WO2009157393A1 - Electrically conductive ink for reverse printing - Google Patents

Electrically conductive ink for reverse printing Download PDF

Info

Publication number
WO2009157393A1
WO2009157393A1 PCT/JP2009/061278 JP2009061278W WO2009157393A1 WO 2009157393 A1 WO2009157393 A1 WO 2009157393A1 JP 2009061278 W JP2009061278 W JP 2009061278W WO 2009157393 A1 WO2009157393 A1 WO 2009157393A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive ink
dispersion
ink
polymer compound
metal
Prior art date
Application number
PCT/JP2009/061278
Other languages
French (fr)
Japanese (ja)
Inventor
竜 小池
俊裕 海老根
直 義原
康弘 千手
宏 五十住
正紀 笠井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2009157393A1 publication Critical patent/WO2009157393A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature

Definitions

  • the present invention relates to a conductive ink suitable for reversal printing, which can be used appropriately for manufacturing electronic devices.
  • Transistors are widely used as important electronic elements constituting televisions and computer equipment, and are currently manufactured using inorganic materials such as silicon as the main material.
  • inorganic materials such as silicon as the main material.
  • an organic transistor using an organic substance as a member of such a transistor has attracted attention.
  • Organic transistors are soft and flexible, and have the advantage that raw materials can be produced at a low price when considered per unit area, and are indispensable components for the realization of ubiquitous era, that is, flexible and low-cost terminals. It is believed that.
  • a general element structure of an organic transistor is shown in FIG. In this, this invention relates to the electroconductive ink for forming an electrode layer especially.
  • a conductive ink containing silver particles having an average particle diameter of 5 ⁇ m or less is known for reversal printing (see, for example, Patent Document 3).
  • the reverse printing method is effective in forming a precise pattern, in order to form an electronic element by providing a conductive film on the substrate, not only the conductivity and resolution of the ink film, but also the substrate in the printing process. No conductive ink having sufficient functions suitable for the reversal printing method, such as extension of the transferable time, is obtained.
  • the dispersion containing the metal of a nano particle size is known as an electroconductive material (for example, refer patent document 4), the electroconductive ink which has the function suitable for the reversal printing method is obtained. Absent.
  • An object of the present invention is to provide a conductive ink for reversal printing that has not only the conductivity and resolution of an ink film, but also functions such as extending the transferable time to a substrate in the printing process.
  • the present invention for solving the above-mentioned problems is a metal nanoparticle comprising a polyalkyleneimine chain (a), a dispersion of a polymer compound (X) having a hydrophilic segment (b), and metal nanoparticles (Y).
  • a conductive ink for reversal printing comprising a dispersion (A), a surface energy adjusting agent (B), a release agent (C), a fast-drying organic solvent (D), and a slow-drying organic solvent (E) I will provide a.
  • the conductive ink for reversal printing according to the present invention has not only the conductivity and resolution of the ink film, but also functions such as extending the transferable time to the substrate in the printing process.
  • the conductive ink for reverse printing of the present invention is a metal containing a polyalkyleneimine chain (a), a dispersion of a polymer compound (X) having a hydrophilic segment (b), and metal nanoparticles (Y).
  • a conductive ink for reverse printing containing a nanoparticle dispersion (A), a surface energy adjusting agent (B), a release agent (C), a fast-drying organic solvent (D), and a slow-drying organic solvent (E).
  • the conductive ink for reversal printing of the present invention can further contain water as a solvent.
  • a melamine resin can be added as a resin component.
  • Reverse printing is a printing method that transfers ink to a substrate to be printed in the following steps. That is, first, an ink coating film having a uniform thickness is formed on the surface of the blanket by an ink coating apparatus. Next, the surface of the blanket on which the uniform ink coating film is formed is pressed against and brought into contact with the relief plate on which the printing pattern is formed, and the surface of the ink coating on the surface of the blanket is brought into contact with the convex surface of the relief printing plate. A part is attached and transferred. Thereby, a printing pattern (image) is formed on the ink coating film remaining on the surface of the blanket.
  • the blanket in this state is pressed against the surface of the printing substrate made of a glass plate, a plastic sheet, etc., and the ink coating film remaining on the blanket is transferred, and the ink coating transferred onto the printing substrate is transferred.
  • a printed matter is obtained by firing the film.
  • the metal nanoparticle dispersion (A) used in the conductive ink for reverse printing of the present invention is a dispersion of a polymer compound (X) having a polyalkyleneimine chain (a) and a hydrophilic segment (b), It is a metal nanoparticle dispersion (A) containing metal nanoparticles (Y).
  • the alkyleneimine unit in the chain can be coordinated with a metal or a metal ion. It is a polymer chain that can be immobilized.
  • the structure is a polymer having an alkyleneimine unit of a secondary amine as a main repeating unit, and may be either a linear structure or a branched structure.
  • the degree of polymerization of the polyalkyleneimine chain (a) is not particularly limited, but if it is too low, the amount of the metal nanoparticles contained in the dispersion of the polymer compound (X) and its stable retention will be reduced. If it is insufficient and if it is too high, the polymer compound (X) becomes a huge aggregate, which impedes storage stability. Therefore, in order to obtain a metal nanoparticle dispersion having superior ability to immobilize metal nanoparticles in the obtained metal nanoparticle dispersion and to prevent the dispersion from becoming too large, the polyalkyleneimine is obtained.
  • the degree of polymerization of the chain (a) is usually in the range of 1 to 10,000, preferably in the range of 3 to 3,000, and more preferably in the range of 5 to 1,000.
  • the polyalkyleneimine chain (a) can be used without particular limitation as long as it is generally commercially available or can be synthesized, but from the viewpoint of industrial availability, a polyethyleneimine chain, A polypropyleneimine chain is preferred.
  • the hydrophilic segment (b) constituting the polymer compound (X) used in the present invention has a high affinity for the solvent when the polymer compound (X) is dispersed in a hydrophilic solvent such as water. And a segment that maintains dispersion stability when a dispersion is formed. Further, when dispersed in a hydrophobic solvent, the hydrophilic segment (b) has a role of forming a core of the dispersion due to a strong associative force within the molecule or between the molecules.
  • the degree of polymerization of the hydrophilic segment (b) is not particularly limited, but when dispersed in a hydrophilic solvent, if the degree of polymerization is too low, the dispersion stability is deteriorated, and if too high, the dispersions are dispersed. There is a possibility of aggregation, and when dispersed in a hydrophobic solvent, if the degree of polymerization is too low, the associating power of the dispersion becomes poor, and if it is too high, the affinity with the solvent cannot be maintained. From these viewpoints, the degree of polymerization of the hydrophilic segment (b) is usually 1 to 10,000, preferably 3 to 3,000, and 5 to 1,000 from the viewpoint of ease of production. It is more preferable that Further, the polymerization degree in the case of a polyoxyalkylene chain is particularly preferably 5 to 500.
  • the hydrophilic segment (b) can be used without particular limitation as long as it is generally made of a commercially available or synthesizable hydrophilic polymer chain.
  • a nonionic polymer is preferable because a dispersion having excellent stability can be obtained.
  • hydrophilic segment (b) examples include polyoxyalkylene chains such as polyoxyethylene chains and polyoxypropylene chains, polymer chains composed of polyvinyl alcohols such as polyvinyl alcohol and partially saponified polyvinyl alcohol, polyhydroxyethyl acrylate, Polymer chains composed of water-soluble poly (meth) acrylic esters such as hydroxyethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, polyacetylethyleneimine, polyacetylpropyleneimine, polypropionylethyleneimine, polypropionylpropyleneimine
  • polyacylalkyleneimine chains having hydrophilic substituents such as polyacrylamide, polyisopropylacrylamide, and polyvinylpyrrolidone
  • Polymer chains composed of reacrylamides and the like can be mentioned. Among them, a dispersion having particularly excellent stability is obtained, and it is a polyoxyalkylene chain from the
  • the metal nanoparticle dispersion (A) described above includes a dispersion of a polymer compound (X) having a polyalkyleneimine chain (a), a hydrophilic segment (b), and a hydrophobic segment (c), It may be a metal nanoparticle dispersion (A) containing nanoparticles (Y).
  • the hydrophobic segment (c) constituting the polymer compound (X) used in the present invention is intermolecular or intermolecularly interlinked. Due to the strong associative force, the core of the dispersion is formed and has a role of forming a stable dispersion. Further, when dispersed in a hydrophobic solvent, the segment has a high affinity with the solvent and retains the dispersion stability when a dispersion is formed.
  • the hydrophobic segment (c) can be used without particular limitation as long as it is generally composed of a residue of a hydrophobic compound that is commercially available or can be synthesized.
  • polystyrenes such as polystyrene, polymethylstyrene, polychloromethylstyrene, polybromomethylstyrene, polyacrylic acid methyl ester, polymethacrylic acid methyl ester, polyacrylic acid 2-ethylhexyl ester, polymethacrylic acid 2-ethylhexyl ester, etc.
  • Water-insoluble poly (meth) acrylic acid esters include such residues of the resin and polycarbonate, also a residue of a single compound or a residue of a compound obtained by previously reacting the two or more different compounds.
  • the epoxy resin is not particularly limited as long as it is commercially available or can be synthesized.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, Naphthol-phenol co-condensed novolac type epoxy resin, Naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon form Aldehyde resin modified phenol resin type epoxy resin, a biphenyl novolak type
  • the obtained metal nanoparticle dispersion when used as a conductive paste, it is preferably a residue of a bisphenol A type epoxy resin from the viewpoint of excellent adhesion to a substrate, and the like in a hydrophilic solvent. From the viewpoint of obtaining a dispersion having a strong associative strength and excellent dispersion stability and storage stability, it is preferably a residue of a trifunctional or higher functional epoxy resin such as a naphthalene type tetrafunctional epoxy resin.
  • these epoxy resins may be used as raw materials for the polymer compound (X) as they are, and may be modified with various modifications according to the structure of the target polymer compound (X). good.
  • polyurethane can be used without particular limitation as long as it is commercially available or can be synthesized.
  • polyurethane is a polymer obtained by addition reaction of polyol and polyisocyanate.
  • the polyol include propylene glycol, neopentyl glycol, polypropylene glycol, polytetramethylene ether glycol, polyester polyol, polycaprolactone polyol, polycarbonate diol, bisphenol A, bisphenol F, 4,4′-dihydroxybiphenyl, 3, 3 ′, 5,5′-tetramethylbiphenyl-4,4′-diol, phenol novolak, cresol novolak, propanediol, butanediol, pentanediol, n-hexanediol, cyclohexanediol, methylpentanediol, polybutadiene dipolyol, Modified from trimethylolpropane
  • polyisocyanate examples include diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, bis (isocyanate methyl) cyclohexane, hexamethylene diisocyanate, 1,5-naphthylene diisocyanate, tetramethylxylene diisocyanate, isophorone diisocyanate, hydrogenated xylylene.
  • examples include diisocyanate, dicyclohexylmethane diisocyanate, hexamethine diisocyanate, dimer acid diisocyanate, norbornene diisocyanate, and trimethylhexamethylene diisocyanate. These may be used alone or in admixture of two or more.
  • polypropylene glycol polypropylene glycol, bisphenol A type epoxy resin-modified polyol, etc. are used as polyols from the viewpoint of excellent adhesion to various substrates.
  • polyisocyanate hexamethylene diisocyanate, bis (isocyanate methyl) cyclohexane, and the like are preferable, and it is most preferable to use polyurethane obtained by combining these preferable raw materials.
  • these polyurethanes may be used as raw materials for the polymer compound (X) as they are, and may further be modified according to the structure of the target polymer compound (X). .
  • polycarbonates can be used without particular limitation as long as they are commercially available or can be synthesized.
  • polycarbonate is a polymer produced from a condensation reaction between bisphenol A and phosgene, diphenyl carbonate, or the like.
  • Polycarbonate is a typical example of the polycarbonates, but various carbonate-based polymers that can be produced using various raw materials exemplified by polyols that are raw materials of the polyurethanes instead of bisphenol A, which is a raw material of polycarbonates, are also available. Examples of polycarbonates can be mentioned.
  • Polycarbonates may be used as raw materials for the polymer compound (X) as they are, and may further be modified according to the structure of the target polymer compound (X).
  • hydrophobic segments (c) listed above one or more compounds selected from polystyrene, poly (meth) acrylic acid ester, epoxy resin, polyurethane, polycarbonate, and polyacylalkyleneimine having a hydrophobic substituent. Residues are comprehensively determined not only from the industrial availability and ease of handling of each compound used as a raw material, but also from the high hydrophobic associative power of the polymer compound (X). It is a preferable hydrophobic segment, and is particularly excellent in the industrial production method of the polymer compound (X), and from the viewpoint of cost, availability, etc., polystyrene, poly (meth) methyl acrylate, epoxy resins, polyurethanes. It is more preferably a residue, and most preferably a residue of epoxy resins.
  • the degree of polymerization of the hydrophobic segment (c) is not particularly limited, but when dispersed in a hydrophilic solvent, the dispersion stability deteriorates if it is too low, and the dispersion aggregates if it is too high. In the case of dispersing in a hydrophobic solvent, if the dispersion is too low, the dispersibility of the dispersion becomes poor, and if it is too high, the affinity with the solvent cannot be maintained. From these viewpoints, the polymerization degree of the hydrophobic segment (c) is usually from 1 to 10,000, such as polystyrenes, poly (meth) acrylic acid esters, polyacylalkyleneimines having a hydrophobic substituent, and the like.
  • the degree of polymerization is usually 1 to 50, preferably 1 to 30, and particularly 1 to 20. Is preferred.
  • the production method of the polymer compound (X) used in the present invention is not particularly limited.
  • branched polyalkyleneimine chain a commercially available or synthesized one can be suitably used as described above.
  • the synthesis of the branched polyalkyleneimine chain may be carried out by various methods, and is not particularly limited, but generally includes a method of ring-opening polymerization of ethyleneimine using an acid catalyst. Since the end of the branched polyethyleneimine is a primary amine, if the hydrophilic segment has a functional group that reacts with the primary amine, it can be reacted successively or simultaneously in the present invention. A polymer compound that can be used can be synthesized. The functional group that reacts with the primary amine is not particularly limited.
  • An acid chloride etc. are mentioned.
  • a carboxyl group, an isocyanate group, a tosyl group, an epoxy group, and a glycidyl group are advantageous in terms of production, such as reactivity and ease of handling, and are preferred functional groups.
  • a functional group that reacts directly with the primary amine it can be any functional group that can react with the primary amine by performing various treatments. For example, it has a hydroxyl group. Alternatively, this may be reacted with a polyethyleneimine chain by a method such as glycidylation. Further, after the primary amine of the branched polyalkyleneamine chain is converted to other functional groups capable of reacting with the functional group of the hydrophilic segment, these are reacted to give a polymer compound (X ) Can also be synthesized.
  • a typical synthesis example of the polymer compound (X) will be described.
  • (I) A commercially available product is used as the branched polyalkyleneimine, and a tosyl derivative of polyethylene glycol monomethyl ether is used as the hydrophilic polymer.
  • the hydrophilic polymer can be obtained, for example, by reacting polyethylene glycol monomethyl ether and tosyl chloride in a polar solvent in the presence of pyridine. Further, when a hydrophobic polymer is used, an epoxy resin having an epoxy group at the terminal is used as the hydrophobic polymer.
  • polyethyleneimine is dissolved in a polar solvent and reacted with a tosyl derivative of polyethylene glycol monomethyl ether at 100 ° C. in the presence of a base such as potassium carbonate to obtain a compound having polyethylene glycol and a polyethyleneimine structure.
  • a polymer compound having a polyethylene glycol-polyethyleneimine-epoxy resin structure can be obtained by synthesizing and then adding an epoxy resin in a mixed solvent of acetone and methanol and reacting at 60 ° C.
  • the proportion of each component in the polymer compound (X) used in the present invention is, for example, in the case of a branched polyalkyleneimine chain, and in the case of a ternary system, the branched polyalkyleneimine chain (a-1),
  • the polymerization degree ratio (a-1) :( b) :( c) of the polymer constituting the chain of each component of the hydrophilic segment (b) and the hydrophobic segment (c) is not particularly limited. Is generally in the range of 5,000: 5 to 5,000,000: 1 to 5,000,000, from the viewpoint of excellent associative force, dispersion stability and storage stability of the obtained metal nanoparticle dispersion, In particular, 5000: 25 to 400,000: 5 to 1,000,000 is preferable.
  • the range of the ratio is more preferably 25 to 200,000, and when polystyrenes, poly (meth) acrylic acid esters, polyacylalkyleneimines having a hydrophobic substituent, and the like are used for the hydrophobic segment (c), the range of the ratio is more preferably 15 to 1,000,000. When a compound composed of a residue of a resin such as epoxy resins, polyurethane and polycarbonate is used, the range of the ratio is more preferably 5 to 20,000.
  • the proportion of each component in the polymer compound (X) used in the present invention is, for example, in the case of a linear polyalkyleneimine chain and in the case of a ternary system, a linear polyalkyleneimine chain (a-2 ), Ratio (a-2) :( b) :( c) of the degree of polymerization of the polymer constituting the chain of each component of the hydrophilic segment (b) and the hydrophobic segment (c) is particularly limited However, it is usually in the range of 5,000: 5 to 5,000,000: 1 to 5,000,000 because the metal nanoparticle dispersion obtained is excellent in associative force, dispersion stability and storage stability. In particular, 5,000: 80 to 1,000,000: 10 to 50,000 are preferable.
  • the degree of polymerization of the linear polyalkyleneimine chain is 5000
  • the range of the ratio is more preferably 80 to 500,000
  • the epoxy resin residue as the hydrophobic segment (c) is more preferably 10 to 50,000.
  • the metal species of the metal nanoparticles (Y) constituting the metal nanoparticle dispersion (A) are not limited as long as the metal or ion can coordinate with the branched polyalkyleneimine chain (a-1).
  • a metal species such as a transition metal-based metal compound can be used.
  • ionic transition metals are preferable, and transition metals such as copper, silver, gold, nickel, palladium, platinum, and cobalt are more preferable.
  • the metal nanoparticle (Y) which comprises a metal nanoparticle dispersion (A) may be one type, or may be two or more types.
  • transition metals silver, gold, palladium, and platinum are particularly preferable because the metal ions are spontaneously reduced at room temperature or in a heated state after coordination with polyethyleneimine.
  • silver, gold, and platinum are the most preferred transition metals in terms of ease of reduction reaction and ease of handling.
  • the content of the metal nanoparticles (Y) in the metal nanoparticle dispersion (A) is not particularly limited, but if the content is too small, the characteristics of the metal nanoparticles in the dispersion are difficult to appear, If the amount is too large, the relative weight of the metal nanoparticles in the dispersion increases, and the viewpoint that the metal nanoparticle dispersion is expected to settle due to the balance between the relative weight and the dispersion holding power of the dispersion is high. From the viewpoint of reducing ability and coordination ability due to the alkyleneimine unit in the molecular compound (X), the content of the metal nanoparticles (Y) is the total number of nitrogen atoms forming the polyalkyleneimine chain (a).
  • the metal nanoparticles (Y) are usually in the range of 1 to 20,000 mol, preferably in the range of 1 to 10,000 mol, particularly in the production method described later, 50 ⁇ 7,000mol when used in combination, if no combination of reducing agent is preferably 5 ⁇ 70 mol.
  • the content of the polymer compound (X) is preferably in the range of 1 to 5% by mass, particularly preferably 3 to 5% by mass, based on the metal nanoparticles (Y).
  • the particle diameter of the metal nanoparticles (Y) constituting the metal nanoparticle dispersion (A) is not particularly limited, but for the metal nanoparticle dispersion to have higher dispersion stability,
  • the particle diameter of the metal nanoparticles (Y) constituting the metal nanoparticle dispersion of the invention is preferably fine particles of 1 to 50 nm, and more preferably in the range of 5 to 30 nm.
  • a metal salt or a metal ion solution is added to a medium in which a compound having a polyalkyleneimine chain and a hydrophilic segment is dispersed, and the metal ion is reduced. It is characterized by being stabilized as metal nanoparticles.
  • the metal nanoparticle dispersion produced in this way is excellent in dispersion stability and storage characteristics, and has the ability as various metal-containing functional dispersions such as color development, catalyst, and electrical function of the metal nanoparticles. ing.
  • the metal ion that can be used here may be a water-soluble metal compound, such as a salt of a metal cation and a counter anion, or a metal that is contained in the counter anion, etc.
  • a metal ion having a metal species can be preferably used.
  • metal ions of silver, gold, palladium, and platinum are coordinated to polyethyleneimine, and then spontaneously reduced at room temperature or in a heated state, thereby producing nonionic metal nanoparticles. It is preferable because it is converted to.
  • a metal nanoparticle dispersion can also be formed by passing through the process of making it.
  • reducing agents can be used as the reducing agent, and the reducing agent is not particularly limited. It is preferable to select the reducing agent depending on the intended use of the resulting metal nanoparticle dispersion, the metal species to be contained, and the like. .
  • Examples of reducing agents that can be used include boron compounds such as hydrogen, sodium borohydride, ammonium borohydride, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, ethylene glycol, and propylene glycol, formaldehyde, acetaldehyde, Aldehydes such as propionaldehyde, acids such as ascorbic acid, citric acid, sodium citrate, propylamine, butylamine, diethylamine, dipropylamine, dimethylethylamine, triethylamine, ethylenediamine, triethylenetetramine, methylaminoethanol, dimethylaminoethanol, Examples include amines such as triethanolamine, and hydrazines such as hydrazine and hydrazine carbonate.
  • sodium borohydride, ascorbic acid, sodium citrate, methylaminoethanol, dimethylaminoethanol and the like are more preferable from the viewpoint of industrial availability and handling
  • the surface energy adjusting agent (B) is added to make the surface energy of the ink composition smaller than the surface energy on the blanket surface so that the ink composition can be uniformly and satisfactorily applied to the blanket surface in reverse printing. It is also a thing.
  • the concentration of the surface energy adjusting agent in the ink composition is 0.03 to 5.0% by mass, preferably 0.03% by mass or more, more preferably 0.09% by mass or more, and 0 More preferably, the content is 15% by mass. Thereby, the smoothness of the coated film improves at the time of ink coating to a blanket, and a more uniform coating film is obtained.
  • the concentration of the surface energy adjusting agent in the ink composition is less than 0.03% by mass, ink repelling on the blanket may occur, the ink coating film may not be uniform, and unevenness and streaks may occur.
  • the concentration of the surface energy adjusting agent in the ink composition exceeds 5.0% by mass, the surface energy adjusting agent in the ink coating film is transferred to the printing substrate and the ink coating film after being transferred onto the printing substrate. This causes an inconvenience that interferes with the adhesiveness, and this is also not preferable.
  • a fluorine-based surfactant or a silicone-based surfactant can be used. In the ink composition of the present invention, one or more of these surfactants are used.
  • Specific examples of the surface energy adjusting agent include, as a fluorosurfactant, Megafac F-470, Megafac F-472, Megafac F-484, Megafac TF-1159, Megafac TF-1303 (and above).
  • a silicone-based surfactant BYK-307, BYK-333, BYK-345, BYK-349, BYK-375, BYK-378 (above, trade names Bic Chemie) Company).
  • Silicone oil is preferable as the release agent (C) used in the conductive ink for reverse printing of the present invention.
  • One or more of these silicone oils are used in the ink composition of the present invention.
  • the specific release agent is KF-96 series (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) , SH28PA (trade name, manufactured by Toray Dow Chemical Co., Ltd.) and Granol series (trade name, manufactured by Kyoei Co., Ltd.).
  • the fast-drying organic solvent (D) used in the conductive ink for reverse printing of the present invention refers to an organic solvent having a solubility parameter of 11 or more and a vapor pressure at 20 ° C. of 30 mmHg or more.
  • the quick-drying organic solvent any one or more of an ester solvent, an alcohol solvent, an ether solvent and a hydrocarbon solvent having the above-described characteristics is used.
  • This quick-drying organic solvent is used when the ink film is formed on the blanket so that the ink composition has good fluidity, and then in the atmosphere until it is imaged on the relief printing plate.
  • the ink viscosity is increased by volatilization or absorption by a blanket, and is blended so as to have the optimum viscosity, tackiness and cohesion for imaging.
  • the solubility parameter is 11 or more and the vapor pressure at 20 ° C. is 30 mmHg or more.
  • the conductive ink for reversal printing of the present invention does not contain a quick-drying organic solvent, the ink coating on the blanket will not dry sufficiently, and the ink coating will transfer to portions other than the relief plate, resulting in a good image on the blanket. This is not preferable because a defect such as not being formed occurs.
  • These fast-drying organic solvents are selected according to the solubility of the vehicle and the affinity for the metal nanoparticle dispersion, and the following solvents are used as examples.
  • ester solvents ethyl acetate, normal propyl acetate, isopropyl acetate, alcohol solvents as methanol, ethanol, 1-propanol, 2-propanol, hydrocarbon solvents as pentane, hexane, cyclohexane, methylcyclohexane, toluene, xylene Etc. These may also be a mixture of each system and a plurality of systems.
  • ether solvents include diethyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane and the like. Of these, isopropyl acetate, ethanol and 2-propanol are preferable in view of their evaporation rate and surface tension.
  • the slow-drying organic solvent (E) used for the conductive ink for reverse printing of the present invention is any of ester solvents, alcohol solvents, ether solvents and hydrocarbon solvents whose vapor pressure at 20 ° C. is less than 30 mmHg. One or more are used.
  • This slow-drying organic solvent remains on the blanket until the imaged ink coating formed on the blanket by the relief printing is transferred onto the substrate to be printed, thereby increasing the viscosity of the ink beyond a certain level. This is used to prevent this and obtain a good image on the substrate to be printed.
  • the compounding quantity is less than 20 mass% in all the organic solvents.
  • this compounding quantity exceeds 20 mass%, volatilization of the organic solvent from a blanket will become slow, and it will become late that the swelling of a blanket becomes fixed.
  • the ink about 0.5 to 1.5% by mass is desirable.
  • These slow-drying organic solvents are selected according to the solubility of the vehicle and the affinity for the metal nanoparticle dispersion, and the following solvents are used as examples.
  • ester solvents propylene glycol monomethyl ether acetate (PGMAc), 3-methoxy-3-methyl-butyl acetate ("Solfit AC", trade name: Kuraray), ethoxyethyl propionate (EEP), alcohol solvents, 1-butanol, Diadol 135 (trade name: manufactured by Mitsubishi Rayon), 2,3-dimethyl-1,5-pentanediol (PD9 manufactured by Kyowa Hakko), 3-methoxy-3-methyl-1-butanol, 1-hexanol 1,3-butanediol, 1-pentanol, 2-methyl 1-butanol, 4-methyl-2-pentanol, ethylene glycol, diethylene glycol, triethylene glycol, glycerin and the like.
  • Solfit AC trade name: Kuraray
  • EEP ethoxyethyl propionate
  • alcohol solvents 1-butanol
  • Diadol 135 trade name: manufactured by Mitsubishi Rayon
  • ether solvents include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol tertiary butyl ether, dipropylene glycol monomethyl ether, ethylene glycol butyl ether, ethylene glycol ethyl ether, ethylene glycol methyl ether, diethylene glycol butyl ether, and diethylene glycol ethyl ether. Can be mentioned.
  • hydrocarbon solvents examples include Solvesso 100, Solvesso 150 (trade name: manufactured by Exxon Chemical), and N-methylpyrrolidone. These may be a mixture of each system and a plurality of systems. Of these, propylene glycol monomethyl ether acetate, 3-methoxy-3-methyl-butyl acetate, ethoxyethyl propionate, and Diadol 135 are preferable in view of their evaporation rate and surface tension.
  • the conductive ink for reversal printing of the present invention can further contain water as a solvent.
  • the conductive ink for reversal printing of the present invention can further contain a melamine resin for further improvement of adhesion.
  • the melamine resin include a non-catalytic and thermosetting function, for example, a residue contained in melamine having a methylol group or an imino group.
  • the content of the melamine resin in the ink is desirably about 0.1 to 2%. Furthermore, if intended to improve conductivity, 0.1 to 0.4% is more preferable.
  • a dispersant can be added as necessary to improve the dispersion stability of the ink.
  • the Solsperse series (trade name, manufactured by Lubrisol) and the DISPER BYK series (trade name, manufactured by Big Chemie) can be added as necessary.
  • the method for producing a conductive ink for reverse printing according to the present invention comprises a silver particle ethanol dispersion (A-1), a fast-drying organic solvent D, a slow-drying organic solvent prepared by adding silver nitrate to the polymer compound (X).
  • E, mold release agent C, and surface energy adjusting agent B can be blended and prepared according to a conventional method. Water and melamine resin can be added as necessary.
  • the precipitate was dissolved in 100 ml of chloroform and reprecipitated again by adding a mixed solvent of 150 ml of ethyl acetate and 450 ml of hexane. This was filtered and dried under reduced pressure. Each peak is assigned by 1H-NMR spectrum (2.3 to 2.7 ppm: ethylene of branched PEI, 3.3 ppm: methyl group at the PEG end, 3.6 ppm: EG chain of PEG), PEG-branched PEI structure It was confirmed that the polymer compound had The yield was 99%.
  • Example 1 A solution obtained by dissolving 20 mg of the polymer compound (X-1) having a ratio of the branched polyethyleneimine chain (a) to the hydrophilic polyethylene glycol chain (b) of 1: 3 in 2.39 g of water, obtained in Synthesis Example 1.
  • 1A a solution obtained by dissolving 20 mg of the polymer compound (X-1) having a ratio of the branched polyethyleneimine chain (a) to the hydrophilic polyethylene glycol chain (b) of 1: 3 in 2.39 g of water, obtained in Synthesis Example 1.
  • 1A a solution 1B in which 0.16 g of silver nitrate was dissolved in 1.30 g of water, and a solution 1C in which 0.12 g of sodium citrate was dissolved in 0.25 g of water were prepared. While stirring at 25 ° C., solution 1B was added to solution 1A, followed by solution 1C.
  • the average particle diameter of the silver particles was 30 nm
  • the silver content in the dispersion was 29% by mass
  • the content of the polymer compound (X-1) was 1.2% by mass.
  • Example 2 Silver particle ethanol dispersion (A-1), 1.0 g, ethanol (fast drying organic solvent D) 0.33 g, 2,3-dimethyl-1,5-pentanediol (slow drying organic solvent E: manufactured by Kyowa Hakko PD9 ) 10% ethanol solution 0.59g, Silicone oil (release agent C: SH28PA manufactured by Toray Dow Chemical) 10% ethanol solution 0.30g, Fluorosurfactant (Surface energy modifier: DIC Corporation Mega Facque TF-1303) 30 g% methyl ethyl ketone (MEK) solution 0.05 g, melamine resin (Imino type melamine resin: Cymel 325 manufactured by Nihon Cydic Industries Co., Ltd.) 10 mass% ethanol solution 0.40 g Stir for minutes to prepare Example 2 ink.
  • A-1 Silver particle ethanol dispersion
  • ethanol fast drying organic solvent
  • D fast drying organic solvent
  • Example 3 Silver particle ethanol dispersion (A-1), 1.0 g, ethanol (fast drying organic solvent D) 0.80 g, glycerin (slow drying organic solvent E) 10 mass% ethanol solution 0.26 g, silicone oil (release) Agent C: 0.24 g of a 10% by mass ethanol solution (KF96-2cs) manufactured by Shin-Etsu Chemical Co., Ltd., 0.02 g of a 10% by mass ethanol solution of a silicone-based surfactant (surface energy modifier B: BYK-333 manufactured by BYK Chemie) Blended and stirred for 10 minutes to prepare Example 3 ink.
  • KF96-2cs 10% by mass ethanol solution
  • surface energy modifier B BYK-333 manufactured by BYK Chemie
  • Comparative Example 1 Ethanol solution of silver particle ethanol dispersion (A-1), 1.0 g, 1.10 g of ethanol (fast-drying organic solvent D), 10% by mass of silicone oil (release agent C: KF96-2cs manufactured by Shin-Etsu Chemical) 24 g and 0.02 g of a 10 mass% ethanol solution (surface energy adjusting agent B: BYK-333 manufactured by BYK-Chemie Co., Ltd.) were mixed and stirred for 10 minutes to prepare Comparative Example 1 ink.
  • surface energy adjusting agent B BYK-333 manufactured by BYK-Chemie Co., Ltd.
  • the pattern is formed on the blanket, it is transferred to a glass substrate after 240 seconds and the printed material is heated and baked at 180 ° C. for 30 minutes, and then the surface of the coating film is rubbed with a finger and the peelability is observed.
  • the conductive ink for reversal printing according to the present invention enables high-resolution printing particularly in combination with the printing method.
  • Applicable fields include, for example, the formation of source or drain electrodes of organic transistors.
  • high carrier injection efficiency is required at the interface between each electrode and the organic semiconductor.
  • In-air photoelectron spectroscopy can be applied as a method for evaluating the amount of impurities present on the surface of a printed material.
  • a conductive ink for reversal printing that has not only the conductivity and resolution of the ink film, but also functions such as extending the transferable time to the printed material in the printing process.
  • the ink can be widely applied to electronic devices such as organic transistors because of its high resolution and excellent conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

Provided is an electrically conductive ink for reverse printing which is excellent both in the conductivity of ink film and in resolution and which can prolong the time within which the transfer to a substrate is possible in the printing step.  An electrically conductive ink for reverse printing, characterized by comprising a metal nanoparticle dispersion (A) which contains both a dispersion of a polymeric compound (X) bearing a polyalkylenimine chain (a) and a hydrophilic segment (b) and metal nanoparticles (Y), a surface energy regulator (B), a release agent (C), a quick-drying organic solvent (D), and a slow-drying organic solvent (E).

Description

反転印刷用導電性インキConductive ink for reverse printing
 本発明は、電子素子の製造に相応しく使用できる、反転印刷に適した導電性インキに関する。 The present invention relates to a conductive ink suitable for reversal printing, which can be used appropriately for manufacturing electronic devices.
 トランジスタはテレビやコンピューター機器を構成する重要な電子素子として広く活用されており、現在、シリコン等の無機物を主材料にして製造されている。近年、こうしたトランジスタの部材に有機物を使った有機トランジスタが注目を集めている。有機トランジスタは、柔らかくフレキシブルである上、単位面積当たりで考えると原料が低価格で生産できるというメリットがあり、ユビキタス時代の必須アイテム、すなわち、フレキシブル且つ低コスト端末の実現には欠かせない構成要素と考えられている。有機トランジスタの一般的な素子構造を図1に示す。この中で、今回の発明は、特に電極層を形成するための導電性インキに関する。 Transistors are widely used as important electronic elements constituting televisions and computer equipment, and are currently manufactured using inorganic materials such as silicon as the main material. In recent years, an organic transistor using an organic substance as a member of such a transistor has attracted attention. Organic transistors are soft and flexible, and have the advantage that raw materials can be produced at a low price when considered per unit area, and are indispensable components for the realization of ubiquitous era, that is, flexible and low-cost terminals. It is believed that. A general element structure of an organic transistor is shown in FIG. In this, this invention relates to the electroconductive ink for forming an electrode layer especially.
 ゲート電極、ソース電極、ドレイン電極等の電極層の形成法には、ウエットプロセス(印刷法)とドライプロセス(真空蒸着やスパッタリング)があるが、低価格化の観点からウエットプロセスが好ましい。近年、L/S=5μm/5μm程度の精密パターンを形成するために、有効な方法として反転印刷法が紹介されている。反転印刷法による電子部品の製造に際して、銀ペーストを用いた例(例えば特許文献1参照)、銀インキ又はポリエチレンジオキシチオフェン/ポリスチレンスルホン酸分散液等の導電性インキを用いた例(例えば特許文献2参照)が知られている。 There are a wet process (printing method) and a dry process (vacuum deposition or sputtering) as a method for forming electrode layers such as a gate electrode, a source electrode, and a drain electrode, but a wet process is preferable from the viewpoint of cost reduction. In recent years, a reverse printing method has been introduced as an effective method for forming a precise pattern of about L / S = 5 μm / 5 μm. In the production of electronic components by reversal printing, examples using silver paste (see, for example, Patent Document 1), examples using silver ink or conductive ink such as polyethylenedioxythiophene / polystyrene sulfonic acid dispersion (for example, Patent Document) 2) is known.
 又、反転印刷用として、平均粒径5μm以下の銀粒子を含有した導電性インキが知られている(例えば特許文献3参照)。 In addition, a conductive ink containing silver particles having an average particle diameter of 5 μm or less is known for reversal printing (see, for example, Patent Document 3).
 反転印刷法による電子素子の製造に用いられる導電性インキには、インキ皮膜の導電率、解像度はもとより、印刷工程における、被印刷物への転写可能時間の延長が求められている。 For conductive inks used in the manufacture of electronic elements by the reverse printing method, not only the conductivity and resolution of the ink film, but also the extension of the transferable time to the substrate in the printing process is required.
 精密パターン形成に於いて反転印刷法は有効であるものの、基材上に導電性膜を設けて電子素子を形成するために、インキ皮膜の導電率、解像度はもとより、印刷工程における、被印刷物への転写可能時間の延長等、反転印刷法に適した機能を十分に兼ね備えた導電性インキが得られていない。 Although the reverse printing method is effective in forming a precise pattern, in order to form an electronic element by providing a conductive film on the substrate, not only the conductivity and resolution of the ink film, but also the substrate in the printing process. No conductive ink having sufficient functions suitable for the reversal printing method, such as extension of the transferable time, is obtained.
 又、導電性材料として、ナノ粒径の金属を含有する分散体が知られているが(例えば特許文献4参照)、反転印刷法に適した機能を十分に兼ね備えた導電性インキが得られていない。 Moreover, although the dispersion containing the metal of a nano particle size is known as an electroconductive material (for example, refer patent document 4), the electroconductive ink which has the function suitable for the reversal printing method is obtained. Absent.
特開2005-057118号公報JP 2005-057118 A 特開2007-273712号公報JP 2007-273712 A 特開2007-254635号公報JP 2007-254635 A 特開2008-37884号公報JP 2008-37884 A
 本発明の課題は、インキ皮膜の導電率、解像度はもとより、印刷工程における、被印刷物への転写可能時間の延長等の機能を兼ね備えた反転印刷用導電性インキを提供することにある。 An object of the present invention is to provide a conductive ink for reversal printing that has not only the conductivity and resolution of an ink film, but also functions such as extending the transferable time to a substrate in the printing process.
 上記課題を解決する本発明は、ポリアルキレンイミン鎖(a)と、親水性セグメント(b)を有する高分子化合物(X)の分散体と、金属ナノ粒子(Y)とを含有する金属ナノ粒子分散体(A)、表面エネルギー調整剤(B)、離型剤(C)、速乾性有機溶剤(D)及び遅乾性有機溶剤(E)を含有することを特徴とする反転印刷用導電性インキを提供する。 The present invention for solving the above-mentioned problems is a metal nanoparticle comprising a polyalkyleneimine chain (a), a dispersion of a polymer compound (X) having a hydrophilic segment (b), and metal nanoparticles (Y). A conductive ink for reversal printing comprising a dispersion (A), a surface energy adjusting agent (B), a release agent (C), a fast-drying organic solvent (D), and a slow-drying organic solvent (E) I will provide a.
 本発明の反転印刷用導電性インキは、インキ皮膜の導電率、解像度はもとより、印刷工程における、被印刷物への転写可能時間の延長等の機能を兼ね備えている。 The conductive ink for reversal printing according to the present invention has not only the conductivity and resolution of the ink film, but also functions such as extending the transferable time to the substrate in the printing process.
 本発明の反転印刷用導電性インキは、ポリアルキレンイミン鎖(a)と、親水性セグメント(b)を有する高分子化合物(X)の分散体と、金属ナノ粒子(Y)とを含有する金属ナノ粒子分散体(A)、表面エネルギー調整剤(B)、離型剤(C)、速乾性有機溶剤(D)及び遅乾性有機溶剤(E)を含有する反転印刷用導電性インキである。 The conductive ink for reverse printing of the present invention is a metal containing a polyalkyleneimine chain (a), a dispersion of a polymer compound (X) having a hydrophilic segment (b), and metal nanoparticles (Y). A conductive ink for reverse printing containing a nanoparticle dispersion (A), a surface energy adjusting agent (B), a release agent (C), a fast-drying organic solvent (D), and a slow-drying organic solvent (E).
 本発明の反転印刷用導電性インキには、更に、溶剤として、水を含有することが出来る。又、特に基材との密着性を重視する場合には、樹脂成分として、例えば、メラミン樹脂を添加することも出来る。 The conductive ink for reversal printing of the present invention can further contain water as a solvent. In particular, when importance is attached to the adhesion to the substrate, for example, a melamine resin can be added as a resin component.
 反転印刷とは、以下の工程でインキを被印刷基材に転写する印刷方法である。すなわち、まずインキ塗布装置によりブランケットの表面に均一な厚みのインキ塗膜を形成する。次いで、表面に均一なインキ塗膜が形成されたブランケットの表面を、印刷パターンが形成されている凸版に押圧、接触させ、該凸版の凸部の表面に、ブランケットの表面上のインキ塗膜の一部を付着、転移させる。これにより、ブランケットの表面に残ったインキ塗膜には、印刷パターン(画像)が形成される。次いで、この状態のブランケットをガラス板、プラスチックシート等からなる被印刷基材の表面に押圧して、ブランケット上に残ったインキ塗膜を転写し、この被印刷基材上に転写されたインキ塗膜を焼成することにより、印刷物を得るものである。 Reverse printing is a printing method that transfers ink to a substrate to be printed in the following steps. That is, first, an ink coating film having a uniform thickness is formed on the surface of the blanket by an ink coating apparatus. Next, the surface of the blanket on which the uniform ink coating film is formed is pressed against and brought into contact with the relief plate on which the printing pattern is formed, and the surface of the ink coating on the surface of the blanket is brought into contact with the convex surface of the relief printing plate. A part is attached and transferred. Thereby, a printing pattern (image) is formed on the ink coating film remaining on the surface of the blanket. Next, the blanket in this state is pressed against the surface of the printing substrate made of a glass plate, a plastic sheet, etc., and the ink coating film remaining on the blanket is transferred, and the ink coating transferred onto the printing substrate is transferred. A printed matter is obtained by firing the film.
 本発明の反転印刷用導電性インキに用いる、金属ナノ粒子分散体(A)は、ポリアルキレンイミン鎖(a)と、親水性セグメント(b)を有する高分子化合物(X)の分散体と、金属ナノ粒子(Y)とを含有する金属ナノ粒子分散体(A)である。 The metal nanoparticle dispersion (A) used in the conductive ink for reverse printing of the present invention is a dispersion of a polymer compound (X) having a polyalkyleneimine chain (a) and a hydrophilic segment (b), It is a metal nanoparticle dispersion (A) containing metal nanoparticles (Y).
 本発明において使用する高分子化合物(X)を構成するポリアルキレンイミン鎖(a)は、該鎖中のアルキレンイミン単位が金属又は金属イオンと配位結合可能であることから、金属をナノ粒子として固定化できる高分子鎖である。その構造は第二級アミンのアルキレンイミン単位を主な繰り返し単位とするポリマーであり、直鎖構造、分岐構造のいずれであってもよい。 In the polyalkyleneimine chain (a) constituting the polymer compound (X) used in the present invention, the alkyleneimine unit in the chain can be coordinated with a metal or a metal ion. It is a polymer chain that can be immobilized. The structure is a polymer having an alkyleneimine unit of a secondary amine as a main repeating unit, and may be either a linear structure or a branched structure.
 反転印刷用導電性インキの分散安定性を向上させるために、該高分子化合物(X)を小粒径化する場合、分岐構造が好ましい。 In order to improve the dispersion stability of the conductive ink for reverse printing, when the polymer compound (X) is reduced in particle size, a branched structure is preferable.
 ポリアルキレンイミン鎖(a)の重合度としては特に限定されるものではないが、低すぎると、高分子化合物(X)の分散体中に含有する金属ナノ粒子の量やその安定的な保持が不十分であり、高すぎると高分子化合物(X)が巨大な会合体となるため、保存安定性に支障をきたすこととなる。従って、得られる金属ナノ粒子分散体中の金属ナノ粒子の固定化能力や分散体の粒径の巨大化を防ぐ能力等がより優れた金属ナノ粒子分散体を得るためには、前記ポリアルキレンイミン鎖(a)の重合度としては通常1~10,000の範囲であり、3~3,000の範囲であることが好ましく、5~1,000の範囲であることがより好ましい。 The degree of polymerization of the polyalkyleneimine chain (a) is not particularly limited, but if it is too low, the amount of the metal nanoparticles contained in the dispersion of the polymer compound (X) and its stable retention will be reduced. If it is insufficient and if it is too high, the polymer compound (X) becomes a huge aggregate, which impedes storage stability. Therefore, in order to obtain a metal nanoparticle dispersion having superior ability to immobilize metal nanoparticles in the obtained metal nanoparticle dispersion and to prevent the dispersion from becoming too large, the polyalkyleneimine is obtained. The degree of polymerization of the chain (a) is usually in the range of 1 to 10,000, preferably in the range of 3 to 3,000, and more preferably in the range of 5 to 1,000.
 前記ポリアルキレンイミン鎖(a)は一般的に市販、又は合成可能なものであれば、特に限定されることなく使用することができるが、工業的な入手の容易さ等から、ポリエチレンイミン鎖、ポリプロピレンイミン鎖であることが好ましい。 The polyalkyleneimine chain (a) can be used without particular limitation as long as it is generally commercially available or can be synthesized, but from the viewpoint of industrial availability, a polyethyleneimine chain, A polypropyleneimine chain is preferred.
 本発明において使用する高分子化合物(X)を構成する親水性セグメント(b)は、該高分子化合物(X)を水等の親水性溶媒中に分散した場合には、溶媒との高い親和性を有し、分散体を形成した際に分散安定性を保持するセグメントである。また疎水性溶媒中に分散した場合は、該親水性セグメント(b)の分子内又は分子間相互の強い会合力により、分散体のコアを形成する役割を有する。親水性セグメント(b)の重合度としては特に限定されるものではないが、親水性溶媒中に分散させる場合は、重合度が低すぎると分散安定性が悪化し、高すぎると分散体同士が凝集してしまう可能性が考えられ、また疎水性溶媒中に分散させる場合は、重合度が低すぎると分散体の会合力が乏しくなり、高すぎると溶媒との親和性を保持できなくなる。これらの観点から、親水性セグメント(b)の重合度としては通常1~10,000であり、3~3,000であることが好ましく、製造方法の容易さ等の点から5~1,000であることがより好ましい。さらにポリオキシアルキレン鎖である場合の重合度としては5~500であることが特に好ましい。 The hydrophilic segment (b) constituting the polymer compound (X) used in the present invention has a high affinity for the solvent when the polymer compound (X) is dispersed in a hydrophilic solvent such as water. And a segment that maintains dispersion stability when a dispersion is formed. Further, when dispersed in a hydrophobic solvent, the hydrophilic segment (b) has a role of forming a core of the dispersion due to a strong associative force within the molecule or between the molecules. The degree of polymerization of the hydrophilic segment (b) is not particularly limited, but when dispersed in a hydrophilic solvent, if the degree of polymerization is too low, the dispersion stability is deteriorated, and if too high, the dispersions are dispersed. There is a possibility of aggregation, and when dispersed in a hydrophobic solvent, if the degree of polymerization is too low, the associating power of the dispersion becomes poor, and if it is too high, the affinity with the solvent cannot be maintained. From these viewpoints, the degree of polymerization of the hydrophilic segment (b) is usually 1 to 10,000, preferably 3 to 3,000, and 5 to 1,000 from the viewpoint of ease of production. It is more preferable that Further, the polymerization degree in the case of a polyoxyalkylene chain is particularly preferably 5 to 500.
 親水性セグメント(b)は一般的に市販、又は合成可能な親水性のポリマー鎖からなるものであれば特に限定されることなく使用することができる。特に親水性溶媒中では、安定性に優れた分散体が得られる点から、ノニオン性のポリマーからなるものであることが好ましい。 The hydrophilic segment (b) can be used without particular limitation as long as it is generally made of a commercially available or synthesizable hydrophilic polymer chain. In particular, in a hydrophilic solvent, a nonionic polymer is preferable because a dispersion having excellent stability can be obtained.
 親水性セグメント(b)としては、例えば、ポリオキシエチレン鎖、ポリオキシプロピレン鎖等のポリオキシアルキレン鎖、ポリビニルアルコール、部分けん化ポリビニルアルコール等のポリビニルアルコール類からなるポリマー鎖、ポリヒドロキシエチルアクリレート、ポリヒドロキシエチルメタクリレート、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート等の水溶性のポリ(メタ)アクリル酸エステル類からなるポリマー鎖、ポリアセチルエチレンイミン、ポリアセチルプロピレンイミン、ポリプロピオニルエチレンイミン、ポリプロピオニルプロピレンイミン等の親水性置換基を有するポリアシルアルキレンイミン鎖、ポリアクリルアミド、ポリイソプロピルアクリルアミド、ポリビニルピロリドン等のポリアクリルアミド類からなるポリマー鎖等を挙げることができ、これらの中でも、安定性に特に優れた分散体が得られ、また、工業的入手が容易である点から、ポリオキシアルキレン鎖であることが好ましい。 Examples of the hydrophilic segment (b) include polyoxyalkylene chains such as polyoxyethylene chains and polyoxypropylene chains, polymer chains composed of polyvinyl alcohols such as polyvinyl alcohol and partially saponified polyvinyl alcohol, polyhydroxyethyl acrylate, Polymer chains composed of water-soluble poly (meth) acrylic esters such as hydroxyethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, polyacetylethyleneimine, polyacetylpropyleneimine, polypropionylethyleneimine, polypropionylpropyleneimine Such as polyacylalkyleneimine chains having hydrophilic substituents such as polyacrylamide, polyisopropylacrylamide, and polyvinylpyrrolidone Polymer chains composed of reacrylamides and the like can be mentioned. Among them, a dispersion having particularly excellent stability is obtained, and it is a polyoxyalkylene chain from the viewpoint of easy industrial availability. preferable.
 前記した金属ナノ粒子分散体(A)は、ポリアルキレンイミン鎖(a)、親水性セグメント(b)に、更に、疎水性セグメント(c)を有する高分子化合物(X)の分散体と、金属ナノ粒子(Y)とを含有する金属ナノ粒子分散体(A)であってもよい。 The metal nanoparticle dispersion (A) described above includes a dispersion of a polymer compound (X) having a polyalkyleneimine chain (a), a hydrophilic segment (b), and a hydrophobic segment (c), It may be a metal nanoparticle dispersion (A) containing nanoparticles (Y).
 本発明において使用する高分子化合物(X)を構成する疎水性セグメント(c)は、該高分子化合物(X)を水等の親水性溶媒中に分散した場合には、分子内又は分子間相互の強い会合力により、分散体のコアを形成し、安定な分散体を形成する役割を有する。また疎水性溶媒中に分散した場合は、溶媒との高い親和性を有し、分散体を形成した際の分散安定性を保持するセグメントである。 When the polymer compound (X) is dispersed in a hydrophilic solvent such as water, the hydrophobic segment (c) constituting the polymer compound (X) used in the present invention is intermolecular or intermolecularly interlinked. Due to the strong associative force, the core of the dispersion is formed and has a role of forming a stable dispersion. Further, when dispersed in a hydrophobic solvent, the segment has a high affinity with the solvent and retains the dispersion stability when a dispersion is formed.
 疎水性セグメント(c)は一般的に市販、又は合成可能な疎水性の化合物の残基からなるものであれば特に限定されることなく使用することができる。例えば、ポリスチレン、ポリメチルスチレン、ポリクロロメチルスチレン、ポリブロモメチルスチレン等のポリスチレン類、ポリアクリル酸メチルエステル、ポリメタクリル酸メチルエステル、ポリアクリル酸2-エチルヘキシルエステル、ポリメタクリル酸2-エチルヘキシルエステル等の非水溶性のポリ(メタ)アクリル酸エステル類、ポリベンゾイルエチレンイミン、ポリベンゾイルプロピレンイミン、ポリ(メタ)アクリロイルエチレンイミン、ポリ(メタ)アクリロイルプロピレンイミン、ポリ〔N-{3-(パーフルオロオクチル)プロピオニル}エチレンイミン〕、ポリ〔N-{3-(パーフルオロオクチル)プロピオニル}プロピレンイミン〕等の疎水性置換基を有するポリアシルアルキレンイミン類のポリマーの残基や、エポキシ樹脂、ポリウレタン、ポリカーボネート等の樹脂の残基等が挙げられ、単独の化合物の残基でも、2種以上の異なる化合物を予め反応させて得られる化合物の残基であっても良い。 The hydrophobic segment (c) can be used without particular limitation as long as it is generally composed of a residue of a hydrophobic compound that is commercially available or can be synthesized. For example, polystyrenes such as polystyrene, polymethylstyrene, polychloromethylstyrene, polybromomethylstyrene, polyacrylic acid methyl ester, polymethacrylic acid methyl ester, polyacrylic acid 2-ethylhexyl ester, polymethacrylic acid 2-ethylhexyl ester, etc. Water-insoluble poly (meth) acrylic acid esters, polybenzoylethyleneimine, polybenzoylpropyleneimine, poly (meth) acryloylethyleneimine, poly (meth) acryloylpropyleneimine, poly [N- {3- (perfluoro Octyl) propionyl} ethyleneimine], poly [N- {3- (perfluorooctyl) propionyl} propyleneimine] and the like polymer residues of polyacylalkyleneimines having a hydrophobic substituent, Epoxy resins, polyurethanes, include such residues of the resin and polycarbonate, also a residue of a single compound or a residue of a compound obtained by previously reacting the two or more different compounds.
 前記エポキシ樹脂としては、市販、又は合成可能なものであれば特に限定されることなく使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、特開2003-201333号記載のキサンテン型エポキシ樹脂等が挙げられ、単独で用いてもよく、2種以上を混合してもよい。これらの中でも、得られる金属ナノ粒子分散体を導電ペーストとして用いた際に、基板との密着性に優れる等の観点から、ビスフェノールA型エポキシ樹脂の残基であることが好ましく、親水性溶媒中での会合力が強く、分散安定性・保存安定性に優れる分散体が得られる点から、ナフタレン型4官能エポキシ樹脂等の3官能以上のエポキシ樹脂の残基であることが好ましい。また、これらのエポキシ樹脂は、そのまま高分子化合物(X)の原料としても良く、更には目的とする高分子化合物(X)の構造等に応じて、種々の変性を加えたものであっても良い。 The epoxy resin is not particularly limited as long as it is commercially available or can be synthesized. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, Naphthol-phenol co-condensed novolac type epoxy resin, Naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon form Aldehyde resin modified phenol resin type epoxy resin, a biphenyl novolak type epoxy resin, a xanthene type epoxy resins described in JP-2003-201333, may be used alone, or may be a mixture of two or more. Among these, when the obtained metal nanoparticle dispersion is used as a conductive paste, it is preferably a residue of a bisphenol A type epoxy resin from the viewpoint of excellent adhesion to a substrate, and the like in a hydrophilic solvent. From the viewpoint of obtaining a dispersion having a strong associative strength and excellent dispersion stability and storage stability, it is preferably a residue of a trifunctional or higher functional epoxy resin such as a naphthalene type tetrafunctional epoxy resin. In addition, these epoxy resins may be used as raw materials for the polymer compound (X) as they are, and may be modified with various modifications according to the structure of the target polymer compound (X). good.
 前記ポリウレタンとしては、市販、又は合成可能なものであれば特に限定されることなく使用することができる。一般にポリウレタンはポリオールとポリイソシアネートとを付加反応させて得られるポリマーである。前記ポリオールとしては、例えば、プロピレングリコール、ネオペンチルグリコール、ポリプロピレングリゴール、ポリテトラメチレンエーテルグリコール、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートジオール、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラメチルビフェニル-4,4’-ジオール、フェノールノボラック、クレゾールノボラック、プロパンジオール、ブタンジオール、ペンタンジオール、n-ヘキサンジオール、シクロヘキサンジオール、メチルペンタンジオール、ポリブタジエンジポリオール、トリメチロールプロパン、ジヒドロキシベンゼン、2官能以上のグリシジル基を有する化合物、及び上記エポキシ樹脂から変性した化合物等が挙げられ、単独でも2種以上を混合して用いても良い。 The polyurethane can be used without particular limitation as long as it is commercially available or can be synthesized. In general, polyurethane is a polymer obtained by addition reaction of polyol and polyisocyanate. Examples of the polyol include propylene glycol, neopentyl glycol, polypropylene glycol, polytetramethylene ether glycol, polyester polyol, polycaprolactone polyol, polycarbonate diol, bisphenol A, bisphenol F, 4,4′-dihydroxybiphenyl, 3, 3 ′, 5,5′-tetramethylbiphenyl-4,4′-diol, phenol novolak, cresol novolak, propanediol, butanediol, pentanediol, n-hexanediol, cyclohexanediol, methylpentanediol, polybutadiene dipolyol, Modified from trimethylolpropane, dihydroxybenzene, difunctional or higher functional glycidyl group, and the above epoxy resin Mentioned compounds, etc., may be used in either singly or in combination.
 また、ポリイソシアネートとしては、例えば、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ヘキサメチレンジイソシアネート、1,5-ナフチレンジイソシアネート、テトラメチルキシレンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ヘキサメチンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等が挙げられ、単独でも、2種以上を混合して用いても良い。 Examples of the polyisocyanate include diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, bis (isocyanate methyl) cyclohexane, hexamethylene diisocyanate, 1,5-naphthylene diisocyanate, tetramethylxylene diisocyanate, isophorone diisocyanate, hydrogenated xylylene. Examples include diisocyanate, dicyclohexylmethane diisocyanate, hexamethine diisocyanate, dimer acid diisocyanate, norbornene diisocyanate, and trimethylhexamethylene diisocyanate. These may be used alone or in admixture of two or more.
 これらの中でも、得られる金属ナノ粒子分散体を導電インキとして用いた際に、種々の基板との密着性に優れる等の観点から、ポリオールとしては、ポリプロピレングリコール、ビスフェノールA型エポキシ樹脂変性ポリオール等が好ましく、ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン等が好ましく、これら好ましい原料を組み合わせて得られるポリウレタンを用いる事が最も好ましい。また、これらのポリウレタンは、そのまま高分子化合物(X)の原料としても良く、更には目的とする高分子化合物(X)の構造等に応じて、種々の変性を加えたものであっても良い。 Among these, when the obtained metal nanoparticle dispersion is used as a conductive ink, polypropylene glycol, bisphenol A type epoxy resin-modified polyol, etc. are used as polyols from the viewpoint of excellent adhesion to various substrates. Preferably, as the polyisocyanate, hexamethylene diisocyanate, bis (isocyanate methyl) cyclohexane, and the like are preferable, and it is most preferable to use polyurethane obtained by combining these preferable raw materials. In addition, these polyurethanes may be used as raw materials for the polymer compound (X) as they are, and may further be modified according to the structure of the target polymer compound (X). .
 前記ポリカーボネート類としては、市販、又は合成可能なものであれば特に限定されることなく使用することができる。一般にポリカーボネートはビスフェノールAとホスゲン、又はジフェニルカーボネート等との縮合反応から製造されるポリマーである。前記ポリカーボネート類とはポリカーボネートが代表例であるが、ポリカーボネート類の原料であるビスフェノールAの代わりに、前記ポリウレタン類の原料であるポリオールで例示した種々の原料を用いて製造できる種々のカーボネート系ポリマーも、ポリカーボネート類の例として挙げることができる。 The polycarbonates can be used without particular limitation as long as they are commercially available or can be synthesized. In general, polycarbonate is a polymer produced from a condensation reaction between bisphenol A and phosgene, diphenyl carbonate, or the like. Polycarbonate is a typical example of the polycarbonates, but various carbonate-based polymers that can be produced using various raw materials exemplified by polyols that are raw materials of the polyurethanes instead of bisphenol A, which is a raw material of polycarbonates, are also available. Examples of polycarbonates can be mentioned.
 ポリカーボネート類は、そのまま高分子化合物(X)の原料としても良く、更には目的とする高分子化合物(X)の構造等に応じて、種々の変性を加えたものであっても良い。 Polycarbonates may be used as raw materials for the polymer compound (X) as they are, and may further be modified according to the structure of the target polymer compound (X).
 以上に挙げた疎水性セグメント(c)のなかでも、ポリスチレン、ポリ(メタ)アクリル酸エステル、エポキシ樹脂、ポリウレタン、ポリカーボネート、疎水性の置換基を有するポリアシルアルキレンイミンから選ばれる一種以上の化合物の残基は、原料として用いるそれぞれの化合物の工業的入手容易性、取り扱いの容易さだけでなく、高分子化合物(X)としたときの疎水性会合力の高さ等、総合的に判断して好ましい疎水性セグメントであり、特に高分子化合物(X)の工業的製法に優れ、且つ、コスト面、入手の容易さ等から、ポリスチレン、ポリ(メタ)アクリル酸メチル、エポキシ樹脂類、ポリウレタン類の残基であることがより好ましく、エポキシ樹脂類の残基であることが最も好ましい。 Among the hydrophobic segments (c) listed above, one or more compounds selected from polystyrene, poly (meth) acrylic acid ester, epoxy resin, polyurethane, polycarbonate, and polyacylalkyleneimine having a hydrophobic substituent. Residues are comprehensively determined not only from the industrial availability and ease of handling of each compound used as a raw material, but also from the high hydrophobic associative power of the polymer compound (X). It is a preferable hydrophobic segment, and is particularly excellent in the industrial production method of the polymer compound (X), and from the viewpoint of cost, availability, etc., polystyrene, poly (meth) methyl acrylate, epoxy resins, polyurethanes. It is more preferably a residue, and most preferably a residue of epoxy resins.
 また、疎水性セグメント(c)の重合度としては特に限定されるものではないが、親水性溶媒中に分散させる場合は、低すぎると分散安定性が悪化し、高すぎると分散体同士が凝集してしまう可能性が考えられ、また疎水性溶媒中に分散させる場合は、低すぎると分散体の分散性が乏しくなり、高すぎると溶媒との親和性が保持できなくなる。これらの観点から、疎水性セグメント(c)の重合度としては通常1~10,000であり、ポリスチレン類、ポリ(メタ)アクリル酸エステル類、疎水性置換基を有するポリアシルアルキレンイミン類等の場合には3~3,000であることが好ましく、10~1,000であることがより好ましい。また、エポキシ樹脂類、ポリウレタン類、ポリカーボネート類等の樹脂の残基からなる場合は、その重合度としては通常1~50であり、1~30であることが好ましく、特に1~20であることが好ましい。 Further, the degree of polymerization of the hydrophobic segment (c) is not particularly limited, but when dispersed in a hydrophilic solvent, the dispersion stability deteriorates if it is too low, and the dispersion aggregates if it is too high. In the case of dispersing in a hydrophobic solvent, if the dispersion is too low, the dispersibility of the dispersion becomes poor, and if it is too high, the affinity with the solvent cannot be maintained. From these viewpoints, the polymerization degree of the hydrophobic segment (c) is usually from 1 to 10,000, such as polystyrenes, poly (meth) acrylic acid esters, polyacylalkyleneimines having a hydrophobic substituent, and the like. In such a case, it is preferably 3 to 3,000, more preferably 10 to 1,000. In the case of resin residues such as epoxy resins, polyurethanes and polycarbonates, the degree of polymerization is usually 1 to 50, preferably 1 to 30, and particularly 1 to 20. Is preferred.
 本発明で用いる高分子化合物(X)の製造方法としては、特に限定されるものではない。 The production method of the polymer compound (X) used in the present invention is not particularly limited.
 分岐状ポリアルキレンイミン鎖は前述したとおり、市販又は合成したものを好適に用いることができる。 As the branched polyalkyleneimine chain, a commercially available or synthesized one can be suitably used as described above.
 分岐状ポリアルキレンイミン鎖の合成は種々な方法で行ってよく、特に限定されるものではないが、一般的にはエチレンイミンを、酸触媒を用いて開環重合させる方法が挙げられる。分岐状ポリエチレンイミンの末端は第一級アミンとなっているため、親水性セグメントが第一級アミンと反応する官能基を有したものであれば、逐次、或いは同時に反応させることによって、本発明で用いる事ができる高分子化合物を合成することができる。第一級アミンと反応する官能基としては、特に限定されるものではなく、例えば、アルデヒド基、カルボキシル基、イソシアネート基、トシル基、エポキシ基、グリシジル基、イソチオシアネート基、ハロゲン、酸クロライド、スルホン酸クロライド等が挙げられる。なかでもカルボキシル基、イソシアネート基、トシル基、エポキシ基、グリシジル基は反応性、取扱い易さ等、製法上有利であり、好ましい官能基である。 The synthesis of the branched polyalkyleneimine chain may be carried out by various methods, and is not particularly limited, but generally includes a method of ring-opening polymerization of ethyleneimine using an acid catalyst. Since the end of the branched polyethyleneimine is a primary amine, if the hydrophilic segment has a functional group that reacts with the primary amine, it can be reacted successively or simultaneously in the present invention. A polymer compound that can be used can be synthesized. The functional group that reacts with the primary amine is not particularly limited. For example, aldehyde group, carboxyl group, isocyanate group, tosyl group, epoxy group, glycidyl group, isothiocyanate group, halogen, acid chloride, sulfone. An acid chloride etc. are mentioned. Of these, a carboxyl group, an isocyanate group, a tosyl group, an epoxy group, and a glycidyl group are advantageous in terms of production, such as reactivity and ease of handling, and are preferred functional groups.
 また第一級アミンと直接反応する官能基でなくとも、種々の処理を行うことによって第一級アミンと反応可能な官能基にできるものであれば良く、例えば、ヒドロキシル基を有するものであれば、これをグリシジル化する等の手法でポリエチレンイミン鎖と反応させても良い。更には、分岐状ポリアルキレンアミン鎖の第一級アミンを、親水性セグメントが有する官能基と反応可能な他の官能基に変換する処理を施した後、これらを反応させて高分子化合物(X)を合成することも可能である。 Moreover, even if it is not a functional group that reacts directly with the primary amine, it can be any functional group that can react with the primary amine by performing various treatments. For example, it has a hydroxyl group. Alternatively, this may be reacted with a polyethyleneimine chain by a method such as glycidylation. Further, after the primary amine of the branched polyalkyleneamine chain is converted to other functional groups capable of reacting with the functional group of the hydrophilic segment, these are reacted to give a polymer compound (X ) Can also be synthesized.
 高分子化合物(X)の代表的な合成例を記す。(I)分岐状ポリアルキレンイミンは市販品を用い、親水性ポリマーとしてはポリエチレングリコールモノメチルエーテルのトシル体を用いる。該親水性ポリマーは例えば、ポリエチレングリコールモノメチルエーテルとトシルクロライドを極性溶媒中、ピリジンの存在下で反応させることによって得ることができる。更に疎水性ポリマーを用いる場合は、疎水性ポリマーとしては末端にエポキシ基を有するエポキシ樹脂を用いる。この組み合わせの場合には、はじめにポリエチレンイミンを極性溶媒に溶解し、炭酸カリウム等の塩基存在下で、ポリエチレングリコールモノメチルエーテルのトシル体と100℃で反応させ、ポリエチレングリコールとポリエチレンイミン構造を有する化合物を合成し、この後、アセトンとメタノールとの混合溶媒中、エポキシ樹脂を加えて、60℃で反応させることにより、ポリエチレングリコール-ポリエチレンイミン-エポキシ樹脂の構造を有する高分子化合物を得ることができる。 A typical synthesis example of the polymer compound (X) will be described. (I) A commercially available product is used as the branched polyalkyleneimine, and a tosyl derivative of polyethylene glycol monomethyl ether is used as the hydrophilic polymer. The hydrophilic polymer can be obtained, for example, by reacting polyethylene glycol monomethyl ether and tosyl chloride in a polar solvent in the presence of pyridine. Further, when a hydrophobic polymer is used, an epoxy resin having an epoxy group at the terminal is used as the hydrophobic polymer. In the case of this combination, first, polyethyleneimine is dissolved in a polar solvent and reacted with a tosyl derivative of polyethylene glycol monomethyl ether at 100 ° C. in the presence of a base such as potassium carbonate to obtain a compound having polyethylene glycol and a polyethyleneimine structure. A polymer compound having a polyethylene glycol-polyethyleneimine-epoxy resin structure can be obtained by synthesizing and then adding an epoxy resin in a mixed solvent of acetone and methanol and reacting at 60 ° C.
 本発明で用いる高分子化合物(X)中の各成分の割合は、例えば、分岐状ポリアルキレンイミン鎖の場合で、且つ、三元系の場合、分岐状ポリアルキレンイミン鎖(a-1)、親水性セグメント(b)、疎水性セグメント(c)の各成分の鎖を構成するポリマーの重合度の比(a-1):(b):(c)としては、特に限定されるものではないが、得られる金属ナノ粒子分散体の会合力、分散安定性及び保存安定性に優れる点から、通常5,000:5~5,000,000:1~5,000,000の範囲であり、特に5000:25~400,000:5~1,000,000が好ましい。また、分岐状ポリアルキレンイミン鎖の重合度を5000とした時、好ましい例として親水性セグメント(b)にポリオキシアルキレン鎖を用いると、その比率の範囲は25~200,000がより好ましく、且つ疎水性セグメント(c)にポリスチレン類、ポリ(メタ)アクリル酸エステル類、疎水性置換基を有するポリアシルアルキレンイミン類等を用いると、その比率の範囲は15~1,000,000がより好ましく、エポキシ樹脂類、ポリウレタン、ポリカーボネート等の樹脂の残基等からなる化合物を用いると、その比率の範囲は5~20,000がより好ましい。 The proportion of each component in the polymer compound (X) used in the present invention is, for example, in the case of a branched polyalkyleneimine chain, and in the case of a ternary system, the branched polyalkyleneimine chain (a-1), The polymerization degree ratio (a-1) :( b) :( c) of the polymer constituting the chain of each component of the hydrophilic segment (b) and the hydrophobic segment (c) is not particularly limited. Is generally in the range of 5,000: 5 to 5,000,000: 1 to 5,000,000, from the viewpoint of excellent associative force, dispersion stability and storage stability of the obtained metal nanoparticle dispersion, In particular, 5000: 25 to 400,000: 5 to 1,000,000 is preferable. Further, when the degree of polymerization of the branched polyalkyleneimine chain is 5000, when a polyoxyalkylene chain is used for the hydrophilic segment (b) as a preferred example, the range of the ratio is more preferably 25 to 200,000, and When polystyrenes, poly (meth) acrylic acid esters, polyacylalkyleneimines having a hydrophobic substituent, and the like are used for the hydrophobic segment (c), the range of the ratio is more preferably 15 to 1,000,000. When a compound composed of a residue of a resin such as epoxy resins, polyurethane and polycarbonate is used, the range of the ratio is more preferably 5 to 20,000.
 本発明で用いる高分子化合物(X)中の各成分の割合は、例えば、直鎖状ポリアルキレンイミン鎖の場合で、且つ、三元系の場合、直鎖状ポリアルキレンイミン鎖(a-2)、親水性セグメント(b)、疎水性セグメント(c)の各成分の鎖を構成するポリマーの重合度の比(a-2):(b):(c)としては、特に限定されるものではないが、得られる金属ナノ粒子分散体の会合力、分散安定性及び保存安定性に優れる点から、通常5,000:5~5,000,000:1~5,000,000の範囲であり、特に5,000:80~1,000,000:10~50,000が好ましい。また、直鎖状ポリアルキレンイミン鎖の重合度を5000とした時、好ましい例として親水性セグメント(b)にポリオキシアルキレン鎖を用いると、その比率の範囲は80~500,000がより好ましく、且つ疎水性セグメント(c)としてのエポキシ樹脂残基は10~50,000がより好ましい。 The proportion of each component in the polymer compound (X) used in the present invention is, for example, in the case of a linear polyalkyleneimine chain and in the case of a ternary system, a linear polyalkyleneimine chain (a-2 ), Ratio (a-2) :( b) :( c) of the degree of polymerization of the polymer constituting the chain of each component of the hydrophilic segment (b) and the hydrophobic segment (c) is particularly limited However, it is usually in the range of 5,000: 5 to 5,000,000: 1 to 5,000,000 because the metal nanoparticle dispersion obtained is excellent in associative force, dispersion stability and storage stability. In particular, 5,000: 80 to 1,000,000: 10 to 50,000 are preferable. Further, when the degree of polymerization of the linear polyalkyleneimine chain is 5000, when a polyoxyalkylene chain is used for the hydrophilic segment (b) as a preferred example, the range of the ratio is more preferably 80 to 500,000, The epoxy resin residue as the hydrophobic segment (c) is more preferably 10 to 50,000.
 金属ナノ粒子分散体(A)を構成する金属ナノ粒子(Y)の金属種としては、その金属又はイオンが分岐状ポリアルキレンイミン鎖(a-1)と配位結合できるものであれば制限されず、遷移金属系の金属化合物等の金属種を使用できる。なかでもイオン性の遷移金属であることが好ましく、銅、銀、金、ニッケル、パラジウム、白金、コバルト等の遷移金属であることがより好ましい。また金属ナノ粒子分散体(A)を構成する金属ナノ粒子(Y)は一種類であっても、二種類以上であってもよい。例示した遷移金属の中でも特に銀、金、パラジウム、白金は、その金属イオンがポリエチレンイミンに配位した後、室温または加熱状態で自発的に還元されるため特に好ましい。さらにその中でも還元反応の容易さ、取扱い易さ等の面から銀、金、白金が最も好ましい遷移金属である。 The metal species of the metal nanoparticles (Y) constituting the metal nanoparticle dispersion (A) are not limited as long as the metal or ion can coordinate with the branched polyalkyleneimine chain (a-1). Alternatively, a metal species such as a transition metal-based metal compound can be used. Of these, ionic transition metals are preferable, and transition metals such as copper, silver, gold, nickel, palladium, platinum, and cobalt are more preferable. Moreover, the metal nanoparticle (Y) which comprises a metal nanoparticle dispersion (A) may be one type, or may be two or more types. Among the exemplified transition metals, silver, gold, palladium, and platinum are particularly preferable because the metal ions are spontaneously reduced at room temperature or in a heated state after coordination with polyethyleneimine. Among them, silver, gold, and platinum are the most preferred transition metals in terms of ease of reduction reaction and ease of handling.
 金属ナノ粒子分散体(A)中の金属ナノ粒子(Y)の含有量としては、特に限定されるものではないが、含有量が少なすぎると分散体中の金属ナノ粒子の特性が現れにくく、また多すぎると分散体中の金属ナノ粒子の相対重量が増し、その相対重量と分散体の分散保持力との兼ね合いによって、金属ナノ粒子分散体が沈降することが予想される観点、ならびに、高分子化合物(X)中のアルキレンイミン単位による、還元能力や配位能力等の観点から、該金属ナノ粒子(Y)の含有率としては、ポリアルキレンイミン鎖(a)を形成する全窒素原子数を100molとしたとき、金属ナノ粒子(Y)は通常1~20,000molの範囲であり、1~10,000molの範囲であることが好ましく、特に、後述の製造方法において、還元剤を併用する場合には50~7,000mol、還元剤を併用しない場合には、5~70molであることが好ましい。 The content of the metal nanoparticles (Y) in the metal nanoparticle dispersion (A) is not particularly limited, but if the content is too small, the characteristics of the metal nanoparticles in the dispersion are difficult to appear, If the amount is too large, the relative weight of the metal nanoparticles in the dispersion increases, and the viewpoint that the metal nanoparticle dispersion is expected to settle due to the balance between the relative weight and the dispersion holding power of the dispersion is high. From the viewpoint of reducing ability and coordination ability due to the alkyleneimine unit in the molecular compound (X), the content of the metal nanoparticles (Y) is the total number of nitrogen atoms forming the polyalkyleneimine chain (a). The metal nanoparticles (Y) are usually in the range of 1 to 20,000 mol, preferably in the range of 1 to 10,000 mol, particularly in the production method described later, 50 ~ 7,000mol when used in combination, if no combination of reducing agent is preferably 5 ~ 70 mol.
 高分子化合物(X)の含有量は、前記金属ナノ粒子(Y)に対して、1~5質量%の範囲にあることが好ましく、特に好ましくは、3~5質量%である。 The content of the polymer compound (X) is preferably in the range of 1 to 5% by mass, particularly preferably 3 to 5% by mass, based on the metal nanoparticles (Y).
 金属ナノ粒子分散体(A)を構成する金属ナノ粒子(Y)の粒子径としては、特に限定されるものではないが、金属ナノ粒子分散体がより高い分散安定性を有するためには、本発明の金属ナノ粒子分散体を構成する金属ナノ粒子(Y)の粒子径は1~50nmの微粒子であることが好ましく、5~30nmの範囲であることがより好ましい。 The particle diameter of the metal nanoparticles (Y) constituting the metal nanoparticle dispersion (A) is not particularly limited, but for the metal nanoparticle dispersion to have higher dispersion stability, The particle diameter of the metal nanoparticles (Y) constituting the metal nanoparticle dispersion of the invention is preferably fine particles of 1 to 50 nm, and more preferably in the range of 5 to 30 nm.
 本発明に用いる金属ナノ粒子分散体の製造方法は、ポリアルキレンイミン鎖と、親水性セグメントを有する化合物を分散した媒体中に、金属の塩又は金属のイオン溶液を加え、該金属イオンを還元し、金属ナノ粒子として安定化することを特徴とする。このようにして製造した金属ナノ粒子分散体は、分散安定性、保存特性に優れ、金属ナノ粒子が有する発色、触媒、電気的機能等、様々な金属含有機能性分散体としての能力を有している。 In the method for producing a metal nanoparticle dispersion used in the present invention, a metal salt or a metal ion solution is added to a medium in which a compound having a polyalkyleneimine chain and a hydrophilic segment is dispersed, and the metal ion is reduced. It is characterized by being stabilized as metal nanoparticles. The metal nanoparticle dispersion produced in this way is excellent in dispersion stability and storage characteristics, and has the ability as various metal-containing functional dispersions such as color development, catalyst, and electrical function of the metal nanoparticles. ing.
 ここで使用できる金属イオンとしては、水溶性金属化合物であればよく、金属カチオンと対アニオンとの塩類のもの、あるいは金属が対アニオン中に含まれるものなどを用いることができ、遷移金属等の金属種を有する金属イオンを好ましく使用できる。 The metal ion that can be used here may be a water-soluble metal compound, such as a salt of a metal cation and a counter anion, or a metal that is contained in the counter anion, etc. A metal ion having a metal species can be preferably used.
 これら金属イオンの中でも、上記したように、特に銀、金、パラジウム、白金の金属イオンはポリエチレンイミンに配位された後、室温または加熱状態で自発的に還元され、非イオン性の金属ナノ粒子に変換されるため好ましい。 Among these metal ions, as described above, in particular, metal ions of silver, gold, palladium, and platinum are coordinated to polyethyleneimine, and then spontaneously reduced at room temperature or in a heated state, thereby producing nonionic metal nanoparticles. It is preferable because it is converted to.
 自発的に還元しない金属、あるいは自発的な還元が不十分である金属を使用する場合、または、分散体中に多くの金属を取り込ませたい場合等には、更に還元剤により、金属イオンを還元させる工程を経ることにより金属ナノ粒子分散体を形成させることもできる。 When using a metal that does not reduce spontaneously, or a metal that is not sufficiently reduced spontaneously, or when you want to incorporate a large amount of metal into the dispersion, reduce the metal ion with a reducing agent. A metal nanoparticle dispersion can also be formed by passing through the process of making it.
 前記還元剤としては、種々の還元剤を用いる事ができ、特に限定されるものではなく、得られる金属ナノ粒子分散体の使用用途や、含有させる金属種等により還元剤を選択することが好ましい。用いる事ができる還元剤としては、例えば、水素、水素化ホウ素ナトリウム、水素化ホウ素アンモニウム等のホウ素化合物、メタノール、エタノール、プロパノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類、アスコルビン酸、クエン酸、クエン酸ナトリウム等の酸類、プロピルアミン、ブチルアミン、ジエチルアミン、ジプロピルアミン、ジメチルエチルアミン、トリエチルアミン、エチレンジアミン、トリエチレンテトラミン、メチルアミノエタノール、ジメチルアミノエタノール、トリエタノールアミン等のアミン類、ヒドラジン、炭酸ヒドラジン等のヒドラジン類等が挙げられる。これらの中でも、工業的入手のし易さ、取扱い面等からより好ましいものとしては、水素化ホウ素ナトリウム、アスコルビン酸、クエン酸ナトリウム、メチルアミノエタノール、ジメチルアミノエタノール等である。 Various reducing agents can be used as the reducing agent, and the reducing agent is not particularly limited. It is preferable to select the reducing agent depending on the intended use of the resulting metal nanoparticle dispersion, the metal species to be contained, and the like. . Examples of reducing agents that can be used include boron compounds such as hydrogen, sodium borohydride, ammonium borohydride, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, ethylene glycol, and propylene glycol, formaldehyde, acetaldehyde, Aldehydes such as propionaldehyde, acids such as ascorbic acid, citric acid, sodium citrate, propylamine, butylamine, diethylamine, dipropylamine, dimethylethylamine, triethylamine, ethylenediamine, triethylenetetramine, methylaminoethanol, dimethylaminoethanol, Examples include amines such as triethanolamine, and hydrazines such as hydrazine and hydrazine carbonate. Among these, sodium borohydride, ascorbic acid, sodium citrate, methylaminoethanol, dimethylaminoethanol and the like are more preferable from the viewpoint of industrial availability and handling.
 表面エネルギー調整剤(B)は、反転印刷において、ブランケット表面にインキ組成物が均一に良好に塗布できるように、インキ組成物の表面エネルギーを、ブランケット表面における表面エネルギーよりも小さくするために添加されるものでもある。表面エネルギー調整剤のインキ組成物中の濃度は、0.03~5.0質量%とし、0.03質量%以上とすることが好ましく、0.09質量%以上とすることがより好ましく、0.15質量%することが更に好ましい。これにより、ブランケットへのインキ塗工時に、塗工された塗膜の平滑性が向上し、より均一な塗膜が得られる。表面エネルギー調整剤のインキ組成物中の濃度が0.03質量%未満では、ブランケット上でのインキはじきが発生したり、インキ塗膜が均一にならずムラやスジが生じたりして好ましくない。一方、表面エネルギー調整剤のインキ組成物中の濃度が5.0質量%を超えると、被印刷基材上へ転写後、インキ塗膜中の表面エネルギー調整剤が被印刷基材とインキ塗膜との密着性を阻害する不具合が生じてこれも好ましくない。 The surface energy adjusting agent (B) is added to make the surface energy of the ink composition smaller than the surface energy on the blanket surface so that the ink composition can be uniformly and satisfactorily applied to the blanket surface in reverse printing. It is also a thing. The concentration of the surface energy adjusting agent in the ink composition is 0.03 to 5.0% by mass, preferably 0.03% by mass or more, more preferably 0.09% by mass or more, and 0 More preferably, the content is 15% by mass. Thereby, the smoothness of the coated film improves at the time of ink coating to a blanket, and a more uniform coating film is obtained. If the concentration of the surface energy adjusting agent in the ink composition is less than 0.03% by mass, ink repelling on the blanket may occur, the ink coating film may not be uniform, and unevenness and streaks may occur. On the other hand, when the concentration of the surface energy adjusting agent in the ink composition exceeds 5.0% by mass, the surface energy adjusting agent in the ink coating film is transferred to the printing substrate and the ink coating film after being transferred onto the printing substrate. This causes an inconvenience that interferes with the adhesiveness, and this is also not preferable.
 この表面エネルギー調整剤としては、フッ素系界面活性剤、あるいは、シリコーン系界面活性剤を用いることができる。本発明のインキ組成物にあっては、これら界面活性剤の1種または2種以上が用いられる。この表面エネルギー調整剤の具体的なものとしては、フッ素系界面活性剤としてメガファックF-470、メガファックF-472、メガファックF-484、メガファックTF-1159、メガファックTF-1303(以上、商品名 DIC(株)製)などが挙げられ、シリコーン系界面活性剤として、BYK-307、BYK-333、BYK-345、BYK-349、BYK-375、BYK-378(以上、商品名 ビックケミー社)が挙げられる。 As the surface energy adjusting agent, a fluorine-based surfactant or a silicone-based surfactant can be used. In the ink composition of the present invention, one or more of these surfactants are used. Specific examples of the surface energy adjusting agent include, as a fluorosurfactant, Megafac F-470, Megafac F-472, Megafac F-484, Megafac TF-1159, Megafac TF-1303 (and above). As a silicone-based surfactant, BYK-307, BYK-333, BYK-345, BYK-349, BYK-375, BYK-378 (above, trade names Bic Chemie) Company).
 本発明の反転印刷用導電性インキに用いる離型剤(C)としては、シリコーンオイルが好ましい。本発明のインキ組成物に当たってこのシリコーンオイルの1種または2種以上が用いられる。この離型剤の具体的なものは、KF-96シリーズ(商品名 信越化学社製)
、SH28PA(商品名 東レダウケミカル社製)、グラノールシリーズ(商品名 共栄社製)などが挙げられる。
Silicone oil is preferable as the release agent (C) used in the conductive ink for reverse printing of the present invention. One or more of these silicone oils are used in the ink composition of the present invention. The specific release agent is KF-96 series (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
, SH28PA (trade name, manufactured by Toray Dow Chemical Co., Ltd.) and Granol series (trade name, manufactured by Kyoei Co., Ltd.).
 本発明の反転印刷用導電性インキに用いる速乾性有機溶剤(D)とは、溶解度パラメーターが11以上で、かつ20℃における蒸気圧が30mmHg以上である有機溶剤を言う。 The fast-drying organic solvent (D) used in the conductive ink for reverse printing of the present invention refers to an organic solvent having a solubility parameter of 11 or more and a vapor pressure at 20 ° C. of 30 mmHg or more.
 また、この速乾性有機溶剤は、上記の特性を備えたエステル系溶剤、アルコール系溶剤、エーテル系溶剤及び炭化水素系溶剤のいずれか1つ以上が用いられる。この速乾性有機溶剤は、ブランケットにインキ塗膜が形成される時には、インキ組成物が良好な流動性を有するために用いられ、その後、凸版にて画像化されるまでの間に、大気中に揮発もしくはグランケットに吸収されることで、インキ粘度が上昇し、画像化に最適な粘度と粘着性と凝集力を有するようにするために配合される。このような機能を発揮するために、上述の溶解度パラメーターが11以上で、かつ20℃における蒸気圧が30mmHg以上であることが必要になる。 In addition, as the quick-drying organic solvent, any one or more of an ester solvent, an alcohol solvent, an ether solvent and a hydrocarbon solvent having the above-described characteristics is used. This quick-drying organic solvent is used when the ink film is formed on the blanket so that the ink composition has good fluidity, and then in the atmosphere until it is imaged on the relief printing plate. The ink viscosity is increased by volatilization or absorption by a blanket, and is blended so as to have the optimum viscosity, tackiness and cohesion for imaging. In order to exert such a function, it is necessary that the solubility parameter is 11 or more and the vapor pressure at 20 ° C. is 30 mmHg or more.
 本発明の反転印刷用導電性インキにおいて速乾性有機溶剤を含有しないと、ブランケット上のインキ塗膜が十分に乾燥せず、凸版以外部分にもインキ塗膜が転移し、ブランケット上に良好な画像が形成されない等の不具合が生じるために好ましくない。これらの速乾性有機溶剤は、ビヒクルの溶解性、金属ナノ粒子分散体への親和性を考慮し、それぞれに応じた溶剤が選択されるが、例として、次に挙げられるものが用いられる。 If the conductive ink for reversal printing of the present invention does not contain a quick-drying organic solvent, the ink coating on the blanket will not dry sufficiently, and the ink coating will transfer to portions other than the relief plate, resulting in a good image on the blanket. This is not preferable because a defect such as not being formed occurs. These fast-drying organic solvents are selected according to the solubility of the vehicle and the affinity for the metal nanoparticle dispersion, and the following solvents are used as examples.
 エステル系溶剤として、酢酸エチル、酢酸ノルマルプロピル、酢酸イソプロピル、アルコール系溶剤として、メタノール、エタノール、1-プロパノール、2-プロパノール、炭化水素系溶剤として、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、トルエン、キシレン等が挙げられる。またこれらは、それぞれの系内及び複数の系の混合物でもよい。エーテル系溶剤として、ジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、1,3-ジオキソラン等が挙げられる。中でも、酢酸イソプロピル、エタノール及び2-プロパノールが、その蒸発速度や表面張力からみて好ましい。 As ester solvents, ethyl acetate, normal propyl acetate, isopropyl acetate, alcohol solvents as methanol, ethanol, 1-propanol, 2-propanol, hydrocarbon solvents as pentane, hexane, cyclohexane, methylcyclohexane, toluene, xylene Etc. These may also be a mixture of each system and a plurality of systems. Examples of ether solvents include diethyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane and the like. Of these, isopropyl acetate, ethanol and 2-propanol are preferable in view of their evaporation rate and surface tension.
 本発明の反転印刷用導電性インキに用いる遅乾性有機溶剤(E)とは、20℃での蒸気圧が30mmHg未満のエステル系溶剤、アルコール系溶剤、エーテル系溶剤及び炭化水素系溶剤のいずれか1つ以上が用いられる。 The slow-drying organic solvent (E) used for the conductive ink for reverse printing of the present invention is any of ester solvents, alcohol solvents, ether solvents and hydrocarbon solvents whose vapor pressure at 20 ° C. is less than 30 mmHg. One or more are used.
 この遅乾性有機溶剤は、凸版によりブランケットに形成された画像化されたインキ塗膜が被印刷基材上に転写されるまで、ブランケット上に残留することで、インキの粘度が一定以上に上昇することを防ぎ、被印刷基材上に良好な画像を得ることが出来るようにするために用いられる。 This slow-drying organic solvent remains on the blanket until the imaged ink coating formed on the blanket by the relief printing is transferred onto the substrate to be printed, thereby increasing the viscosity of the ink beyond a certain level. This is used to prevent this and obtain a good image on the substrate to be printed.
 また、その配合量は、全有機溶剤中の20質量%未満であることが好ましい。この配合量が20質量%を超えると、ブランケットからの有機溶剤の揮発が遅くなり、ブランケットの膨潤が一定となることが遅くなる。インキ中では、0.5~1.5質量%程度が望ましい。 Moreover, it is preferable that the compounding quantity is less than 20 mass% in all the organic solvents. When this compounding quantity exceeds 20 mass%, volatilization of the organic solvent from a blanket will become slow, and it will become late that the swelling of a blanket becomes fixed. In the ink, about 0.5 to 1.5% by mass is desirable.
 これらの遅乾性有機溶剤は、ビヒクルの溶解性、金属ナノ粒子分散体への親和性を考慮し、それぞれに応じた溶剤が選択されるが、例として、次に挙げられるものが用いられる。 These slow-drying organic solvents are selected according to the solubility of the vehicle and the affinity for the metal nanoparticle dispersion, and the following solvents are used as examples.
 エステル系溶剤として、プロピレングリコールモノメチルエーテルアセテート(PGMAc)、3-メトキシ-3メチル-ブチルアセテート(「ソルフィットAC」商品名:クラレ製)、エトキシエチルプロピオネート(EEP)、アルコール系溶剤として、1-ブタノール、ダイヤドール135(商品名:三菱レーヨン製)、2,3-ジメチル-1,5-ペンタンジオール(協和発酵社製 PD9)、3-メトキシ-3-メチル-1ブタノール、1-ヘキサノール、1,3-ブタンジオール、1-ペンタノール、2-メチル1-ブタノール、4-メチル-2-ペンタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等が挙げられる。 As ester solvents, propylene glycol monomethyl ether acetate (PGMAc), 3-methoxy-3-methyl-butyl acetate ("Solfit AC", trade name: Kuraray), ethoxyethyl propionate (EEP), alcohol solvents, 1-butanol, Diadol 135 (trade name: manufactured by Mitsubishi Rayon), 2,3-dimethyl-1,5-pentanediol (PD9 manufactured by Kyowa Hakko), 3-methoxy-3-methyl-1-butanol, 1-hexanol 1,3-butanediol, 1-pentanol, 2-methyl 1-butanol, 4-methyl-2-pentanol, ethylene glycol, diethylene glycol, triethylene glycol, glycerin and the like.
 エーテル系溶剤として、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールターシャリーブチルエーテル、ジプロピレングリコールモノメチルエーテル、エチレングリコールブチルエーテル、エチレングリコールエチルエーテル、エチレングリコールメチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールエチルエーテル等が挙げられる。 Examples of ether solvents include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol tertiary butyl ether, dipropylene glycol monomethyl ether, ethylene glycol butyl ether, ethylene glycol ethyl ether, ethylene glycol methyl ether, diethylene glycol butyl ether, and diethylene glycol ethyl ether. Can be mentioned.
 炭化水素系溶剤として、ソルベッソ100、ソルベッソ150(商品名:エクソン化学製)、N-メチルピロリドンが挙げられる。またこれらは、それぞれの系内及び複数の系の混合物でも良い。中でも、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-3-メチル-ブチルアセテート、エトキシエチルプロピオネート、ダイヤドール135が、その蒸発速度や表面張力からみて好ましい。 Examples of hydrocarbon solvents include Solvesso 100, Solvesso 150 (trade name: manufactured by Exxon Chemical), and N-methylpyrrolidone. These may be a mixture of each system and a plurality of systems. Of these, propylene glycol monomethyl ether acetate, 3-methoxy-3-methyl-butyl acetate, ethoxyethyl propionate, and Diadol 135 are preferable in view of their evaporation rate and surface tension.
 本発明の反転印刷用導電性インキには、更に、溶剤として、水を含有することが出来る。 The conductive ink for reversal printing of the present invention can further contain water as a solvent.
 本発明の反転印刷用導電性インキには、更に、密着性の更なる向上のために、メラミン樹脂を含有することが出来る。メラミン樹脂としては、無触媒で熱硬化の機能を有して、例えば、メラミンに含まれる残基がメチロール基あるいはイミノ基を有するものが挙げられる。メラミン樹脂を添加する場合、メラミン樹脂のインキ中の含有量は0.1~2%程度が望ましい。更に、導電性向上を意図すると、0.1~0.4%がより好ましい。 The conductive ink for reversal printing of the present invention can further contain a melamine resin for further improvement of adhesion. Examples of the melamine resin include a non-catalytic and thermosetting function, for example, a residue contained in melamine having a methylol group or an imino group. When the melamine resin is added, the content of the melamine resin in the ink is desirably about 0.1 to 2%. Furthermore, if intended to improve conductivity, 0.1 to 0.4% is more preferable.
 他の成分として、インキの分散安定性を向上させる上で、分散剤を必要に応じて添加することができる。具体的なものとして、Solsperse シリーズ(商品名 Lubrisol社製)、DISPER BYKシリーズ(商品名 ビックケミー社製)を必要に
応じて添加することが出来る。
As other components, a dispersant can be added as necessary to improve the dispersion stability of the ink. Specifically, the Solsperse series (trade name, manufactured by Lubrisol) and the DISPER BYK series (trade name, manufactured by Big Chemie) can be added as necessary.
 本発明の反転印刷用導電性インキの製造方法は、高分子化合物(X)に硝酸銀を添加して作製した、銀粒子エタノール分散液(A-1)、速乾性有機溶剤D、遅乾性有機溶剤E、離型剤C、表面エネルギー調整剤Bを配合し、定法にしたがって攪拌することで調製することができる。必要に応じて、水、メラミン樹脂を添加することも出来る。 The method for producing a conductive ink for reverse printing according to the present invention comprises a silver particle ethanol dispersion (A-1), a fast-drying organic solvent D, a slow-drying organic solvent prepared by adding silver nitrate to the polymer compound (X). E, mold release agent C, and surface energy adjusting agent B can be blended and prepared according to a conventional method. Water and melamine resin can be added as necessary.
 (高分子化合物の合成)
合成例1(PEG-分岐PEI構造を有する高分子化合物(X-1)の合成)
1-1 [トシル化ポリエチレングリコールの合成]
クロロホルム150mlにPEGM〔数平均分子量(Mn)5000〕(アルドリッチ社製)150g〔30mmol〕とピリジン24g(300mmol)とを混合した溶液と、トシルクロライド29g(150mmol)とクロロホルム30mlとを均一に混合した溶液をそれぞれ調製した。
(Synthesis of polymer compounds)
Synthesis Example 1 (Synthesis of PEG-branched PEI structure polymer compound (X-1))
1-1 [Synthesis of tosylated polyethylene glycol]
A solution obtained by mixing 150 g of PEGM [number average molecular weight (Mn) 5000] (manufactured by Aldrich) and 24 g (300 mmol) of pyridine with 150 g of chloroform, and 29 g (150 mmol) of tosyl chloride and 30 ml of chloroform were uniformly mixed. Each solution was prepared.
 PEGMとピリジンの混合溶液を20℃で攪拌しながら、ここにトシルクロライドのトルエン溶液を滴下した。滴下終了後、40℃で2時間反応させた。反応終了後、クロロホルム150ml加えて希釈し、5%HCl水溶液250ml(340mmol)で洗浄後、飽和食塩水と水で洗浄した。得られたクロロホルム溶液を硫酸ナトリウムで乾燥した後、エバポレータで溶媒を留去し、さらに乾燥した。収率は100%であった。1H-NMRスペクトルにより各ピークの帰属を行い(2.4ppm:トシル基中のメチル基、3.3ppm:PEGM末端のメチル基、3.6ppm:PEGのEG鎖、7.3~7.8ppm:トシル基中のベンゼン環)、トシル化ポリエチレングリコールであることを確認した。 While stirring a mixed solution of PEGM and pyridine at 20 ° C., a toluene solution of tosyl chloride was added dropwise thereto. After completion of the dropping, the reaction was carried out at 40 ° C. for 2 hours. After completion of the reaction, 150 ml of chloroform was added for dilution, washed with 250 ml (340 mmol) of 5% HCl aqueous solution, and then with saturated saline and water. The obtained chloroform solution was dried over sodium sulfate, and then the solvent was distilled off with an evaporator and further dried. The yield was 100%. Each peak was assigned by 1H-NMR spectrum (2.4 ppm: methyl group in tosyl group, 3.3 ppm: methyl group at the end of PEGM, 3.6 ppm: EG chain of PEG, 7.3 to 7.8 ppm: Benzene ring in the tosyl group) and tosylated polyethylene glycol.
1-2 [PEG-分岐PEI構造を有する高分子化合物の合成]
上記1-1で得られたトシル化ポリエチレングリコール23.2g(4.5mmol)と、分岐状ポリエチレンイミン(日本触媒株式会社製、エポミンSP200)15.0g(1.5mmol)をDMA180mlに溶解後、炭酸カリウム0.12gを加え、窒素雰囲気下、100℃で6時間反応させた。反応終了後、固形残渣を除去し、酢酸エチル150mlとヘキサン450mlの混合溶媒を加え、沈殿物を得た。該沈殿物をクロロホルム100mlに溶解し、再度酢酸エチル150mlとヘキサン450mlの混合溶媒を加えて再沈させた。これをろ過し、減圧下で乾燥した。1H-NMRスペクトルにより各ピークの帰属を行い(2.3~2.7ppm:分岐PEIのエチレン、3.3ppm:PEG末端のメチル基、3.6ppm:PEGのEG鎖)、PEG-分岐PEI構造を有する高分子化合物であることを確認した。収率は99%であった。
1-2 [Synthesis of polymer compound having PEG-branched PEI structure]
After dissolving 23.2 g (4.5 mmol) of the tosylated polyethylene glycol obtained in 1-1 and 15.0 g (1.5 mmol) of branched polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., Epomin SP200) in 180 ml of DMA, Potassium carbonate 0.12g was added and it was made to react at 100 degreeC under nitrogen atmosphere for 6 hours. After completion of the reaction, the solid residue was removed, and a mixed solvent of 150 ml of ethyl acetate and 450 ml of hexane was added to obtain a precipitate. The precipitate was dissolved in 100 ml of chloroform and reprecipitated again by adding a mixed solvent of 150 ml of ethyl acetate and 450 ml of hexane. This was filtered and dried under reduced pressure. Each peak is assigned by 1H-NMR spectrum (2.3 to 2.7 ppm: ethylene of branched PEI, 3.3 ppm: methyl group at the PEG end, 3.6 ppm: EG chain of PEG), PEG-branched PEI structure It was confirmed that the polymer compound had The yield was 99%.
 (実施例1)
合成例1で得られた、分岐状ポリエチレンイミン鎖(a)と親水性ポリエチレングリコール鎖(b)の比が1:3の高分子化合物(X-1)20mgを水2.39gに溶かした溶液1Aと、硝酸銀0.16gを水1.30gに溶かした溶液1B、クエン酸ナトリウム0.12gを水0.25gに溶かした溶液1Cをそれぞれ調製した。25℃で攪拌しながら、溶液1Aに溶液1Bを加え、続いて溶液1Cを加えた。攪拌後、透析により高分子化合物(X-1)を一部除去し、銀に対する高分子化合物(X-1)の含有量が4.1質量%である銀粒子エタノール分散液(A-1)を得た。銀粒子の平均粒径は30nmであり、分散液中の銀の含有量は29質量%、高分子化合物(X-1)の含有量は1.2質量%であった。この銀粒子エタノール分散液(A-1)1.0g、エタノール(速乾性有機溶剤D)0.64g、グリセリン(遅乾性有機溶剤E)10質量%のエタノール溶液0.26g、シリコーンオイル(離型剤C:信越化学製 KF96-2cs)10質量%のエタノール溶液0.24g、シリコーン系界面活性剤(表面エネルギー調整剤B:ビックケミー社製 BYK-333)10質量%のエタノール溶液0.02g、メラミン樹脂(イミノタイプのメラミン樹脂:日本サイディックインダストリーズ社製、サイメル325)10質量%のエタノール溶液0.08gを配合し、10分間撹拌し、実施例1インキを調製した。
Example 1
A solution obtained by dissolving 20 mg of the polymer compound (X-1) having a ratio of the branched polyethyleneimine chain (a) to the hydrophilic polyethylene glycol chain (b) of 1: 3 in 2.39 g of water, obtained in Synthesis Example 1. 1A, a solution 1B in which 0.16 g of silver nitrate was dissolved in 1.30 g of water, and a solution 1C in which 0.12 g of sodium citrate was dissolved in 0.25 g of water were prepared. While stirring at 25 ° C., solution 1B was added to solution 1A, followed by solution 1C. After stirring, a part of the polymer compound (X-1) is removed by dialysis, and the silver particle ethanol dispersion (A-1) in which the content of the polymer compound (X-1) with respect to silver is 4.1% by mass Got. The average particle diameter of the silver particles was 30 nm, the silver content in the dispersion was 29% by mass, and the content of the polymer compound (X-1) was 1.2% by mass. 1.0 g of this silver particle ethanol dispersion (A-1), 0.64 g of ethanol (fast-drying organic solvent D), 0.26 g of ethanol solution of 10% by weight of glycerin (slow-drying organic solvent E), silicone oil (release) Agent C: 0.24 g of 10% by weight ethanol solution (KF96-2cs) manufactured by Shin-Etsu Chemical Co., Ltd., 0.02 g of 10% by weight ethanol solution of silicone surfactant (Surface Energy Modifier B: BYK-333 manufactured by BYK Chemie), melamine 0.08 g of a 10% by weight ethanol solution (Imino type melamine resin: Cymel 325, manufactured by Nippon Cydic Industries Co., Ltd.) was blended and stirred for 10 minutes to prepare Example 1 ink.
 (実施例2)
銀粒子エタノール分散液(A-1)、1.0g、エタノール(速乾性有機溶剤D)0.33g、2,3-ジメチル-1,5-ペンタンジオール(遅乾性有機溶剤E:協和発酵製 PD9)10質量%のエタノール溶液0.59g、シリコーンオイル(離型剤C:東レダウケミカル製 SH28PA)10質量%のエタノール溶液0.30g、フッ素系界面活性剤(表面エネルギー調整剤:DIC社製 メガファックTF-1303)30質量%のメチルエチルケトン(MEK)溶液0.05g、メラミン樹脂(イミノタイプのメラミン樹脂:日本サイディックインダストリーズ社製 サイメル325)10質量%のエタノール溶液0.40gを配合し、10分間撹拌し、実施例2インキを調製した。
(Example 2)
Silver particle ethanol dispersion (A-1), 1.0 g, ethanol (fast drying organic solvent D) 0.33 g, 2,3-dimethyl-1,5-pentanediol (slow drying organic solvent E: manufactured by Kyowa Hakko PD9 ) 10% ethanol solution 0.59g, Silicone oil (release agent C: SH28PA manufactured by Toray Dow Chemical) 10% ethanol solution 0.30g, Fluorosurfactant (Surface energy modifier: DIC Corporation Mega Facque TF-1303) 30 g% methyl ethyl ketone (MEK) solution 0.05 g, melamine resin (Imino type melamine resin: Cymel 325 manufactured by Nihon Cydic Industries Co., Ltd.) 10 mass% ethanol solution 0.40 g Stir for minutes to prepare Example 2 ink.
 (実施例3)
銀粒子エタノール分散液(A-1)、1.0g、エタノール(速乾性有機溶剤D)0.80g、グリセリン(遅乾性有機溶剤E)10質量%のエタノール溶液0.26g、シリコーンオイル(離型剤C:信越化学製 KF96-2cs)10質量%のエタノール溶液0.24g、シリコーン系界面活性剤(表面エネルギー調整剤B:ビックケミー社製 BYK-333)10質量%のエタノール溶液0.02g、を配合し、10分間撹拌し、実施例3インキを調製した。
(Example 3)
Silver particle ethanol dispersion (A-1), 1.0 g, ethanol (fast drying organic solvent D) 0.80 g, glycerin (slow drying organic solvent E) 10 mass% ethanol solution 0.26 g, silicone oil (release) Agent C: 0.24 g of a 10% by mass ethanol solution (KF96-2cs) manufactured by Shin-Etsu Chemical Co., Ltd., 0.02 g of a 10% by mass ethanol solution of a silicone-based surfactant (surface energy modifier B: BYK-333 manufactured by BYK Chemie) Blended and stirred for 10 minutes to prepare Example 3 ink.
 (比較例1)
銀粒子エタノール分散液(A-1)、1.0g、エタノール(速乾性有機溶剤D)1.10g、シリコーンオイル(離型剤C:信越化学製 KF96-2cs)10質量%のエタノール溶液0.24g、シリコーン系界面活性剤(表面エネルギー調整剤B:ビックケミー社製 BYK-333)10質量%のエタノール溶液0.02g、を配合し、10分間撹拌し、比較例1インキを調製した。
(Comparative Example 1)
Ethanol solution of silver particle ethanol dispersion (A-1), 1.0 g, 1.10 g of ethanol (fast-drying organic solvent D), 10% by mass of silicone oil (release agent C: KF96-2cs manufactured by Shin-Etsu Chemical) 24 g and 0.02 g of a 10 mass% ethanol solution (surface energy adjusting agent B: BYK-333 manufactured by BYK-Chemie Co., Ltd.) were mixed and stirred for 10 minutes to prepare Comparative Example 1 ink.
 (評価サンプルの調製)
調製した各実施例インキ、比較例インキを、塗布量(乾燥膜厚)0.16μm、シリコンブランケットに塗布し、30秒後、塗布面を、パターンが形成されているガラス版に押しつけインキの転写除去を行った。その後、一定時間経過後に、シリコンブランケット上に形成されたパターンをガラス基板に転写し、180℃、30分間焼成を行って、評価サンプルを得た。
(Preparation of evaluation sample)
The prepared inks of the examples and comparative examples were applied to a silicon blanket with a coating amount (dry film thickness) of 0.16 μm, and after 30 seconds, the coated surface was pressed against the glass plate on which the pattern was formed. Removal was performed. Thereafter, after a certain period of time, the pattern formed on the silicon blanket was transferred to a glass substrate and baked at 180 ° C. for 30 minutes to obtain an evaluation sample.
 (転写可能時間)
塗布面を、パターンが形成されているガラス版に押しつけインキの転写除去を行いブランケット上にパターン形成を行った後、室温22℃、湿度45%下にて、30秒後、60秒後、120秒後、180秒後、240秒後、300秒後、440秒後、600秒後と一定時間経過後にガラス基板へのパターン転写を実行する。240秒経過後の転写が可能であることが目安となる。
(Transferable time)
The coated surface was pressed against a glass plate on which a pattern was formed, and the ink was transferred and removed to form a pattern on the blanket. Then, at room temperature of 22 ° C. and humidity of 45%, after 30 seconds, after 60 seconds, 120 Second, 180 seconds, 240 seconds, 300 seconds, 440 seconds, 600 seconds, and the like, pattern transfer to the glass substrate is performed after a certain period of time. The standard is that the transfer after 240 seconds is possible.
 (密着性)
ブランケット上にパターン形成後、240秒経過後にガラス基板に転写し、印刷物を180℃、30分間加熱焼成した後、塗膜表面を指でこすり、剥離性を見る。
(Adhesion)
After the pattern is formed on the blanket, it is transferred to a glass substrate after 240 seconds and the printed material is heated and baked at 180 ° C. for 30 minutes, and then the surface of the coating film is rubbed with a finger and the peelability is observed.
 (解像性)
ブランケット上にパターン形成後、240秒経過後にガラス基板に転写し、印刷物を180℃、30分間加熱焼成し、顕微鏡にて解像性を確認する。解像性の評価は、L/S=5/5μmを達成したか否かで判断する。
(Resolution)
After the pattern is formed on the blanket, it is transferred to a glass substrate after 240 seconds, and the printed material is heated and fired at 180 ° C. for 30 minutes, and the resolution is confirmed with a microscope. The evaluation of resolution is judged by whether or not L / S = 5/5 μm is achieved.
 尚、「L/S=5/5μm」とは、細線の線幅が5μmであり、細線と細線の間隔(隙間)が5μmのパターンを印刷した際に、印刷精度が±10%以内(細線の幅が4.5~5.5μm)を達成したか否かを評価することを意味する。 “L / S = 5/5 μm” means that the line width of the fine line is 5 μm, and the printing accuracy is within ± 10% when the pattern having a space (gap) between the fine lines of 5 μm is printed (thin line) This means that it is evaluated whether or not a width of 4.5 to 5.5 μm is achieved.
 (体積抵抗率)
三菱化学製の体積抵抗率測定器ローレスターを用い、4端子法で測定した。
(Volume resistivity)
It measured by the 4-terminal method using Mitsubishi Chemical's volume resistivity measuring device Lorester.
 本発明の反転印刷用導電性インキは、その印刷方法との組み合わせにおいて、特に、高解像度の印刷が可能となる。適用できる分野として、例えば、有機トランジスタのソース又はドレイン電極の形成が挙げられる。この場合、各電極と有機半導体界面における高いキャリア注入効率が求められる。キャリア注入効率を高めるためには、電極表面に(すなわち、本発明の反転印刷用導電性インキにより得られる印刷物表面に)、インキに由来するようなキャリア注入を阻害する不純物を少なくすることが望まれる。印刷物表面に存在する不純物量の評価手法として、大気中光電子分光法を適用することができる。本発明の反転印刷用導電性インキにより得られた印刷物表面の光電子放出量を測定したところ、紫外線照射強度10nWに対して、300CPS/eV以上の良好な光電子放出量が確認された。高い光電子放出量は、有機トランジスタにおける重要特性としてのON/OFF電流比と高い相関性を有する。 The conductive ink for reversal printing according to the present invention enables high-resolution printing particularly in combination with the printing method. Applicable fields include, for example, the formation of source or drain electrodes of organic transistors. In this case, high carrier injection efficiency is required at the interface between each electrode and the organic semiconductor. In order to increase the carrier injection efficiency, it is desirable to reduce impurities on the electrode surface (that is, on the surface of the printed matter obtained by the conductive ink for reversal printing of the present invention) that impede carrier injection derived from the ink. It is. In-air photoelectron spectroscopy can be applied as a method for evaluating the amount of impurities present on the surface of a printed material. When the amount of photoelectron emission on the surface of the printed matter obtained with the conductive ink for reverse printing of the present invention was measured, a good photoelectron emission amount of 300 CPS / eV or more was confirmed with respect to the ultraviolet irradiation intensity of 10 nW. A high photoelectron emission amount is highly correlated with an ON / OFF current ratio as an important characteristic in an organic transistor.
 以上の結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明により、インキ皮膜の導電率、解像度はもとより、印刷工程における、被印刷物への転写可能時間の延長等の機能を兼ね備えた反転印刷用導電性インキを提供することができる。同インキは、その高い解像性と優れた導電性により、有機トランジスタ等の電子素子に広く適用できる。 According to the present invention, it is possible to provide a conductive ink for reversal printing that has not only the conductivity and resolution of the ink film, but also functions such as extending the transferable time to the printed material in the printing process. The ink can be widely applied to electronic devices such as organic transistors because of its high resolution and excellent conductivity.

Claims (7)

  1. ポリアルキレンイミン鎖(a)と、親水性セグメント(b)を有する高分子化合物(X)の分散体と、金属ナノ粒子(Y)とを含有する金属ナノ粒子分散体(A)、表面エネルギー調整剤(B)、離型剤(C)、速乾性有機溶剤(D)及び遅乾性有機溶剤(E)を含有することを特徴とする反転印刷用導電性インキ。 Metal nanoparticle dispersion (A) containing polyalkyleneimine chain (a), dispersion of polymer compound (X) having hydrophilic segment (b), and metal nanoparticles (Y), surface energy adjustment A conductive ink for reversal printing comprising an agent (B), a release agent (C), a fast-drying organic solvent (D), and a slow-drying organic solvent (E).
  2. 前記高分子化合物(X)が、ポリアルキレンイミン鎖(a)、親水性セグメント(b)及び疎水性セグメント(c)を有する高分子化合物である請求項1に記載の反転印刷用導電性インキ。 The conductive ink for reverse printing according to claim 1, wherein the polymer compound (X) is a polymer compound having a polyalkyleneimine chain (a), a hydrophilic segment (b), and a hydrophobic segment (c).
  3. 前記ポリアルキレンイミン鎖(a)が、分岐状ポリアルキレンイミン鎖(a-1)である請求項1又は2に記載の反転印刷用導電性インキ。 The conductive ink for reverse printing according to claim 1, wherein the polyalkyleneimine chain (a) is a branched polyalkyleneimine chain (a-1).
  4. 前記した金属ナノ粒子(Y)が、粒径15nm~50nmの銀粒子である請求項1~3のいずれかに記載の反転印刷用導電性インキ。 The conductive ink for reverse printing according to any one of claims 1 to 3, wherein the metal nanoparticles (Y) are silver particles having a particle diameter of 15 to 50 nm.
  5. 前記高分子化合物(X)の含有量が、前記金属ナノ粒子(Y)に対して、1~5質量%の範囲にある請求項1~4のいずれかに記載の反転印刷用導電性インキ。 The conductive ink for reverse printing according to any one of claims 1 to 4, wherein the content of the polymer compound (X) is in the range of 1 to 5 mass% with respect to the metal nanoparticles (Y).
  6. 溶剤として、更に水を含有する請求項1~5の何れかに記載の反転印刷用導電性インキ。 The conductive ink for reversal printing according to any one of claims 1 to 5, further comprising water as a solvent.
  7. メラミン樹脂を含有する請求項1~6の何れかに記載の反転印刷用導電性インキ。 The conductive ink for reverse printing according to any one of claims 1 to 6, comprising a melamine resin.
PCT/JP2009/061278 2008-06-23 2009-06-22 Electrically conductive ink for reverse printing WO2009157393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008163078 2008-06-23
JP2008-163078 2008-06-23

Publications (1)

Publication Number Publication Date
WO2009157393A1 true WO2009157393A1 (en) 2009-12-30

Family

ID=41444459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061278 WO2009157393A1 (en) 2008-06-23 2009-06-22 Electrically conductive ink for reverse printing

Country Status (1)

Country Link
WO (1) WO2009157393A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084813A1 (en) 2010-12-21 2012-06-28 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles
EP2608217A1 (en) 2011-12-21 2013-06-26 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a sintering additive
EP2608218A1 (en) 2011-12-21 2013-06-26 Agfa-Gevaert A Dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a thermally cleavable agent
EP2671927A1 (en) 2012-06-05 2013-12-11 Agfa-Gevaert A metallic nanoparticle dispersion
EP2781562A1 (en) 2013-03-20 2014-09-24 Agfa-Gevaert A method to prepare a metallic nanoparticle dispersion
EP2821164A1 (en) 2013-07-04 2015-01-07 Agfa-Gevaert A metallic nanoparticle dispersion
WO2015000937A1 (en) 2013-07-04 2015-01-08 Agfa-Gevaert A metallic nanoparticle dispersion
WO2015000932A1 (en) 2013-07-04 2015-01-08 Agfa-Gevaert A method of preparing a conductive metallic layer or pattern
JP2016511773A (en) * 2013-12-05 2016-04-21 Dic株式会社 Metal nanoparticle protective polymer, metal colloid solution, and production method thereof
EP3037161A1 (en) 2014-12-22 2016-06-29 Agfa-Gevaert A metallic nanoparticle dispersion
EP3099145A1 (en) 2015-05-27 2016-11-30 Agfa-Gevaert A metallic nanoparticle dispersion
EP3099146A1 (en) 2015-05-27 2016-11-30 Agfa-Gevaert A metallic nanoparticle dispersion
EP3287499A1 (en) 2016-08-26 2018-02-28 Agfa-Gevaert A metallic nanoparticle dispersion
WO2019215068A1 (en) 2018-05-08 2019-11-14 Agfa-Gevaert Nv Conductive inks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213887A (en) * 2005-02-07 2006-08-17 Dainippon Ink & Chem Inc Metal-fixed polymer association and method for producing the same
JP2007254635A (en) * 2006-03-24 2007-10-04 Dainippon Ink & Chem Inc Electroconductive ink composition and printed matter
JP2008038180A (en) * 2006-08-03 2008-02-21 Dainippon Ink & Chem Inc Dispersion of metallic nanoparticle and production method therefor
JP2008056884A (en) * 2006-08-04 2008-03-13 Hitachi Chem Co Ltd Printing ink composition and method for producing color filter using the composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213887A (en) * 2005-02-07 2006-08-17 Dainippon Ink & Chem Inc Metal-fixed polymer association and method for producing the same
JP2007254635A (en) * 2006-03-24 2007-10-04 Dainippon Ink & Chem Inc Electroconductive ink composition and printed matter
JP2008038180A (en) * 2006-08-03 2008-02-21 Dainippon Ink & Chem Inc Dispersion of metallic nanoparticle and production method therefor
JP2008056884A (en) * 2006-08-04 2008-03-13 Hitachi Chem Co Ltd Printing ink composition and method for producing color filter using the composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084813A1 (en) 2010-12-21 2012-06-28 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles
US9275773B2 (en) 2010-12-21 2016-03-01 Agfa-Gevaert N.V. Dispersion comprising metallic, metal oxide or metal precursor nanoparticles
EP2608217A1 (en) 2011-12-21 2013-06-26 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a sintering additive
EP2608218A1 (en) 2011-12-21 2013-06-26 Agfa-Gevaert A Dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a thermally cleavable agent
WO2013092576A1 (en) 2011-12-21 2013-06-27 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a sintering additive
WO2013092450A1 (en) 2011-12-21 2013-06-27 Agfa-Gevaert A dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a thermally cleavable agent
EP2671927A1 (en) 2012-06-05 2013-12-11 Agfa-Gevaert A metallic nanoparticle dispersion
WO2013182588A1 (en) 2012-06-05 2013-12-12 Agfa-Gevaert A metallic nanoparticle dispersion
EP2781562A1 (en) 2013-03-20 2014-09-24 Agfa-Gevaert A method to prepare a metallic nanoparticle dispersion
WO2014147079A1 (en) 2013-03-20 2014-09-25 Agfa-Gevaert A method to prepare a metallic nanoparticle dispersion
WO2015000891A1 (en) 2013-07-04 2015-01-08 Agfa-Gevaert A metallic nanoparticle dispersion
WO2015000937A1 (en) 2013-07-04 2015-01-08 Agfa-Gevaert A metallic nanoparticle dispersion
WO2015000932A1 (en) 2013-07-04 2015-01-08 Agfa-Gevaert A method of preparing a conductive metallic layer or pattern
EP2821164A1 (en) 2013-07-04 2015-01-07 Agfa-Gevaert A metallic nanoparticle dispersion
JP2016511773A (en) * 2013-12-05 2016-04-21 Dic株式会社 Metal nanoparticle protective polymer, metal colloid solution, and production method thereof
EP3037161A1 (en) 2014-12-22 2016-06-29 Agfa-Gevaert A metallic nanoparticle dispersion
US10676630B2 (en) 2014-12-22 2020-06-09 Agfa-Gevaert Metallic nanoparticle dispersion
EP3099145A1 (en) 2015-05-27 2016-11-30 Agfa-Gevaert A metallic nanoparticle dispersion
EP3099146A1 (en) 2015-05-27 2016-11-30 Agfa-Gevaert A metallic nanoparticle dispersion
WO2016189016A1 (en) 2015-05-27 2016-12-01 Agfa-Gevaert A metallic nanoparticle dispersion
EP3287499A1 (en) 2016-08-26 2018-02-28 Agfa-Gevaert A metallic nanoparticle dispersion
WO2018037072A1 (en) 2016-08-26 2018-03-01 Agfa-Gevaert N.V. A metallic nanoparticle dispersion
WO2019215068A1 (en) 2018-05-08 2019-11-14 Agfa-Gevaert Nv Conductive inks

Similar Documents

Publication Publication Date Title
WO2009157393A1 (en) Electrically conductive ink for reverse printing
JP6543005B2 (en) Transparent conductive substrate and method of manufacturing the same
US7806974B2 (en) Highly conductive ink composition and method for fabricating a metal conductive pattern
JP5701379B2 (en) Conductive metal ink composition and method for forming conductive pattern
US8241528B2 (en) Conductive ink for letterpress reverse printing
US9449734B2 (en) Conductive metal ink composition, and method for preparing a conductive pattern
JP5388150B2 (en) Conductive metal ink composition and method for forming conductive pattern
TWI540188B (en) Electroconductive aqueous ink for ink-jet recording and manufacturing method for electric and electronic component
JP5201407B2 (en) Conductive inkjet ink
US20130153829A1 (en) Coating forming composition used for forming transparent conductive film
TW201730257A (en) Composition for forming transparent conductor and transparent conductor made therefrom
TW201623483A (en) Photosensitive electroless plating primer
CN107532302B (en) Photonasty electroless plating substrate agent
WO2011078140A1 (en) Conductive paste for screen printing
TWI570197B (en) Conductive paste
JP2013131385A (en) Conductive paste
WO2011025228A2 (en) Conductive metal ink composition and method for forming a conductive pattern
JP2024066316A (en) Silver nanowire ink and transparent conductive film
JP2024066317A (en) Silver nanowire ink and transparent conductive film
JP2024066312A (en) Silver nanowire ink and transparent conductive film
JP2024066315A (en) Silver nanowire ink and transparent conductive film
JP2024066313A (en) Silver nanowire ink and transparent conductive film
TW202217859A (en) Conductive paste and conductive film
JPS6172045A (en) Electrically conductive paste
JPH06287762A (en) Flattened copper powder and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09770103

Country of ref document: EP

Kind code of ref document: A1