B, the transferred material layer 2 is brought into contact with the surface on which the uneven pattern of the mold 3 is formed, and the uneven material pattern of the mold 3 is filled with the transferred material. Thereafter, the transfer material layer 2 is cooled to near room temperature to cure the transfer material layer 2 (filling step). The heating temperature depends on the characteristics of the material to be transferred, but may be heated until the material to be transferred becomes viscoelastic enough to fill the uneven pattern of the mold 3. In addition, when the material to be transferred contains a gas generating agent that generates gas by thermal stimulation, it is preferable that the temperature heated in the filling step is a temperature that does not generate gas. This is to prevent the generated gas from being trapped inside the transfer material and causing bubble defects.
 また、充填工程では、被転写材層2とモールド3とを共に水平に保って被転写材層2とモールド3とを接触させることが好ましいが、得られるパターンに支障が生じなければ、水平に保つことに限定する必要はない。そして、接触させる際に、必要に応じて、0.01~100MPa程度の力をかけてもよい。なお、従来の熱インプリントリソグラフィにおける装置を用いることができる。 In the filling step, it is preferable to keep both the transfer material layer 2 and the mold 3 horizontal to bring the transfer material layer 2 and the mold 3 into contact with each other. There is no need to limit it to keeping. When contacting, a force of about 0.01 to 100 MPa may be applied as necessary. A conventional apparatus for thermal imprint lithography can be used.
 次いで、図3(c)に示すように、被転写材層2とモールド3とを接触させてモールド3の凹凸パターンに被転写材層を充填した状態でモールド3と被転写材層2との界面領域4にガスを発生させるかガスを供給する(ガス付与工程)。 Next, as shown in FIG. 3 (c), the transfer material layer 2 and the mold 3 are brought into contact with each other and the uneven pattern of the mold 3 is filled with the transfer material layer. Gas is generated or supplied to the interface region 4 (gas application step).
 被転写材層2が光刺激によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤が感光してガスを発生することができる波長の光で露光すればよい。露光に用いる光源は、ガスが発生する波長の光を照射できるものであればよい。光源の例としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ、カーボンアーク、水銀キセノンランプ、XeCl、KrFやArF等のエキシマーレーザ、紫外あるいは可視光レーザー、及び紫外あるいは可視光LED等が挙げられる。光の照射量は、ガスを発生させることができる量であればよい。本発明を工業的に実施する際には、通常、10J/cm以下の範囲内で照射量を選定するとよい。 When the transfer material layer 2 contains a gas generating agent that generates gas by light stimulation, the gas generating step may be performed with light having a wavelength that allows the gas generating agent to sensitize and generate gas. . The light source used for exposure may be any light source that can irradiate light having a wavelength generated by gas. Examples of light sources include low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, xenon lamps, carbon arcs, mercury xenon lamps, excimer lasers such as XeCl, KrF and ArF, ultraviolet or visible light lasers, and ultraviolet light. Or visible light LED etc. are mentioned. The irradiation amount of light may be an amount that can generate gas. When the present invention is industrially carried out, it is usually preferable to select an irradiation dose within a range of 10 J / cm 2 or less.
 また、被転写材層2が熱刺激によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤がガスを発生することができる温度に被転写材層2を加熱すればよい。 Further, when the transfer material layer 2 contains a gas generating agent that generates gas by thermal stimulation, the transfer material layer 2 is heated to a temperature at which the gas generating agent can generate gas in the gas application step. do it.
 そして、被転写材層2が衝撃によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤がガスを発生することができる衝撃を被転写材層2に与えればよい。また、モールド3自体、モールド3に塗布等した離型処理剤、基板1や基板1上の任意の層からガスを発生させて界面領域4にガスを供給する場合は、モールド3、離型処理剤、基板1や基板1上の任意の層に光、熱や衝撃等の刺激を与えることにより、界面領域4にガスを発生させればよい。 When the transfer material layer 2 contains a gas generating agent that generates gas by impact, the transfer material layer 2 is given an impact that can generate gas in the gas application step. Good. In addition, when the gas is generated from the mold 3 itself, the mold release treatment agent applied to the mold 3, or the substrate 1 or any layer on the substrate 1 to supply the gas to the interface region 4, the mold 3 A gas may be generated in the interface region 4 by applying a stimulus such as light, heat or impact to the agent, the substrate 1 or any layer on the substrate 1.
 また、モールド3と被転写材層2との界面領域4にガスを供給する場合は、ガス透過性のモールド3や、界面領域4にガスを供給するための供給口を設けたモールド3を経由して外部から界面領域4にガスを供給するようにすればよい。 Further, when gas is supplied to the interface region 4 between the mold 3 and the transfer material layer 2, the gas passes through the mold 3 having a gas permeable mold 3 or a supply port for supplying gas to the interface region 4. Then, the gas may be supplied to the interface region 4 from the outside.
 ここで、熱インプリントリソグラフィでは、光インプリントリソグラフィの光硬化収縮ほどは収縮しないが収縮する場合があり、また、モールド3と被転写材層2とが密着等して、モールド3の離型が困難になる場合がある。しかし、本発明においては、ガス付与工程により界面領域4にガスが付与されるため、界面領域4は加圧状態等になるので、モールド3の離型性が良好になり、精密なパターンを容易に形成することができる。 Here, in thermal imprint lithography, it does not shrink as much as the photocuring shrinkage of optical imprint lithography, but may shrink, and the mold 3 and the transfer material layer 2 are closely adhered to each other, so that the mold 3 is released. May be difficult. However, in the present invention, since the gas is applied to the interface region 4 by the gas application step, the interface region 4 is in a pressurized state or the like, so that the mold 3 can be easily released and a precise pattern can be easily formed. Can be formed.
 なお、ガス付与工程は、充填工程において冷却した後でも先でもよいが、発生したガスが硬化した被転写材層2の内部に閉じ込められ、気泡欠陥となるのを避けるために、冷却した後にガス付与工程を行うのがより好ましい。 The gas application step may be performed after the cooling in the filling step or before, but the generated gas is confined inside the cured transfer material layer 2 and is cooled after the cooling in order to avoid bubble defects. More preferably, the applying step is performed.
 次いで、図3(d)に示すように、被転写材層2からモールド3を離型することにより、モールド3の凹凸パターンが被転写材層2に転写されたものを基板1上に形成することができる(離型工程)。本発明のパターン形成方法は、モールド3と被転写材層1との界面領域4に意図的にガスを発生させるかガスを供給するガス付与工程を有しているので、モールド3と被転写材層2との離型性が良好になるため、パターン欠陥がなくモールド3の凹凸パターンを精密に転写したパターンを形成することができ、また、容易に離型することができる。 Next, as shown in FIG. 3 (d), the mold 3 is released from the transfer material layer 2, thereby forming on the substrate 1 a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2. (Mold release process). Since the pattern forming method of the present invention includes a gas application step for intentionally generating gas or supplying gas to the interface region 4 between the mold 3 and the transfer material layer 1, the mold 3 and the transfer material Since the mold releasability with the layer 2 is improved, a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold can be easily released.
 なお、被転写材中に光重合性基等の反応性基を有している場合には、充填工程での冷却、ガス付与工程又は、離型工程の後に、成型物の強度を向上させるために光硬化などの任意の工程を行ってもよい。 If the transfer material has a reactive group such as a photopolymerizable group, in order to improve the strength of the molded product after cooling in the filling step, gas application step or release step. An optional step such as photocuring may be performed.
<室温インプリントリソグラフィ>
 以下に室温インプリントリソグラフィについて説明する。
 室温インプリントリソグラフィにおいては、まず、図4(a)に示すように、基板1及び凹凸のパターンが形成されたモールド3を用意し、固体である被転写材層2を基板1上に配置する等して、被転写材層2を基板1上に形成する(被転写材層形成工程)。なお、図4では基板1上に被転写材層2を形成したものを記載したが、被転写材層2はモールド3上に設けてもよく、また、基板1とモールド3の両方に設けてもよい。さらに、固体である被転写材層2が十分な機械的強度や厚さを有する板状等の固体であれば、被転写材層2は基板1やモールド3上に形成する必要は無く、この被転写材層形成工程は省略することができる。
<Room temperature imprint lithography>
Hereinafter, room temperature imprint lithography will be described.
In room temperature imprint lithography, first, as shown in FIG. 4A, a substrate 1 and a mold 3 on which an uneven pattern is formed are prepared, and a transfer material layer 2 that is a solid is disposed on the substrate 1. In the same manner, the transfer material layer 2 is formed on the substrate 1 (transfer material layer forming step). In FIG. 4, the transfer material layer 2 is formed on the substrate 1. However, the transfer material layer 2 may be provided on the mold 3, or provided on both the substrate 1 and the mold 3. Also good. Furthermore, if the solid material 2 to be transferred is a solid plate or the like having sufficient mechanical strength and thickness, the material layer 2 need not be formed on the substrate 1 or the mold 3. The transfer material layer forming step can be omitted.
 モールド3は、表面に所望の凹凸のパターンが形成されていればよい。モールド3の材質の例としては、石英ガラス、合成樹脂等の透明なものの他、シリコン、シリコンカーバイド、酸化シリコン、ニッケルなどの金属や金属酸化物等の光を透過しないものも挙げられる。後述するガス付与工程でモールドからガスを発生させる場合は、ガス発生剤を含有する樹脂等、モールド自体からガスが発生する材質を用いればよい。モールド3の外観は、通常の室温インプリントリソグラフィにおいて用いられているモールド3の外観と同様のものでよく、例えば外観が直方体状又はロール状であってよい。 The mold 3 may have a desired uneven pattern on the surface. Examples of the material of the mold 3 include transparent materials such as quartz glass and synthetic resin, as well as materials that do not transmit light such as metals such as silicon, silicon carbide, silicon oxide, and nickel, and metal oxides. When gas is generated from the mold in the gas application step described later, a material that generates gas from the mold itself, such as a resin containing a gas generating agent, may be used. The appearance of the mold 3 may be the same as that of the mold 3 used in normal room temperature imprint lithography. For example, the appearance may be a rectangular parallelepiped shape or a roll shape.
 また、モールド3表面に形成されている凹凸のパターンは、通常の室温インプリントリソグラフィにおいて用いられているモールド3の表面に形成されている凹凸のパターンと同様のものであってよいが、それに限定されるものでない。例えば、モールドの材料の表面に窪みを形成することにより凹部を形成したモールド3としてもよく、この場合、相対的に表面側に突出した部分が凸部となる。また、モールド3の材料の表面に突起を設けることにより凸部を形成したモールド3としてもよく、この場合、相対的に内側に窪んだ部分が凹部となる。さらに、原盤の材料の表面に窪み又は突起を設けることにより形成した凹凸パターンを有する原盤を用い、この原盤を鋳型として形成したモールド3としてもよい。凹凸のパターンの各凹部の断面の形状は、正方形、長方形、半月形、またはそれら形状に類似した形状等でもよく、各凹部は、例えば、深さが1nm~100μm程度、開口部の幅が1nm~100μm程度のものであってよい。そして、凹凸のパターンのピッチが1μm以下や、アスペクト比が1.0以上の微細なパターンを有するモールド3を用いるいわゆるナノインプリントリソグラフィでは、特に離型性が悪く、モールド3の凹凸のパターンが精密に転写されたパターンを有する被転写材層を得ることができないという問題が生じやすいが、本発明のパターン形成方法によれば、パターンのピッチが1μm以下や、アスペクト比が1.0以上の凹凸のパターンを有するモールド3を用いても、離型性が良好になる。したがって、凹凸のパターンを被転写材に転写することができ、また、離型に大きな力をかけることなく容易に離型することができる。 The uneven pattern formed on the surface of the mold 3 may be the same as the uneven pattern formed on the surface of the mold 3 used in normal room temperature imprint lithography, but is not limited thereto. It is not what is done. For example, it is good also as the mold 3 which formed the recessed part by forming the hollow in the surface of the material of a mold, and the part which protruded relatively to the surface side becomes a convex part in this case. Moreover, it is good also as the mold 3 which formed the convex part by providing a processus | protrusion on the surface of the material of the mold 3, In this case, the recessed part relatively inside becomes a recessed part. Furthermore, it is good also as the mold 3 which used the original disk which has the uneven | corrugated pattern formed by providing the hollow or protrusion on the surface of the material of an original disk, and formed this original disk as a casting_mold | template. The cross-sectional shape of each concave portion of the concave / convex pattern may be a square, a rectangle, a half moon shape, or a shape similar to those shapes. Each concave portion has a depth of about 1 nm to 100 μm and an opening width of 1 nm, for example. It may be about 100 μm. In the so-called nanoimprint lithography using the mold 3 having a fine pattern with an uneven pattern pitch of 1 μm or less or an aspect ratio of 1.0 or more, the mold release property is particularly bad, and the uneven pattern of the mold 3 is precisely The problem that it is impossible to obtain a transfer material layer having a transferred pattern is likely to occur. However, according to the pattern forming method of the present invention, the pattern pitch is 1 μm or less, and the unevenness of the aspect ratio is 1.0 or more. Even if the mold 3 having a pattern is used, the releasability is improved. Accordingly, the uneven pattern can be transferred to the transfer material, and can be easily released without applying a large force to the release.
 また、本発明においてはモールド3と被転写材層2との界面領域にガスを発生させるかガスを供給してガスを付与するガス付与工程を有するので離型性が良好であるが、離型性をさらに良好にするために、モールド3の表面に、離型処理が施されていてもよい。離型処理は気相法や液相法等により、パーフルオロ系又は炭化水素系の高分子化合物、アルコキシシラン化合物又はトリクロロシラン化合物、ダイヤモンドライクカーボン等に例示される公知の離型処理剤を用いて行うことができる。なお、後述するガス付与工程で離型処理剤からガスを発生させる場合は、パーフルオロ系又は炭化水素系等の官能基を有するアジド化合物やアゾ化合物等のガスが発生する離型処理剤を用いればよい。 Further, in the present invention, since there is a gas application step in which gas is generated or supplied by supplying gas to the interface region between the mold 3 and the transfer material layer 2, the releasability is good. In order to further improve the properties, the surface of the mold 3 may be subjected to a mold release treatment. For the release treatment, a known release treatment agent exemplified by a perfluoro- or hydrocarbon-based polymer compound, an alkoxysilane compound or a trichlorosilane compound, diamond-like carbon, or the like is used by a gas phase method or a liquid phase method. Can be done. In addition, when gas is generated from the mold release treatment agent in the gas application step described later, a mold release treatment agent that generates a gas such as an azide compound or azo compound having a functional group such as perfluoro type or hydrocarbon type is used. That's fine.
 そして、後述するガス付与工程でガスを供給する場合は、モールド3として、シリコン、セラミックス、多孔質物質等ガス透過性の材質を用いるか、又は、界面領域4にガスを供給するための供給口を設けたものを用いればよい。 And when supplying gas by the gas provision process mentioned later, gas supply material, such as a silicon | silicone, ceramics, a porous substance, is used as the mold 3, or the supply port for supplying gas to the interface area | region 4 What is provided may be used.
 基板1は、被転写材を塗布や滴下等することによって被転写材層2を設けることができるものであればよく、例えば、通常の室温インプリントリソグラフィによるパターンの形成方法において用いられている基板でよいが、被転写材層2を実質的に均一な厚さで塗布することができるものであることが好ましい。具体例としては、シリコンウエハー等の半導体基板、GaAs、InAs、GaN等の化合物半導体、ガラス、石英、サファイア等の透明無機基板、セラミック基板、ポリカーボネート、PET、トリアセチルセルロース等の合成樹脂基板、金属または金属酸化物等が挙げられる。また、透明な基板1としては、ガラス基板、石英基板、サファイア基板、透明合成樹脂基板等が挙げられる。そして、基板1の表面は、被転写材層2との接着性の向上やその被転写材層2の塗布状態改良等のために、前処理が施されていてもよい。前処理の具体例としては、湿式の表面洗浄やプラズマ、オゾン洗浄等による表面改質、シランカップリング剤のような接着性向上剤による処理等が挙げられる。 The substrate 1 may be any substrate as long as the material to be transferred 2 can be provided by applying or dropping the material to be transferred. For example, a substrate used in a pattern forming method by normal room temperature imprint lithography. However, it is preferable that the transfer material layer 2 can be applied with a substantially uniform thickness. Specific examples include semiconductor substrates such as silicon wafers, compound semiconductors such as GaAs, InAs, and GaN, transparent inorganic substrates such as glass, quartz, and sapphire, ceramic substrates, synthetic resin substrates such as polycarbonate, PET, and triacetyl cellulose, metals Or a metal oxide etc. are mentioned. Examples of the transparent substrate 1 include a glass substrate, a quartz substrate, a sapphire substrate, and a transparent synthetic resin substrate. The surface of the substrate 1 may be subjected to pretreatment in order to improve adhesion to the transfer material layer 2 or to improve the application state of the transfer material layer 2. Specific examples of the pretreatment include wet surface cleaning, surface modification by plasma and ozone cleaning, treatment with an adhesion improver such as a silane coupling agent, and the like.
 さらに、被転写材層2は基板1上に直接設けてもよく、基板1上に設けた単層あるいは複数の任意の層の上に被転写材層2を形成してもよい。任意の層としては、ノボラック系樹脂層や、スピンオングラス材料からなる層等が挙げられる。また、これらの任意の層からガスを発生させてもよい。 Furthermore, the transfer material layer 2 may be provided directly on the substrate 1, or the transfer material layer 2 may be formed on a single layer or a plurality of arbitrary layers provided on the substrate 1. Examples of the optional layer include a novolac resin layer and a layer made of a spin-on-glass material. Moreover, you may generate gas from these arbitrary layers.
 被転写材層2を構成する被転写材は、室温付近でのプレスによりモールド3の凹凸パターンの形状に充填できるものであればよく、例えば、無機、又は有機物を含有したスピンオングラス材料(SOG)などが挙げられる。また、被転写材は熱架橋性基や重合性基等の反応性基を有していてもよく、必要に応じ他のポリマーやモノマー、架橋剤等を含有していてもよい。なお、本明細書において、室温とは、20~30℃程度を意味する。 The transfer material constituting the transfer material layer 2 may be any material that can be filled in the shape of the concave-convex pattern of the mold 3 by pressing near room temperature. For example, a spin-on-glass material (SOG) containing an inorganic or organic material Etc. In addition, the transfer material may have a reactive group such as a heat crosslinkable group or a polymerizable group, and may contain other polymer, monomer, crosslinker, or the like as necessary. In this specification, room temperature means about 20 to 30 ° C.
 また、被転写材には、その性能に悪影響を及ぼさない範囲で非光硬化性オリゴマーや非光硬化性ポリマー、密着性付与剤(例えば、シランカップリング剤等)、有機溶剤、レベリング剤、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、香料、熱架橋剤、及び重合禁止剤等の添加物が含有されていてもよい。なお、これらは、単独で又は2種類以上を組み合わせて含有されていてもよい。 In addition, a non-photocurable oligomer, a non-photocurable polymer, an adhesion-imparting agent (for example, a silane coupling agent), an organic solvent, a leveling agent, a plastic is used for the material to be transferred as long as the performance is not adversely affected. Additives such as an agent, a filler, an antifoaming agent, a flame retardant, a stabilizer, an antioxidant, a fragrance, a thermal crosslinking agent, and a polymerization inhibitor may be contained. In addition, these may be contained alone or in combination of two or more.
 そして、後段のガス付与工程でモールド3と被転写材層2との界面領域4にガスを発生させる場合は、被転写材に、刺激によりガスを発生するガス発生剤を含有させる。刺激としては、光、熱、衝撃などが挙げられるが、プロセスが容易であり、熱に弱い基板や被転写材に対しても適用できるため、光刺激によりガスを発生するガス発生剤を用いることが好ましい。熱刺激によりガスを発生するガス発生剤としては、例えば、40~200℃の熱刺激でガスを発生するガス発生剤が好ましい。40℃未満ではガス付与工程以外の工程でガスが発生する可能性があり、また、200℃よりも高いと熱刺激を与える際に、被転写材が有機物の場合には熱分解するおそれがあるためである。 In the case where gas is generated in the interface region 4 between the mold 3 and the transfer material layer 2 in the subsequent gas application step, the transfer material contains a gas generating agent that generates gas by stimulation. Stimulation includes light, heat, impact, etc., but the process is easy and can be applied to heat-sensitive substrates and transfer materials, so use a gas generating agent that generates gas by light stimulation. Is preferred. As the gas generating agent that generates gas by thermal stimulation, for example, a gas generating agent that generates gas by thermal stimulation at 40 to 200 ° C. is preferable. If it is lower than 40 ° C., gas may be generated in steps other than the gas application step, and if it is higher than 200 ° C., there is a risk of thermal decomposition when the material to be transferred is an organic substance when thermally stimulated. Because.
 ガス発生剤としては、光刺激、熱刺激又は衝撃によりガスを発生するアジド化合物、光刺激又は熱刺激によりガスを発生するアゾ化合物、ジアゾ化合物、ジアゾニウム塩、ニトロベンジルカルバメート系化合物、熱刺激によりガスを発生する有機又は無機過酸化物、β-ケトカルボン酸又はその誘導体などが挙げられる。具体例としては、窒素を発生するアジドベンズアルデヒド、アジドベンザルメチルシクロヘキサノン類、アゾビスイソブチロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)等のアゾビス化合物、芳香族ジアゾニウム塩、ナフトキノンジアジド化合物や、窒素、一酸化炭素及びアセトンを発生するジアゾメルドラム酸、一酸化炭素を発生するニトロベンジルカルバメート系化合物、イソブチレン及び二酸化炭素を発生するヒドロキシスチレンのt-BOC化物と光酸発生剤の組み合わせ等が挙げられる。 Gas generating agents include azide compounds that generate gas by light stimulation, thermal stimulation or impact, azo compounds, diazo compounds, diazonium salts, nitrobenzyl carbamate compounds that generate gas by light stimulation or thermal stimulation, and gas by heat stimulation. And organic or inorganic peroxides generating β-ketocarboxylic acid or derivatives thereof. Specific examples include azidobenzaldehyde that generates nitrogen, azidobenzalmethylcyclohexanones, azobisisobutyronitrile, azobis compounds such as dimethyl 2,2′-azobis (2-methylpropionate), and aromatic diazonium salts. , Naphthoquinonediazide compounds, diazomer drum acids that generate nitrogen, carbon monoxide and acetone, nitrobenzyl carbamate compounds that generate carbon monoxide, t-BOC compounds and photoacids of hydroxystyrene that generate isobutylene and carbon dioxide Examples include combinations of generators.
 ガス発生剤の添加量は特に限定されないが、被転写材100重量部に対し0.1~50重量部とすることが好ましい。0.1未満では離型性の向上が顕著ではなくなる場合があり、また、50重量部より多いと被転写材との混合性が不十分となる場合があるためである。 The addition amount of the gas generating agent is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the transfer material. If it is less than 0.1, the improvement in releasability may not be significant, and if it exceeds 50 parts by weight, the mixing property with the transfer material may be insufficient.
 被転写材層2の厚さは、モールド3に形成された凹凸のパターンの凹部に充填される被転写材の量、例えば凹凸のパターンの凹部の深さなどを考慮して設定すればよい。また、モールド3や基板1の全面を覆うように被転写材層2を設けてもよく、一部のみを覆うように設けてもよい。 The thickness of the transfer material layer 2 may be set in consideration of the amount of the transfer material filled in the concave portion of the uneven pattern formed on the mold 3, for example, the depth of the concave portion of the uneven pattern. Further, the transfer material layer 2 may be provided so as to cover the entire surface of the mold 3 and the substrate 1, or may be provided so as to cover only a part thereof.
 次に、被転写材層2とモールド3とを対向させて、図4(b)に示すように、室温で被転写材層2とモールド3の凹凸のパターンが形成された面を接触させて、モールド3の凹凸パターンに被転写材を充填する(充填工程)。そして、室温インプリントリソグラフィでは、モールド3と被転写材層2を接触させる際に、0.01~100MPa程度の力をかけることにより、モールド3と被転写材層2とを密着させる。なお、従来の室温インプリントリソグラフィにおける装置を用いることができる。また、被転写材層2とモールド3とを共に水平に保って被転写材層2とモールド3とを接触させることが好ましいが、得られるパターンに支障が生じなければ、水平に保つことに限定する必要はない。 Next, the transfer material layer 2 and the mold 3 are made to face each other, and as shown in FIG. 4B, the transfer material layer 2 and the surface of the mold 3 on which the uneven pattern is formed are brought into contact with each other. Then, the material to be transferred is filled in the uneven pattern of the mold 3 (filling step). In room temperature imprint lithography, when the mold 3 and the transfer material layer 2 are brought into contact with each other, a force of about 0.01 to 100 MPa is applied to bring the mold 3 and the transfer material layer 2 into close contact with each other. A conventional apparatus for room temperature imprint lithography can be used. Further, it is preferable to keep both the transfer material layer 2 and the mold 3 horizontal to bring the transfer material layer 2 and the mold 3 into contact with each other. However, if there is no problem in the pattern to be obtained, the transfer material layer 2 and the mold 3 are limited to being kept horizontal. do not have to.
 その後、図4(c)に示すように、被転写材層2とモールド3とを接触させてモールド3の凹凸パターンを被転写材層に充填した状態でモールド3と被転写材層2との界面領域4にガスを発生させるかガスを供給する(ガス付与工程)。 After that, as shown in FIG. 4C, the transferred material layer 2 and the mold 3 are brought into contact with each other and the mold 3 and the transferred material layer 2 are filled with the uneven pattern of the mold 3 in the transferred material layer. Gas is generated or supplied to the interface region 4 (gas application step).
 被転写材層2が光刺激によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤が感光してガスを発生することができる波長領域の光で露光すればよい。露光に用いる光源は、ガスが発生する波長の光を照射できるものであればよい。光源の例としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ、カーボンアーク、水銀キセノンランプ、XeCl、KrFやArF等のエキシマーレーザ、紫外あるいは可視光レーザー、及び紫外あるいは可視光LED等が挙げられる。光の照射量は、ガスを発生させることができる量であればよい。本発明を工業的に実施する際には、通常、10J/cm以下の範囲内で照射量を選定するとよい。 When the transfer material layer 2 contains a gas generating agent that generates a gas by light stimulation, in the gas application step, if the gas generating agent is exposed to light in a wavelength region where the gas generating agent can be exposed to generate gas. Good. The light source used for exposure may be any light source that can irradiate light having a wavelength generated by gas. Examples of light sources include low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, xenon lamps, carbon arcs, mercury xenon lamps, excimer lasers such as XeCl, KrF and ArF, ultraviolet or visible light lasers, and ultraviolet light. Or visible light LED etc. are mentioned. The irradiation amount of light may be an amount that can generate gas. When the present invention is industrially carried out, it is usually preferable to select an irradiation dose within a range of 10 J / cm 2 or less.
 また、被転写材層2が熱刺激によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤がガスを発生することができる温度に被転写材層2を加熱すればよい。 Further, when the transfer material layer 2 contains a gas generating agent that generates gas by thermal stimulation, the transfer material layer 2 is heated to a temperature at which the gas generating agent can generate gas in the gas application step. do it.
 そして、被転写材層2が衝撃によりガスを発生するガス発生剤を含有する場合は、ガス付与工程で、該ガス発生剤がガスを発生することができる衝撃を被転写材層2に与えればよい。また、モールド3自体、モールド3に塗布等した離型処理剤、基板1や基板1上の任意の層からガスを発生させて界面領域4にガスを供給する場合は、モールド3、離型処理剤、基板1や基板1上の任意の層に光、熱や衝撃等の刺激を与えることにより、界面領域4にガスを発生させればよい。 When the transfer material layer 2 contains a gas generating agent that generates gas by impact, the transfer material layer 2 is given an impact that can generate gas in the gas application step. Good. In addition, when the gas is generated from the mold 3 itself, the mold release treatment agent applied to the mold 3, or the substrate 1 or any layer on the substrate 1 to supply the gas to the interface region 4, the mold 3 A gas may be generated in the interface region 4 by applying a stimulus such as light, heat or impact to the agent, the substrate 1 or any layer on the substrate 1.
 また、モールド3と被転写材層2との界面領域4にガスを供給する場合は、ガス透過性のモールド3や、界面領域4にガスを供給するための供給口を設けたモールド3を経由して外部から界面領域4にガスを供給するようにすればよい。 Further, when gas is supplied to the interface region 4 between the mold 3 and the transfer material layer 2, the gas passes through the mold 3 having a gas permeable mold 3 or a supply port for supplying gas to the interface region 4. Then, the gas may be supplied to the interface region 4 from the outside.
 ここで、室温インプリントリソグラフィでは、光インプリントリソグラフィのように硬化収縮することはないが、モールド3と被転写材層2とが密着等して、モールド3の離型が困難になる場合がある。しかし、本発明においては、ガス付与工程により界面領域4にガスが付与されるため、界面領域4は加圧状態等になるので、モールド3の離型性が良好になり、精密なパターンを容易に形成することができる。 Here, in room temperature imprint lithography, there is no curing shrinkage unlike in optical imprint lithography, but mold 3 and transferred material layer 2 may be in close contact with each other, making it difficult to release mold 3. is there. However, in the present invention, since the gas is applied to the interface region 4 by the gas application step, the interface region 4 is in a pressurized state or the like, so that the mold 3 can be easily released and a precise pattern can be easily formed. Can be formed.
 次いで、図4(d)に示すように、被転写材層2からモールド3を離型することにより、モールド3の凹凸パターンが被転写材層2に転写されたものを基板1上に形成することができる(離型工程)。本発明のパターン形成方法は、モールド3と被転写材層2との界面領域4に意図的にガスを発生させるかガスを供給するガス付与工程を有しているので、モールド3と被転写材層2との離型性が良好になるため、パターン欠陥がなくモールド3の凹凸パターンを精密に転写したパターンを形成することができ、また、容易に離型することができる。なお、被転写材が光により硬化する成分や熱により硬化する成分を含有する場合は、成型物の強度を向上させるために、離型工程の後に、図4(e)に示すように、光または熱により被転写材層2を硬化する工程を有していてもよい。 Next, as shown in FIG. 4 (d), the mold 3 is released from the transfer material layer 2, thereby forming on the substrate 1 a pattern in which the uneven pattern of the mold 3 is transferred to the transfer material layer 2. (Mold release process). Since the pattern forming method of the present invention includes a gas application step that intentionally generates gas or supplies gas to the interface region 4 between the mold 3 and the transfer material layer 2, the mold 3 and the transfer material Since the mold releasability with the layer 2 is improved, a pattern in which the concave / convex pattern of the mold 3 is accurately transferred without pattern defects can be formed, and the mold can be easily released. When the material to be transferred contains a component that is cured by light or a component that is cured by heat, in order to improve the strength of the molded product, as shown in FIG. Or you may have the process of hardening the to-be-transferred material layer 2 with a heat | fever.
 以下、実施例を示しながら本発明をさらに具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(被転写材の調製)
<光硬化性組成物Aの調製>
 光重合性基を有する化合物としてベンジルアクリレートを40重量部、トリプロピレングリコールジアクリレートを45重量部、及びトリメチロールプロパントリアクリレートを14重量部と、光重合開始剤としてビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドを1重量部配合し、室温で撹拌混合して光硬化性組成物Aを調製した。
<熱可塑性組成物Bの調製>
 ポリメチルメタクリレート(Mw120,000)をプロピレングリコールメチルエーテルアセテートに加熱しながら攪拌溶解し、20重量%の熱可塑性組成物Bを調製した。
<光硬化性組成物1>
 光硬化性組成物A100重量部に対し、光刺激によりガスを発生するガス発生剤としてアジドベンズアルデヒドを10重量部配合し、室温で撹拌混合して光硬化性組成物1を調製した。
<光硬化性組成物2>
 光硬化性組成物A100重量部に対し、熱刺激によりガスを発生するガス発生剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)を10重量部配合し、室温で撹拌混合して光硬化性組成物2を調製した。
<熱可塑性組成物3>
 熱可塑性組成物Bの固形分100重量部に対し、光刺激によりガスを発生するガス発生剤としてアジドベンズアルデヒドを10重量部配合し、室温で撹拌混合して熱可塑性組成物3を調製した。
<室温インプリント組成物4>
 スピンオングラス材料(商品名:アキュグラス512B、Honeywell社製)の固形分100重量部に対し、光刺激によりガスを発生するガス発生剤としてアジドベンズアルデヒドを10重量部配合し、室温で撹拌混合して室温インプリント組成物4を調製した。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to a following example.
(Preparation of transfer material)
<Preparation of photocurable composition A>
As a compound having a photopolymerizable group, 40 parts by weight of benzyl acrylate, 45 parts by weight of tripropylene glycol diacrylate, 14 parts by weight of trimethylolpropane triacrylate, and bis (2,4,6- 1 part by weight of trimethylbenzoyl) -phenylphosphine oxide was blended and stirred and mixed at room temperature to prepare a photocurable composition A.
<Preparation of thermoplastic composition B>
Polymethylmethacrylate (Mw 120,000) was dissolved in propylene glycol methyl ether acetate while stirring to prepare 20% by weight of thermoplastic composition B.
<Photocurable composition 1>
10 parts by weight of azidobenzaldehyde was blended as a gas generating agent that generates gas by light stimulation with respect to 100 parts by weight of the photocurable composition A, and the mixture was stirred and mixed at room temperature to prepare a photocurable composition 1.
<Photocurable composition 2>
10 parts by weight of dimethyl 2,2′-azobis (2-methylpropionate) as a gas generating agent that generates gas by thermal stimulation is mixed with 100 parts by weight of the photocurable composition A, and the mixture is stirred and mixed at room temperature. Photocurable composition 2 was prepared.
<Thermoplastic composition 3>
A thermoplastic composition 3 was prepared by blending 10 parts by weight of azidobenzaldehyde as a gas generating agent that generates gas by light stimulation with respect to 100 parts by weight of the solid content of the thermoplastic composition B, and stirring and mixing at room temperature.
<Room temperature imprint composition 4>
10 parts by weight of azidobenzaldehyde as a gas generating agent that generates gas by light stimulation is mixed with 100 parts by weight of a solid content of a spin-on-glass material (trade name: Accuglass 512B, manufactured by Honeywell), and stirred at room temperature. Room temperature imprint composition 4 was prepared.
 (実施例1)
 PET基板上に光硬化性組成物1を厚さ約20μmになるようにバーコーターで塗布し、光硬化性組成物1からなる被転写材層を形成した。次に、線幅100nm、深さ100nm、ピッチ200nmのラインアンドスペースパターンを有するニッケル製モールド(離型処理なし)を被転写材層に押し付けてモールドを密着させ、パターン内へ光硬化性組成物1を充分に充填させた後、超高圧水銀ランプを使用してPET基板側から露光して光硬化性組成物1からなる被転写材層の光硬化及びガス発生工程を同時に行って、被転写材層を光硬化すると共にガス発生剤からガスを発生させてモールドと被転写材層との界面領域にガスを付与した。露光量は1000mJ/cmであった。光硬化後にモールドを離型したところ、モールドは容易に離型し、形成された光硬化物にも欠陥は見られなかった。結果を表1に示す。
Example 1
The photocurable composition 1 was applied on a PET substrate with a bar coater so as to have a thickness of about 20 μm, and a transfer material layer made of the photocurable composition 1 was formed. Next, a nickel mold having a line and space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm (no mold release treatment) is pressed against the transfer material layer to bring the mold into close contact, and the photocurable composition is put into the pattern. 1 is fully filled, and then exposed to light from the PET substrate side using an ultra-high pressure mercury lamp, and the photocuring and gas generation steps of the transfer material layer made of the photocurable composition 1 are performed at the same time. The material layer was photocured and a gas was generated from the gas generating agent to give the gas to the interface region between the mold and the transfer material layer. The exposure amount was 1000 mJ / cm 2 . When the mold was released after photocuring, the mold was easily released, and no defects were found in the formed photocured product. The results are shown in Table 1.
 (実施例2)
 ガラス基板上に光硬化性組成物2を厚さ約20μmになるようにバーコーターで塗布し、光硬化性組成物2からなる被転写材層を形成した。次に、線幅100nm、深さ100nm、ピッチ200nmのラインアンドスペースパターンを有するニッケル製モールド(離型処理なし)を被転写材層に押し付けてモールドを密着させ、パターン内へ光硬化性組成物2を充分に充填させた後、超高圧水銀ランプを使用してガラス基板側から露光して光硬化性組成物2からなる被転写材層の光硬化を行った。露光量は200mJ/cmであった。光硬化後、ガラス基板を100℃のホットプレート上で10分加熱し、ガス発生剤であるジメチル2,2’-アゾビス(2-メチルプロピオネート)からガスを発生させてモールドと被転写材層との界面領域にガスを付与した。冷却後にモールドを離型したところ、モールドは容易に離型し、形成された光硬化物にも欠陥は見られなかった。
(Example 2)
The photocurable composition 2 was applied onto a glass substrate with a bar coater so as to have a thickness of about 20 μm, and a transfer material layer made of the photocurable composition 2 was formed. Next, a nickel mold having a line and space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm (no mold release treatment) is pressed against the transfer material layer to bring the mold into close contact, and the photocurable composition is put into the pattern. 2 was sufficiently filled, and then the transfer material layer made of the photocurable composition 2 was photocured by exposure from the glass substrate side using an ultrahigh pressure mercury lamp. The exposure amount was 200 mJ / cm 2 . After photocuring, the glass substrate is heated on a hot plate at 100 ° C. for 10 minutes, and gas is generated from dimethyl 2,2′-azobis (2-methylpropionate), which is a gas generating agent. Gas was applied to the interface area with the layer. When the mold was released after cooling, the mold was easily released, and no defects were found in the formed photocured product.
 (実施例3)
 PET基板上に光硬化性組成物1を厚さ約20μmになるようにバーコーターで塗布し、光硬化性組成物1からなる被転写材層を形成した。次に、線幅100nm、深さ100nm、ピッチ200nmのラインアンドスペースパターンを有するニッケル製モールド(離型処理なし)を被転写材層に押し付けてモールドを密着させ、パターン内へ光硬化性組成物1を充分に充填させた後、超高圧水銀ランプを使用してPET基板側から365nm以下の波長の光を遮断するフィルターを介して露光し、光重合開始剤であるビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドのみを感光させて光硬化性組成物1からなる被転写材層の光硬化を行った。露光量は200mJ/cmであった。次に365nm以下の波長の光を遮断するフィルターを除去し、超高圧水銀ランプを使用してPET基板側から露光してガス発生剤であるアジドベンズアルデヒドを感光させ、ガスを発生させてモールドと被転写材層との界面領域にガスを付与した。露光量は1000mJ/cmであった。光照射後にモールドを離型したところ、モールドは容易に離型し、形成された光硬化物にも欠陥は見られなかった。
(Example 3)
The photocurable composition 1 was applied on a PET substrate with a bar coater so as to have a thickness of about 20 μm, and a transfer material layer made of the photocurable composition 1 was formed. Next, a nickel mold having a line and space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm (no mold release treatment) is pressed against the transfer material layer to bring the mold into close contact, and the photocurable composition is put into the pattern. 1 is sufficiently filled, and then exposed to light from a PET substrate side through a filter that blocks light having a wavelength of 365 nm or less using an ultra-high pressure mercury lamp, and bis (2,4,6) which is a photopolymerization initiator. Only the -trimethylbenzoyl) -phenylphosphine oxide was exposed to light to cure the transfer material layer made of the photocurable composition 1. The exposure amount was 200 mJ / cm 2 . Next, the filter that blocks light with a wavelength of 365 nm or less is removed, and exposure is performed from the PET substrate side using an ultrahigh pressure mercury lamp to expose the azidobenzaldehyde, which is a gas generating agent, and gas is generated to generate the mold and the coating. Gas was applied to the interface region with the transfer material layer. The exposure amount was 1000 mJ / cm 2 . When the mold was released after the light irradiation, the mold was easily released, and no defects were found in the formed photocured product.
 (実施例4)
 ガラス基板上に熱可塑性組成物3をバーコーターで塗布した後、80℃のホットプレート上で5分ベークして熱可塑性組成物3からなる被転写材層を形成した。被転写材層の厚さは約20μmであった。次に、被転写材層を形成したガラス基板を150℃に加熱して熱可塑性組成物3からなる被転写材層を軟化させた。ここに線幅100nm、深さ100nm、ピッチ200nmのラインアンドスペースパターンを有するニッケル製モールド離型処理なし)を押し付けて密着させ、10MPaの力で5分間加圧してパターンに熱可塑性組成物3を充填した後、室温付近まで冷却した。冷却後、超高圧水銀ランプを使用してガラス基板側から露光してガス発生剤であるアジドベンズアルデヒドを感光させ、ガスを発生させてモールドと被転写材層との界面領域にガスを付与した。露光量は1000mJ/cmであった。光照射後にモールドを離型したところ、モールドは容易に離型し、形成された光硬化物にも欠陥は見られなかった。
Example 4
The thermoplastic composition 3 was applied onto a glass substrate with a bar coater, and then baked on a hot plate at 80 ° C. for 5 minutes to form a transfer material layer made of the thermoplastic composition 3. The thickness of the transfer material layer was about 20 μm. Next, the glass substrate on which the transfer material layer was formed was heated to 150 ° C. to soften the transfer material layer made of the thermoplastic composition 3. A nickel mold having a line-and-space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm is pressed and adhered thereto, and the thermoplastic composition 3 is applied to the pattern by pressing with a force of 10 MPa for 5 minutes. After filling, it was cooled to near room temperature. After cooling, exposure was performed from the glass substrate side using an ultra-high pressure mercury lamp to expose azidobenzaldehyde, which is a gas generating agent, to generate gas, and gas was applied to the interface region between the mold and the transfer material layer. The exposure amount was 1000 mJ / cm 2 . When the mold was released after the light irradiation, the mold was easily released, and no defects were found in the formed photocured product.
 (実施例5)
 ガラス基板上に室温インプリント組成物4をスピンコート塗布した後、80℃のホットプレート上で5分ベークして室温インプリント組成物4からなる被転写材層を形成した。被転写材層の厚さは約10μmであった。次に、被転写材層に線幅100nm、深さ100nm、ピッチ200nmのラインアンドスペースパターンを有するニッケル製モールド(離型処理なし)を被転写材層に押し付けてモールドを密着させ、30MPaの力で5分間加圧してパターンに室温インプリント組成物4を充填した。さらに超高圧水銀ランプを使用してガラス基板側から露光してガス発生剤であるアジドベンズアルデヒドを感光させ、ガスを発生させてモールドと被転写材層との界面領域にガスを付与した。露光量は1000mJ/cmであった。光照射後にモールドを離型したところ、モールドは容易に離型し、形成された光硬化物にも欠陥は見られなかった。
(Example 5)
The room temperature imprint composition 4 was spin-coated on a glass substrate and then baked on a hot plate at 80 ° C. for 5 minutes to form a transfer material layer composed of the room temperature imprint composition 4. The thickness of the transfer material layer was about 10 μm. Next, a nickel mold having a line-and-space pattern with a line width of 100 nm, a depth of 100 nm, and a pitch of 200 nm is pressed against the transfer material layer to bring the mold into close contact with the transfer material layer, and a force of 30 MPa. The pattern was filled with the room temperature imprint composition 4 under pressure for 5 minutes. Further, exposure was performed from the glass substrate side using an ultra-high pressure mercury lamp to expose azidobenzaldehyde, which is a gas generating agent, and gas was generated to apply gas to the interface region between the mold and the transfer material layer. The exposure amount was 1000 mJ / cm 2 . When the mold was released after the light irradiation, the mold was easily released, and no defects were found in the formed photocured product.
 (比較例1)
 光硬化性組成物1の代わりにガス発生剤を含有しない光硬化性組成物Aを用いたこと以外は実施例1と同様の操作を行った。その結果、モールドの離型が困難であり、光硬化物の一部がモールド側に付着して欠陥が発生した。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the photocurable composition A containing no gas generating agent was used instead of the photocurable composition 1. As a result, it was difficult to release the mold, and a part of the photocured material adhered to the mold side and a defect occurred.
 (比較例2)
 熱可塑性組成物3の代わりにガス発生剤を含有しない熱可塑性樹脂溶液Bを用いたこと以外は実施例4と同様の操作を行った。その結果、モールドの離型が困難であり、熱可塑性樹脂の一部がモールド側に付着して欠陥が発生した。
(Comparative Example 2)
The same operation as in Example 4 was performed except that the thermoplastic resin solution B containing no gas generating agent was used instead of the thermoplastic composition 3. As a result, it was difficult to release the mold, and a part of the thermoplastic resin adhered to the mold side and a defect occurred.
 (比較例3)
 室温インプリント組成物4の代わりにガス発生剤を含有しないスピンオングラス材料(商品名:アキュグラス512B、Honeywell社製)を用いたこと以外は実施例5と同様の操作を行った。その結果、モールドの離型が困難であり、スピンオングラス材料の一部がモールド側に付着して欠陥が発生した。
(Comparative Example 3)
The same operation as in Example 5 was performed except that a spin-on glass material (trade name: Accuglass 512B, manufactured by Honeywell) containing no gas generant was used instead of the room temperature imprint composition 4. As a result, it was difficult to release the mold, and a part of the spin-on-glass material adhered to the mold side and a defect occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1 基板
 2 被転写材層
 3 モールド
 4 界面領域
1 Substrate 2 Transferred material layer 3 Mold 4 Interface area

Claims (11)

  1.  被転写材からなる被転写材層と凹凸のパターンが形成されたモールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填する充填工程と、
    前記被転写材層と前記モールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填した状態で前記モールドと前記被転写材層との界面領域にガスを付与するガス付与工程と、
    前記被転写材層から前記モールドを離型する離型工程とを有することを特徴とするパターン形成方法。
    A filling step of bringing the transfer material layer made of the transfer material into contact with the mold on which the uneven pattern is formed and filling the transferred material into the uneven pattern of the mold;
    A gas application step of applying a gas to an interface region between the mold and the transfer material layer in a state in which the transfer material layer and the mold are brought into contact with each other and the uneven material pattern of the mold is filled with the transfer material;
    A pattern forming method comprising: releasing a mold from the transfer material layer.
  2.  前記被転写材は刺激によりガスを発生するガス発生剤を含有するものであり、前記ガス付与工程では前記ガス発生剤に刺激を与えて前記モールドと前記被転写材層との界面領域にガスを発生させることを特徴とする請求項1に記載のパターン形成方法。 The material to be transferred contains a gas generating agent that generates gas by stimulation, and in the gas application step, the gas generating agent is stimulated to supply gas to an interface region between the mold and the material to be transferred. The pattern forming method according to claim 1, wherein the pattern forming method is generated.
  3.  前記ガス発生剤は光刺激によりガスを発生するものであることを特徴とする請求項2に記載のパターン形成方法。 3. The pattern forming method according to claim 2, wherein the gas generating agent generates gas by light stimulation.
  4.  前記被転写材が光硬化性組成物であり、
    前記被転写材層と前記モールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填した状態で、前記被転写材層を露光して光硬化層とする光硬化工程を有することを特徴とする請求項1~3のいずれかに記載のパターン形成方法。
    The transfer material is a photocurable composition,
    A photocuring step of exposing the transferred material layer to a photocured layer by bringing the transferred material layer into contact with the mold and filling the transferred material into the uneven pattern of the mold; The pattern forming method according to any one of claims 1 to 3, wherein:
  5.  前記光硬化性組成物は光重合性基を有する化合物、光重合開始剤及び前記ガス発生剤を含有することを特徴とする請求項4に記載のパターン形成方法。 The pattern forming method according to claim 4, wherein the photocurable composition contains a compound having a photopolymerizable group, a photopolymerization initiator, and the gas generating agent.
  6.  前記ガス付与工程を、前記光硬化工程と同時又は前記光硬化工程の後に有することを特徴とする請求項4又は5に記載のパターン形成方法。 6. The pattern forming method according to claim 4, wherein the gas application step is performed simultaneously with the photocuring step or after the photocuring step.
  7.  前記ガス発生剤は光刺激によりガスを発生するものであり、前記光硬化工程で光硬化性組成物を硬化させる光の波長領域は、前記ガス付与工程でガスを発生させる光の波長領域と異なることを特徴とする請求項4~6のいずれかに記載のパターン形成方法。 The gas generating agent generates gas by light stimulation, and the wavelength region of light that cures the photocurable composition in the photocuring step is different from the wavelength region of light that generates gas in the gas applying step. The pattern forming method according to any one of claims 4 to 6, wherein:
  8.  前記被転写材が固体であり、前記充填工程では、前記被転写材層を加熱して軟化させた後、前記被転写材層と前記モールドとを接触させて前記モールドの凹凸パターンに前記被転写材を充填し、その後前記被転写材層を冷却することを特徴とする請求項1~3のいずれかに記載のパターン形成方法。 The transfer material is solid, and in the filling step, the transfer material layer is heated and softened, and then the transfer material layer and the mold are brought into contact with each other to form an uneven pattern of the mold. The pattern forming method according to any one of claims 1 to 3, wherein the material is filled, and then the transfer material layer is cooled.
  9.  前記被転写材が固体であり、前記充填工程は室温で行うことを特徴とする請求項1~3のいずれかに記載のパターン形成方法。 4. The pattern forming method according to claim 1, wherein the transfer material is solid and the filling step is performed at room temperature.
  10.  前記モールドは、ピッチが1μm以下の凹凸のパターンを有することを特徴とする請求項1~9のいずれかに記載のパターン形成方法。 10. The pattern forming method according to claim 1, wherein the mold has an uneven pattern with a pitch of 1 μm or less.
  11.  前記モールドは、アスペクト比が1.0以上の凹凸パターンを有するものであることを特徴とする請求項1~10のいずれかに記載のパターン形成方法。 11. The pattern forming method according to claim 1, wherein the mold has a concavo-convex pattern having an aspect ratio of 1.0 or more.
PCT/JP2009/062464 2008-07-09 2009-07-08 Pattern-forming method WO2010005032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-179547 2008-07-09
JP2008179547 2008-07-09

Publications (1)

Publication Number Publication Date
WO2010005032A1 true WO2010005032A1 (en) 2010-01-14

Family

ID=41507144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062464 WO2010005032A1 (en) 2008-07-09 2009-07-08 Pattern-forming method

Country Status (1)

Country Link
WO (1) WO2010005032A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103464A (en) * 2008-09-26 2010-05-06 Toshiba Corp Imprint method
JP2010262980A (en) * 2009-04-30 2010-11-18 Jsr Corp Curable composition for nanoimprint lithography, and nanoimprint method
JP2011159881A (en) * 2010-02-02 2011-08-18 Fujifilm Corp Curable composition for imprint, pattern forming method, and pattern
JP2012062238A (en) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd Gas generating agent and micro-pump
WO2013062068A1 (en) 2011-10-24 2013-05-02 Canon Kabushiki Kaisha Method of forming film
WO2013094660A1 (en) 2011-12-19 2013-06-27 Canon Kabushiki Kaisha Method of producing cured product and method of forming pattern
WO2014057823A1 (en) * 2012-10-09 2014-04-17 Canon Kabushiki Kaisha Photocurable composition and method for manufacturing film
JP2014150259A (en) * 2014-02-21 2014-08-21 Toyo Gosei Kogyo Kk Manufacturing methods of photo-curing composition, mold, resin and optical element, and semiconductor integrated circuit manufacturing method
JP2014154600A (en) * 2013-02-05 2014-08-25 Tokyo Ohka Kogyo Co Ltd Patterning method by imprint
JP2014196284A (en) * 2013-03-05 2014-10-16 キヤノン株式会社 Photosensitive gas generating agent and photocurable composition
JP2014229820A (en) * 2013-05-24 2014-12-08 富士通株式会社 Manufacturing method of wiring board and mold for manufacturing wiring board
JP2015005760A (en) * 2014-07-31 2015-01-08 キヤノン株式会社 Imprint device, and article manufacturing method
JP2015026847A (en) * 2014-09-10 2015-02-05 キヤノン株式会社 Imprint device, and method of manufacturing article
EP2862707A4 (en) * 2012-06-13 2015-07-15 Asahi Kasei E Materials Corp Function-transferring object, method for transferring functional layer, package and function-transferring film roll
JP2015144315A (en) * 2015-04-20 2015-08-06 キヤノン株式会社 Imprint device and manufacturing method of article
US9122149B2 (en) 2010-03-24 2015-09-01 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064143A (en) * 2003-08-08 2005-03-10 Seiko Epson Corp Method of forming resist pattern, method of forming wiring pattern, method of manufacturing semiconductor device, electrooptic device, and electronic equipment
JP2006516065A (en) * 2002-08-01 2006-06-15 モレキュラー・インプリンツ・インコーポレーテッド Scatter measurement alignment for imprint lithography
WO2006083520A2 (en) * 2005-01-31 2006-08-10 Molecular Imprints, Inc. Method of separating a mold from a solidified layer disposed on a substrate
JP2006245072A (en) * 2005-02-28 2006-09-14 Canon Inc Mold for transferring pattern and transfer device
JP2007081048A (en) * 2005-09-13 2007-03-29 Canon Inc Nano-imprinting mold, device, and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516065A (en) * 2002-08-01 2006-06-15 モレキュラー・インプリンツ・インコーポレーテッド Scatter measurement alignment for imprint lithography
JP2005064143A (en) * 2003-08-08 2005-03-10 Seiko Epson Corp Method of forming resist pattern, method of forming wiring pattern, method of manufacturing semiconductor device, electrooptic device, and electronic equipment
WO2006083520A2 (en) * 2005-01-31 2006-08-10 Molecular Imprints, Inc. Method of separating a mold from a solidified layer disposed on a substrate
JP2006245072A (en) * 2005-02-28 2006-09-14 Canon Inc Mold for transferring pattern and transfer device
JP2007081048A (en) * 2005-09-13 2007-03-29 Canon Inc Nano-imprinting mold, device, and method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103464A (en) * 2008-09-26 2010-05-06 Toshiba Corp Imprint method
US8419995B2 (en) 2008-09-26 2013-04-16 Kabushiki Kaisha Toshiba Imprint method
JP2010262980A (en) * 2009-04-30 2010-11-18 Jsr Corp Curable composition for nanoimprint lithography, and nanoimprint method
JP2011159881A (en) * 2010-02-02 2011-08-18 Fujifilm Corp Curable composition for imprint, pattern forming method, and pattern
US9122149B2 (en) 2010-03-24 2015-09-01 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
TWI499498B (en) * 2010-03-24 2015-09-11 Canon Kk Imprint apparatus and method of manufacturing article
US9280048B2 (en) 2010-03-24 2016-03-08 Canon Kabushiki Kaisha Imprint apparatus and method of manufacturing article
JP2012062238A (en) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd Gas generating agent and micro-pump
KR20140080542A (en) 2011-10-24 2014-06-30 캐논 가부시끼가이샤 Method of forming film
US9623439B2 (en) 2011-10-24 2017-04-18 Canon Kabushiki Kaisha Method of forming film
TWI495557B (en) * 2011-10-24 2015-08-11 Canon Kk Method of forming film, method of manufactureing a substrate with a circuit and method of manufacturing an optical component
CN103907174A (en) * 2011-10-24 2014-07-02 佳能株式会社 Method of forming film
WO2013062068A1 (en) 2011-10-24 2013-05-02 Canon Kabushiki Kaisha Method of forming film
KR101700491B1 (en) 2011-12-19 2017-01-26 캐논 가부시끼가이샤 Method of producing cured product and method of forming pattern
KR20140108304A (en) * 2011-12-19 2014-09-05 캐논 가부시끼가이샤 Method of producing cured product and method of forming pattern
JP2013128078A (en) * 2011-12-19 2013-06-27 Canon Inc Method for manufacturing cured product and pattern formation method
EP2795667A4 (en) * 2011-12-19 2015-09-16 Canon Kk Method of producing cured product and method of forming pattern
WO2013094660A1 (en) 2011-12-19 2013-06-27 Canon Kabushiki Kaisha Method of producing cured product and method of forming pattern
US9961776B2 (en) 2011-12-19 2018-05-01 Canon Kabushiki Kaisha Method of producing cured product and method of forming pattern
US10239279B2 (en) 2012-06-13 2019-03-26 Asahi Kasei Kabushiki Kaisha Function transfer product, functional layer transfer method, packed product, and function transfer film roll
EP3012097A3 (en) * 2012-06-13 2016-06-22 Asahi Kasei E-materials Corporation Function transfer product, functional layer transfer method, packed product, and function transfer film roll
EP2862707A4 (en) * 2012-06-13 2015-07-15 Asahi Kasei E Materials Corp Function-transferring object, method for transferring functional layer, package and function-transferring film roll
JP2014096575A (en) * 2012-10-09 2014-05-22 Canon Inc Photocurable composition and manufacturing method of film
CN104737271A (en) * 2012-10-09 2015-06-24 佳能株式会社 Photocurable composition and method for manufacturing film
US10472445B2 (en) 2012-10-09 2019-11-12 Canon Kabushiki Kaisha Photocurable composition and method for manufacturing film
WO2014057823A1 (en) * 2012-10-09 2014-04-17 Canon Kabushiki Kaisha Photocurable composition and method for manufacturing film
CN104737271B (en) * 2012-10-09 2018-04-10 佳能株式会社 The manufacture method of Photocurable composition and film
JP2014154600A (en) * 2013-02-05 2014-08-25 Tokyo Ohka Kogyo Co Ltd Patterning method by imprint
EP2941781A4 (en) * 2013-03-05 2016-09-21 Canon Kk Photosensitive gas generating agent and photocurable composition
JP2014196284A (en) * 2013-03-05 2014-10-16 キヤノン株式会社 Photosensitive gas generating agent and photocurable composition
CN105009256B (en) * 2013-03-05 2017-09-15 佳能株式会社 Photonasty gas producing agent and Photocurable composition
CN105009256A (en) * 2013-03-05 2015-10-28 佳能株式会社 Photosensitive gas generating agent and photocurable composition
US10421853B2 (en) 2013-03-05 2019-09-24 Canon Kabushiki Kaisha Photosensitive gas generating agent and photocurable composition
JP2014229820A (en) * 2013-05-24 2014-12-08 富士通株式会社 Manufacturing method of wiring board and mold for manufacturing wiring board
JP2014150259A (en) * 2014-02-21 2014-08-21 Toyo Gosei Kogyo Kk Manufacturing methods of photo-curing composition, mold, resin and optical element, and semiconductor integrated circuit manufacturing method
JP2015005760A (en) * 2014-07-31 2015-01-08 キヤノン株式会社 Imprint device, and article manufacturing method
JP2015026847A (en) * 2014-09-10 2015-02-05 キヤノン株式会社 Imprint device, and method of manufacturing article
JP2015144315A (en) * 2015-04-20 2015-08-06 キヤノン株式会社 Imprint device and manufacturing method of article

Similar Documents

Publication Publication Date Title
WO2010005032A1 (en) Pattern-forming method
JP5065101B2 (en) Pattern formation method
TWI338196B (en)
US9690193B2 (en) Curable composition for nanoimprinting and cured product
CN103261238B (en) Optical pressure print resin combination, pattern formation method and etching mask
CN105493236A (en) Curable composition for photoimprint and method of producing film, optical component, circuit board, or electronic component using the composition
JP4963254B2 (en) Film-forming composition for nanoimprint, structure manufacturing method and structure
TWI479277B (en) Method for removing foreign particles adhered to molds
JP2007084625A (en) Photocurable resin composition and pattern-forming method using the same
JP2010143220A (en) Process and method for modifying polymer film surface interaction
JP2006203194A (en) Imprint lithography
US8404170B2 (en) Imprint lithography apparatus and method
TW201336874A (en) Curable composition for photo imprint, method for forming pattern, pattern, semiconductor device and method for manufacturing the same
KR20100139018A (en) Optical imprint method, mold duplicating method, and mold duplicate
WO2011027882A1 (en) Photocurable composition for pattern formation, and method for measuring film thickness using same
KR20110089818A (en) Resin composition for photocurable imprinting, method for forming pattern and etching mask
TW201906712A (en) Kit, laminate, method for producing laminate, method for producing cured pattern, and method for manufacturing circuit board
TW201723074A (en) Photo-imprinting resin composition, photo-imprinting resin film and patterning process
JP2010260272A (en) Pattern forming method
JP2007253577A (en) Mold member for imprint, manufacturing method therefor, and imprint method
TW201134647A (en) Nanoimprinting method and method for producing a mold
JP5447925B2 (en) Photocured product composite, photocurable composition for forming photocured product composite, and method for producing photocured product composite
JP5035992B2 (en) Mold manufacturing method
JP5467422B2 (en) Method for producing composite
JP6090732B2 (en) Optical imprint method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP