WO2009151288A2 - Oligopeptide for enhancing osteointegration and osteogenesis - Google Patents

Oligopeptide for enhancing osteointegration and osteogenesis Download PDF

Info

Publication number
WO2009151288A2
WO2009151288A2 PCT/KR2009/003141 KR2009003141W WO2009151288A2 WO 2009151288 A2 WO2009151288 A2 WO 2009151288A2 KR 2009003141 W KR2009003141 W KR 2009003141W WO 2009151288 A2 WO2009151288 A2 WO 2009151288A2
Authority
WO
WIPO (PCT)
Prior art keywords
oligopeptide
bone
implant
oligopeptides
seq
Prior art date
Application number
PCT/KR2009/003141
Other languages
French (fr)
Korean (ko)
Other versions
WO2009151288A3 (en
Inventor
강은정
엄태관
김재호
이정근
Original Assignee
오스템임플란트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오스템임플란트 주식회사 filed Critical 오스템임플란트 주식회사
Priority to CN200980000223A priority Critical patent/CN101743014A/en
Publication of WO2009151288A2 publication Critical patent/WO2009151288A2/en
Publication of WO2009151288A3 publication Critical patent/WO2009151288A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis

Definitions

  • the present invention relates to oligopeptides that promote osteoadhesion and bone formation.
  • the present invention relates to an oligopeptide used for the purpose of promoting bone adhesion and bone formation in a general implant, the present description will be described with respect to the oligopeptide applied to a dental implant.
  • the shape of the dental implant is as shown in Figure 1, the name is a fixture (referred to as an implant or a fixture) to act as an artificial root in the missing tooth area, abutment (connecting the fixture and the crown (crown), And artificial teeth (crown).
  • the implant is largely composed of a connection to the abutment and an implant surface in direct contact with the alveolar bone. In dental implants, the surface is very important as it determines the duration of bone adhesion and future function.
  • Dental implants are parts that carry the same sense and function as the original teeth by implanting a titanium artificial root into the alveolar bone without damaging the surrounding teeth at the site where the tooth is missing.
  • the dental implant is implanted in the alveolar bone and after a certain period of time, the bone is adhered to the alveolar bone, and after the bone adhesion, the abutment is connected to the artificial tooth (crown).
  • the artificial teeth After the artificial teeth are connected to the implant, they usually function normally, and after 15-20 years of bone adhesion, osteoadhesion should be maintained semipermanently.
  • the pre-fatigue life test conditions for this are mainly 5 million cycles with 250 N load.
  • One of the key performance indicators of dental implants is to shorten the period of bone adhesion. In other words, if bone adhesion does not occur within a short period of time, it is difficult to form a dental implant market as the treatment period becomes longer, and it is absolutely required to shorten the initial bone adhesion period because the normal chewing function of the implant is not smooth in the future. It is becoming.
  • TGF- ⁇ growth factor
  • IGF-1 Insulin-like growth factor-1
  • BMP bone morphogenetic protein
  • Dental implant technology is divided into design technology and surface modification technology.
  • Surface modification technology is an important factor in determining the initial bone adhesion period and the life of the implant, and is divided into 1 to 4 generations according to the development of the technology.
  • First-generation implants are machined implants developed by Branemark, Sweden, in 1965. As the first generation implants require a bone adhesion period of 4-8 months, various problems have been raised, and a second generation implant has been developed to increase the surface area of the implant for the purpose of shortening the bone adhesion period. As the surface modification method of the second generation implants, acid treatment, sand blasting, acid treatment after sand blasting, and sintering were developed, and the bone adhesion period of the second generation implant was reduced to 3 to 6 months.
  • Third-generation implants include HA (hydroxylapatite) coatings, anodization, fluorinated surfaces, and hydrophilic surfaces.
  • HA coating it is included in the second generation at the time of development, but it is classified as the third generation by the technical progress.
  • Anodization promotes bone adhesion by making the surface porous and thickening the oxide layer.
  • the fluorinated surface was developed by ASTRA, Sweden, to enhance bone adhesion by adding fluorine to the implant surface, and the surface with improved hydrophilicity was developed by ITI, Switzerland, to increase the surface energy and increase the hydrophilicity. It is shortened.
  • the third generation of implants reduced bone adhesion time to 2-4 months by adding bone forming materials, such as fluorine, calcium and phosphorus, and by making the surface porous and forming a thick oxide layer.
  • the third generation of implants takes more than three months to recover the missing teeth, and the overall success rate is slightly better than the second generation of implants, but the alveolar bone is poor. The success rate is still low, the case of alveolar bone is bad, such as elderly patients are limited use.
  • the third generation of surface modification technology is limited to shorten the bone adhesion period within three months, so the development of the fourth generation of implants is urgently required (Table 1, Types and Features of Dental Implant Surface Treatment).
  • BMP protein belonging to the TGF group has been found to play an important role in alveolar bone formation.
  • many researchers have conducted many experiments with animals. It has been reported that humans as well as animals can induce bone regeneration and strengthen bone tissue.
  • BMP was directly administered to the subject, it disappeared within a few minutes and was degraded by the enzyme present in the body, thereby confirming the loss of function.
  • a very high concentration of BMP should be administered within a short time during implantation.
  • the application of BMP to promote bone formation faces many problems in terms of stability, pharmacokinetics and cost.
  • Proteins are composed of hundreds to thousands of amino acids. As research on the structure and function of these proteins proceeds, it has been found that active sites exist in the entire amino acid sequence constituting the protein. Research into a technology that mimics the protein function of the minimum amino acid sequence that can perform the same function as is in progress.
  • a technique has been developed to produce a desired amino acid sequence in a short time using a peptide synthesizer.
  • recombinant proteins are obtained through the purification process after mass culturing by introducing a gene for producing a target protein into a gene of a microorganism or an animal cell.
  • Viral vector, cell-mediate and non-viral vector, plasmid, lipofection, etc. are used to introduce genes that produce the target protein.
  • the stability, cellular immune response and humoral immune response has shown a drawback that the expression level of the transgene is significantly reduced.
  • oligopeptides using a peptide synthesizer does not require a series of genetic manipulations, and some sequences, not the whole amino acid sequence of native proteins, are particularly important for the functioning of proteins. It is a very effective way to develop and produce oligopeptides.
  • HPLC is performed to purify the oligopeptides after the end of the synthesis, which is a much simpler and easier to purify product than the purification step of the desired product by genetic engineering.
  • the use of a synthesizer allows modification of some amino acids (eg, acetylation, amidation, phosphorylation, etc.) of the amino acid sequence of the oligopeptide according to the purpose, so that the oligopeptides that are partially different from the structure of the amino acid sequence of the natural protein are artificially modified. It has the advantage that it can be manufactured.
  • the organic synthesis method using a synthesizer is a genetic recombination to develop a stable cell line (PCR, gene cloning, clone screening, etc.) to produce the target substance, and then mass culture to isolate the target substance Compared to the refinement process, development time and costs can be reduced.
  • bioactive materials such as proteins or oligopeptides that promote bone adhesion and bone formation to the implant surface.
  • Korean Patent Application Publication No. 2006-0110190 (Bioimplants coated with bioactive materials and its coating method) forms an active layer on the outer peripheral surface of the dental implant and deposits an intermediate reactor layer on the active membrane and then forms the intermediate reactor layer.
  • the bioactive is maintained even after sterilization by coating the matrix material and the bioactive material by chemical covalent bond or by coating the polymer material in which the bioactive material is bound.
  • the present invention discloses a dental implant and a coating method thereof, which can facilitate distribution and storage, as well as secure sufficient adhesion between the dental implant and the bioactive material, thereby shortening the bone adhesion period during the dental implant procedure.
  • Korean Patent Application Publication No. 2006-0110189 is a oligopeptide that combines a peptide to a copolymer and can be treated directly on the dental implant surface to shorten bone adhesion period by promoting bone growth.
  • Korean Patent Application Publication No. 2006-0101019 (Registration No. 0676945, bone graft material coated with a tissue-enhancing peptide on the surface and support for tissue engineering) is a bone graft material coated with a cell adhesion inducing peptide and / or tissue growth factor-derived peptide on the surface and The present invention relates to a support for tissue engineering, and particularly discloses peptides derived from bone morphogenetic proteins (BMP-2, 4, 6).
  • Korean Patent Application Publication No. 2006-0082060 (Registration No.
  • BMP-2 bone morphogenetic protein
  • the present inventors have designed a new amino acid sequence having the same or more than the effect of a natural protein that promotes bone adhesion with a minimum amino acid sequence combination, analyzing the effectiveness of these substances, and selecting the best oligopeptides. While trying to apply to the surface of the implant, the present invention was completed by confirming that the oligopeptide of a specific sequence promotes initial osteoadhesion and bone formation.
  • Another object of the present invention is to chemically introduce the oligopeptides on the dental implant surface to improve initial bone adhesion, thereby shortening the implant procedure period, and in particular, increasing the success rate of the procedure for patients with low bone mass and bone mineral deficiency. To provide.
  • Another object of the present invention is to introduce the oligopeptide uniformly throughout the implant surface at low cost, and have bone regeneration and osteoadhesion properties similar to those of BMP, but have the same level of stability as that of inorganic coating materials. It is to provide an implant with less additional cost.
  • the present invention is an oligopeptide having the following general structural formula; (C or K)-(I, K or P)-(I, P or K)-(K or P)-(K, P or S)-(P or S)-(A or S)-(A , P or S)-(A, P or T)-(E, P or T)-(E, L or T)-(E, L or S)-(A, L or S)-(A, I Or to promote osteoadhesion and bone formation characterized by the structure of S)-(A, I or S)-(I, M or S)-(L, M or S)-(C, L or M)- Provides oligopeptides.
  • the present invention relates to an oligopeptide applicable to a general implant, the present description will be described with respect to the oligopeptide to be applied to the dental implant.
  • the oligopeptide may add an amino acid residue having a -SH group at one end in order to be introduced in a stable state with titanium (Ti) of the implant surface.
  • Ti titanium
  • a peptide having a residue of (C, L or Y) n structure, n is 1 or 2 is more preferable, and still more preferably cysteine.
  • the oligopeptide preferably controls the distance between the oligopeptides according to the size of osteoblasts and introduces a matrix together to control the relative orientation.
  • a linker is pretreated on the titanium surface, which is a material of the implant, and the oligopeptide is introduced with an amino acid, preferably a cysteine residue, having a -SH group at the N or C terminus to bind a functional group of a linker.
  • the oligopeptide of the present invention has a free amino group or cysteine at the N-terminal of the oligopeptide in relation to the linker, so that it is easy to introduce into the implant by the linker.
  • the oligopeptide in order to introduce the oligopeptide into a stable state with titanium (Ti) on the surface of the implant, it is preferable that the oligopeptide is introduced in a silane-linker-peptide linkage relationship.
  • the oligopeptide is PEP111 (SEQ ID NO: 1), PEP121 (SEQ ID NO: 2), PEP131 (SEQ ID NO: 3), PEP112 (SEQ ID NO: 4), PEP122 (SEQ ID NO: 5 ) Is preferably an oligopeptide selected from the group consisting of PEP132 (SEQ ID NO: 6) and PEP133 (SEQ ID NO: 7), more preferably an oligopeptide selected from the group consisting of PEP111, PEP112, and PEP122, and is PEP111 or PEP122. Even more preferred is PEP111.
  • the time required for selection of an effective oligopeptide sequence is short because the synthesis time is short when the oligopeptide is produced using a peptide synthesizer to screen the oligopeptide sequence that promotes bone adhesion and bone formation. Can be shortened.
  • Oligopeptides according to the invention can be easily synthesized according to methods known to those skilled in the art.
  • the oligopeptides used in the examples of the present invention were commissioned and synthesized by Peptron Co., Ltd.
  • Oligopeptides have structurally superior stability compared to natural or recombinant proteins, and thus, may be able to secure safety against sterilization and storage. Therefore, the oligopeptide of the present invention having an effect equivalent to or greater than that of a natural protein promoting bone adhesion will play an important role in the early attachment, proliferation and differentiation of osteoblasts when applied to the implant surface. It is expected to be very useful for dramatically shortening the period of bone adhesion and to expand the treatment area, especially in low bone patients with difficult implant procedures to date.
  • the present invention when the oligopeptide is applied to the surface of the shielding membrane and the implant, the present invention preferably introduces 0.1 to 5.0 mg per unit area on the surface, and more preferably the oligopeptide has a content of 10 to 21 amino acids. It is appropriate to apply 0.1 ⁇ 3.0 mg per surface unit area of implant.
  • the oligopeptides according to the invention can be applied to the implant surface according to methods known in the art (such as the related patent applications mentioned above) or the methods of the invention. At this time, it is possible to use a matrix or a linker.
  • the conventional application describes a method of modifying the implant surface, a method of using a crosslinking agent, a method of using a matrix, a silane-linker-peptide linking method, a coating method of an oligopeptide, and the like.
  • the configuration of the preferred oligopeptide sequence used in the present invention is as follows.
  • SEQ ID NO: 1 R1-CKIPKPSSAPTELSAISMLYL-R2
  • the linker group that is pretreated on the Ti surface can be easily bonded.
  • the one-character code used in the present invention is a character code commonly used in the art, the contents of which are as follows.
  • the oligopeptides of the present invention exhibit a bone filler replacement effect, a vertical therapeutic effect in which bone formation in the vertical direction is enhanced, and a horizontal therapeutic effect in which bone formation in the horizontal direction is enhanced.
  • Implant using this method induces osteoblast cell attraction and function increase due to continuous action of oligopeptides on the surface of implants, resulting in shorter initial bone adhesion period, increased success rate of low bone patients, and bone formation without bone filler Yes, it can bring down the cost of the procedure.
  • Figure 2 is a graph comparing the cell adhesion assay (cell adhesion assay) for the oligopeptide material
  • Figure 3 is a graph comparing the proliferative capacity (MTS assay) for oligopeptide material
  • Figure 4 is a graph comparing the differentiation capacity (ALP assay) for oligopeptide material
  • FIG. 5 is a schematic diagram of bone defect model (Bone defect model),
  • Figure 6 is a graph comparing bone formation ability at weeks 2 and 4 in the bone defect model (Bone defect model),
  • FIG. 7 is a picture of tissue specimens at Week 2 of the BMP-2 coated fixture (dip & dry) and oligopeptide material (dip & dry) treated groups in the bone defect model, FIG.
  • FIG. 8 is a graph comparing the differentiation capacity (ALP assay) of the oligopeptide (PEP111) of the present invention compared to the existing RGD sequence.
  • the present inventors have completed the development of TiO 2 oxide film by anodization prior to the present invention to complete the surface treatment product (GSII CellNest) by anodization.
  • the same method is known as the surface treatment method of Straumann.
  • anodization is an electrochemically formed oxide film on the surface of titanium (Ti) to form a microporous oxide film on the surface of titanium having a porous crater-shaped pores of Ra 0.8 ⁇ 1.2 of Surface roughness and surface area were increased.
  • TiO 2 As the oxide film, a surface treatment product (GSII CellNest) was used by such an anodization.
  • the present inventors found that amino acids play a key role in the proliferation and differentiation of osteoblasts in the whole amino acid sequence of BMP-2 (Bone morphogenetic protein), fibronectine, and vitronectine. Some of these sequences were modified in the sequence to prepare oligopeptides using a peptide synthesizer. The synthesized reaction was purified by HPLC to purify the desired product (oligopeptide) in a purity of 95% or more and the molecular weight was confirmed by NMR for the purified material.
  • BMP-2 Ben morphogenetic protein
  • fibronectine fibronectine
  • vitronectine vitronectine
  • oligopeptides The preparation of oligopeptides was commissioned by Peptron Co., Ltd.
  • the synthesis of peptides was carried out by Fmoc / tBu method, and purified by 95% or more purity by performing HPLC after completion of synthesis.
  • the molecular weight of the final purified material was confirmed by NMR.
  • the selected oligopeptide sequence is as follows.
  • PEP111 R1-CKIPKPSSAPTELSAISMLYL-R2
  • Cell efficacy evaluation was performed based on the differentiation capacity of osteoblast-like cell line MG63 on cell culture plates in order to analyze the effectiveness of the material prepared by introducing a cysteine residue for coating at the oligopeptide end.
  • oligopeptide solution 1 ml of oligopeptide solution at 1 uM (in DW) concentration was added to the cell culture plate (24 well culture plate), and after 3 hours at 37 ° C. in a CO 2 incubator, the oligopeptide solution was removed and the cell culture plate was replaced with PBS solution. After washing several times, it was naturally dried in a clean bench.
  • Oligopeptides and positive control group BMP-2 coated cells culture plate (24 well culture plate) was dispensed by 1 ⁇ 10 5 cells each to attach the cells for 2 hours in 37 °C, CO 2 incubator. Cell attachment was performed using DMEM medium (serum free media) except 10% fetal bovine serum. After 2 hours, the unattached cells were removed with PBS buffer (pH 7.2), and the cells were fixed by adding 1 ml of 10% formaldehyde (in PBS buffer, pH 7.2) solution. In order to quantify the cells attached to each culture plate, 0.04% cresyl violet (in 20% methanol) was added 300? L to each well, and then reacted for 30 minutes at room temperature to stain the nucleic acid of the cells attached to each well. After removing the unreacted dye solution by washing the disc three times with DW, 0.1M citric acid (in 50% ethanol) was added to 300? L, and the dye was bound to nucleic acid to measure the degree of adhesion. (Figure 2)
  • BMP-2-coated cell culture plates (24 well culture plates) were dispensed by MG63 1 ⁇ 10 5 cells and attached to the cells for 2 hours at 37 °C, CO 2 incubator.
  • Cell attachment was performed using DMEM medium (serum free media) except 10% fetal bovine serum.
  • PBS buffer pH 7.2
  • DMEM medium containing 10% fetal bovine serum was added, and then incubated in CO 2 incubator at 37 ° C. for 5 days. Every 2 days of culture, fresh media was replaced, and the proliferation was compared using the CellTiter 96 TM Aquous Non-Radioactive Cell Proliferation Assay Kit (Promega Co. USA) at 1, 3, and 5 days of culture. ( Figure 3)
  • oligopeptides on the differentiation of osteoblasts was compared by comparing ALP (alkaline phosphatase) activity, an early marker of osteoblast differentiation.
  • Oligonucleotide to compare the multipotential of osteogenic cell peptide and the positive control of 1 ⁇ 10 5 cells dispensed to 37 °C by per MG63 to BMP-2 the cell culture plate (24 well culture plate) for coating well, in a CO 2 incubator Incubated. Every two days of culture, fresh media was replaced and ALP activity was compared on the third and eighth days of culture. ( Figure 4)
  • Uncoated fixtures BMP-2 coated fixtures (dip & dry) were compared to control bone formation ability by oligopeptide material as a control.
  • FIG. 5 A schematic diagram of the bone defect model is shown in FIG. 5.
  • the results show that the bone regeneration effect by the PEP111 oligopeptide material is excellent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Materials For Medical Uses (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to an oligopeptide for enhancing osteointegration and osteogenesis. More specifically, it relates to bioactive oligopeptide compounds having the general structural formula (C or K)-(I, K or P)-(I, P or K)-(K or P)-(K, P or S)-(P or S)-(A or S)-(A, P or S)-(A, P or T)-(E, P or T)-(E, L or T)-(E, L or S)-(A, L or S)-(A, I or S)-(A, I or S)-(I, M or S)-(L, M or S)-(C, L or M). The oligopeptide of the present invention is effective in bone filler replacement, vertical treatment and horizontal treatment. By using this invention, the continuous action of the oligopeptide on the surface of an implant treated with a thin film of the same can reduce the time of initial osteointegration. Additionally, an increase in the success rate of surgical operations on osteopenia patients can be achieved by inducing an increase in osteoblasts and function. It is also possible to achieve bone formation when bone mass is insufficient, without bone replacement, leading to a reduction in surgical operation costs.

Description

골유착 및 골형성을 증진시키는 올리고펩타이드Oligopeptides Promote Bone Adhesion and Bone Formation
본 발명은 골유착 및 골형성을 증진시키는 올리고펩타이드에 관한 것이다.The present invention relates to oligopeptides that promote osteoadhesion and bone formation.
본 발명은 일반적인 임플란트에서 골유착 및 골형성 증진을 목적으로 사용되는 올리고펩타이드에 관한 것인데, 본 명세서에서는 치과용 임플란트에 적용되는 올리고펩타이드를 중심으로 설명한다.The present invention relates to an oligopeptide used for the purpose of promoting bone adhesion and bone formation in a general implant, the present description will be described with respect to the oligopeptide applied to a dental implant.
1. 임플란트 부품ㆍ소재의 형상 및 명칭1. Shape and name of implant parts and materials
치과 임플란트의 형상은 도 1과 같으며, 명칭은 결손된 치아 부위에서 인공치근의 역할을 하는 고정체(implant 또는 fixture라 함), 고정체와 외관(crown)을 연결시켜주는 지대주(abutment), 그리고 인공치아(crown)로 구분된다. 임플란트는 지대주와 연결되는 연결부와 치조골과 직접 접촉하는 임플란트 표면으로 크게 구성된다. 치과 임플란트에서는 표면이 골유착 기간과 향후 기능을 좌우하므로 매우 중요하다.The shape of the dental implant is as shown in Figure 1, the name is a fixture (referred to as an implant or a fixture) to act as an artificial root in the missing tooth area, abutment (connecting the fixture and the crown (crown), And artificial teeth (crown). The implant is largely composed of a connection to the abutment and an implant surface in direct contact with the alveolar bone. In dental implants, the surface is very important as it determines the duration of bone adhesion and future function.
2. 임플란트 부품ㆍ소재의 기능2. Function of implant parts and materials
치과 임플란트는 치아가 결손된 부위에 주변 치아를 손상시키지 않고 티타늄(titanium) 인공치근을 치조골에 이식하여 본래 치아와 같은 감각이나 기능을 수행하는 부품을 말한다. 치과 임플란트는 치조골에 매식된 후 일정기간이 지나면 치조골과 골유착이 되고, 골유착 후에는 지대주를 연결한 후 인공치아(crown)를 연결하게 된다. 인공치아를 임플란트에 연결시킨 후에는 일반적으로 정상적인 기능(저작)을 하게 되며, 골유착 후에는 15-20년을 사용하게 되므로 골유착이 반영구적으로 유지되어야 한다. 이를 위한 사전 피로수명시험 조건은 250 N 하중으로 500만 사이클이 주로 적용된다. Dental implants are parts that carry the same sense and function as the original teeth by implanting a titanium artificial root into the alveolar bone without damaging the surrounding teeth at the site where the tooth is missing. The dental implant is implanted in the alveolar bone and after a certain period of time, the bone is adhered to the alveolar bone, and after the bone adhesion, the abutment is connected to the artificial tooth (crown). After the artificial teeth are connected to the implant, they usually function normally, and after 15-20 years of bone adhesion, osteoadhesion should be maintained semipermanently. The pre-fatigue life test conditions for this are mainly 5 million cycles with 250 N load.
치과 임플란트의 중요 성능지표 중의 하나는 골유착 기간을 단축시키는 것이다. 즉, 짧은 기간 내에 골유착이 되지 않을 경우에는 치료기간이 길어짐에 따라 치과 임플란트의 시장을 형성하는 것이 어렵고, 향후 임플란트의 정상적인 저작기능이 원활하지 못하므로 초기 골유착 기간을 단축시키는 것이 절대적으로 요구되고 있다.One of the key performance indicators of dental implants is to shorten the period of bone adhesion. In other words, if bone adhesion does not occur within a short period of time, it is difficult to form a dental implant market as the treatment period becomes longer, and it is absolutely required to shorten the initial bone adhesion period because the normal chewing function of the implant is not smooth in the future. It is becoming.
조골세포의 증식과 분화를 촉진시키는 TGF-β(transforming growth factor-β), IGF-1(Insulin-like growth factor-1) 등의 성장인자(growth factor) 또는 BMP(bone morphogenetic protein) 같은 생리활성물질을 임플란트 식립시 임플란트 표면에 직접 도포하거나 수술 부위 주변에 유포시키는 방법이 사용되고 있다. 그러나 식립 시술 전에 생체물질을 임플란트 표면에 도포하는 방법은 과량이 요구되고 식립시 효과적으로 잔류하지 못하므로 적용이 어렵고 또한 시술 부위에 생체물질을 도포하는 것은 도포된 영역이 극히 제한적이기 때문에 임플란트 표면 전역에서 효과적인 골재생과 골유착이 이루어지지 않을 뿐만 아니라 시술비용이 가중되는 단점이 있다. 더욱이 시술의 표준화가 이루어지지 않아 시술방법과 환자의 관리가 효율적이지 못하여 표준화된 시술 방법으로 채택되는 것은 어려운 실정이다.Physiological activities such as growth factor (TGF-β), Insulin-like growth factor-1 (IGF-1), or bone morphogenetic protein (BMP) to promote osteoblast proliferation and differentiation The method of applying the material directly to the surface of the implant during implant placement or to spread around the surgical site is used. However, the method of applying the biomaterial to the implant surface prior to the implantation procedure is difficult because it requires an excessive amount and does not remain effectively during implantation, and the application of the biomaterial to the treatment site is extremely limited in the area of the implant because the applied area is extremely limited. Effective bone regeneration and bone adhesion is not made, but there is a disadvantage that the procedure costs are increased. In addition, since the standardization of the procedure is not made, it is difficult to adopt the standardized procedure because the procedure and the management of the patient are not efficient.
3. 임플란트 기술 동향3. Implant Technology Trends
치과 임플란트의 기술로는 설계(design)기술과 표면개질기술로 크게 구분된다. 표면개질의 기술은 초기 골유착 기간을 결정하고 임플란트의 수명을 결정하는 중요한 요소이며, 기술의 발전에 따라 1~4세대로 구분된다.Dental implant technology is divided into design technology and surface modification technology. Surface modification technology is an important factor in determining the initial bone adhesion period and the life of the implant, and is divided into 1 to 4 generations according to the development of the technology.
1세대 임플란트는 1965년에 스웨덴의 Branemark이 개발한 기계가공 임플란트이다. 1세대 임플란트는 골유착기간이 4~8개월이 요구됨에 따라, 다양한 문제가 제기되어 골유착 기간 단축을 목적으로 임플란트의 표면적을 넓히는 2세대 임플란트가 개발되었다. 2세대 임플란트의 표면개질 방법으로는 산처리, 샌드 블라스팅(sand blasting), 샌드 블라스팅 후 산처리, 소결(sintering) 등이 개발되었으며, 2세대 임플란트의 골유착기간은 3~6개월로 단축되었다. 3세대 임플란트로는 HA(hydroxylapatite) 코팅, 양극산화, 불소첨가표면, 친수성을 향상시킨 표면 등이 있다. HA 코팅의 경우 개발 시기적으로는 2세대에 포함되지만 기술적인 진보의 분류로는 3세대에 해당되며, 양극산화는 표면을 다공화하고 산화층을 두껍게 형성하여 골유착을 증진시킨 것이다. 불소첨가표면은 스웨덴 ASTRA사에서 개발한 것으로 임플란트 표면에 불소를 첨가하여 골유착을 증진시킨 것이며, 친수성을 향상 시킨 표면은 스위스 ITI사에서 개발한 것으로 표면에너지 강화 및 친수성을 증대시켜 골유착 기간을 단축시킨 것이다. 3세대의 임플란트는 골형성 물질, 즉 불소, 칼슘, 인을 첨가하는 방법과 표면을 다공성(porus)으로 하고 두터운 산화층을 형성시키는 방식을 이용하여 골유착 기간을 2~4개월로 단축시켰다. 그러나 결손된 치아를 회복시키는데 있어 기존의 치료 방법에 비하여 3세대의 임플란트의 경우도 치료기간이 3개월 이상이 소요되는 한계점이 있으며, 전반적인 성공률이 2세대의 임플란트 보다 다소 향상되었으나 치조골질이 나쁠 경우 성공률이 아직도 낮아 고령 환자 등 치조골질이 나쁜 경우에는 제한적으로 사용되고 있는 실정이다. 즉, 3세대의 표면개질기술로는 골유착 기간을 3개월 이내로 단축하기에 한계가 있으므로 제4세대의 임플란트의 개발이 절실히 요구되고 있다(표 1, 치과용 임플란트 표면처리의 종류 및 특징).First-generation implants are machined implants developed by Branemark, Sweden, in 1965. As the first generation implants require a bone adhesion period of 4-8 months, various problems have been raised, and a second generation implant has been developed to increase the surface area of the implant for the purpose of shortening the bone adhesion period. As the surface modification method of the second generation implants, acid treatment, sand blasting, acid treatment after sand blasting, and sintering were developed, and the bone adhesion period of the second generation implant was reduced to 3 to 6 months. Third-generation implants include HA (hydroxylapatite) coatings, anodization, fluorinated surfaces, and hydrophilic surfaces. In the case of HA coating, it is included in the second generation at the time of development, but it is classified as the third generation by the technical progress. Anodization promotes bone adhesion by making the surface porous and thickening the oxide layer. The fluorinated surface was developed by ASTRA, Sweden, to enhance bone adhesion by adding fluorine to the implant surface, and the surface with improved hydrophilicity was developed by ITI, Switzerland, to increase the surface energy and increase the hydrophilicity. It is shortened. The third generation of implants reduced bone adhesion time to 2-4 months by adding bone forming materials, such as fluorine, calcium and phosphorus, and by making the surface porous and forming a thick oxide layer. However, there is a limitation in that the third generation of implants takes more than three months to recover the missing teeth, and the overall success rate is slightly better than the second generation of implants, but the alveolar bone is poor. The success rate is still low, the case of alveolar bone is bad, such as elderly patients are limited use. In other words, the third generation of surface modification technology is limited to shorten the bone adhesion period within three months, so the development of the fourth generation of implants is urgently required (Table 1, Types and Features of Dental Implant Surface Treatment).
표 1
표면처리의 변화 표면처리의 종류 골유착 기간(개월) 특 징
1세대 기계가공(machined)법 4~8 초창기의 임플란트로서 기계가공으로만 처리됨
2세대 blasting, etching을 통한 표면적 증대 법 3~6 기계가공 임플란트에 표면 거칠기만을 부여하여 골융합 증진
3세대 HA coating, Osseospeed, SLActive, Anodizing 법 2~4 화학적으로 표면처리 하여 골유착 증진
4세대 생체물질 코팅 1.5~2 생화학적으로 표면처리 하여 골유착 증진 및 골질이 나쁜 경우에도 임플란트시술 성공률 증대
Table 1
Surface treatment changes Type of surface treatment Adhesion period (months) Characteristic
1st generation Machined method 4 ~ 8 Early implant, processed only by machining
2nd generation Method of increasing surface area by blasting and etching 3 ~ 6 Enhance bone fusion by giving only surface roughness to machining implants
3rd generation HA coating, Osseospeed, SLActive, Anodizing 2 ~ 4 Chemical surface treatment promotes bone adhesion
4th generation Biomaterial Coating 1.5 ~ 2 Biochemical surface treatment improves bone adhesion and increases the success rate of implant procedure even in the case of poor bone quality
골형성 기전을 규명하기 위한 다양한 연구가 수행되면서 TGF군에 속하는 BMP계열의 단백질이 치조골 형성에 중요한 역할을 하는 것으로 밝혀졌다. BMP에 관한 첫 번째 연구결과 발표 후 많은 연구자들이 동물을 대상으로 많은 실험을 진행하였으며 동물뿐만 아니라 인간의 경우 뼈를 재생하고 뼈의 조직 강화를 유도할 수 있다는 결과가 발표되었다. 그러나 BMP를 직접적으로 대상체에 투여하였을 경우 수분 내에 사라지며 체내에 존재하는 효소에 의해서 빠른 시간 안에 분해되어 기능이 상실되는 것을 확인되었다. 결과적으로 새로운 뼈의 형성을 효과적으로 유도하기 위하여서는 임플란트 시술시 단시간 내에 상당히 높은 농도의 BMP를 투여하여야 함을 의미한다. 즉 골형성을 촉진시키기 위하여 BMP를 적용할 경우, 안정성, 약물동력학 그리고 비용적인 측면에서 많은 문제에 직면하게 된다. As various studies have been conducted to investigate the mechanism of bone formation, the BMP protein belonging to the TGF group has been found to play an important role in alveolar bone formation. After the publication of the first study on BMP, many researchers have conducted many experiments with animals. It has been reported that humans as well as animals can induce bone regeneration and strengthen bone tissue. However, when the BMP was directly administered to the subject, it disappeared within a few minutes and was degraded by the enzyme present in the body, thereby confirming the loss of function. As a result, in order to effectively induce new bone formation, it means that a very high concentration of BMP should be administered within a short time during implantation. In other words, the application of BMP to promote bone formation faces many problems in terms of stability, pharmacokinetics and cost.
단백질은 수백~수천개의 아미노산으로 구성되어 있는데 이러한 단백질의 구조 및 기능에 대한 연구가 진행되면서 단백질을 구성하고 있는 전체 아미노산 서열 중에 활성부위(active site)가 존재하고 있음이 발견되었고 나아가 이를 토대로 목적 단백질과 동일한 기능을 수행할 수 있는 최소한의 아미노산 서열이 단백질의 기능을 모방하는 기술에 대한 연구가 진행되고 있다. Proteins are composed of hundreds to thousands of amino acids. As research on the structure and function of these proteins proceeds, it has been found that active sites exist in the entire amino acid sequence constituting the protein. Research into a technology that mimics the protein function of the minimum amino acid sequence that can perform the same function as is in progress.
또한 최근에는 펩타이드 합성기(peptide synthesizer)를 이용하여 원하는 아미노산 서열을 단시간에 제작할 수 있는 기술이 개발되었다. 일반적으로 재조합단백질은 목적 단백질을 생산하는 유전자를 미생물 또는 동물세포의 유전자에 도입시켜 대량 배양 후 정제과정을 통해 얻어진다. 목적 단백질을 생산하는 유전자를 도입시키기 위하여 주로 바이러스 벡터, 세포-매개(cell-mediate) 그리고 비바이러스 벡터인 플라스미드, 리포펙션(lipofection) 등을 이용하고 있으며 바이러스 벡터를 이용한 부분에서는 많은 성과물들이 나오고 있는 실정이지만 안정성과 세포성 면역반응 및 체액성 면역반응에서는 이식유전자(transgenic) 발현정도가 주목할 정도로 줄어드는 단점을 보이고 있다.In recent years, a technique has been developed to produce a desired amino acid sequence in a short time using a peptide synthesizer. In general, recombinant proteins are obtained through the purification process after mass culturing by introducing a gene for producing a target protein into a gene of a microorganism or an animal cell. Viral vector, cell-mediate and non-viral vector, plasmid, lipofection, etc., are used to introduce genes that produce the target protein. However, the stability, cellular immune response and humoral immune response has shown a drawback that the expression level of the transgene is significantly reduced.
반면 펩타이드 합성기(peptide synthesizer)를 이용한 올리고펩타이드 생산은 일련의 유전자 조작이 불필요하며 천연 단백질(native protein)의 전체 아미노산(whole amino acid) 서열이 아닌 일부 서열, 특히 단백질의 기능 발휘에 핵심적인 서열이 되는 올리고펩타이드를 개발하고 생산하는데 매우 효과적인 방법이다. 합성 종결 후 올리고펩타이드를 정제하기 위하여 HPLC를 수행하며 이는 유전자 조작에 의한 목적산물의 정제 단계에 비해 훨씬 단순하고 고순도로의 정제가 용이한 방법이다. 또한 합성기를 사용하면 목적에 따라 올리고펩타이드의 아미노산 서열 중 일부 아미노산의 변형(예: 아세틸화, 아미드화, 인산화 등)이 가능하므로 천연 단백질의 아미노산 서열의 구조와 부분적으로 다른 올리고펩타이드를 인위적으로 변형시켜서 제작이 가능한 장점을 가진다. 특히 아미노산 서열이 단백질에 비해 아주 짧은 서열인 경우, 합성기를 사용한 유기합성법은 유전자재조합으로 목적 물질을 생산하는 안정적인 세포주를 개발(PCR, 유전자 클로닝, 클론의 스크리닝 등등)하고 대량 배양시켜 목적 물질을 분리 정제하는 과정과 비교하여 개발에 소요되는 시간 및 경비를 단축시킬 수 있다.On the other hand, the production of oligopeptides using a peptide synthesizer does not require a series of genetic manipulations, and some sequences, not the whole amino acid sequence of native proteins, are particularly important for the functioning of proteins. It is a very effective way to develop and produce oligopeptides. HPLC is performed to purify the oligopeptides after the end of the synthesis, which is a much simpler and easier to purify product than the purification step of the desired product by genetic engineering. In addition, the use of a synthesizer allows modification of some amino acids (eg, acetylation, amidation, phosphorylation, etc.) of the amino acid sequence of the oligopeptide according to the purpose, so that the oligopeptides that are partially different from the structure of the amino acid sequence of the natural protein are artificially modified. It has the advantage that it can be manufactured. In particular, if the amino acid sequence is very short compared to the protein, the organic synthesis method using a synthesizer is a genetic recombination to develop a stable cell line (PCR, gene cloning, clone screening, etc.) to produce the target substance, and then mass culture to isolate the target substance Compared to the refinement process, development time and costs can be reduced.
최근 골형성에 관여하는 BMP 및 세포외 기질(extracellular matrix)의 전체 아미노산 서열 중에서 핵심적인 역할을 하는 아미노산 서열을 찾으려는 시도가 활발히 진행 중이며 이들 아미노산 서열을 합성기를 사용하여 제작하고 그 유효성을 분석하는 연구가 진행되고 있다.Recently, attempts have been actively made to find amino acid sequences that play a key role among the total amino acid sequences of BMP and extracellular matrix involved in bone formation. These amino acid sequences are synthesized using a synthesizer and analyzed for their effectiveness. Research is ongoing.
또한, 최근에는 골유착 및 골형성을 증진시키는 단백질이나 올리고펩타이드와 같은 생체활성물질을 임플란트 표면에 적용하고자 하는 연구가 다양하게 진행되고 있다.In recent years, various studies have been conducted to apply bioactive materials such as proteins or oligopeptides that promote bone adhesion and bone formation to the implant surface.
이와 같은 올리고펩타이드와 같은 생체활성물질의 개발과 임플란트 표면에 올리고펩타이드를 도입시키는 것과 관련하여 다음과 같은 특허들이 출원되고 있다. The following patents have been applied for the development of bioactive materials such as oligopeptides and introduction of oligopeptides on the implant surface.
한국특허출원공개번호 2006-0110190(생체활성물질이 코팅된 치과용 임플란트와 그 코팅 방법)은 치과용 임플란트의 외주면상에 활성막을 형성하고 그 활성막상에 중간반응기층을 적층한 뒤 그 중간반응기층상에 매트릭스물질과 생체활성물질을 화학적 공유결합으로 코팅하거나 생체활성물질이 결합된 고분자물질을 코팅함으로써 멸균과정 후에도 생체활성이 그대로 유지된다. 이는 유통과 보관이 용이할 뿐만 아니라 치과용 임플란트와 생체활성물질간에 충분한 접착력을 확보함으로써 치과용 임플란트 시술시 골유착기간을 단축시킬 수 있는 치과용 임플란트와 그 코팅방법을 개시하고 있다. Korean Patent Application Publication No. 2006-0110190 (Bioimplants coated with bioactive materials and its coating method) forms an active layer on the outer peripheral surface of the dental implant and deposits an intermediate reactor layer on the active membrane and then forms the intermediate reactor layer. The bioactive is maintained even after sterilization by coating the matrix material and the bioactive material by chemical covalent bond or by coating the polymer material in which the bioactive material is bound. The present invention discloses a dental implant and a coating method thereof, which can facilitate distribution and storage, as well as secure sufficient adhesion between the dental implant and the bioactive material, thereby shortening the bone adhesion period during the dental implant procedure.
한국특허출원공개번호 2006-0110189(치과용 임플란트 표면처리용 올리고펩타이드)에는 공중합폴리머에 펩타이드를 결합시킨 것으로 치과용 임플란트 표면에 직접 처리되어 골성장을 증진하여 골유착기간을 단축할 수 있는 올리고펩타이드, 특히 R1-(A-B-C)n-R2-(A-B-C)m-L 구조식을 가진 것으로 상기 식에서 R1은 H, 아미노산잔기, 지방산잔기 혹은 생분해 특성을 가진 공중합 폴리머 주쇄이고, R2는 스페이서이며, L은 링크기인 것을 특징으로 펩타이드가 기재되어 있다. Korean Patent Application Publication No. 2006-0110189 (Optide for surface treatment of dental implants) is a oligopeptide that combines a peptide to a copolymer and can be treated directly on the dental implant surface to shorten bone adhesion period by promoting bone growth. In particular, R1- (ABC) n-R2- (ABC) mL structural formula, wherein R1 is H, amino acid residue, fatty acid residue or biodegradable copolymer polymer chain having biodegradation properties, R2 is a spacer, L is a link group Peptides are described as a feature.
한국특허출원공개번호 2006-0101019(등록번호 0676945, 표면에 골조직 형성 증진 펩타이드가 코팅된 골이식재 및 조직공학용 지지체)은 세포부착 유도 펩타이드 및/또는 조직성장인자 유래 펩타이드가 표면에 코팅된 골이식재 및 조직공학용 지지체에 관한 것으로서, 특히 골형성 단백질(BMP-2, 4, 6) 유래의 펩타이드를 개시하고 있다. 한국특허출원공개번호 2006-0082060(등록번호 0630903, 표면에 골조직 형성 증진 펩타이드가 코팅된 차폐막 및 임플란트)는 가교제가 결합된 표면에 세포부착유도 펩타이드 또는 조직성장인자 유래 펩타이드가 코팅된 차폐막 및 임플란트에 관한 것으로서 골형성 단백질(BMP-2) 유래의 펩타이드를 개시하고 있다. Korean Patent Application Publication No. 2006-0101019 (Registration No. 0676945, bone graft material coated with a tissue-enhancing peptide on the surface and support for tissue engineering) is a bone graft material coated with a cell adhesion inducing peptide and / or tissue growth factor-derived peptide on the surface and The present invention relates to a support for tissue engineering, and particularly discloses peptides derived from bone morphogenetic proteins (BMP-2, 4, 6). Korean Patent Application Publication No. 2006-0082060 (Registration No. 0630903, Bone Membrane Formation Enhancement Peptide-coated Membrane and Implant) is applied to a membrane-induced peptide or tissue growth factor-derived peptide coated membrane and implant A peptide derived from bone morphogenetic protein (BMP-2) is disclosed.
하지만 상기 문헌들에 기재된 펩타이드는 아직 초기 골유착 기간의 획기적인 단축 및 특히 저골질 환자의 시술 성공율 등의 관점에서 개선이 필요한 상태이다. However, the peptides described in the above documents are still in need of improvement in terms of drastic shortening of initial osteoadhesion period and the success rate of treatment of hypochondral patients.
이에 본 발명자들은 최소한의 아미노산 서열 조합으로 골유착을 증진시키는 천연 단백질의 효과에 준하거나 또는 그 이상의 효과를 가지는 새로운 아미노산 서열을 설계하고 이들 물질에 대한 유효성을 분석하고 가장 성능이 우수한 올리고펩타이드를 선별하여 임플란트 표면에 적용하고자 노력하던 중, 특정 서열의 올리고펩타이드가 초기 골유착 및 골형성을 증진시키는 것을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors have designed a new amino acid sequence having the same or more than the effect of a natural protein that promotes bone adhesion with a minimum amino acid sequence combination, analyzing the effectiveness of these substances, and selecting the best oligopeptides. While trying to apply to the surface of the implant, the present invention was completed by confirming that the oligopeptide of a specific sequence promotes initial osteoadhesion and bone formation.
본 발명의 목적은 조골세포 증식과 분화를 증진하고 골형성을 증진시키는 대표적인 단백질인 BMP-2와 비교하여 동등 또는 그 이상의 효과를 가지고 생리활성물질의 안정성 측면에서도 매우 월등한 올리고펩타이드를 제공하는 것이다.It is an object of the present invention to provide oligopeptides that have the same or better effect than BMP-2, a representative protein that promotes osteoblast proliferation and differentiation and promotes bone formation, and is superior in terms of stability of bioactive substances. .
본 발명의 또 다른 목적은 상기 올리고펩타이드를 치과용 임플란트 표면에 화학적으로 도입시킴으로써 초기 골유착을 증진시켜 임플란트 시술기간을 단축시키고 특히 저골질 및 골량이 부족한 환자에 대한 시술 성공률을 증대시킬 수 있는 방법을 제공하는 것이다.Another object of the present invention is to chemically introduce the oligopeptides on the dental implant surface to improve initial bone adhesion, thereby shortening the implant procedure period, and in particular, increasing the success rate of the procedure for patients with low bone mass and bone mineral deficiency. To provide.
본 발명의 또 다른 목적은 상기 올리고펩타이드를 저비용으로 임플란트 표면 전역에 균일하게 도입함으로서 BMP와 유사한 효율의 골 재생과 골유착 특성을 가지나 무기 코팅재료와 동일한 정도의 안정성을 가져 제조, 유통, 저장상의 추가 비용 부담이 적은 임플란트를 제공하는 것이다.Another object of the present invention is to introduce the oligopeptide uniformly throughout the implant surface at low cost, and have bone regeneration and osteoadhesion properties similar to those of BMP, but have the same level of stability as that of inorganic coating materials. It is to provide an implant with less additional cost.
상기 목적을 달성하기 위하여, 본 발명은 하기 일반구조식을 가진 올리고펩타이드; (C 또는 K)-(I, K 또는 P)-(I, P 또는 K)-(K 또는 P)-(K, P 또는 S)-(P 또는 S)-(A 또는 S)-(A, P 또는 S)-(A, P 또는 T)-(E, P 또는 T)-(E, L 또는 T)-(E, L 또는 S)-(A, L 또는 S)-(A, I 또는 S)-(A, I 또는 S)-(I, M 또는 S)-(L, M 또는 S)-(C, L 또는 M)-의 구조를 특징으로 하는 골유착 및 골형성을 증진시키는 올리고펩타이드를 제공한다. In order to achieve the above object, the present invention is an oligopeptide having the following general structural formula; (C or K)-(I, K or P)-(I, P or K)-(K or P)-(K, P or S)-(P or S)-(A or S)-(A , P or S)-(A, P or T)-(E, P or T)-(E, L or T)-(E, L or S)-(A, L or S)-(A, I Or to promote osteoadhesion and bone formation characterized by the structure of S)-(A, I or S)-(I, M or S)-(L, M or S)-(C, L or M)- Provides oligopeptides.
본 발명은 일반적인 임플란트에 적용가능한 올리고펩타이드에 관한 것인데, 본 명세서에서는 치과용 임플란트에 적용하는 올리고펩타이드를 중심으로 설명한다. The present invention relates to an oligopeptide applicable to a general implant, the present description will be described with respect to the oligopeptide to be applied to the dental implant.
또한, 상기 치과 임플란트에 적용가능한 올리고펩타이드에 있어서, 상기 올리고펩타이드는 임플란트 표면의 티타늄(Ti)과 안정한 상태로 도입되도록 하기 위하여 한쪽 말단에 -SH기를 가지는 아미노산 잔기를 추가할 수 있다. 구체적으로 (C, L 또는 Y)n 구조의 잔기를 가지고, n은 1 또는 2인 것을 특징으로 하는 펩타이드가 보다 바람직하고, 더욱 바람직하게는 시스테인이다.In addition, in the oligopeptide applicable to the dental implant, the oligopeptide may add an amino acid residue having a -SH group at one end in order to be introduced in a stable state with titanium (Ti) of the implant surface. Specifically, a peptide having a residue of (C, L or Y) n structure, n is 1 or 2 is more preferable, and still more preferably cysteine.
또한, 상기 올리고펩타이드는 올리고펩타이드간의 거리를 조골세포의 크기에 따라 제어하고, 상대적 배향을 조절할 수 있도록 담체(matrix)를 함께 도입하는 것이 바람직하다. 또한, 임플란트의 재질인 티타늄 표면에 링커가 전처리되어 있고, 상기 올리고펩타이드는 링커(linker)의 기능기와 결합을 위하여, N 또는 C 말단에 -SH기를 가지는 아미노산, 바람직하게는 시스테인 잔기가 도입된다In addition, the oligopeptide preferably controls the distance between the oligopeptides according to the size of osteoblasts and introduces a matrix together to control the relative orientation. In addition, a linker is pretreated on the titanium surface, which is a material of the implant, and the oligopeptide is introduced with an amino acid, preferably a cysteine residue, having a -SH group at the N or C terminus to bind a functional group of a linker.
예컨대, 링커와 관련하여 본 발명의 올리고펩타이드는 각각 그 올리고펩타이드의 N말단에 자유 아미노기 또는 시스테인을 지니고 있어서 링커에 의한 임플란트로의 도입이 용이하다. 또한, 본 발명에서는 상기 올리고펩타이드가 임플란트 표면의 티타늄(Ti)과 안정한 상태로 도입되도록 하기 위하여 임플란트 표면에 silane-linker-peptide의 연결 관계로 도입되는 것이 바람직하다.For example, the oligopeptide of the present invention has a free amino group or cysteine at the N-terminal of the oligopeptide in relation to the linker, so that it is easy to introduce into the implant by the linker. In addition, in the present invention, in order to introduce the oligopeptide into a stable state with titanium (Ti) on the surface of the implant, it is preferable that the oligopeptide is introduced in a silane-linker-peptide linkage relationship.
또한, 상기 치과 임플란트에 적용가능한 올리고펩타이드에 있어서, 상기 올리고펩타이드는 PEP111(서열번호 1), PEP121(서열번호 2), PEP131(서열번호 3), PEP112(서열번호 4), PEP122(서열번호 5), PEP132(서열번호 6) 및 PEP133(서열번호 7)로 이루어진 군중에서 선택된 올리고펩타이드인 것이 바람직하고, PEP111, PEP112 및 PEP122로 이루어진 군중에서 선택된 올리고펩타이드인 것이 보다 바람직하고, PEP111 또는 PEP122인 것이 더더욱 바람직하며, PEP111인 것이 가장 바람직하다.In addition, in the oligopeptide applicable to the dental implant, the oligopeptide is PEP111 (SEQ ID NO: 1), PEP121 (SEQ ID NO: 2), PEP131 (SEQ ID NO: 3), PEP112 (SEQ ID NO: 4), PEP122 (SEQ ID NO: 5 ) Is preferably an oligopeptide selected from the group consisting of PEP132 (SEQ ID NO: 6) and PEP133 (SEQ ID NO: 7), more preferably an oligopeptide selected from the group consisting of PEP111, PEP112, and PEP122, and is PEP111 or PEP122. Even more preferred is PEP111.
골유착 및 골형성을 증진시키는 올리고펩타이드 서열을 선정(screening)하기 위하여 합성기(peptide synthesizer)를 사용하여 올리고펩타이드를 제작할 경우 합성에 소요되는 시간이 짧으므로 유효성 있는 올리고펩타이드 서열의 선정에 소요되는 시간을 단축시킬 수 있다. The time required for selection of an effective oligopeptide sequence is short because the synthesis time is short when the oligopeptide is produced using a peptide synthesizer to screen the oligopeptide sequence that promotes bone adhesion and bone formation. Can be shortened.
본 발명에 따른 올리고펩타이드는 이 기술분야에서 당업자들에게 알려진 방법에 따라 쉽게 합성이 가능하다. 본 발명의 실시예에서 사용되는 올리고펩타이드는 (주)펩트론에 의뢰, 합성하였다.Oligopeptides according to the invention can be easily synthesized according to methods known to those skilled in the art. The oligopeptides used in the examples of the present invention were commissioned and synthesized by Peptron Co., Ltd.
올리고펩타이드는 천연 단백질 또는 재조합 단백질과 비교하여 구조적으로 우수한 안정성을 가지므로 멸균 및 보관에 대한 안전성을 확보할 수 있을 것으로 판단된다. 따라서, 골유착을 증진시키는 천연 단백질의 활성과 동등 내지 그 이상의 효과를 가지는 본 발명의 올리고펩타이드는 임플란트 표면에 적용시킬 경우 조골세포의 초기 부착, 증식 및 분화에 중요한 역할을 수행하게 될 것이며 최종적으로 골유착 기간을 획기적으로 단축시키고 특히 현재까지 임플란트 시술이 어려운 저골질 환자를 대상으로 시술 영역을 확대시키는데 대단히 유용할 것으로 예측한다.Oligopeptides have structurally superior stability compared to natural or recombinant proteins, and thus, may be able to secure safety against sterilization and storage. Therefore, the oligopeptide of the present invention having an effect equivalent to or greater than that of a natural protein promoting bone adhesion will play an important role in the early attachment, proliferation and differentiation of osteoblasts when applied to the implant surface. It is expected to be very useful for dramatically shortening the period of bone adhesion and to expand the treatment area, especially in low bone patients with difficult implant procedures to date.
또한 본 발명은 상기 올리고펩타이드를 차폐막 및 임플란트의 표면에 적용시킬 경우, 표면에 단위면적당 0.1~5.0 mg이 도입되도록 하는 것이 바람직하며, 더욱 바람직하게는 올리고펩타이드는 10~21개의 아미노산 함량을 지니며 이들은 임플란트의 표면단위 면적당 0.1~3.0 mg 적용이 적당하다.In addition, when the oligopeptide is applied to the surface of the shielding membrane and the implant, the present invention preferably introduces 0.1 to 5.0 mg per unit area on the surface, and more preferably the oligopeptide has a content of 10 to 21 amino acids. It is appropriate to apply 0.1 ~ 3.0 mg per surface unit area of implant.
본 발명에 따른 올리고펩타이드는 종래에 공지된 방법(예컨대 상기 언급한 관련 특허출원) 또는 본 발명의 방법에 따라 임플란트 표면에 적용할 수 있다. 이때, 매트릭스나 링커의 사용이 가능하다. 상기 종래 출원에는 임플란트 표면의 개질방법, 가교제의 이용방법, 매트릭스의 이용방법, silane-linker-peptide 연결 방법, 올리고펩타이드의 코팅방법 등이 기재되어 있다.The oligopeptides according to the invention can be applied to the implant surface according to methods known in the art (such as the related patent applications mentioned above) or the methods of the invention. At this time, it is possible to use a matrix or a linker. The conventional application describes a method of modifying the implant surface, a method of using a crosslinking agent, a method of using a matrix, a silane-linker-peptide linking method, a coating method of an oligopeptide, and the like.
본 발명에 사용된 바람직한 올리고펩타이드 서열의 구성은 다음과 같다.The configuration of the preferred oligopeptide sequence used in the present invention is as follows.
서열번호 1 : R1-CKIPKPSSAPTELSAISMLYL-R2SEQ ID NO: 1: R1-CKIPKPSSAPTELSAISMLYL-R2
서열번호 2 : R1-CIPKPSSAPTELSAISMLYL-R2SEQ ID NO: 2 R1-CIPKPSSAPTELSAISMLYL-R2
서열번호 3 : R1-CPKPSSAPTELSAISMLL-R2SEQ ID NO: 3 R1-CPKPSSAPTELSAISMLL-R2
서열번호 4 : R1-KIPKPSSAPTELSAISMLYLC-R2SEQ ID NO: 4 R1-KIPKPSSAPTELSAISMLYLC-R2
서열번호 5 : R1-KIPKPSSAPTELSAISMLYC-R2SEQ ID NO: R1-KIPKPSSAPTELSAISMLYC-R2
서열번호 6 : R1-KIPKPSSAPTELSAISMLC-R2SEQ ID NO: R1-KIPKPSSAPTELSAISMLC-R2
서열번호 7 : R1-KIPKPSSAPTELSAISMC-R2SEQ ID NO: R1-KIPKPSSAPTELSAISMC-R2
이때, N 또는 C 말단에 시스테인(cysteine) 잔기를 도입함으로써 Ti 표면에 전처리되어 있는 링커기와 용이하게 결합할 수 있다. At this time, by introducing a cysteine residue at the N or C terminus, the linker group that is pretreated on the Ti surface can be easily bonded.
본 발명에서 사용하는 상기 1문자 코드는 이 기술분야에서 통용되는 문자코드이며, 그 내용은 아래와 같다.The one-character code used in the present invention is a character code commonly used in the art, the contents of which are as follows.
표 2
single-letter code abbreviation full name
A Ala Alanine
R Arg Alginine
N Asn Asparagine
D Asp Aspartic acid
C Cys Cysteine
Q Gln Glutamine
E Glu Glutamic acid
G Gly Glycine
H His Histidine
I Ile Isoleucine
L Leu Leucine
K Lys Lysine
M Met Methionine
F Phe Phenylalanine
P Pro Proline
S Ser Serine
T Thr Threonine
W Trp Tryptophan
Y Tyr Thyrosine
V Val Valine
TABLE 2
single-letter code abbreviation full name
A Ala Alanine
R Arg Alginine
N Asn Asparagine
D Asp Aspartic acid
C Cys Cysteine
Q Gln Glutamine
E Glu Glutamic acid
G Gly Glycine
H His Histidine
I Ile Isoleucine
L Leu Leucine
K Lys Lysine
M Met Methionine
F Phe Phenylalanine
P Pro Proline
S Ser Serine
T Thr Throneine
W Trp Tryptophan
Y Tyr Thyrosine
V Val Valine
본 발명의 올리고펩타이드는 골충진제 대체 효과, 수직 방향으로의 골형성이 증진되는 수직 치료 효과 및 수평 방향으로의 골형성이 증진되는 수평 치료 효과를 나타낸다. 이를 이용한 임플란트는 임플란트 표면에 박막 처리된 올리고펩타이드의 지속적인 작용으로 인한 조골세포의 유인, 기능 증가를 유발시킴으로써 초기 골유착 기간 단축, 저골질 환자의 시술 성공률 증대, 골량이 부족한 경우 골충진제 없이 골형성 가능, 시술 비용 절감을 가져올 수 있다.The oligopeptides of the present invention exhibit a bone filler replacement effect, a vertical therapeutic effect in which bone formation in the vertical direction is enhanced, and a horizontal therapeutic effect in which bone formation in the horizontal direction is enhanced. Implant using this method induces osteoblast cell attraction and function increase due to continuous action of oligopeptides on the surface of implants, resulting in shorter initial bone adhesion period, increased success rate of low bone patients, and bone formation without bone filler Yes, it can bring down the cost of the procedure.
도 1은 치과 임플란트의 형상 및 각 부분의 명칭을 나타낸 것이고,1 shows the shape of the dental implant and the name of each part,
도 2는 올리고펩타이드 물질에 대한 세포부착능 (cell adhesion assay)을 비교한 그래프이고,Figure 2 is a graph comparing the cell adhesion assay (cell adhesion assay) for the oligopeptide material,
도 3은 올리고펩타이드 물질에 대한 증식능 (MTS assay)를 비교한 그래프이고,Figure 3 is a graph comparing the proliferative capacity (MTS assay) for oligopeptide material,
도 4는 올리고펩타이드 물질에 대한 분화능 (ALP assay)을 비교한 그래프이고, Figure 4 is a graph comparing the differentiation capacity (ALP assay) for oligopeptide material,
도 5는 골손상 모델 (Bone defect model) 모식도이고,5 is a schematic diagram of bone defect model (Bone defect model),
도 6은 골손상 모델 (Bone defect model)에서 2, 4주째 골형성능을 비교한 그래프이고, Figure 6 is a graph comparing bone formation ability at weeks 2 and 4 in the bone defect model (Bone defect model),
도 7은 골손상 모델 (Bone defect model)에서 BMP-2 코팅된 고정체(dip&dry) 및 올리고펩타이드 물질 (dip&dry) 처리군의 2주째 조직 시편 그림이고, FIG. 7 is a picture of tissue specimens at Week 2 of the BMP-2 coated fixture (dip & dry) and oligopeptide material (dip & dry) treated groups in the bone defect model, FIG.
도 8은 기존의 RGD 서열과 대비한 본 발명의 올리고펩타이드 (PEP111)의 분화능 (ALP assay)을 비교한 그래프이다.8 is a graph comparing the differentiation capacity (ALP assay) of the oligopeptide (PEP111) of the present invention compared to the existing RGD sequence.
이하, 본 발명을 하기 실시예에 의거하여 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명은 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited to the following examples and may be changed to other embodiments equivalent to substitutions and equivalents without departing from the technical spirit of the present invention. Will be apparent to those of ordinary skill in the art.
<실시예 1> TiOExample 1 TiO 22 산화막 및 기판 제작Oxide and Substrate Fabrication
본 발명자들은 본원발명에 앞서 이미 양극산화법에 의한 TiO2 산화막 개발을 완료하여 양극산화에 의한 표면처리 제품(GSII CellNest)을 완성하였다. 종래 이와 동일한 방법은 Straumann 社의 표면처리방법이 알려져 있다.The present inventors have completed the development of TiO 2 oxide film by anodization prior to the present invention to complete the surface treatment product (GSII CellNest) by anodization. Conventionally, the same method is known as the surface treatment method of Straumann.
구체적으로, 양극산화법(anodic oxidation)은 전기화학적으로 티타늄(titanium) 표면에 산화피막을 형성시키는 것으로 티타늄의 표면에 미세기공 형태의 산화막을 형성시켜 porous한 분화구 모양의 기공을 가지는 Ra 0.8~1.2의 표면거칠기 및 표면적을 증대시켰다. 산화층의 두께를 2~8 ㎛로 조절함으로써 티타늄의 금속이온 방출을 억제하고 부식저항을 증가시켜 안전성을 부여하였다. 본 실시예에서 TiO2 산화막은 이와 같은 양극산화법에 의하여 표면처리 제품(GSII CellNest)을 사용하였다.Specifically, anodization (electrodic oxidation) is an electrochemically formed oxide film on the surface of titanium (Ti) to form a microporous oxide film on the surface of titanium having a porous crater-shaped pores of Ra 0.8 ~ 1.2 of Surface roughness and surface area were increased. By controlling the thickness of the oxide layer to 2 ~ 8 ㎛ suppressed the release of metal ions of titanium and increased the corrosion resistance to give safety. In this embodiment TiO2 As the oxide film, a surface treatment product (GSII CellNest) was used by such an anodization.
<실시예 2> <Example 2> 골유착 및 골형성을 증진시키는 올리고펩타이드의 설계 및 제작Design and Fabrication of Oligopeptides to Promote Bone Adhesion and Bone Formation
본 발명자들은 BMP-2(Bone morphogenetic protein), 피브로넥틴(fibronectine), 비토로넥틴(vitronectine)의 전체 아미노산 서열(whole amino acid sequence)중에서 골아세포(osteoblast)의 증식 및 분화에 핵심적인 역할을 하는 아미노산 서열 중에서 이들 서열의 일부를 변형(modification)시켜 합성기(peptide synthesizer)를 이용하여 올리고펩타이드를 제작하였다. 합성이 종결된 반응물은 HPLC를 수행하여 목적 산물(올리고펩타이드)을 95% 이상의 순도로 정제하였으며 정제된 물질에 대해 NMR로 분자량을 확인하였다. The present inventors found that amino acids play a key role in the proliferation and differentiation of osteoblasts in the whole amino acid sequence of BMP-2 (Bone morphogenetic protein), fibronectine, and vitronectine. Some of these sequences were modified in the sequence to prepare oligopeptides using a peptide synthesizer. The synthesized reaction was purified by HPLC to purify the desired product (oligopeptide) in a purity of 95% or more and the molecular weight was confirmed by NMR for the purified material.
<2-1> 후보 물질의 설계<2-1> Design of Candidate Materials
골형성에 관여하는 성장인자(growth factor), 세포외 기질(extracellular matrix) 등과 같은 단백질 중에서 특히 골아세포의 초기 부착, 증식 및 분화에 관여하는 물질을 조사하고 이들 단백질의 전체 아미노산 서열 중에서 핵심적인 역할을 하는 서열을 분석하였다. BMP-2(Bone morphogenetic protein-2)의 경우, 골형성세포인 골아세포의 특이적 결합부위(specific binding site)가 존재하며 ECM의 경우 일부 서열이 세포부착에 관여한다는 점에 착안하여 이들 서열을 토대로 재조합 올리고펩타이드를 설계하여 골아세포가 실제 단백질처럼 올리고펩타이드 서열을 인식하고 부착, 증식 및 분화를 유도할 수 있도록 아미노산 서열을 설계하였다. 제작된 올리고펩타이드에 대한 세포유효성 평가는 실시예 3에 기술하였다. Among proteins such as growth factor and extracellular matrix, which are involved in bone formation, in particular, they investigate substances involved in the initial attachment, proliferation and differentiation of osteoblasts and play a key role in the whole amino acid sequence of these proteins. Sequences were analyzed. In the case of BMP-2 (Bone morphogenetic protein-2), there is a specific binding site of osteoblasts, osteoblasts, and in the case of ECM, some sequences are involved in cell adhesion. Based on the design of recombinant oligopeptides, amino acid sequences were designed to allow osteoblasts to recognize oligopeptide sequences and induce attachment, proliferation and differentiation like actual proteins. Evaluation of cell efficacy on the produced oligopeptides was described in Example 3.
<2-2> 올리고펩타이드의 제작 <2-2> Preparation of oligo peptides
올리고펩타이드의 제작은 (주)펩트론에 의뢰하였으며 펩타이드의 합성은 Fmoc/tBu 방법에 의하며, 합성 종결 후 HPLC를 수행하여 95% 이상의 순도로 정제하였다. 최종 정제된 물질의 분자량은 NMR로 확인하였다.The preparation of oligopeptides was commissioned by Peptron Co., Ltd. The synthesis of peptides was carried out by Fmoc / tBu method, and purified by 95% or more purity by performing HPLC after completion of synthesis. The molecular weight of the final purified material was confirmed by NMR.
구체적으로, 선정된 올리고펩타이드 서열은 다음과 같다.Specifically, the selected oligopeptide sequence is as follows.
1. PEP111(서열번호 1) : R1-CKIPKPSSAPTELSAISMLYL-R21.PEP111 (SEQ ID NO: 1): R1-CKIPKPSSAPTELSAISMLYL-R2
2. PEP122(서열번호 5) : R1-KIPKPSSAPTELSAISMLYC-R22.PEP122 (SEQ ID NO: 5): R1-KIPKPSSAPTELSAISMLYC-R2
아래에서는 상기 펩타이드들에 대하여 활성의 우수성을 측정하였다.Below was measured the excellence of activity for the peptides.
<실시예 3> 올리고펩타이드 물질의 세포유효성 평가 1 : in-vitro test<Example 3> Evaluation of the cell efficacy of the oligopeptide material 1: in-vitro test
올리고펩타이드 말단에 코팅을 위한 시스테인 잔기를 도입하여 제작된 물질에 대한 유효성을 분석하기 위하여 세포배양 플레이트에 상에서 골아세포(osteoblast-like cell line MG63)의 분화능에 기초하여 세포유효성 평가를 실시하였다.Cell efficacy evaluation was performed based on the differentiation capacity of osteoblast-like cell line MG63 on cell culture plates in order to analyze the effectiveness of the material prepared by introducing a cysteine residue for coating at the oligopeptide end.
<3-1> 올리고펩타이드 처리 방법<3-1> Oligopeptide Treatment Method
1uM (in D.W.) 농도의 올리고펩타이드 용액을 세포배양 플레이트 (24 well culture plate)에 1ml씩 가하여 37℃, CO2 incubator에서 3시간 경과 후, 올리고펩타이드 용액을 제거하고 세포배양 플레이트를 PBS 용액으로 1회 세척한 후 클린벤치 안에서 자연건조 시켰다.1 ml of oligopeptide solution at 1 uM (in DW) concentration was added to the cell culture plate (24 well culture plate), and after 3 hours at 37 ° C. in a CO 2 incubator, the oligopeptide solution was removed and the cell culture plate was replaced with PBS solution. After washing several times, it was naturally dried in a clean bench.
<3-2> 세포부착능 평가 <3-2> Cell adhesion ability evaluation
올리고펩타이드 및 양성대조군인 BMP-2 가 코팅된 세포배양용 플레이트(24 well culture plate)에 MG63을 1×105 cells씩 분주하여 37℃, CO2 incubator에서 2시간 동안 세포를 부착시켰다. 세포 부착은 10% fetal bovine serum을 제외한 DMEM 배지(serum free media)를 사용하였다. 2시간 후 부착되지 않은 세포를 PBS buffer(pH 7.2)로 제거하고 10% formaldehyde(in PBS buffer, pH 7.2) 용액을 1ml 가하여 세포를 고정시켰다. 각 culture plate에 부착된 세포를 정량하기 위하여 0.04% cresyl violet(in 20% methanol)을 각 well당 300?l 가한 후 실온에서 30분간 반응시켜 각 well에 부착된 세포의 nucleic acid를 염색시켰다. D.W.로 3회 disc를 세척함으로써 반응하지 않은 염색액을 제거시킨 후 0.1M citric acid(in 50% ethanol) 300?l 가하여 nucleic acid와 결합된 염색액을 용출시켜 부착 정도를 측정하였다. (도 2)Oligopeptides and positive control group BMP-2 coated cells culture plate (24 well culture plate) was dispensed by 1 × 10 5 cells each to attach the cells for 2 hours in 37 ℃, CO 2 incubator. Cell attachment was performed using DMEM medium (serum free media) except 10% fetal bovine serum. After 2 hours, the unattached cells were removed with PBS buffer (pH 7.2), and the cells were fixed by adding 1 ml of 10% formaldehyde (in PBS buffer, pH 7.2) solution. In order to quantify the cells attached to each culture plate, 0.04% cresyl violet (in 20% methanol) was added 300? L to each well, and then reacted for 30 minutes at room temperature to stain the nucleic acid of the cells attached to each well. After removing the unreacted dye solution by washing the disc three times with DW, 0.1M citric acid (in 50% ethanol) was added to 300? L, and the dye was bound to nucleic acid to measure the degree of adhesion. (Figure 2)
<3-3> 증식능 평가 <3-3> Evaluation of proliferative capacity
올리고펩타이드 및 양성대조군인 BMP-2 가 코팅된 세포배양용 플레이트(24 well culture plate)에 MG63 1×105 cells씩 분주하여 37℃, CO2 incubator에서 2시간 동안 세포를 부착시켰다. 세포 부착은 10% fetal bovine serum을 제외한 DMEM 배지(serum free media)를 사용하였다. 2시간 후 부착되지 않은 세포를 PBS buffer(pH 7.2)로 제거하고 10% fetal bovine serum이 포함된 DMEM 배지를 가한 후 37℃, CO2 incubator에 5일간 배양하였다. 배양 2일마다 fresh media로 교체하였으며 배양 1, 3, 5일째 CellTiter 96TM Aquous Non-Radioactive Cell Proliferation Assay Kit를 사용(Promega Co. USA)하여 증식 정도를 비교하였다. (도 3)Oligopeptides and positive controls BMP-2-coated cell culture plates (24 well culture plates) were dispensed by MG63 1 × 10 5 cells and attached to the cells for 2 hours at 37 ℃, CO 2 incubator. Cell attachment was performed using DMEM medium (serum free media) except 10% fetal bovine serum. After 2 hours, unattached cells were removed with PBS buffer (pH 7.2), DMEM medium containing 10% fetal bovine serum was added, and then incubated in CO 2 incubator at 37 ° C. for 5 days. Every 2 days of culture, fresh media was replaced, and the proliferation was compared using the CellTiter 96 TM Aquous Non-Radioactive Cell Proliferation Assay Kit (Promega Co. USA) at 1, 3, and 5 days of culture. (Figure 3)
<3-4> 분화능 평가 <3-4> Evaluation of Differentiation Capacity
골형성세포의 분화 초기 마커인 ALP(alkaline phosphatase) 활성을 비교하여 올리고펩타이드가 골형성세포의 분화에 미치는 영향을 관찰하였다. 골형성세포의 분화능을 비교하기 올리고펩타이드 및 양성대조군인 BMP-2 가 코팅된 세포배양용 플레이트(24 well culture plate)에 MG63을 well당 1×105 cells씩 분주하여 37℃, CO2 배양기에 배양하였다. 배양 2일마다 신선한 media로 교체하였으며 배양 3일째, 8일째 ALP 활성을 비교하였다. (도 4)The effect of oligopeptides on the differentiation of osteoblasts was compared by comparing ALP (alkaline phosphatase) activity, an early marker of osteoblast differentiation. Oligonucleotide to compare the multipotential of osteogenic cell peptide and the positive control of 1 × 10 5 cells dispensed to 37 ℃ by per MG63 to BMP-2 the cell culture plate (24 well culture plate) for coating well, in a CO 2 incubator Incubated. Every two days of culture, fresh media was replaced and ALP activity was compared on the third and eighth days of culture. (Figure 4)
<실시예 4> 올리고펩타이드 물질의 유효성 평가 2 : in-vivo testExample 4 Evaluation of Effectiveness of Oligopeptide Substance 2: In-vivo Test
임플란트 표면에 올리고펩타이드를 물리적으로 흡착시키는 방법(dip&dry)으로 동물실험을 수행하였다. 샘플을 제작하기 위하여 100uM 농도의 올리고펩타이드 용액 200㎕에 임플란트 1개씩 담그고 이를 37℃, 배양기에 3시간 처리하였다. 반응 종료 후 남아있는 반응액은 클린벤치 안에서 임플란트 표면에 골고루 도포한 후 자연 건조시켰다. Animal experiments were performed by physically adsorbing oligopeptides on the implant surface (dip & dry). To prepare a sample, one implant was immersed in 200 μl of a 100 μM oligopeptide solution and treated at 37 ° C. for 3 hours in an incubator. The reaction solution remaining after the reaction was evenly applied to the surface of the implant in a clean bench and then naturally dried.
비코팅된 고정체(uncoated fixture), BMP-2 코팅된 고정체(dip&dry)를 대조군으로 올리고펩타이드 물질에 의한 골형성능을 비교하였다.Uncoated fixtures, BMP-2 coated fixtures (dip & dry) were compared to control bone formation ability by oligopeptide material as a control.
<4-1> bone defect model의 형성 : 모식도<4-1> Formation of bone defect model: Schematic
Bone defect 모델의 개요도는 도 5와 같다.A schematic diagram of the bone defect model is shown in FIG. 5.
<4-2> micro-pig 하악 결손 모델에서의 골형성능 비교<4-2> Comparison of Bone Formability in Micro-pig Mandibular Defect Model
Mini pig 8마리 양쪽 하악골의 치아를 발치한 후 3 개월간 치료시켰다. 치료된 피질골 부위에 인위적으로 동일한 골결손부를 형성시키고 올리고펩타이드(PEP111, PEP122)가 코팅된 임플란트(dip & dry)와 대조군을 식립하고 2, 4주 후 생검을 통하여 BA (bone area ratio)를 측정하여 골형성능을 비교하였다. Eight mini pigs were treated for 3 months after extraction of both mandibular teeth. Artificially identical bone defects were formed on the treated cortical bone area, implants (dip & dry) coated with oligopeptides (PEP111, PEP122) and controls were placed, and the bone area ratio was measured through biopsy two or four weeks later. The bone formation ability was compared.
구체적으로, 도 6과 같이 bone defect 모델에서 비처리, BMP-2 처리된 군을 음성, 양성 대조군으로 하여 올리고펩타이드 처리군에 대한 골재생 유도능을 분석한 결과, 2, 4주째 음성대조군인 비처리 군과 비교하여 올리고펩타이드가 처리된 군에서 골형성능이 현저하게 향상되었음을 관찰하였다. (도 6 및 도 7)Specifically, as a result of analyzing the bone regeneration induction for the oligopeptide treated group using the non-treated, BMP-2 treated group as a negative, positive control in the bone defect model as shown in Figure 6, the ratio of the negative control group 2 weeks It was observed that the bone formation ability was significantly improved in the oligopeptide treated group compared to the treated group. (FIGS. 6 and 7)
즉, PEP111 올리고펩타이드 물질에 의한 골재생 효과가 우수함을 보여주는 결과이다.That is, the results show that the bone regeneration effect by the PEP111 oligopeptide material is excellent.
<실시예 5> 타 group 연구와의 비교 Example 5 Comparison with Other Group Studies
기존에 잘 알려진 올리고펩타이드 서열인 RGD 대비 PEP111의 세포유효성을 비교 분석하기 위하여 세포부착능 (cell adhesion assay) 및 분화능을 비교평가 하였다. 분석 방법은 앞선 실시예 3 방법과 동일하게 수행되었다. 특히 분화능의 지표가 되는 APL activity에서는 RGD 서열보다 PEP111 서열이 우수함을 확인할 수 있었다.(도 8)To compare and analyze the cell efficacy of PEP111 compared to the well-known oligopeptide sequence RGD, cell adhesion assay and differentiation were compared. The analysis method was performed in the same manner as in Example 3 above. In particular, it was confirmed that the PEP111 sequence was superior to the RGD sequence in the APL activity, which is an indicator of differentiation ability (FIG. 8).

Claims (6)

  1. 하기 일반구조식을 가진 것을 특징으로 하는 골유착 및 골형성을 증진시키는 올리고펩타이드;Oligopeptides to promote osteoadhesion and bone formation, characterized in that having the following general structural formula;
    (C 또는 K)-(I, K 또는 P)-(I, P 또는 K)-(K 또는 P)-(K, P 또는 S)-(P 또는 S)-(A 또는 S)-(A, P 또는 S)-(A, P 또는 T)-(E, P 또는 T)-(E, L 또는 T)-(E, L 또는 S)-(A, L 또는 S)-(A, I 또는 S)-(A, I 또는 S)-(I, M 또는 S)-(L, M 또는 S)-(C, L 또는 M)(C or K)-(I, K or P)-(I, P or K)-(K or P)-(K, P or S)-(P or S)-(A or S)-(A , P or S)-(A, P or T)-(E, P or T)-(E, L or T)-(E, L or S)-(A, L or S)-(A, I Or S)-(A, I or S)-(I, M or S)-(L, M or S)-(C, L or M)
  2. 제 1항에 있어서, 상기 올리고펩타이드의 C 말단 또는 N 말단에 -SH기를 가지는 아미노산 서열인 (C, L 또는 Y)n 구조의 잔기를 추가적으로 가지고, n은 1 또는 2인 것을 특징으로 하는 골유착 및 골형성을 증진시키는 올리고펩타이드.The osteoadhesion according to claim 1, further comprising a residue of the structure (C, L or Y) n , which is an amino acid sequence having a -SH group at the C or N terminus of the oligopeptide, wherein n is 1 or 2. And oligopeptides that promote bone formation.
  3. 제 2항에 있어서, 상기 올리고펩타이드의 C 말단에 시스테인이 추가되는 것을 특징으로 하는 골유착 및 골형성을 증진시키는 올리고펩타이드.The oligopeptide of claim 2, wherein cysteine is added to the C terminus of the oligopeptide.
  4. 제 1항 내지 제3항 중 어느 한 항에 있어서, 상기 올리고펩타이드는 PEP111(서열번호 1), PEP121(서열번호 2), PEP131(서열번호 3), PEP112(서열번호 4), PEP122(서열번호 5), PEP132(서열번호 6) 및 PEP133(서열번호 7)로 이루어진 군중에서 선택된 펩타이드인 것을 특징으로 하는 골유착 및 골형성을 증진시키는 올리고펩타이드.According to any one of claims 1 to 3, wherein the oligopeptide is PEP111 (SEQ ID NO: 1), PEP121 (SEQ ID NO: 2), PEP131 (SEQ ID NO: 3), PEP112 (SEQ ID NO: 4), PEP122 (SEQ ID NO: 5), Oligopeptides for promoting bone adhesion and bone formation, characterized in that the peptide selected from the group consisting of PEP132 (SEQ ID NO: 6) and PEP133 (SEQ ID NO: 7).
  5. 제 4항에 있어서, 상기 펩타이드는 PEP111 또는 PEP122인 것을 특징으로 하는 골유착 기간을 단축시키는 임플란트 코팅용 올리고펩타이드.The oligopeptide for implant coating of claim 4, wherein the peptide is PEP111 or PEP122.
  6. 제 5항에 있어서, 상기 펩타이드는 PEP111인 것을 특징으로 하는 골유착 기간을 단축시키는 올리고펩타이드.The oligopeptide of claim 5, wherein the peptide is PEP111.
PCT/KR2009/003141 2008-06-11 2009-06-11 Oligopeptide for enhancing osteointegration and osteogenesis WO2009151288A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980000223A CN101743014A (en) 2008-06-11 2009-06-11 oligopeptide for enhancing osteointegration and osteogenesis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080054730A KR100879704B1 (en) 2008-06-11 2008-06-11 Oligopeptide for enhancing osteointegration and bone formation
KR10-2008-0054730 2008-06-11

Publications (2)

Publication Number Publication Date
WO2009151288A2 true WO2009151288A2 (en) 2009-12-17
WO2009151288A3 WO2009151288A3 (en) 2010-03-25

Family

ID=40482934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003141 WO2009151288A2 (en) 2008-06-11 2009-06-11 Oligopeptide for enhancing osteointegration and osteogenesis

Country Status (3)

Country Link
KR (1) KR100879704B1 (en)
CN (1) CN101743014A (en)
WO (1) WO2009151288A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038582A1 (en) * 2016-08-26 2018-03-01 윤원준 Peptide for promoting osteoanagenesis or osteogenesis and use of same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540739B1 (en) * 2010-02-26 2015-10-14 Osstem Implant Co., Ltd. Oligopeptide improving differentiation of osteoblasts
CN110551201B (en) * 2019-08-26 2020-04-28 杭州彗搏科技有限公司 Novel cyclic peptide derived from bone morphogenetic protein 2, preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344439B1 (en) * 1995-12-08 2002-02-05 Aventis Pharma S.A. Agents for promoting bone formation
US20050085623A1 (en) * 2002-02-21 2005-04-21 Gary Balian Bone targeting peptides
WO2005072403A2 (en) * 2004-01-28 2005-08-11 The Regents Of The University Of California Bone morphogenic protein binding peptide
WO2008032929A1 (en) * 2006-09-13 2008-03-20 Seoul National University Industry Foundation Bone graft containing osteogenesis enhancing peptides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344439B1 (en) * 1995-12-08 2002-02-05 Aventis Pharma S.A. Agents for promoting bone formation
US20050085623A1 (en) * 2002-02-21 2005-04-21 Gary Balian Bone targeting peptides
WO2005072403A2 (en) * 2004-01-28 2005-08-11 The Regents Of The University Of California Bone morphogenic protein binding peptide
WO2008032929A1 (en) * 2006-09-13 2008-03-20 Seoul National University Industry Foundation Bone graft containing osteogenesis enhancing peptides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038582A1 (en) * 2016-08-26 2018-03-01 윤원준 Peptide for promoting osteoanagenesis or osteogenesis and use of same

Also Published As

Publication number Publication date
KR100879704B1 (en) 2009-01-22
WO2009151288A3 (en) 2010-03-25
CN101743014A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
Dee et al. Conditions which promote mineralization at the bone-implant interface: a model in vitro study
Sollazzo et al. Zirconium oxide coating improves implant osseointegration in vivo
KR101013999B1 (en) Membrane and implant immobilized osteogenic enhancing peptides on the surface
US8846860B2 (en) Methods of decorating hydroxyapatite biomaterials with modular biologically active molecules
KR100739528B1 (en) 1 Bone Graft and Scaffolding Materials Immobilized with Type I Collagen Binding Peptides
US7897727B2 (en) Bioactive peptide for cell adhesion
Bernards et al. MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin
JPH02218372A (en) Improving method for fixing implant
Lee et al. Accelerated bony defect healing by chitosan/silica hybrid membrane with localized bone morphogenetic protein-2 delivery
AU2007254048A1 (en) Dermis-derived cells for tissue engineering applications
Yang et al. Biofunctionalization of zirconia with cell-adhesion peptides via polydopamine crosslinking for soft tissue engineering: effects on the biological behaviors of human gingival fibroblasts and oral bacteria
WO2011132842A2 (en) Preparation method of biphasic calcium phosphate bone graft substitute having collagen bound on surface, and bone graft substitute prepared thereby
WO2009151288A2 (en) Oligopeptide for enhancing osteointegration and osteogenesis
Ruano et al. Effect of a ceramic and a non‐ceramic hydroxyapatite on cell growth and procollagen synthesis of cultured human gingival fibroblasts
Mu et al. Substance P-embedded multilayer on titanium substrates promotes local osseointegration via MSC recruitment
WO2011105648A1 (en) Oligopeptide improving differentiation of osteoblasts
WO2019098459A1 (en) Method for manufacturing complex for bone grafting and complex for bone grafting manufactured thereby
KR100630903B1 (en) Membrane and implant immobilized osteogenic enhancing peptides on the surface
WO2014208824A1 (en) Method for producing implant having bioactive material immobilized on surface thereof and implant produced thereby
Ong et al. Osteoblast progenitor cell responses to characterized titanium surfaces in the presence of bone morphogenetic protein–atelopeptide type I collagen in vitro
Yoshinari et al. Dry-process surface modification for titanium dental implants
Kodama et al. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
Park et al. Effects of anodized titanium implant coated with RGD peptides via chemical fixation on osseointegration and bone regeneration
WO2018021647A1 (en) Peptide having titanium binding ability
US20140235542A1 (en) Modular, bioactive peptides for binding native bone and improving bone graft osteoinductivity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000223.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009704935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010516937

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704935

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE