WO2010004865A1 - Organic el display and method for manufacturing same - Google Patents

Organic el display and method for manufacturing same Download PDF

Info

Publication number
WO2010004865A1
WO2010004865A1 PCT/JP2009/061370 JP2009061370W WO2010004865A1 WO 2010004865 A1 WO2010004865 A1 WO 2010004865A1 JP 2009061370 W JP2009061370 W JP 2009061370W WO 2010004865 A1 WO2010004865 A1 WO 2010004865A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
color conversion
display according
outer peripheral
panel
Prior art date
Application number
PCT/JP2009/061370
Other languages
French (fr)
Japanese (ja)
Inventor
秀世 仲村
孝一 橋本
Original Assignee
富士電機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機ホールディングス株式会社 filed Critical 富士電機ホールディングス株式会社
Priority to CN2009801091221A priority Critical patent/CN101971701A/en
Priority to US12/736,537 priority patent/US8629614B2/en
Priority to JP2010519720A priority patent/JPWO2010004865A1/en
Publication of WO2010004865A1 publication Critical patent/WO2010004865A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Definitions

  • the present invention relates to an organic EL display. More specifically, the present invention relates to an organic EL light emitting panel, and a color for receiving light in a predetermined wavelength range emitted from the organic EL light emitting panel, converting the light into a wavelength range of a desired color tone, and emitting the light on a screen.
  • the present invention relates to a top emission type organic EL display composed of a conversion filter panel and the structure of the color conversion filter panel.
  • an organic EL display As an organic EL display, a bottom emission type display in which an organic EL light emitting panel is directly formed on a color conversion filter panel, a separately manufactured color conversion filter panel and an organic EL light emitting panel, and a light emitting area and a color conversion of the organic EL light emitting panel.
  • a top emission type display in which a color pattern forming region of a filter panel is opposed to each other and bonded through a transparent resin filling material is known.
  • the conventional top emission type display has a light emitting surface of the organic EL light emitting panel 10 and a light receiving surface of the color conversion filter panel 20 facing each other, and a predetermined interval is maintained by a spacer 60.
  • the whole laminated structure part which comprises bonding, the organic electroluminescent light emission panel 10, and the color conversion filter panel 20 is taken as the structure sealed with an outer periphery sealing body (not shown).
  • the organic EL light-emitting panel 10 is usually laminated between the reflective electrodes 120 by providing a plurality of reflective electrodes 120 formed on the organic EL light-emitting panel substrate 100 via a base layer 110 and openings on the reflective electrodes 120.
  • Insulating layer 111, organic EL layer 130 including an organic light emitting layer laminated on insulating layer 111, an opening on reflective electrode 120, and reflective electrode 120 on the organic EL layer 130 on the opening of reflective electrode 120 A plurality of transparent electrodes 140 facing each other and connected to the wiring at the outer periphery of the panel, and a transparent inorganic barrier layer 150 covering the transparent electrodes 140 and the organic EL layer 130 are configured.
  • the color conversion filter panel 20 includes a color filter 210 and a black matrix 211 formed on the transparent substrate 200 in stripes, and a color conversion layer stacked on the color filter 210. 220.
  • the outer peripheral portions of the organic EL light emitting panel 10 and the color conversion filter panel 20 are sealed with an outer peripheral sealing body, and the organic EL layer 130 and the color conversion layer 220 are protected from contact with outside air, particularly moisture. Further, in order to precisely adjust the distance between the organic EL light emitting panel 10 and the color conversion filter panel 20, a spacer 60 is generally disposed between the organic EL light emitting panel 10 and the color conversion filter panel 20. .
  • a gas such as nitrogen or an inert liquid has been filled between the organic EL light emitting panel 10 and the color conversion filter panel 20.
  • the refractive index of the transparent electrode 140 is approximately 2.0, and the refractive indexes of the color conversion layer 220 and the color filter 210 are approximately 1.5, whereas the refractive index of a gas such as nitrogen is 1.0,
  • the refractive index of the active liquid is limited to about 1.3.
  • the refractive index approximates that of the transparent electrode 140 and the barrier layer 150 of the organic EL light-emitting panel 10, the color conversion layer 220 and the color filter 210 of the color conversion filter panel 20, and the like.
  • a method of filling a transparent resin such as an epoxy adhesive having a refractive index of 5 or more is generally adopted.
  • a resin-filled material made of a transparent resin such as an epoxy-based adhesive used for bonding the organic EL light-emitting panel 10 and the color conversion filter panel 20 has a higher viscosity than the liquid-filled material, and is applied to the entire bonded surface. The spread is bad.
  • the color conversion filter panel 20 manufactured by the method described in International Publication WO06 / 54421 and the organic EL light emitting panel 10 are bonded together via the resin filling material 40, the resin filling material 40 as shown in FIG.
  • the bubble 500 remains in the region divided by the partition wall 221 at the dropping position, and the entire region where sufficient bonding is required cannot be filled with the resin filling material 40.
  • the portion of the bubble 500 has a light unevenness due to a difference in refractive index, resulting in luminance unevenness. Furthermore, as shown in FIG. 3, the bubbles 500 generated in the dropping part cannot be removed sufficiently even under vacuum due to the high viscosity of the resin filling material, and expand and expand greatly when evacuated or when the resin filling material is heated and cured. Sometimes.
  • the liquid filling material does not spread uniformly to every corner of the screen area, and uneven brightness occurs.
  • the spread of the liquid filling material can be expected to some extent.
  • the resistance of the partition wall 221 is large, and it takes a long time for the liquid filling material to spread to every corner of the screen area. Also, the liquid filling material may not spread completely.
  • an object of the present invention is to provide an organic EL display including a color conversion filter panel having a partition structure for an ink jet that can spread and prevent bubbles from being entrained in a resin-filled material, and a method for manufacturing the same.
  • the inventors of the present invention have arranged ink-jet partition walls in stripes between the color conversion layers of red (R), green (G), and blue (B).
  • a color conversion filter panel in which a filling material guiding wall is arranged at a predetermined distance from the partition wall end at both ends in the longitudinal direction and an organic EL light emitting panel are bonded together via a resin filling material. It is found that the resin filling material dripped in the central part spreads without entraining air bubbles along the stripe-shaped ink jet partition walls and the filling material guiding wall, and is filled to the corners of the screen area without excess or deficiency. Completed the invention.
  • the top emission type organic EL display of the present invention is formed by laminating an organic EL light emitting panel and a color conversion filter panel, and the organic EL light emitting panel includes a substrate having a light emitting surface, and a light emitting surface. A reflective electrode, an organic EL layer, and a transparent electrode in this order.
  • the color conversion filter panel includes a transparent substrate having a light receiving surface, a plurality of striped inkjet barrier ribs on the light receiving surface, and the inkjet And a color conversion layer formed between the partition walls, and either the organic EL light emitting panel or the color conversion filter panel is disposed perpendicular to the longitudinal direction of the inkjet partition wall.
  • the organic EL light emitting panel and the color conversion filter panel are a pair of the light emitting surface and the light receiving surface. As to, are bonded via the resin filling material, wherein the resin filling material, characterized in that it is sealed periphery of the inkjet partition wall and the filler material guide wall by peripheral sealing member.
  • the resin filling material may be composed of a thermosetting transparent resin adhesive.
  • the filler material guiding wall may be a single row of partition walls or an aggregate of a plurality of rows of partition walls.
  • each of the partition walls constituting the filling material guiding wall may be continuous or intermittent.
  • each of the partition walls constituting the filler material guiding wall may have bent portions at both ends thereof. The bent portions are directed to the four corners of the outer peripheral seal body.
  • the length may increase from the inkjet partition toward the outer peripheral seal body.
  • the filler material guiding wall is disposed on the color conversion filter panel.
  • the inkjet partition and the filling material guiding wall can be formed of the same material and in the same process.
  • the outer peripheral seal body is located on the outer peripheral seal wall formed on either the organic EL light emitting panel or the color conversion filter panel, and on the outer side of the outer peripheral seal wall. You may be comprised from the outer periphery sealing material.
  • the outer peripheral seal wall is disposed on the color conversion filter panel.
  • the manufacturing method of the organic EL display of the present invention includes: (1) a step of preparing an organic EL light emitting panel by forming a reflective electrode, an organic EL layer and a transparent electrode in this order on the light emitting surface of a substrate having a light emitting surface; (2) (a) a step of forming a plurality of striped ink-jet partition walls on the light-receiving surface of the transparent substrate having the light-receiving surface; and (b) color conversion using an ink-jet method between the ink-jet partition walls.
  • a step of preparing a color conversion filter panel including a step of forming a layer; and (3) one of the organic EL light emitting panel and the color conversion filter panel perpendicular to the longitudinal direction of the inkjet partition.
  • the filler material guiding wall may be a single row of partition walls or an aggregate of a plurality of rows of partition walls.
  • each of the partition walls constituting the filling material guiding wall may be continuous or intermittent.
  • each of the partition walls constituting the filler material guiding wall may have bent portions at both ends thereof. The bent portions are directed to the four corners of the outer peripheral seal body.
  • the length may increase from the inkjet partition toward the outer peripheral seal body.
  • the filler material guiding wall may be formed on the color conversion filter panel.
  • the steps (2), (a) and (3) may be performed at the same time to form the inkjet partition and the filler material guiding wall with the same material.
  • the outer peripheral seal wall may be formed on the color conversion filter panel.
  • the steps (2), (a), (3) and (4) are simultaneously performed, and the inkjet partition, the filling material guiding wall and the outer peripheral seal are performed.
  • the wall may be formed of the same material.
  • the resin filling material may be dropped on one point of the central portion of either the organic EL light emitting panel or the color conversion filter panel.
  • the manufacturing method of the organic EL display of this invention forms the some part which comprises an organic electroluminescent light emission panel in process (1), and forms the several part which comprises a color conversion filter panel in process (2). Subsequent to step (8), (9) a step of cutting the bonded body obtained in step (8) to obtain a plurality of organic EL displays may be further included.
  • the color conversion filter panel has the inkjet partition walls arranged in a stripe shape, when the organic EL light emitting panel and the color conversion filter panel are bonded together, they are enclosed between them.
  • the flow of the resin-filled material is induced by the inkjet partition and spreads in the longitudinal direction without entraining bubbles.
  • the filler material guiding walls are arranged at both ends in the longitudinal direction of the partition wall for inkjet, the flow of the resin filler material is guided in the lateral direction and spreads all the way to the corners of the screen area. Nearly complete sealing of the light emitting panel and the color conversion filter panel is achieved. As a result, occurrence of luminance unevenness due to poor filling of the resin filling material is prevented.
  • FIG. 1A is an enlarged plan view of a pixel portion of a conventional top emission organic EL display.
  • FIG. 1B is a cross-sectional view taken along the cutting line IB-IB of the pixel portion of the conventional top emission organic EL display.
  • FIG. 1C is a cross-sectional view taken along the cutting line IC-IC of the pixel portion of the conventional top emission organic EL display.
  • FIG. 2 is an enlarged plan view of the pixel portion of the color conversion filter panel produced in Comparative Example 2 belonging to the prior art.
  • FIG. 3 is an elevation view showing a state of application of the resin filling material to the color conversion filter panel in Comparative Example 2 belonging to the prior art.
  • FIG. 4 is an elevation view showing the flow of the filling material when the organic EL light emitting panel and the color conversion filter panel in Comparative Example 2 belonging to the prior art are bonded together.
  • FIG. 5A is a front view of the top emission type organic EL display of the present invention.
  • FIG. 5B is a side view of the top emission type organic EL display of the present invention.
  • FIG. 6 is a plan view of the organic EL light emitting panel.
  • FIG. 7 is a plan view showing one embodiment of the color conversion filter panel of the present invention.
  • FIG. 8 is a plan view showing another embodiment of the color conversion filter panel of the present invention.
  • FIG. 9 is a sectional view taken along the cutting line IX-IX of the organic EL display of the present invention.
  • FIG. 10 is a cross-sectional view of the organic EL display according to the present invention taken along the section line XX.
  • FIG. 11 is a cross-sectional view along the cutting line XI-XI of the organic EL display of the present invention.
  • FIG. 12 is an enlarged plan view of a pixel portion of the color conversion filter panel of the present invention.
  • FIG. 13 is a cross-sectional view of the color conversion filter panel of the present invention taken along section line XIII-XIII.
  • FIG. 14 is a cross-sectional view of the color conversion filter panel according to the present invention taken along section line XIV-XIV.
  • FIG. 15 is a cross-sectional view showing another embodiment of the color conversion filter panel of the present invention.
  • FIG. 11 is a cross-sectional view along the cutting line XI-XI of the organic EL display of the present invention.
  • FIG. 12 is an enlarged plan view of a pixel portion of the color conversion filter panel of the present invention.
  • FIG. 16 is a plan view showing one aspect of the initial arrangement of the filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together.
  • FIG. 17 is a plan view showing another aspect of the initial arrangement of the filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together.
  • FIG. 18 is a plan view showing another aspect of the initial arrangement of the filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together.
  • FIG. 19 is a cross-sectional view showing a state of application of the resin filling material to the color conversion filter panel of the present invention.
  • FIG. 20 is a cross-sectional view showing the flow of the resin filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together.
  • FIG. 21 is a plan view showing the flow of the resin filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together.
  • FIG. 22 is a diagram showing another embodiment of the color conversion filter panel of the present invention.
  • FIG. 23 is a plan view showing the flow of the resin filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together.
  • FIG. 24 is a plan view of an organic EL light emitting panel and a color conversion filter panel used for multi-planarization of the organic EL display of the present invention.
  • FIG. 25 is a conceptual diagram of multiple layout of the organic EL display of the present invention.
  • FIG. 26 is a plan view showing the flow of the filling material when the organic EL light emitting panel and the color conversion filter panel
  • FIG. 5A is a front view of a top emission type organic EL display
  • FIG. 5B is a side view of the top emission type organic EL display
  • FIG. 6 is a plan view of the organic EL light emitting panel 10.
  • 7 and 8 are plan views showing an embodiment of the color conversion filter panel 20.
  • 9 is a cross-sectional view of the organic EL display along the cutting line IX-IX in FIG. 5A
  • FIG. 10 is a cross-sectional view of the organic EL display along the cutting line XX in FIG. 5A
  • FIG. 6 is a cross-sectional view of an organic EL display taken along a cutting line IX-IX of 5A.
  • FIG. 12 is an enlarged plan view of a pixel portion of the color conversion filter panel 20.
  • 13 and 15 are cross-sectional views showing an embodiment of the inkjet partition 221 of the color conversion filter panel.
  • FIG. 14 is a cross-sectional view of the color conversion filter panel in a direction parallel to the inkjet partition 221.
  • the organic EL display of the present invention includes an organic EL light-emitting panel 10 shown in FIG. 6 and a color conversion filter panel 20 shown in FIG. 7 or 8 as shown in FIG. 5A and FIG.
  • This is a top emission type organic EL display in which the light emitting surface and the light receiving surface of the color conversion filter panel 20 are bonded to face each other.
  • This organic EL display emits light from the surface opposite to the color pattern forming surface of the color conversion filter panel 20.
  • each subpixel is defined as an opening of the black matrix 211 (See FIGS. 13-15).
  • the organic EL light emitting panel 10 is a panel having a reflective electrode 120, an organic EL layer 130, and a bright electrode 140 in this order on a substrate.
  • the organic EL light emitting panel 10 of the present invention is configured to extract EL light emission through the transparent electrode 140.
  • the organic EL layer 130 includes an organic light emitting layer containing an organic compound that emits light when a voltage is applied.
  • the organic EL light emitting panel 10 is not particularly limited as long as the organic EL layer is configured to emit light in a predetermined wavelength range, preferably blue-green light in a wavelength range of 400 nm to 500 nm.
  • the organic EL light emitting panel substrate 100 is a TFT-embedded substrate, on a glass substrate 101, a TFT structure 102 (such as a thin film transistor) corresponding to a subpixel, a flattening layer 103 for flattening unevenness due to the TFT structure 102, and flat if desired. It comprises an inorganic passivation layer (not shown) that covers the conversion layer 103.
  • a contact hole for connecting the TFT structure 102 and the reflective electrode 120 is provided in the planarization layer 103 and the inorganic passivation layer.
  • the surface on which the TFT structure 102 or the like is formed is referred to as the “light emitting surface” of the organic EL light emitting panel substrate 100 or the “light emitting surface” of the organic EL light emitting panel 10.
  • the organic EL light emitting panel 10 includes an organic EL light emitting panel substrate 100; a reflective electrode base layer 110 connected to the TFT structure 102 through a contact hole; a reflective electrode 120; an insulating layer 111 that insulates between the reflective electrodes 120; An organic EL layer 130 including at least an organic light-emitting layer laminated on the layer 111; a transparent electrode 140 formed on the organic EL layer 130; and an inorganic barrier layer 150 covering the organic EL layer 130 and the transparent electrode 140.
  • the Furthermore, the control IC 70, the FPC attachment terminal 80, and the in-panel wiring 90 may be arranged on the frame portion outside the TFT pattern region of the glass substrate 101 (see FIG. 6).
  • the planarization layer 103 is usually made of a resin.
  • the inorganic passivation layer is composed of a single layer film such as SiO 2 , SiN, or SiON, or a laminated film in which a plurality of them are laminated, and the outgas from the resin constituting the planarization layer 103 enters the organic EL layer 130 or the like. To prevent.
  • the reflective electrode 120 is made of MoCr, CrB, Ag, Ag alloy or the like.
  • an underlying layer made of an oxide conductor such as IZO or ITO is provided between the reflective electrode 120 and the planarization layer 103 or the inorganic passivation layer. 110 may be arranged. Further, a thin layer such as IZO or ITO may be further disposed on the reflective electrode 120.
  • the insulating layer 111 is provided between the reflective electrodes 120 and covers the shoulder of the reflective electrode 120.
  • the insulating layer 111 has a plurality of openings corresponding to the subpixels of the color conversion filter panel 20, and the reflective electrode 120 is exposed in the openings.
  • the insulating layer 111 is made of an inorganic insulating film such as SiO 2 , SiN, or SiON, or an organic insulating film.
  • the organic EL layer 130 includes at least an organic light emitting layer.
  • the organic EL layer 130 may be formed of a stacked body that further includes an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like in addition to the organic light emitting layer. Each of these layers is composed of a known compound or composition.
  • the transparent electrode 140 is made of an oxide transparent conductive film such as IZO or ITO, or a translucent metal film having a thickness of several to 10 nm, and is formed so as to cover the entire screen area. Alternatively, it may have a stripe pattern along one of the long and short sides of the screen area corresponding to the pattern of the reflective electrode 120.
  • a metal film (not shown) having a high light transmittance such as MgAg or Au having a thickness of several nm is used to reduce damage to the organic EL layer 130. 130 may be present.
  • the transparent electrode 140 can be connected to the in-panel wiring 90 at the terminal 14 (FIG.
  • the terminal 14 may be formed using a layer such as the base layer 110 and the reflective electrode 120 described above.
  • the inorganic barrier layer 150 is provided so as to cover the entire TFT pattern region.
  • the inorganic barrier layer 150 is composed of a single layer such as SiO 2 , SiN, or SiON or a plurality of laminated layers thereof, and outgas from the resin filling material 40 used for bonding to the color conversion filter panel 20 is supplied to the organic EL layer 130. Prevent intrusion.
  • the color conversion filter panel 20 includes at least a color conversion layer 220 and an inkjet partition 221 on the other surface of the transparent substrate 200 whose one surface forms a display screen (see FIG. 5A).
  • a black matrix 211 arranged in a vertical and horizontal grid pattern with rectangular openings as shown in FIGS. 12 to 14, and / or It may further include a color filter 210 (R, G, B) that covers the openings provided in the black matrix 211 and is arranged repeatedly in red (R), green (G), and blue (B).
  • FIG. 5A a color conversion layer 220 and an inkjet partition 221 on the other surface of the transparent substrate 200 whose one surface forms a display screen (see FIG. 5A).
  • a black matrix 211 arranged in a vertical and horizontal grid pattern with rectangular openings as shown in FIGS. 12 to 14, and / or It may further include a color filter 210 (R, G, B) that covers the openings provided in the black matrix 211 and is arranged repeatedly in red (R), green (
  • the black matrix 211 arranged in a vertical and horizontal grid pattern, but the black matrix 211 arranged in a stripe pattern along the longitudinal direction of the screen area may be used.
  • the surface on which the color conversion layer 40 is formed is referred to as the “light receiving surface” of the transparent substrate 200 or the “light receiving surface” of the color conversion filter panel 20.
  • inkjet partition walls 221 are formed in stripes along the longitudinal direction of the screen area. Be placed.
  • a color conversion layer 220 (R, G) corresponding to each color is laminated on the red and green color filters 210 (R, G) partitioned by the inkjet partition 221 by an inkjet method. If necessary, a blue conversion layer may be laminated on the blue color filter 210B.
  • FIG. 15 corresponding to the cross section shown in FIG. 13
  • wide striped inkjet partition walls 221X that cover the blue color filter 210B and reach the black matrix 211 on both sides thereof can be arranged.
  • a spacer 60 is disposed on the stripe-shaped inkjet partition 221 or 221X as desired.
  • the inkjet partition 221 is arranged in a stripe shape along the longitudinal direction of the screen area directly on the transparent substrate 200 or on the black matrix 211, and in the gap of the inkjet partition 221.
  • the color filter 210 (R, G, B) is formed using an ink jet method, and the conversion layer 220 (R, G) is formed on the red and green color filters 210 (R, G) using the ink jet method.
  • a blue conversion layer may be formed on the blue color filter 210B as necessary.
  • the transparent substrate 200 is a substrate having a high light transmittance such as a glass substrate or a transparent plastic substrate, and one surface thereof constitutes a display screen, and the other surface can receive the color conversion layer 40 and the like. Surface.
  • the black matrix 211 is a layer that absorbs visible light, including a matrix resin and a black color material.
  • a vertical and horizontal grid-like black matrix 211 can be formed to define openings of subpixel dimensions.
  • the thickness of the black matrix 211 is generally about 1 to 2 ⁇ m.
  • a wide range of resins can be used as the matrix resin. Among them, it is preferable to use a photosensitive resin as a matrix resin, which can employ a photolithography method for forming a black matrix pattern.
  • the color filter 210 (R, G, B) is a layer that selectively transmits each of red (R), green (G), and blue (B) light.
  • the color filter 210 (R, G, B) has a stripe shape.
  • the color filters 210 (R, G, B) are arranged so as to cover the openings provided in the black matrix 211 directly on the transparent substrate 200 by repeating RGB.
  • the color filter 210 (R, G, B) has a thickness of about 1 to 2 ⁇ m at a position in contact with the transparent substrate 200. Similar to the black matrix 211, these color filters 210 include a matrix resin and color materials corresponding to RGB.
  • a photosensitive resin is preferably employed as the matrix resin.
  • the inkjet method is employed for forming the color filter 210, not only the photosensitive resin but also various thermosetting resins are employed as the matrix resin.
  • the stripe-shaped inkjet partition 221 is a layer that prevents color mixture due to scattering and leakage of ink, which is a color conversion material solution, when the color conversion layer 220 is formed by an inkjet method.
  • the inkjet partition 221 has a function of preventing color mixing.
  • the stripe-shaped inkjet partition 221 has a width that can be accommodated in the width of the black matrix and a height of 0.5 to 10 ⁇ m, preferably 1 to 5 ⁇ m.
  • the inkjet partition wall 221 is formed in a stripe shape extending in the longitudinal direction of the screen area, and extends at least one pixel, preferably two pixels or more from each end of the screen area in addition to the length of the screen area. Have a length to get.
  • the length of the pixel is the longitudinal length of the opening of the vertical and horizontal grid-like black matrix 211, the longitudinal length of the opening of the insulating layer 111 (when the black matrix 211 is not provided), or the longitudinal length of the reflective electrode 120. (When the black matrix 211 and the insulating layer 111 are not provided).
  • the length of the striped inkjet partition 221 is too long, it is not preferable because an area other than the screen area (so-called “frame”) is expanded.
  • the end of the inkjet partition 221 is open. However, the ink for forming the color conversion material may be closed when the viscosity of the ink is low and the ink leaks out.
  • the material for the inkjet partition 221 may be either an organic material or an inorganic material. Since the inkjet partition 221 having a desired shape can be easily formed by a photolithographic method, a photosensitive resin is particularly preferable. Further, SiO 2, SiN, SiON and the like are usable as the inorganic materials. In the case of using an inorganic material, a dry etching method is preferably employed as a method for obtaining the inkjet partition 221 having a desired shape.
  • the color conversion layer 220 is a layer that converts light emitted from the organic EL light-emitting panel 10, preferably light having a wavelength in the blue-green region, into a predetermined wavelength corresponding to RGB.
  • the color conversion layer 220 is disposed on the color filter 210 and has a stripe shape as shown in FIG.
  • the color conversion layer 220 is disposed at a position facing the subpixel of the organic EL light emitting panel 10.
  • the color conversion layer 220 has a thickness of 0.1 to 5 ⁇ m, preferably 0.2 to 1 ⁇ m.
  • the color conversion layer 220 is formed by ejecting ink containing a light color conversion material using an ink jet method, depositing the ink on the color filter 210 (R, G, B), and heating and drying the deposited droplets. It is formed.
  • Each of the color conversion layers 220 (R, G, B) is disposed at a position corresponding to RGB of the color filter 210. Since the light emission of the color conversion type organic EL light emitting panel 10 usually has a wavelength corresponding to blue (B) to blue-green, a blue conversion layer corresponding to blue (B) may not exist. Alternatively, if necessary, a light transmissive dummy layer may be provided at the position of the blue conversion layer.
  • an inorganic barrier layer 230 may be provided so as to cover the layers below the color conversion layer 220.
  • the inorganic barrier layer 230 is composed of a single layer such as SiO 2 , SiN, or SiON or a plurality of stacked layers thereof, and outgas from the resin filling material 40 used for bonding to the color conversion filter panel 20 enters the color conversion layer 220. To prevent.
  • an outer peripheral seal wall 310 constituting the outer peripheral seal body 30 surrounding the entire periphery of the screen area of the color conversion filter panel 20 is disposed. Further, a filler material guiding wall 50 is disposed between the outer peripheral seal wall 310 and the longitudinal end of the inkjet partition 221.
  • Either one or both of the outer peripheral seal wall 310 and the filler material guiding wall 50 may be disposed on the organic EL light emitting panel 10.
  • the outer peripheral seal wall 310 and the filler material guiding wall 50 are usually disposed on the color conversion filter panel 20. This is because it is preferable to form them in the same process as the formation of the inkjet partition 221.
  • the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together via a resin filling material 40 filled in the gap.
  • a spacer 60 may be provided to keep the distance between the organic EL light emitting panel 10 and the color conversion filter panel 20 constant.
  • the outer peripheral sealing body 30 is adhered to both the organic EL light emitting panel substrate 100 and the transparent substrate 200 of the color conversion filter panel 20, so that the layer configuration region (TFT pattern region) and the color conversion filter panel of the organic EL light emitting panel 10 are obtained.
  • the 20 layer constituent regions (black matrix forming regions) and the entire resin filling material layer 40 can be sealed.
  • the outer periphery sealing body 30 can also prevent intrusion of outside air, particularly moisture, into each component layer of the organic EL light emitting panel 10 and the color conversion filter panel 20.
  • Such an outer peripheral sealing body 30 applies an uncured outer peripheral sealing material 320 to the outer side of the outer peripheral sealing wall 310 disposed on either the organic EL light emitting panel substrate 100 or the transparent substrate 200 of the color conversion filter panel 20. Then, after the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together, the outer peripheral sealing material 320 is cured.
  • the “peripheral seal body 30” in the present invention is a general term for the outer peripheral seal wall 310 and the uncured or cured outer peripheral seal material 320.
  • the outer peripheral sealing wall 310 prevents the outer peripheral sealing material 320 from entering the EL light emitting area of the organic EL light emitting panel 10 and / or the screen area of the color conversion filter panel 20, and defines the inner edge of the outer peripheral sealing body 30. Is a layer.
  • the outer peripheral seal wall 310 is preferably formed by using the same material as the inkjet partition wall 221 and the filling material guiding wall 50 in the same process. As the outer peripheral sealing material 320, for example, a UV curable adhesive can be used.
  • the resin filling material 40 adheres to both the surface of the organic EL light emitting panel 10 (for example, the inorganic barrier layer 150 in the configuration of FIG. 9) and the surface of the color conversion filter panel 20 (for example, the inorganic barrier layer 230 in the configuration of FIG. 9). It is made of a thermosetting resin having an adhesive property and excellent translucency, such as an epoxy resin adhesive, etc.
  • the resin filling material 40 is inside the outer peripheral seal wall 310, that is, the TFT pattern of the organic EL light emitting panel 10. The region and the black matrix formation region of the color conversion filter panel 20 corresponding to the region are completely filled.
  • the filling material guiding wall 50 is made of a photosensitive resin. As shown in FIG. 21, the resin material guiding wall 50 is a resin-filled material 40 that has been guided along the stripe-shaped inkjet partition 221 when the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together. In addition, a flow in a direction perpendicular to the inkjet partition 221 is caused to guide the resin filling material 40 to every corner of the filling region.
  • the filling material guiding wall 50 is formed in a direction perpendicular to the stripe-shaped inkjet partition 221, that is, in the transverse direction of the screen area. In addition to the entire width of the screen area, the filler material guiding wall 50 extends from each of both ends thereof for a length of at least one pixel, preferably a length of two pixels or more.
  • the length of the pixel is the longitudinal length of the opening of the vertical and horizontal grid-like black matrix 211, the longitudinal length of the opening of the insulating layer 111 (when the black matrix 211 is not provided), or the longitudinal length of the reflective electrode 120. (When the black matrix 211 and the insulating layer 111 are not provided).
  • the filling material guiding wall 50 may be a single row of partition walls. However, in order to guide the resin filling material more efficiently, it is desirable that the filling material guiding wall 50 is an aggregate of a plurality of rows of partition walls. In consideration of the guiding function of the resin filling material and the prevention of enlargement of the peripheral area (so-called “frame”) of the screen area, the resin material guiding wall 50 is preferably an aggregate of 2 to 10 rows of partition walls. And an aggregate of 2 to 3 rows of partition walls. Each of the filler material guiding wall 50 or the partition walls constituting the filler material guiding wall 50 may be continuous or intermittent. FIG. 7 shows a configuration example of the filler material guiding wall 50 composed of an aggregate of three rows of continuous partition walls. FIG.
  • FIG. 8 shows a configuration example of the filler material guiding wall 50 composed of an aggregate of three rows of intermittent partition walls. Further, as shown in FIG. 8, it is also possible to employ a configuration in which the number of partitions in the center of the screen area where the resin filling material 40 is dropped is increased and the number of partitions in the vicinity of the end of the screen is reduced. Is possible.
  • the lengths of the partition walls are sequentially increased from the inner row (inkjet partition 221 side) to the outer row (outer peripheral seal wall 310 side). It is preferable to make it.
  • the resin filling material 40 can be more efficiently guided toward the apex of the outer peripheral seal wall 310 (that is, the four corners of the region where the resin filling material 40 is to be filled).
  • a bent portion may be provided at each end of the partition wall constituting the filler material guiding wall 50.
  • the bent portions are arranged so as to face the apexes of the outer peripheral seal wall 310 (that is, the four corners of the region to be filled).
  • FIG. 22 illustrates the configuration of the filler material guiding wall 50 including three partition walls 50a to 50c having bent portions.
  • the liquid filling material 40 may be pooled at the end thereof. This liquid pool may cause unevenness of the thickness of the resin filling material 40 particularly when the resin filling material 40 having a high viscosity is used.
  • the flow of the resin filling material 40 at the time of bonding using the configuration of FIG. 22 will be described with reference to FIG.
  • the resin filling material 40 guided to the inkjet partition 221 first reaches the innermost shortest partition 50a and is guided in the lateral direction.
  • the resin filling material 40 is guided toward the apex of the outer peripheral seal wall 310.
  • the filler material guiding wall 50 has the same height as the inkjet partition 221.
  • the filler material guiding wall 50 has a width of 4 to 100 ⁇ m, preferably 6 to 20 ⁇ m.
  • the interval between the partitions is preferably about the pixel pitch.
  • the filling material guiding wall 50 may be manufactured in a separate process.
  • filling failure occurs in the four corners of the filling region of the resin filling material 40 (that is, inside the outer peripheral seal wall 310), or the filling material 40 is not in the outer peripheral seal wall 30. There is a possibility of so-called “seal breakage” that leaks beyond.
  • the method for producing the organic EL display of the present invention comprises: (1) A step of forming a reflective electrode, an organic EL layer and a transparent electrode in this order on the light emitting surface of the substrate having a light emitting surface to prepare an organic EL light emitting panel; (2) (a) a step of forming a plurality of stripe-shaped inkjet partition walls on the light-receiving surface of a transparent substrate having a light-receiving surface; and (b) forming a color conversion layer between the inkjet partition walls using an inkjet method.
  • Preparing a color conversion filter panel including the step of: (3) forming a filler material guiding wall disposed perpendicularly to the longitudinal direction of the inkjet partition wall on either the organic EL light emitting panel or the color conversion filter panel; (4) forming an outer peripheral seal wall that surrounds the partition wall for inkjet and the filler material guiding wall on either the organic EL light emitting panel or the color conversion filter panel; (5) a step of dropping a resin filling material on either the organic EL light emitting panel or the color conversion filter panel; (6) applying a peripheral sealing material to the outside of the peripheral sealing wall; (7) bonding the organic EL light emitting panel and the color conversion filter panel so that the light emitting surface and the light receiving surface face each other; (8) curing the resin filling material and the outer peripheral sealing material, and forming an outer peripheral sealing body including the outer peripheral sealing wall and the outer peripheral sealing material.
  • the step (1) of forming the organic EL light emitting panel 10 includes (a) a step of forming the reflective electrode 120 on the organic EL light emitting panel substrate 100, (b) a step of forming the insulating layer 111 on the reflective electrode 120, (c) ) A step of laminating the organic EL layer 130 on the reflective electrode 120, (d) a step of forming the transparent electrode 140 on the organic EL layer 130, and (e) an inorganic barrier layer 150 on the organic EL layer 130 and the transparent electrode 140. Can be included in this order. There is no restriction
  • the organic EL light emitting panel substrate 100 in which the TFT structure 102 shown in FIGS. 9 to 11 is constructed is a process of constructing the TFT structure 102 on the glass substrate 101, and the planarizing layer 103 on the glass substrate 101 in which the TFT structure 102 is constructed. And flattening the unevenness of the substrate surface by the TFT structure 102, covering the planarizing layer 103 with an inorganic passivation layer, and applying the TFT structure 102 and the reflective electrode 120 to the planarizing layer 103 and the inorganic passivation layer.
  • step (a) of forming the reflective electrode 120 a method of sequentially laminating the base layer 110 and the reflective electrode 120 on the organic EL light emitting panel substrate 100 using a photo process is adopted.
  • step (b) of forming the insulating layer 111 an organic insulating film is formed on the reflective electrode 120, and an opening for forming a subpixel is formed by a photolithographic method, or the reflective electrode 120 is obtained.
  • a method is employed in which after an inorganic insulating film is formed between the upper electrode and the reflective electrode 120, an opening is formed on the reflective electrode 120 by etching to obtain the insulating layer 111.
  • a method of sequentially stacking each layer constituting the organic EL layer 130 by a vacuum deposition method can be employed.
  • a method of patterning the transparent electrode 140 by a sputtering method can be employed.
  • a general inorganic thin film forming method such as a CVD method or a sputtering method can be employed.
  • the process (2) for manufacturing the color conversion filter panel 20 shown in FIGS. 12 to 15 includes (a) a process of forming the inkjet partition 221 and (b) inkjet printing the color conversion layer 220 on the color filter 210.
  • the process of laminating by the method is included as an essential process.
  • Step (2) further includes (c) a step of forming color filter 210, (d) a step of forming a black matrix, and (e) a step of forming inorganic barrier layer 230 as optional steps. it can.
  • the inkjet partition 221 and the color filter 210 may be directly formed on the transparent substrate 200.
  • the color filter 210 is formed in a stripe shape so as to cover the opening of the black matrix 211, and the inkjet partition 221 is formed on the black matrix 211 between the color filters 210. May be formed. Usually, the latter is preferably employed.
  • the color filter 210 is formed between the inkjet partition 221 using an inkjet method. May be.
  • a photolithographic method is usually employed for the black matrix 211 forming step (d) and the color filter 210 forming step (c), and the photolithographic method is also preferably employed for the subsequent formation of the inkjet partition 221. .
  • Step (2) for manufacturing the color conversion filter panel 20 includes: (d) black matrix 211- (c) color filter 210- (a) inkjet partition 221- (b) color conversion layer on the transparent substrate 200.
  • the most common practice is 220.
  • the order of (b) the color conversion layer 220 or (a) the partition for ink-jet 221-(c) the color filter 210-(b) the color conversion layer 220 may be adopted.
  • the spread of the resin filling material 40 is not likely to be unevenly distributed when the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together. Any arrangement may be used as long as the spreading of the filling material 40 in the direction perpendicular to the inkjet partition 221 is not unevenly distributed.
  • ink-jet partition wall 221 has a stripe shape, bubbles are not involved when the resin filling material 40 is dropped.
  • a linear arrangement orthogonal to the inkjet partition 221 shown in FIG. 17 or a multi-point arrangement shown in FIG. 18 may be employed depending on the characteristics of the resin filling material 40.
  • the resin filling material 40 spreads along the inkjet partition 221 as shown in FIGS.
  • the wall 50 is reached, the flow direction is guided in a direction perpendicular to the pattern of the inkjet partition 221 so that at least the screen area is reliably filled.
  • the size of the arrow in FIG. 21 indicates the ease of flow of the resin filling material 40.
  • the dripping / coating amount of the resin filling material 40 is determined in consideration of the volume in the outer peripheral seal body 30 when both panels are bonded together and the curing shrinkage of the resin filling material 40.
  • the arrangement method of the resin filling material 40 on the color conversion filter panel 20 can appropriately select a dropping method, a coating method, or the like depending on the type and viscosity of the resin filling material 40.
  • a dropping / coating method with good weighing accuracy is preferably employed.
  • the dropping / coating device it is preferable to use a high-precision mechanical metering valve in which the change in the discharge amount due to the viscosity of the resin filling material 40 is small.
  • various dispenser methods that are less expensive than mechanical metering valves such as air pressure control + syringe method and in which bubbles do not easily enter the resin filling material 40 can be adopted.
  • the application step (6) of the uncured outer peripheral sealing material 320 can be performed using a dropping / coating device such as a mechanical metering valve or various dispensers.
  • both panels are brought closer to 10 to 100 ⁇ m in parallel under vacuum, and an uncured outer peripheral sealing material 320 disposed outside the outer peripheral sealing wall 310 is brought into contact with both panels.
  • Alignment is performed by an alignment device, light is irradiated to the uncured outer peripheral sealing material 320 to be temporarily cured, the inside of the outer peripheral sealing material 320 is sealed, and both the panels are pressed by gradually returning the system to normal pressure. Is implemented.
  • the uncured outer peripheral sealing material 320 contacts both panels and is pushed inward and outward when the distance between the panels is shortened.
  • the inward movement of the outer peripheral sealing material 320 is stopped by the outer peripheral sealing wall 310.
  • the adhesion amount of the outer periphery sealing material 320 is controlled so that the outer periphery sealing material 320 does not reach the end portions of both panels.
  • the pressed panels are heated to cure the resin filling material 40 and the outer peripheral sealing material 320, thereby obtaining the organic EL display of the present invention.
  • the outer peripheral sealing body 30 is formed from the outer peripheral sealing wall 310 and the cured outer peripheral sealing material 320.
  • Another manufacturing method of the organic EL display of the present invention includes a multi-cavity method.
  • a plurality of parts constituting the organic EL light emitting panel 10 are formed on one organic EL light emitting panel substrate 100, and a plurality of parts constituting the color conversion filter panel 20 are integrated into one.
  • a process of manufacturing on one transparent substrate 200 In these steps, the portion constituting the organic EL light-emitting panel 10 and the portion constituting the color conversion filter panel 20 are respectively produced with corresponding sizes and positions.
  • the substrates are bonded together to produce a plurality of organic EL displays simultaneously.
  • a plurality of organic EL displays can be obtained from a pair of substrates by performing the step (9) of separating the individual organic EL displays.
  • the pixel pitch of the panel was (60 ⁇ m ⁇ 180 ⁇ m) ⁇ RGB.
  • Example 1 (Organic EL light emitting panel 10) A TFT structure 102 for a plurality of screens is formed on a non-alkali glass substrate (trade name: AN-100, manufactured by Asahi Glass Co., Ltd.) 100 having a thickness of 200 ⁇ 200 mm ⁇ 0.7 mm, and consists of a resin layer having a thickness of 3 ⁇ m. covering the TFT structure 102 of SiO 2 passivation layer planarizing layer 103 and a thickness of 300 nm, to form a contact hole penetrating the planarization layer 103 and the SiO 2 passivation layer, it was prepared organic EL light emitting panel substrate 100.
  • AN-100 manufactured by Asahi Glass Co., Ltd.
  • a 50 nm thick IZO film was formed on the organic EL light emitting panel substrate 100 using a sputtering apparatus (RF-planar magnetron) in an Ar gas atmosphere, and a resist agent (trade name: OFRP-800, Tokyo Ohka Co., Ltd.) was applied, exposed and developed to form a pattern, and wet etching was performed to form an underlayer 110 separated into islands for each subpixel.
  • This underlayer 110 was connected to the TFT structure 102 through contact holes provided in the planarization layer 103 and the inorganic passivation layer.
  • an Ag alloy is sputtered to a thickness of 200 nm, patterned in a manner similar to the patterning of the base layer 110 so as not to protrude from the base layer 110, and the island-shaped reflective electrode 120 is formed. Formed.
  • a novolac resin (trade name: JEM-700R2, manufactured by JSR Co., Ltd.) is applied on the substrate on which the reflective electrode 120 is formed by a spin coating method, and 40 ⁇ m corresponding to the subpixel is formed on the reflective electrode 120 by a photolithographic method.
  • An insulating layer 111 was formed by providing an opening of ⁇ 160 ⁇ m.
  • the substrate on which the reflective electrode 120 and the insulating layer 111 were formed was mounted in a resistance heating vapor deposition apparatus, and Li was laminated to a thickness of 1.5 nm on the reflective electrode 120 to form a cathode buffer layer. Subsequently, the inside of the apparatus was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and the electron transport layer, the organic light emitting layer, the hole transport layer, and the hole injection layer were each 0.1 nm / sec with vacuum maintained.
  • the organic EL layer 130 was formed by sequentially laminating at a deposition rate.
  • DPVBi 4,4′-bis (2,2′-diphenylvinyl) biphenyl
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • CuPc copper phthalocyanine
  • MgAg was deposited to a thickness of 5 nm as a damage mitigating layer when the transparent electrode 140 was formed by sputtering.
  • the substrate on which the damage alleviating layer was formed was moved to the counter sputtering apparatus while maintaining the vacuum.
  • a transparent electrode 140 was formed by sputtering an IZO film having a thickness of 200 nm using a metal mask having an opening corresponding to the screen region. Further, while maintaining the vacuum, the substrate on which the transparent electrode 140 was formed was moved to a CVD apparatus, and the entire surface was covered with an inorganic barrier layer 150 having a thickness of 2 ⁇ m. Further, the FPC attachment terminal 80 and the in-panel wiring 90 were arranged in the frame portion, and a plurality of organic EL light emitting panels 10 were simultaneously produced as shown in FIG.
  • a black matrix material (trade name: CK-7001, manufactured by Fuji Film ARCH Co., Ltd.) is applied on a non-alkali glass substrate (trade name: Eagle 2000, manufactured by Corning) 200 having a thickness of 200 ⁇ 200 nm ⁇ 0.7 nm. did. Subsequently, a black and black matrix 211 in the form of a vertical and horizontal grid having openings with a horizontal pitch of 60 ⁇ m ⁇ vertical pitch of 180 ⁇ m, a horizontal width of 40 ⁇ m, and a vertical length of 160 ⁇ m was formed by photolithography. The black matrix 211 had a thickness of 1 ⁇ m.
  • red (trade name: CR-7001, available from Fuji Film Co., Ltd.), green (trade name: CG-7001, available from Fuji Film Co., Ltd.) and green (trade name: CB-7001
  • the color filter 210 was formed using a color filter material (available from Fuji Film Co., Ltd.).
  • Each color filter 210 is patterned by a photolithographic method, and a plurality of stripe-shaped portions having a thickness of 1.5 ⁇ m formed by repeating RGB covering the openings provided in the black matrix 211 along the vertical lattice of the black matrix 211 Consists of.
  • a photosensitive resin (trade name: CR-600, manufactured by Hitachi Chemical Co., Ltd.) is applied and patterned by a photolithographic method, and as shown in FIG. A stripe-shaped inkjet partition 221 having a width of 14 ⁇ m and a height of 5 ⁇ m extending along the color filter 210 was formed.
  • the filling material guiding walls 50 having a width of 14 ⁇ m, a height of 5 ⁇ m, and a length of about 44 mm are spaced from the both ends of the inkjet partition 221 by a pitch of 180 ⁇ m. In three rows.
  • an outer peripheral seal wall 310 having a width of 14 ⁇ m and a height of 5 ⁇ m was simultaneously formed on the outer periphery of the filling material partition wall 50 at a distance of about 0.5 mm over the entire periphery of the panel.
  • the above-described photosensitive resin was applied, and patterning was performed by a photolithographic method to form a plurality of spacers 60 having a diameter of about 15 ⁇ m and a height of 12 ⁇ m on the inkjet partition 221 and dried by heating. Each of the spacers 60 was disposed at a position hidden by the black matrix.
  • the above panel is set in a multi-nozzle inkjet device with a landing accuracy of ⁇ 5 ⁇ m, placed in a nitrogen atmosphere with oxygen and moisture of 50 ppm or less, and aligned with a marker made of black matrix material. It was.
  • the inkjet device is scanned, red and green light color conversion material inks are ejected aiming at the central part of the gap between the inkjet partition walls 221, and the respective inks are applied onto the red and green color filters 210 (R, G). Applying and then drying at a temperature of 100 ° C. while maintaining a nitrogen atmosphere, as shown in FIG. 13, flat striped red and green conversion layers on the red and green color filters 210 (R, G) 220 (R, G) was formed.
  • the red and green conversion layers 220 (R, G) each had a thickness of 500 nm. In this embodiment, the formation of the blue color conversion layer 220B is omitted.
  • no color mixture due to the ink beyond the inkjet partition 221 was observed, and the color mixture at both ends of the inkjet partition 221 remained within the formation range of the black matrix 211.
  • FIG. 1 A plurality of color conversion filter panels 20 having the cross-sectional structure shown were produced on one glass substrate 200 as shown in FIG.
  • the produced organic EL light emitting panel 10 and the color conversion filter panel 20 are transferred to a bonding apparatus in which each of oxygen and moisture is held in an atmosphere of 5 ppm or less, and the color conversion filter panel 20 is placed with the light receiving surface facing upward. I set it.
  • An epoxy ultraviolet curing adhesive (trade name: XNR-5516, manufactured by Nagase ChemteX Corp.) was applied as an outer peripheral sealing material 320 to the outside of the outer peripheral sealing wall 310 of each of the color conversion filter panels 20 using a dispenser. .
  • a thermosetting epoxy adhesive 40 having a lower viscosity than the above-described epoxy ultraviolet curing adhesive is discharged as the resin filling material 40 to the center of the color pattern forming region. It was dropped using a rotary mechanical metering valve with an accuracy within 5%.
  • the organic EL light emitting panel 10 was set with the light emitting surface facing downward, and the inside of the apparatus was depressurized to about 10 Pa. Both panels were made to approach in parallel until the inter-surface distance became about 30 ⁇ m, and the two panels were aligned in a state where the entire circumference of the uncured outer peripheral sealing material 320 was in contact with the organic EL light emitting panel substrate 100. Subsequently, the inside of the apparatus was gradually returned to atmospheric pressure, and at the same time, a slight load was applied, and the process surface of the organic EL light emitting panel 10 was brought into contact with the top of the spacer 60.
  • thermosetting epoxy adhesive used as the resin filling material 40 mainly flows along the inkjet partition 221 as shown in FIGS. 20 and 21, and is filled by the filling material guiding wall 50 at those ends. The flow direction was changed and it extended to the periphery.
  • the uncured outer peripheral sealant 320 was irradiated with ultraviolet rays and temporarily cured using a mask, and taken out to the general environment.
  • the resin filling material 40 made of a thermosetting adhesive spreads over the entire surface of the panel, and no residual bubbles in the screen and no seal breakage of the outer peripheral sealing body 30 are observed. It was.
  • the divided panel is set in a dry etching apparatus, and the 2 ⁇ m-thick inorganic barrier layer 150 covering the FPC attachment terminal 80 and the control IC 70 connection pad portion is removed to simultaneously produce a plurality of top emission type organic EL displays. did.
  • ⁇ Comparative example 2> In the production of the color conversion filter panel 20 of the first embodiment, a plurality of organic EL displays were processed in the same manner as in the first embodiment except that the inkjet partition walls 221 were formed in a vertical and horizontal grid pattern as shown in FIG. Made simultaneously.
  • thermosetting adhesive 40 when the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together, as shown in FIG. 3, the thermosetting adhesive 40 is not completely filled in each subpixel, and bubbles remain. It was recognized that Furthermore, as shown in FIG. 4, inhibition of the flow of the thermosetting adhesive 40 by the grid-like inkjet partition 221 was recognized.
  • the filling material guiding wall 50 is divided into five equal parts and provided intermittently as shown in FIG.
  • a plurality of organic EL displays are manufactured at the same time except that the thermosetting adhesive 40 is disposed at multiple points as shown in FIG. did.
  • Example 3 A plurality of organic EL displays are processed simultaneously in the same manner as in Example 1 except that the filling material guiding wall 50 having a bent portion is formed and a resin filling material having a viscosity of 200 to 500 mPa ⁇ s is used. Produced.
  • the filling material guide walls 50 were formed in three rows at a pitch of 180 ⁇ m with an interval of about 1.5 mm from both end portions of the inkjet partition 221. Each row of filler material guide walls 50 had a width of 14 ⁇ m and a height of 5 ⁇ m. Each row of the filler material guiding wall 50 had a length of 15 mm, 22 mm, and 35 mm in this order from the inkjet partition wall 221 side. Then, bent portions having a length of 5 mm were formed from both ends of each row of the filler material guiding wall 50, and each bent portion was directed toward the nearest corner of the outer peripheral seal wall 310.
  • Example 2 a good organic EL display was obtained in the same manner as in Example 1 although the resin filling material 40 having a higher viscosity was used.
  • organic EL light emitting panel 100 organic EL light emitting panel substrate 101 glass substrate 102 TFT structure (thin film transistor and contact hole) DESCRIPTION OF SYMBOLS 103 Planarization layer 110 Underlayer 111 Insulating layer 120 Reflective electrode 130 Organic EL layer 140 Transparent electrode 150 Inorganic barrier layer 20 Color conversion filter panel 200 Transparent substrate 210 Color filter 211 Black matrix 220 Color conversion layer 221 Inkjet partition 230 Inorganic barrier layer 30 outer peripheral sealing body 310 outer peripheral sealing wall 320 outer peripheral sealing material (including uncured and cured) 40 Resin Filling Material 50 Filling Material Guide Wall 60 Spacer 70 Control IC 80 FPC mounting terminal 90 Wiring in panel

Abstract

Provided is a top emission type organic EL display realizing an improved filling of resin filling material when an organic EL light emission panel is bonded to a color conversion filter panel via the resin filling material.  A method for manufacturing the display is also disclosed.  The organic EL display has a stripe-shaped ink jet partition arranged on the color conversion filter panel and a filling material introducing wall arranged between the longitudinal direction end of the ink jet partition and an external seal body.

Description

有機ELディスプレイおよびその製造方法Organic EL display and manufacturing method thereof
 本発明は、有機ELディスプレイに関する。さらに詳しくは、本発明は、有機EL発光パネルと、該有機EL発光パネルで発光させた所定波長範囲の光を受光し、所望の色調の波長範囲の光に変換して、画面に出光させる色変換フィルタパネルとで構成されるトップエミッション型有機ELディスプレイ、ならびに前記色変換フィルタパネルの構造に関する。 The present invention relates to an organic EL display. More specifically, the present invention relates to an organic EL light emitting panel, and a color for receiving light in a predetermined wavelength range emitted from the organic EL light emitting panel, converting the light into a wavelength range of a desired color tone, and emitting the light on a screen. The present invention relates to a top emission type organic EL display composed of a conversion filter panel and the structure of the color conversion filter panel.
 有機ELディスプレイとして、色変換フィルタパネル上に有機EL発光パネルを直接形成したボトムエミッション型ディスプレイと、個別に製造した色変換フィルタパネルと有機EL発光パネルとを有機EL発光パネルの発光領域と色変換フィルタパネルのカラーパターン形成領域とを対向させ、透明な樹脂充填材料を介して貼り合わせたトップエミッション型ディスプレイが知られている。 As an organic EL display, a bottom emission type display in which an organic EL light emitting panel is directly formed on a color conversion filter panel, a separately manufactured color conversion filter panel and an organic EL light emitting panel, and a light emitting area and a color conversion of the organic EL light emitting panel. A top emission type display in which a color pattern forming region of a filter panel is opposed to each other and bonded through a transparent resin filling material is known.
 トップエミッション型ディスプレイの従来例は、図1A~1Cに示すように、有機EL発光パネル10の発光面と色変換フィルタパネル20の受光面とを対向させ、スペーサ60により所定の間隔を保持して貼り合わせ、有機EL発光パネル10および色変換フィルタパネル20を構成する全積層構造部分を外周シール体(不図示)により密封する構成をとる。 As shown in FIGS. 1A to 1C, the conventional top emission type display has a light emitting surface of the organic EL light emitting panel 10 and a light receiving surface of the color conversion filter panel 20 facing each other, and a predetermined interval is maintained by a spacer 60. The whole laminated structure part which comprises bonding, the organic electroluminescent light emission panel 10, and the color conversion filter panel 20 is taken as the structure sealed with an outer periphery sealing body (not shown).
 有機EL発光パネル10は、通常、有機EL発光パネル基板100上に下地層110を介して形成された複数の反射電極120、反射電極120上に開口部を設けて反射電極120間に積層された絶縁層111、反射電極120上の開口部および絶縁層111上に積層された有機発光層を含む有機EL層130、有機EL層130上に前記反射電極120の開口部上で前記反射電極120と向かい合い、パネル外周部において配線に接続されている複数の透明電極140、および透明電極140および有機EL層130を被覆する透明な無機バリア層150で構成されている。 The organic EL light-emitting panel 10 is usually laminated between the reflective electrodes 120 by providing a plurality of reflective electrodes 120 formed on the organic EL light-emitting panel substrate 100 via a base layer 110 and openings on the reflective electrodes 120. Insulating layer 111, organic EL layer 130 including an organic light emitting layer laminated on insulating layer 111, an opening on reflective electrode 120, and reflective electrode 120 on the organic EL layer 130 on the opening of reflective electrode 120 A plurality of transparent electrodes 140 facing each other and connected to the wiring at the outer periphery of the panel, and a transparent inorganic barrier layer 150 covering the transparent electrodes 140 and the organic EL layer 130 are configured.
 一方、色変換フィルタパネル20は、図1A~1Cに示したように、透明基板200上にストライプ上に形成されたカラーフィルタ210およびブラックマトリクス211、ならびにカラーフィルタ210上に積層された色変換層220で構成されている。 On the other hand, as shown in FIGS. 1A to 1C, the color conversion filter panel 20 includes a color filter 210 and a black matrix 211 formed on the transparent substrate 200 in stripes, and a color conversion layer stacked on the color filter 210. 220.
 有機EL発光パネル10および色変換フィルタパネル20の外周部は、外周シール体で密封され、有機EL層130および色変換層220は、外気、特に水分との接触が遮断され、保護されている。また、有機EL発光パネル10と色変換フィルタパネル20との間隔の精密な調整には、有機EL発光パネル10と色変換フィルタパネル20との間に、スペーサ60を配置するのが一般的である。 The outer peripheral portions of the organic EL light emitting panel 10 and the color conversion filter panel 20 are sealed with an outer peripheral sealing body, and the organic EL layer 130 and the color conversion layer 220 are protected from contact with outside air, particularly moisture. Further, in order to precisely adjust the distance between the organic EL light emitting panel 10 and the color conversion filter panel 20, a spacer 60 is generally disposed between the organic EL light emitting panel 10 and the color conversion filter panel 20. .
 色変換フィルタパネル20のカラーフィルタ210および色変換層220をパターン状に形成するために、従来、フォトリソグラフ法が採用されてきた。しかしながら、カラーフィルタおよび色変換層に用いられる材料を有効活用でき、サブピクセル単位の塗布欠陥の補修も可能な方法として、特開2004-288403号公報は、インクジェット法による形成方法を提案している(特許文献1参照)。 Conventionally, a photolithographic method has been employed to form the color filter 210 and the color conversion layer 220 of the color conversion filter panel 20 in a pattern. However, as a method that can effectively use materials used for the color filter and the color conversion layer and can repair a coating defect in units of subpixels, Japanese Patent Application Laid-Open No. 2004-288403 proposes a forming method using an inkjet method. (See Patent Document 1).
 また、インクジェット法によるカラーフィルタ210および色変換層220の形成時におけるサブピクセル間の混色を防止する方法として、国際公開WO06/54421号公報は、図2に示すように、縦横格子状の厚膜で構成される隔壁221で各サブピクセルを包囲し、包囲された各サブピクセル内にインクジェット法により微量の色素含有インクを着弾させ、加熱乾燥してカラーフィルタ210および色変換層220を形成する方法を提案している(特許文献2参照)。国際公開WO06/54421号公報においては、色変換フィルタパネル20と有機EL発光パネル10とを樹脂充填材料を介して貼り合わせる記載はない。 As a method for preventing color mixture between sub-pixels during the formation of the color filter 210 and the color conversion layer 220 by the ink jet method, International Publication WO06 / 54421 discloses a thick film having a vertical and horizontal grid pattern as shown in FIG. Each of the sub-pixels is surrounded by a partition wall 221 composed of the following: a small amount of dye-containing ink is landed in each of the surrounded sub-pixels by an ink jet method, and the color filter 210 and the color conversion layer 220 are formed by heating and drying. (Refer to Patent Document 2). In the international publication WO06 / 54421, there is no description that the color conversion filter panel 20 and the organic EL light emitting panel 10 are bonded together through a resin filling material.
 従来、有機EL発光パネル10と色変換フィルタパネル20との間には、窒素などの気体または不活性液体が充填されてきている。しかしながら、透明電極140の屈折率は2.0前後、色変換層220およびカラーフィルタ210の屈折率は1.5前後であるのに対して、窒素などの気体の屈折率は1.0、不活性液体の屈折率は1.3程度が限界である。その結果、充填される気体または不活性液体とそれに隣接する構成層との屈折率差が大きく、光の取り出し効率があまり良くなかった。 Conventionally, a gas such as nitrogen or an inert liquid has been filled between the organic EL light emitting panel 10 and the color conversion filter panel 20. However, the refractive index of the transparent electrode 140 is approximately 2.0, and the refractive indexes of the color conversion layer 220 and the color filter 210 are approximately 1.5, whereas the refractive index of a gas such as nitrogen is 1.0, The refractive index of the active liquid is limited to about 1.3. As a result, the refractive index difference between the gas or inert liquid to be filled and the constituent layer adjacent thereto was large, and the light extraction efficiency was not very good.
 近年では、光の取出し効率をより向上させる手段として、有機EL発光パネル10の透明電極140およびバリア層150、色変換フィルタパネル20の色変換層220およびカラーフィルタ210などと屈折率が近似した1.5以上の屈折率を有するエポキシ系接着剤などの透明樹脂を充填する方法が、一般的に採用されるようになってきている。 In recent years, as a means for further improving the light extraction efficiency, the refractive index approximates that of the transparent electrode 140 and the barrier layer 150 of the organic EL light-emitting panel 10, the color conversion layer 220 and the color filter 210 of the color conversion filter panel 20, and the like. A method of filling a transparent resin such as an epoxy adhesive having a refractive index of 5 or more is generally adopted.
 有機EL発光パネル10と色変換フィルタパネル20との貼り合わせに用いられるエポキシ系接着剤などの透明樹脂からなる樹脂充填材料は、液体充填材料に比較して粘度が高く、貼り合わせ面全体への拡がりが悪い。国際公開WO06/54421号公報に記載の方法で製造した色変換フィルタパネル20と有機EL発光パネル10とを、樹脂充填材料40を介して貼り合わせた場合、図3に示すように樹脂充填材料40の滴下位置で隔壁221により区分された領域内に気泡500が残存してしまい、十分な貼り合わせが要求される領域全体に樹脂充填材料40を充填ができない。気泡500の部分は、屈折率の違いから光の取り出し効率が下がり、輝度ムラとなる。さらに、図3に示すように滴下部に生成した気泡500は、樹脂充填材料の粘度が高いことにより真空下でも十分に除去できず、真空引きや樹脂充填材料の加熱硬化時に膨張して大きく広がることがある。 A resin-filled material made of a transparent resin such as an epoxy-based adhesive used for bonding the organic EL light-emitting panel 10 and the color conversion filter panel 20 has a higher viscosity than the liquid-filled material, and is applied to the entire bonded surface. The spread is bad. When the color conversion filter panel 20 manufactured by the method described in International Publication WO06 / 54421 and the organic EL light emitting panel 10 are bonded together via the resin filling material 40, the resin filling material 40 as shown in FIG. The bubble 500 remains in the region divided by the partition wall 221 at the dropping position, and the entire region where sufficient bonding is required cannot be filled with the resin filling material 40. The portion of the bubble 500 has a light unevenness due to a difference in refractive index, resulting in luminance unevenness. Furthermore, as shown in FIG. 3, the bubbles 500 generated in the dropping part cannot be removed sufficiently even under vacuum due to the high viscosity of the resin filling material, and expand and expand greatly when evacuated or when the resin filling material is heated and cured. Sometimes.
 また、液晶などの貼り合わせに採用されている一般的な液体充填材料の真空滴下貼り合わせ法では、液体充填材料は画面領域の隅々にまで均一に拡がらず、輝度ムラなどが発生する場合がある。具体的には、図4に示すように、滴下後に雰囲気を減圧してから貼り合わせを行うので、液体充填材料の広がりはある程度期待できる。しかしながら、隔壁221の抵抗が大きく、画面領域の隅々にまで液体充填材料が広がるのに多大な時間を要する。また、液体充填材料が完全に広がらない可能性もある。 In addition, in the general liquid filling material vacuum drop bonding method that is used for bonding liquid crystals, etc., the liquid filling material does not spread uniformly to every corner of the screen area, and uneven brightness occurs. There is. Specifically, as shown in FIG. 4, since the atmosphere is decompressed after the dropping and then the bonding is performed, the spread of the liquid filling material can be expected to some extent. However, the resistance of the partition wall 221 is large, and it takes a long time for the liquid filling material to spread to every corner of the screen area. Also, the liquid filling material may not spread completely.
特開2004-288403号公報JP 2004-288403 A 国際公開WO06/54421号公報International Publication WO06 / 54421
 本発明は、有機EL発光パネルと、インクジェット法を採用して色変換層を形成した色変換フィルタパネルとを樹脂充填材料を用いて貼り合わせる際に、樹脂充填材料が画面領域の隅々にまで広がること、および樹脂充填材料への気泡の巻き込みを防止することを可能にするインクジェット用隔壁構造を有する色変換フィルタパネルを構成に含む有機ELディスプレイおよびその製造方法を提供することを目的とする。 In the present invention, when an organic EL light emitting panel and a color conversion filter panel in which a color conversion layer is formed by using an ink jet method are bonded using a resin filling material, the resin filling material extends to every corner of the screen area. An object of the present invention is to provide an organic EL display including a color conversion filter panel having a partition structure for an ink jet that can spread and prevent bubbles from being entrained in a resin-filled material, and a method for manufacturing the same.
 本発明者らは、前記目的を達成すべく鋭意検討した結果、赤(R)、緑(G)および青(B)の色変換層間にインクジェット用隔壁をストライプ状に配置し、インクジェット用隔壁の長手方向両端部に隔壁端部から所定の間隔をおいて充填材料誘導壁を配置した色変換フィルタパネルと、有機EL発光パネルとを、樹脂充填材料を介して貼り合わせることにより、カラーフィルタパネルの中央部に滴下された樹脂充填材料がストライプ状のインクジェット用隔壁および充填材料誘導壁に沿って気泡を巻き込むことなしに拡がり、画面領域の隅々にまで過不足なく充填されることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the inventors of the present invention have arranged ink-jet partition walls in stripes between the color conversion layers of red (R), green (G), and blue (B). A color conversion filter panel in which a filling material guiding wall is arranged at a predetermined distance from the partition wall end at both ends in the longitudinal direction and an organic EL light emitting panel are bonded together via a resin filling material. It is found that the resin filling material dripped in the central part spreads without entraining air bubbles along the stripe-shaped ink jet partition walls and the filling material guiding wall, and is filled to the corners of the screen area without excess or deficiency. Completed the invention.
 本発明のトップエミッション型有機ELディスプレイは、有機EL発光パネルと色変換フィルタパネルとを貼り合わせて形成されており、前記有機EL発光パネルは、発光面を有する基板、ならびに、前記発光面上に、反射電極、有機EL層および透明電極をこの順に含み、前記色変換フィルタパネルは、受光面を有する透明基板、ならびに、前記受光面上に、複数のストライプ状のインクジェット用隔壁と、前記インクジェット用隔壁の間に形成された色変換層とを含み、前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方は、前記インクジェット用隔壁の長手方向に対して垂直に配置された充填材料誘導壁をさらに含み、前記有機EL発光パネルと前記色変換フィルタパネルとは、前記発光面と前記受光面とが対向するように、樹脂充填材料を介して貼り合わせられ、前記樹脂充填材料、前記インクジェット用隔壁および前記充填材料誘導壁の外周を外周シール体によって密封されていることを特徴とする。ここで、本発明の有機ELディスプレイにおいて、樹脂充填材料は、熱硬化性の透明樹脂接着剤から構成されていてもよい。また、インクジェット用隔壁は、色変換層を包含する画面領域の両端において、1画素分以上外側まで延在することが望ましい。 The top emission type organic EL display of the present invention is formed by laminating an organic EL light emitting panel and a color conversion filter panel, and the organic EL light emitting panel includes a substrate having a light emitting surface, and a light emitting surface. A reflective electrode, an organic EL layer, and a transparent electrode in this order. The color conversion filter panel includes a transparent substrate having a light receiving surface, a plurality of striped inkjet barrier ribs on the light receiving surface, and the inkjet And a color conversion layer formed between the partition walls, and either the organic EL light emitting panel or the color conversion filter panel is disposed perpendicular to the longitudinal direction of the inkjet partition wall. The organic EL light emitting panel and the color conversion filter panel are a pair of the light emitting surface and the light receiving surface. As to, are bonded via the resin filling material, wherein the resin filling material, characterized in that it is sealed periphery of the inkjet partition wall and the filler material guide wall by peripheral sealing member. Here, in the organic EL display of the present invention, the resin filling material may be composed of a thermosetting transparent resin adhesive. In addition, it is desirable that the inkjet partition walls extend to the outside by one pixel or more at both ends of the screen region including the color conversion layer.
 ここで、充填材料誘導壁は、1列の隔壁、または複数列の隔壁の集合体であってもよい。また、充填材料誘導壁を構成する隔壁のそれぞれは、連続していても、断続していてもよい。さらに、充填材料誘導壁を構成する隔壁のそれぞれは、その両端に屈曲部を有してもよい。該屈曲部は、前記外周シール体の四隅を指向する。さらに、充填材料誘導壁が複数列の隔壁の集合体から構成される場合、前記インクジェット用隔壁から前記外周シール体に向かって長さが増大していてもよい。 Here, the filler material guiding wall may be a single row of partition walls or an aggregate of a plurality of rows of partition walls. Moreover, each of the partition walls constituting the filling material guiding wall may be continuous or intermittent. Furthermore, each of the partition walls constituting the filler material guiding wall may have bent portions at both ends thereof. The bent portions are directed to the four corners of the outer peripheral seal body. Furthermore, when the filling material guiding wall is configured by an aggregate of a plurality of rows of partition walls, the length may increase from the inkjet partition toward the outer peripheral seal body.
 また、本発明の有機ELディスプレイにおいて、充填材料誘導壁は、色変換フィルタパネル上に配置されていることが望ましい。この場合、インクジェット用隔壁および充填材料誘導壁を同一の材料で同一の工程で形成することができる。 In the organic EL display of the present invention, it is desirable that the filler material guiding wall is disposed on the color conversion filter panel. In this case, the inkjet partition and the filling material guiding wall can be formed of the same material and in the same process.
 さらに、本発明の有機ELディスプレイにおいて、外周シール体は、前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方の上に形成された外周シール壁と、前記外周シール壁の外側に位置する外周シール材とから構成されていてもよい。ここで、外周シール壁は、前記色変換フィルタパネル上に配置されていることが望ましい。外周シール壁および充填材料誘導壁が色変換フィルタパネル上に配置されている場合、インクジェット用隔壁、充填材料誘導壁および外周シール壁を同一の材料で同一の工程で形成することができる。 Furthermore, in the organic EL display of the present invention, the outer peripheral seal body is located on the outer peripheral seal wall formed on either the organic EL light emitting panel or the color conversion filter panel, and on the outer side of the outer peripheral seal wall. You may be comprised from the outer periphery sealing material. Here, it is preferable that the outer peripheral seal wall is disposed on the color conversion filter panel. When the outer peripheral seal wall and the filling material guiding wall are disposed on the color conversion filter panel, the inkjet partition, the filling material guiding wall, and the outer sealing wall can be formed of the same material and in the same process.
 本発明の有機ELディスプレイの製造方法は:(1)発光面を有する基板の前記発光面上に反射電極、有機EL層および透明電極をこの順に形成して、有機EL発光パネルを準備する工程と;(2)(a)受光面を有する透明基板の前記受光面上に複数のストライプ状のインクジェット用隔壁を形成する工程と、(b)前記インクジェット用隔壁の間にインクジェット法を用いて色変換層を形成する工程とを含む、色変換フィルタパネルを準備する工程と;(3)前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方に、前記インクジェット用隔壁の長手方向に対して垂直に配置される充填材料誘導壁を形成する工程と;(4)前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方に、前記インクジェット用隔壁および前記充填材料誘導壁を包囲する外周シール壁を形成する工程と;(5)前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方に、樹脂充填材料を配置する工程と;(6)前記外周シール壁の外側に外周シール材を塗布する工程と;(7)前記発光面と前記受光面とが対向するように、前記有機EL発光パネルおよび前記色変換フィルタパネルを貼り合わせる工程と;(8)前記樹脂充填材料および前記外周シール材を硬化させる工程とを含む。 The manufacturing method of the organic EL display of the present invention includes: (1) a step of preparing an organic EL light emitting panel by forming a reflective electrode, an organic EL layer and a transparent electrode in this order on the light emitting surface of a substrate having a light emitting surface; (2) (a) a step of forming a plurality of striped ink-jet partition walls on the light-receiving surface of the transparent substrate having the light-receiving surface; and (b) color conversion using an ink-jet method between the ink-jet partition walls. A step of preparing a color conversion filter panel including a step of forming a layer; and (3) one of the organic EL light emitting panel and the color conversion filter panel perpendicular to the longitudinal direction of the inkjet partition. Forming a filler material guiding wall disposed on the surface of the organic EL light-emitting panel or the color conversion filter panel; A step of forming an outer peripheral sealing wall surrounding the partition wall and the filler material guiding wall; and (5) a step of disposing a resin filler material on either the organic EL light emitting panel or the color conversion filter panel; (6) a step of applying an outer peripheral sealing material to the outside of the outer peripheral sealing wall; and (7) attaching the organic EL light emitting panel and the color conversion filter panel so that the light emitting surface and the light receiving surface face each other. And (8) curing the resin-filled material and the outer peripheral sealing material.
 ここで、充填材料誘導壁は、1列の隔壁、または複数列の隔壁の集合体であってもよい。また、充填材料誘導壁を構成する隔壁のそれぞれは、連続していても、断続していてもよい。さらに、充填材料誘導壁を構成する隔壁のそれぞれは、その両端に屈曲部を有してもよい。該屈曲部は、前記外周シール体の四隅を指向する。さらに、充填材料誘導壁が複数列の隔壁の集合体から構成される場合、前記インクジェット用隔壁から前記外周シール体に向かって長さが増大していてもよい。 Here, the filler material guiding wall may be a single row of partition walls or an aggregate of a plurality of rows of partition walls. Moreover, each of the partition walls constituting the filling material guiding wall may be continuous or intermittent. Furthermore, each of the partition walls constituting the filler material guiding wall may have bent portions at both ends thereof. The bent portions are directed to the four corners of the outer peripheral seal body. Furthermore, when the filling material guiding wall is configured by an aggregate of a plurality of rows of partition walls, the length may increase from the inkjet partition toward the outer peripheral seal body.
 また、工程(3)において、前記充填材料誘導壁が前記色変換フィルタパネル上に形成してもよい。この場合において、工程(2)(a)および(3)を同時に実施し、前記インクジェット用隔壁および前記充填材料誘導壁を同一の材料で形成してもよい。 In the step (3), the filler material guiding wall may be formed on the color conversion filter panel. In this case, the steps (2), (a) and (3) may be performed at the same time to form the inkjet partition and the filler material guiding wall with the same material.
 さらに、工程(4)において、前記外周シール壁を前記色変換フィルタパネル上に形成してもよい。外周シール壁および充填材料誘導壁を色変換フィルタパネル上に形成する場合、工程(2)(a)、(3)および(4)を同時に実施し、インクジェット用隔壁、充填材料誘導壁および外周シール壁を同一の材料で形成してもよい。 Furthermore, in the step (4), the outer peripheral seal wall may be formed on the color conversion filter panel. When the outer peripheral seal wall and the filling material guiding wall are formed on the color conversion filter panel, the steps (2), (a), (3) and (4) are simultaneously performed, and the inkjet partition, the filling material guiding wall and the outer peripheral seal are performed. The wall may be formed of the same material.
 また、工程(5)において、樹脂充填材料が、前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方の中央部の1点に滴下してもよい。 Further, in the step (5), the resin filling material may be dropped on one point of the central portion of either the organic EL light emitting panel or the color conversion filter panel.
 さらに、本発明の有機ELディスプレイの製造方法は、工程(1)において有機EL発光パネルを構成する複数の部分を形成し、工程(2)において色変換フィルタパネルを構成する複数の部分を形成し、工程(8)に続いて(9)工程(8)で得られる貼り合わせ体を切断して、複数の有機ELディスプレイを得る工程をさらに含んでもよい。 Furthermore, the manufacturing method of the organic EL display of this invention forms the some part which comprises an organic electroluminescent light emission panel in process (1), and forms the several part which comprises a color conversion filter panel in process (2). Subsequent to step (8), (9) a step of cutting the bonded body obtained in step (8) to obtain a plurality of organic EL displays may be further included.
 本発明の有機ELディスプレイにおいては、色変換フィルタパネルがストライプ状に配置されたインクジェット用隔壁を有することにより、有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時に、それらの間に封入される樹脂充填材料の流れが前記インクジェット用隔壁により誘導され、気泡を巻き込むことなく長手方向に広がる。加えて、インクジェット用隔壁の長手方向両端部に充填材料誘導壁が配置されていることにより、樹脂充填材料の流れが横手方向に誘導され、画面領域の隅々にまで過不足なく拡がり、有機EL発光パネルおよび色変換フィルタパネルのほぼ完全なシールが達成される。その結果、樹脂充填材料の充填不良に起因する輝度ムラの発生が防止される。 In the organic EL display of the present invention, since the color conversion filter panel has the inkjet partition walls arranged in a stripe shape, when the organic EL light emitting panel and the color conversion filter panel are bonded together, they are enclosed between them. The flow of the resin-filled material is induced by the inkjet partition and spreads in the longitudinal direction without entraining bubbles. In addition, since the filler material guiding walls are arranged at both ends in the longitudinal direction of the partition wall for inkjet, the flow of the resin filler material is guided in the lateral direction and spreads all the way to the corners of the screen area. Nearly complete sealing of the light emitting panel and the color conversion filter panel is achieved. As a result, occurrence of luminance unevenness due to poor filling of the resin filling material is prevented.
 また、有機EL発光パネルと色変換フィルタパネルとの貼り合わせに用いる樹脂充填材料の滴下・塗布装置として、高価な高精度のメカニカル計量バルブを使用する必要がなく、比較的に安価な空気圧制御+シリンジ方式等の多様なディスペンサ方式を採用できる利点を有する。 Moreover, it is not necessary to use an expensive high-precision mechanical metering valve as a resin filling material dripping / coating device used for bonding the organic EL light emitting panel and the color conversion filter panel. There is an advantage that various dispenser methods such as a syringe method can be adopted.
図1Aは、従来技術のトップエミッション型有機ELディスプレイの画素部分の拡大平面図である。FIG. 1A is an enlarged plan view of a pixel portion of a conventional top emission organic EL display. 図1Bは、従来技術のトップエミッション型有機ELディスプレイの画素部分の切断線IB-IBに沿った断面図である。FIG. 1B is a cross-sectional view taken along the cutting line IB-IB of the pixel portion of the conventional top emission organic EL display. 図1Cは、従来技術のトップエミッション型有機ELディスプレイの画素部分の切断線IC-ICに沿った断面図である。FIG. 1C is a cross-sectional view taken along the cutting line IC-IC of the pixel portion of the conventional top emission organic EL display. 図2は、従来技術に属する比較例2で作製した色変換フィルタパネルの画素部分の拡大平面図である。FIG. 2 is an enlarged plan view of the pixel portion of the color conversion filter panel produced in Comparative Example 2 belonging to the prior art. 図3は、従来技術に属する比較例2における色変換フィルタパネルに対する樹脂充填材料の塗布の状態を示す立面図である。FIG. 3 is an elevation view showing a state of application of the resin filling material to the color conversion filter panel in Comparative Example 2 belonging to the prior art. 図4は、従来技術に属する比較例2における有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時の充填材料の流れを示す立面図である。FIG. 4 is an elevation view showing the flow of the filling material when the organic EL light emitting panel and the color conversion filter panel in Comparative Example 2 belonging to the prior art are bonded together. 図5Aは、本発明のトップエミッション型有機ELディスプレイの正面図である。FIG. 5A is a front view of the top emission type organic EL display of the present invention. 図5Bは、本発明のトップエミッション型有機ELディスプレイの側面図である。FIG. 5B is a side view of the top emission type organic EL display of the present invention. 図6は、有機EL発光パネルの平面図である。FIG. 6 is a plan view of the organic EL light emitting panel. 図7は、本発明の色変換フィルタパネルの1つの実施態様を示す平面図である。FIG. 7 is a plan view showing one embodiment of the color conversion filter panel of the present invention. 図8は、本発明の色変換フィルタパネルの別の実施態様を示す平面図である。FIG. 8 is a plan view showing another embodiment of the color conversion filter panel of the present invention. 図9は、本発明の有機ELディスプレイの切断線IX-IXに沿った断面図である。FIG. 9 is a sectional view taken along the cutting line IX-IX of the organic EL display of the present invention. 図10は、本発明の有機ELディスプレイの切断線X-Xに沿った断面図である。FIG. 10 is a cross-sectional view of the organic EL display according to the present invention taken along the section line XX. 図11は、本発明の有機ELディスプレイの切断線XI-XIに沿った断面図である。FIG. 11 is a cross-sectional view along the cutting line XI-XI of the organic EL display of the present invention. 図12は、本発明の色変換フィルタパネルの画素部分の拡大平面図である。FIG. 12 is an enlarged plan view of a pixel portion of the color conversion filter panel of the present invention. 図13は、本発明の色変換フィルタパネルの切断線XIII-XIIIに沿った断面図である。FIG. 13 is a cross-sectional view of the color conversion filter panel of the present invention taken along section line XIII-XIII. 図14は、本発明の色変換フィルタパネルの切断線XIV-XIVに沿った断面図である。FIG. 14 is a cross-sectional view of the color conversion filter panel according to the present invention taken along section line XIV-XIV. 図15は、本発明の色変換フィルタパネルの別の実施態様を示す断面図である。FIG. 15 is a cross-sectional view showing another embodiment of the color conversion filter panel of the present invention. 図16は、本発明における有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時の充填材料の初期配置の1つの態様を示す平面図である。FIG. 16 is a plan view showing one aspect of the initial arrangement of the filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together. 図17は、本発明における有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時の充填材料の初期配置の別の態様を示す平面図である。FIG. 17 is a plan view showing another aspect of the initial arrangement of the filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together. 図18は、本発明における有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時の充填材料の初期配置の別の態様を示す平面図である。FIG. 18 is a plan view showing another aspect of the initial arrangement of the filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together. 図19は、本発明の色変換フィルタパネルに対する樹脂充填材料の塗布の状態を示す断面図である。FIG. 19 is a cross-sectional view showing a state of application of the resin filling material to the color conversion filter panel of the present invention. 図20は、本発明における有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時の樹脂充填材料の流れを示す断面図である。FIG. 20 is a cross-sectional view showing the flow of the resin filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together. 図21は、本発明における有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時の樹脂充填材料の流れを示す平面図である。FIG. 21 is a plan view showing the flow of the resin filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together. 図22は、本発明の色変換フィルタパネルの別の実施態様を示す図である。FIG. 22 is a diagram showing another embodiment of the color conversion filter panel of the present invention. 図23は、本発明における有機EL発光パネルと色変換フィルタパネルとを貼り合わせるときの樹脂充填材料の流れを示す平面図である。FIG. 23 is a plan view showing the flow of the resin filling material when the organic EL light emitting panel and the color conversion filter panel in the present invention are bonded together. 図24は、本発明の有機ELディスプレイの多面取りに使用される、有機EL発光パネルおよび色変換フィルタパネルの平面図である。FIG. 24 is a plan view of an organic EL light emitting panel and a color conversion filter panel used for multi-planarization of the organic EL display of the present invention. 図25は、本発明の有機ELディスプレイの多面取りの概念図である。FIG. 25 is a conceptual diagram of multiple layout of the organic EL display of the present invention. 図26は、比較例1における有機EL発光パネルと色変換フィルタパネルとを貼り合わせる時の充填材料の流れを示す平面図である。FIG. 26 is a plan view showing the flow of the filling material when the organic EL light emitting panel and the color conversion filter panel in Comparative Example 1 are bonded together.
 本発明の有機ELディスプレイを、図5A~15に基づいて詳細に説明する。図5Aは、トップエミッション型有機ELディスプレイの正面図であり、図5Bは、トップエミッション型有機ELディスプレイの側面図である。図6は有機EL発光パネル10の平面図である。図7および図8は色変換フィルタパネル20の実施態様を示す平面図である。図9は図5Aの切断線IX-IXに沿った有機ELディスプレイの断面図であり、図10は図5Aの切断線X-Xに沿った有機ELディスプレイの断面図であり、図11は図5Aの切断線IX-IXに沿った有機ELディスプレイの断面図である。図12は、色変換フィルタパネル20の画素部分の拡大平面図である。図13および図15は色変換フィルタパネルのインクジェット用隔壁221の実施態様を示す断面図である。図14は色変換フィルタパネルのインクジェット用隔壁221に平行な方向の断面図である。 The organic EL display of the present invention will be described in detail with reference to FIGS. 5A to 15. FIG. 5A is a front view of a top emission type organic EL display, and FIG. 5B is a side view of the top emission type organic EL display. FIG. 6 is a plan view of the organic EL light emitting panel 10. 7 and 8 are plan views showing an embodiment of the color conversion filter panel 20. 9 is a cross-sectional view of the organic EL display along the cutting line IX-IX in FIG. 5A, FIG. 10 is a cross-sectional view of the organic EL display along the cutting line XX in FIG. 5A, and FIG. FIG. 6 is a cross-sectional view of an organic EL display taken along a cutting line IX-IX of 5A. FIG. 12 is an enlarged plan view of a pixel portion of the color conversion filter panel 20. 13 and 15 are cross-sectional views showing an embodiment of the inkjet partition 221 of the color conversion filter panel. FIG. 14 is a cross-sectional view of the color conversion filter panel in a direction parallel to the inkjet partition 221.
 本発明の有機ELディスプレイは、図6に示す有機EL発光パネル10と、図7または図8に示す色変換フィルタパネル20とを、図5Aおよび図5Bに示すように、有機EL発光パネル10の発光面と色変換フィルタパネル20の受光面とを対向させて貼り合わせた、トップエミッション型の有機ELディスプレイである。この有機ELディスプレイは、色変換フィルタパネル20のカラーパターン形成面の反対側の面から光を放出する。 The organic EL display of the present invention includes an organic EL light-emitting panel 10 shown in FIG. 6 and a color conversion filter panel 20 shown in FIG. 7 or 8 as shown in FIG. 5A and FIG. This is a top emission type organic EL display in which the light emitting surface and the light receiving surface of the color conversion filter panel 20 are bonded to face each other. This organic EL display emits light from the surface opposite to the color pattern forming surface of the color conversion filter panel 20.
 色変換フィルタパネル20の画面領域(図7および図8参照)には、図12の色変換フィルタパネルの画素部分の拡大平面図に示したように赤色(R)、緑色(G)および青色(B)のカラーフィルタ220R、GおよびBの各1個のサブピクセルで構成される単位画素が一面に配列され、好ましい態様においては、各サブピクセルは、ブラックマトリクス211の開口部として画定される(図13~15参照)。 In the screen area of the color conversion filter panel 20 (see FIGS. 7 and 8), red (R), green (G) and blue (as shown in the enlarged plan view of the pixel portion of the color conversion filter panel of FIG. The unit pixels composed of one subpixel of each of the color filters 220R, G, and B of B) are arranged on one side, and in a preferred embodiment, each subpixel is defined as an opening of the black matrix 211 ( (See FIGS. 13-15).
  (有機EL発光パネル)
 有機EL発光パネル10は、基板の上に、反射電極120、有機EL層130および当明電極140をこの順に有するパネルである。本発明の有機EL発光パネル10は、透明電極140を通してEL発光を取り出すように構成される。有機EL層130は、電圧の印加により光を発する有機化合物を含有する有機発光層を含む。有機EL層が所定の波長範囲の光、好ましくは400nm~500nmの波長範囲の青緑色光を発光するように構成されたものであれば、有機EL発光パネル10に特に制限はない。
(Organic EL light emitting panel)
The organic EL light emitting panel 10 is a panel having a reflective electrode 120, an organic EL layer 130, and a bright electrode 140 in this order on a substrate. The organic EL light emitting panel 10 of the present invention is configured to extract EL light emission through the transparent electrode 140. The organic EL layer 130 includes an organic light emitting layer containing an organic compound that emits light when a voltage is applied. The organic EL light emitting panel 10 is not particularly limited as long as the organic EL layer is configured to emit light in a predetermined wavelength range, preferably blue-green light in a wavelength range of 400 nm to 500 nm.
 このような有機EL発光パネル10として好ましい構成を図6、および図9~11に基づいて説明する。有機EL発光パネル基板100は、TFT内蔵基板であり、ガラス基板101上にサブピクセルに対応するTFT構造102(薄膜トランジスタなど)、TFT構造102による凹凸を平坦化する平坦化層103、および所望により平坦化層103を被覆する無機パッシベーション層(不図示)で構成される。ここで、平坦化層103および無機パッシベーション層にはTFT構造102と反射電極120とを接続するコンタクトホールが設けられている。本発明においては、TFT構造102などが形成される面を、有機EL発光パネル基板100の「発光面」、または有機EL発光パネル10の「発光面」と称する。 A preferable configuration for such an organic EL light-emitting panel 10 will be described with reference to FIGS. 6 and 9 to 11. The organic EL light emitting panel substrate 100 is a TFT-embedded substrate, on a glass substrate 101, a TFT structure 102 (such as a thin film transistor) corresponding to a subpixel, a flattening layer 103 for flattening unevenness due to the TFT structure 102, and flat if desired. It comprises an inorganic passivation layer (not shown) that covers the conversion layer 103. Here, a contact hole for connecting the TFT structure 102 and the reflective electrode 120 is provided in the planarization layer 103 and the inorganic passivation layer. In the present invention, the surface on which the TFT structure 102 or the like is formed is referred to as the “light emitting surface” of the organic EL light emitting panel substrate 100 or the “light emitting surface” of the organic EL light emitting panel 10.
 有機EL発光パネル10は、有機EL発光パネル基板100;TFT構造102とコンタクトホールを通して接続される反射電極下地層110;反射電極120;反射電極120間を絶縁する絶縁層111;反射電極120および絶縁層111上に積層された少なくとも有機発光層を含む有機EL層130;有機EL層130上に形成された透明電極140;ならびに有機EL層130および透明電極140を被覆する無機バリア層150で構成される。さらに、ガラス基板101のTFTパターン領域外の額縁部分に、制御IC70、FPC取り付け用端子80、およびパネル内配線90が配置されていてもよい(図6参照)。 The organic EL light emitting panel 10 includes an organic EL light emitting panel substrate 100; a reflective electrode base layer 110 connected to the TFT structure 102 through a contact hole; a reflective electrode 120; an insulating layer 111 that insulates between the reflective electrodes 120; An organic EL layer 130 including at least an organic light-emitting layer laminated on the layer 111; a transparent electrode 140 formed on the organic EL layer 130; and an inorganic barrier layer 150 covering the organic EL layer 130 and the transparent electrode 140. The Furthermore, the control IC 70, the FPC attachment terminal 80, and the in-panel wiring 90 may be arranged on the frame portion outside the TFT pattern region of the glass substrate 101 (see FIG. 6).
 有機EL発光パネル基板100において、平坦化層103は、通常、樹脂から構成される。無機パッシベーション層は、SiO、SiN、SiONなどの単層膜またはそれらの複数を積層した積層膜からなり、平坦化層103を構成する樹脂からのアウトガスが有機EL層130などに侵入することを防止する。 In the organic EL light emitting panel substrate 100, the planarization layer 103 is usually made of a resin. The inorganic passivation layer is composed of a single layer film such as SiO 2 , SiN, or SiON, or a laminated film in which a plurality of them are laminated, and the outgas from the resin constituting the planarization layer 103 enters the organic EL layer 130 or the like. To prevent.
 反射電極120は、MoCr、CrB、Ag、Ag合金等から構成される。平坦化層103または無機パッシベーション層に対する反射電極120の密着性を確保するために、反射電極120と平坦化層103または無機パッシベーション層との間にIZO、ITOなどの酸化物導電体からなる下地層110が配置されていてもよい。また、反射電極120上にもIZO、ITOなどの薄層がさらに配置されていてもよい。 The reflective electrode 120 is made of MoCr, CrB, Ag, Ag alloy or the like. In order to ensure the adhesion of the reflective electrode 120 to the planarization layer 103 or the inorganic passivation layer, an underlying layer made of an oxide conductor such as IZO or ITO is provided between the reflective electrode 120 and the planarization layer 103 or the inorganic passivation layer. 110 may be arranged. Further, a thin layer such as IZO or ITO may be further disposed on the reflective electrode 120.
 絶縁層111は、反射電極120間に設けられ、かつ反射電極120の肩部を被覆する。絶縁層111は、色変換フィルタパネル20のサブピクセルに対応した複数の開口部を有し、該開口部内に反射電極120が露出している。絶縁層111は、SiO、SiN、SiONなどの無機絶縁膜、または有機絶縁膜からなる。 The insulating layer 111 is provided between the reflective electrodes 120 and covers the shoulder of the reflective electrode 120. The insulating layer 111 has a plurality of openings corresponding to the subpixels of the color conversion filter panel 20, and the reflective electrode 120 is exposed in the openings. The insulating layer 111 is made of an inorganic insulating film such as SiO 2 , SiN, or SiON, or an organic insulating film.
 有機EL層130は、少なくとも有機発光層を含む。有機EL層130は、有機発光層に加えて、電子注入層、電子輸送層、正孔輸送層、正孔注入層等をさらに含む積層体から構成されてもよい。これらの各層は、それぞれ公知の化合物または組成物で構成される。 The organic EL layer 130 includes at least an organic light emitting layer. The organic EL layer 130 may be formed of a stacked body that further includes an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like in addition to the organic light emitting layer. Each of these layers is composed of a known compound or composition.
 透明電極140は、IZO、ITOなどの酸化物透明導電膜、または数nm~10nm厚さの半透明金属膜からなり、画面領域全面を被覆して形成される。あるいは、前記反射電極120のパターンに対応して画面領域の長短いずれか一方の辺に沿ったストライプ状のパターンを有しても良い。酸化物透明導電膜をスパッタ法で形成する場合、有機EL層130のダメージ緩和のために、数nm厚さのMgAg、Auなどの高い光透過率を有する金属膜(不図示)を有機EL層130上に存在させてもよい。透明電極140は、EL発光領域の周縁部(カラーパターン形成領域の端21とブラックマトリクス形成領域の端22との間)の端子14(図11)においてパネル内配線90に接続することができる。端子14は、前述の下地層110および反射電極120などの層を用いて形成してもよい。 The transparent electrode 140 is made of an oxide transparent conductive film such as IZO or ITO, or a translucent metal film having a thickness of several to 10 nm, and is formed so as to cover the entire screen area. Alternatively, it may have a stripe pattern along one of the long and short sides of the screen area corresponding to the pattern of the reflective electrode 120. When the transparent oxide conductive film is formed by sputtering, a metal film (not shown) having a high light transmittance such as MgAg or Au having a thickness of several nm is used to reduce damage to the organic EL layer 130. 130 may be present. The transparent electrode 140 can be connected to the in-panel wiring 90 at the terminal 14 (FIG. 11) at the periphery of the EL light emitting region (between the end 21 of the color pattern forming region and the end 22 of the black matrix forming region). The terminal 14 may be formed using a layer such as the base layer 110 and the reflective electrode 120 described above.
 無機バリア層150は、TFTパターン領域の全体を被覆するように設けられる。無機バリア層150は、SiO、SiN、SiONなど単層またはそれらの複数の積層体からなり、色変換フィルタパネル20との貼り合わせに用いられる樹脂充填材料40からのアウトガスが有機EL層130へ浸入することを防止する。 The inorganic barrier layer 150 is provided so as to cover the entire TFT pattern region. The inorganic barrier layer 150 is composed of a single layer such as SiO 2 , SiN, or SiON or a plurality of laminated layers thereof, and outgas from the resin filling material 40 used for bonding to the color conversion filter panel 20 is supplied to the organic EL layer 130. Prevent intrusion.
  (色変換フィルタパネル)
 色変換フィルタパネル20の好ましい実施態様の構成を図7、図8、および図12~図15を参照しながら説明する。
(Color conversion filter panel)
The configuration of a preferred embodiment of the color conversion filter panel 20 will be described with reference to FIGS. 7, 8, and 12 to 15. FIG.
 色変換フィルタパネル20は、一方の面が表示画面(図5A参照)を構成する透明基板200の他方の面上に、色変換層220およびインクジェット用隔壁221を少なくとも含む。任意選択的に、透明基板200と色変換層220との間に、図12~図14に示したように長方形の開口部を有するように縦横格子状に配置されるブラックマトリクス211、および/またはブラックマトリックス211に設けられた開口部を覆い赤色(R)、緑色(G)および青色(B)の繰り返しで配置されるカラーフィルタ210(R、G、B)などをさらに含んでもよい。ここで、図12では、縦横格子状に配置されたブラックマトリクス211を例示したが、画面領域の長手方向に沿ってストライプ状に配置されるブラックマトリクス211を用いてもよい。本発明においては、色変換層40が形成される面を、透明基板200の「受光面」または色変換フィルタパネル20の「受光面」と称する。 The color conversion filter panel 20 includes at least a color conversion layer 220 and an inkjet partition 221 on the other surface of the transparent substrate 200 whose one surface forms a display screen (see FIG. 5A). Optionally, between the transparent substrate 200 and the color conversion layer 220, a black matrix 211 arranged in a vertical and horizontal grid pattern with rectangular openings as shown in FIGS. 12 to 14, and / or It may further include a color filter 210 (R, G, B) that covers the openings provided in the black matrix 211 and is arranged repeatedly in red (R), green (G), and blue (B). Here, FIG. 12 illustrates the black matrix 211 arranged in a vertical and horizontal grid pattern, but the black matrix 211 arranged in a stripe pattern along the longitudinal direction of the screen area may be used. In the present invention, the surface on which the color conversion layer 40 is formed is referred to as the “light receiving surface” of the transparent substrate 200 or the “light receiving surface” of the color conversion filter panel 20.
 カラーフィルタ210(R、G、B)のそれぞれの間のブラックマトリクス211上には、図12、図13および図14に示すようにインクジェット用隔壁221が画面領域の長手方向に沿ってストライプ状に配置される。インクジェット用隔壁221で区画された赤色および緑色カラーフィルタ210(R、G)上にそれぞれの色に対応した色変換層220(R、G)がインクジェット法により積層されている。必要に応じて、青色カラーフィルタ210B上に青色変換層を積層してもよい。 On the black matrix 211 between each of the color filters 210 (R, G, B), as shown in FIGS. 12, 13, and 14, inkjet partition walls 221 are formed in stripes along the longitudinal direction of the screen area. Be placed. A color conversion layer 220 (R, G) corresponding to each color is laminated on the red and green color filters 210 (R, G) partitioned by the inkjet partition 221 by an inkjet method. If necessary, a blue conversion layer may be laminated on the blue color filter 210B.
 あるいはまた、図15(図13に示す断面に相当する)に示したように青色カラーフィルタ210Bを覆い、その両側のブラックマトリクス211に至る幅広のストライプ状インクジェット用隔壁221Xを配置することができる。また、ストライプ状インクジェット用隔壁221または221X上には、所望によりスペーサ60が配置される。 Alternatively, as shown in FIG. 15 (corresponding to the cross section shown in FIG. 13), wide striped inkjet partition walls 221X that cover the blue color filter 210B and reach the black matrix 211 on both sides thereof can be arranged. In addition, a spacer 60 is disposed on the stripe-shaped inkjet partition 221 or 221X as desired.
 図示のない別の態様では、透明基板200上に直接に、またはブラックマトリクス211上に、インクジェット用隔壁221を画面領域の長手方向に沿ってストライプ状に配置し、インクジェット用隔壁221の間隙中にカラーフィルタ210(R、G、B)をインクジェット法を用いて形成し、赤色および緑色カラーフィルタ210(R、G)の上に変換層220(R、G)をインクジェット法により形成する構成を採用することもできる。この態様においても、必要に応じて青色カラーフィルタ210B上に青色変換層を形成してもよい。 In another aspect not shown, the inkjet partition 221 is arranged in a stripe shape along the longitudinal direction of the screen area directly on the transparent substrate 200 or on the black matrix 211, and in the gap of the inkjet partition 221. The color filter 210 (R, G, B) is formed using an ink jet method, and the conversion layer 220 (R, G) is formed on the red and green color filters 210 (R, G) using the ink jet method. You can also Also in this embodiment, a blue conversion layer may be formed on the blue color filter 210B as necessary.
 透明基板200は、ガラス基板、透明プラスチック基板などの高い光透過率を有する基板であり、その一方の面が表示画面を構成し、他方の面が色変換層40などを形成することができる受光面である。 The transparent substrate 200 is a substrate having a high light transmittance such as a glass substrate or a transparent plastic substrate, and one surface thereof constitutes a display screen, and the other surface can receive the color conversion layer 40 and the like. Surface.
 ブラックマトリクス211は、マトリックス樹脂と黒色の色材とを含む、可視光を吸収する層である。縦横格子状のブラックマトリクス211を形成して、サブピクセル寸法の開口部を画定することができる。ブラックマトリクス211の厚さは一般的に1~2μm程度である。マトリックス樹脂として、広範囲の樹脂の使用が可能である。中でも、ブラックマトリクスのパターン状形成にフォトリソグラフ法を採用可能な、感光性樹脂をマトリックス樹脂として用いることが好適である。 The black matrix 211 is a layer that absorbs visible light, including a matrix resin and a black color material. A vertical and horizontal grid-like black matrix 211 can be formed to define openings of subpixel dimensions. The thickness of the black matrix 211 is generally about 1 to 2 μm. A wide range of resins can be used as the matrix resin. Among them, it is preferable to use a photosensitive resin as a matrix resin, which can employ a photolithography method for forming a black matrix pattern.
 カラーフィルタ210(R、G、B)は、赤色(R)、緑色(G)および青色(B)の光のそれぞれを選択的に透過する層である。カラーフィルタ210(R、G、B)は、ストライプ状の形状を有する。カラーフィルタ210(R、G、B)は、RGBの繰り返しで、透明基板200上に直接に、またはブラックマトリクス211に設けられた開口部を覆うように配置される。カラーフィルタ210(R、G、B)は、透明基板200と接触している位置において1~2μm程度の厚さを有する。これらのカラーフィルタ210は、ブラックマトリクス211と同様に、マトリックス樹脂、およびRGBのそれぞれに対応した色材を含む。カラーフィルタ210の形成にフォトリソグラフ法を採用する場合には、マトリックス樹脂として感光性樹脂が好適に採用される。カラーフィルタ210の形成にインクジェット法を採用する場合には、感光性樹脂に限らず種々の熱硬化性樹脂もマトリックス樹脂として採用される。 The color filter 210 (R, G, B) is a layer that selectively transmits each of red (R), green (G), and blue (B) light. The color filter 210 (R, G, B) has a stripe shape. The color filters 210 (R, G, B) are arranged so as to cover the openings provided in the black matrix 211 directly on the transparent substrate 200 by repeating RGB. The color filter 210 (R, G, B) has a thickness of about 1 to 2 μm at a position in contact with the transparent substrate 200. Similar to the black matrix 211, these color filters 210 include a matrix resin and color materials corresponding to RGB. When the photolithographic method is employed for forming the color filter 210, a photosensitive resin is preferably employed as the matrix resin. When the inkjet method is employed for forming the color filter 210, not only the photosensitive resin but also various thermosetting resins are employed as the matrix resin.
 ストライプ状のインクジェット用隔壁221は、色変換層220をインクジェット法により形成する際に、色変換材料溶液であるインクの飛散・漏れ出しによる混色を防止する層である。あるいはまた、カラーフィルタ210をインクジェット法により形成する場合にも、インクジェット用隔壁221は混色を防止する機能を有する。ストライプ状のインクジェット用隔壁221は、ブラックマトリクスの幅に収まる程度の幅および0.5~10μm、好ましくは1~5μmの高さを有する。インクジェット用隔壁221は、画面領域の長手方向に延びるストライプ状に形成され、画面領域の長さに加えて、画面領域両端部のそれぞれから、少なくとも1画素分、好ましくは2画素分以上延在し得る長さを有する。画素の長さは、縦横格子状ブラックマトリクス211の開口部の長手方向長さ、絶縁層111の開口部の長手方向長さ(ブラックマトリクス211を設けない場合)、または反射電極120の長手方向長さ(ブラックマトリクス211および絶縁層111を設けない場合)によって画定される。ストライプ状インクジェット用隔壁221の長さが長すぎると、画面領域以外の領域(いわゆる「額縁」)の拡大を招くので好ましくない。また、充填材の流動のためには、インクジェット用隔壁221の端部は開いている方が好ましい。しかしながら、色変換材料を形成するためのインクの粘度が低く、インクが漏れ出すような場合は、閉じていても良い。 The stripe-shaped inkjet partition 221 is a layer that prevents color mixture due to scattering and leakage of ink, which is a color conversion material solution, when the color conversion layer 220 is formed by an inkjet method. Alternatively, when the color filter 210 is formed by an inkjet method, the inkjet partition 221 has a function of preventing color mixing. The stripe-shaped inkjet partition 221 has a width that can be accommodated in the width of the black matrix and a height of 0.5 to 10 μm, preferably 1 to 5 μm. The inkjet partition wall 221 is formed in a stripe shape extending in the longitudinal direction of the screen area, and extends at least one pixel, preferably two pixels or more from each end of the screen area in addition to the length of the screen area. Have a length to get. The length of the pixel is the longitudinal length of the opening of the vertical and horizontal grid-like black matrix 211, the longitudinal length of the opening of the insulating layer 111 (when the black matrix 211 is not provided), or the longitudinal length of the reflective electrode 120. (When the black matrix 211 and the insulating layer 111 are not provided). If the length of the striped inkjet partition 221 is too long, it is not preferable because an area other than the screen area (so-called “frame”) is expanded. For the flow of the filler, it is preferable that the end of the inkjet partition 221 is open. However, the ink for forming the color conversion material may be closed when the viscosity of the ink is low and the ink leaks out.
 インクジェット用隔壁221の材料は、有機材料、無機材料のいずれであってもよい。フォトリソグラフ法により所望の形状のインクジェット用隔壁221を容易に形成できるため、感光性樹脂が特に好適である。また、無機材料としてSiO、SiN、SiONなどが使用可能である。無機材料を用いる場合、所望の形状のインクジェット用隔壁221を得る方法としてドライエッチング法が好適に採用される。 The material for the inkjet partition 221 may be either an organic material or an inorganic material. Since the inkjet partition 221 having a desired shape can be easily formed by a photolithographic method, a photosensitive resin is particularly preferable. Further, SiO 2, SiN, SiON and the like are usable as the inorganic materials. In the case of using an inorganic material, a dry etching method is preferably employed as a method for obtaining the inkjet partition 221 having a desired shape.
 色変換層220は、有機EL発光パネル10が発する光、好ましくは青緑色領域の波長を有する光を、RGBに対応した所定の波長に変換する層である。色変換層220は、カラーフィルタ210上に配置され、、および図12に示すようなストライプ状の形状を有する。色変換層220は、有機EL発光パネル10のサブピクセルと対向する位置に配置される。色変換層220は、0.1~5μm、好ましくは0.2~1μmの膜厚を有する。 The color conversion layer 220 is a layer that converts light emitted from the organic EL light-emitting panel 10, preferably light having a wavelength in the blue-green region, into a predetermined wavelength corresponding to RGB. The color conversion layer 220 is disposed on the color filter 210 and has a stripe shape as shown in FIG. The color conversion layer 220 is disposed at a position facing the subpixel of the organic EL light emitting panel 10. The color conversion layer 220 has a thickness of 0.1 to 5 μm, preferably 0.2 to 1 μm.
 色変換層220は、インクジェット法を用いて光色変換材料を含有するインクを吐出し、カラーフィルタ210(R、G、B)上に被着させ、被着した液滴を加熱乾燥することによって形成される。色変換層220(R、G、B)のそれぞれは、カラーフィルタ210のRGBに対応する位置に配置される。色変換方式の有機EL発光パネル10の発光は、通常、青色(B)~青緑色に対応した波長を有することから、青色(B)に対応した青色変換層は、存在しなくてもよい。あるいはまた、必要に応じて、青色変換層の位置に光透過性のダミー層を設けてもよい。 The color conversion layer 220 is formed by ejecting ink containing a light color conversion material using an ink jet method, depositing the ink on the color filter 210 (R, G, B), and heating and drying the deposited droplets. It is formed. Each of the color conversion layers 220 (R, G, B) is disposed at a position corresponding to RGB of the color filter 210. Since the light emission of the color conversion type organic EL light emitting panel 10 usually has a wavelength corresponding to blue (B) to blue-green, a blue conversion layer corresponding to blue (B) may not exist. Alternatively, if necessary, a light transmissive dummy layer may be provided at the position of the blue conversion layer.
 任意選択的に、色変換層220以下の層を覆うように、無機バリア層230を設けてもよい。無機バリア層230は、SiO、SiN、SiONなど単層またはそれらの複数の積層からなり、色変換フィルタパネル20との貼り合わせに用いられる樹脂充填材料40からのアウトガスが色変換層220へ浸入することを防止する。 Optionally, an inorganic barrier layer 230 may be provided so as to cover the layers below the color conversion layer 220. The inorganic barrier layer 230 is composed of a single layer such as SiO 2 , SiN, or SiON or a plurality of stacked layers thereof, and outgas from the resin filling material 40 used for bonding to the color conversion filter panel 20 enters the color conversion layer 220. To prevent.
 図7および図8に示す色変換フィルタパネル20の実施態様において、色変換フィルタパネル20の画面領域の全周を包囲する、外周シール体30を構成する外周シール壁310が配置されている。さらに、外周シール壁310とインクジェット用隔壁221の長手方向端部との間に、充填材料誘導壁50が配置されている。 7 and FIG. 8, in the embodiment of the color conversion filter panel 20, an outer peripheral seal wall 310 constituting the outer peripheral seal body 30 surrounding the entire periphery of the screen area of the color conversion filter panel 20 is disposed. Further, a filler material guiding wall 50 is disposed between the outer peripheral seal wall 310 and the longitudinal end of the inkjet partition 221.
 外周シール壁310および充填材料誘導壁50のいずれか一方または両方を、有機EL発光パネル10上に配置されていてもよい。しかしながら、外周シール壁310および充填材料誘導壁50は、通常、色変換フィルタパネル20上に配置される。なぜなら、これらをインクジェット用隔壁221の形成と同時の工程で形成するのが好ましいからである。 Either one or both of the outer peripheral seal wall 310 and the filler material guiding wall 50 may be disposed on the organic EL light emitting panel 10. However, the outer peripheral seal wall 310 and the filler material guiding wall 50 are usually disposed on the color conversion filter panel 20. This is because it is preferable to form them in the same process as the formation of the inkjet partition 221.
 図9~図11に示すように、有機EL発光パネル10と色変換フィルタパネル20とは、間隙に充填された樹脂充填材料40を介して貼り合わされる。必要に応じて、スペーサ60を設けて、有機EL発光パネル10と色変換フィルタパネル20との間隔を一定に保持してもよい。さらに外周シール体30は、有機EL発光パネル基板100および色変換フィルタパネル20の透明基板200の双方に接着することによって、有機EL発光パネル10の層構成領域(TFTパターン領域)および色変換フィルタパネル20の層構成領域(ブラックマトリクス形成領域)ならびに樹脂充填材料層40の全体を密封することができる。その結果、外周シール体30によって、有機EL発光パネル10および色変換フィルタパネル20の各構成層への外気、特に水分の侵入も防止することができる。 As shown in FIGS. 9 to 11, the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together via a resin filling material 40 filled in the gap. If necessary, a spacer 60 may be provided to keep the distance between the organic EL light emitting panel 10 and the color conversion filter panel 20 constant. Further, the outer peripheral sealing body 30 is adhered to both the organic EL light emitting panel substrate 100 and the transparent substrate 200 of the color conversion filter panel 20, so that the layer configuration region (TFT pattern region) and the color conversion filter panel of the organic EL light emitting panel 10 are obtained. The 20 layer constituent regions (black matrix forming regions) and the entire resin filling material layer 40 can be sealed. As a result, the outer periphery sealing body 30 can also prevent intrusion of outside air, particularly moisture, into each component layer of the organic EL light emitting panel 10 and the color conversion filter panel 20.
 このような外周シール体30は、有機EL発光パネル基板100または色変換フィルタパネル20の透明基板200のいずれか一方に配置された外周シール壁310の外側に、未硬化の外周シール材320を塗布し、有機EL発光パネル10と色変換フィルタパネル20とを貼り合わせた後に外周シール材320を硬化させることによって形成する。本発明における「外周シール体30」は、外周シール壁310と、未硬化または硬化後の外周シール材320の総称である。外周シール壁310は、外周シール材320が有機EL発光パネル10のEL発光領域および/または色変換フィルタパネル20の画面領域に侵入することを防止し、外周シール体30の内縁を画定するための層である。外周シール壁310は、インクジェット用隔壁221および充填材料誘導壁50と同一の材料を用い、それらと同時の工程で形成することが好ましい。外周シール材320としては、たとえばUV硬化型接着剤を用いることができる。 Such an outer peripheral sealing body 30 applies an uncured outer peripheral sealing material 320 to the outer side of the outer peripheral sealing wall 310 disposed on either the organic EL light emitting panel substrate 100 or the transparent substrate 200 of the color conversion filter panel 20. Then, after the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together, the outer peripheral sealing material 320 is cured. The “peripheral seal body 30” in the present invention is a general term for the outer peripheral seal wall 310 and the uncured or cured outer peripheral seal material 320. The outer peripheral sealing wall 310 prevents the outer peripheral sealing material 320 from entering the EL light emitting area of the organic EL light emitting panel 10 and / or the screen area of the color conversion filter panel 20, and defines the inner edge of the outer peripheral sealing body 30. Is a layer. The outer peripheral seal wall 310 is preferably formed by using the same material as the inkjet partition wall 221 and the filling material guiding wall 50 in the same process. As the outer peripheral sealing material 320, for example, a UV curable adhesive can be used.
 樹脂充填材料40は、有機EL発光パネル10の表面(たとえば、図9の構成における無機バリア層150)および色変換フィルタパネル20の表面(たとえば、図9の構成における無機バリア層230の双方に密着可能な接着性を有する透光性に優れた熱硬化性樹脂、たとえば、エポキシ系樹脂接着剤などからなる。樹脂充填材料40は、外周シール壁310の内側、すなわち有機EL発光パネル10のTFTパターン領域、およびそれに対応した色変換フィルタパネル20のブラックマトリクス形成領域内を、完全に充填する。 The resin filling material 40 adheres to both the surface of the organic EL light emitting panel 10 (for example, the inorganic barrier layer 150 in the configuration of FIG. 9) and the surface of the color conversion filter panel 20 (for example, the inorganic barrier layer 230 in the configuration of FIG. 9). It is made of a thermosetting resin having an adhesive property and excellent translucency, such as an epoxy resin adhesive, etc. The resin filling material 40 is inside the outer peripheral seal wall 310, that is, the TFT pattern of the organic EL light emitting panel 10. The region and the black matrix formation region of the color conversion filter panel 20 corresponding to the region are completely filled.
 充填材料誘導壁50は感光性樹脂で構成される。樹脂材料誘導壁50は、図21に示したように、有機EL発光パネル10と色変換フィルタパネル20とを貼り合わせる時に、ストライプ状のインクジェット用隔壁221に沿って誘導されてきた樹脂充填材料40に、インクジェット用隔壁221に対して垂直な方向の流れを生起させ、樹脂充填材料40を充填領域の隅々にまで誘導する。 The filling material guiding wall 50 is made of a photosensitive resin. As shown in FIG. 21, the resin material guiding wall 50 is a resin-filled material 40 that has been guided along the stripe-shaped inkjet partition 221 when the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together. In addition, a flow in a direction perpendicular to the inkjet partition 221 is caused to guide the resin filling material 40 to every corner of the filling region.
 充填材料誘導壁50は、ストライプ状のインクジェット用隔壁221に垂直な方向、すなわち画面領域の横手方向に形成される。充填材料誘導壁50は、画面領域の幅全体に加えて、その両端部のそれぞれから、少なくとも1画素分の長さ、好ましくは2画素分以上の長さにわたって延在する。画素の長さは、縦横格子状ブラックマトリクス211の開口部の長手方向長さ、絶縁層111の開口部の長手方向長さ(ブラックマトリクス211を設けない場合)、または反射電極120の長手方向長さ(ブラックマトリクス211および絶縁層111を設けない場合)によって画定される。 The filling material guiding wall 50 is formed in a direction perpendicular to the stripe-shaped inkjet partition 221, that is, in the transverse direction of the screen area. In addition to the entire width of the screen area, the filler material guiding wall 50 extends from each of both ends thereof for a length of at least one pixel, preferably a length of two pixels or more. The length of the pixel is the longitudinal length of the opening of the vertical and horizontal grid-like black matrix 211, the longitudinal length of the opening of the insulating layer 111 (when the black matrix 211 is not provided), or the longitudinal length of the reflective electrode 120. (When the black matrix 211 and the insulating layer 111 are not provided).
 充填材料誘導壁50は、1列の隔壁であってもよい。しかしながら、樹脂充填材料の誘導をより効率的に行うために、充填材料誘導壁50は複数列の隔壁の集合体であることが望ましい。樹脂充填材料の誘導機能と、画面領域の周縁部領域(いわゆる「額縁」)の拡大の防止とを考慮して、樹脂材料誘導壁50は2~10列の隔壁の集合体であることが好ましく、および2~3列の隔壁の集合体であることがより好ましい。充填材料誘導壁50またはそれを構成する隔壁のそれぞれは、連続していてもよく、断続していてもよい。図7に、3列の連続した隔壁の集合体からなる充填材料誘導壁50の構成例を示す。図8に、3列の断続した隔壁の集合体からなる充填材料誘導壁50の構成例を示す。また、図8に示すように、樹脂充填材料40を滴下する画面領域の中央部の隔壁の列の数を多くし、画面領域の端部近傍において隔壁の列を少なくする構成を採用することも可能である。 The filling material guiding wall 50 may be a single row of partition walls. However, in order to guide the resin filling material more efficiently, it is desirable that the filling material guiding wall 50 is an aggregate of a plurality of rows of partition walls. In consideration of the guiding function of the resin filling material and the prevention of enlargement of the peripheral area (so-called “frame”) of the screen area, the resin material guiding wall 50 is preferably an aggregate of 2 to 10 rows of partition walls. And an aggregate of 2 to 3 rows of partition walls. Each of the filler material guiding wall 50 or the partition walls constituting the filler material guiding wall 50 may be continuous or intermittent. FIG. 7 shows a configuration example of the filler material guiding wall 50 composed of an aggregate of three rows of continuous partition walls. FIG. 8 shows a configuration example of the filler material guiding wall 50 composed of an aggregate of three rows of intermittent partition walls. Further, as shown in FIG. 8, it is also possible to employ a configuration in which the number of partitions in the center of the screen area where the resin filling material 40 is dropped is increased and the number of partitions in the vicinity of the end of the screen is reduced. Is possible.
 また、複数列の隔壁の集合体からなる充填材料誘導壁50において、内側列(インクジェット用隔壁221側)から外側列(外周シール壁310側)に向かって、隔壁の長さを順次的に増大させることが好ましい。これによって、樹脂充填材料40をより効率的に外周シール壁310の頂点(すなわち、樹脂充填材料40を充填すべき領域の四隅)にむけて誘導することが可能となる。 Further, in the filler material guiding wall 50 formed of an aggregate of a plurality of rows of partition walls, the lengths of the partition walls are sequentially increased from the inner row (inkjet partition 221 side) to the outer row (outer peripheral seal wall 310 side). It is preferable to make it. Thus, the resin filling material 40 can be more efficiently guided toward the apex of the outer peripheral seal wall 310 (that is, the four corners of the region where the resin filling material 40 is to be filled).
 さらに、前述の構成において、充填材料誘導壁50を構成する隔壁のそれぞれの端部に、屈曲部を設けてもよい。屈曲部は、外周シール壁310の頂点(すなわち、充填すべき領域の四隅)を指向して配置される。屈曲部を有する複数列の隔壁を用いる場合、内側列から外側列に向かって隔壁の長さを順次的に増大させ、各列の隔壁の屈曲部が重ならないような配置を採ることが望ましい。図22に、屈曲部を有する3つの隔壁50a~cからなる充填材料誘導壁50の構成を例示した。図7および図8に示す直線状の隔壁からなる充填材料誘導壁50を用いた場合、その端部において樹脂充填材料40の液溜まりが発生する可能性がある。この液溜まりは、特に高粘度の樹脂充填材料40を用いた場合に、樹脂充填材料40の厚さの不均一をもたらす恐れがある。図22の構成を用いた貼り合わせの際の樹脂充填材料40の流動を、図23を参照して説明する。インクジェット用隔壁221に誘導された樹脂充填材料40は、最初に最内側の最も短い隔壁50aに到達し、横手方向に誘導される。隔壁50aの端部にある屈曲部に樹脂充填材料40が到達すると、樹脂充填材料40は外周シール壁310の頂点に向かって誘導される。隔壁50aの屈曲部によって斜め方向の流路が確保されているためである。そして、外側のより長い隔壁50bおよび50cにおいても同様の誘導がなされ、樹脂充填材料40は、外周シール壁310の頂点に向かって円滑に流動する。前述の効果によって、高粘度(たとえば200~500mPa・s程度)の樹脂充填材料40を用いた場合であっても、樹脂充填材料40が均一な厚さで流動し、外周シール壁310に囲まれた領域内を良好に充填することが可能となる。図22の構成は、より低粘度(たとえば100~200mPa・s程度)の現在一般的に使用されている樹脂充填材料40においても、有効である。 Furthermore, in the above-described configuration, a bent portion may be provided at each end of the partition wall constituting the filler material guiding wall 50. The bent portions are arranged so as to face the apexes of the outer peripheral seal wall 310 (that is, the four corners of the region to be filled). In the case of using a plurality of rows of partition walls having bent portions, it is desirable to sequentially increase the length of the partition walls from the inner row to the outer row so that the bent portions of the partition walls in each row do not overlap. FIG. 22 illustrates the configuration of the filler material guiding wall 50 including three partition walls 50a to 50c having bent portions. When the filling material guiding wall 50 including the straight partition walls shown in FIGS. 7 and 8 is used, there is a possibility that the liquid filling material 40 may be pooled at the end thereof. This liquid pool may cause unevenness of the thickness of the resin filling material 40 particularly when the resin filling material 40 having a high viscosity is used. The flow of the resin filling material 40 at the time of bonding using the configuration of FIG. 22 will be described with reference to FIG. The resin filling material 40 guided to the inkjet partition 221 first reaches the innermost shortest partition 50a and is guided in the lateral direction. When the resin filling material 40 reaches the bent portion at the end of the partition wall 50a, the resin filling material 40 is guided toward the apex of the outer peripheral seal wall 310. This is because an oblique flow path is secured by the bent portion of the partition wall 50a. The same guidance is also applied to the outer longer partition walls 50 b and 50 c, and the resin filling material 40 smoothly flows toward the apex of the outer peripheral seal wall 310. Due to the above-described effects, even when the resin filling material 40 having a high viscosity (for example, about 200 to 500 mPa · s) is used, the resin filling material 40 flows with a uniform thickness and is surrounded by the outer peripheral seal wall 310. It is possible to satisfactorily fill the remaining area. The configuration shown in FIG. 22 is also effective for a resin-filled material 40 that is generally used at present with a lower viscosity (for example, about 100 to 200 mPa · s).
 インクジェット用隔壁221の形成と同じ工程で充填材料誘導壁50を形成するのが好ましい。この場合、充填材料誘導壁50は、インクジェット用隔壁221と同じ高さを有する。充填材料誘導壁50は、4~100μm、好ましくは6~20μmの幅を有する。複数の隔壁から充填材料隔壁50を形成する場合、それぞれの隔壁の間隔は、画素ピッチ程度が望ましい。もちろん、充填材料誘導壁50を別工程で作製しても良い。 It is preferable to form the filler material guiding wall 50 in the same process as the formation of the inkjet partition 221. In this case, the filler material guiding wall 50 has the same height as the inkjet partition 221. The filler material guiding wall 50 has a width of 4 to 100 μm, preferably 6 to 20 μm. When the filling material partition 50 is formed from a plurality of partitions, the interval between the partitions is preferably about the pixel pitch. Of course, the filling material guiding wall 50 may be manufactured in a separate process.
 充填材料誘導壁50が無い場合、図26に示したように、樹脂充填材料40の充填領域(すなわち、外周シール壁310内部)の四隅に充填不良が生じたり、充填材料40が外周シール壁30を越えて漏出する、いわゆる「シール破れ」が起こる可能性がある。 When there is no filling material guiding wall 50, as shown in FIG. 26, filling failure occurs in the four corners of the filling region of the resin filling material 40 (that is, inside the outer peripheral seal wall 310), or the filling material 40 is not in the outer peripheral seal wall 30. There is a possibility of so-called “seal breakage” that leaks beyond.
 本発明の有機ELディスプレイの製造方法は、
(1) 発光面を有する基板の前記発光面上に反射電極、有機EL層および透明電極をこの順に形成して、有機EL発光パネルを準備する工程と、
(2) (a)受光面を有する透明基板の受光面上に複数のストライプ状のインクジェット用隔壁を形成する工程と、(b)インクジェット用隔壁の間にインクジェット法を用いて色変換層を形成する工程とを含む、色変換フィルタパネルを準備する工程と、
(3) 有機EL発光パネルまたは色変換フィルタパネルのいずれか一方に、インクジェット用隔壁の長手方向に対して垂直に配置される充填材料誘導壁を形成する工程と、
(4) 有機EL発光パネルまたは色変換フィルタパネルのいずれか一方に、インクジェット用隔壁および充填材料誘導壁を包囲する外周シール壁を形成する工程と、
(5) 有機EL発光パネルまたは色変換フィルタパネルのいずれか一方に、樹脂充填材料を滴下する工程と、
(6) 外周シール壁の外側に外周シール材を塗布する工程と、
(7) 発光面と受光面とが対向するように、有機EL発光パネルおよび色変換フィルタパネルを貼り合わせる工程と、
(8) 樹脂充填材料および外周シール材を硬化させ、外周シール壁および外周シール材を含む外周シール体を形成する工程と
を含む。
The method for producing the organic EL display of the present invention comprises:
(1) A step of forming a reflective electrode, an organic EL layer and a transparent electrode in this order on the light emitting surface of the substrate having a light emitting surface to prepare an organic EL light emitting panel;
(2) (a) a step of forming a plurality of stripe-shaped inkjet partition walls on the light-receiving surface of a transparent substrate having a light-receiving surface; and (b) forming a color conversion layer between the inkjet partition walls using an inkjet method. Preparing a color conversion filter panel, including the step of:
(3) forming a filler material guiding wall disposed perpendicularly to the longitudinal direction of the inkjet partition wall on either the organic EL light emitting panel or the color conversion filter panel;
(4) forming an outer peripheral seal wall that surrounds the partition wall for inkjet and the filler material guiding wall on either the organic EL light emitting panel or the color conversion filter panel;
(5) a step of dropping a resin filling material on either the organic EL light emitting panel or the color conversion filter panel;
(6) applying a peripheral sealing material to the outside of the peripheral sealing wall;
(7) bonding the organic EL light emitting panel and the color conversion filter panel so that the light emitting surface and the light receiving surface face each other;
(8) curing the resin filling material and the outer peripheral sealing material, and forming an outer peripheral sealing body including the outer peripheral sealing wall and the outer peripheral sealing material.
 有機EL発光パネル10の形成工程(1)は、(a)有機EL発光パネル基板100上に反射電極120を形成する工程、(b)反射電極120上に絶縁層111を形成する工程、(c)反射電極120上に有機EL層130を積層する工程、(d)有機EL層130上に透明電極140を形成する工程、および(e)有機EL層130および透明電極140上を無機バリア層150で被覆する工程をこの順に含むことができる。前述の各工程には特に制限はない。前述の工程のうち、工程(a)、(c)および(d)が必須の工程であり、工程(b)および(e)は任意選択的工程である。 The step (1) of forming the organic EL light emitting panel 10 includes (a) a step of forming the reflective electrode 120 on the organic EL light emitting panel substrate 100, (b) a step of forming the insulating layer 111 on the reflective electrode 120, (c) ) A step of laminating the organic EL layer 130 on the reflective electrode 120, (d) a step of forming the transparent electrode 140 on the organic EL layer 130, and (e) an inorganic barrier layer 150 on the organic EL layer 130 and the transparent electrode 140. Can be included in this order. There is no restriction | limiting in particular in each above-mentioned process. Of the aforementioned steps, steps (a), (c) and (d) are essential steps, and steps (b) and (e) are optional steps.
 図9~11に示すTFT構造102が構築された有機EL発光パネル基板100は、ガラス基板101上にTFT構造102を構築する工程、TFT構造102が構築されたガラス基板101上に平坦化層103を付与し、TFT構造102による基板表面の凹凸を平坦化する工程、平坦化層103上を無機パッシベーション層で被覆する工程、および平坦化層103および無機パッシベーション層にTFT構造102と反射電極120とを接続するコンタクトホール(不図示)を設ける工程を含む方法で製造することができる。 The organic EL light emitting panel substrate 100 in which the TFT structure 102 shown in FIGS. 9 to 11 is constructed is a process of constructing the TFT structure 102 on the glass substrate 101, and the planarizing layer 103 on the glass substrate 101 in which the TFT structure 102 is constructed. And flattening the unevenness of the substrate surface by the TFT structure 102, covering the planarizing layer 103 with an inorganic passivation layer, and applying the TFT structure 102 and the reflective electrode 120 to the planarizing layer 103 and the inorganic passivation layer. Can be manufactured by a method including a step of providing a contact hole (not shown) for connecting the two.
 反射電極120の形成工程(a)には、下地層110および反射電極120を、フォトプロセスを用いて有機EL発光パネル基板100上に順次積層する方法が採用される。続く絶縁層111の形成工程(b)には、反射電極120上に有機絶縁膜を形成し、フォトリソグラフ法によりサブピクセルを構成する開口部を形成し絶縁層111を得る方法、または反射電極120上および反射電極120間に無機絶縁膜を形成した後、エッチングにより反射電極120上に開口部を形成し、絶縁層111を得る方法が採用される。 In the step (a) of forming the reflective electrode 120, a method of sequentially laminating the base layer 110 and the reflective electrode 120 on the organic EL light emitting panel substrate 100 using a photo process is adopted. In the subsequent step (b) of forming the insulating layer 111, an organic insulating film is formed on the reflective electrode 120, and an opening for forming a subpixel is formed by a photolithographic method, or the reflective electrode 120 is obtained. A method is employed in which after an inorganic insulating film is formed between the upper electrode and the reflective electrode 120, an opening is formed on the reflective electrode 120 by etching to obtain the insulating layer 111.
 有機EL層130の積層形成工程(c)には、真空蒸着法により有機EL層130を構成する各層を順次積層する方法を採用できる。透明電極140の形成工程(d)には、スパッタ法により透明電極140をパターン形成する方法を採用できる。それに続く無機バリア層150の形成工程(e)には、一般的な無機薄膜形成方法、たとえば、CVD法、スパッタ法などが採用できる。 In the layer formation step (c) of the organic EL layer 130, a method of sequentially stacking each layer constituting the organic EL layer 130 by a vacuum deposition method can be employed. In the step (d) of forming the transparent electrode 140, a method of patterning the transparent electrode 140 by a sputtering method can be employed. In the subsequent step (e) of forming the inorganic barrier layer 150, a general inorganic thin film forming method such as a CVD method or a sputtering method can be employed.
 図12~図15に示す色変換フィルタパネル20の製造するための工程(2)は、(a)インクジェット用隔壁221を形成する工程、および(b)色変換層220をカラーフィルタ210上にインクジェット法により積層する工程を必須の工程として含む。工程(2)は、(c)カラーフィルタ210を形成する工程、(d)ブラックマトリクスを形成する工程、および(e)無機バリア層230を形成する工程を、任意選択的工程としてさらに含むことができる。 The process (2) for manufacturing the color conversion filter panel 20 shown in FIGS. 12 to 15 includes (a) a process of forming the inkjet partition 221 and (b) inkjet printing the color conversion layer 220 on the color filter 210. The process of laminating by the method is included as an essential process. Step (2) further includes (c) a step of forming color filter 210, (d) a step of forming a black matrix, and (e) a step of forming inorganic barrier layer 230 as optional steps. it can.
 インクジェット用隔壁221およびカラーフィルタ210は、透明基板200上に直接形成してもよい。あるいはまた、透明基板200上にブラックマトリクス211を形成した後、ブラックマトリクス211の開口部を覆うようにカラーフィルタ210をストライプ状に形成し、カラーフィルタ210間のブラックマトリクス211上にインクジェット用隔壁221を形成してもよい。通常、後者が好適に採用される。 The inkjet partition 221 and the color filter 210 may be directly formed on the transparent substrate 200. Alternatively, after forming the black matrix 211 on the transparent substrate 200, the color filter 210 is formed in a stripe shape so as to cover the opening of the black matrix 211, and the inkjet partition 221 is formed on the black matrix 211 between the color filters 210. May be formed. Usually, the latter is preferably employed.
 さらに、透明基板200上に直接に、または透明基板200上に形成したブラックマトリクス211上にインクジェット用隔壁221を形成した後に、インクジェット法を用いて、インクジェット用隔壁221間にカラーフィルタ210を形成してもよい。 Furthermore, after forming the inkjet partition 221 directly on the transparent substrate 200 or on the black matrix 211 formed on the transparent substrate 200, the color filter 210 is formed between the inkjet partition 221 using an inkjet method. May be.
 ブラックマトリクス211の形成工程(d)およびカラーフィルタ210の形成工程(c)には、通常、フォトリソグラフ法が採用され、続くインクジェット用隔壁221の形成にも、フォトリソグラフ法が好適に採用される。 A photolithographic method is usually employed for the black matrix 211 forming step (d) and the color filter 210 forming step (c), and the photolithographic method is also preferably employed for the subsequent formation of the inkjet partition 221. .
 色変換フィルタパネル20を製造するための工程(2)は、透明基板200上に、(d)ブラックマトリクス211-(c)カラーフィルタ210-(a)インクジェット用隔壁221-(b)色変換層220の順に実施することが最も一般的である。別法として、(d)ブラックマトリクス211-(a)インクジェット用隔壁221-(c)カラーフィルタ210-(b)色変換層220の順、(c)カラーフィルタ210-(a)インクジェット用隔壁221-(b)色変換層220の順、あるいは(a)インクジェット用隔壁221-(c)カラーフィルタ210-(b)色変換層220の順を採用してもよい。 Step (2) for manufacturing the color conversion filter panel 20 includes: (d) black matrix 211- (c) color filter 210- (a) inkjet partition 221- (b) color conversion layer on the transparent substrate 200. The most common practice is 220. Alternatively, (d) black matrix 211- (a) inkjet partition 221- (c) color filter 210- (b) color conversion layer 220 in this order, (c) color filter 210- (a) inkjet partition 221 The order of (b) the color conversion layer 220 or (a) the partition for ink-jet 221-(c) the color filter 210-(b) the color conversion layer 220 may be adopted.
 充填材料誘導壁50の形成工程(3)および外周シール壁310の形成工程(4)には、通常、フォトリソグラフ法が採用される。したがって、外周シール壁310および充填材料誘導壁50のいずれか一方または両方が、色変換フィルタパネル20の透明基板200上に配置される場合、インクジェット用隔壁221の形成工程(2)(a)と同時の工程でそれらを形成することが好ましい。 In the forming step (3) of the filler material guiding wall 50 and the forming step (4) of the outer peripheral seal wall 310, a photolithographic method is usually employed. Therefore, when either or both of the outer peripheral seal wall 310 and the filler material guiding wall 50 are disposed on the transparent substrate 200 of the color conversion filter panel 20, the inkjet partition wall 221 forming step (2) (a) and It is preferred to form them in the same process.
 色変換フィルタパネル20上への樹脂充填材料40の配置工程(5)は、有機EL発光パネル10と色変換フィルタパネル20とを貼り合わせる時に、樹脂充填材料40の拡がりが偏在し難い、特に樹脂充填材料40のインクジェット用隔壁221に直角な方向への拡がりが偏在し難い配置であればよい。本発明においては、インクジェット用隔壁221および充填材料誘導壁50の誘導効果により、図16に示す、画面領域の中央部に樹脂充填材料40を滴下する中央1点配置を採用することができる。本発明においては、図19に示されるように、インクジェット用隔壁221がストライプ状であるため、樹脂充填材料40の滴下の際に気泡を巻き込むことがない。あるいはまた、樹脂充填材料40の特性などに依存して、図17に示すインクジェット用隔壁221に直交する線状配置、または図18に示す多点配置など採用することもできる。 In the step (5) of placing the resin filling material 40 on the color conversion filter panel 20, the spread of the resin filling material 40 is not likely to be unevenly distributed when the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together. Any arrangement may be used as long as the spreading of the filling material 40 in the direction perpendicular to the inkjet partition 221 is not unevenly distributed. In the present invention, it is possible to employ a central one-point arrangement in which the resin filling material 40 is dropped onto the central portion of the screen area shown in FIG. 16 due to the guiding effect of the inkjet partition 221 and the filling material guiding wall 50. In the present invention, as shown in FIG. 19, since the ink-jet partition wall 221 has a stripe shape, bubbles are not involved when the resin filling material 40 is dropped. Alternatively, a linear arrangement orthogonal to the inkjet partition 221 shown in FIG. 17 or a multi-point arrangement shown in FIG. 18 may be employed depending on the characteristics of the resin filling material 40.
 たとえば、図7に示すインクジェット用隔壁221および充填材料流動壁50が形成されている場合、図20および図21に示すように、樹脂充填材料40はインクジェット用隔壁221に沿って拡がり、充填材料誘導壁50に到達した際に、その流動方向がインクジェット用隔壁221のパターンに垂直な方向に誘導され、少なくとも画面領域内が確実に充填される。図21中の矢印の大きさは樹脂充填材料40の流れやすさの大小を示している。 For example, when the inkjet partition 221 and the filling material flow wall 50 shown in FIG. 7 are formed, the resin filling material 40 spreads along the inkjet partition 221 as shown in FIGS. When the wall 50 is reached, the flow direction is guided in a direction perpendicular to the pattern of the inkjet partition 221 so that at least the screen area is reliably filled. The size of the arrow in FIG. 21 indicates the ease of flow of the resin filling material 40.
 樹脂充填材料40の滴下・塗布量は、両パネルを貼り合わせた際の外周シール体30内の容積、および樹脂充填材料40の硬化収縮を考慮して決定される。 The dripping / coating amount of the resin filling material 40 is determined in consideration of the volume in the outer peripheral seal body 30 when both panels are bonded together and the curing shrinkage of the resin filling material 40.
 色変換フィルタパネル20上への樹脂充填材料40の配置方法は、樹脂充填材料40の種類、粘度によって、滴下法、塗布法などを適宜選択することができる。特に、計量精度の良い滴下・塗布法が好ましく採用される。滴下・塗布装置として、樹脂充填材料40の粘度による吐出量の変化の少ない高精度のメカニカル計量バルブの採用が好ましい。しかしながら、樹脂充填材料40の流動パターンによっては、空気圧制御+シリンジ方式などのメカニカル計量バルブより安価で、かつ樹脂充填材料40に気泡が混入しにくい種々のディスペンサ方式を採用することができる。 The arrangement method of the resin filling material 40 on the color conversion filter panel 20 can appropriately select a dropping method, a coating method, or the like depending on the type and viscosity of the resin filling material 40. In particular, a dropping / coating method with good weighing accuracy is preferably employed. As the dropping / coating device, it is preferable to use a high-precision mechanical metering valve in which the change in the discharge amount due to the viscosity of the resin filling material 40 is small. However, depending on the flow pattern of the resin filling material 40, various dispenser methods that are less expensive than mechanical metering valves such as air pressure control + syringe method and in which bubbles do not easily enter the resin filling material 40 can be adopted.
 樹脂充填材料40の滴下・塗布量が不足した場合、画面領域外に空間が残る。しかしながら、後述するように貼り合わせを減圧状態で行うため、この空間には減圧状態の気体が存在する。この残存気体は、貼り合わせ後に外部を常圧に戻した後の樹脂充填材料40を加熱硬化させる条件下で、外周シール体30を破るほど膨張することはない。また、樹脂充填材料40の滴下・塗布量が多少過剰となった場合にも、充填材料誘導壁50と外周シール壁310が、樹脂充填材料40の外周シール体30外へのはみ出しを抑制する。したがって、高計量精度の滴下・塗布装置に代えて、より計量精度が低くても気泡の巻き込みの少ない、種々のディスペンサ方式を採用することができる。 If there is not enough dripping / coating amount of the resin filling material 40, a space remains outside the screen area. However, since the bonding is performed in a reduced pressure state as will be described later, a gas in a reduced pressure exists in this space. The residual gas does not expand to the extent that the outer peripheral sealing body 30 is broken under the condition that the resin-filled material 40 is heated and cured after the outside is returned to normal pressure after bonding. Further, even when the dropping / applying amount of the resin filling material 40 is somewhat excessive, the filling material guiding wall 50 and the outer peripheral seal wall 310 suppress the protrusion of the resin filling material 40 to the outside of the outer peripheral seal body 30. Therefore, in place of the high weighing accuracy dropping / coating apparatus, various dispenser systems can be employed that have less bubbles involved even if the weighing accuracy is lower.
 未硬化の外周シール材320の塗布工程(6)は、メカニカル計量バルブ、種々のディスペンサなどの滴下・塗布装置を用いて実施することができる。 The application step (6) of the uncured outer peripheral sealing material 320 can be performed using a dropping / coating device such as a mechanical metering valve or various dispensers.
 両パネルの貼り合わせ工程(7)は、真空下に両パネルを平行に10~100μmにまで接近させて、外周シール壁310の外側に配置した未硬化の外周シール材320を両パネルに接触させ、アラインメント装置によって位置合わせを行い、未硬化の外周シール材320に光を照射して仮硬化させて外周シール材320内を密封し、系を徐々に常圧に戻すことにより両パネルを圧接することによって実施される。未硬化の外周シール材320は、両パネルに接触し、パネル間距離が短くなる際に内方および外方へと押出される。外周シール材320の内方への移動は、外周シール壁310によって停止される。また、外周シール材320の付着量を制御して、外周シール材320が両パネルの端部に到達しないようにする。 In the bonding step (7) of both panels, both panels are brought closer to 10 to 100 μm in parallel under vacuum, and an uncured outer peripheral sealing material 320 disposed outside the outer peripheral sealing wall 310 is brought into contact with both panels. Alignment is performed by an alignment device, light is irradiated to the uncured outer peripheral sealing material 320 to be temporarily cured, the inside of the outer peripheral sealing material 320 is sealed, and both the panels are pressed by gradually returning the system to normal pressure. Is implemented. The uncured outer peripheral sealing material 320 contacts both panels and is pushed inward and outward when the distance between the panels is shortened. The inward movement of the outer peripheral sealing material 320 is stopped by the outer peripheral sealing wall 310. Moreover, the adhesion amount of the outer periphery sealing material 320 is controlled so that the outer periphery sealing material 320 does not reach the end portions of both panels.
 次いで、工程(8)として、圧接された両パネルを加熱して、樹脂充填材料40および外周シール材320を硬化させることにより、本発明の有機ELディスプレイを得る。ここで、外周シール壁310および硬化した外周シール材320から外周シール体30が形成される。 Next, as the step (8), the pressed panels are heated to cure the resin filling material 40 and the outer peripheral sealing material 320, thereby obtaining the organic EL display of the present invention. Here, the outer peripheral sealing body 30 is formed from the outer peripheral sealing wall 310 and the cured outer peripheral sealing material 320.
 本発明の有機ELディスプレイの別の製造方法は、多面取り方法を含む。この方法は、図24に示すように、有機EL発光パネル10を構成する複数の部分を一つの有機EL発光パネル基板100上に作製する工程、色変換フィルタパネル20を構成する複数の部分を一つの透明基板200上に作製する工程を含む。これらの工程において、有機EL発光パネル10を構成する部分および色変換フィルタパネル20を構成する部分は、それぞれ対応する大きさおよび位置にて作製される。次いで、図25に示すように、それら基板を貼り合わせて複数の有機ELディスプレイを同時に製造する。最後に、個々の有機ELディスプレイに切り離す工程(9)を実施することによって、一対の基板から複数の有機ELディスプレイが得られる。 Another manufacturing method of the organic EL display of the present invention includes a multi-cavity method. In this method, as shown in FIG. 24, a plurality of parts constituting the organic EL light emitting panel 10 are formed on one organic EL light emitting panel substrate 100, and a plurality of parts constituting the color conversion filter panel 20 are integrated into one. And a process of manufacturing on one transparent substrate 200. In these steps, the portion constituting the organic EL light-emitting panel 10 and the portion constituting the color conversion filter panel 20 are respectively produced with corresponding sizes and positions. Next, as shown in FIG. 25, the substrates are bonded together to produce a plurality of organic EL displays simultaneously. Finally, a plurality of organic EL displays can be obtained from a pair of substrates by performing the step (9) of separating the individual organic EL displays.
 以下の実施例および比較例によりさらに詳細に説明する。以下の実施例および比較例においてパネルの画素ピッチは(60μm×180μm)×RGBとした。 Further details will be described with reference to the following examples and comparative examples. In the following examples and comparative examples, the pixel pitch of the panel was (60 μm × 180 μm) × RGB.
  <実施例1>
  (有機EL発光パネル10)
 200×200mm×0.7mm厚さの無アルカリガラス基板(商品名AN-100、旭硝子(株)製)100上に、複数画面分のTFT構造102を形成し、厚さ3μmの樹脂層からなる平坦化層103および厚さ300nmのSiOパッシベーション層でTFT構造102を被覆し、平坦化層103およびSiOパッシベーション層を貫通するコンタクトホールを形成して、有機EL発光パネル基板100を準備した。
<Example 1>
(Organic EL light emitting panel 10)
A TFT structure 102 for a plurality of screens is formed on a non-alkali glass substrate (trade name: AN-100, manufactured by Asahi Glass Co., Ltd.) 100 having a thickness of 200 × 200 mm × 0.7 mm, and consists of a resin layer having a thickness of 3 μm. covering the TFT structure 102 of SiO 2 passivation layer planarizing layer 103 and a thickness of 300 nm, to form a contact hole penetrating the planarization layer 103 and the SiO 2 passivation layer, it was prepared organic EL light emitting panel substrate 100.
 前記有機EL発光パネル基板100上に、スパッタ装置(RF-プレーナマグネトロン)を用い、Arガス雰囲気下で厚さ50nmのIZO膜を成膜し、その上にレジスト剤(商品名:OFRP-800、東京応化(株)製)を塗布し、露光・現像してパターンを形成し、ウェットエッチングを行うことにより、サブピクセルごとに島状に分離した下地層110を形成した。この下地層110は、平坦化層103および無機パッシベーション層に設けられたコンタクトホールを通してTFT構造102に接続された。 A 50 nm thick IZO film was formed on the organic EL light emitting panel substrate 100 using a sputtering apparatus (RF-planar magnetron) in an Ar gas atmosphere, and a resist agent (trade name: OFRP-800, Tokyo Ohka Co., Ltd.) was applied, exposed and developed to form a pattern, and wet etching was performed to form an underlayer 110 separated into islands for each subpixel. This underlayer 110 was connected to the TFT structure 102 through contact holes provided in the planarization layer 103 and the inorganic passivation layer.
 下地層110上に、Ag合金を200nmの厚さにスパッタ成膜し、下地層110のパターン化と同様の方法で、下地層110からはみ出さないようにパターン化し、島状の反射電極120を形成した。 On the base layer 110, an Ag alloy is sputtered to a thickness of 200 nm, patterned in a manner similar to the patterning of the base layer 110 so as not to protrude from the base layer 110, and the island-shaped reflective electrode 120 is formed. Formed.
 反射電極120の形成された基板上にノボラック系樹脂(商品名:JEM-700R2、JSR(株)製)をスピンコート法で塗布し、フォトリソグラフ法によって反射電極120上にサブピクセルに対応した40μm×160μmの開口部を設けて絶縁層111を形成した。 A novolac resin (trade name: JEM-700R2, manufactured by JSR Co., Ltd.) is applied on the substrate on which the reflective electrode 120 is formed by a spin coating method, and 40 μm corresponding to the subpixel is formed on the reflective electrode 120 by a photolithographic method. An insulating layer 111 was formed by providing an opening of × 160 μm.
 反射電極120および絶縁層111を形成した基板を、抵抗加熱蒸着装置内に装着し、反射電極120上にLiを1.5nm厚さに積層して陰極バッファ層を形成した。引き続いて、装置内を1×10-4Paに減圧し、電子輸送層、有機発光層、正孔輸送層、正孔注入層をそれぞれ、真空を保持したままの状態で0.1nm/secの蒸着速度で順次積層し、有機EL層130を形成した。 The substrate on which the reflective electrode 120 and the insulating layer 111 were formed was mounted in a resistance heating vapor deposition apparatus, and Li was laminated to a thickness of 1.5 nm on the reflective electrode 120 to form a cathode buffer layer. Subsequently, the inside of the apparatus was depressurized to 1 × 10 −4 Pa, and the electron transport layer, the organic light emitting layer, the hole transport layer, and the hole injection layer were each 0.1 nm / sec with vacuum maintained. The organic EL layer 130 was formed by sequentially laminating at a deposition rate.
 電子輸送層として膜厚20nmのトリス(8-ヒドロキシノリナト)アルミニウム(Alq)、有機発光層として膜厚30nmの4,4’-ビス(2,2’-ジフェニルビニル)ビフェニル(DPVBi)、正孔輸送層として膜厚10nmの4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)、および正孔注入層として膜厚100nmの銅フタロシアニン(CuPc)をそれぞれ積層した。 Tris (8-hydroxynorinato) aluminum (Alq 3 ) with a thickness of 20 nm as an electron transport layer, 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi) with a thickness of 30 nm as an organic light emitting layer, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) having a thickness of 10 nm as a hole transport layer, and copper phthalocyanine (CuPc) having a thickness of 100 nm as a hole injection layer. ) Were laminated.
 有機EL層130上に、透明電極140をスパッタ成膜する際のダメージ緩和層としてMgAgを5nmの厚さに蒸着した。次いで、真空を保持したまま、ダメージ緩和層を形成した基板を対向スパッタ装置に移動させた。画面領域に対応した開口部を有するメタルマスクを用いて厚さ200nmのIZO膜をスパッタ成膜し、透明電極140を形成した。さらに真空を保持したまま、透明電極140を形成した基板をCVD装置に移動させて、全面にSiNを2μmの厚さに成膜した無機バリア層150で被覆した。さらに、額縁部分にFPC取り付け用端子80およびパネル内配線90を配置して、図24に示したように複数の有機EL発光パネル10を同時作製した。 On the organic EL layer 130, MgAg was deposited to a thickness of 5 nm as a damage mitigating layer when the transparent electrode 140 was formed by sputtering. Next, the substrate on which the damage alleviating layer was formed was moved to the counter sputtering apparatus while maintaining the vacuum. A transparent electrode 140 was formed by sputtering an IZO film having a thickness of 200 nm using a metal mask having an opening corresponding to the screen region. Further, while maintaining the vacuum, the substrate on which the transparent electrode 140 was formed was moved to a CVD apparatus, and the entire surface was covered with an inorganic barrier layer 150 having a thickness of 2 μm. Further, the FPC attachment terminal 80 and the in-panel wiring 90 were arranged in the frame portion, and a plurality of organic EL light emitting panels 10 were simultaneously produced as shown in FIG.
  (色変換フィルタパネル20)
 200×200nm×0.7nm厚さの無アルカリガラス基板(商品名:イーグル2000、コーニング社製)200上に、ブラックマトリクス材料(商品名:CK-7001、富士フィルムARCH(株)製)を塗布した。引き続いて、フォトリソグラフ法により、横方向ピッチ60μm×縦方向ピッチ180μmで横方向幅40μm×縦方向長さ160μmの開口部を有する縦横格子状のブラッククマトリクス211を形成した。ブラックマトリクス211は1μmの厚さを有した。
(Color conversion filter panel 20)
A black matrix material (trade name: CK-7001, manufactured by Fuji Film ARCH Co., Ltd.) is applied on a non-alkali glass substrate (trade name: Eagle 2000, manufactured by Corning) 200 having a thickness of 200 × 200 nm × 0.7 nm. did. Subsequently, a black and black matrix 211 in the form of a vertical and horizontal grid having openings with a horizontal pitch of 60 μm × vertical pitch of 180 μm, a horizontal width of 40 μm, and a vertical length of 160 μm was formed by photolithography. The black matrix 211 had a thickness of 1 μm.
 カラーフィルタ材料として、赤色(商品名:CR-7001、富士フィルム株式会社から入手可能)、緑色(商品名:CG-7001、富士フィルム株式会社から入手可能)および緑色(商品名:CB-7001、富士フィルム株式会社から入手可能)のカラーフィルタ材料を用い、カラーフィルタ210を形成した。各色のカラーフィルタ210は、フォトリソグラフ法によりパターニングされ、ブラックマトリクス211の縦格子に沿ってブラックマトリクス211に設けた開口部を覆うRGBの繰り返しからなるストライプ状の厚さ1.5μmの複数の部分から構成された。 As color filter materials, red (trade name: CR-7001, available from Fuji Film Co., Ltd.), green (trade name: CG-7001, available from Fuji Film Co., Ltd.) and green (trade name: CB-7001, The color filter 210 was formed using a color filter material (available from Fuji Film Co., Ltd.). Each color filter 210 is patterned by a photolithographic method, and a plurality of stripe-shaped portions having a thickness of 1.5 μm formed by repeating RGB covering the openings provided in the black matrix 211 along the vertical lattice of the black matrix 211 Consists of.
 次いで、感光性樹脂(商品名:CR-600、日立化成工業(株)製)を塗布し、フォトリソグラフ法によりパターニングを行って、図13に示すように、ブラックマトリクス211の縦方向格子上に、カラーフィルタ210に沿って伸びる幅14μm、高さ5μmのストライプ状のインクジェット用隔壁221を形成した。また、同時に、図7に示すように、インクジェット用隔壁221の両先端部から約1.5mmの間隔を取って、幅14μm、高さ5μm、長さ約44mmの充填材料誘導壁50をピッチ180μmで3列に形成した。さらに、充填材料隔壁50の外側に約0.5mm離れた外周に、幅14μm、高さ5μmの外周シール壁310をパネルの全周にわたって同時に形成した。さらに前述の感光性樹脂を塗布し、フォトリソグラフ法によりパターニングを行って、インクジェット用隔壁221上に直径約15μm、高さ12μmの複数のスペーサ60を形成し加熱乾燥した。スペーサ60のそれぞれは、ブラックマトリクスで隠れる位置に配置された。 Next, a photosensitive resin (trade name: CR-600, manufactured by Hitachi Chemical Co., Ltd.) is applied and patterned by a photolithographic method, and as shown in FIG. A stripe-shaped inkjet partition 221 having a width of 14 μm and a height of 5 μm extending along the color filter 210 was formed. At the same time, as shown in FIG. 7, the filling material guiding walls 50 having a width of 14 μm, a height of 5 μm, and a length of about 44 mm are spaced from the both ends of the inkjet partition 221 by a pitch of 180 μm. In three rows. Further, an outer peripheral seal wall 310 having a width of 14 μm and a height of 5 μm was simultaneously formed on the outer periphery of the filling material partition wall 50 at a distance of about 0.5 mm over the entire periphery of the panel. Further, the above-described photosensitive resin was applied, and patterning was performed by a photolithographic method to form a plurality of spacers 60 having a diameter of about 15 μm and a height of 12 μm on the inkjet partition 221 and dried by heating. Each of the spacers 60 was disposed at a position hidden by the black matrix.
 上記のパネルを、酸素および水分のそれぞれが50ppm以下の窒素雰囲気中に配置された、着弾精度が±5μmのマルチノズル式インクジェット装置にセットし、ブラックマトリクス材料で作成されたマーカーで位置合わせを行った。 The above panel is set in a multi-nozzle inkjet device with a landing accuracy of ± 5 μm, placed in a nitrogen atmosphere with oxygen and moisture of 50 ppm or less, and aligned with a marker made of black matrix material. It was.
 インクジェット装置を走査して、インクジェット用隔壁221の間隙の中央部を狙って赤色および緑色の光色変換材料インクを吐出して、赤色および緑色カラーフィルタ210(R、G)上にそれぞれのインクを塗布し、続いて窒素雰囲気を保持したまま温度100℃で乾燥して、図13に示すように、赤色および緑色カラーフィルタ210(R、G)の上に平坦なストライプ状の赤色および緑色変換層220(R、G)を形成した。赤色および緑色変換層220(R、G)は、それぞれ500nmの膜厚を有した。本実施例では青色の色変換層220Bの形成を省略した。インク塗布時に、インクジェット用隔壁221を越えたインクによる混色は認められず、インクジェット用隔壁221の両端部における混色もブラックマトリクス211の形成範囲に留まった。 The inkjet device is scanned, red and green light color conversion material inks are ejected aiming at the central part of the gap between the inkjet partition walls 221, and the respective inks are applied onto the red and green color filters 210 (R, G). Applying and then drying at a temperature of 100 ° C. while maintaining a nitrogen atmosphere, as shown in FIG. 13, flat striped red and green conversion layers on the red and green color filters 210 (R, G) 220 (R, G) was formed. The red and green conversion layers 220 (R, G) each had a thickness of 500 nm. In this embodiment, the formation of the blue color conversion layer 220B is omitted. At the time of ink application, no color mixture due to the ink beyond the inkjet partition 221 was observed, and the color mixture at both ends of the inkjet partition 221 remained within the formation range of the black matrix 211.
 赤色の光色変換材料インクとして、第1色素:クマリン6および第2色素:DCM(モル比:クマリン6/DCM=48/2)の混合物50重量部をトルエン1000重量部に溶解した溶液を用い、サブピクセル当たり3滴(1滴:約14pl)を吐出した。 As a red light color conversion material ink, a solution in which 50 parts by weight of a mixture of a first dye: coumarin 6 and a second dye: DCM (molar ratio: coumarin 6 / DCM = 48/2) was dissolved in 1000 parts by weight of toluene was used. 3 drops (1 drop: about 14 pl) were discharged per subpixel.
 一方、緑色の光色変換材料インクとして、第1色素:クマリン6および第2色素:DEQ(モル比:クマリン6/DEQ=48/2)の混合物50重量部をトルエン1000重量部に溶解した溶液を用い、サブピクセル当たり3滴(1滴:約14pl)を吐出した。 On the other hand, as a green light color conversion material ink, a solution in which 50 parts by weight of a mixture of a first dye: coumarin 6 and a second dye: DEQ (molar ratio: coumarin 6 / DEQ = 48/2) is dissolved in 1000 parts by weight of toluene. 3 drops (1 drop: about 14 pl) per subpixel were discharged.
 色変換層220(R、G)までが形成されたパネルを窒素雰囲気を保持したままCVD装置に移送し、厚さ2μmのSiN膜を成膜して無機バリア層230を形成し、図13に示す断面構造を有する色変換フィルタパネル20を、図24に示すように1枚のガラス基板200上に複数作製した。 The panel on which the color conversion layers 220 (R, G) are formed is transferred to a CVD apparatus while maintaining a nitrogen atmosphere, and an SiN film having a thickness of 2 μm is formed to form an inorganic barrier layer 230. FIG. A plurality of color conversion filter panels 20 having the cross-sectional structure shown were produced on one glass substrate 200 as shown in FIG.
 作製された有機EL発光パネル10および色変換フィルタパネル20を、酸素および水分のそれぞれが5ppm以下の雰囲気に保持された貼合装置に移送し、受光面を上に向けて色変換フィルタパネル20をセットした。複数の色変換フィルタパネル20それぞれの外周シール壁310の外側に外周シール材320としてエポキシ系紫外線硬化接着剤(商品名:XNR-5516、ナガセケムテックス(株)製)をディスペンサを用いて塗布した。次いで、図16および図24に示したようにカラーパターン形成領域の中央部に、樹脂充填材料40として、前述のエポキシ系紫外線硬化接着剤よりも低粘度の熱硬化型エポキシ系接着剤40を吐出精度が5%以内の回転式メカニカル計量バルブを用いて滴下した。 The produced organic EL light emitting panel 10 and the color conversion filter panel 20 are transferred to a bonding apparatus in which each of oxygen and moisture is held in an atmosphere of 5 ppm or less, and the color conversion filter panel 20 is placed with the light receiving surface facing upward. I set it. An epoxy ultraviolet curing adhesive (trade name: XNR-5516, manufactured by Nagase ChemteX Corp.) was applied as an outer peripheral sealing material 320 to the outside of the outer peripheral sealing wall 310 of each of the color conversion filter panels 20 using a dispenser. . Next, as shown in FIGS. 16 and 24, a thermosetting epoxy adhesive 40 having a lower viscosity than the above-described epoxy ultraviolet curing adhesive is discharged as the resin filling material 40 to the center of the color pattern forming region. It was dropped using a rotary mechanical metering valve with an accuracy within 5%.
 図25に示したように、発光面を下向きにして有機EL発光パネル10をセットし、装置内を約10Paに減圧した。両パネルを面間距離が約30μmになるまで平行に接近させ、未硬化の外周シール材料320の全周が有機EL発光パネル基板100に接触した状態で両パネルの位置合わせを行った。続いて、装置内を徐々に大気圧に戻すと同時にわずかに荷重を付加し、スペーサ60の頂部に有機EL発光パネル10のプロセス面を接触させた。 As shown in FIG. 25, the organic EL light emitting panel 10 was set with the light emitting surface facing downward, and the inside of the apparatus was depressurized to about 10 Pa. Both panels were made to approach in parallel until the inter-surface distance became about 30 μm, and the two panels were aligned in a state where the entire circumference of the uncured outer peripheral sealing material 320 was in contact with the organic EL light emitting panel substrate 100. Subsequently, the inside of the apparatus was gradually returned to atmospheric pressure, and at the same time, a slight load was applied, and the process surface of the organic EL light emitting panel 10 was brought into contact with the top of the spacer 60.
 このとき樹脂充填材料40として用いた熱硬化型エポキシ系接着剤は、図20および図21に示したように主にインクジェット用隔壁221に沿って流れ、それらの端部で充填材料誘導壁50によって流れ方向を変え、周辺部にまで拡がった。 At this time, the thermosetting epoxy adhesive used as the resin filling material 40 mainly flows along the inkjet partition 221 as shown in FIGS. 20 and 21, and is filled by the filling material guiding wall 50 at those ends. The flow direction was changed and it extended to the periphery.
 色変換フィルタパネル20の透明基板200側から、マスクを使用して未硬化の外周シール材320に紫外線を照射して仮硬化させ、一般環境に取り出した。貼り合わせた両パネルを観察した結果、熱硬化型接着剤からなる樹脂充填材料40は、パネル内全面に過不足なく行き渡り、画面内の気泡の残留および外周シール体30のシール破れは認められなかった。 From the transparent substrate 200 side of the color conversion filter panel 20, the uncured outer peripheral sealant 320 was irradiated with ultraviolet rays and temporarily cured using a mask, and taken out to the general environment. As a result of observing both the bonded panels, the resin filling material 40 made of a thermosetting adhesive spreads over the entire surface of the panel, and no residual bubbles in the screen and no seal breakage of the outer peripheral sealing body 30 are observed. It was.
 自動ガラススクライバー装置(三星ダイヤモンド工業社製)とブレイク装置(三星ダイヤモンド工業社製)を用いて、個々のパネルに分割し、加熱炉内において80℃で1時間加熱し、さらに炉内で30分間自然冷却した。 Using an automatic glass scriber device (manufactured by Samsung Diamond Industrial Co., Ltd.) and a break device (manufactured by Samsung Diamond Industrial Co., Ltd.), it is divided into individual panels, heated in a heating furnace at 80 ° C. for 1 hour, and further in the furnace for 30 minutes. Naturally cooled.
 分割したパネルをドライエッチング装置にセットし、FPC取り付け用端子80、制御IC70接続用パッド部分を覆っている厚さ2μmの無機バリア層150を除去し、複数のトップエミッション型有機ELディスプレイを同時に作製した。 The divided panel is set in a dry etching apparatus, and the 2 μm-thick inorganic barrier layer 150 covering the FPC attachment terminal 80 and the control IC 70 connection pad portion is removed to simultaneously produce a plurality of top emission type organic EL displays. did.
  <比較例1>
 前記実施例1の色変換フィルタパネル20の作製に際して、充填材料誘導壁50の形成を省略した以外は、実施例1と同様に処理し、複数の有機ELディスプレイを同時作製した。
<Comparative Example 1>
In producing the color conversion filter panel 20 of Example 1, the same process as in Example 1 was performed except that the formation of the filler material guiding wall 50 was omitted, and a plurality of organic EL displays were simultaneously produced.
 本比較例においては、有機EL発光パネル10と色変換フィルタパネル20とを貼り合わせた時に、図26に示すように、熱硬化型接着剤40の外周シール体30を越えたシール破れが認められるばかりでなく、外周シール体30内の領域の四隅部には樹脂充填材料40が行き渡らない未充填部が認められた。 In this comparative example, when the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together, as shown in FIG. 26, seal breakage beyond the outer peripheral seal body 30 of the thermosetting adhesive 40 is recognized. In addition, unfilled portions where the resin-filled material 40 did not spread were recognized at the four corners of the region in the outer peripheral seal body 30.
  <比較例2>
 前記実施例1の色変換フィルタパネル20の作製において、図2に示したようにインクジェット用隔壁221を縦横格子状に形成した以外は、実施例1と同様に処理し、複数の有機ELディスプレイを同時作製した。
<Comparative example 2>
In the production of the color conversion filter panel 20 of the first embodiment, a plurality of organic EL displays were processed in the same manner as in the first embodiment except that the inkjet partition walls 221 were formed in a vertical and horizontal grid pattern as shown in FIG. Made simultaneously.
 本比較例において、有機EL発光パネル10と色変換フィルタパネル20とを貼り合わせた時に、図3に示すように、各サブピクセル内に熱硬化型接着剤40が完全充填されずに気泡が残っていることが認められた。さらに、図4に示すように、格子状のインクジェット用隔壁221による熱硬化型接着剤40の流れの阻害が認められた。 In this comparative example, when the organic EL light emitting panel 10 and the color conversion filter panel 20 are bonded together, as shown in FIG. 3, the thermosetting adhesive 40 is not completely filled in each subpixel, and bubbles remain. It was recognized that Furthermore, as shown in FIG. 4, inhibition of the flow of the thermosetting adhesive 40 by the grid-like inkjet partition 221 was recognized.
  <実施例2>
 前記実施例1の色変換フィルタパネル20の作製において、充填材料誘導壁50を5等分し、約1mmの間隔をとって、図4に示したように断続して設け、有機EL発光パネル10と色変換フィルタパネル20とを貼り合わせる時に、熱硬化型接着剤40を図18に示したように多点配置した以外は、実施例1と同様に処理し、複数の有機ELディスプレイを同時作製した。
<Example 2>
In the production of the color conversion filter panel 20 of the first embodiment, the filling material guiding wall 50 is divided into five equal parts and provided intermittently as shown in FIG. When the color conversion filter panel 20 is bonded to the color conversion filter panel 20, a plurality of organic EL displays are manufactured at the same time except that the thermosetting adhesive 40 is disposed at multiple points as shown in FIG. did.
 本実施例においては、実施例1と同様に良好な有機ELディスプレイが得られた。 In this example, an excellent organic EL display was obtained as in Example 1.
  <実施例3>
 屈曲部を有する充填材料誘導壁50を形成したこと、および粘度が200~500mPa・sの樹脂充填材料を用いたことを除いて、実施例1と同様に処理し、複数の有機ELディスプレイを同時作製した。
<Example 3>
A plurality of organic EL displays are processed simultaneously in the same manner as in Example 1 except that the filling material guiding wall 50 having a bent portion is formed and a resin filling material having a viscosity of 200 to 500 mPa · s is used. Produced.
 充填材料誘導壁50を、インクジェット用隔壁221の両先端部から約1.5mmの間隔を取って、ピッチ180μmで3列に形成した。充填材料誘導壁50の各列は、14μmの幅および5μmの高さを有した。充填材料誘導壁50の各列は、インクジェット用隔壁221側から順に、15mm、22mmおよび35mmの長さを有した。そして、充填材料誘導壁50の各列の両端から長さ5mmの屈曲部を形成し、それぞれの屈曲部を外周シール壁310の最も近い隅の方向に向けた。 The filling material guide walls 50 were formed in three rows at a pitch of 180 μm with an interval of about 1.5 mm from both end portions of the inkjet partition 221. Each row of filler material guide walls 50 had a width of 14 μm and a height of 5 μm. Each row of the filler material guiding wall 50 had a length of 15 mm, 22 mm, and 35 mm in this order from the inkjet partition wall 221 side. Then, bent portions having a length of 5 mm were formed from both ends of each row of the filler material guiding wall 50, and each bent portion was directed toward the nearest corner of the outer peripheral seal wall 310.
 本実施例においては、より粘度の高い樹脂充填材料40を用いたにもかかわらず、実施例1と同様に良好な有機ELディスプレイが得られた。 In this example, a good organic EL display was obtained in the same manner as in Example 1 although the resin filling material 40 having a higher viscosity was used.
 10  有機EL発光パネル
  100 有機EL発光パネル基板
  101 ガラス基板
  102 TFT構造(薄膜トランジスタおよびコンタクトホール)
  103 平坦化層
  110 下地層
  111 絶縁層
  120 反射電極
  130 有機EL層
  140 透明電極
  150 無機バリア層
 20 色変換フィルタパネル
  200 透明基板
  210 カラーフィルタ
  211 ブラックマトリクス
  220 色変換層
  221 インクジェット用隔壁
  230 無機バリア層
 30 外周シール体
  310 外周シール壁
  320 外周シール材(未硬化、硬化を含む)
 40 樹脂充填材料
 50 充填材料誘導壁
 60 スペーサ
 70 制御IC
 80 FPC取り付け用端子
 90 パネル内配線
10 organic EL light emitting panel 100 organic EL light emitting panel substrate 101 glass substrate 102 TFT structure (thin film transistor and contact hole)
DESCRIPTION OF SYMBOLS 103 Planarization layer 110 Underlayer 111 Insulating layer 120 Reflective electrode 130 Organic EL layer 140 Transparent electrode 150 Inorganic barrier layer 20 Color conversion filter panel 200 Transparent substrate 210 Color filter 211 Black matrix 220 Color conversion layer 221 Inkjet partition 230 Inorganic barrier layer 30 outer peripheral sealing body 310 outer peripheral sealing wall 320 outer peripheral sealing material (including uncured and cured)
40 Resin Filling Material 50 Filling Material Guide Wall 60 Spacer 70 Control IC
80 FPC mounting terminal 90 Wiring in panel

Claims (33)

  1.  有機EL発光パネルと色変換フィルタパネルとを貼り合わせて形成されているトップエミッション型有機ELディスプレイであって、
     前記有機EL発光パネルは、発光面を有する基板、ならびに、前記発光面上に、反射電極、有機EL層および透明電極をこの順に含み、
     前記色変換フィルタパネルは、受光面を有する透明基板、ならびに、前記受光面上に、複数のストライプ状のインクジェット用隔壁と、前記インクジェット用隔壁の間に形成された色変換層とを含み、
     前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方は、前記インクジェット用隔壁の長手方向に対して垂直に配置された充填材料誘導壁をさらに含み、
     前記有機EL発光パネルと前記色変換フィルタパネルとは、前記発光面と前記受光面とが対向するように、樹脂充填材料を介して貼り合わせられ、前記樹脂充填材料、前記インクジェット用隔壁および前記充填材料誘導壁の外周を外周シール体によって密封されていることを特徴とする有機ELディスプレイ。
    A top emission type organic EL display formed by bonding an organic EL light emitting panel and a color conversion filter panel,
    The organic EL light emitting panel includes a substrate having a light emitting surface, and a reflective electrode, an organic EL layer, and a transparent electrode in this order on the light emitting surface,
    The color conversion filter panel includes a transparent substrate having a light receiving surface, a plurality of striped inkjet barrier ribs on the light receiving surface, and a color conversion layer formed between the inkjet barrier walls,
    Either the organic EL light-emitting panel or the color conversion filter panel further includes a filler material guiding wall disposed perpendicular to the longitudinal direction of the inkjet partition,
    The organic EL light emitting panel and the color conversion filter panel are bonded together via a resin filling material so that the light emitting surface and the light receiving surface face each other, and the resin filling material, the inkjet partition, and the filling An organic EL display characterized in that the outer periphery of the material guiding wall is sealed by an outer peripheral sealing body.
  2.  前記充填材料誘導壁は、一列の隔壁からなることを特徴とする請求項1に記載の有機ELディスプレイ。 2. The organic EL display according to claim 1, wherein the filling material guiding wall comprises a row of partition walls.
  3.  前記一列の隔壁は連続していることを特徴とする請求項2に記載の有機ELディスプレイ。 3. The organic EL display according to claim 2, wherein the row of partition walls is continuous.
  4.  前記一列の隔壁は断続していることを特徴とする請求項2に記載の有機ELディスプレイ。 3. The organic EL display according to claim 2, wherein the row of partition walls is intermittent.
  5.  前記一列の隔壁は、その両端に屈曲部を有し、該屈曲部は、前記外周シール体の四隅を指向していることを特徴とする請求項2に記載の有機ELディスプレイ。 3. The organic EL display according to claim 2, wherein the row of partition walls have bent portions at both ends thereof, and the bent portions are directed to the four corners of the outer peripheral seal body.
  6.  前記充填材料誘導壁は、複数列の隔壁の集合体からなることを特徴とする請求項1に記載の有機ELディスプレイ。 2. The organic EL display according to claim 1, wherein the filler material guiding wall is composed of an aggregate of a plurality of rows of partition walls.
  7.  前記複数列の隔壁のそれぞれは連続していることを特徴とする請求項6に記載の有機ELディスプレイ。 The organic EL display according to claim 6, wherein each of the plurality of rows of partition walls is continuous.
  8.  前記複数列の隔壁は断続していることを特徴とする請求項6に記載の有機ELディスプレイ。 The organic EL display according to claim 6, wherein the plurality of rows of partitions are intermittent.
  9.  前記複数列の隔壁は、前記インクジェット用隔壁から前記外周シール体に向かって長さが増大することを特徴とする請求項6に記載の有機ELディスプレイ。 The organic EL display according to claim 6, wherein the plurality of rows of partition walls increase in length from the inkjet partition toward the outer peripheral seal body.
  10.  前記複数列の隔壁のそれぞれは、その両端に屈曲部を有し、該屈曲部は、前記外周シール体の四隅を指向していることを特徴とする請求項9に記載の有機ELディスプレイ。 10. The organic EL display according to claim 9, wherein each of the plurality of rows of partition walls has bent portions at both ends thereof, and the bent portions are directed to four corners of the outer peripheral seal body.
  11.  前記充填材料誘導壁が、前記色変換フィルタパネル上に配置されていることを特徴とする請求項1に記載の有機ELディスプレイ。 The organic EL display according to claim 1, wherein the filler material guiding wall is disposed on the color conversion filter panel.
  12.  前記インクジェット用隔壁および前記充填材料誘導壁が同一の材料で同一の工程で形成されていることを特徴とする請求項11に記載の有機ELディスプレイ。 12. The organic EL display according to claim 11, wherein the inkjet partition and the filling material guiding wall are formed of the same material and in the same process.
  13.  前記外周シール体は、前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方の上に形成された外周シール壁と、前記外周シール壁の外側に位置する外周シール材とから構成されることを特徴とする請求項1に記載の有機ELディスプレイ。 The outer periphery sealing body is composed of an outer periphery sealing wall formed on either the organic EL light emitting panel or the color conversion filter panel, and an outer periphery sealing material positioned outside the outer periphery sealing wall. The organic EL display according to claim 1.
  14.  前記外周シール壁が、前記色変換フィルタパネル上に配置されていることを特徴とする請求項13に記載の有機ELディスプレイ。 The organic EL display according to claim 13, wherein the outer peripheral seal wall is disposed on the color conversion filter panel.
  15.  前記インクジェット用隔壁が前記色変換フィルタパネル上に配置され、前記インクジェット用隔壁、前記充填材料誘導壁および前記外周シール壁が同一の材料で同一の工程で形成されていることを特徴とする請求項14に記載の有機ELディスプレイ。 The inkjet partition is disposed on the color conversion filter panel, and the inkjet partition, the filling material guiding wall, and the outer peripheral seal wall are formed of the same material and in the same process. 14. The organic EL display according to 14.
  16.  前記樹脂充填材料が、熱硬化性の透明樹脂接着剤からなることを特徴とする請求項1に記載の有機ELディスプレイ。 2. The organic EL display according to claim 1, wherein the resin filling material is made of a thermosetting transparent resin adhesive.
  17.  前記インクジェット用隔壁は、前記色変換層を包含する画面領域の両端において、1画素分以上外側まで延在することを特徴とする請求項1に記載の有機ELディスプレイ。 The organic EL display according to claim 1, wherein the inkjet partition extends to the outside by one pixel or more at both ends of a screen region including the color conversion layer.
  18. (1) 発光面を有する基板の前記発光面上に反射電極、有機EL層および透明電極をこの順に形成して、有機EL発光パネルを準備する工程と、
    (2) (a)受光面を有する透明基板の前記受光面上に複数のストライプ状のインクジェット用隔壁を形成する工程と、(b)前記インクジェット用隔壁の間にインクジェット法を用いて色変換層を形成する工程とを含む、色変換フィルタパネルを準備する工程と、
    (3) 前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方に、前記インクジェット用隔壁の長手方向に対して垂直に配置される充填材料誘導壁を形成する工程と、
    (4) 前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方に、前記インクジェット用隔壁および前記充填材料誘導壁を包囲する外周シール壁を形成する工程と、
    (5) 前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方に、樹脂充填材料を滴下する工程と、
    (6) 前記外周シール壁の外側に外周シール材を塗布する工程と、
    (7) 前記発光面と前記受光面とが対向するように、前記有機EL発光パネルおよび前記色変換フィルタパネルを貼り合わせる工程と、
    (8) 前記樹脂充填材料および前記外周シール材を硬化させ、前記外周シール壁および外周シール材を含む外周シール体を形成する工程と
    を含むことを特徴とする有機ELディスプレイの製造方法。
    (1) A step of forming a reflective electrode, an organic EL layer and a transparent electrode in this order on the light emitting surface of the substrate having a light emitting surface to prepare an organic EL light emitting panel;
    (2) (a) a step of forming a plurality of stripe-shaped ink-jet partition walls on the light-receiving surface of the transparent substrate having a light-receiving surface; and (b) a color conversion layer using an ink-jet method between the ink-jet partition walls. Preparing a color conversion filter panel, including the steps of:
    (3) forming a filling material guiding wall disposed perpendicular to the longitudinal direction of the inkjet partition wall on either the organic EL light-emitting panel or the color conversion filter panel;
    (4) forming an outer peripheral seal wall that surrounds the inkjet partition and the filler material guiding wall on either the organic EL light-emitting panel or the color conversion filter panel;
    (5) dropping a resin-filled material on either the organic EL light-emitting panel or the color conversion filter panel;
    (6) applying an outer peripheral sealing material to the outside of the outer peripheral sealing wall;
    (7) bonding the organic EL light-emitting panel and the color conversion filter panel so that the light-emitting surface and the light-receiving surface face each other;
    (8) A method of manufacturing an organic EL display, comprising: curing the resin-filled material and the outer peripheral sealing material to form an outer peripheral sealing body including the outer peripheral sealing wall and the outer peripheral sealing material.
  19.  前記充填材料誘導壁は、一列の隔壁からなることを特徴とする請求項18に記載の有機ELディスプレイの製造方法。 19. The method of manufacturing an organic EL display according to claim 18, wherein the filler material guiding wall includes a row of partition walls.
  20.  前記一列の隔壁は連続していることを特徴とする請求項19に記載の有機ELディスプレイの製造方法。 20. The method of manufacturing an organic EL display according to claim 19, wherein the row of partition walls is continuous.
  21.  前記一列の隔壁は断続していることを特徴とする請求項19に記載の有機ELディスプレイの製造方法。 20. The method of manufacturing an organic EL display according to claim 19, wherein the row of partition walls is intermittent.
  22.  前記一列の隔壁は、その両端に屈曲部を有し、該屈曲部は、前記外周シール体の四隅を指向していることを特徴とする請求項19に記載の有機ELディスプレイの製造方法。 20. The method of manufacturing an organic EL display according to claim 19, wherein the row of partition walls have bent portions at both ends thereof, and the bent portions are directed to four corners of the outer peripheral seal body.
  23.  前記充填材料誘導壁は、複数列の隔壁の集合体からなることを特徴とする請求項18に記載の有機ELディスプレイの製造方法。 19. The method of manufacturing an organic EL display according to claim 18, wherein the filler material guiding wall is composed of an aggregate of a plurality of rows of partition walls.
  24.  前記複数列の隔壁のそれぞれは連続していることを特徴とする請求項23に記載の有機ELディスプレイの製造方法。 24. The method of manufacturing an organic EL display according to claim 23, wherein each of the plurality of rows of partition walls is continuous.
  25.  前記複数列の隔壁は断続していることを特徴とする請求項23に記載の有機ELディスプレイの製造方法。 24. The method of manufacturing an organic EL display according to claim 23, wherein the plurality of rows of partitions are intermittent.
  26.  前記複数列の隔壁は、前記インクジェット用隔壁から前記外周シール体に向かって長さが増大することを特徴とする請求項23に記載の有機ELディスプレイの製造方法。 24. The method of manufacturing an organic EL display according to claim 23, wherein the plurality of rows of partitions increase in length from the inkjet partition toward the outer peripheral seal body.
  27.  前記複数列の隔壁のそれぞれは、その両端に屈曲部を有し、該屈曲部は、前記外周シール体の四隅を指向していることを特徴とする請求項26に記載の有機ELディスプレイの製造方法。 27. The organic EL display manufacturing method according to claim 26, wherein each of the plurality of rows of partition walls has bent portions at both ends thereof, and the bent portions are directed to four corners of the outer peripheral seal body. Method.
  28.  工程(3)において、前記充填材料誘導壁を前記色変換フィルタパネル上に形成することを特徴とする請求項18に記載の有機ELディスプレイの製造方法。 19. The method of manufacturing an organic EL display according to claim 18, wherein in the step (3), the filler material guiding wall is formed on the color conversion filter panel.
  29.  工程(2)(a)および(3)を同時に実施し、前記インクジェット用隔壁および前記充填材料誘導壁を同一の材料で形成することを特徴とする請求項28に記載の有機ELディスプレイの製造方法。 29. The method of manufacturing an organic EL display according to claim 28, wherein the steps (2), (a) and (3) are simultaneously performed, and the inkjet partition and the filler material guiding wall are formed of the same material. .
  30.  工程(4)において、前記外周シール壁を前記色変換フィルタパネル上に形成することを特徴とする請求項18に記載の有機ELディスプレイの製造方法。 19. The method of manufacturing an organic EL display according to claim 18, wherein in the step (4), the outer peripheral seal wall is formed on the color conversion filter panel.
  31.  工程(3)において、前記充填材料誘導壁を前記色変換フィルタパネル上に形成し、工程(2)(a)、(3)および(4)を同時に実施し、前記インクジェット用隔壁、前記充填材料誘導壁および前記外周シール壁を同一の材料で形成することを特徴とする請求項30に記載の有機ELディスプレイの製造方法。 In the step (3), the filler material guiding wall is formed on the color conversion filter panel, and the steps (2), (a), (3) and (4) are simultaneously performed, and the inkjet partition, the filler material The method of manufacturing an organic EL display according to claim 30, wherein the guide wall and the outer peripheral seal wall are formed of the same material.
  32.  工程(5)において、前記樹脂充填材料を、前記有機EL発光パネルまたは前記色変換フィルタパネルのいずれか一方の中央部の1点に滴下することを特徴とする請求項18に記載の有機ELディスプレイの製造方法。 19. The organic EL display according to claim 18, wherein in the step (5), the resin-filled material is dropped on one point of a central portion of either the organic EL light emitting panel or the color conversion filter panel. Manufacturing method.
  33.  工程(1)において有機EL発光パネルを構成する複数の部分を形成し、工程(2)において色変換フィルタパネルを構成する複数の部分を形成し、工程(8)に続いて
    (9) 工程(8)で得られる貼り合わせ体を切断して、複数の有機ELディスプレイを得る工程
    をさらに含むことを特徴とする請求項18に記載の有機ELディスプレイの製造方法。
    In step (1), a plurality of parts constituting the organic EL light emitting panel are formed, and in step (2), a plurality of parts constituting the color conversion filter panel are formed. Following step (8), (9) step ( The method for producing an organic EL display according to claim 18, further comprising a step of cutting the bonded body obtained in 8) to obtain a plurality of organic EL displays.
PCT/JP2009/061370 2008-07-10 2009-06-23 Organic el display and method for manufacturing same WO2010004865A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801091221A CN101971701A (en) 2008-07-10 2009-06-23 Organic el display and method for manufacturing same
US12/736,537 US8629614B2 (en) 2008-07-10 2009-06-23 Organic EL display and method for manufacturing same
JP2010519720A JPWO2010004865A1 (en) 2008-07-10 2009-06-23 Organic EL display and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-180256 2008-07-10
JP2008180256 2008-07-10

Publications (1)

Publication Number Publication Date
WO2010004865A1 true WO2010004865A1 (en) 2010-01-14

Family

ID=41506984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061370 WO2010004865A1 (en) 2008-07-10 2009-06-23 Organic el display and method for manufacturing same

Country Status (6)

Country Link
US (1) US8629614B2 (en)
JP (1) JPWO2010004865A1 (en)
KR (1) KR101209128B1 (en)
CN (1) CN101971701A (en)
TW (1) TWI481299B (en)
WO (1) WO2010004865A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110221334A1 (en) * 2010-03-09 2011-09-15 Kwon Oh-June Organic light emitting diode display
JPWO2013001583A1 (en) * 2011-06-30 2015-02-23 パナソニック株式会社 Display panel and method of manufacturing display panel
JP2015064534A (en) * 2013-09-26 2015-04-09 株式会社ジャパンディスプレイ Display element
WO2015162893A1 (en) * 2014-04-22 2015-10-29 株式会社Joled Organic el panel production method
JP2016201362A (en) * 2015-04-14 2016-12-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device
JPWO2015079641A1 (en) * 2013-11-26 2017-03-16 株式会社Joled Organic EL panel, manufacturing method thereof, and color filter substrate
JP2020061377A (en) * 2019-12-25 2020-04-16 セイコーエプソン株式会社 Electro-optical device, method of manufacturing the same, and electronic apparatus
JP2020177191A (en) * 2019-04-22 2020-10-29 信越エンジニアリング株式会社 Bonding apparatus and bonding method of bonding device, and bonding device
WO2021162024A1 (en) * 2020-02-13 2021-08-19 東レ株式会社 Method for producing wavelength conversion substrate, wavelength conversion substrate, and display
US20220199691A1 (en) * 2020-12-22 2022-06-23 Lg Display Co., Ltd. Display device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738768B (en) * 2008-11-18 2012-12-19 深圳富泰宏精密工业有限公司 Touch screen and manufacturing method thereof
KR101920374B1 (en) * 2011-04-27 2018-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and manufacturing method thereof
KR101773087B1 (en) * 2011-06-17 2017-08-31 삼성디스플레이 주식회사 Organic light-emitting display device employing black matrix-containing neutral density film
US9123667B2 (en) * 2011-10-04 2015-09-01 Universal Display Corporation Power-efficient RGBW OLED display
JP6186698B2 (en) * 2012-10-29 2017-08-30 セイコーエプソン株式会社 Organic EL devices, electronic devices
JP6186697B2 (en) 2012-10-29 2017-08-30 セイコーエプソン株式会社 Organic EL device manufacturing method, organic EL device, and electronic apparatus
US9832428B2 (en) 2012-12-27 2017-11-28 Kateeva, Inc. Fast measurement of droplet parameters in industrial printing system
US11673155B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US9700908B2 (en) 2012-12-27 2017-07-11 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
CN105073434B (en) 2012-12-27 2017-12-26 科迪华公司 For pad-ink fixing fabric structure with the method and system of the deposits fluid in precision tolerance
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US9352561B2 (en) * 2012-12-27 2016-05-31 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
KR20150025994A (en) 2013-08-30 2015-03-11 엘지디스플레이 주식회사 Organic light emitting diode display device and method of fabricating the same
KR102255809B1 (en) * 2013-12-02 2021-05-24 엘지디스플레이 주식회사 Organic Light Emitting Display Device
CN107825886B (en) 2013-12-12 2020-04-14 科迪华公司 Method of manufacturing electronic device
KR102323242B1 (en) * 2015-03-10 2021-11-08 삼성디스플레이 주식회사 Flexible display device
KR102369633B1 (en) * 2015-08-31 2022-03-03 엘지디스플레이 주식회사 Organic light emitting diode display device and manufacturing method for the same
US10720603B2 (en) * 2017-01-31 2020-07-21 Sakai Display Products Corporation Organic electroluminescent display device and method for producing same
JP6834609B2 (en) * 2017-03-07 2021-02-24 デクセリアルズ株式会社 Manufacturing method of image display device
WO2019058555A1 (en) * 2017-09-25 2019-03-28 シャープ株式会社 Display device and method for manufacturing display device
KR102450398B1 (en) * 2018-05-14 2022-10-04 삼성디스플레이 주식회사 Organic light emitting diode display including color conversion panel
KR102285669B1 (en) * 2018-08-27 2021-08-04 동우 화인켐 주식회사 A color filter, a method of making thereof, and an image display device comprising thereof
KR20200055846A (en) 2018-11-13 2020-05-22 삼성디스플레이 주식회사 Display device
KR20200097380A (en) * 2019-02-07 2020-08-19 삼성디스플레이 주식회사 Color conversion substrate and display device
KR20200111325A (en) * 2019-03-18 2020-09-29 삼성디스플레이 주식회사 Display panel and method for manufacturing display pnale
KR20210032798A (en) * 2019-09-17 2021-03-25 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Device
KR20210084913A (en) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 Organic light emitting display device
KR20210158461A (en) * 2020-06-23 2021-12-31 삼성디스플레이 주식회사 Color filter unit and display apparatus having same
KR20220048506A (en) * 2020-10-12 2022-04-20 삼성디스플레이 주식회사 Display device
KR20230063964A (en) * 2021-11-01 2023-05-10 삼성디스플레이 주식회사 Display device and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288403A (en) * 2003-03-19 2004-10-14 Optrex Corp Manufacturing method of organic el display and organic el display
JP2005123089A (en) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd Color organic el display and its manufacturing method
JP2005251415A (en) * 2004-03-01 2005-09-15 Seiko Epson Corp Organic electroluminescent device and electronic apparatus
WO2006054421A1 (en) * 2004-10-28 2006-05-26 Sharp Kabushiki Kaisha Organic electroluminescence panel and production method therefor, and color filter substrate and production method therefore
WO2008066122A1 (en) * 2006-11-30 2008-06-05 Kyocera Corporation Organic el device and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842211B2 (en) * 2000-11-02 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, and method of manufacturing the same
JP3951055B2 (en) * 2004-02-18 2007-08-01 セイコーエプソン株式会社 Organic electroluminescence device and electronic device
JP4605499B2 (en) * 2004-10-28 2011-01-05 富士電機ホールディングス株式会社 Organic EL display sealing structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288403A (en) * 2003-03-19 2004-10-14 Optrex Corp Manufacturing method of organic el display and organic el display
JP2005123089A (en) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd Color organic el display and its manufacturing method
JP2005251415A (en) * 2004-03-01 2005-09-15 Seiko Epson Corp Organic electroluminescent device and electronic apparatus
WO2006054421A1 (en) * 2004-10-28 2006-05-26 Sharp Kabushiki Kaisha Organic electroluminescence panel and production method therefor, and color filter substrate and production method therefore
WO2008066122A1 (en) * 2006-11-30 2008-06-05 Kyocera Corporation Organic el device and method for manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110221334A1 (en) * 2010-03-09 2011-09-15 Kwon Oh-June Organic light emitting diode display
US8736156B2 (en) * 2010-03-09 2014-05-27 Samsung Display Co., Ltd. Organic light emitting diode display
JPWO2013001583A1 (en) * 2011-06-30 2015-02-23 パナソニック株式会社 Display panel and method of manufacturing display panel
JP2015064534A (en) * 2013-09-26 2015-04-09 株式会社ジャパンディスプレイ Display element
JPWO2015079641A1 (en) * 2013-11-26 2017-03-16 株式会社Joled Organic EL panel, manufacturing method thereof, and color filter substrate
WO2015162893A1 (en) * 2014-04-22 2015-10-29 株式会社Joled Organic el panel production method
US9627617B2 (en) 2014-04-22 2017-04-18 Joled Inc. Method for manufacturing organic EL panel
JP2016201362A (en) * 2015-04-14 2016-12-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device
US10770680B2 (en) 2015-04-14 2020-09-08 Samsung Display Co., Ltd. Organic light-emitting diode display
JP2020177191A (en) * 2019-04-22 2020-10-29 信越エンジニアリング株式会社 Bonding apparatus and bonding method of bonding device, and bonding device
JP2020061377A (en) * 2019-12-25 2020-04-16 セイコーエプソン株式会社 Electro-optical device, method of manufacturing the same, and electronic apparatus
JP7010279B2 (en) 2019-12-25 2022-01-26 セイコーエプソン株式会社 Electro-optics, manufacturing methods of electro-optics, electronic devices
WO2021162024A1 (en) * 2020-02-13 2021-08-19 東レ株式会社 Method for producing wavelength conversion substrate, wavelength conversion substrate, and display
US20220199691A1 (en) * 2020-12-22 2022-06-23 Lg Display Co., Ltd. Display device

Also Published As

Publication number Publication date
US20110084290A1 (en) 2011-04-14
TW201008365A (en) 2010-02-16
KR20100126399A (en) 2010-12-01
TWI481299B (en) 2015-04-11
CN101971701A (en) 2011-02-09
US8629614B2 (en) 2014-01-14
KR101209128B1 (en) 2012-12-06
JPWO2010004865A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2010004865A1 (en) Organic el display and method for manufacturing same
US9929370B2 (en) Organic EL display
WO2010150353A1 (en) Flat panel display, manufacturing intermediate therefor, and method of manufacturing same
US8446091B2 (en) Color conversion filter and manufacturing method of the organic EL display
JP5312909B2 (en) Color conversion filter panel for color organic EL display and color organic EL display
JP2008235089A (en) Organic el display panel and its manufacturing method
CN111435676B (en) Organic EL display panel and method of manufacturing the same
JP5937124B2 (en) Organic EL display
KR101689920B1 (en) Display panel and method for manufacturing display panel
TWI470284B (en) Color conversion filter substrate
JP2015156381A (en) Organic electroluminescence (el) display
KR20100071704A (en) Dual plate type organic electro-luminescent device and the method for fabricating thereof
JP2009152085A (en) Organic el display and manufacturing method therefor
JP2020035713A (en) Organic EL display panel
JP6470477B1 (en) Organic EL light emitting device and method for manufacturing the same
JP2005251630A (en) Sealing type display panel, sealing type display panel substrate, and manufacturing method of sealing type display panel
JP7412999B2 (en) Organic EL display panel and method for manufacturing organic EL display panel
JP2020113529A (en) Organic el display panel, and manufacturing method of organic el display panel
JP2020119842A (en) Organic el display panel and organic el display panel manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109122.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519720

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020776

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12736537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794311

Country of ref document: EP

Kind code of ref document: A1