WO2010004060A1 - Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos - Google Patents

Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos Download PDF

Info

Publication number
WO2010004060A1
WO2010004060A1 PCT/ES2008/070137 ES2008070137W WO2010004060A1 WO 2010004060 A1 WO2010004060 A1 WO 2010004060A1 ES 2008070137 W ES2008070137 W ES 2008070137W WO 2010004060 A1 WO2010004060 A1 WO 2010004060A1
Authority
WO
WIPO (PCT)
Prior art keywords
cilastatin
drug
nephrotoxic
cisplatin
use according
Prior art date
Application number
PCT/ES2008/070137
Other languages
English (en)
French (fr)
Inventor
Alberto Tejedor Jorge
Alberto Lazaro Fernandez
Sonia CAMAÑO PAEZ
Ana María Torres Redondo
José Antonio Lazaro Manero
Manuela Castilla Barba
María del Carmen De Lucas Collantes
Original Assignee
Fundacion Para La Investigacion Biomedica Del Hospital Gregorio Marañon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Para La Investigacion Biomedica Del Hospital Gregorio Marañon filed Critical Fundacion Para La Investigacion Biomedica Del Hospital Gregorio Marañon
Priority to PCT/ES2008/070137 priority Critical patent/WO2010004060A1/es
Priority to US12/442,249 priority patent/US9216185B2/en
Priority to EP09164710.7A priority patent/EP2143429B1/en
Priority to DK09164710.7T priority patent/DK2143429T5/da
Priority to PL09164710T priority patent/PL2143429T3/pl
Priority to PT91647107T priority patent/PT2143429E/pt
Priority to ES09164710.7T priority patent/ES2451715T3/es
Publication of WO2010004060A1 publication Critical patent/WO2010004060A1/es
Priority to US14/940,669 priority patent/US9522128B2/en
Priority to US15/233,665 priority patent/US9757349B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/02Halogenated hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/662Phosphorus acids or esters thereof having P—C bonds, e.g. foscarnet, trichlorfon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/7036Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin having at least one amino group directly attached to the carbocyclic ring, e.g. streptomycin, gentamycin, amikacin, validamycin, fortimicins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0438Organic X-ray contrast-enhancing agent comprising an iodinated group or an iodine atom, e.g. iopamidol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents

Definitions

  • the invention relates to the administration of cilastatin to reduce the nephrotoxicity of various compounds. More specifically, the invention relates to the use of cilastatin for the preparation of a medicament for reducing the nephrotoxicity caused by any compound that penetrates the cells of the proximal tubule through cholesterol rafts.
  • Renal dehydropeptidase (also known as dihydropeptidase I, microsomal dipeptidase or EC 3.4.13.19) is a glycoprotein involved in the hydrolysis of the dipeptide peptide bond (Adachi 1990, Campbell 1966), which is mostly located in the brush border of the proximal tubule cells of the kidney.
  • DPH I is a homodimer with two subunits ( ⁇ , ⁇ ) each consisting of a peptide of 369 amino acids (42KDa). The subunits have four possible glycosylation sites and a highly glycosylated 63KDa form can be obtained.
  • the active site of each of the subunits that make up the dimer is composed of zinc ions which are oriented towards the micro villi of the renal tubule (Nitanai 2002).
  • DHP I is involved in the renal metabolism of glutathione, in the conversion of leukotriene D4 to leukotriene E4 (Kozak 1982) and, so far, the only mammalian enzyme capable of hydrolyzing the beta-lactam ring (Campbell 1984). DHP I is responsible for hydrolyzing the ⁇ -lactam ring of imipenem, inactivating it (Kaham 1983), although it does not affect penicillins or cephalosporins.
  • DHP I is anchored to the cell membrane by a covalent bond to a glycosyl phosphatidyl inositol (GPI) structure (Adachi 1990).
  • GPI glycosyl phosphatidyl inositol
  • the modification of the cellular fate of the protein by the GPI anchor during protein translation is a membrane binding modality of more than 200 proteins in eukaryotic cells. In addition to allowing protein binding to the membrane, it has important functions especially in signal translation or in the process of recognition (Nosjean 1997). GPI residues are typically located in cholesterol-rich and sphingolipid membrane domains called cholesterol rafts or "BDCs" (Morandat S 2002).
  • lipid BDC coexist in the same cell.
  • these ordered domains can be enriched in a structural protein component, which dramatically changes the morphology and function of the BDC.
  • This emerging class of proteins is called MORFs (Modifiers of BDC function).
  • the first MORF identified was caveolina-1 (Cav-1). Three caveolin genes are known; Caveolins 1 and 2 are ubiquitously expressed while 3 is expressed only in astrocytes and muscle cells (Smart 1999).
  • Cav-1 is integrated into the BDC microenvironment but is also anchored by its cytoplasmic domain to the cytoskeleton. This arrangement allows the BDCs thus formed to generate plate-shaped depressions of 50-100 nm (caveolae) and can be located or displaced in a regulated manner.
  • caveolae and BDCs share certain biochemical properties, the location of caveolins in caveolae distinguishes these membrane domains. Since its discovery in the fifties (Yamada 1955), much has been speculated about the function of caveolae. Caveolae have been implicated in numerous functions such as endocytosis, lipid homeostasis, tumorigenesis, calcium transport / regulation, cholesterol transport / regulation, albumin transcytosis and other proteins through the endothelium (Simons 2000, Razani 2002). In addition, caveolines interact with the proteins that reside in caveolae. This protein-protein interaction includes among others the inducible nitric oxide synthetase (NOS 2) (Razani 2002).
  • NOS 2 inducible nitric oxide synthetase
  • BDC lipid-lipid and lipid-protein relationships. It has recently been suggested that BDCs could be important in transport through an alternative endocytic pathway to that of clatrine-coated vesicles. BDCs could serve as an entry site for certain pathogens and toxins, as in the case of Listeria monocytogenes (Seveau 2004). However, it had not been suggested that they could have any relevance for the transport of drugs known to cause cytotoxicity.
  • Imipenem is an antibiotic of the family of carbapenemes introduced in the market in 1985. Imipenem is an antibacterial agent of the ⁇ -lactam class, with a broad spectrum that includes most Gram-negative and Gram-positive pathogens , aerobic and anaerobic, with a marked activity against species producing ⁇ -lactamase.
  • DHP I dehydropeptidase I
  • the antibacterial spectrum of imipenem was ideal for treating Gram negative germs, mainly in sepsis of intestinal or renal origin.
  • the renal degradation of imipenem caused suboptimal concentrations of active drug in the urinary tract (Kropp H 1982), limiting its use in the treatment of systemic infections.
  • the first published studies in which cilastatin already appears in combination with imipenem were presented at the 21 st Interscience Conference on Antimicrobial Agents and Chemotherapy that took place in Chicago in November 1981, by Norrby and his collaborators (Norrby 1981).
  • Cilastatin is a competitive inhibitor of DHP I, which prevents hydrolysis of the peptide bond and the opening of the lactam rings.
  • dihydropeptidase does not open the imipenem lactate ring, prevents its absorption and increases urinary excretion of imipenem, reducing its concentration in the tubular cell (Clissold 1987, Birnbaum 1985).
  • High doses of isolated imipenem can produce tubular toxicity in rabbits, but this effect is prevented by concomitant administration of cilastatin (Norrby 1985).
  • cilastatin In addition to its well-known effect as a renal dipeptidase inhibitor, cilastatin is able to inhibit organic anion transport systems (OATPs) at basolateral level. This effect has been recently described, and its involvement in the metabolism of other drugs has been discussed, with little success since the expected effect of its action on OATPs would be to increase the circulating levels of the drugs involved and reduce their overall clearance. , exactly the opposite of what was observed.
  • OATPs organic anion transport systems
  • sodium cilastatin is monosodium salt of the acid [R- [R *, S * - (Z)]] - 7 - [(2-amino-2-carboxyethyl) thio] -2 - [[(2, 2-dimethylcyclopropyl) carbonyl] amino] -2-heptenoic. Its empirical formula is C I eH 2S N 2 NaOsS, and has a molecular weight of 380.44 Da. It is an amorphous compound, whitish to yellowish white, hygroscopic, very soluble in water and in methanol (Drusano GL 1984). Its chemical structure is as follows:
  • Cilastatin inhibits renal degradation of imipenem, reaching a rate of urinary excretion of 70% of the initial dose of imipenem administered.
  • An imipenem: cilastatin (I / C) ratio of 1: 1 was established as optimal dose to maintain this inhibition for 8 to 10 hours (Norrby 1983).
  • Multiple dose studies reveal that cilastatin does not accumulate in healthy subjects. Confirmation that cilastatin has a strong affinity for DHP I was demonstrated by measuring the levels of leukotriene E4, whose formation from leukotriene D4 takes place in the kidney by renal dehydropetidase from the brush border.
  • Cyclosporine A is a lipophilic cyclic endecapeptide, identified in principle as an antifungal, for which a potent immunosuppressive activity was demonstrated in 1972, its definitive use being approved in 1983. Since the introduction of CsA and its combination with other immunosuppressants, immunosuppressive therapy has improved markedly in both solid and bone marrow transplants.
  • CsA acts primarily on T lymphocytes, inhibiting the cascade of biochemical reactions highly dependent on the calcium ion that take place after the binding of an antigen to the T cell receptor and marking the activation and proliferation of T lymphocytes through the synthesis of IL-2 (Belitsky 1986, Ryffel 1990).
  • the main side effect of CsA is nephrotoxicity, which affects both the native kidney (in cases of liver, heart or bone marrow transplantation) and the transplanted (renal transplant) (Calne 1978). In both cases the effect is dose dependent.
  • the entry of CsA into the proximal tubule is very fast.
  • tubular sublethal damage includes swelling of the endoplasmic reticulum, isometric vacuolization, appearance of autolysosomes, giant mitochondria, micro calcifications, changes in the cytoplasm of the tubular epithelium, necrosis, exfoliation of tubular cells, tubular regeneration, and occasional increase of mitosis (Mihatsch 1986). It has been seen that low doses of CsA cause a significant rise in intracellular calcium first before the loss of cell viability. It has also been shown that CsA activates proapoptotic genes in tubular and interstitial cells.
  • cilastatin may have an effect on vancomycin reabsorption on the tubule but, as in the case of the Toyoguchi group studies, they did not carry out any direct study on cells, so they could not demonstrate that that effect It really existed.
  • this group proposed that cilastatin competes with vancomycin for a route of entry to the proximal cell, neither its studies nor the subsequent studies of Nakamura (Nakamura, 1998), in which the decrease in vancomycin excretion in the presence of imipenem was analyzed / cilastatin, allowed to conclude whether it was a competition with resorption or tubular secretion of it (Nakamura, 1998).
  • Ciclosporin is apolar, very slightly soluble in water, soluble in lipids and organic solutes, and the possibility of reaching the interior of the epithelial cells of the proximal tubule through the organic anion transport system (OATP) is very low, considered up to now that its transport mechanism was by transmembrane passive diffusion.
  • OATP organic anion transport system
  • Vancomycin has an amphoteric character and is soluble in water, and could be a theoretical substrate for the OATPs of the proximal tubule, although no one has directly studied this extreme.
  • nephrotoxicity is a problem that affects many drugs and that limits the administration of the doses that would be appropriate to provide so that they exert their effect on the alteration that is intended to be treated, for obliging the nephrotoxic effects to be reduced. such doses or stop the administration of the drug before completing the treatment.
  • identifying a compound that reduces nephrotoxicity for a high number of drugs with nephrotoxic potentiality would be of great interest for clinical practice.
  • the possibility of inhibiting a common entry mechanism would be a way to achieve it.
  • the present invention provides a solution to that problem.
  • the invention provides the use of cilastatin for the manufacture of a medicament for reducing the nephrotoxicity of that compound / s that penetrates the cells of the renal proximal tubular epithelium by means of cholesterol rafts.
  • cilastatin is capable of interfering with this transport mechanism, decreasing the accumulation of the main nephrotoxins in the renal tubule cell, thereby reducing the damage caused by them to the proximal tubule Likewise, it results in both a decrease in the early and late phenomena associated with cell death due to apoptosis of the proximal tubule cells, as well as the restoration of morphology and the regenerative capacity of the tubular epithelium, all when administered simultaneously with the nephrotoxic whose effect is intended to alleviate.
  • cilastatin is able to decrease the nephrotoxicity of a compound that penetrates the cells of the proximal tubular epithelium renal through the transport mechanism in which cholesterol rafts are involved. This results in the use proposed in the invention.
  • cilastatin especially suitable for use in various clinical conditions, in combination with drugs targeting different tissues, without reducing their pharmacological activity in their target organs.
  • the compound whose nephrotoxicity is intended to reduce is a drug. It is preferred that the drug be distinct from cyclosporin A, vancomycin or imipenem. In a preferred embodiment of the above, the drug is selected from gentamicin, tacrolimus, cisplatin, foscarnet, mannitol, iopamidol, amphotericin and paracetamol.
  • a preferred embodiment of the invention is that in which the manufactured drug contains both cilastatin and the drug whose nephrotoxic effects are desired to alleviate, as this facilitates their simultaneous administration, although they may be part of the same form of presentation pharmaceutical (suspension, solution, tablet, lyophilized powder ...) or be part of different pharmaceutical presentation forms, but included in the same medicine (contained, for example, in two different vials or ampoules), facilitating this last presentation administering the Cilastatin in different relative proportions with respect to the nephrotoxic drug or even decide whether both compounds are administered to the individual to be treated simultaneously or separated over time. It is particularly preferred that both drugs be administered to the individual simultaneously.
  • cilastatin can be carried out in more than one dose, separated in time, the first of which is preferably administered simultaneously with the drug whose nephrotoxic effect is desired to be reduced, the administration of other doses of cilastatin in the period between successive doses of the nephrotoxic drug.
  • the administration of cilastatin can be oral or parenteral (intramuscular, intraperitoneal or intravenous). It is preferred that cilastatin be administered via parenteral, especially intravenously (which is the most common form of parenteral administration in humans), so it is particularly preferred that the medicine comprising cilastatin is designed to be administered parenterally, such as a saline solution or another suitable pharmaceutically acceptable solvent. Preferred forms of presentation are also those that facilitate the preparation of cilastatin solutions or suspensions at the time of administration, at the desired concentration, such as powder presentations.
  • Table 2 Formula and activity of the nephrotoxic compounds with which the nephroprotective effect of cilastatin has been tested:
  • the nephroprotective effector of the administration of cilastatin is lower in anionic drugs, such as amphotericin B, because it has an alternative mechanism for entering the cell that is not inhibited by cilastatin. That is why one of the preferred embodiments of the invention is that in which the drug is cationic or neutral in physiological pH, at the normal pH of the blood, the value of which is 7 or close to 7.
  • preferred embodiments of the invention are those in which the drug is: gentamicin; tacrolimus; - foscarnet; paracetamol; cisplatin; amphotericin; mannitol; or - iopamidol.
  • the nephrotoxic drug is foscarnet (phosphonoformic acid, normally administered in the form of its hydrated trisodium salt), a pyrophosphate analog that specifically inhibits the DNA polymerase of herpes viruses and which also has anti activity -VIH. It is used for the treatment of retinitis caused by the cytomegal virus in patients suffering from AIDS in treatment with AZT, as well as in infections caused by herpes resistant to AZT. Its main adverse effect is precisely its renal toxicity, which limits its use.
  • the nephrotoxic drug is paracetamol (N- (4-hydroxyphenyl) ethanamide), also known as acetaminophen, a drug of known analgesic and antipyretic activity whose widespread use, often without awareness of the dose Normal is close to overdose, has resulted in frequent poisoning and even its use in suicide attempts.
  • paracetamol overdose a single dose of paracetamol of 10 grams or continuous doses of 5 g / day in a non-alcoholic consumer in good health, or 4 g / day in a regular alcohol consumer, could lead to toxicity
  • liver damage renal failure is also frequent, which would be important to alleviate in case of excessive intake of this drug.
  • the nephrotoxic drug is cisplatin.
  • cis-diaminodichloroplatin II is a simple platinum compound used as an antineoplastic against a large number of tumors (ovary, testis, bladder, head and neck, lung, endometrium). Without However, it has potentially lethal adverse effects that affect different organs, of which the most frequent, which limits its use, is nephrotoxicity. Often, cisplatin treatments should be discontinued, or their doses should be reduced to much lower levels than would be desirable to achieve the desired chemotherapeutic effect, due to the nephrotoxicity caused by it.
  • cilastatin may be prior, simultaneous or subsequent to the administration of cisplatin, may be performed in more than one dose and the route of administration may be the same or different from the route of administration of cisplatin.
  • cilastatin be administered parenterally (preferably, in the case of humans, intravenously, although in rat experiments it is common for the form of parenteral administration with which the intraperitoneal route is experienced) and it is preferred that the dose of cilastatin be at least 750 mg / day in a daily dose or divided into at least two daily doses.
  • the compound has no activity known as a drug, but is about any other nephrotoxic whose effects are desired to alleviate, which may have been administered to an individual for various reasons, fortuitous or not.
  • the medicine in whose manufacture cilastatin is used could also serve to alleviate the deleterious effects on the kidney of different toxic compounds that act on it, such as ingested or inhaled poisons voluntarily or accidentally, administering said medication with after the moment in which the nephrotoxic compound has been introduced into the organism to be treated or even simultaneously, the latter situation in which cilastatin could serve as an antidote to the nephrotoxic effects of any compound when said compound was ingested voluntarily.
  • Another aspect of the invention is a therapeutic method for reducing the nephrotoxicity of a compound having such an effect that it comprises the administration of cilastatin to the individual in which it is desired to reduce the nephrotoxic effect.
  • the compound whose nephrotoxicity is intended to be reduced is a drug Administration may be simultaneous to that of the drug whose nephrotoxic effect is intended to be reduced or may be subsequent and / or prior to it. Such administration may occur in a single dose or in different doses, the first of which may be prior, simultaneous or subsequent to the administration of the nephrotoxic drug.
  • the drug is different from cyclosporin A, vancomycin or imipenem. More preferably, the drug is selected from gentamicin, tacrolimus, cisplatin, foscarnet, mannitol, amphotericin B and paracetamol.
  • cilastatin in the therapeutic method of the invention, can be administered orally, intramuscularly, intraperitoneally or intravenously (of which the last three can be considered parenteral routes, that is, ways in which it is eluded that the drug has to reach the intestine and pass into the blood by mechanisms associated with this organ). It is preferred that cilastatin be administered parenterally, especially intravenously, for example, in the form of saline solution or other suitable pharmaceutically acceptable solvent. In the case of parenteral administration, and it is preferred that the dose of cilastatin be at least 750 mg / day, a dose that can be administered as a single daily dose or divided into at least two daily doses.
  • a further aspect of the invention is a composition comprising a nephrotoxic drug together with cilastatin.
  • a preferred embodiment of the invention is one in which the composition lacks imipenem. It is particularly preferred that the nephrotoxic drug be distinct from cyclosporin A or vancomycin and, very particularly, that the nephrotoxic drug be selected from gentamicin, tacrolimus, cisplatin, foscarnet, mannitol, amphotericin B and paracetamol.
  • the composition may comprise at least one pharmaceutically acceptable carrier and may be, among others, in powder form or in solution form. In the latter case, it is preferred that the solvent is saline. In any of the embodiments, it is preferred that the composition be designed to reduce the nephrotoxicity of the nephrotoxic drug in the individual to which it is administered.
  • Fig. 1 refers to the blockage of the circulation of cholesterol rafts by cilastatin. It shows the fluorescence due to fluorescent B toxin in porcine proximal tubular epithelium cells in primary culture, specifically: - Fig. IA shows the evolution of fluorescence in control cells
  • B-FITC toxin fluorescent B toxin
  • Fig. 2 demonstrates the cellular safety of cilastatin and shows the growth over the days of culture, expressed as thousands of cells observed per square centimeter (cells x 1000 / cm), of a primary culture of cells of the proximal tubular epithelium pig, in the absence of cilastatin (control) or in the presence of the concentrations of cilastatin (CIL) indicated on the Figure.
  • Fig. 3 refers to the reduction or absence of cell apoptosis in the presence of cilastatin.
  • the graph shows the oligonucleosome enrichment factor, calculated with respect to the incubated control cells without nephrotoxics (first pair of bars), observed when incubating primary cultures of pig proximal tubule cells with the indicated nephrotoxics, in the absence (first bars of each pair, without padding) or in the presence of cilastatin (second bars of each pair, with black padding).
  • * ANOVA: effect of cilastatin on each drug: p ⁇ 0.05.
  • Fig. 4 shows that cilastatin prevents or reduces cell death by Anoikis:
  • - Fig. 4A shows the flow cytometries of the supernatants of primary cultures of proximal tubule cells incubated with cisplatin (left column charts) or vancomycin (right column charts), in the absence or in the presence of cilastatin (RRbp -X) (lower graphics in both cases).
  • - Fig. 4B shows the count of the detached cells detected by supernatant microlith (No. cel / ⁇ l SN) when incubating primary cultures of proximal tubule cells with the doses indicated in abscissa of the vancomycin, gentamicin, cisplatin and paracetamol nephrotoxic , as indicated under each graph.
  • the initial bar corresponds to the value obtained in the incubation with the nephrotoxic
  • the second bar corresponds to the value obtained when matching with cilastatin (RRbp-X).
  • Fig. 4C shows the counts of cells released to the supernatant after incubating cultures of proximal tubule cells with the vancomycin nephrotoxics (data indicated by rhombuses, ⁇ ), gentamicin (data indicated by triangles, A), or cisplatin (data indicated by circles, •).
  • the axis of abscissa corresponds to the values obtained in incubations without cilastatin and the axis of ordinates to incubations with cilastatin (RRbp-X).
  • the line of identity that would be obtained if the values obtained in the presence or absence of cilastatin were identical for each nephrotoxic is also represented.
  • Fig. 5 refers to the restoration of the mitochondrial oxidative capacity of the proximal tubule in the presence of cilastatin.
  • MTT resulting in the appearance of a blue compound, formazan
  • the graphs on the left side correspond to the appearance of formazan (measured as a relative increase in the absorbance of the medium at 595 nm) observed in the cells incubated for 24 hours with the concentrations of nephrotoxic indicated in abscissa, in absence (first bar of each pair, with lighter filling or without filling) or in the presence of cilastatin (second bar of each pair, with black filling).
  • the graphs on the right side correspond to the formation of formazan detected in isolated cells in real time without any treatment (control) or incubated with the concentrations of nephrotoxic indicated on the graph, in the absence or in the presence of cilastatin (RRbp-X ), after incubation times indicated, in seconds, on the abscissa axis.
  • the nephrotoxics whose results are shown are: vancomycin (Fig. 5A), cisplatin (Fig. 5B), paracetamol (Fig. 5C), cyclosporine (Fig. 5D) and tacrolimus (Fig. 5E).
  • Fig. 6 demonstrates that cilastatin restores cell morphology.
  • Fig. 7 refers to the improvement of cell recovery, after aggression, which is observed in the presence of cilastatin. It shows the growth over the days of culture, expressed as thousands of cells observed per square centimeter (cells x 1000 / cm 2 ), of the primary culture of proximal tubule cells, in the absence (control) or presence of the expressed amounts on the graphs of the nephrotoxic cyclosporine (CsA) (Fig. 7A) or tacrolimus (FK 506) (Fig. 7B), in the absence or in the presence of cilastatin (CiI).
  • CsA nephrotoxic cyclosporine
  • Fig. 7B tacrolimus
  • Fig. 7A the symbols of significance on the graphs have the following meanings: *: cyclosporine vs.
  • Fig. 8 shows the results of the surviving colony formation assays, potential regenerating colony forming, detected by staining with crystal violet of cultured cells treated with each of the nephrotoxics indicated under the graphs, in the presence and absence of cilastatin.
  • An improvement of the cellular recovery to the aggression of the nephrotoxics can be observed, with an increase in long-term survival (7 days), after co-administration of cilastatin and the nephrotoxics indicated under the graphs:
  • Fig. 8A gentamicin (in this case and as an example of all the others, photographs of the plates are shown where the cells surviving the aggression are stained with crystal violet);
  • Fig. 8B vancomycin, Fig.
  • Fig. 8C cisplatin
  • Fig. 8D paracetamol
  • Fig. 8E cyclosporine
  • Fig. 8F tacrolimus (FK506).
  • the graphs show the results obtained by measuring the absorbance, at 595 nm, of the colorant of the proximal tubule cells incubated for 24 hours with the indicated nephrotoxics in each case, at the concentrations indicated under the bars, after staining the cells with violet crystal.
  • the first bar of each couple corresponds to the incubation in absence of cilastatin (white bars) and the second to incubation in the presence of cilastatin (black bars).
  • Fig. 9 shows the intracellular accumulation of various nephrotoxics (from left to right: vancomycin, cyclosporine, tacrolimus (FK506), paracetamol, cisplatin and gentamicin) when primary cultures of proximal tubule cells are exposed for 24 hours at increasing concentrations of the Nephrotoxic in the absence (white bars) or in the presence (black bars) of cilastatin (RRbp-x). It is shown that cilastatin prevents the entry of nephrotoxins into the proximal cell. *: cilastatin effect p ⁇ 0.05; #: dose effect p ⁇ 0.05. Fig.
  • FIG. 10A shows the time course of the increase in the percentage of cell death produced by CsA in the time studied: after 4 hours of incubation (first bar of each couple) or after 16 hours of incubation (second bar of each couple).
  • Fig. 10B corresponds to the representation of the dose-response effect of the lethal effect of CsA on human T lymphocytes, shown by the differences found when incubating with different doses of CsA.
  • This figure shows the absence of the protective effect of cilastatin (RRbp-X) on the induction of cell death induced by cyclosporine A (CsA), by representing the percentage of cell death observed in lymphocytes incubated in the absence of treatment ("Negative Control "), incubated with camptothecin (" Positive Control "), cyclosporine at 1 ⁇ g / ml (third pair of bars) or with cyclosporine at 100 ⁇ g / ml (fourth pair of bars), observing the absence of a protective effect in the presence of cilastatin (second bar of couples, third and fourth of bars).
  • Fig. 11 also demonstrates that the nephroprotective effect of cilastatin is specific to the proximal tubule.
  • Control untreated cells, incubated only with the culture medium
  • CISPLA cells incubated with cisplatin, at concentrations of 1 ⁇ M (second pair of bars of each graph), 10 ⁇ M (third pair of bars of each graph) or 30 ⁇ M (fourth pair of bars of each graph)
  • CAMPTO camptothecin, positive control of death by apoptosis.
  • Each of the treatments was carried out in the absence of cilastatin (first bar of each couple: bars with gray fill, "WITHOUT CIL") or in the presence of cilastatin (second bar of each couple: bars with black fill, "WITH CIL ").
  • * p ⁇ 0.05 vs. Control and control + cilastatin; ns not significant.
  • Fig. 12 refers to a preliminary study carried out in vivo (Wistar rats), carried out in order to verify that the nephroprotective effect of cilastatin is observable in vivo, specifically designed to check cilastatin nephroprotection against toxic acute renal failure. caused by cisplatin: - Fig. 12A shows a scheme of the administration regime of cisplatin and cilastatin supplied to animals.
  • Figs. 12B and 12C show, respectively, the values of BUN (blood urea nitrogen) and creatinine (CREA), in both cases expressed in mg / dL, obtained in the blood serum of the 5 animals under observation:
  • Fig. 13A shows a scheme of the administration regime of cisplatin and cilastatin supplied to animals.
  • Figs. 13B, 13C, 13D and 13E show, respectively, serum creatine values (mg / dL), renal clearance (mL / min / lOOg), proteinuria (mg / 24 hours) and osmolality (mOsm / kg) obtained from the samples of the 4 groups of animals under observation:
  • Control treated with saline only) (white bars, without filling);
  • control + cilastatin animals supplied with cilastatin dissolved in saline at a dose of 75 mg / kg every 12 hours intraperitoneally from the day of administration of cisplatin and until the day of slaughter) (white bars with dark punctuated filler) ;
  • cisplatin animals with intraperitoneal injection of cisplatin (5 mg / kg weight, dissolved in saline), plus saline every 12 hours in the same volumes and regimens as the cilastatin-treated groups) (bars with continuous black filler);
  • Fig. 14 shows a diagram deduced from the specifications of the cilastatin data sheet, animal tests, cell culture tests and references to other animal models.
  • the effective doses of cilastatin supplied, in milligrams per kilogram of body weight (mg / kg) (data indicated in abscissa), are related to pericellular cilastatin levels, expressed in milligrams per liter (mg / 1), which are related Indicate in ordinates.
  • rhombuses (4) rabbit data
  • triangles (A) rat data
  • unfilled squares (D) data from experiments carried out with cells in pig culture
  • filled squares with center point (Q) data from the technical data sheet of the commercial product for humans containing cilastatin.
  • the shaded box represents the security area deduced based on pericellular concentration data (pig). Symbols surrounded by circumferences represent the doses at which cilastatin efficacy is demonstrated herein.
  • Nephrotoxic and nephroprotective (cilastatin) - Cyclosporin A Acquired from Sandoz (Novartis), Sandimum (solution for injection).
  • Tacrolimus Acquired from Astellas, Prograf, (solution for injection).
  • Vancomycin Acquired from Combino Pharm (powder).
  • Cisplatin Acquired from Pharmacia (solution for injection).
  • Paracetamol Acquired from Bristol-Myers Squibb, Perfalgan, (solution for injection).
  • Amphotericin B Acquired from Bristol, Fungicine, (powder).
  • Chloroform Acquired from Scharlau, (liquid solution).
  • - Mannitol Acquired from Braun, Osmofundin (20% mannitol) (solution for injection).
  • Foscarnet Acquired from AstraZeneca, Foscavir, (solution for injection).
  • Contrast iodine (iopamidol): Acquired from Ro vi, Iopamiro, (solution for injection).
  • Cilastatin Acquired from Merck, Sharp & Dohme, (powder).
  • CSH Major Histocompatibility Complex
  • the animals selected for this study had an average age of 3 months and an average weight of 31.3 ⁇ 0.7 kg, being either male or female.
  • the handling of the animals used was always carried out following the legal regulations in force (Royal Decree 1205/2005, of October 10, 252/2005) by accredited personnel in the handling of experimental animals and under the supervision of the responsible veterinarian.
  • Anesthesia during surgery was maintained with nitrogen peroxide / oxygen (4 1 / min NO 2 and 2 1 / min O 2 ), Diprivan® (Propofol) 15 mg / kg / h, Fentanest® (Fentanyl) 0.75 mg / 20 min and Pavulon® (Pancuronium bromide) 2 mg / 20 min.
  • the animal was sacrificed by an anesthetic overdose and potassium chloride (KCl).
  • the kidneys were removed in the operating room under sterile conditions by simple bilateral transperitoneal nephrectomy. Once extracted, they were immediately transferred to HAM 'S-F 12 (Bio-Whittaker) with Penicillin (100 Ul / ml) and Streptomycin (100 ⁇ g / ml) (Bio-Whittaker) at 4 ° C.
  • the cortex was dissected and sectioned using a Steadie-Riggs microtome ⁇ Tomas Scientific, USA).
  • the sheets were gassed with carcinogen and digested with collagenase A (Sigma) (30 mg / kidney), diluted in HAM'S F12 (50 ml / kidney, final collagenase concentration 0.6 mg / ml) for 20 or 30 minutes with stirring ( 150 rpm) at 37 ° C. This process was controlled to prevent excessive digestion, removing the tissue at the time when turbidity was observed in the middle and the edges of the tissue sheets appeared disintegrated.
  • the digested material was filtered through a 250 ⁇ m metal mesh (ENDECOTTS LDT).
  • the filtrate was washed three times with HAM'S-F12 in a centrifuge (Sorvall GLC-2B. Swinging rotor) at 150 g for one minute to remove the remains of collagenase.
  • the final sediment contains 80% tubules. To increase purity and eliminate contaminants, it was processed through a 45% isotonic Percoll ⁇ Pharmacia) gradient in Krebs-bicarbonate buffer (112 mM ClNa, 3.3mM ClK, 4 H 2 K 1 PO, 2mM, MgSO 4 .
  • tubules were collected with a sterile Pasteur pipette, washing three times with HAMS-F 12 with Penicillin (10000 Ul / ml) and cold Streptomycin (10000 ⁇ g / ml) at 150 g to remove Percoll. To know the yield, the precipitate obtained was weighed.
  • MC Culture Medium
  • HAM'S-F12 / DMEM Dulbecco's Modified Eagles's Medium with 1 g / L glucose, Bio-Whittaker
  • DMEM Dulbecco's Modified Eagles's Medium with 1 g / L glucose, Bio-Whittaker
  • SBF fetal bovine serum 2%
  • MERCK mM sodium bicarbonate
  • 5xlO " 8M hydrocortisone 5 ⁇ g / ml insulin, 5 ⁇ g / ml transferrin, and 5 ng / ml selenium (SIGMA). 5 ml of this suspension in each 60 mm diameter plate
  • the plates were kept in an incubator (Heraeus) at 37 ° C with 5% CO 2 .
  • the first medium change was not made until the fourth day, to allow the cells to adhere to the plaque. As of this day, the medium was changed every 2-3 days. The cells reached confluence between 8-10 days, beginning to appear signs of senescence at 12-13 days.
  • the cells in culture were counted in situ on images of the cell monolayer obtained in a microscope in a 4OX field, calibrated by means of a Neubauer grid and corresponding to 0.0775 mm 2 .
  • the images were acquired through a videomicroscopy system (COHU camera attached to a computer through a VG-5 video recorder card with integration chip) that It allows quick recording of images so that the cells were returned to the incubator after a short period of time.
  • the images were analyzed using the "Scion image” program (Scion Corporation, 1998), based on the Image deMcIntosh program of the National Institute of Health, USA. In each culture, each treatment under study was applied to a minimum of six plates.
  • n 1 for the day and treatment in question.
  • the "n" indicated in the corresponding experiments represents the number of animals studied for each condition and the variation measures correspond to the errors of the means between animals for the condition studied.
  • choleric toxin B was used conjugated with a fluorologist (FICT, supplied by Molecular Probes) that uses these rafts for cell internalization.
  • FICT fluorologist
  • negative controls were used: two cholesterol raft modifying agents: cyclodextrin, supplied by Sigma Spain, and philippine, supplied by Calbiochem.
  • CTP Primary cultures of CTP were pre-incubated with cyclodextrin (CDX) (1 mM), filipin (50 ⁇ g / ml), cilastatin (200 ⁇ g / ml) or exclusively with culture medium (controls) for 20 minutes. They were subsequently incubated with cholera toxin B-FITC (10 ⁇ g / ml) at different times (1 hour and 2.5 hours). The cells were washed with PBS and fixed with 4% formaldehyde at room temperature for 5 minutes. The samples were mounted upside down on slides with a drop of DAKO Fluorescent mounting medium medium and were observed under a confocal microscope. Nucleosomal enrichment: Release of oligo-nucleosomal DNA to the cytosol
  • nephrotoxic compounds cyclosporine A, gentamicin, tacrolimus (FK506), vancomycin, cisplatin, iodinated contrast, foscarnet, mannitol, amphotericin B, chloroform and paracetamol
  • CeIl Death Detection ELISA PLUS Boehringer Mannheim cell death enzyme-immunoassay kit was used, which determines the oligonucleosomes with antihistone-biotin and anti-DNA-peroxidase antibodies.
  • proximal tubule cells described above were grown to confluence in 24-well plates of 16 mm diameter, submitted for 48 hours to the corresponding treatments, and used with 200 ⁇ l of lysis solution for 30 min at room temperature. The lysate was collected and centrifuged at 20Og for 10 min (Eppendorf 5417C). From the resulting supernatant (cytosolic fraction), were added
  • DNA DNA; the peroxidase carries out the colorimetric reaction that allows quantification) and incubating 2 hours at room temperature.
  • the mitochondrial functionality of CTP was determined by the metabolic reduction of 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole bromide (MTT, supplied by Calbiochem), performed by the mitochondrial enzyme succinate dehydrogenase , resulting in a compound colored blue (formazan).
  • MTT 4,5-dimethylthiazol-2-yl
  • succinate dehydrogenase succinate dehydrogenase , resulting in a compound colored blue (formazan).
  • the cells were seeded in 96-well plates, grown to semiconfluence and subjected to their corresponding treatments for 24 hours. Subsequently, the MTT was added to each well at a final concentration of 0.5 mg / ml and incubated for 3 hours at 37 ° C in darkness.
  • the reduction of MTT in real time was determined in semiconfluent proximal cells seeded in 24-well plates (16 mm in diameter), to which the culture medium was replaced by MTT 0.5 mg / ml of final concentration in PBS. This reduction was determined by measuring the absorbance at 595 nm, with an Olympus 1X70 inverted fluorescence microscope coupled to a photomultiplier controlled from an SLM Aminco 2000 fluorimeter. In the first test (with vancomycin) two determinations were made, a control to quantify the quantity of MTT that reduced the cells in the absence of the toxic and an incubation with vancomycin 25 mg / ml for 20 min.
  • Subconfluent primary cultures of CTP were used, subjected to the corresponding treatments for 24 hours.
  • the cells released to the supernatant were collected by direct aspiration with automatic pipette and the adherent cells were separated from the culture plate by trypsinization.
  • the CTP thus obtained were fixed and permeabilized independently with 70% ethanol, stored at -20 0 C. After removing the ethanol, the cells were washed Twice with PBS. Subsequently, 40 ⁇ g / ml propidium iodide (IP) and 250 ⁇ g / ml RNAse were incubated with PBS-EDTA for 45 minutes in the dark and at room temperature.
  • IP propidium iodide
  • the count was performed on a FACScan cytometer (Beckton Dickinson) equipped with a simple argon ion laser. Windows were set based on the characteristics of
  • FSC size
  • SSC complexity
  • FL2-H height
  • FL2-A area
  • FL2-W width
  • Colony formation assay by staining with violet crystal The cells were seeded in 6-well plates until semiconfluence and were treated for 24 hours with the corresponding toxins in the presence and absence of cilastatin. The cells were then detached with trypsin and washed with sterile saline to remove the remains of the stimuli. The cells were reseeded in 100 mm petri dishes with 10% SBF medium being allowed to grow for 7-10 days. After this time, the culture medium was removed from the plates, fixed for 5 minutes with 5% paraformaldehyde in PBS and stained for 2 minutes with crystal violet (0.5% crystal violet in 20% methanol). Once the cells were stained, they were washed 2 times with PBS IX and photographed. After photographing, the crystal violet was eluted with 2 ml of eluate solution (50% ethanol and 50% 0.1M sodium citrate, pH 4.2). The absorbance of the eluate was quantified in an ELISA reader at 595 nm.
  • the determination of intracellular accumulation was carried out in the Cellular Used of the cells treated with the nephrotoxins, in the presence or absence of cilastatin, by fluorescence polarization immunoassay (TDX) (ABBOTT Laboratories, USA), according to the instructions of the manufacturer, except in the case of cisplatin, in which the intracellular concentration was determined by mass spectrometry with inductive coupling plasma ICP-MS Termo X-Series (Thermo Electron, Windsford, Cheshire, United Kingdom) monitoring the isotopes 195 Pt, 194 Pt and 191 Go.
  • TDX fluorescence polarization immunoassay
  • CD3 + lymphocytes isolated from peripheral blood were used, separated by immunomagnetism, from healthy donors, with prior informed consent (cell samples courtesy of Dr. Bu ⁇ o, Hospital Bone Marrow Transplant Service
  • Gregorio Mara ⁇ en The sample was centrifuged at 120 g and resuspended in 750 ⁇ l of RPMI medium (in the absence of SBF: Fetal Bovine Serum) to quantify the number of cells available through Trypan Blue. 100,000 cells were distributed per point.
  • the incubation of the lymphocytes was carried out in RPMI (Bio-Whittaker), without treatments (negative control), with CsA, with cilastatin, with both and finally with Camptotecina (Sigma) as a positive control of death by apoptosis. Incubation was performed for 4 hours at 37 ° C. The cells were centrifuged for 6 minutes at 1200 rpm.
  • the precipitate was resuspended in 100 ⁇ l of buffer (10 mmol / L HEPES, 150 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L Mg Cl 2 , 1.8 mmol / L CaCl 2 ) and 5 ⁇ l of Annexin -V. It was incubated in the dark for 10 minutes.
  • the intensity of the green fluorescence of the cells was quantified as the displacement in the logarithmic scale with respect to the control (cells growing by 10% SBF), compared to the number of cells analyzed. Cellular debris was excluded from the analysis. Lymphocyte apoptosis was also determined at 16 hours by adding higher doses, 100 ⁇ g / ml and 1000 ⁇ g / ml to the previous doses.
  • Another of the drugs in which it is more critical to discern whether the nephroprotection offered by cilastatin is accompanied or not by reduction in the potency of the drug is cisplatin.
  • Fig. 12A the study lasted 5 days from the intraperitoneal administration of cisplatin or saline in the case of the vehicle animal and throughout the period, the animals had free access to both water and food ( standard diet) in a controlled environment of light, temperature and humidity.
  • the animals were weighed and anesthetized with ketamine (10 mg / kg) and diazepam (4 mg / kg).
  • the blood was extracted by cannulation of the abdominal aorta at the height of the fork. This Blood was kept 30 minutes at 37 ° C, then 1 hour at 4 ° C and then centrifuged at 2000 rpm 15 minutes at 4 ° C. This allowed the obtaining of blood serum that was stored at - 80 0 C until the moment of use.
  • Cisplatin + Cilastatin Group (n 8): animals with single intraperitoneal administration of cisplatin (5 mg / kg weight) dissolved in saline, plus cilastatin (dissolved in saline serum) at a dose of 75 mg / kg weight every 12 hours intraperitoneally from the day of administration of cisplatin and until the day of sacrifice.
  • Fig. 13 A the study lasted 5 days from intraperitoneal administration of cisplatin (in the cisplatin and cisplatin + cilastatin groups) or saline (in the control and control + cilastatin groups), co-administering from from that moment and every 12 hours cilastatin (in the control groups + cilastatin and cisplatin + cilastatin), or its saline serum vehicle (to the cisplatin and control groups).
  • the aorta was clamped by cutting its flow above the kidneys, the inferior vena cava was perforated and the kidneys were perfused through the cannula with cold saline (Braun Medical SA, Barcelona, Spain). They were subsequently extracted, decapsulated and kept in cold saline during handling to minimize tissue degradation. After weighing the kidneys (right and left), these were similarly manipulated. The right kidneys were cross-sectioned just above the renal artery obtaining the superior renal poles that were introduced in 4% paraformaldehyde in PBS for 24 hours for fixation and subsequent inclusion in paraffin. The rest of the right kidney, as well as the left kidneys, were separated into the cortex and medulla by freezing both samples in liquid nitrogen and storing them at -80 ° until the time of use.
  • the Levene test was used to calculate the equality of variance between the groups. Those continuous variables that presented equality of variance and a distribution that adjusted to the normal one were analyzed by means of the ANOVA test and in the opposite case, with that of Kruskal-Wallis. The results are expressed as mean + standard error of the mean. Values of p ⁇ 0.05 were considered significant. All statistical tests used were performed with the SPSS software.
  • the caveols were identified on porcine proximal tubular epithelium cells in primary culture obtained as described above.
  • one of the caveola proteins the cholera toxin B receptor
  • FITC fluorophore
  • Fig. 1 A The results obtained are shown in Fig. 1 A. At 15 minutes fluorescent staining is observed throughout all cell membranes, regardless of treatment. In the upper part of the image, the evolution of the fluorescence in the absence of cilastatin can be shown: at the time, the fluorescence begins to accumulate in the perinuclear position, in the region corresponding to the Golgi apparatus; at 2.5 hours, the Golgi staining is evident, while the disappearance of staining in the cell membranes is observed.
  • Fig. 1 B the observable reduction in the tide in the Golgi apparatus is presented at 2.5 hours after marking the cell membrane caveolae with fluorescent Toxin B, in the presence of cilastatin or filipin.
  • Toxin B fluorescent Toxin B
  • cilastatin or filipin The destruction of caveolae with the Philippines prevents their internalization.
  • Filipina causes cell death in a short time.
  • Cilastatin also prevents the localization in the Golgi apparatus of the caveolas. But it does so through its binding to renal DPH-I.
  • Cilastatin cancels or reduces the damage caused by the main nephrotoxins to the proximal tubule
  • Cilastatin prevents or reduces cell apoptosis
  • endogenous endonucleases break the DNA into oligo-nucleosomes that pass into the cytoplasm, where they remain for several hours before becoming part of the "blebs" or apoptotic corpuscles.
  • the appearance of these oligonucleosomes can be interpreted as a manifestation of the apoptosis process.
  • cyclosporine A immunosuppressant
  • gentamicin aminoglycoside antibiotic
  • tacrolimus FK506
  • vancomycin glycopeptide antibiotic
  • cisplatin contrast
  • iodine iopamidol
  • foscarnet antiviral
  • mannitol mannitol
  • amphotericin B antifungal
  • chloroform and paracetamol analgesic and antipyretic
  • Fig. 3A The results obtained in the primary cultures incubated with the nephrotoxics and when the primary cultures are matched with the same nephrotoxics plus cilastatin (RRbp-X), are shown in Fig. 3A. In it, it can be verified how there is an increase with respect to the control in the quantification of nucleosomes for all the toxic substances tested.
  • RRbp-X nephrotoxics plus cilastatin
  • Cilastatin prevents or reduces cell death by Anoikis Toxic or ischemic aggression on the tubule translates into a type of cell death associated with the detachment of damaged cells, a process known as Anoikis.
  • the induction of Anoikis by the nephrotoxics under study can be measured by quantifying the number of cells that pass from the monolayer to the culture supernatant by flow cytometry, which was performed in this case following the methodology described above to calculate the viability of the proximal tubule cells.
  • the addition of cilastatin (RRbp-X) to the cultures reduced in all cases the number of dead cells.
  • FIG. 4B shows the flow cytometries of the supernatants of primary cultures of proximal tubule cells incubated with two potent nephrotoxins, cisplatin or vancomycin, in the absence or in the presence of cilastatin (RRbp-X).
  • RRbp-X cilastatin
  • the mitochondria of the proximal tubule is probably the organelle that is altered earlier during cell death due to apoptosis, frequently preceding in hours the start-up of the mechanisms that will eventually result in DNA fragmentation (nucleosome formation previously shown) and detachment of monolayer cells (Anoikis).
  • studying mitochondrial function in relation to assessed nephrotoxics can be useful in understanding the latency of the protection phenomenon.
  • Cilastatin restores cell morphology
  • Cilastatin improves cell recovery after aggression
  • a new experiment was performed in which the cell growth dynamics of primary cultures of proximal tubule cells were tested, in presence of two nephrotoxins, cyclosporine A and tacrolimus (FK-506), checking the differences in the presence and absence of cilastatin.
  • Post hoc analysis for cyclosporine shows a significant decrease in cell growth induced by cilastatin compared to the control from day 8 (dose of 1 ⁇ g / ml and dose of 10 ⁇ g / ml) and a recovery of cell growth with cilastatin from day eleven.
  • This test confirms that co-incubation with cilastatin totally or partially restores nephrotoxic-inhibited cell growth, as the trial shows that there is an improvement in cell recovery, with increased long-term survival (7 days) in those cases in which those that the nephrotoxic has been co-administered with cilastatin.
  • Cilastatin prevents nephrotoxic entry into the proximal cell due to its effect on the brush edge
  • cilastatin interferes with the intracellular accumulation of all studied nephrotoxins
  • cilastatin appears to be able to inhibit an intracellular accumulation pathway of nephrotoxics not known as such until now, as a result of its dipeptidase binding renal-I.
  • cisplatin Another of the drugs in which it is more critical to discern whether the nephroprotection offered by cilastatin is accompanied or not by reduction in the potency of the drug is cisplatin.
  • cisplatin did not lose cytotoxic antitumor activity
  • the drug was tested on a tumor cell line, HeLa cells, following the method of "Evaluation of mitochondrial activity by MTT" described above, with the times and concentrations of compounds described in the section "Viability in tumor cells (HeLa)".
  • the presence or absence of cilastatin did not imply any change in its cytotoxic effect.
  • Example 7 The protective effect of cilastatin is observable in vivo
  • Cisplatin + cilastatin (RRbp-X) 150 mg / kg / 12h animal with intraperitoneal injection of cisplatin (5 mg / Kg / weight dissolved in saline) + cilastatin (RRbp-X) at a dose of 150 mg / Kg of weight every 12 hours in the same regime and formulation as the previous one;
  • -Cisplatin animal with intraperitoneal injection of cisplatin (5 mg / kg / weight dissolved in saline) plus saline every 12 hours in the same volumes and regimens as the groups treated with cilastatin;
  • FIG. 13A A representation of the administration regimens can be seen in Fig. 13A, while the results obtained for creatine, clearance, proteinuria and osmolality in urine for the second and more complete experimental model, can be seen in Figs. 13B to 13E). It can be observed how animals treated with cisplatin plus cilastatin have a significant partial reduction in creatinine levels and clearance, compared to animals treated with cisplatin that did not receive cilastatin, resembling the values obtained in them to the control values. On the other hand, in the measure of proteinuria and osmolality in urine, cilastatin completely reversed the values, placing them in normal values in relation to those of animals that received cisplatin without cilastatin.
  • Fig. 14 The resulting graph is presented in Fig. 14 (rhombuses: rabbit data; triangles: rat data; squares without padding: data from experiments relating to pigs; filled squares that include a white dot: data from the product data sheet for human beings).
  • the shaded box represents the range of plasma levels (pericellular concentrations) in which safety and absence of toxicity to cilastatin have been demonstrated.
  • the graph shows that there is a linear relationship between the doses administered and the plasma levels achieved for all species, linearity that is maintained up to doses of 200 mg / kg weight and plasma levels around 800 mg / L. Above these figures the relationship tends to get lost.
  • the circumferences with which some data have been surrounded represent the doses at which efficacy of the drug has been demonstrated herein.
  • the minimum effective dose demonstrated in the studies reflected herein correspond to the range of therapeutic use proposed in the data sheet.
  • This dose can be estimated at 10 mg / kg of weight, which represents an average value of 750 mg / day for a human being in adulthood, which represents the minimum estimated nephroprotective dose in humans.
  • Cilastatin itself is devoid of toxic effects on the cells of the proximal tubule. Therefore, its administration can be used to reduce the nephrotoxic effects of drugs and other compounds with nephrotoxic effect.
  • the administration of cilastatin may be simultaneous to that of the drug and / or subsequent to it, in a single dose or in several doses, of which one of them may be simultaneous with the administration of the compound whose nephrotoxicity is to be reduced.
  • Imipenem / cilastatin reduces cyclosporin-induced tubular damage in kidney transplant recipients.
  • Imipenem / cilastatin A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy.
  • Cyclophilin a specific cytosolic binding protein for cyclosporin A. Science 226 (4674): 544-547
  • Kim SH JW Kwon, WB Kim, MG Lee: Effects of cilastatin on the pharmacokinetics of a new carbapenem, DA-1131, in rats, rabbits and dogs. Antimicrobial Agents and Chemotherapy, 1999; 43 (10): 2524-2527. Klintmalm GB, Iwatsuki S, Starzl TE. Nephrotoxicity of cyclosporin A in liver and kidney transplant patients. Lancet 28: 470-1 (1981).
  • Cilastatin (MK 0791) is a potent and specific inhibitor of the renal leukotriene D4-dipeptidase. Biochem Biophys Res Commun 16; 131 (2): 974-979 (1985). Kozak EM, Tate SS. Glutathione-degrading enzymes of microvillus membranes. J Biol Chem 10; 257 (ll): 6322-6327 (1982).
  • N-formimidoyl thienamycin (MK0787) as affected by coadministration of N- formimidoyl thienamycin dehydropeptidase inhibitors.
  • Tropschug M Barthelmess IB, Neupert W. Sensitivity to cyclosporin A is mediated by cyclophilin in Neurospora crassa and Saccharomyces cerevisiae. Nature 21-28: 953-955 (1989).
  • Welch CL Campbell BJ. Uptake of glycine from L-alanylglycine into renal brush border vesicles. J Membr Biol 54 (l): 39-50 (1980).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos. La invención se refiere al uso de la cilastatina para la preparación de un medicamento para reducir la nefrotoxicidad de un compuesto nefrotóxico que penetra en las células del túbulo proximal a través de las balsas de colesterol. Se basa en el descubrimiento de que gran cantidad de compuestos nefrotóxicos, incluidos fármacos, penetran en las células del túbulo proximal mediante las balsas de colesterol y de que la cilastatina es capaz de interferir en este mecanismo de transporte, disminuyendo en grados variables la nefrotoxicidad de dichos compuestos. El efecto nefroprotector es común a compuestos de distinta naturaleza química y solubilidad y es específico para el riñón, no interfiriendo con los efectos de fármacos nefrotóxicos que tengan sus dianas en otros órganos. Así, la administración de cilastatina permite disminuir los efectos nefrotóxicos de distintos fármacos, sin reducir su efecto terapéutico.

Description

USO DE LA CILASTATINA PARA REDUCIR LA NEFROTOXICIDAD DE
DISTINTOS COMPUESTOS
CAMPO TÉCNICO La invención se refiere a la administración de cilastatina para reducir la nefrotoxicidad de diversos compuestos. Más concretamente, la invención se refiere al uso de la cilastatina para la preparación de un medicamento para reducir la nefrotoxicidad provocada por cualquier compuesto que penetra en las células del túbulo proximal a través de las balsas de colesterol.
ANTECEDENTES DE LA INVENCIÓN
La dehidropeptidasa renal (DHP I) (también conocida como dihidropeptidasa I, dipeptidasa microsomal ó EC 3.4.13.19) es una glicoproteina involucrada en la hidrólisis del enlace peptídico de los dipéptidos (Adachi 1990, Campbell 1966), que se encuentra localizada mayoritariamente en el borde en cepillo de las células del túbulo proximal del riñon. La DPH I es un homodímero con dos subunidades (α,β) constituidas cada una por un péptido de 369 aminoácidos (42KDa). Las subunidades tienen cuatro posibles lugares de glicosilación y, se puede obtener una forma de 63KDa altamente glicosilada. El sitio activo de cada una de las subunidades que componen el dímero (α, β) está compuesto por iones de zinc los cuales están orientados hacia las micro vellosidades del túbulo renal (Nitanai 2002). La DHP I está implicada en el metabolismo renal del glutatión, en la conversión de leucotrieno D4 en leucotrieno E4 (Kozak 1982) y, es hasta el momento, la única enzima de mamíferos capaz de hidrolizar el anillo beta-lactámico (Campbell 1984). La DHP I es la responsable de hidrolizar el anillo β-lactámico del imipenem, inactivándolo (Kaham 1983), aunque no afecta a las penicilinas ni a las cefalosporinas.
La DHP I se encuentra anclada a la membrana celular mediante un enlace covalente a una estructura glicosil-fosfatidil-inositol (GPI) (Adachi 1990). La modificación del destino celular de la proteína por el anclaje GPI durante la traducción de la proteína es una modalidad de unión a la membrana de más de 200 proteínas en las células eucariotas. Además de permitir la unión de la proteína a la membrana tiene importantes funciones especialmente en la traducción de señales o en el proceso de reconocimiento (Nosjean 1997). Los residuos GPI se localizan típicamente en dominios de la membrana ricos en colesterol y esfingolípidos llamados balsas de colesterol o "BDCs" (Morandat S 2002).
En una misma célula coexisten diferentes clases de BDC lipídicas. Además de las clásicas BDC sin proteínas estructurales, estos dominios ordenados pueden estar enriquecidos en un componente proteico estructural, que drásticamente cambia la morfología y la función de la BDC. A esta clase emergente de proteínas se la denomina MORFs (Modifiers of BDC function). La primera MORF identificada fue la caveolina-1 (Cav-1). Se conocen tres genes de caveolina; las caveolinas 1 y 2 se expresan ubicuamente mientras que la 3 se expresa únicamente en astrocitos y células musculares (Smart 1999).
Cav-1 está integrada en el microambiente de la BDC pero está, además, anclada por su dominio citoplasmático al citoesqueleto. Esta disposición permite que las BDC así formadas generen depresiones en forma de plato de 50-100 nm (caveolas) y puedan ser localizadas o desplazadas de modo regulado.
Aunque las caveolas y las BDC comparten ciertas propiedades bioquímicas, la localización de las caveolinas en las caveolas distinguen esos dominios de membrana. Desde su descubrimiento en los años cincuenta (Yamada 1955), se ha especulado mucho sobre la función de las caveolas. Las caveolas han sido implicadas en numerosas funciones como endocitosis, homeostasis de lípidos, tumorogénesis, transporte / regulación del calcio, transporte / regulación del colesterol, transcitosis de albúmina y otras proteínas a través del endotelio (Simons 2000, Razani 2002). Además las caveolinas interaccionan con las proteínas que residen en las caveolas. Esta interacción proteína-proteína incluye entre otras a la sintetasa inducible del óxido nítrico (NOS 2) (Razani 2002).
El modelo de transporte apical basado en las BDC está fundamentado en las relaciones lípido-lípido y lípido-proteína. Recientemente se ha sugerido que las BDC podrían ser importantes en el transporte a través de una ruta endocítica alternativa a la de las vesículas recubiertas de clatrina. Las BDC podrían servir de sitio de entrada de ciertos patógenos y toxinas, como en el caso de Listeria monocitógenes (Seveau 2004). Sin embargo, no se había sugerido que pudieran tener ninguna relevancia para el transporte de los fármacos conocidos por provocar citotoxicidad. El imipenem es un antibiótico de la familia de los carbapenemes introducido en el mercado en 1985. Imipenem es un agente antibacteriano de la clase de los β- lactámicos, con un amplio espectro que incluye la mayoría de los patógenos Gram- negativos y Gram-positivos, aeróbicos y anaeróbicos, con una marcada actividad contra especies productoras de β-lactamasa.
Al igual que otros antibióticos carbapenémicos, el imipenen sufre un extenso metabolismo que es dependiente de la especie y que se manifiesta por una baja recuperación de droga activa en la orina (Birnbaum 1985, Kaham 1983). Los estudios in vivo e in vitro demostraron que el mayor sitio de biotransformación ocurría en el riñon a través de la dehidropeptidasa I (DHP I). La DHP I hidroliza el anillo β-lactámico del imipenem, inactivándolo (Kaham, 1983). Este fenómeno, denominado metabolismo post-excretor, no afecta a las penicilinas ni a las cefalosporinas.
El espectro antibacteriano del imipenem era idóneo para tratar gérmenes Gram negativos, fundamentalmente en sepsis de origen intestinal o renal. La degradación renal de imipenem provocaba concentraciones subóptimas de droga activa en el tracto urinario (Kropp H 1982), limitando su uso en el tratamiento de infecciones sistémicas. Esto hizo que la investigación pre-clínica fuera dirigida a producir un inhibidor potencial de la DHP I. Este programa de investigación llevó al desarrollo de cilastatina, un compuesto relacionado estructuralmente con imipenem. Los primeros estudios publicados en los que ya aparece cilastatina en combinación con imipenem fueron presentados en la 21st Interscience Conference on Antimicrobial Agents and Chemotherapy que tuvo lugar en Chicago en noviembre de 1981, por Norrby y sus colaboradores (Norrby 1981).
La cilastatina es un inhibidor competitivo de la DHP I, que previene la hidrólisis del enlace peptídico y la apertura de los anillos lactámicos. En presencia de cilastatina, la dihidropeptidasa no abre el anillo lactámico del imipenem, evita su absorción y aumenta la excreción urinaria de imipenem, reduciendo su concentración en la célula tubular (Clissold 1987, Birnbaum 1985). Altas dosis de imipenem aislado pueden producir toxicidad tubular en conejos, pero este efecto se previene por la administración concomitante de cilastatina (Norrby 1985).
Además de su efecto bien conocido como inhibidor de la dipeptidasa renal, cilastatina es capaz de inhibir los sistemas de transporte de aniones orgánicos (OATPs) a nivel basolateral. Este efecto ha sido descrito recientemente, y se ha discutido su implicación en el metabolismo de otros fármacos, con poco éxito ya que el efecto esperado de su acción sobre los OATPs sería la de aumentar los niveles circulantes de los fármacos implicados y reducir su aclaramiento global, exactamente lo opuesto a lo observado.
El nombre químico de la cilastatina sódica es sal monosódica del ácido [R- [R*,S*-(Z)]]-7-[(2-amino-2-carboxietil) tio]-2-[[(2,2-dimetilciclopropil) carbonil] amino]-2-heptenoico. Su fórmula empírica es CIeH2SN2NaOsS, y tiene un peso molecular de 380,44 Da. Es un compuesto amorfo, de color blanquecino a blanco amarillento, higroscópico, muy soluble en agua y en metanol (Drusano GL 1984). Su estructura química es la siguiente:
Figure imgf000005_0001
La cilastatina inhibe la degradación renal de imipenem, llegando a alcanzar una tasa de excreción urinaria del 70% de la dosis inicial de imipenem administrada. Se estableció como dosis óptima un ratio imipenem: cilastatina (I/C) de 1:1 para mantener esta inhibición de 8 a 10 horas (Norrby 1983). Estudios con múltiples dosis revelan que la cilastatina no se acumula en sujetos sanos. La confirmación de que cilastatina tiene una fuerte afinidad por la DHP I, se demostró midiendo los niveles de leucotrieno E4, cuya formación a partir del leucotrieno D4 tiene lugar en el riñon por la dehidropetidasa renal del borde en cepillo. En presencia de cilastatina, esta transformación se encontraba fuertemente inhibida, confirmando la interacción cilastatina-DHP I (Koller 1985, Campbell 1988). En los años 80, la investigación farmacológica sobre la ciclosporina A y sus posibles interacciones con otros fármacos de uso común permitió obtener evidencias de que la asociación de I/C podía ser útil para disminuir la nefrotoxicidad de la primera. La ciclosporina A (CsA) es un endecapéptido cíclico lipofílico, identificado en principio como antifúngico, para el cual se demostró en 1972 una potente actividad inmunosupresora, aprobándose su uso definitivo en 1983. Desde la introducción de la CsA y su combinación con otros inmunosupresores ha mejorado notablemente la terapia inmunosupresora tanto en los transplantes de órganos sólidos y de médula ósea, como en numerosas enfermedades autoinmunes. CsA actúa principalmente sobre los linfocitos T, inhibiendo la cascada de reacciones bioquímicas altamente dependientes del ion calcio que tienen lugar tras la unión de un antígeno al receptor de las células T y que marca la activación y la proliferación de los linfocitos T a través de la síntesis de IL-2 (Belitsky 1986, Ryffel 1990). El principal efecto secundario de la CsA es la nefrotoxicidad, que afecta tanto al riñon nativo (en casos de trasplante hepático, cardiaco o de médula ósea) como al trasplantado (trasplante renal) (Calne 1978). En ambos casos el efecto es dependiente de la dosis. A nivel tubular, la entrada de CsA en el túbulo proximal es muy rápida. In vitro el 80% del total se transporta en los diez primeros minutos a 30° C (Jackson 1988). Las evidencias morfológicas sugieren que el daño subletal tubular incluye hinchazón del retículo endoplasmático, vacuolización isométrica, aparición de autolisosomas, mitocondrias gigantes, micro calcificaciones, cambios en el citoplasma del epitelio tubular, necrosis, exfoliación de las células tubulares, regeneración tubular, y aumento ocasional de mitosis (Mihatsch 1986). Se ha visto que bajas dosis de CsA causan una elevación importante del calcio intracelular en primer lugar antes de la pérdida de la viabilidad celular. También se ha demostrado que CsA activa genes proapoptóticos en las células tubulares e intersticiales.
Sin embargo, se observó que la inclusión de I/C en el tratamiento con CsA producía una disminución de la alteración de la función renal en ratas (Sido 1987). Estos experimentos se confirmaron en ratas nefrectomizadas sometidas a un transplante renal (Hammer, 1989) y, posteriormente, en seres humanos, demostrándose que la administración de cilastatina puede contrarrestar de manera eficaz la nefrotoxicidad inducida por la CsA en el período inmediato posterior a un transplante cardíaco (Markewitz, 1994), de médula ósea (Gruss, 1996) y renales (Carmellini, 1997, 1998). Dado que la ciclosporina A no es un sustrato de la DHP I, no se conocían hasta ahora las razones del efecto nefroprotector de imipenem/cilastatina (I/C) cuando se administraba conjuntamente, especialmente si se tiene en cuenta que el hecho de que al no disponer de cilastatina aislada, no se habían realizado experimentos en los que se administrara cilastatina o imipenem por separado. Lo que no permitía atribuir de forma clara dichos efectos a uno u otro fármaco. Mraz (1987, 1992) sugirió que el efecto nefroprotector, atribuido en su caso a la cilastatina, se debía a la reducción de las concentraciones plasmáticas de CsA. Sin embargo, Markewitz no encontró diferencias significativas en las dosis de CsA ni en los niveles sanguíneos de CsA o sus metabolitos, al igual que Sido (Sido 1987) y Hammer (Hammer 1989). Por su parte Gruss observó que los pacientes tratados con I/C tenían niveles de CsA menores que los pacientes no tratados con I/C. Sin embargo, el efecto protector de I/C no se pudo atribuir a cambios en los niveles de CsA (Gruss 1996).
En 1996, Toyoguchi mostró que la asociación I/C podía reducir la nefrotoxicidad de vancomicina en conejos inhibiendo la acumulación renal de la misma (Toyoguchi 1996). Un año después, realizando estudios sobre el filtrado glomerular del animal, mostró que la cilastatina sola aceleraba la eliminación renal de vancomicina, reduciendo sus niveles en plasma y en tejido renal (Toyoguchi 1997). Aunque su estudio incluía datos morfológicos de la toxicidad de la vancomincina sobre el túbulo renal, no aparecía el estudio equivalente realizado con cilastatina. Así, estos resultados no indicaban que la combinación de los dos fármacos pudiera tener utilidad clínica ya que, al aumentar la eliminación renal de vancomicina, teóricamente se disminuía su efectividad. Además, sus hallazgos no eran específicos para túbulo proximal, ya que I/C reducía la concentración de vancomicina tanto en corteza como en médula.
Kusama y sus colaboradores realizaron un estudio fármaco-cinético de la influencia de la presencia de cilastatina en animales enteros a los que se les había suministrado vancomicina (Kusama 1998), demostrando que el aumento de aclaramiento de vancomicina inducido por cilastatina se acompaña de reducción en su aclaramiento renal. No encontraron cambios en el filtrado glomerular con cilastatina, por lo que no pudieron demostrar ningún efecto de nefroprotección, aunque sugirieron la existencia de un posible efecto potencial, relacionándolo con la inhibición de la dehidropeptidasa I por parte de la cilastatina. Sugirieron también que la cilastatina puede tener un efecto sobre la reabsorción de vancomicina sobre el túbulo pero, como en el caso de los estudios del grupo de Toyoguchi, no llevaron a cabo ningún estudio directo al respecto sobre células, por lo que no pudieron demostrar que ese efecto realmente existía. Aunque este grupo propuso que cilastatina compite con vancomicina por una vía de entrada a la célula proximal, ni sus estudios ni los posteriores de Nakamura (Nakamura, 1998), en los que se analizaba la disminución de la excreción de vancomicina en presencia de imipenem/cilastatina, permitieron concluir si se trataba de una competición con la reabsorción o con la secreción tubular de la misma (Nakamura, 1998).
Ni CsA ni vancomicina son sustratos de la dipeptidasa renal inhibible por cilastatina. De ahí que las propuestas planteadas en las discusiones de los trabajos previos acerca de un sistema de transporte común para imipenem y vancomicina no tuviesen gran aceptación, considerándose en general que el mecanismo por el que se producía este efecto no estaba dilucidado. De esta manera, no era evidente para un experto en la técnica que la cilastatina pudiera servir para disminuir la nefrotoxicidad de otros fármacos distintos de los ya mencionados. Aunque recientemente se ha descrito que la cilastatina es capaz de inhibir los sistemas de transporte de aniones orgánicos (OATPs) a nivel basolateral, las hipótesis sobre su implicación en el metabolismo de otros fármacos han tenido poco éxito, ya que el efecto esperado de su acción sobre los OATPs sería la de aumentar los niveles circulantes de los fármacos implicados y reducir su aclaramiento global. Sin embargo, en general el efecto observado es exactamente el opuesto. De hecho, el folleto de la casa suministradora de la cilastatina, Biomol International LP, (folleto accesible en la dirección de Internet
Figure imgf000008_0001
presenta a la cilastatina como un inhibidor de la dipeptidasa que inhibe la hidrólisis de los antibióticos β- lactámicos, atribuyendo su acción nefroprotectora sobre los efectos secundarios de la ciclosporina A a la inhibición de la dipeptidasa del borde en cepillo del túbulo proximal. Ciclosporina es apolar, muy levemente soluble en agua, soluble en lípidos y solutos orgánicos, y la posibilidad de que alcance el interior de las células del epitelio del túbulo proximal mediante el sistema de transporte de aniones orgánicos (OATP) es muy baja, considerado hasta ahora que su mecanismo de transporte era por difusión pasiva transmembrana. La vancomicina tiene carácter anfótero y es soluble en agua, y podría ser sustrato teórico de los OATPs del túbulo proximal, si bien nadie ha estudiado directamente dicho extremo. Con todo ello, tampoco era evidente para los expertos en la técnica que existiera algún compuesto que pudiera tener efecto sobre la nefrotoxicidad de múltiples fármacos o, incluso, sobre compuestos nefrotóxicos sin actividad terapéutica conocida, disminuyendo sus efectos lesivos sobre el túbulo proximal renal. Y esto sería de gran interés, pues la nefrotoxicidad es un problema que afecta a muchos fármacos y que limita la administración de las dosis que sería adecuado suministrar para que ejercieran su efecto sobre la alteración que se pretende tratar, por obligar los efectos nefrotóxicos a reducir dichas dosis o suspender la administración del fármaco antes de cumplir el tratamiento. Por ello, identificar algún compuesto que reduzca la nefrotoxicidad para un alto número de fármacos con potencialidad nefrotóxica sería de gran interés para la práctica clínica. La posibilidad de inhibir un mecanismo común de entrada sería una forma de lograrlo. La presente invención proporciona una solución a ese problema.
DESCRIPCIÓN DE LA INVENCIÓN La invención proporciona el uso de la cilastatina para la fabricación de un medicamento para reducir la nefrotoxicidad de aquel/los compuesto/s que penetre/n en las células del epitelio tubular proximal renal mediante las balsas de colesterol.
Se basa en el descubrimiento, divulgado en la presente memoria descriptiva, de que gran cantidad de fármacos y otros compuestos con conocido efecto nefrotóxico, cuyo mecanismo de transporte al interior de las células del epitelio tubular proximal era desconocido o estaba adscrito a otras moléculas de membrana, penetran en las mismas a través de la ruta dependiente de las balsas de colesterol. Esta ruta de transporte parece ser un mecanismo general, independiente de la naturaleza química del compuesto transportado, pues entre los compuestos ensayados para los que se ha detectado este transporte (la mayoría de ellos fármacos con reconocida utilidad terapéutica pero en los que la nefrotoxicidad es un inconveniente mayor) se encuentran tanto compuestos polares como apolares, catiónicos o neutros; tanto liposolubles como hidrosolubles. En la siguiente tabla, pueden observarse las características de solubilidad y acidez/basicidad de los mismos: Tabla 1: Características químicas de los compuestos nefrotóxicos con los que se ha ensayado el efecto nefroprotector de la cilastatina:
Figure imgf000010_0001
Los ensayos que se muestran en los Ejemplos de la presente memoria demuestran que la cilastatina es capaz de interferir con este mecanismo de transporte, disminuyendo la acumulación de los principales nefrotóxicos en la célula del túbulo renal, reduciendo con ello el daño producido por los mismos al túbulo proximal. Así mismo, da lugar tanto a una disminución de los fenómenos tempranos como tardíos asociados con la muerte celular por apoptosis de las células del túbulo proximal, así como a la restauración de la morfología y de la capacidad regenerativa del epitelio tubular, todo ello cuando se administra simultáneamente con el nefrotóxico cuyo efecto se pretende paliar.
Por tanto, la administración de cilastatina es capaz de disminuir la nefrotoxicidad de un compuesto que penetre en las células del epitelio tubular proximal renal mediante el mecanismo de transporte en el que están implicadas las balsas de colesterol. Ello da lugar al uso propuesto en la invención.
Además, la especificidad conferida a la acción de la cilastatina por su direccionamiento hacia una proteína que sólo se localiza en las balsas de colesterol del túbulo proximal permite suponer (como indican los ensayos descritos en el Ejemplo 6 que se presenta más adelante) que no tendrá efecto sobre células desprovistas de borde en cepillo (desprovistas de DPH-I), siendo su efecto específico de riñon. Esto hace especialmente apropiada a la cilastatina para ser utilizada en condiciones clínicas diversas, en combinación con fármacos dirigidos a distintos tejidos, sin que se produzca reducción en la actividad farmacológica de los mismos en sus órganos-diana.
Así, en una realización de la invención, el compuesto cuya nefrotoxicidad se pretende reducir es un fármaco. Se prefiere que el fármaco sea distinto de ciclosporina A, vancomicina o imipenem. En una realización preferida de la anterior, el fármaco se selecciona entre gentamicina, tacrolimus, cisplatino, foscarnet, manitol, iopamidol, anfotericina y paracetamol.
Sea cual sea el fármaco, es una realización preferida de la invención aquélla en la que el medicamento fabricado contiene tanto cilastatina como el fármaco cuyos efectos nefrotóxicos se desean paliar, pues ello facilita su administración simultánea, aunque pueden constituir parte de la misma forma de presentación farmacéutica (suspensión, solución, comprimido, polvo liofilizado...) o formar parte de formas de presentación farmacéuticas diferentes, pero incluidas en un mismo medicamento (contenidas, por ejemplo, en dos viales o ampollas diferentes), facilitando esta última presentación administrar la cilastatina en distintas proporciones relativas con respecto al fármaco nefrotóxico o, incluso, decidir si ambos compuestos se administran al individuo a tratar simultáneamente o separados en el tiempo. Se prefiere particularmente que ambos fármacos se administren al individuo simultáneamente. La administración de cilastatina, sin embargo, puede realizarse en más de una dosis, separadas en el tiempo, la primera de las cuales preferiblemente se administra de forma simultánea con el fármaco cuyo efecto nefrotóxico se desea reducir, siendo posible la administración de otras dosis de cilastatina en el período comprendido entre dosis sucesivas del fármaco nefrotóxico. La administración de cilastatina puede ser oral o parenteral (intramuscular, intraperitoneal o intravenosa). Se prefiere que la cilastatina se administre por vía parenteral, especialmente por vía intravenosa (que es la forma de administración parenteral más común en seres humanos), por lo que se prefiere particularmente que el medicamento que comprenda cilastatina esté diseñado para ser administrado por vía parenteral, tal como una solución en suero salino u otro disolvente adecuado farmacéuticamente aceptable. Son también formas de presentación preferidas las que faciliten la preparación de soluciones o suspensiones de cilastatina en el momento de su administración, a la concentración deseada, tales como las presentaciones en polvo.
Entre los fármacos estudiados, como se ha comentado, existen fármacos con diferentes efectos farmacológicos (antibióticos, citotóxicos, antiinflamatorios, antirretro virales, anestésicos e inmunosupresores). Concretamente, en los Ejemplos que se muestran más adelante en la presente memoria se han realizado ensayos con los siguientes compuestos:
Tabla 2: Fórmula y actividad de los compuestos nefrotóxicos con los que se ha ensayado el efecto nefroprotector de la cilastatina:
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Como puede observarse a partir de su fórmula y por las características expuestas en la Tabla 1, todos ellos son compuestos de distinta naturaleza. En el caso de fármacos a los que por su carácter aniónico, o por ser extremadamente lipofílicos, pueda existir un segundo mecanismo de penetración celular, el efecto nefroprotector de la cilastatina podría ser menor, si dicho mecanismo no es inhibido por la última. Adicionalmente al sistema de transporte en el que intervienen las balsas de colesterol aquí descrito, los fármacos de carácter aniónico a pH fisiológico pueden penetrar también en la célula renal mediante los sistemas de transporte de aniones orgánicos (OATPs). Por ello, el efector nefroprotector de la administración de cilastatina es menor en los fármacos de naturaleza aniónica, tales como la anfotericina B, al poseer un mecanismo alternativo de entrada a la célula que no es inhibido por la cilastatina. Es por ello que una de las realizaciones preferidas de la invención es aquélla en la que el fármaco es de naturaleza catiónica o neutro a pH fisiológico, al pH normal de la sangre, cuyo valor es 7 o próximo a 7. Tal como puede observarse en la Tabla I, de los compuestos con los que se han realizado los ensayos que se exponen en los Ejemplos, relacionados con el efecto nefroprotector de la cilastatina, presentan carácter neutro a pH fisiológico la gentamicina, el cisplatino y el paracetamol, mientras que foscarnet, iopamidol, anfotericina y manitol son de naturaleza aniónica a dicho pH; la ciclosporina, el tacrolimus y el cloroformo son de naturaleza apolar, por lo que podrían penetrar también en las células del túbulo proximal por difusión pasiva. En cualquier caso, tal como se ha mencionado previamente, son realizaciones preferidas de la invención aquellas en las que el fármaco es: gentamicina; tacrolimus; - foscarnet; paracetamol; cisplatino; anfotericina; manitol; o - iopamidol.
En una realización particularmente preferida de la invención, el fármaco nefrotóxico es el foscarnet (ácido fosfonofórmico, administrado normalmente en forma de su sal trisódica hidratada), un análogo del pirofosfato que inhibe específicamente la DNA polimerasa de los virus herpes y que tiene también actividad anti-VIH. Se utiliza para el tratamiento de la retinitis provocada por el citomegalo virus en pacientes aquejados de SIDA en tratamiento con AZT, así como en infecciones provocadas por herpes resistentes a AZT. Su principal efecto adverso es precisamente su toxicidad renal, que limita su uso.
En otra realización particularmente preferida de la invención, el fármaco nefrotóxico es el paracetamol (N-(4-hidroxifenil)etanamida), también conocido como acetaminofén, fármaco de conocida actividad analgésica y antipirética cuya extendida utilización, a menudo sin conciencia de que la dosis normal es cercana a la sobredosis, ha dado lugar a frecuentes intoxicaciones e, incluso, a su utilización en intentos de suicidio. Aunque el efecto más común de la sobredosis de paracetamol (una dosis única de paracetamol de 10 gramos o dosis continuadas de 5 g/día en un no consumidor de alcohol con buena salud, ó 4 g/día en un consumidor habitual de alcohol, podrían dar lugar a toxicidad) es el daño hepático, es frecuente también el fallo renal, que sería importante paliar en caso de una ingesta excesiva de este fármaco.
En otra realización particularmente preferida de la invención, el fármaco nefrotóxico es el cisplatino. (cis-diaminodicloroplatino II). El cisplatino es un compuesto simple de platino utilizado como antineoplásico frente a una gran cantidad de tumores (ovario, testículo, vejiga, cabeza y cuello, pulmón, endometrio). Sin embargo, tiene efectos adversos potencialmente letales que afectan a diferentes órganos, de los que el más frecuente, que limita su uso, es la nefrotoxicidad. A menudo, los tratamientos con cisplatino deben interrumpirse, o sus dosis deben reducirse a niveles muy inferiores a los que sería deseable para conseguir el efecto quimioterapéutico buscado, debido a la nefrotoxicidad causada por el mismo. Es por ello que la búsqueda de metodologías para intentar paliar su efecto nefrotóxico, sin disminuir su actividad quimioterapéutica, se ha convertido en un problema importante para el cual la coadministración con cilastatina significa una esperanzadora solución. Como se ha comentado de forma general para cualquier otro fármaco, la administración de cilastatina puede ser previa, simultánea o posterior a la administración del cisplatino, puede realizarse en más de una dosis y la vía de administración puede ser la misma o diferente a la vía de administración del cisplatino. Se prefiere que la cilastatina se administre por vía parenteral (con preferencia, en el caso de seres humanos, por la vía intravenosa, aunque en los experimentos en ratas es corriente que la forma de administración parenteral con la que se experimenta sea la vía intraperitoneal) y se prefiere que la dosis de cilastatina sea de al menos 750 mg/día en una dosis diaria o repartida en al menos dos dosis diarias.
En otra realización de la invención, el compuesto no tiene actividad conocida como fármaco, sino que se trata de cualquier otro nefrotóxico cuyos efectos se desean paliar, que pueda haber sido administrado a un individuo por distintas causas, fortuitas o no. Así, el medicamento en cuya fabricación se usa la cilastatina podría servir también para paliar los efectos deletéreos sobre el riñon de distintos compuestos de naturaleza tóxica que actuaran sobre el mismo, tales como venenos ingeridos o inhalados de forma voluntaria o fortuita, administrando dicho medicamento con posterioridad al momento en el que el compuesto nefrotóxico se ha introducido en el organismo a tratar o, incluso, de forma simultánea, situación ésta última en la que la cilastatina podría servir como antídoto de los efectos nefrotóxicos de un compuesto cualquiera cuando dicho compuesto se ingiriera de forma voluntaria.
Otro aspecto de la invención lo constituye un método terapéutico para reducir la nefrotoxicidad de un compuesto que presenta tal efecto que comprende la administración de cilastatina al individuo en el que se desea reducir el efecto nefrotóxico. Se prefiere que el compuesto cuya nefrotoxicidad se pretende reducir sea un fármaco. La administración puede ser simultánea a la del fármaco cuyo efecto nefrotóxico se pretende reducir o puede ser posterior y/o previa a la misma. Dicha administración puede producirse en una única dosis o en dosis diferentes, la primera de las cuales puede ser previa, simultánea o posterior a la de administración del fármaco nefrotóxico. Preferiblemente, el fármaco es distinto de ciclosporina A, vancomicina o imipenem. Más preferiblemente, el fármaco se selecciona entre gentamicina, tacrolimus, cisplatino, foscarnet, manitol, anfotericina B y paracetamol.
En el método terapéutico de la invención, la cilastatina puede administrarse por vía oral, intramuscular, intraperitoneal o intravenosa (de las cuales, las tres últimas pueden considerarse vías parenterales, es decir, vías en las que se elude que el fármaco tenga que llegar al intestino y pasar a la sangre por mecanismos asociados a este órgano). Se prefiere que la cilastatina se administre por vía parenteral, especialmente por vía intravenosa, por ejemplo, en forma de solución en suero salino u otro disolvente adecuado farmacéuticamente aceptable. En el caso de la administración parenteral, y se prefiere que la dosis de cilastatina sea de al menos 750 mg/día, dosis que puede administrarse en forma de una única dosis diaria o repartida en al menos dos dosis diarias.
Un aspecto más de la invención lo constituye una composición que comprende un fármaco nefrotóxico junto con cilastatina. Una realización preferida de la invención es aquella en la que la composición carece de imipenem. Se prefiere particularmente que el fármaco nefrotóxico sea distinto de ciclosporina A o vancomicina y, muy particularmente, que el fármaco nefrotóxico se seleccione entre gentamicina, tacrolimus, cisplatino, foscarnet, manitol, anfotericina B y paracetamol. En cualquiera de los casos, la composición puede comprender al menos un vehículo farmacéuticamente aceptable y puede estar, entre otras, en forma de polvo o en forma de solución. En este último caso, se prefiere que el disolvente sea suero salino. En cualquiera de las realizaciones, se prefiere que la composición esté diseñada para reducir la nefrotoxicidad del fármaco nefrotóxico en el individuo al que se le administre.
La invención se explicará ahora con mayor detalle mediante las Figuras y
Ejemplos que se muestran a continuación. BREVE DESCRIPCIÓN DE LAS FIGURAS
La Fig. 1 se refiere al bloqueo de la circulación de balsas de colesterol por cilastatina. Muestra la fluorescencia debida a toxina B fluorescente en células del epitelio tubular proximal porcino en cultivo primario, en concreto: - La Fig. IA muestra la evolución de la fluorescencia en células control
(fotografías superiores de la parte derecha de la Figura) y células incubadas en presencia de cilastatina (Control + RRbp-x).
- La Fig. IB en un gráfico donde se representa la fluorescencia observable en el aparato de Golgi a las 2,5 horas de haber marcado las caveolas de las membranas con toxina B fluorescente (toxina B-FITC), expresada como el número de células en las que se observaba dicha fluorescencia por milímetro cuadrado (No. Cel/mm2), en células control (barra sin relleno), tratadas con cilastatina (barra con relleno oscuro continuo) o con filipina (barra rellena con líneas verticales).
La Fig. 2 demuestra la inocuidad celular de cilastatina y muestra el crecimiento a lo largo de los días de cultivo, expresado como miles de células observadas por centímetro cuadrado (células x 1000 / cm ), de un cultivo primario de células del epitelio tubular proximal porcino, en ausencia de cilastatina (control) o en presencia de las concentraciones de cilastatina (CIL) indicadas sobre la Figura.
La Fig. 3 se refiere a la reducción o ausencia de apoptosis celular en presencia de cilastatina. El gráfico muestra el factor de enriquecimiento en oligonucleosomas, calculado respecto a las células control incubadas sin nefrotóxicos (primer par de barras), observado al incubar cultivos primarios de células de túbulo proximal de cerdo con los nefrotóxicos indicados, en ausencia (barras primeras de cada par, sin relleno) o en presencia de cilastatina (barras segundas de cada par, con relleno negro). *: ANOVA: efecto de cilastatina sobre cada fármaco: p<0,05.
La Fig. 4 muestra que la cilastatina impide o reduce la muerte celular por Anoikis:
- La Fig. 4A muestra las citometrías de flujo de los sobrenadantes de cultivos primarios de células del túbulo proximal incubadas con cisplatino (gráficos de la columna izquierda) o vancomicina (gráficos de la columna derecha), en ausencia o en presencia de cilastatina (RRbp-X) (gráficos inferiores en ambos casos). - La Fig. 4B muestra el recuento de las células desprendidas detectadas por microlito de sobrenadante (No. cel/μl SN) al incubar cultivos primarios de células del túbulo proximal con las dosis indicadas en abscisas de los nefrotóxicos vancomicina, gentamicina, cisplatino y paracetamol, según se indica bajo cada gráfico. En cada pareja de barras, la barra inicial (barras con relleno gris claro) corresponde al valor obtenido en la incubación con el nefrotóxico y la segunda barra (barras con relleno gris oscuro) al valor obtenido al coincubar con cilastatina (RRbp-X).
- La Fig. 4C muestra los recuentos de células desprendidas al sobrenadante tras incubar cultivos de células del túbulo proximal con los nefrotóxicos vancomicina (datos indicados por rombos, Φ), gentamicina (datos indicados por triángulos, A), o cisplatino (datos indicados por círculos, •). El eje de abscisas corresponde a los valores obtenidos en las incubaciones sin cilastatina y el eje de ordenadas a las incubaciones con cilastatina (RRbp-X). Se representa también la línea de identidad que se obtendría si los valores obtenidos en presencia o en ausencia de cilastatina fueran idénticos para cada nefrotóxico.
La Fig. 5 se refiere a la restauración de la capacidad oxidativa mitocondrial del túbulo proximal en presencia de cilastatina. Se muestra la reducción del MTT (dando lugar a la aparición de un compuesto de color azul, formazán) por células del túbulo proximal en cultivo primario incubadas con los nefrotóxicos indicados en cada uno de los gráficos. Los gráficos de la parte izquierda corresponden a la aparición de formazán (medido como aumento relativo en la absorbancia del medio a 595 nm) observado en las células incubadas durante 24 horas con las concentraciones de nefrotóxico indicadas en abscisas, en ausencia (primera barra de cada par, con relleno más claro o sin relleno) o en presencia de cilastatina (segunda barra de cada par, con relleno negro). Los gráficos de la parte derecha corresponden a la formación de formazán detectado en células aisladas en tiempo real sin ningún tratamiento (control) o incubadas con las concentraciones de nefrotóxico que se indican sobre la gráfica, en ausencia o en presencia de cilastatina (RRbp-X), trascurridos los tiempos de incubación que se indican, en segundos, en el eje de abscisas. Los nefrotóxicos cuyos resultados se muestran son: vancomicina (Fig. 5A), cisplatino (Fig. 5B), paracetamol (Fig. 5C), ciclosporina (Fig. 5D) y tacrolimus (Fig. 5E). La Fig. 6 demuestra que la cilastatina restaura la morfología celular. Muestra fotografías obtenidas mediante microscopía electrónica de barrido de cultivos de células del túbulo proximal, incubadas en presencia de 1 μg/ml de ciclosporina (CsA 1 μg/ml, fotografías A y B) o en presencia de 1 μg/ml de ciclosporina y 200 μg/ml de cilastatina (fotografías C y D).
La Fig. 7 se refiere a la mejora de la recuperación celular, tras la agresión, que se observa en presencia de cilastatina. Muestra el crecimiento a lo largo de los días de cultivo, expresado como miles de células observadas por centímetro cuadrado (células x 1000 / cm2), del cultivo primario de células del túbulo proximal, en ausencia (control) o presencia de las cantidades expresadas sobre los gráficos de los nefrotóxicos ciclosporina (CsA) (Fig. 7A) o tacrolimus (FK 506) (Fig. 7B), en ausencia o en presencia de cilastatina (CiI). En la Fig. 7 A, los símbolos de significación sobre las gráficas tienen los siguientes significados: *: ciclosporina vs. control, p<0,05; f: cilastatina + ciclosporina vs. control, p<0,05; #: cilastatina + ciclosporina vs ciclosporina, p<0,05. En la Fig. 7B, los significados son análogos: *: FK506 vs. control, p<0,05; f : FK506 + cilastatina vs. control, p<0,05; #: FK 506 + cilastatina vs. FK 506, p<0,05.
La Fig. 8 muestra los resultados de los ensayos de formación de colonias supervivientes, formadoras potenciales de colonias de regeneración, detectadas mediante tinción con violeta cristal de células en cultivo tratadas con cada uno de los nefrotóxicos que se indican bajo los gráficos, en presencia y ausencia de cilastatina. Puede observarse una mejora de la recuperación celular a la agresión de los nefrotóxicos, con aumento de la supervivencia a largo plazo (7 días), tras la coadministración de cilastatina y los nefrotóxicos que se indican bajo los gráficos: Fig. 8A: gentamicina (en este caso y a modo de ejemplo de todas las demás, se muestran fotografías de las placas donde las células supervivientes a la agresión aparecen teñidas con violeta cristal); Fig. 8B: vancomicina, Fig. 8C: cisplatino, Fig. 8D: paracetamol, Fig. 8E: ciclosporina; Fig. 8F: tacrolimus (FK506). Las gráficas muestran los resultados obtenidos al medir la absorbancia, a 595 nm, del colorante de las células del túbulo proximal incubadas durante 24 horas con los nefrotóxicos indicados en cada uno de los casos, a las concentraciones indicadas bajo las barras, tras la tinción de las células con cristal violeta. La primera barra de cada pareja corresponde a la incubación en ausencia de cilastatina (barras blancas) y la segunda a la incubación en presencia de cilastatina (barras negras).
La Fig. 9 muestra la acumulación intracelular de diversos nefrotóxicos(de izquierda a derecha: vancomicina, ciclosporina, tacrolimus (FK506), paracetamol, cisplatino y gentamicina) cuando cultivos primarios de células del túbulo proximal se exponen durante 24 horas a concentraciones crecientes de los nefrotóxicos en ausencia (barras blancas) o en presencia (barras negras) de cilastatina (RRbp-x). Se demuestra que la cilastatina impide la entrada de nefrotóxicos a la célula proximal. *: efecto cilastatina p<0,05; #: efecto dosis p<0,05. La Fig. 10 demuestra que el efecto nefroprotector de cilastatina es específico del túbulo proximal. Se muestra la ausencia del efecto protector de la cilastatina (RRbp-X) sobre la inducción de muerte celular inducida por ciclosporina A (CsA), mediante la representación del porcentaje de muerte celular observado en linfocitos T (diana de la ciclosporina A) incubados en ausencia de tratamiento ("Control negativo"), o incubadas con camptotecina ("Control positivo"), ciclosporina A ("CSA"), o ciclosporina A + cilastatina .La Fig. 10A muestra el curso temporal del aumento del porcentaje de muerte celular producida por CsA en el tiempo estudiado: tras 4 horas de incubación (primera barra de cada pareja) o tras 16 horas de incubación (segunda barra de cada pareja). La Fig. 10B corresponde a la representación del efecto dosis-respuesta del efecto letal de CsA sobre linfocitos T humanos, mostrado por las diferencias encontradas al incubar con distintas dosis de CsA. Esta figura muestra la ausencia del efecto protector de la cilastatina (RRbp-X) sobre la inducción de muerte celular inducida por ciclosporina A (CsA), mediante la representación del porcentaje de muerte celular observado en linfocitos incubados en ausencia de tratamiento ("Control negativo"), incubados con camptotecina ("Control positivo"), ciclosporina a 1 μg/ml (tercera pareja de barras) o con ciclosporina a 100 μg/ml (cuarta pareja de barras), observándose la ausencia de efecto protector en presencia de cilastatina (segunda barra de las parejas, tercera y cuarta de barras).
La Fig. 11 demuestra también que el efecto nefroprotector de cilastatina es específico del túbulo proximal. Se muestra el efecto del cisplatino sobre la actividad mitocondrial en células tumorales HeLa (diana del cisplatino), obtenido a partir de los valores de absorbancia a 595 nm medidos en las células tras la realización del ensayo de reducción del MTT tras 12 horas (Fig. HA) o 24 horas de incubación (Fig. HB) con los compuestos indicados bajo las barras: Control: células sin tratamiento, incubadas sólo con el medio de cultivo; CISPLA: células incubadas con cisplatino, a concentraciones de 1 μM (segunda pareja de barras de cada gráfico), 10 μM (tercera pareja de barras de cada gráfico) ó 30 μM (cuarta pareja de barras de cada gráfico); CAMPTO: camptotecina, control positivo de muerte por apoptosis. Cada uno de los tratamientos se llevó a cabo en ausencia de cilastatina (primera barra de cada pareja: barras con relleno gris, "SIN CIL") o en presencia de cilastatina (segunda barra de cada pareja: barras con relleno negro, "CON CIL"). *p<0,05 vs. Control y control + cilastatina; ns= no significativo.
La Fig. 12 se refiere a un estudio preliminar realizado in vivo (ratas Wistar), realizado con el fin de comprobar que el efecto nefroprotector de la cilastatina es observable in vivo, diseñado concretamente para comprobar la nefroprotección por cilastatina frente al fracaso renal agudo tóxico causado por cisplatino: - La Fig. 12A muestra un esquema del régimen de administración de cisplatino y cilastatina suministrado a los animales.
Las Figs. 12B y 12C presentan, respectivamente, los valores de BUN (blood urea nitrogen) y de creatinina (CREA), en ambos casos expresados en mg/dL, obtenidos en el suero sanguíneo de los 5 animales sometidos a observación: Cisplatino + cilastatina (RRbp-X) 75 mg/kg/12h: animal con inyección intraperitoneal de cisplatino (5 mg/Kg/ peso disuelto en suero salino) + cilastatina (RRbp-X) -disuelta en salino- a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del cisplatino y hasta el día del sacrificio; Cisplatino + cilastatina (RRbp-X) 150 mg/kg/12h: animal con inyección intraperitoneal de cisplatino (5 mg/Kg/ peso disuelto en suero salino) + cilastatina (RRbp-X) a dosis de 150 mg/Kg de peso cada 12 horas en el mismo régimen y formulación que el anterior; Cisplatino: animal con inyección intraperitoneal de cisplatino (5 mg/Kg/ peso disuelto en suero salino) más suero salino cada 12 horas en los mismos volúmenes y regímenes que los grupos tratados con cilastatina; Vehículo: animal tratado con suero salino en los mismos volúmenes y regímenes que si fuera tratado con cisplatino y cilastatina; Control: animal sin inyección ni tratamiento alguno. La Fig. 13 se refiere a un segundo estudio de nefroprotección también in vivo (ratas Wistar) realizado con el fin de confirmar el efecto nefroprotector de la cilastatina frente al fracaso renal agudo tóxico causado por cisplatino:
- La Fig. 13A muestra un esquema del régimen de administración de cisplatino y cilastatina suministrado a los animales.
- Las Figs. 13B, 13C, 13D y 13E muestran, respectivamente, los valores de creatina sérica (mg/dL), aclaramiento renal (mL/min/lOOg), proteinuria (mg/24 horas) y osmolalidad (mOsm/kg) obtenidos a partir de las muestras de los 4 grupos de animales en observación: Control (tratado sólo con suero salino) (barras blancas, sin relleno); control + cilastatina (animales a los que se suministró cilastatina disuelta en suero salino a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del cisplatino y hasta el día del sacrificio) (barras blancas con relleno puntuado oscuro); cisplatino (animales con inyección intraperitoneal de cisplatino (5 mg/Kg de peso, disuelto en suero salino), más suero salino cada 12 horas en los mismos volúmenes y regímenes que los grupos tratados con cilastatina) (barras con relleno negro continuo); cisplatino + cilastatina (animales con inyección intraperitoneal de cisplatino (5 mg/Kg de peso, disuelto en suero salino) más cilastatina disuelta en suero salino a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del cisplatino y hasta el día del sacrificio ) (barras con relleno negro y punteado blanco). En las Figs. 13B y 13C: *: P<0,0001 vs. control y control + cilastatina; &: P<0,005 vs. cisplatino. En las Figs. 13D y 13E, *: P<0,005 vs. resto de grupos.
La Fig. 14 muestra un diagrama deducido a partir de las especificaciones de la ficha técnica de cilastatina, ensayos en animales, ensayos en células en cultivos y referencias a otros modelos animales. En el mismo se relacionan las dosis efectivas de cilastatina suministradas, en miligramos por kilogramo de peso corporal (mg/kg) (datos indicados en abscisas) con los niveles de cilastatina pericelulares, expresados en miligramos por litro (mg/1), que se indican en ordenadas. Símbolos: rombos (4): datos de conejo; triángulos (A): datos de ratas; cuadrados sin relleno (D): datos de los experimentos llevados a cabo con células en cultivo de cerdo; cuadrados rellenos con punto central (Q): datos de la ficha técnica del producto comercial para seres humanos que contiene cilastatina. El recuadro sombreado representa el área de seguridad deducida en base a datos de concentración pericelular (cerdo). Los símbolos rodeados por circunferencias representan las dosis a las cuales se demuestra eficacia de la cilastatina en la presente memoria.
EJEMPLOS
Los Ejemplos que se describen a continuación se llevaron a cabo con los siguientes productos y técnicas experimentales:
Nefrotóxicos y nefroprotector (cilastatina) - Ciclosporina A: Adquirido a Sandoz (Novartis), Sandimum (solución inyectable).
Tacrolimus: Adquirido a Astellas, Prograf, (solución inyectable).
Gentamicina: Adquirido a Guinama (polvo).
Vancomicina: Adquirido a Combino Pharm (polvo). - Cisplatino: Adquirido a Pharmacia (solución inyectable).
Paracetamol: Adquirido a Bristol-Myers Squibb, Perfalgan, (solución inyectable).
Anfotericina B: Adquirida de Bristol, Fungicina, (polvo).
Cloroformo: Adquirido a Scharlau, (solución líquida). - Manitol: Adquirido a Braun, Osmofundina (manitol al 20%) (solución inyectable).
Foscarnet: Adquirida a AstraZeneca, Foscavir, (solución inyectable).
Contraste yodado (iopamidol): Adquirido a Ro vi, Iopamiro, (solución inyectable). - Cilastatina: Adquirida a Merck, Sharp & Dohme, (polvo).
Obtención de cultivos primarios de células del epitelio tubular proximal
Los cultivos primarios de células del epitelio tubular proximal se obtuvieron de ríñones de cerdos enanos de estirpe Maryland. Este tipo de cerdos han sido seleccionados genéticamente para estudios de trasplantes de órganos y son homocigóticos para tres loci del Complejo Mayor de Histocompatibilidad (CMH)
(Sachs et al, 1976). Los animales procedían de la granja especializada del Complejo Agropecuario de Aranjuez que la Comunidad de Madrid mantiene con fines de experimentación animal.
Los animales seleccionados para este estudio tenían una edad media de 3 meses y un peso medio de 31.3 ± 0.7 Kg., siendo indistintamente machos o hembras. El manejo de los animales utilizados se realizó siempre siguiendo la normativa legal vigente (Real Decreto 1205/2005, del 10 de Octubre, 252/2005) por personal acreditado en el manejo de animales de experimentación y bajo supervisión del veterinario responsable.
Doce horas antes de la intervención, los animales eran sometidos a ayuno con agua ad libitum. El animal era premedicado 15 minutos antes de la cirugía con Ketamina 10 mg/kg peso y atropina 0,025 mg/kg i.m. Una vez sedado el animal era trasladado a la mesa de quirófano, colocado en decúbito supino, anestesiado con una dosis de inducción de Propofol lOmg/kg i.v e intubado. La anestesia durante la cirugía se mantenía con Peróxido de nitrógeno/oxígeno (4 1/min NO2 y 2 1/min O2), Diprivan® (Propofol) 15 mg/kg/h, Fentanest® (Fentanilo) 0,75 mg/20 min y Pavulon® (Bromuro de pancuronio) 2 mg/20 min. El animal se sacrificaba mediante una sobredosis anestésica y cloruro potásico (KCl).
Los ríñones eran extraídos en quirófano bajo condiciones de esterilidad mediante nefrectomía simple bilateral por vía transperitoneal. Una vez extraídos eran pasados inmediatamente a HAM' S-F 12 (Bio-Whittaker) con Penicilina (100 Ul/ml) y Estreptomicina (100 μg/ml) (Bio-Whittaker) a 4°C.
Para aislar los túbulos proximales, bajo una campana de flujo laminar (Gelaire Flow laboratories, modelo BSB 3A), la corteza fue disecada y seccionada mediante un microtomo Steadie-Riggs {Tomas Scientific, USA). Las láminas eran gaseadas con carbógeno y digeridas con colagenasa A (Sigma) (30 mg/riñón), diluida en HAM'S F12 (50 ml/riñón, concentración final de colagenasa 0,6 mg/ml) durante 20 ó 30 minutos en agitación (150 rpm) a 37°C. Este proceso se controlaba para impedir que la digestión fuese excesiva, retirando el tejido en el momento en el que se observaba turbidez en el medio y los bordes de las láminas de tejido aparecían disgregados. Tras parar la digestión con HAM'S F12 frío, el material digerido se filtró por una malla metálica de 250 μm (ENDECOTTS LDT). El filtrado se lavó tres veces con HAM'S-F12 en una centrífuga (Sorvall GLC-2B. Rotor basculante) a 150 g durante un minuto para retirar los restos de colagenasa. El sedimento final contiene un 80% de túbulos. Para aumentar la pureza y eliminar contaminantes se procesaba a través de un gradiente de Percoll {Pharmacia) isotónico al 45% en tampón Krebs-bicarbonato (ClNa 112 mM, ClK 3,3mM, PO4H2K l,2mM, MgSO4.7H2O l,2mM, Cl2Ca 0,5mM, 95% 0^5% CO2) centrifugándose a 20000 g durante 30 min (RC-5B, Refrigerated superspeed Centrifuge, Rotor SS-34J. En la cuarta banda se encuentran los túbulos proximales (Tejedor 1988) con una pureza superior al 98%.
Los túbulos se recogieron con una pipeta Pasteur estéril, lavándose tres veces con HAMS-F 12 con Penicilina (10000 Ul/ml) y Estreptomicina (10000 μg/ml) frío a 150 g para eliminar el Percoll. Para conocer el rendimiento se pesaba el precipitado obtenido.
Para obtener el cultivo primario de células del túbulo proximal (CTP), los túbulos se diluyeron a una concentración de 0,66 mg de túbulos/ml de Medio de Cultivo (MC): HAM'S-F12 / DMEM (Dulbecco's Modified Eagles's Médium con 1 g/L glucosa, Bio-Whittaker) en una proporción 1:1, suplementado con HEPES 25 mM, glutamina 2,5 mM, aminoácidos no esenciales al 1%, penicilina 100 U/ml y estreptomicina 100 μg/ml, suero bovino fetal (SBF) al 2% (Bio-Whittaker), bicarbonato sódico 20 mM (MERCK), hidrocortisona 5xlO"8 M, insulina 5 μg/ml, transferrina 5 μg/ml, y selenio 5 ng/ml (SIGMA). Se repartieron 5 mi de esta suspensión en cada placa de 60 mm de diámetro
(Corning). Las placas se mantuvieron en un incubador (Heraeus) a 37°C con 5% de CO2. No se hizo el primer cambio de medio hasta el cuarto día, para permitir la adhesión de las células a la placa. A partir de este día, el medio se fue cambiando cada 2-3 días. Las células alcanzaban confluencia entre 8-10 días, comenzando a aparecer signos de senescencia a los 12-13 días.
Dinámica de crecimiento celular
El recuento de las células en cultivo se realizó in situ sobre imágenes de la monocapa celular obtenidas en un microscopio en un campo de 4OX, calibrado mediante una rejilla de Neubauer y correspondiente a 0,0775 mm2. Las imágenes se adquirían mediante un sistema de videomicroscopía (Cámara COHU acoplada a un ordenador a través de una tarjeta grabadora de video VG-5 con chip de integración) que permite la grabación rápida de imágenes de forma que las células eran devueltas al incubador tras un corto periodo de tiempo. Las imágenes fueron analizadas mediante el programa "Scion image" (Scion Corporation, 1998), basado en el programa Image deMcIntosh del National Institute of Health, EEUU. En cada cultivo, cada tratamiento en estudio se aplicó a un mínimo de seis placas. A cada placa se le asignó un número y fue dividida en siete sectores, seis periféricos y uno central. Para la toma de imágenes a los tiempos especificados, las placas se eligieron mediante una tabla de números aleatorios (Epiinfo). Se eligieron tres placas del tratamiento correspondiente, en cada una de las cuales se tomaron siete imágenes, una de cada sector. El valor medio de los 21 recuentos se considera el valor de n = 1 para el día y tratamiento en cuestión. El "n" indicado en los experimentos correspondientes representa el número de animales estudiados para cada condición y las medidas de variación se corresponden con los errores de las medias entre animales para la condición estudiada.
Microscopía confocal
Para estudiar la interacción de cilastatina con las BDC se utilizó toxina B colérica conjugada con un fluorólogo (FICT, suministrado por Molecular Probes) que utiliza dichas balsas para su internalización celular. Se utilizaron así mismo, como controles negativos: dos agentes modificadores de las balsas de colesterol: ciclodextrina, suministrada por Sigma España, y filipina, suministrada por Calbiochem.
Cultivos primarios de CTP fueron pre-incubados con ciclodextrina (CDX) (1 mM), filipina (50 μg/ml), cilastatina (200 μg/ml) o exclusivamente con medio de cultivo (controles) durante 20 minutos. Posteriormente fueron incubados con toxina B colérica-FITC (10 μg/ml) a diferentes tiempos (1 hora y 2,5 horas). Las células fueron lavadas con PBS y fijadas con formaldehido al 4% a temperatura ambiente durante 5 minutos. Las muestras se montaron en posición invertida sobre portaobjetos con una gota de medio de montaje DAKO Fluorescent mounting médium y fueron observadas al microscopio confocal. Enriquecimiento nucleosomal: Liberación de ADN oligo-nucleosomal al citosol
Para cuantificar los oligonucleosomas presentes en el citosol de los cultivos de las células del túbulo proximal tratadas durante 48h con los compuestos nefrotóxicos elegidos (ciclosporina A, gentamicina, tacrolimus (FK506), vancomicina, cisplatino, contraste yodado, foscarnet, manitol, anfotericina B, cloroformo y paracetamol), en presencia o ausencia de cilastatina, se utilizó el kit de enzimo-inmunoanálisis para muerte celular CeIl Death Detection ELISAPLUS (Boehringer Mannheim), que determina los oligonucleosomas con anticuerpos antihistona-biotina y anti-ADN-peroxidasa.
Las células del túbulo proximal anteriormente descritas se cultivaron hasta confluencia en placas de 24 pocilios de 16 mm de diámetro, sometidas durante 48 h a los tratamientos correspondientes, y Usadas con 200 μl de solución de lisis durante 30 min a temperatura ambiente. El lisado fue recogido y centrifugado a 20Og durante 10 min (Eppendorf 5417C). Del sobrenadante resultante (fracción citosólica), se añadieron
20 μl a cada pocilio de la placa de ELISA cubiertos de Estreptavidina, añadiendo una mezcla de anticuerpos anti-histona-biotina (que reconocían la estreptavidina del fondo de la placa y las proteínas histonas del ADN) y anti-ADN-peroxidasa (que reconoce el
ADN; la peroxidasa lleva a cabo la reacción colorimétrica que permite la cuantificación) e incubando 2 horas a temperatura ambiente.
Una vez producida la incubación se lavaron los pocilios, se añadió ABTS (sustrato de la peroxidasa) y se determinó su actividad f o tométric amenté a 405 nm con un lector de placas Anthos 2020. Se calculó la relación entre la actividad enzimática de una muestra incubada por un período de tiempo dado, y el correspondiente valor a tiempo 0 horas tras la activación (factor de enriquecimiento).
Evaluación de la actividad mitocondrial mediante MTT
La funcionabilidad mitocondrial de las CTP fue determinada por la reducción metabólica del Bromuro de 3-(4,5-dimetiltiazol-2-ilo)-2,5-difeniltetrazol (MTT, suministrado por Calbiochem), realizada por la enzima mitocondrial succinato- deshidrogenasa, dando lugar a un compuesto coloreado de color azul (formazán). Las células fueron sembradas en placas de 96 pocilios, crecidas hasta semiconfluencia y sometidas a sus tratamientos correspondientes durante 24 horas. Posteriormente, el MTT era añadido a cada pocilio a una concentración final de 0,5 mg/ml e incubado durante 3 horas a 37°C en oscuridad. Finalizada esta incubación, se añadieron 100 μl de tampón de lisis (20% SDS en 50% N,N-dimetilformamida, pH 4,7) y la placa se incubó toda la noche a 37°C en oscuridad. Al día siguiente se determinó la absorbancia a 595 nm. El porcentaje de Viabilidad se obtuvo de la siguiente forma:
DO células tratadas x 100 % Viabilidad =
DO células control
La reducción del MTT a tiempo real se determinó en células proximales semiconfluentes sembradas en placas de 24 pocilios (16 mm de diámetro), a las que se les sustituyó el medio de cultivo por MTT 0,5 mg/ml de concentración final en PBS. Esta reducción fue determinada midiendo la absorbancia a 595 nm, con un microscopio de fluorescencia invertido Olympus 1X70 acoplado a un fotomultiplicador controlado desde un fluorímetro SLM Aminco 2000. En el primer ensayo (con vancomicina) se realizaron dos determinaciones, un control para cuantificar la cantidad de MTT que reducían las células en ausencia del tóxico y una incubación con vancomicina 25 mg/ml durante 20 min. En el segundo ensayo (cisplatino, paracetamol, ciclosporina y tacrolimus) se realizaron las mismas determinaciones, pero en este caso, en vez de incubar con el tóxico, se añadió éste directamente a la placa durante el registro de absorbancia. En este ensayo se añadió un tercer registro, en el que se determinó la reducción del MTT en células proximales tratadas con vancomicina a la misma concentración anterior y cilastatina 200 μg/ml desde el principio del registro. En este ensayo, como en los anteriores, la vancomicina es añadida directamente a la placa durante la determinación de la absorbancia
Viabilidad de las células de túbulo proximal: citometría de flujo
Se utilizaron cultivos primarios subconfluentes de CTP, sometidos a los tratamientos correspondientes durante 24 horas. Las células desprendidas al sobrenadante se recogieron mediante aspiración directa con pipeta automática y las células adherentes se separaron de la placa de cultivo mediante tripsinización.
Las CTP así obtenidas se fijaron y permeabilizaron de manera independiente con etanol al 70%, guardándose a -20 0C. Tras retirar el etanol, las células fueron lavadas dos veces con PBS. Posteriormente, se incubaron con PBS-EDTA, yoduro de propidio (IP) 40 μg/ml y ARNasa 250 μg/ml durante 45 minutos en oscuridad y a temperatura ambiente.
El recuento se realizó en un citómetro FACScan (Beckton Dickinson) equipado con un láser simple de ion argón. Se fijaron ventanas en base a las características de
FSC (tamaño), SSC (complejidad), FL2-H (altura), FL2-A (área) y FL2-W (anchura).
Las dos últimas se utilizaron para descartar dobletes celulares. El análisis se realizó con el programa WinMDI 2.9.
Microscopía electrónica de barrido
Los estudios de microscopía electrónica de barrido se realizaron en el Departamento de Anatomía Patológica del Hospital General Universitario Gregorio Marañen.
Para las técnicas de microscopía de barrido se colocó en la base de las placas de cultivo unos cubreobjetos de plástico de 25 mm de diámetro (Nunc). Tras el correspondiente tratamiento, las células fueron fijadas con glutaraldehido al 1% en PBS durante una hora, lavadas e incubadas durante 24 horas a 4°C con tetróxido de osmio al 1% en PBS en proporciónl:l. Tras ser eliminado el tetróxido de osmio, las muestras fueron deshidratadas con acetona aumentando secuencialmente su porcentaje desde un 50% a un 100% en pases de 30 minutos y montadas sobre un soporte de aluminio y sombreadas con oro (Fine Coat Ion Sputter JFC-1100 JEOL). Finalmente, se hicieron las fotos utilizando un microscopio de barrido JEOLJSM-T300.
Ensayo de formación de colonias mediante tinción con cristal violeta Las células se sembraron en placas de 6 pocilios hasta semiconfluencia y fueron tratadas durante 24 horas con los tóxicos correspondientes en presencia y ausencia de cilastatina. A continuación las células fueron despegadas con tripsina y lavadas con suero salino estéril para eliminar los restos de los estímulos. Las células se resembraron en placas petri de 100 mm con medio al 10% SBF dejándose crecer durante 7-10 días. Pasado este tiempo, se retiró el medio de cultivo de las placas, se fijaron durante 5 minutos con paraformaldehido al 5% en PBS y se tiñeron durante 2 minutos con violeta cristal (0,5 % violeta cristal en 20 % de metanol). Una vez teñidas las células, se lavaron 2 veces con PBS IX y se fotografiaron. Después de fotografiar, el violeta cristal fue eluido con 2 mi de solución de eluido (50% etanol y 50% citrato sódico 0,1M, pH 4,2). La absorbancia del eluido fue cuantificada en un lector de ELISAs a 595 nm.
Extracción total de proteínas y cuantificación de la concentración intracelular de tóxicos en las CTP
Cultivos primarios subconfluentes de CTP fueron sometidos al tratamiento con los distintos nefrotóxicos en estudio durante 24 horas. Tras la incubación, el medio de cultivo fue desechado, añadiéndose 400 μl de tampón de lisis (2,2 % (p/v) SDS; 19,33 % (v/v) Glicerol al 87% (v/v); 790 mM Tris HCl pH 6,8, 50 mi) por placa de 100 mm de diámetro, a 700C. Posteriormente, se levantaron las células y se recogió el volumen final obtenido. El lisado celular se sometió a un choque térmico, calentándose primeramente durante 5 min a 100 0C y poniéndose a continuación en hielo. Cada muestra fue sometida a descompresión brusca. Se centrifugaron a 12000 rpm durante 5 min, recogiéndose el sobrenadante. La concentración de las proteínas se determinó por el método de Bradford (Bradford 1976), y las muestras fueron almacenadas a - 20° C hasta el momento de su uso.
La determinación de la acumulación intracelular se realizó en los Usados celulares de las células tratadas con los nefrotóxicos, en presencia o en ausencia de cilastatina, mediante inmunoanálisis de polarización de fluorescencia (TDX) (ABBOTT Laboratories, USA), de acuerdo con las instrucciones del fabricante, salvo en el caso del cisplatino, en el que la concentración intracelular fue determinada mediante espectrometría de masas con plasma de acoplamiento inductivo ICP-MS Termo X- Series (Termo Electrón, Windsford, Cheshire, Reino Unido) monitorizando los isótopos 195Pt, 194Pt y 191Ir.
Viabilidad celular en linfocitos
Para valorar la posible interacción de cilastatina en linfocitos tratados con CsA se utilizaron linfocitos CD3+ aislados de sangre periférica, separados por inmunomagnetismo, de donantes sanos, previo consentimiento informado (muestras celulares cortesía del Dr. Buño, Servicio de Transplante de Médula Ósea del Hospital
Gregorio Marañen). La muestra se centrifugó a 120 g y se resuspendió en 750 μl de medio RPMI (en ausencia de SBF: Suero Bovino Fetal) para cuantificar el número de células de las que se disponía mediante Trypan Blue. Se repartieron 100.000 células por punto.
Se llevó a cabo la incubación de los linfocitos en RPMI (Bio-Whittaker), sin tratamientos (control negativo), con CsA, con cilastatina, con ambos y por último con Camptotecina (Sigma) como control positivo de muerte por apoptosis. La incubación se realizó durante 4 horas a 37°C. Se centrifugaron las células durante 6 minutos a 1200 rpm. El precipitado se resuspendió en 100 μl de buffer (10 mmol/L HEPES, 150 mmol/L NaCl, 5 mmol/L KCl, 1 mmol/L Mg Cl2, 1,8 mmol/L CaCl2) y 5 μl de Anexina-V. Se incubó en oscuridad durante 10 minutos.
La intensidad de la fluorescencia verde de las células se cuantificó como el desplazamiento en la escala logarítmica con respecto al control (células creciendo en 10% SBF), frente al número de células analizadas. Los detritos celulares se excluyeron del análisis. También se realizó la determinación de apoptosis en linfocitos a las 16 horas añadiendo a las dosis anteriores dosis más altas, 100 μg/ml y 1000 μg/ml.
Viabilidad celular en células tumorales (Hela)
Otro de los fármacos en los que resulta más crítico discernir si la nefroprotección ofrecida por cilastatina se acompaña o no de reducción en la potencia del fármaco es el cisplatino.
Para establecer que en presencia de cilastatina el cisplatino no perdía actividad citotóxica antitumoral ensayamos el fármaco sobre una línea de células tumorales como las células HeLa. La técnica que se utilizó para realizar los ensayos fue la evaluación de la actividad mitocondrial mediante MTT previamente descrita. El procedimiento se llevó a cabo a 12 y 24 horas, con diferentes dosis de cisplatino, 10 y 30 μM. Como control positivo se utilizó camptotecina a 50 μg/mL. La presencia o ausencia de cilastatina (200μg/mL) no supuso ningún cambio en su efecto citotóxico. Modelo experimental in vivo de nefroprotección por cilastatina frente al fracaso renal agudo tóxico causado por cisplatino: ensayo preliminar
Para el ensayo preliminar in vivo de protección de cilastatina frente a la agresión renal producida por cisplatino, se utilizaron ratas Wistar macho de un peso medio de 290 + 20 g, y una edad media de 8-9 semanas, criadas y estabuladas en el animalario del
Pabellón de Medicina y Cirugía Experimental del Hospital General Universitario
Gregorio Marañen.
Toda la manipulación de los animales se lleva a cabo según la normativa legal vigente recogida en el Real Decreto 1201/2005 de 10 de Octubre, sobre protección de los animales utilizados para experimentación y otros fines científicos, bajo la supervisión directa del veterinario responsable.
Se utilizaron de manera preliminar 5 animales, siendo cada uno de ellos sometido a un régimen de tratamiento diferente. Dos de los animales no recibieron cisplatino (control y vehículo), mientras que los otros tres lo recibieron en administración única intraperitoneal disuelto en suero salino a dosis 5 mg/Kg peso corporal. De los tres animales que recibieron cisplatino, uno recibió además cilastatina (RRbp-X) disuelta en suero salino por vía intraperitoneal, a dosis de 150 mg/Kg de peso cada 12 horas desde el día de administración del cisplatino hasta el día del sacrificio. Otro de los animales tratados con cisplatino recibió cilastatina (RRbp-X) en el mismo régimen y formulación, pero a una dosis de 75 mg/Kg de peso cada 12 horas. El último de los animales tratados con cisplatino recibió suero salino (vehículo de la cilastatina) en el mismo régimen y formulación que los dos grupos anteriores. De los animales que no fueron tratados con cisplatino, uno de ellos recibió suero salino en los mismos volúmenes y regímenes que los otros tres grupos (vehículo), mientras que el otro no recibió pinchazo ni tratamiento alguno (control) (Fig. 12A).
Como puede observarse en la Fig. 12A, el estudio duró 5 días a partir de la administración intraperitoneal del cisplatino o suero salino en el caso del animal vehículo y durante todo el período, los animales tuvieron libre acceso tanto al agua como a la comida (dieta estándar) en un ambiente controlado de luz, temperatura y humedad. En el momento del sacrificio, los animales fueron pesados y anestesiados con ketamina (10 mg/kg) y diazepam (4 mg/kg). Una vez anestesiados, se les extrajo la sangre mediante la canulación de la aorta abdominal a la altura de la bifurcación. Esta sangre se mantuvo 30 minutos a 37°C, posteriormente 1 hora a 4°C y a continuación se centrifugó a 2000 rpm 15 minutos a 4°C. Esto permitió la obtención de suero sanguíneo que fue almacenado a - 800C hasta el momento de uso.
Modelo experimental in vivo de nefroprotección por cilastatina frente al fracaso renal agudo tóxico causado por cisplatino: ensayo sobre ratas Wistar.
Para el modelo experimental in vivo de protección de cilastatina frente a la agresión renal producida por cisplatino se utilizaron ratas Wistar macho de un peso medio de 260 + 15 g, y una edad media de 7-8 semanas, criadas y estabuladas en el animalario del Pabellón de Medicina y Cirugía Experimental del Hospital General
Universitario Gregorio Marañen.
Toda la manipulación de los animales se lleva a cabo según la normativa legal vigente recogida en el Real Decreto 1201/2005 de 10 de Octubre, sobre protección de los animales utilizados para experimentación y otros fines científicos, bajo la supervisión directa del veterinario responsable.
Dos semanas antes de comenzar el modelo animal experimental, se pesaron los animales, se identificaron mediante numeración y se separaron en distintas jaulas en función de los grupos a estudiar. Para conocer la evolución de éstos, los animales fueron observados y pesados en varias ocasiones antes de comenzar el estudio. Se utilizaron en total 28 animales que fueron distribuidos aleatoriamente en 4 grupos con un tamaño muestral n=6-8 animales por grupo. Así pues los grupos de estudio y sus tratamientos fueron los siguientes (Fig. 13A):
- Grupo Cisplatino + Cilastatina (n=8): animales con administración única intraperitoneal de cisplatino (5 mg/Kg peso) disuelto en suero salino, mas cilastatina (disuelta en suero salino) a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del cisplatino y hasta el día del sacrificio.
- Grupo Cisplatino (n=8): animales con administración única intraperitoneal de cisplatino (5 mg/Kg peso) disuelto en salino, más el vehículo de la cilastatina (suero salino) cada 12 horas en los mismos volúmenes y regímenes que los grupos tratados con cilastatina. - Grupo Control + Cilastatina (n=6): animales tratados con administración intraperitoneal de suero salino (vehículo del cisplatino) en el mismo volumen que los grupos tratados con cisplatino, más cilastatina (disuelta en suero salino) a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del suero salino (vehículo del cisplatino) y hasta el día del sacrificio
- Grupo Control (n=6): animales tratados con suero salino en los mismos volúmenes y regímenes que en los grupos tratados con cisplatino y/o cilastatina. Como puede observarse en la Fig. 13 A, el estudio duró 5 días a partir de la administración intraperitoneal del cisplatino (en los grupos cisplatino y cisplatino + cilastatina) o suero salino (en los grupos control y control + cilastatina), coadministrándose a partir de ese momento y cada 12 horas cilastatina (en los grupos control + cilastatina y cisplatino + cilastatina), o su vehículo suero salino (a los grupos cisplatino y control). Durante todo el período, los animales tuvieron libre acceso tanto al agua como a la comida (dieta estándar) en un ambiente controlado de luz, temperatura y humedad. Un día antes del sacrificio, los animales fueron introducidos en jaulas metabólicas, con libre acceso a la comida y agua "ad libitum", para recoger la orina de 24 horas, con la finalidad de cuantificar la diuresis y la concentración de proteínas. La proteinuria se determinó por el método del ácido sulfosalicílico (Gyure, 1977), obteniendo la proteinuria en mg de pro teína/24 horas.
En el momento del sacrificio, los animales (previamente pesados) se anestesiaron en el quirófano experimental con ketamina (10 mg/kg) y diazepam (4 mg/Kg), y se les extrajo la sangre a través de la canulación de la aorta abdominal a la altura de la bifurcación. Ésta se incubó primero durante 30 minutos a 37°C, seguido de una hora a 4°C. Una posterior centrifugación a 2000 rpm durante 15 minutos a 4°C, permitió la obtención del suero sanguíneo, que fue congelado a -800C hasta el momento de su uso. Tras la exsanguinación se clampó la aorta cortando su flujo por encima de los ríñones, se perforó la vena cava inferior y se perfundieron los ríñones a través de la cánula con suero salino frío (Braun Medical S. A., Barcelona, España). Posteriormente fueron extraídos, decapsulados y mantenidos en suero salino frío durante su manipulación para minimizar la degradación del tejido. Tras pesar los ríñones (derecho e izquierdo), éstos se manipularon de manera parecida. Los ríñones derechos fueron seccionados transversalmente justo por encima de la arteria renal obteniendo los polos renales superiores que fueron introducidos en paraformaldehido al 4% en PBS durante 24 horas para su fijación y posterior inclusión en parafina. El resto del riñon derecho, así como los ríñones izquierdos fueron separados en corteza y médula congelando ambas muestras en nitrógeno líquido y almacenándolas a -80° hasta el momento de su uso.
También se obtuvieron de los animales muestras de corazón, hígado y aorta, que fueron convenientemente procesadas y almacenadas a -800C. Las muestras renales inmersas en paraformaldehido se fijaron durante 24 horas a
4°C. Posteriormente son deshidratadas con concentraciones crecientes de etanol e incluidas finalmente en parafina en el procesador de tejidos Histolab ZX (Especialidades Médicas MYR SL, Tarragona, España), para estudios de morfología e inmunohistoquímica. Los parámetros hemodinámicos y de función renal en suero y orina (figura 14) se determinaron usando un autoanalizador Dimensión RxL de Dade-Behring, siguiendo las instrucciones del fabricante.
Análisis estadístico -Experimentos in Vitro
Las variables de interés estudiadas fueron todas cuantitativas continuas, y sus valores se presentan como la media + estándar de la media. Todas las mediciones se han realizado por duplicado, y cada resultado presentado se ha obtenido en al menos tres preparaciones procedentes de animales diferentes. Cuando se presentan trazados singulares, resultados similares han sido obtenidos en al menos dos ocasiones más.
Los efectos de cilastatina sobre las variables modificadas por los fármacos nefrotóxicos sometidos a estudio, se han llevado a cabo mediante ensayos factoriales de medias repetidas. Los resultados se han analizado mediante un modelo general de ANOVA de dos vías para medidas independientes. Los dos factores habituales en cada estudio han sido el "factor cilastatina", con dos niveles (sí, no), y el factor "dosis del tóxico", habitualmente con cuatro niveles correspondientes a las dosis (en tal caso, el ensayo se controlaba con una dosis de "0" en el primer nivel del factor). En los modelos mencionados se ha incluido siempre el factor interacción "cilastatina*dosis del tóxico", así como un análisis a posteriori de las diferencias entre niveles, utilizando el test LSD ("least significant difference": diferencia menos significativa) como discriminante. Se ha usado un α bilateral de 0,05 como índice de significación. Cuando se han encontrado diferencias significativas para el factor de protección por cilastatina, se ha procurado confirmar dicha diferencia mediante comparación de los ajustes no lineales de las dosis- respuesta correspondientes.
En el caso de datos extremos ("out layer"), se ha considerado como criterio de no inclusión la separación de la mediana por más de dos rangos intercuartílicos.
-Experimentos in vivo
Para calcular la igualdad de varianza entre los grupos se utilizó el test de Levene. Aquellas variables continuas que presentaban igualdad de varianza y una distribución que se ajustaba a la normal se analizaron mediante el test de ANOVA y en el caso contrario, con el de Kruskal-Wallis. Los resultados son expresados como media + error estándar de la media. Valores de p< 0.05 se consideraron significativos. Todos los test estadísticos utilizados se realizaron con el programa informático SPSS.
- Ejemplo 1: Reducción de la internalización de las balsas de colesterol mediante la interacción de la cilastatina con la DHP I
Este ensayo se planteó para demostrar si la cilastatina, a través de su interacción con la DHP I, anclada a las balsas de colesterol (BDC) por un grupo GPI, podría bloquear el transporte a través de las BDC o interferir con la ruta endocítica dependiente de las mismas.
Para ello, se identificaron las caveolas sobre células del epitelio tubular proximal porcino en cultivo primario obtenidas según se describe más arriba. Para ello se utilizó una de las proteínas de la caveola, el receptor de la toxina B colérica. Al añadir toxina B fluorescente, marcada con un fluoróforo (FITC), se marcan las caveolas y puede seguirse su destino a lo largo del tiempo mediante microscopía confocal.
Los resultados obtenidos se muestran en la Fig. 1 A. A los 15 minutos se observa tinción fluorescente a lo largo de todas las membranas celulares, independientemente del tratamiento. En la parte superior de la imagen, puede mostrarse la evolución de la fluorescencia en ausencia de cilastatina: a la hora, la fluorescencia comienza a acumularse en posición perinuclear, en la región correspondiente al aparato de Golgi; a las 2,5 horas, la tinción de los Golgi es evidente, al tiempo que se observa desaparición de la tinción en las membranas celulares.
En la parte inferior de la Fig. IA se muestran las mismas células incubadas en presencia de cilastatina (RRbp-X). Como puede verse, a las 2,5 horas las caveolas marcadas no se han movido de la membrana celular.
En la Fig. 1 B se presenta la reducción observable en el mareaje en el aparato de Golgi a las 2,5 horas de haber marcado las caveolas de la membrana celular con Toxina B fluorescente, en presencia de cilastatina o de filipina. La destrucción de las caveolas con filipina impide la internalización de las mismas. Pero filipina causa muerte celular en poco tiempo. Cilastatina también impide la localización en el aparato de Golgi del mareaje de las caveolas. Pero lo hace a través de su unión a la DPH-I renal.
- Ejemplo 2: Inocuidad de la cilastatina
En alguno de los primeros trabajos sobre cilastatina, previos a su comercialización, se afirmaba que cilastatina a dosis de lg/kg/día podía producir descamación del endotelio tubular como manifestación de toxicidad renal (Sack 1985). Para comprobar esto, se realizó un ensayo in vitro sobre cultivos primarios de células del túbulo proximal, CTP incubados en presencia de cilastatina a dosis crecientes durante un total de 14 días. Se realizó el recuento de las células en cultivo según se comentó anteriormente en el apartado de "Dinámica de Crecimiento Celular". Los resultados se muestran en la Fig. 2, donde se indican las diferentes concentraciones de cilastatina utilizadas.
No se pudo constatar ningún efecto significativo ni sobre la dinámica de crecimiento, ni sobre la confluencia celular, ni sobre la morfología de la monocapa. Las concentraciones utilizadas llegaron a ser hasta casi 10 veces las alcanzadas in vivo a nivel plasmático. - Ejemplo 3: La cilastatina anula o reduce el daño producido por los principales nefrotóxicos al túbulo proximal
3.1.- La cilastatina impide o reduce la apoptosis celular
Durante la apoptosis, las endonucleasas endógenas rompen el ADN en oligo- nucleosomas que pasan al citoplasma, donde permanecen durante varias horas antes de pasar a formar partede los "blebs" o corpúsculos apoptóticos. La aparición de estos oligonucleosomas puede interpretarse como una manifestación del proceso de apoptosis.
Para valorar la protección por cilastatina de la nefrotoxicidad causada por distintos nefrotóxicos, se utilizó la metodología de "Enriquecimiento Nucleosomal" descrita más arriba, cuantificando la aparición de fragmentos de DNA a nivel citosólico como una manifestación del proceso de apoptosis..
Se incubaron cultivos primarios de células del túbulo proximal frente a una batería de once nefrotóxicos: ciclosporina A (inmunosupresor), gentamicina (antibiótico aminoglucósido), tacrolimus (FK506) (macrólido inmunosupresor), vancomicina (antibiótico glicopeptídico), cisplatino (anticancerígeno), contraste yodado (iopamidol), foscarnet (antivírico), manitol (diurético), anfotericina B (antifúngico), cloroformo y paracetamol (analgésico y antipirético). Entre los fármacos ensayados, ninguno es sustrato de la DPH-I; algunos son aniónicos y podrían alcanzar el interior celular a través de OATs, pero otros son neutros o incluso catiónicos. Algunos son liposolubles y otros hidrosolubles, como se ha indicado anteriormente en la Tabla 1 de la presente memoria. En general, el mecanismo de transporte intracelular para la mayoría de ellos es desconocido, asumiéndose que difunden libremente a través de la membrana celular.
Los resultados obtenidos en los cultivos primarios incubados con los nefrotóxicos y cuando los cultivos primarios son coincubados con los mismos nefrotóxicos más cilastatina (RRbp-X), se muestran en la Fig. 3A. En la misma puede comprobarse como se produce un incremento respecto al control en la cuantificación de nucleosomas para todos los tóxicos ensayados. Cuando los cultivos primarios son coincubados con los mismos nefrotóxicos más cilastatina, la inducción de apoptosis cesa o se reduce significativamente. En muchos de los casos se vuelve a una situación similar a la basal. 3.2.- La cilastatina impide o reduce la muerte celular por Anoikis La agresión tóxica o isquémica sobre el túbulo se traduce en un tipo de muerte celular asociada al desprendimiento de las células dañadas, proceso conocido como Anoikis. La inducción de Anoikis por los nefrotóxicos en estudio se puede medir cuantificando el número de células que pasan de la monocapa al sobrenadante del cultivo mediante citometría de flujo, lo cual se realizó en este caso siguiendo la metodología descrita más arriba para calcular la viabilidad de las células del túbulo proximal. La adición de cilastatina (RRbp-X) a los cultivos redujo en todos los casos el número de células muertas.
En la representación gráfica de la Fig. 4A, se presentan todos los valores correspondientes a los recuentos de células en el sobrenadante de todas las condiciones y dosis ensayadas, representando en el eje de abscisas las incubaciones sin cilastatina y en ordenadas las incubaciones con cilastatina (RRbp-X). Si cilastatina no tuviese ningún efecto protector, las células desprendidas por Anoikis en ambos ejes serían idénticas, y los puntos caerían todos sobre la línea de identidad. Pero puede verse que para todas las condiciones, tóxicos y dosis ensayados los puntos caen en la zona de protección: Hay mucha menos muerte celular si hay cilastatina presente. A modo de ejemplo, la Fig. 4B muestra las citometrías de flujo de los sobrenadantes de cultivos primarios de células del túbulo proximal incubadas con dos potentes nefrotóxicos, cisplatino o vancomicina, en ausencia o en presencia de cilastatina (RRbp-X). En la Fig. 4C se puede ver la cuantificación de las células desprendidas al sobrenadante con dosis progresivas de cuatro nefrotóxicos (vancomicina, gentamicina, cisplatino y paracetamol) (barras gris claro) y la reducción en las mismas inducida por la coincubación con cilastatina (RRbp-X) (barras gris oscuro), habiendo realizado un ANOVA para medidas repetidas (efecto global de la cilastatina=0,012) y un análisis post hoc (efecto de cilastatina sobre cada fármaco: p < 0,05). 3.3.- La cilastatina restaura la capacidad oxidativa mitocondrial del túbulo proximal
Tanto la acumulación de oligonucleosomas como el fenómeno de Anoikis son fenómenos tardíos del proceso de daño tóxico de los compuestos estudiados sobre la célula del túbulo proximal.
La mitocondria del túbulo proximal es probablemente el orgánulo que resulta alterado más precozmente durante la muerte celular por apoptosis, precediendo con frecuencia en horas a la puesta en marcha de los mecanismos que finalmente resultarán en la fragmentación del DNA (formación de nucleosomas previamente mostrada) y el desprendimiento de las células de la monocapa (Anoikis). Así pues, estudiar la función mitocondrial en relación con los nefrotóxicos valorados puede ser útil para entender la latencia del fenómeno de protección. Esto se hizo midiendo la actividad de la cadena oxidativa mitocondrial a través de la trasferencia electrónica al bromuro de 3-(4,5- dimetiltiazol-2-il)-2,5-difeniltetrazolio (MTT, de la forma abreviada metil- tiazoltetrazolio), que al reducirse se transforma en cristales insolubles de azul de formazán.
Los resultados obtenidos para distintos nefrotóxicos se muestran en la Fig. 5, tanto en lo que se refiere a la reducción del MTT tras tratamientos de 24 horas con cada uno de los nefrotóxicos como los obtenidos a tiempo real. Los resultados de los ANOVA realizados fueron los siguientes: vancomicina: efecto vancomicina no significativo, efecto cilastatina p=0,025, efecto "interacción" (vancomicina + cilastatina) no significativo; cisplatino: efecto cisplatino p=0,038, efecto cilastatina p=0,001, efecto "interacción" (cisplatino + cilastatina) no significativo - paracetamol: efecto paracetamol p=0,05, efecto cilastatina no significativo y efecto "interacción- (paracetamol + cilastatina) no significativo Como puede verse, en todos los casos los nefrotóxicos ensayados producen una inhibición dependiente de dosis de la transferencia electrónica mitocondrial. La presencia de cilastatina restaura total o parcialmente dicha capacidad. - Ejemplo 4: La cilastatina restaura la morfología y la capacidad regenerativa del epitelio tubular lesionado por nefrotóxicos
4.1.- La cilastatina restaura la morfología celular
Se obtuvieron imágenes de microscopía electrónica de barrido, siguiendo la metodología anteriormente expuesta, que mostraban el aspecto de los cultivos de células del epitelio tubular proximal, incubados durante 11 días en presencia de 1 μg/ml de ciclosporina A o de la misma concentración de ciclosporina pero en presencia de 200 μg/ml de cilastatina.
En la Fig. 6 pueden observarse ejemplos de las fotografías obtenidas. Puede observarse en las dos imágenes de la izquierda cómo la ciclosporina A provoca condensación citosólica, rotura celular, y disrupción de la monocapa, características de la apoptosis que induce. En las imágenes de la derecha, dos instantáneas del epitelio sometido a las mismas dosis de ciclosporina A, pero en presencia de cilastatina (RRbp-
X), puede observarse cómo estas alteraciones, en general, no aparecen en presencia de cilastatina, aunque se puede ver cómo aparecen ocasionales "blebs" apoptóticos también en su presencia.
4.2.- La cilastatina mejora la recuperación celular tras la agresión Para comprobar si la cilastatina tenía algún efecto sobre la recuperación celular, se realizó un nuevo experimento en el que se ensayó la dinámica de crecimiento celular de cultivos primarios de células del túbulo proximal, en presencia de dos nefrotóxicos, ciclosporina A y tacrolimus (FK-506), comprobando las diferencias en presencia y en ausencia de cilastatina.
Tal como se puede observar las gráficas de las Figs. 7 A y 7B, cuando las células en cultivo se hicieron crecer, desde el momento de la siembra, en presencia de ciclosporina A (1 ó 10 μg/ml) o de tacrolimus (50 ng/ml), el crecimiento de las células se redujo de forma dependiente de la dosis.
Así, se muestra con estos ensayos que la coincubación con el nefrotóxico y la cilastatina (200 μg/ml) previene de forma parcial el efecto de los nefrotóxicos sobre el crecimiento celular, protegiendo de su nefrotoxicidad.
Los resultados del análisis estadístico fueron los siguientes: - ANOVA factorial N=5: Efectos combinados: p<0,0001; factor "tratamiento"; p<0,0001; factor "días de cultivo": p<0,0001; factor "tratamiento x días de cultivo": p<0,004.
El análisis post hoc para ciclosporina muestra un descenso significativo del crecimiento celular inducido por cilastatina comparado con el control desde el día 8 (dosis de 1 μg/ml y dosis de 10 μg/ml) y una recuperación del crecimiento celular con cilastatina desde el día 11.
El análisis Post hoc para el tacrolimus (FK506) mostró un descenso significativo del crecimiento celular desde el día 7, con una recuperación desde el mismo momento con cilastatina
Para confirmar estos datos, se recurrió a otro método para estudiar la capacidad regenerativa celular tras una agresión: determinar el número de unidades formadoras de colonias mediante la tinción con Violeta cristal, un colorante que requiere integridad celular para ser incorporado a las células. Esta técnica tiene la ventaja de permitir visualizar macroscópicamente la intensidad de la agresión, así como tener una cuantificación de la misma si las células son resuspendidas y el colorante determinado por espectrofotometría visible. Así, en estudios de nefrotoxiciad in vitro sobre células en cultivo, la tinción con violeta cristal sirve para detectar células supervivientes, potenciales formadoras de colonias en regeneración. En la Fig. 8 se presentan algunos ejemplos de determinación de Unidades
Formadoras de Colonias a las 24 horas (12 horas en el caso del cisplatino) de una agresión con dosis crecientes de varios nefrotóxicos, en ausencia o en presencia de cilastatina (RRbp-X). Esta prueba confirma que la coincubación con cilastatina restaura total o parcialmente el crecimiento celular inhibido por el nefrotóxico, pues el ensayo demuestra que se observa una mejora de la recuperación celular, con aumento de la supervivencia a largo plazo (7 días) en aquellos casos en los que el nefrotóxico se ha coadministrado con cilastatina.
- Ejemplo 5: La cilastatina impide la entrada de nefrotóxicos a la célula proximal debido a su efecto sobre el borde en cepillo
En los ejemplos anteriores se ha demostrado cómo la presencia de cilastatina en los medios de cultivo impide o reduce en gran medida la inducción de apoptosis y el fenómeno de Anoikis, restaura la capacidad oxidativa mitocondrial y aumenta el numero de células supervivientes a las distintas agresiones nefrotóxicas, lo que aumenta la resistencia del túbulo renal a la agresión y su capacidad de regeneración.
Todos los tóxicos estudiados tienen distintas características físico-químicas, y distintas dianas intracelulares. Ninguno de ellos es sustrato de la DHP-I, y hasta el momento, no se había descrito que utilizaran ninguna vía de entrada común a la célula. El efecto descrito en la presente memoria sobre la capacidad de cilastatina de inhibir el ciclado de caveolas del túbulo proximal, podría ser el sustrato del efecto nefroprotector de amplio espectro que presenta este fármaco. Para confirmar que esta nueva hipótesis era cierta, era necesario demostrar que cilastatina interfería con la acumulación intracelular de todos los fármacos estudiados, para lo cual se realizó un ensayo de incubación de las células CTP con los distintos nefrotóxicos del estudio y cuantificación de la concentración intracelular de tóxicos acumulada en las CTP, siguiendo el procedimiento descrito al inicio de los Ejemplos. Los resultados obtenidos con vancomicina, ciclosporina, tacrolimus (FK506), paracetamol, cisplatino y gentamicina se muestran en la Fig. 9, en la que pueden observarse también las distintas concentraciones progresivas de cada uno de estos nefrotóxicos a las que se expusieron las células.
De acuerdo con estos resultados, que indican que la cilastatina interfiere con la acumulación intracelular de todos los nefrotóxicos estudiados, la cilastatina parece capaz de inhibir una vía de acumulación intracelular de nefrotóxicos no conocida como tal hasta ahora, como resultado de su unión a la dipeptidasa renal-I.
- Ejemplo 6: El efecto nefroprotector de amplio espectro de cilastatina es específico para el túbulo proximal
Habitualmente, las estrategias de protección celular contra fármacos de utilidad clínica pero reconocida toxicidad específica, basadas en el bloqueo del transporte del fármaco, no suelen ser de aplicación clínica, ya que con frecuencia el agente protector bloquea también la entrada del fármaco agresor en su propia diana celular. Sin embargo, la especificidad conferida a la acción de cilastatina por su direccionamiento hacia una proteína que sólo se localiza en las balsas de colesterol del túbulo proximal, permite suponer que no tendrá efecto protector sobre células desprovistas de borde en cepillo (y, por tanto, de DPH-I).
La experiencia acumulada con la combinación I/C, antibiótico ampliamente utilizado en las condiciones clínicas más diversas sin que se haya descrito reducción en la actividad farmacológica de otras drogas administradas simultáneamente así lo sugiere. Ninguno de los autores que describieron la interacción entre I/C y CsA publicaron o mencionaron mayor riesgo de rechazo asociado a la interacción, lo que parece indicar que la muerte celular inducida por CsA sobre el linfocito T no es modificada por cilastatina, hecho que corroboraron los autores de la invención, observando que la cilastatina no protege al Linfocito T del efecto letal de la ciclosporina A. Los ensayos se llevaron a cabo siguiendo la metodología descrita en el apartado "Viabilidad celular en linfocitos" y los resultados se muestran en las Figs. 10A y 10B. Se observa tanto el efecto dosis-respuesta del efecto letal de la ciclosporina A sobre linfocitos T humanos, como la ausencia de efecto protector (no hay disminución del porcentaje de muerte celular) en presencia de cilastatina 200 μg/ml.
Otro de los fármacos en los que resulta más crítico discernir si la nefroprotección ofrecida por cilastatina se acompaña o no de reducción en la potencia del fármaco es el cisplatino. Para establecer que en presencia de cilastatina el cisplatino no perdía actividad citotóxica antitumoral, se ensayó el fármaco sobre una línea de células tumorales, células HeLa, siguiendo el método de "Evaluación de la actividad mitocondrial mediante MTT" descrito anteriormente, con los tiempos y concentraciones de compuestos descritos en el apartado de "Viabilidad en células tumorales (HeLa)". La presencia o ausencia de cilastatina no supuso ningún cambio en su efecto citotóxico. Los gráficos de los porcentajes de reducción de MTT en células HeLa tras 12 y 24 horas de tratamiento pueden observarse, respectivamente, en las Figs. HA y HB. Los resultados mostrados en ellos demuestran que la cilastatina (200 μg/ml) no impide la acción quimioterapéutica del cisplatino en células cancerígenas (*p<0.05 vs. Control y control + cilastatina; ns=no significativo).
- Ejemplo 7: El efecto protector de cilastatina es observable in vivo
Para comprobar que realmente se producía nefroprotección in vivo, se realizaron dos estudios sobre ratas Wistar, como modelo experimental in vivo de nefroprotección por cilastatina frente al fracaso renal agudo tóxico causado por cisplatino, uno preliminar que proporcionó las pautas a seguir para la realización del segundo modelo experimental más amplio y con mas variables de medida. Las ratas fueron sometidas a tratamiento en ambos estudios con una sola dosis de cisplatino y seguimiento durante 5 días.
7.1. Ensayo preliminar
En el ensayo preliminar se comprobó el efecto de dos regímenes paralelos de administración de cilastatina, según se describe en la sección "Modelo experimental in vivo de nefroprotección por cilastatina frente al fracaso renal agudo tóxico causado por cisplatino: ensayo preliminar". Tal como se indica en dicho apartado, los grupos de estudio fueron los siguientes:
- Cisplatino + cilastatina (RRbp-X) 75 mg/kg/12h: animal con inyección intraperitoneal de cisplatino (5 mg/Kg/ peso disuelto en suero salino) + cilastatina (RRbp-X) -disuelta en salino- a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del cisplatino y hasta el día del sacrificio;
- Cisplatino + cilastatina (RRbp-X) 150 mg/kg/12h: animal con inyección intraperitoneal de cisplatino (5 mg/Kg/ peso disuelto en suero salino) + cilastatina (RRbp-X) a dosis de 150 mg/Kg de peso cada 12 horas en el mismo régimen y formulación que el anterior; -Cisplatino: animal con inyección intraperitoneal de cisplatino (5 mg/Kg/ peso disuelto en suero salino) mas suero salino cada 12 horas en los mismos volúmenes y regímenes que los grupos tratados con cilastatina;
- Vehículo: animal tratado con suero salino en los mismos volúmenes y regímenes que si fuera tratado con cisplatino y cilastatina;
- Control: animal sin inyección ni tratamiento alguno.
Estos regímenes de tratamiento se llevaron a cabo durante 5 días sucesivos, a partir de la administración inicial de cisplatino, o de su vehículo (suero salino), sacrificando entonces a los animales para la obtención del suero sanguíneo. Una representación de los regímenes de administración y de los resultados obtenidos para el nitrógeno ureico en la sangre (BUN) y la creatinina (CREA) para el ensayo preliminar pueden observarse en la Fig. 12. En el ensayo preliminar, el animal que recibió sólo cisplatino perdió el 30% de su peso en 5 días y presentó elevación significativa de la creatinina plasmática (véase la Fig. 12C). Los animales tratados con la misma dosis de cisplatino y con cilastatina no perdieron peso de manera significativa ni modificaron su creatina plasmática. Al confirmar que la dosis utilizada de cisplatino era capaz de provocar disfunción renal, y que las dos dosis utilizadas de cilastatina ofrecían una protección similar (Figs. 12B y 12C), se diseñó el siguiente ensayo, en el que se utilizaron varios animales por grupo y se amplió el número de variables a estudiar.
7.2. Ensayo ampliado sobre ratas Wistar
De la misma manera, en el ensayo siguiente (Fig. 13A) y según también se describe en el apartado "Modelo experimental in vivo de nefroprotección por cilastatina frente al fracaso renal agudo tóxico causado por cisplatino: ensayo sobre ratas Wistar", los grupos de ensayo con su n correspondiente, fueron los siguientes: - Grupo Cisplatino + Cilastatina (n=8): animales con administración única intraperitoneal de cisplatino (5 mg/Kg peso) disuelto en suero salino, más cilastatina (disuelta en suero salino) a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del cisplatino y hasta el día del sacrificio. - Grupo Cisplatino (n=8): animales con administración única intraperitoneal de cisplatino (5 mg/Kg peso) disuelto en salino, más el vehículo de la cilastatina (suero salino) cada 12 horas en los mismos volúmenes y regímenes que los grupos tratados con cilastatina. Grupo Control + Cilastatina (n=6): animales tratados con administración intraperitoneal de suero salino (vehículo del cisplatino) en el mismo volumen que los grupos tratados con cisplatino, más cilastatina (disuelta en suero salino) a dosis de 75 mg/Kg de peso cada 12 horas intraperitonealmente desde el día de administración del suero salino (vehículo del cisplatino) y hasta el día del sacrificio - Grupo Control (n=6): animales tratados con suero salino en los mismos volúmenes y regímenes que en los grupos tratados con cisplatino y/o cilastatina. Como en el ensayo anterior, estos regímenes de tratamiento se llevaron a cabo durante 5 días sucesivos, a partir de la administración inicial de cisplatino, o su vehículo (suero salino), sacrificando entonces a los animales para la obtención del suero sanguíneo. En esta ocasión, previamente al sacrificio, se tomaron muestras de orina, tal como se ha indicado en el apartado que describe el procedimiento descrito.
Una representación de los regímenes de administración puede observarse en la Fig. 13A, mientras que los resultados obtenidos para la creatina, el aclaramiento, la proteinuria y la osmolalidad en orina para el segundo y más completo modelo experimental, pueden observarse en las Figs. 13B a 13E). Puede observarse cómo los animales tratados con cisplatino más cilastatina presentan una reducción parcial significativa en los niveles de creatinina y aclaramiento, con respecto a los animales tratados con cisplatino que no recibieron la cilastatina, asemejándose los valores obtenidos en ellos a los valores control. Por otra parte, en la medida de proteinuria y osmolalidad en orina, cilastatina revertió completamente los valores, situándolos en valores normales en relación a los de los animales que recibieron cisplatino sin cilastatina.
Los datos relativos a la pérdida de peso pueden observarse en la Tabla 3:
Tabla 3.- Balance de peso corporal al final del estudio ampliado
Figure imgf000049_0001
* P<0,0001 vs. Control y control + CiI; & P<0,05 vs. Cisplatino
Los animales que recibieron cilastatina junto con cisplatino tuvieron una pérdida de peso claramente menor que los que recibieron sólo cisplatino. Así, los animales control y control más cilastatina, aumentaron su peso medio unos 14 gramos aproximadamente, mientras que en los grupos tratados con cisplatino se produjo una pérdida significativa de peso en comparación con los primeros (p<0,0001). Los animales que recibieron cisplatino y fueron tratados con cilastatina, perdieron menos peso que los no tratados, siendo este dato significativo (P<0,05). 7.3. Extrapolación de los datos obtenidos a seres humanos
Para deducir una dosis efectiva que pudiera ser adecuada a seres humanos, se han tenido en cuenta los datos disponibles, referentes a animales de experimentación, sobre la relación entre las dosis de cilastatina suministradas, expresadas en mg/kg de peso, y los niveles plasmáticos de cilastatina que se obtienen con las mismas, expresadas en mg/L. Se ha recurrido a los datos disponibles para conejo (Toyoguchi, 1997), rata (Lin, 1999 y Pérez 2004) y los experimentos in vitro descritos en la presente memoria, en los que se incuban células de cerdo en presencia de distintas concentraciones de cilastatina. No existen datos publicados para seres humanos, por lo que se ha recurrido a los datos procedentes de la ficha técnica del producto para seres humanos, por lo que se ha recurrido a los datos procedentes de la ficha técnica del producto Tienam®, de Merck, Sharp and Dohme España S. A., fabricado por Abelló Farmacia S.L., (producto que contiene imipenem y cilastatina sódica), para deducir los datos correspondientes a seres humanos (ficha técnica IPC 0195a, Tracer n° TEN/IV-E- 14417, MOH modificaciones-5/99 (6/99), disponible en la dirección de Internet: http://www.msd.es/content/hcp/products/ft/ft_tienam_iv_500mg_es.pdf) Con esos datos, se ha construido la gráfica de relación entre dosis suministrada y niveles pericelulares, expresados en mg/L: en el caso de los estudios realizados en conejo y rata, se ha considerado que estos niveles pericelulares equivaldrían a los niveles plasmáticos detectados para cada dosis suministrada; en el caso de los experimentos in vitro realizados con células de cerdo, la concentración pericelular sería la concentración de cilastatina en el medio de cultivo. La gráfica resultante se presenta en la Fig. 14 (rombos: datos de conejo; triángulos: datos de rata; cuadrados sin relleno: datos de los experimentos relativos a cerdos; cuadrados rellenos que incluyen un punto blanco: datos de la ficha técnica del producto para seres humanos). En dicha gráfica, el recuadro sombreado representa el rango de niveles plasmáticos (concentraciones pericelulares) en el cual se ha demostrado seguridad y ausencia de toxicidad para la cilastatina.
En la gráfica puede observarse que existe una relación lineal entre las dosis administradas y los niveles plasmáticos alcanzados para todas las especies, linealidad que se mantiene hasta dosis de 200 mg/kg peso y niveles plasmáticos en torno a 800 mg/L. Por encima de dichas cifras la relación tiende a perderse. Las circunferencias con las que se han rodeado algunos datos representan las dosis a las cuales se ha demostrado eficacia del fármaco en la presente memoria. Como puede verse, la dosis mínima eficaz demostrada en los estudios reflejados en la presente memoria se corresponden con el rango de utilización terapéutica propuesto en la ficha técnica. Dicha dosis puede estimarse en 10 mg/Kg de peso, lo que representa un valor medio de 750 mg/día para un ser humano en edad adulta, que representa la dosis mínima nefroprotectora estimada en seres humanos.
- Conclusiones Los resultados mencionados en los Ejemplos anteriores indican que la cilastatina presenta un efecto inesperado y no conocido sobre el borde en cepillo del túbulo proximal, como consecuencia del cual es capaz de impedir en grados variables la nefrotoxicidad de antibióticos, citotóxicos, antiinflamatorios, antirretrovirales, anestésicos e inmunosupresores. Dada la diferencia en estructura química, solubilidad en agua o lípidos y carácter iónico a pH fisiológico, puede asumirse que este efecto nefroprotector puede extenderse a cualquier fármaco, o compuesto sin actividad conocida como fármaco, capaz de lesionar el túbulo proximal. Esta nefroprotección de amplio espectro es específica para el riñon y no interfiere con los efectos de los tóxicos en cuestión sobre sus propias dianas. La cilastatina está desprovista ella misma de efectos tóxicos sobre las células del túbulo proximal. Por ello, su administración puede servir para reducir los efectos nefrotóxicos de fármacos y otros compuestos con efecto nefrotóxico. La administración de la cilastatina puede ser simultánea a la del fármaco y/o posterior a la misma, en una única dosis o en varias dosis, de las cuales una de ellas puede ser simultánea a la administración del compuesto cuya nefrotoxicidad se quiere reducir. REFERENCIAS BIBLIOGRÁFICAS
Adachi H, Tawaragi Y, Inuzuka C, Kubota I, Tsujimoto M, Nishihara T, Nakazato H. Primary structure of human microsomal dipeptidase deduced from molecular cloning.J Biol Chem 5;265(7):3992-3995 (1990).
Bagahie A, Bayat M, Abobo C et al. The effect of imipenem/cilastatin on acute cyclosporin nephrotoxicity in heart/lung transplant patients. Crit Care Med 23: A241 (1995)
Belitsky P, Ghose T, Girner M, Rowden G, Pope B. Tissue distribution of cyclosporine A in the mouse: a clue to toxicity?. Clin Nephrol 25:27-29 (1986).
Birnbaum J, Kahan FM, Kropp H, MacDonald JS. Carbapenems, a new class of beta- lactam antibiotics. Discovery and development of imipenem/cilastatin. Am J Med 78:3-21 (1985).
Calne RY, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, Craddock GN, Pentlow BD. Cyclosporin A in patients reciving renal allograft from cadáver donors. Lancet 23:1323-1327 (1978).
Campbell BJ, Di Shih Y, Forrester LJ, Zahler WL. Specificity and inhibition studies of human renal dipeptidase. Biochim Biophys Acta 21;956(2):110-118 (1988).
Campbell BJ, Forrester LJ, Zahler WL, Burks M. Beta-lactamase activity of purified and partially characterized human renal dipeptidase. J Biol Chem
10;259(23):14586-14590 (1984).
Campbell BJ, Lin YC, Davis RV, Ballew E. The purification and properties of a particulate renal dipeptidase. Biochim Biophys Acta 5;118(2):371-386 (1966).
Carmellini M, Frosini F, Filipponi F, Boggi U, Mosca F. Effect of cilastatin on cyclosporine-induced acute nephrotoxicity in kidney transplant recipients.
Transplantation 64:164-166 (1997).
Carmellini M, Matteucci E, Boggi U, Cecconi S, Giampietro O, Mosca F Imipenem/cilastatin reduces cyclosporin-induced tubular damage in kidney transplant recipients. Transplant Proc 30(5):2034-2035 (1998). Clissold SP, Todd PA, Campoli-Richards DM. Imipenem/cilastatin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 33(3):183-241.(1987).
Drusano GL, Standiford HC, Bustamante CI, Forrest A, Rivera G, Tatem B, Schimpff SC. The plasma pharmacokinetic s of high dose (1 g) imipenem coadministered with 1 g cilastatin in six normal volunteers. Eur J Clin Microbiol 3(5):468-70
(1984). Drusano GL, Standiford HC, Bustamante CI, Rivera G, Forrest A, Leslie J, Tatem B, Delaportas D, Schimpff SC. Safety and tolerability of múltiple doses of imipenem/cilastatin. Clin Pharmacol Ther 37(5):539-543(1985).
Garcia del Moral R, O'Valle F, Andujar M, Aguilar M, Lucena MA, Lopez-Hidalgo J, Ramirez C, Medina-Cano MT, Aguilar D, Gómez-Morales M. Relationship between P-glycoprotein expression and cyclosporin A in kidney. An immunohistological and cell culture study. Am J Pathol 146:398-408 (1995)
Greenstein, J.P. Advances in enzymology and related subjects of biochemistry. F.F. Nord (ed) Interscience Publishers, Inc. New York (8): 117-169 Gruss E, Tomas JF, Bernis C, Rodríguez F, Traver JA, Fernandez-Ranada JM. Nephroprotective effect of cilastatin in allogeneic bone marrow transplantation. Results from a retrospective analysis. Bone Marrow Transplant 18:761-765 (1996).
Gyure, WL. Comparison of several methods for semiquantitative determination of urinary protein. Clin. Chem. 23: 876-879 (1977)
Hammer C, Thies JC, Mraz W, Mihatsch M. Reduction of cyclosporin nephrotoxicity by imipenem/cilastatin after kidney transplantation in rats. Transplant proc 21:931-936 (1989).
Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226(4674):544-547
(1984).
Hooper NM. Glycosyl-phosphatidyl inositol anchored membrane enzymes. Clin Chim Acta 266 (1):3-12 (1997).
Jackson NM, O'Connor RP, Humes HD. Cyclosporine effects on isolated membranes, proximal tubule cells, and interstitium of the kidney. Transplant Proc 20:748-758
(1988).
JH Lin, I-W Chen, EH UIm Dose-dependent kinetics of cilastatin in laboratory animáis. Drug Metabolism and Disposition. 1989. 17(4):426-432.
Kahan BD. Cyclosporin. New Engl J Med 321:1725-1728 (1989). Kahan BD. The First International Congress on cyclosporine. Houston, Texas. May 16- 19, 1983. Dial Transplant 16: 620-630 (1983).
Kahan FM, Kropp H, Sundelof JG, Birnbaum J. Thienamycin: development of imipenen-cilastatin. J Antimicrob Chemother 12 Suppl D: 1-35 (1983).
Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernández S, Woodruff HB, Birnbaum J. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo) 32(1):1-12.(1979).
Kim JY, GW Kim, SH Choi, JS We, HS Park, J Yang: Renal Dehydropeptidase-I(DHP- I) stability and pharmacokinetics of DA-1131, a new carbapenem antibiotic. 1996, abstr III P-45, p 238. In Abstracts of the Annual Meeting of the Korea Society of
Applied Pharmacology, Seoul National University, Seoul, Korea.
Kim SH, JW Kwon, WB Kim, MG Lee: Effects of cilastatin on the pharmacokinetics of a new carbapenem, DA-1131, in rats, rabbits and dogs. Antimicrobial Agents and Chemotherapy, 1999; 43(10):2524-2527. Klintmalm GB, Iwatsuki S, Starzl TE. Nephrotoxicity of cyclosporin A in liver and kidney transplant patients. Lancet 28:470-1 (1981).
Koller M, Brom J, Raulf M, Konig W. Cilastatin (MK 0791) is a potent and specific inhibitor of the renal leukotriene D4-dipeptidase. Biochem Biophys Res Commun 16;131(2):974-979 (1985). Kozak EM, Tate SS.Glutathione-degrading enzymes of microvillus membranes. J Biol Chem 10;257(ll):6322-6327 (1982).
Kropp H, Sundelof JG, Hajdu R Kahan FM 1982
M Kusama, K Yamamoto, H Yamada, H Kotaki, H Sato, T Iga: Effect of Cilastatin on renal handling of Vancomycin in Rats. 1998 Journal of Pharmaceutical Sciences: 87 (9): 1173-1176
Markewitz A, Hammer C, Pfeiffer M, Zahn S, Drechsel J, Reichenspurner H, Reichart B. Reduction of cyclosporine-induced nephrotoxicity by cilastatin following clinical heart transplantation. Transplantation 57:865-870 (1994).
Metabolism of thienamycin and related carbapenems antibiotics by the renal dipeptidase, dehydropeptidase I. Antimicrob Agents Chemother 22:62-70
Mihatsch MJ, Ryffel B, Hermle M, Brunner FP, Thiel G. Morphology of cyclosporine nephrotoxicity in the rat. Clin Nephrol 25:S2-S8 (1986)
Morandat S, Bortolato M, Roux B. Cholesterol-dependent insertion of glycosylphosphatidylinositol-anchored enzyme. Biochim Biophys Acta. 31;1564(2):473-478 (2002).
Mraz W, Modic PK, Hammer C. Impact of imipenem/cilastatin on cyclosporine metabolism and excretion. Transplant Proc 24(5): 1704-1708 (1992).
Mraz W, Sido B, Knedel M, Hammer C. Concomitant immunosuppressive and antibiotic therapy— reduction of cyclosporine A blood levéis due to treatment with imipenem/cilastatin. Transplant Proc 19(5):4017-4020 (1987). National Institutes of Health Consensus Conference. JAMA 259:2961 (1983).
Nitanai Y, Satow Y, Adachi H, Tsujimoto M. Crystal structure of human renal dipeptidase involved in beta-lactam hydrolysis. J Mol Biol 321(2): 177-84 (2002).
Norbby SR, Alestig K, Bjornegard B, Burman LA, Ferber F, Huber JL, Jones KH, Kahan FM, Kahan JS, Kropp H, Meisinger MA, Sundelof JG. Urinary recovery of
N-formimidoyl thienamycin (MK0787) as affected by coadministration of N- formimidoyl thienamycin dehydropeptidase inhibitors. Antimicrob Agents
Chemother 23(2):300-307 (1983).
Norrby R, Alestig K, Bjornegard B, Burman L, Ferber F, Kahan F, Huber J, Jones K. 21 st ICAAC, (abst n° 592).
NorrbySR 1985 Imipenem/cilastatin: rationale for a fixed combination. Rev. Infect. Dis 7 (Suppl 3): s447-s451
Nosjean O, Briolay A, Roux B. Mammalian GPI proteins: sorting, membrane residence and functions. Biochim Biophys Acta 8; 1331(2):153-186 (1997). Pérez M, Castilla M, Torres AM, Lázaro JA, Sarmiento E, Tejedor A. Nephrol Dial Transplant. 19(10:2445-2455 (2004).
Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev 54(3) :431-467 (2002)
Ryffel B. Pharmacology of cyclosporine. Cellular activation: regulation of intracellular events by cyclosporine. Pharmacol Rev 41(3):407-422 (1990).
Sack K, Herhahn J, Marre R, Schulz E. Renal tolerance of imipenem cilastatin and other beta-lactam antibiotics in rats. Infection 13:S156-60 (1985).
Seveau S, Bierne H, Giroux S, Prevost MC, Cossart P. Role of lipid rafts in E-cadherin- - and HGF-R/Met— mediated entry of Listeria monocytogenes into host cells. J Cell Biol 30;166(5):743-753 (2004).
Sido B, Hammer C, Mraz W, Krombach F. Nephroprotective effect of imipenem/cilastatin in reducing cyclosporine toxicity.Transplant proc 1:1755- 1758 (1987).
Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol l(l):31-39 (2000).
Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T,Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19(ll):7289-7304 (1999). T Nakamura, Y Hashimoto, T Kokuryo, K-I Inui: Effects of Fosfomycin and Imipenem/Cilastatin on Nephrotoxicity and Renal Excretion of Vancomycin in Rats. Pharmaceutical Research 1998; 15 (5):734-738.
T Toyoguchi Y Nakagawa: Nephrotoxicity and drug interaction of vancomycin (2). Folia Pharmacol Jpn 1996. 107: 225-235
Tally FP, Jacobus NV, Gorbach SL. In vitro activity of N-formimidoyl thienamycin (MK0787). Antimicrob Agents Chemother 18(4):642-644 (1980).
Tejedor A, Torres AM, Castilla M, Lázaro JA, de Lucas C, Caramelo C.__Cilastatin protection against cyclosporin A-induced nephrotoxicity: clinical evidence. Curr Med Res Opin. 2007 Mar;23(3):505-13.
Thiel G, Mihatsch M, Landmann J, Hermle M, Brunner FP, Harder F. Is cyclosporine A-induced nephrotoxicity in recipients of renal allografts progressive? Transplant Proc 17:169-178 (1985).
Toyoguchi T, Takahashi S, Hosoya J, Nakagawa Y, Watanabe H. Nephrotoxicity of vancomycin and drug interaction study with cilastatin in rabbits. Antimicrob
Agents Chemother 41(9): 1985-1990 (1997).
Tropschug M, Barthelmess IB, Neupert W. Sensitivity to cyclosporin A is mediated by cyclophilin in Neurospora crassa and Saccharomyces cerevisiae. Nature 21- 28:953-955 (1989). Welch CL, Campbell BJ. Uptake of glycine from L-alanylglycine into renal brush border vesicles. J Membr Biol 54(l):39-50 (1980).
Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 25;l(5):445-458 (1955).

Claims

REIVINDICACIONES
1. Uso de la cilastatina para la fabricación de un medicamento para reducir la nefrotoxicidad de un compuesto nefrotóxico que penetra en las células del epitelio tubular proximal renal mediante las balsas de colesterol.
2. Uso según la reivindicación 1, en el que el compuesto nefrotóxico es un fármaco.
3. Uso según la reivindicación 2, en el que el fármaco es distinto de ciclosporina
A, vancomicina o imipenem.
4. Uso según la reivindicación 2 ó 3, en el que el fármaco se selecciona entre gentamicina, tacrolimus, foscarnet, paracetamol, anfotericina B, manitol, iopamidol y cisplatino.
5. Uso según la reivindicación 4, en el que el fármaco es gentamicina.
6. Uso según la reivindicación 4, en el que el fármaco es tacrolimus.
7. Uso según la reivindicación 4, en el que el fármaco es foscarnet.
8. Uso según la reivindicación 4, en el que el fármaco es paracetamol.
9. Uso según la reivindicación 4, en el que el fármaco es anfotericina.
10. Uso según la reivindicación 4, en el que el fármaco es manitol.
11. Uso según la reivindicación 4, en el que el fármaco es iopamidol.
12. Uso según la reivindicación 4, en el que el fármaco es cisplatino.
13. Uso según la reivindicación 12, en el que el medicamento está diseñado para ser administrado por vía oral, intramuscular, intraperitoneal o intravenosa.
14. Uso según la reivindicación 13, en el que el medicamento está diseñado para ser administrado por vía intravenosa.
15. Uso según la reivindicación 14, en el que el medicamento que contiene cilastatina está diseñado para poder ser administrado de manera que la dosis de cilastatina que recibe el individuo sea de al menos 750 mg/día.
16. Uso según la reivindicación 15, en el que el medicamento que contiene cilastatina está diseñado para poder ser administrado de manera que la dosis diaria de cilastatina pueda ser administrada en una única dosis diaria.
17. Uso según la reivindicación 15, en el que el medicamento que contiene cilastatina está diseñado para poder ser administrado de manera que la dosis diaria de cilastatina pueda ser administrada en al menos dos dosis diarias.
18. Uso según la reivindicación 2 ó 3, en el que fármaco es de naturaleza catiónica o es neutro a pH fisiológico.
19. Uso según una cualquiera de las reivindicaciones 2 a 12, en el que el medicamento comprende tanto cilastatina como el fármaco nefrotóxico.
20. Uso según la reivindicación 1, en el que el compuesto nefrotóxico carece de actividad conocida como fármaco.
21. Un método terapéutico para reducir la nefrotoxicidad de un compuesto que comprende la administración de cilastatina al individuo que recibe el compuesto.
22. Método según la reivindicación 21, en el que el compuesto cuya nefrotoxicidad se pretende reducir es un fármaco nefrotóxico.
23 .Método según la reivindicación 22, en el que la administración de cilastatina es simultánea a la del fármaco nefrotóxico.
24. Método según la reivindicación 23, en que la administración de cilastatina se produce en dosis adicionales sucesivas posteriores a la administración del fármaco nefrotóxico.
25. Método según la reivindicación 23 ó 24, en el que la administración de cilastatina se produce de forma previa a la administración del fármaco nefrotóxico.
26. Método según la reivindicación 21, en el que el compuesto cuya nefrotoxicidad se pretende reducir carece de actividad conocida como fármaco.
27. Método según una cualquiera de las reivindicaciones 21 a 24, en el que la cilastatina se administra por vía oral, intramuscular, intraperitoneal o intravenosa.
28. Método según la reivindicación 27, en el que la cilastatina se administra por vía intravenosa.
29. Método según la reivindicación 28, en el que la cilastatina se administra disuelta en suero salino.
30. Método según la reivindicación 28 ó 29, en el que la dosis diaria de cilastatina es de al menos 750 mg/día.
31. Método según la reivindicación 30, en el que la cilastatina se administra en una única dosis diaria.
32. Método según la reivindicación 30, en el que la cilastatina se administra en al menos dos dosis diarias.
33. Método según una cualquiera de las reivindicaciones 21 a 32, en el que el individuo a tratar es un ser humano.
34. Una composición que comprende un fármaco nefrotóxico junto con cilastatina.
35. Composición según la reivindicación 34, que carece de imipenem.
36. Composición según la reivindicación 35, en la que el fármaco nefrotóxico es distinto de ciclosporina A o vancomicina.
37. Composición según la reivindicación 36, en la que el fármaco nefrotóxico se selecciona entre gentamicina, tacrolimus, foscarnet, paracetamol, anfotericina B, manitol, iopamidol y cisplatino.
38. Composición según una cualquiera de las reivindicaciones 34 a 37, que comprende adicionalmente al menos un vehículo farmacéuticamente aceptable.
39. Composición según una cualquiera de las reivindicaciones 34 a 38, que está en forma de polvo.
40. Composición según una cualquiera de las reivindicaciones 34 a 38, que está en forma de solución.
41. Composición según la reivindicación 40, en la que el disolvente es suero salino.
42. Composición según una cualquiera de las reivindicaciones 34 a 41, diseñada para reducir la nefrotoxicidad del fármaco nefrotóxico en el individuo al que se le administre.
PCT/ES2008/070137 2008-07-11 2008-07-11 Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos WO2010004060A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/ES2008/070137 WO2010004060A1 (es) 2008-07-11 2008-07-11 Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos
US12/442,249 US9216185B2 (en) 2008-07-11 2008-07-11 Use of cilastatin to reduce nephrotatoxicity of various compounds
EP09164710.7A EP2143429B1 (en) 2008-07-11 2009-07-07 Use of cilastatin to reduce the nephrotoxicity of different compounds
DK09164710.7T DK2143429T5 (da) 2008-07-11 2009-07-07 Anvendelse af cilastatin til reduktion af nephrotoksicitet af forskellige forbindelser
PL09164710T PL2143429T3 (pl) 2008-07-11 2009-07-07 Zastosowanie cylastatyny do zmniejszania nefrotoksyczności różnych związków
PT91647107T PT2143429E (pt) 2008-07-11 2009-07-07 Utilização de cilastatina para reduzir a nefrotoxicidade de diferentes compostos
ES09164710.7T ES2451715T3 (es) 2008-07-11 2009-07-07 Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos
US14/940,669 US9522128B2 (en) 2008-07-11 2015-11-13 Use of cilastatin to reduce the nephrotoxicity of different compounds
US15/233,665 US9757349B2 (en) 2008-07-11 2016-08-10 Use of cilastatin to reduce the nephrotoxicity of different compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/070137 WO2010004060A1 (es) 2008-07-11 2008-07-11 Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/442,249 A-371-Of-International US9216185B2 (en) 2008-07-11 2008-07-11 Use of cilastatin to reduce nephrotatoxicity of various compounds
US14/940,669 Continuation US9522128B2 (en) 2008-07-11 2015-11-13 Use of cilastatin to reduce the nephrotoxicity of different compounds

Publications (1)

Publication Number Publication Date
WO2010004060A1 true WO2010004060A1 (es) 2010-01-14

Family

ID=41131665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070137 WO2010004060A1 (es) 2008-07-11 2008-07-11 Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos

Country Status (7)

Country Link
US (3) US9216185B2 (es)
EP (1) EP2143429B1 (es)
DK (1) DK2143429T5 (es)
ES (1) ES2451715T3 (es)
PL (1) PL2143429T3 (es)
PT (1) PT2143429E (es)
WO (1) WO2010004060A1 (es)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE416791T1 (de) * 2000-05-02 2008-12-15 Theravance Inc Zusammensetzung die eine zyklodextrin und ein glykopeptid-antibiotikum enthält
CA2937311A1 (en) 2014-01-24 2015-07-30 Ea Pharma Co., Ltd. Megalin antagonist
CA2999800A1 (en) 2015-08-11 2017-02-16 Stephen Mark Robbins Dpep-1 binding compositions and methods of use
KR101913326B1 (ko) * 2016-03-29 2018-10-30 순천향대학교 산학협력단 실라스타틴을 포함하는, 신장 허혈 재관류 손상의 예방 또는 치료용 약학적 조성물
AU2017281744B2 (en) * 2016-06-24 2022-10-27 Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañón Cilastatin for use in the treatment of sepsis
JP6548803B1 (ja) 2018-04-27 2019-07-24 国立大学法人 新潟大学 腎障害の抑制におけるシラスタチンの利用
CN116870135A (zh) * 2019-10-12 2023-10-13 睿诺医疗科技(上海)有限公司 肾毒素诱发的肾损伤的治疗和预防
JP7412722B2 (ja) * 2021-03-12 2024-01-15 国立大学法人 新潟大学 溶血反応により誘発される腎障害の抑制
CN113469105A (zh) * 2021-07-15 2021-10-01 恒大恒驰新能源汽车研究院(上海)有限公司 监控周边车辆的方法及装置、计算机可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2556597A (en) * 1996-04-04 1997-10-29 Merck & Co., Inc. Method of reducing nephrotoxicity
US20070082858A1 (en) * 2004-12-21 2007-04-12 Oregon Health & Science University Methods and compositions for the prevention of toxic side effects of aminoglycoside medications
EP2068879A2 (en) * 2006-05-02 2009-06-17 Medical Technology Acceleration Program, Inc. Pyrroloquinoline quinone drugs and methods of use thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BREYMANN, C. ET AL.: "Evaluation of cisplatin nephrotoxicity in coadministration with imipenem/ cilastatin.", JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY., vol. 116, 1990 *
DE LUCAS COLLANTES, M.C.: "Proteccion by cilastatina of the nefrotoxicidad causada by ciclosporina A and FK 506.", TESIS DOCTORAL, UAM., 2007, pages 108, Retrieved from the Internet <URL:http://digitool-uam.greendata.es:1801/webclient/DeliveryManager?pid=16300&custom_att_2=simple_viewer> *
LINK, H. ET AL.: "Interventional antimicrobial in febrile neutropenic patients.", ANNALS OF HEMATOLOGY., vol. 69, no. 5, 1994, pages 231 - 243 *
MANG, W.L. ET AL.: "Influence of imipenem/ cilastatin (Zienam) on cisplatin nephrotoxicity.", ARCHIVES OF OTO-RHINO-LARYNGOLOGY., vol. 245, no. 6, 1988, pages 371 - 372 *
NAKAMURA, T. ET AL.: "Effects of Fosfomycin and Imipenem-Cilastatin on the nephrotoxicity of Vancomycin and cisplatin in rats.", J. PHARM. PHARMACOL., vol. 51, 1999, pages 227 - 232 *
NAMIAS, N. ET AL.: "Empiric therapy of sepsis in the surgical intensive care unit with broad- spectrum antibiotics for 72 hours does not lead to the emergence of resistant bacteria.", THE JOURNAL OF TRAUMA: INJURY, INFECTION, AND CRITICAL CARE., vol. 45, no. 5, 1998, pages 887 - 891 *
NORRBY, S.R.: "Imipenem/cilastatin: rationale for a fixed combination.", REVIEWS OF INFECTIOUS DISEASES, vol. 7, no. SUPPL, 1985, pages 447 - 451 *
PEREZ, M. ET AL.: "Inhibition of brush border dipeptidase with cilastatin reduces toxic accumulation of cyclosporin A in kidney proximal tubule epithelial cells.", NEPHROLOGY DIALYSIS TRANSPLANTATION., vol. 19, no. 10, 2004, pages 2445 - 2455 *
TOYOGUCHI, T. ET AL.: "Nephrotoxicity of vancomycin and drug interaction study with cilastatin in rabbits.", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY., vol. 41, no. 9, 1997, pages 1985 - 1990 *

Also Published As

Publication number Publication date
PT2143429E (pt) 2014-03-27
US9522128B2 (en) 2016-12-20
DK2143429T3 (en) 2014-02-24
PL2143429T4 (pl) 2014-07-31
US9216185B2 (en) 2015-12-22
PL2143429T3 (pl) 2014-07-31
US20110165264A1 (en) 2011-07-07
US9757349B2 (en) 2017-09-12
ES2451715T3 (es) 2014-03-28
EP2143429B1 (en) 2013-11-20
EP2143429A1 (en) 2010-01-13
US20160136121A1 (en) 2016-05-19
US20170035718A1 (en) 2017-02-09
DK2143429T5 (da) 2014-06-30

Similar Documents

Publication Publication Date Title
ES2451715T3 (es) Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos
US20190038703A1 (en) Methods of treating acute myeloid leukemia with a flt3 mutation
US20090227676A1 (en) Methods and compositions for treating cancer
US20180311308A1 (en) Methods of treating myeloid leukemia
AU2013202507B9 (en) Inhibition of drug resistant cancer cells
WO2009115634A1 (es) Combinaciones sinérgicas de 5&#39;-metiltioadenosina
ES2392903B1 (es) Preparación inyectable de melatonina
US11090303B2 (en) Therapeutic agent composition and method of use, for treatment of mild congnitive impairment, depression, and psychological disorders
ES2203072T3 (es) Composiciones farmaceuticas que comprenden peg-asparaginasa para el tratamiento de infecciones por vih.
EP3880207B1 (en) Combination of a mcl-1 inhibitor and midostaurin, uses and pharmaceutical compositions thereof
KR101010767B1 (ko) 에포틸론을 포함하는 조성물 및 카르시노이드 증후군치료에 있어서 그의 용도
US20190022181A1 (en) Mutant Peptides And Methods Of Treating Subjects Using The Same
TW201904579A (zh) Mcl-1抑制劑與血液癌症標準療法之組合,其用途及醫藥組合物
US9474763B2 (en) Compositions and methods for amelioration and prevention of drug-induced toxicity
KR102510514B1 (ko) 세포 살상제
US20150374837A1 (en) Antibacterial agent for treating infectious diseases of bacterial origin
CA2157590C (en) Use of terbinafine for the therapeutic treatment of pneumocystosis
JP2003055215A (ja) 肝線維化抑制剤
ES2611311T3 (es) Utilización de un inhibidor de vasopeptidasa para el tratamiento de la hipertensión arterial pulmonar
Bahmed The design and synthesis of novel pro-drugs for the treatment of nephropathic cystinosis.
ES2362770A1 (es) Uso de compuesto n-fenil-n&#39;-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la encefalopatía hepática.
US20140030260A1 (en) Methods and compositions to eliminate chronic lymphocytic leukemia and other hematologic malignant cells in stromal microenvironment for cancer therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12442249

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08787668

Country of ref document: EP

Kind code of ref document: A1