WO2010001760A1 - アルミナセラミック - Google Patents

アルミナセラミック Download PDF

Info

Publication number
WO2010001760A1
WO2010001760A1 PCT/JP2009/061334 JP2009061334W WO2010001760A1 WO 2010001760 A1 WO2010001760 A1 WO 2010001760A1 JP 2009061334 W JP2009061334 W JP 2009061334W WO 2010001760 A1 WO2010001760 A1 WO 2010001760A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina ceramic
alumina
phase
light
mass
Prior art date
Application number
PCT/JP2009/061334
Other languages
English (en)
French (fr)
Inventor
誠 井田
文男 石田
良明 寺石
卓也 山下
Original Assignee
日本カーバイド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カーバイド工業株式会社 filed Critical 日本カーバイド工業株式会社
Priority to KR1020107024235A priority Critical patent/KR101508296B1/ko
Priority to JP2010519000A priority patent/JP5479335B2/ja
Priority to US12/992,386 priority patent/US8198204B2/en
Priority to EP09773338.0A priority patent/EP2292569B1/en
Priority to CN200980117425.8A priority patent/CN102026935B/zh
Publication of WO2010001760A1 publication Critical patent/WO2010001760A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an alumina ceramic having excellent light reflectivity.
  • ceramic packages have been used as light-emitting element storage packages (hereinafter also simply referred to as packages) for storing light-emitting elements such as high-intensity light-emitting diodes (LEDs) and semiconductor lasers (LDs). .
  • LEDs high-intensity light-emitting diodes
  • LDs semiconductor lasers
  • a conventional ceramic package includes a base body on which a light emitting element is mounted and a frame body provided on the base body and having a through hole.
  • the base is provided with a power distribution conductor for energizing from the outside, and the light emitting element is electrically connected to the power distribution conductor by a bonding wire. Then, the light emitting element emits light when it is energized from the outside through the power distribution conductor and the bonding wire, and the emitted light is directly emitted to the outside or reflected to the surface of the base or the inner peripheral surface of the through hole of the frame. Released to the outside. Therefore, the shape and composition of the surface of the substrate and the inner peripheral surface of the through hole of the frame body have a great influence on the light emission efficiency of the light emitting device.
  • the frame of the light emitting device As the frame of the light emitting device as described above, one made of a metal having a high reflectance is known. In this case, since the thermal expansion coefficient of the ceramic base and the metal frame is different, the frame may be peeled off from the base due to heat generated from the light emitting element. In addition, in order to prevent such peeling, a ceramic frame that has been subjected to metal plating is also known (see, for example, Patent Document 1). Ag is known as a plating material having a high reflectance. In this case, the reflectance is about 90% with respect to the reflectance of barium sulfate in light having a wavelength of about 460 nm. However, the reflectance of light having a wavelength of about 460 nm or less is low, and the reflectance is 77% when averaged in the range of 250 nm to 800 nm.
  • the conventional ceramic package cannot obtain a sufficient light reflection performance even when the metal plating is applied to the ceramic surface.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an alumina ceramic excellent in light reflection performance without depositing metal plating on the ceramic.
  • it is to provide an alumina ceramic excellent in reflectance of light having a wavelength of 300 to 400 nm.
  • it is providing the light reflection material for light emitting elements excellent in light reflection performance.
  • an alumina ceramic containing a Ba 0.808 Al 1.71 Si 2.29 O 8 phase has excellent light reflection performance.
  • the intensity ratio (the former / the latter) of the peak at the diffraction angle (2 ⁇ ) of 43.3 ° and the peak at the diffraction angle (2 ⁇ ) of 22.5 ° is in the range of 0.5 to 2.5.
  • the inventors of the present invention in an alumina ceramic containing a Ba 0.808 Al 1.71 Si 2.29 O 8 phase, have a Ba / Si molar ratio (Ba / Si) of 8/1 to 8/12 . It was found that the alumina ceramic present in the range is excellent in the reflectance of light having a wavelength of 300 to 400 nm.
  • the alumina ceramic containing the Ba 0.808 Al 1.71 Si 2.29 O 8 phase of the present invention has excellent light reflection performance. Further, in the X-ray diffraction, the intensity ratio between the peak at the diffraction angle (2 ⁇ ) of 43.3 ° and the peak at the diffraction angle (2 ⁇ ) of 22.5 ° is in the range of 0.5 to 2.5.
  • An alumina ceramic containing 0.808 Al 1.71 Si 2.29 O 8 phase exhibits particularly excellent light reflection performance.
  • the alumina ceramic of the present invention is particularly excellent in the reflectance of light having a wavelength of 300 to 400 nm.
  • FIG. 1 is an X-ray diffraction pattern of the alumina ceramic of the present invention of Example 1.
  • FIG. 2 is an X-ray diffraction pattern of the alumina ceramic of the present invention in Example 2.
  • FIG. 3 is a graph showing the results of measuring the reflectance of light of each wavelength for the alumina ceramics of the present invention of Examples 1 to 4 and the conventional alumina substrate of Comparative Example 1.
  • FIG. 4 is an X-ray diffraction pattern represented by the Ba 0.808 Al 1.71 Si 2.29 O 8 phase described in ICDD card number 01-088-1050.
  • Figure 5 is described in ICDD card No. 01-070-7049 is an X-ray diffraction pattern shown corundum (Al 2 O 3) phase.
  • the alumina ceramic containing the Ba 0.808 Al 1.71 Si 2.29 O 8 phase of the present invention is obtained by firing a raw material containing alumina (Al 2 O 3 ), silica (SiO 2 ), and a barium compound. Can be made.
  • alumina having an average particle size of 5 ⁇ m or less It is preferable to use an alumina having an average particle size of 5 ⁇ m or less. Considering the light reflection performance, flexibility, sinterability during production, etc. of alumina ceramic, it is particularly preferable to use alumina having an average particle size of 0.1 to 3 ⁇ m.
  • a plurality of types of alumina having different average particle diameters may be mixed and used for manufacturing the alumina ceramic of the present invention. be able to.
  • the average particle diameters are 3 ⁇ m and 0.2 ⁇ m, 3 ⁇ m and 0.3 ⁇ m, 3 ⁇ m and 0.4 ⁇ m, 3 ⁇ m and 0.5 ⁇ m, 3 ⁇ m and 0.3 ⁇ m, respectively.
  • Combinations of 6 ⁇ m, 2 ⁇ m and 0.2 ⁇ m, 2 ⁇ m and 0.3 ⁇ m, 2 ⁇ m and 0.4 ⁇ m, 2 ⁇ m and 0.5 ⁇ m, 2 ⁇ m and 0.6 m, etc. are not limited to these, but three types The above may be combined.
  • the blending ratio according to the weight parts of large particle alumina / small particle alumina is preferably 100/1 to 60/40.
  • the blending ratio by weight parts of large particle alumina / small particle alumina is preferably 85/15 to 65/35, 80/20 to 70/30 is more preferable.
  • silica used for producing the alumina ceramic of the present invention it is preferable to use one having an average particle diameter of 1 ⁇ m or less.
  • silica having an average particle size of 0.1 to 0.7 ⁇ m it is preferable to use silica having an average particle size of 0.3 to 0.6 ⁇ m.
  • the barium compound used for producing the alumina ceramic of the present invention is not particularly limited, and examples thereof include barium hydride, barium fluoride, barium hydroxide, barium oxide, barium chloride, barium carbonate, barium sulfate, and barium nitrate. Of these, barium oxide and barium carbonate are preferable, and barium carbonate is particularly preferable.
  • the barium compound having an average particle size of 1.0 to 2.0 ⁇ m is preferably used.
  • the molar ratio of Ba and Si (Ba / Si) in the alumina ceramic after sintering the raw material is 8/1 to 8 / It is preferable to mix the barium compound and silica so that the molar ratio is 12, more preferably the molar ratio is 8/3 to 8/12.
  • the method for producing the alumina ceramic of the present invention is not particularly limited, and a known method can be used.
  • an appropriate binder, solvent, etc. are added to the raw materials containing the above-mentioned alumina, silica, and barium compounds to form a slurry, which is converted into a green sheet by a doctor blade method, a calender roll method, or the like, and then heated to a high temperature (1400 ° C. It can be produced by a green sheet method of baking at ⁇ 1600 ° C.). It can also be produced by a powder molding method in which a raw material powder is filled in a molding machine and compacted, and then the compact is fired. When obtaining a plate-like ceramic sintered body, it is preferable to produce it by a green sheet method.
  • the binder resin things, such as an acrylic type and PVA (polyvinyl alcohol) type, can be used, for example.
  • the content of the binder resin with respect to the solid content of the slurry is preferably 0.5% by mass to 5.0% by mass, and more preferably 1.5% by mass to 3.5% by mass.
  • strength of a powder molded product will become weak.
  • the lubricant for example, a stearic acid emulsion can be used, and the content of the lubricant with respect to the solid content of the slurry is preferably 0.05% by mass to 0.5% by mass, more preferably 0.1% by mass. Is 0.3 mass%.
  • the solvent for example, water can be used. The amount of the solvent used is preferably 20 to 80% by mass, more preferably 40 to 60% by mass.
  • the slurry is dried and the raw powder particles are granulated to a size suitable for molding with a powder molding machine.
  • a spray dryer can be used for granulating the particles.
  • the granulated particle diameter is preferably 25 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 150 ⁇ m.
  • the granulated powder is classified using a sieve or the like. If the particles are too large at the time of powder molding, the filling property into the mold deteriorates. If the particles are too fine, the particles enter the clearance of the mold and burrs tend to occur.
  • the granulated raw material powder is filled in a mold and molded by applying pressure at room temperature.
  • the pressure applied to the powder is preferably 0.5t / cm 2 ⁇ 2.0t / cm 2, more preferably a 0.7t / cm 2 ⁇ 1.5t / cm 2.
  • the molded body obtained by the above molding is fired in a firing furnace.
  • the firing temperature condition is preferably 1400 ° C. to 1600 ° C.
  • Firing is carried out at a rate of temperature rise to the firing temperature, firing time, a cooling rate from the firing temperature, etc. suitable for producing an alumina ceramic containing the Ba 0.808 Al 1.71 Si 2.29 O 8 phase.
  • the molded body is first held at 600 ° C. for 8 hours, then heated to 1600 ° C. over 8 hours, held for 2 hours, and then allowed to cool for 6 hours.
  • polishing is performed using a barrel polishing machine or the like to remove burrs and the like as desired.
  • an alumina ceramic containing the Ba 0.808 Al 1.71 Si 2.29 O 8 phase of the present invention can be produced.
  • alumina ceramic containing Ba 0.808 Al 1.71 Si 2.29 O 8 phase according to the present invention, an example of a manufacturing method using a green sheet method is explained.
  • Alumina, silica, and barium compounds were each pulverized to a predetermined size to prepare raw material powders, and then these raw material powders were weighed to achieve the above-mentioned blending ratio, and this was mixed with solvent, binder resin, dispersant, plastic A slurry is obtained by adding an agent and kneading.
  • a ball mill can be used for pulverizing the raw materials and kneading the raw material powders.
  • binder resin binders, such as an acrylic type and PVB (polyvinyl ptyral) type, can be used, for example.
  • content of the binder resin with respect to the solid content of the slurry is preferably 4.0% by mass to 20% by mass, and more preferably 6.0% by mass to 8.0% by mass.
  • dispersant various surfactants can be used, and the content of the dispersant with respect to the solid content of the slurry is preferably 0.1% by mass to 1.0% by mass, and more preferably 0.3%. % By mass to 0.5% by mass.
  • the plasticizer for example, DOP (Dioctyl Phthalate), DBP (Dlbutyl Phthalate) and the like can be used, and the plasticizer content in the solid content of the slurry is preferably 3.0% by mass to 15% by mass. More preferably, it is 4.0 mass to 6.0 mass%.
  • the amount of the solvent used is preferably such that the total amount of solid content of the slurry is 70% by mass to 80% by mass.
  • the viscosity of the slurry is preferably 3000 cps to 30000 cps, more preferably 10,000 cps to 20000 cps.
  • the obtained slurry is poured into a film coated with a release agent, and the solvent is evaporated by drying.
  • the drying temperature is preferably 80 ° C. to 130 ° C., more preferably 100 ° C. to 120 ° C.
  • the drying speed is preferably 0.2 m / min to 2.0 m / min.
  • a green sheet is generated.
  • This green sheet is punched into a desired shape with a press molding machine and fired in a firing furnace.
  • the firing temperature is preferably 1400 ° C. to 1600 ° C.
  • Firing is appropriately selected from a heating rate to a firing temperature, a firing time, a cooling rate from the firing temperature, and the like suitable for the production of an alumina ceramic containing the Ba 0.808 Al 1.71 Si 2.29 O 8 phase. And do it.
  • the temperature is first held at 600 ° C. for 8 hours, then heated to 1600 ° C. over 8 hours, held for 2 hours, and then allowed to cool for 6 hours.
  • polishing can be performed using a sandblasting machine or the like.
  • an alumina ceramic containing the Ba 0.808 Al 1.71 Si 2.29 O 8 phase of the present invention can be produced.
  • the presence of the Ba 0.808 Al 1.71 Si 2.29 O 8 phase in the alumina ceramic of the present invention can be confirmed by measuring X-ray diffraction by the following [X-ray diffraction measurement method].
  • the light reflection performance of the alumina ceramic of the present invention is evaluated by the following [Reflectance measuring method].
  • X-ray diffraction measurement method X-ray diffraction is measured in accordance with JIS 1481 asbestos qualitative analysis conditions using a Spectris X-ray diffractometer X'pert PRO. The measurement conditions are as follows. The measurement result confirms the presence of the Ba 0.808 Al 1.71 Si 2.29 O 8 phase as compared with the reference data of ICDD (International Center for Diffraction Data). Measurement conditions X-ray counter cathode Cu Tube voltage (kV) 40 Tube current (mA) 40 Scanning speed 0.02 ° x 10 seconds Monochromatization (removal of K ⁇ rays) Ni filter Scanning range (°, 2 ⁇ ) 5-80 Divergent slit (°) 1
  • the reflectance is measured using a Hitachi spectrophotometer U-4000. Based on JIS K7105, the wavelength dependence of the sum of specular reflection and diffuse reflection is obtained. Aluminum oxide is used as the standard white plate, and the reflectance of each standard white plate is 100%, and the reflectance of each material is evaluated using relative values.
  • the alumina ceramic containing the Ba 0.808 Al 1.71 Si 2.29 O 8 phase of the present invention is used for a light emitting element such as a substrate for mounting a light emitting element or a frame body that reflects light emitted from the light emitting element. It can be used as a reflective material.
  • Example 1 89 parts by weight of high-purity alumina “AES-12 (average particle size 0.4 ⁇ m)” (purity 99.5%) manufactured by Sumitomo Chemical Co., Ltd., and high-purity barium carbonate “LSR (average particle size 1. 4 ⁇ m) ”, 8 parts by weight of fine-grain silica“ SO-C2 (average particle size 0.5 ⁇ m) ”manufactured by Shin-Etsu Quartz, 3 parts by weight of“ NCB-156 ”binder manufactured by Dainippon Ink, Further, 0.1 part by weight of a lubricant “Cerosol 920” manufactured by Chukyo Yushi Co., Ltd.
  • This granulated product was filled in a frame mold and molded using a 10-ton press manufactured by Sanken Seiki Co., Ltd. at room temperature with a pressure of 1 t / cm 2 to obtain a frame-shaped product. . And this frame-shaped object was baked at 1550 degreeC for 2 hours, and the alumina ceramic frame was produced.
  • Example 2 68.8 parts by weight of low soda alumina “ALM-42E (average particle size 2.0 ⁇ m)” (purity 99.9%) manufactured by Sumitomo Chemical Co., Ltd., high purity alumina “AES-12 (average particle size) manufactured by Sumitomo Chemical Co., Ltd.
  • Parts, 4 parts by weight of “DOP” as a plasticizer, and 0.5 parts by weight of sorbitan sesquiolate as a lubricant, and 30 parts by weight of a toluene / ethanol mixed solvent (weight ratio 50/50) were added thereto.
  • Mix for 48 hours in a ball mill A slurry was obtained by the.
  • the slurry was applied to a release PET film, dried at a temperature of 110 ° C., and then peeled off to obtain a green sheet. This was punched into an arbitrary shape and fired at 1600 ° C. for 2 hours to produce an alumina ceramic substrate.
  • Example 3 As the alumina, 60.2 parts by weight of low soda alumina “ALM-42E (average particle size 2.0 ⁇ m)” (purity 99.9%) and high-purity alumina “AES-12 (average particle size 0.4 ⁇ m)” ( An alumina ceramic substrate was produced in the same manner as in Example 2 except that 25.8 parts by weight of 99.5% purity was used.
  • ALM-42E average particle size 2.0 ⁇ m
  • AES-12 average particle size 0.4 ⁇ m
  • Example 4 An alumina ceramic substrate was produced in the same manner as in Example 2 except that 86 parts by weight of low soda alumina “ALM-42E (average particle size 2.0 ⁇ m)” (purity 99.9%) was used as alumina. .
  • the alumina ceramics of Examples 1 and 2 have an intensity ratio between the peak at the diffraction angle (2 ⁇ ) of 43.3 ° due to the corundum (Al 2 O 3 ) phase and the peak at the diffraction angle (2 ⁇ ) of 22.5 °. Were 2.0 and 1.1, respectively.
  • FIG. 4 are described in ICDD card No. 01-088-1050, the X-ray diffraction pattern exhibited Ba 0.808 Al 1.71 Si 2.29 O 8 phase, in Figure 5, ICDD card number
  • the X-ray diffraction patterns shown by the corundum (Al 2 O 3 ) phase described in 01-070-7049 were shown, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 本発明のアルミナセラミックは、Ba0.808 Al1.71Si2.29 相を含有するものである。本発明のアルミナセラミックは、優れた光反射性能を有し、発光素子用光反射材料として有用なものである。特に、X線回折において、回折角度(2θ)43.3°におけるピークと回折角度(2θ)22.5°におけるピークとの強度比が0.5~2.5の範囲となるBa0.808 Al1.71Si2.29 相が含有されるアルミナセラミックは、優れた光反射性能を示す。また、本発明のアルミナセラミックは、特に波長300~400nmの光の反射率に優れる。

Description

アルミナセラミック
 本発明は、光反射性に優れたアルミナセラミックに関するものである。
 従来より、高輝度の発光ダイオード(LED)、半導体レーザー(LD)等の発光素子を収納するための発光素子収納用パッケージ(以下、単にパッケージともいう)として、セラミック製のパッケージが使用されている。
 従来のセラミック製のパッケージは、発光素子を搭載する基体と、基体上に設けられ貫通孔を有する枠体とを備えている。基体には外部から通電するための配電導体が設けられており、発光素子はこの配電導体とボンディングワイヤーにより電気的に接続される。そして、発光素子は、配電導体とボンディングワイヤーを介して外部から通電され発光し、その発光光は直接外部へ放出されるか、基体の表面若しくは枠体の貫通孔の内周面に反射して外部に放出される。従って、基体の表面および枠体の貫通孔内周面の形状と組成は、発光装置の発光効率に多大な影響を与える。
 上述のような発光装置の枠体としては、反射率の高い金属からなるものが知られている。この場合、セラミックからなる基体と金属からなる枠体の熱膨張率が異なるため、発光素子から発生する熱により基体から枠体が剥離することがある。また、このような剥離を防止するために、セラミック製の枠体に金属メッキを被著したものも知られている(例えば、特許文献1参照)。反射率の高いメッキ材としては、Agが知られており、この場合、波長が約460nmの光において、硫酸バリウムの反射率に対して約90%の反射率となる。しかし、約460nm以下の波長の光については反射率が低く、250nm~800nmの範囲で平均すると反射率は77%である。
特開2004-228531号公報
 上述のとおり、従来のセラミック製のパッケージは、セラミック表面に金属メッキを被着したとしても十分な光反射性能を得ることはできなかった。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、セラミックに金属メッキを被着させることなく、光反射性能に優れたアルミナセラミックを提供することである。特に、波長300~400nmの光の反射率に優れたアルミナセラミックを提供することである。また、光反射性能に優れた発光素子用光反射材料を提供することである。
 本発明者らは、前記目的を達成するため鋭意研究した結果、Ba0.808 Al1.71Si2.29 相を含有するアルミナセラミックが、優れた光反射性能を有することを見出した。特に、X線回折において、回折角度(2θ)43.3°におけるピークと回折角度(2θ)22.5°におけるピークとの強度比(前者/後者)が0.5~2.5の範囲となるように、Ba0.808 Al1.71Si2.29 相をアルミナセラミック中に含有させると、優れた光反射性能を示すことを見出した。すなわち、X線回折において、コランダム(Al O )相による回折角度(2θ)43.3°のピークと、Ba0.808 Al1.71Si2.29 相による回折角度(2θ)22.5°のピークとの強度比が、0.5~2.5の範囲であるアルミナセラミックが光反射性能に優れることを見出した。
 また、本発明者らは、Ba0.808 Al1.71Si2.29 相を含有するアルミナセラミックにおいて、BaとSiのモル比(Ba/Si)が8/1~8/12の範囲で存在するアルミナセラミックが波長300~400nmの光の反射率に優れることを見出した。
 本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックは、優れた光反射性能を有するものである。さらに、X線回折において、回折角度(2θ)43.3°におけるピークと回折角度(2θ)22.5°におけるピークとの強度比が0.5~2.5の範囲となるように、Ba0.808 Al1.71Si2.29 相を含有させたアルミナセラミックは、特に優れた光反射性能を示す。また、本発明のアルミナセラミックは、特に波長300~400nmの光の反射率に優れるものである。
図1は、実施例1の本発明のアルミナセラミックのX線回折パターンである。 図2は、実施例2の本発明のアルミナセラミックのX線回折パターンである。 図3は、実施例1~4の本発明のアルミナセラミックおよび比較例1の従来のアルミナ基板について、各波長の光の反射率を測定した結果を示すグラフである。 図4は、ICDDカード番号01-088-1050に記載されている、Ba0.808 Al1.71Si2.29 相が示すX線回折パターンである。 図5は、ICDDカード番号01-070-7049に記載されている、コランダム(Al O )相が示すX線回折パターンである。
 本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックは、アルミナ(Al O )、シリカ(SiO )、およびバリウム化合物を含む原料を焼成することにより作製できる。
 上記アルミナとしては、平均粒径5μm以下のものを使用することが好ましい。アルミナセラミックの光反射性能や、可撓性、製造時の焼結性等を考慮すると、平均粒径が0.1~3μmのアルミナを用いることが特に好ましい。
 また、本発明のアルミナセラミックの製造には、上述した光反射性能や、可撓性、焼結性を調整するために、所望により、異なる平均粒径を有する複数種類のアルミナを混合して用いることができる。例えば、平均粒径の異なる2種類のアルミナの組み合わせとしては、平均粒径がそれぞれ、3μmと0.2μm、3μmと0.3μm、3μmと0.4μm、3μmと0.5μm、3μmと0.6μm、2μmと0.2μm、2μmと0.3μm、2μmと0.4μm、2μmと0.5μm、2μmと0.6m、の組み合わせ等が挙げられるがこれらに限定されるものではなく、3種以上を組み合わせても良い。平均粒径の異なる2種のアルミナを使用する場合、大粒径アルミナ/小粒径アルミナの重量部数による配合比は、100/1~60/40であることが好ましい。特に、異なる平均粒径のアルミナを混合したことによる効果を得るためには、大粒径アルミナ/小粒径アルミナの重量部数による配合比は、85/15~65/35であることが好ましく、80/20~70/30がより好ましい。
 本発明のアルミナセラミックの作製に用いるシリカとしては、平均粒径1μm以下のものを使用することが好ましい。特に、アルミナセラミックの吸湿性を低くするためには、平均粒径0.1~0.7μmのシリカを使用することが好ましく、平均粒径0.3~0.6μmのシリカがより好ましい。
 本発明のアルミナセラミックの作製に用いるバリウム化合物としては、特に限定されないが、水素化バリウム、フッ化バリウム、水酸化バリウム、酸化バリウム、塩化バリウム、炭酸バリウム、硫酸バリウム、硝酸バリウム等が挙げられ、なかでも酸化バリウム、炭酸バリウムが好ましく、特に炭酸バリウムが好ましい。上記バリウム化合物は、平均粒径が1.0~2.0μmのものを用いることが好ましい。
 本発明のアルミナセラミックの作製に用いる、アルミナ(Al O )、シリカ(SiO )、バリウム化合物(BaO換算)の重量部数による配合比は、(BaO+SiO )/(Al O )=4/96~24/76の範囲が好ましい。
 また、本発明のアルミナセラミックの作製に用いる、バリウム化合物(BaO換算)とシリカ(SiO )の重量部数による配合比は、BaO/SiO =8/1~8/12が好ましい。
 さらに、波長300~400nmの光の反射率に優れたアルミナセラミックを作製するためには、原料焼結後のアルミナセラミック中のBaとSiのモル比(Ba/Si)が8/1~8/12となるようにバリウム化合物およびシリカを配合することが好ましく、より好ましくは上記モル比が8/3~8/12となるようにする。
 本発明のアルミナセラミックの製造方法は、特に限定されるものではなく周知の方法を用いることができる。例えば、上述したアルミナ、シリカ、バリウム化合物を含む原料に適当なバインダー、溶剤等を添加混合してスラリー状とし、これをドクターブレード法やカレンダーロール法等によりグリーンシート化し、その後、高温(1400℃~1600℃)で焼成するグリーンシート法によって作製することができる。また、原料粉体を成型機に充填して圧密成型した後、成型体を焼成する粉体成型法によっても作製することができる。板状のセラミック焼結体を得る際には、グリーンシート法で製造することが好ましい。
 以下、本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックの、粉体成型法を用いた製造方法の一例について説明する。
 まず、アルミナ、シリカ、バリウム化合物をそれぞれ所定の大きさに粉砕して原料粉末を作製した後、これらの原料粉末を上述した配合比となるように秤量し、これにバインダー樹脂、滑剤及び溶媒を加えて混合してスラリーを得る。上記の原料の粉砕と原料粉末等の混合には、例えばボールミルを用いることができる。尚、粉砕工程は適宜省略することができる。
 上記バインダー樹脂としては、例えばアクリル系、PVA(ポリビニルアルコール)系等のものを使用することができる。また、スラリーの固形分中に対するバインダー樹脂の含有量は、0.5質量%~5.0質量%が好ましく、さらに好ましくは1.5質量%~3.5質量%である。スラリーの固形分中におけるバインダー樹脂の量が多いと、原料粉末の造粒時に粒子が硬くなって粗密が生じやすい。また、バインダー樹脂の量が少ないと、粉末成型品の強度が弱くなってしまう。
 上記滑剤としては、例えばステアリン酸エマルジョンを使用することができ、スラリーの固形分中に対する滑剤の含有量は、0.05質量%~0.5質量%が好ましく、さらに好ましくは0.1質量%~0.3質量%である。
 上記溶媒としては、例えば水を使用することができる。溶媒の使用量は、20~80質量%が好ましく、40~60質量%がより好ましい。
 次いで、スラリーを乾燥して原料粉末の粒子を、粉末成型機で成型するのに適した大きさまで造粒する。粒子の造粒には、例えばスプレードライヤーを使用することができる。造粒された粒子径は、好ましくは25μm~200μmであり、さらに好ましくは30μm~150μmである。造粒処理が施された粉末は篩い等を使用して分級する。粉末成型時に粒子が大きすぎると金型への充填性が悪化し、粒子が細かすぎると粒子が金型のクリアランスに入り込みバリが生じやすくなる。
 次に、造粒された原料粉末を金型の中に充填し、常温にて圧力をかけて成型する。このとき、粉末に加える圧力は、好ましくは0.5t/cm2 ~2.0t/cm2 、さらに好ましくは0.7t/cm2 ~1.5t/cm2 である。
 上記成型により得られた成型体を焼成炉にて焼成する。焼成の温度条件は、好ましくは1400℃~1600℃である。焼成は、Ba0.808 Al1.71Si2.29 相を含有するアルミナセラミックを作製するのに好適な、焼成温度への昇温速度、焼成時間、焼成温度からの冷却速度等を適宜選択して行う。一例を挙げれば、上記成型体を、まず600℃で8時間保持し、次に8時間かけて1600℃まで昇温しそのまま2時間保持した後、6時間かけて放冷する。焼成の後、所望によりバリ等を除去するためにバレル研磨機等を用いて研磨を行う。
 このようにして本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックを作製することができる。
 また、本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックの、グリーンシート法を用いた製造方法の一例について説明する。
 アルミナ、シリカ、バリウム化合物をそれぞれ所定の大きさに粉砕して原料粉末を作製した後、これらの原料粉末を上述した配合比となるように秤量し、これに溶剤、バインダー樹脂、分散剤、可塑剤等を加え混練することによりスラリーを得る。上記の原料の粉砕と、原料粉末等の混練には、例えばボールミルを用いることができる。
 上記バインダー樹脂としては、例えばアクリル系、PVB(ポリビニルプチラール)系等のバインダーを用いることができる。また、スラリーの固形分中に対するバインダー樹脂の含有量は、4.0質量%~20質量%が好ましく、さらに好ましくは6.0質量%~8.0質量%である。
 上記分散剤としては、各種界面活性剤を使用することができ、スラリーの固形分中に対する分散剤の含有量は、0.1質量%~1.0質量%が好ましく、さらに好ましくは0.3質量%~0.5質量%である。
 上記可塑剤としては、例えばDOP(Diocty lPhthalate)、DBP(Dlbutyl Phthalate)等を使用することができ、スラリーの固形分中に対する可塑剤の含有量は、3.0質量%~15質量%が好ましく、さらに好ましくは4.0質量~6.0質量%である。
 上記溶剤としては、例えばアルコールやトルエン等を使用することができ、溶剤の使用量は、スラリーの固形分の総量が70質量%~80質量%となるようにすることが望ましい。また、スラリーの粘度は、3000cps~30000cpsとなることが好ましく、10000cps~20000cpsとなることがさらに好ましい。
 次いで、得られたスラリーを離型剤が塗布されたフィルムに流し込み、乾燥によって溶剤を蒸発させる。この場合、乾燥温度としては、80℃~130℃が好ましく、さらに好ましくは100℃~120℃である。また、乾燥速度は、0.2m/min~2.0m/minとすることが好ましい。
 この後、フィルムを剥離するとグリーンシートが生成する。このグリーンシートを、所望の形状にプレス成型機にて打ち抜き、焼成炉にて焼成する。この場合、焼成温度は1400℃~1600℃とすることが好ましい。焼成は、Ba0.808 Al1.71Si2.29 相を含有するアルミナセラミックの作製に好適な、焼成温度への昇温速度、焼成時間、焼成温度からの冷却速度等を適宜選択して行う。一例を挙げれば、まず600℃で8時間保持し、次に8時間かけて1600℃まで昇温しそのまま2時間保持した後、6時間かけて放冷する。焼成の後、所望により、サンドブラスト研磨機等を用いて研磨を行うことができる。
 このようにして本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックを作製することができる。
 本発明のアルミナセラミックにおけるBa0.808 Al1.71Si2.29 相の存在は、下記の[X線回折測定方法]によりX線回折を測定することによって確認することができる。また、本発明のアルミナセラミックの光反射性能は、下記の[反射率測定方法]により評価したものである。
 [X線回折測定方法]
 X線回折は、スペクトリス社製X線回折装置X’pert PROを使用して、JIS1481のアスベスト定性分析条件に準拠し測定する。測定条件は以下の通りである。測定結果は、ICDD (International Centre for Diffraction Data)のリファレンスデータと比較して、Ba0.808 Al1.71Si2.29 相の存在を確認する。
 測定条件
 X線対陰極          Cu
 管電圧(kV)        40
 管電流(mA)        40
 走査速度           0.02°×10秒
 単色化(Kβ線の除去)    Niフィルタ
 走査範囲(°、2θ)     5~80
 発散スリット(°)      1
 [反射率測定方法]
 反射率は、日立製作所製分光光度計U-4000を使用して測定する。JIS K7105に準拠し、鏡面反射と拡散反射の和の波長依存性を求める。標準白板として酸化アルミニウムを使用し、この標準白板の反射率を100%として各資料の反射率を相対値を用いて評価する。
 本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックは、発光素子搭載用の基板や、発光素子から放射される光を反射させる枠体等の発光素子用反射材料として用いることができる。
 以下、実施例に基づき、本発明のBa0.808 Al1.71Si2.29 相を含有するアルミナセラミックの作製方法を説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
 住友化学社製の高純度アルミナ「AES-12(平均粒径0.4μm)」(純度99.5%)を89重量部、日本化学社製の高純度炭酸バリウム「LSR(平均粒径1.4μm)」を8重量部、信越石英社製の微粒子シリカ「SO-C2(平均粒径0.5μm)」を3重量部、大日本インキ社製のバインダー「NCB-156」を3重量部、および中京油脂社製の滑剤「セロゾール920」を0.1重量部、を配合して水を加え、ボールミル中で混合することによりスラリーを得た。次いで、110℃の温度条件により乾燥して造粒し、目開き25μmおよび150μmの篩いを用いて、微細粒子および粗大粒子を除去した。
 この造粒物を枠体用の金型に充填し、三研精機社製の10tプレス機を用いて、室温にて1t/cm2 の圧力を加えて成型し、枠体形状物を得た。そしてこの枠体形状物を1550℃で2時間焼成して、アルミナセラミック製枠体を作製した。
 [実施例2]
 住友化学社製のローソーダアルミナ「ALM-42E(平均粒径2.0μm)」(純度99.9%)を68.8重量部、住友化学社製の高純度アルミナ「AES-12(平均粒径0.4μm)」(純度99.5%)を17.2重量部、日本化学社製の高純度炭酸バリウム「LSR(平均粒径1.4μm)」を8重量部、信越石英社製の微粒子シリカ「SO-C2(平均粒径0.5μm)」を6重量部、バインダーとして積水化学社製のブチラール樹脂「BLS」を4重量部と積水化学社製の「BL-SZ」を4重量部、可塑剤として「DOP」4重量部、および滑剤としてソルビタンセスキオレートを0.5重量部、を配合し、これにトルエン/エタノール混合溶剤(重量比50/50)を30重量部加えて、ボールミル中で48時間混合することによりスラリーを得た。次いで、離型PETフィルムにスラリーを塗布し、110℃の温度条件にて乾燥した後にフィルムを剥離してグリーンシートを得た。これを任意の形状に打ち抜き、1600℃で2時間焼成することによりアルミナセラミック製基板を作製した。
 [実施例3]
 アルミナとして、ローソーダアルミナ「ALM-42E(平均粒径2.0μm)」(純度99.9%)を60.2重量部および高純度アルミナ「AES-12(平均粒径0.4μm)」(純度99.5%)を25.8重量部用いた他は、実施例2と同様にして、アルミナセラミック製基板を作製した。
 [実施例4]
 アルミナとして、ローソーダアルミナ「ALM-42E(平均粒径2.0μm)」(純度99.9%)を86重量部用いた他は、実施例2と同様にして、アルミナセラミック製基板を作製した。
 [X線回折の測定]
 実施例1および2で作製したアルミナセラミック製枠体およびアルミナセラミック製基板を、上述したX線回折測定方法に従ってX線回折を測定した。その結果を図1および図2に示す。図1および図2から明らかなように、本発明のアルミナセラミックからなる枠体およびセラミック基板は、回折角度(2θ)22.5°の位置にピークが存在し、Ba0.808 Al1.71Si2.29 相を含有していることが確認された。また、実施例1および2のアルミナセラミックは、コランダム(Al O )相による回折角度(2θ)43.3°のピークと、上記回折角度(2θ)22.5°のピークとの強度比がそれぞれ2.0および1.1であった。尚、図4に、ICDDカード番号01-088-1050に記載されている、Ba0.808 Al1.71Si2.29 相が示すX線回折パターンを、図5に、ICDDカード番号01-070-7049に記載されている、コランダム(Al O )相が示すX線回折パターンを、それぞれ示した。
 [反射率の測定]
 実施例1~4で作製したアルミナセラミック製枠体およびアルミナセラミック製基板を、上述した反射率測定方法に従って反射率を測定した。また、比較例1として北陸セラミック社製のアルミナ基板(アルミナ純度96%)の反射率を測定した。その結果を図3に示す。

Claims (4)

  1.  Ba0.808 Al1.71Si2.29 相を含有することを特徴とするアルミナセラミック。
  2.  X線回折において、回折角度(2θ)43.3°におけるピークと回折角度(2θ)22.5°におけるピークとの強度比(前者/後者)が0.5~2.5であることを特徴とする請求項1に記載のアルミナセラミック。
  3.  アルミナセラミック中のBaとSiとのモル比(Ba/Si)が8/1~8/12であることを特徴とする請求項1または2に記載のアルミナセラミック。
  4.  請求項1~3の何れか一項に記載のアルミナセラミックを用いた発光素子用光反射材料。
PCT/JP2009/061334 2008-06-30 2009-06-22 アルミナセラミック WO2010001760A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107024235A KR101508296B1 (ko) 2008-06-30 2009-06-22 알루미나 세라믹
JP2010519000A JP5479335B2 (ja) 2008-06-30 2009-06-22 発光素子用光反射材料
US12/992,386 US8198204B2 (en) 2008-06-30 2009-06-22 Alumina ceramic
EP09773338.0A EP2292569B1 (en) 2008-06-30 2009-06-22 Alumina ceramic
CN200980117425.8A CN102026935B (zh) 2008-06-30 2009-06-22 氧化铝陶瓷

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-171430 2008-06-30
JP2008171430 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010001760A1 true WO2010001760A1 (ja) 2010-01-07

Family

ID=41465860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061334 WO2010001760A1 (ja) 2008-06-30 2009-06-22 アルミナセラミック

Country Status (7)

Country Link
US (1) US8198204B2 (ja)
EP (1) EP2292569B1 (ja)
JP (1) JP5479335B2 (ja)
KR (1) KR101508296B1 (ja)
CN (1) CN102026935B (ja)
TW (1) TWI438170B (ja)
WO (1) WO2010001760A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222674A (ja) * 2010-04-07 2011-11-04 Kyoritsu Elex Co Ltd 反射板の製造方法
WO2012011587A1 (ja) * 2010-07-23 2012-01-26 日本カーバイド工業株式会社 アルミナセラミック、及び、これを用いた発光素子搭載用基板
JP2012025623A (ja) * 2010-07-23 2012-02-09 Nippon Carbide Ind Co Inc アルミナセラミックの製造法
JP2013228603A (ja) * 2012-04-26 2013-11-07 Kyocera Corp 反射材およびこの反射材上に発光素子を搭載してなる発光素子モジュール
WO2015098555A1 (ja) * 2013-12-26 2015-07-02 日本カーバイド工業株式会社 発光素子搭載用セラミック基板及び発光装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793978B (zh) * 2018-09-20 2021-03-02 江苏新时膜科技有限公司 一种多孔陶瓷膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227221A (ja) * 1996-02-28 1997-09-02 Ngk Spark Plug Co Ltd アルミナ磁器、及びスパークプラグ用の絶縁碍子
JP2004228531A (ja) 2003-01-27 2004-08-12 Kyocera Corp 発光素子収納用パッケージおよび発光装置
WO2007034955A1 (ja) * 2005-09-26 2007-03-29 Tokuyama Corporation 発光素子搭載用セラミックス焼結体
JP2007084353A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd セラミック焼結助剤組成物、セラミック焼結助剤、低温焼成セラミック組成物、低温焼成セラミック、およびセラミック電子部品
JP2007284333A (ja) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc 高反射白色セラミックス及びリフレクター及び半導体発光素子搭載用基板及び半導体発光素子収納用パッケージ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058361A1 (ja) * 2005-11-21 2007-05-24 Nippon Carbide Industries Co., Inc. 光反射用材料、発光素子収納用パッケージ、発光装置及び発光素子収納用パッケージの製造方法
US8247337B2 (en) * 2007-11-28 2012-08-21 Kyocera Corporation Alumina sintered article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227221A (ja) * 1996-02-28 1997-09-02 Ngk Spark Plug Co Ltd アルミナ磁器、及びスパークプラグ用の絶縁碍子
JP2004228531A (ja) 2003-01-27 2004-08-12 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2007084353A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd セラミック焼結助剤組成物、セラミック焼結助剤、低温焼成セラミック組成物、低温焼成セラミック、およびセラミック電子部品
WO2007034955A1 (ja) * 2005-09-26 2007-03-29 Tokuyama Corporation 発光素子搭載用セラミックス焼結体
JP2007284333A (ja) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc 高反射白色セラミックス及びリフレクター及び半導体発光素子搭載用基板及び半導体発光素子収納用パッケージ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2292569A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222674A (ja) * 2010-04-07 2011-11-04 Kyoritsu Elex Co Ltd 反射板の製造方法
WO2012011587A1 (ja) * 2010-07-23 2012-01-26 日本カーバイド工業株式会社 アルミナセラミック、及び、これを用いた発光素子搭載用基板
JP2012025623A (ja) * 2010-07-23 2012-02-09 Nippon Carbide Ind Co Inc アルミナセラミックの製造法
JP2013228603A (ja) * 2012-04-26 2013-11-07 Kyocera Corp 反射材およびこの反射材上に発光素子を搭載してなる発光素子モジュール
WO2015098555A1 (ja) * 2013-12-26 2015-07-02 日本カーバイド工業株式会社 発光素子搭載用セラミック基板及び発光装置

Also Published As

Publication number Publication date
KR101508296B1 (ko) 2015-04-06
TW201014814A (en) 2010-04-16
EP2292569B1 (en) 2014-04-16
US8198204B2 (en) 2012-06-12
JP5479335B2 (ja) 2014-04-23
TWI438170B (zh) 2014-05-21
EP2292569A4 (en) 2013-03-06
CN102026935B (zh) 2014-04-02
EP2292569A1 (en) 2011-03-09
CN102026935A (zh) 2011-04-20
JPWO2010001760A1 (ja) 2011-12-15
US20110065565A1 (en) 2011-03-17
KR20110033979A (ko) 2011-04-04

Similar Documents

Publication Publication Date Title
JP4729583B2 (ja) 光反射用材料、発光素子収納用パッケージ、発光装置及び発光素子収納用パッケージの製造方法
JP5479335B2 (ja) 発光素子用光反射材料
RU2455731C2 (ru) Осветительная система, содержащая монолитный керамический люминесцентный преобразователь
TWI532224B (zh) 發光陶瓷疊層及其製造方法
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
US8872208B2 (en) Light source device and lighting device
JP2011513898A (ja) 透光性セラミックプレートを備える発光装置
JP2016204563A (ja) 蛍光部材、その製造方法および発光装置
CN108603956B (zh) 发光装置
JP2009541520A (ja) 少なくとも一つのセラミック球状色変換材料を有する光放出デバイス
JP4557293B2 (ja) 被覆された蛍光体、この種の蛍光体を有する発光装置及びその製造方法
JP5862841B1 (ja) 光変換用セラミックス複合材料、その製造方法、およびそれを備えた発光装置
JP2016204561A (ja) 蛍光部材、その製造方法および発光装置
TW201842154A (zh) 波長轉換構件及波長轉換元件、以及使用其等之發光裝置
JP6492824B2 (ja) 光変換用セラミックス複合材料およびその製造方法
TW201638297A (zh) 發光材料複合陶瓷及其製造方法
RU2818556C1 (ru) Способ получения люминесцирующей оксидной композиции для преобразователя излучения в источниках белого света
JP5478404B2 (ja) アルミナセラミックの製造法
WO2012011587A1 (ja) アルミナセラミック、及び、これを用いた発光素子搭載用基板
WO2015098555A1 (ja) 発光素子搭載用セラミック基板及び発光装置
JP2017202962A (ja) 光変換用セラミックス複合材料、その製造方法、およびそれを備えた発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117425.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519000

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009773338

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107024235

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12992386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE