WO2009151197A1 - X-ray tube using nano-structure material and system using the same - Google Patents

X-ray tube using nano-structure material and system using the same Download PDF

Info

Publication number
WO2009151197A1
WO2009151197A1 PCT/KR2009/000413 KR2009000413W WO2009151197A1 WO 2009151197 A1 WO2009151197 A1 WO 2009151197A1 KR 2009000413 W KR2009000413 W KR 2009000413W WO 2009151197 A1 WO2009151197 A1 WO 2009151197A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray tube
nano
ray
substrate
electrode
Prior art date
Application number
PCT/KR2009/000413
Other languages
French (fr)
Korean (ko)
Inventor
김종욱
최해영
정순신
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080065933A external-priority patent/KR101023704B1/en
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2009151197A1 publication Critical patent/WO2009151197A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/32Tubes wherein the X-rays are produced at or near the end of the tube or a part thereof which tube or part has a small cross-section to facilitate introduction into a small hole or cavity
    • A61B6/51
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes

Definitions

  • the present invention relates to an X-ray tube using a nano-structured material and a system using the same.
  • the X-ray tube currently used has a negative electrode part and an anode part inside a vacuum-sealed bulb, and electrons generated at the cathode part are accelerated by a high voltage applied between the cathode part and the anode part, and collide with the target of the anode part.
  • produces is used.
  • a device having a hot electron emission cathode structure that generates electrons by heating tungsten filaments is mentioned.
  • the structure of the cathode portion is such that the electron beam forming the tube current is focused, and electrons can be emitted by a simple method of heating the filament of the cathode portion, and the tube current is easily controlled by adjusting the heating temperature. It is widely used because there is an advantage such that it can be adjusted.
  • X-ray tubes are also used in medical fields such as dental diagnosis and oral cancer treatment, but are mainly a method of determining defects in the oral cavity by irradiating radiation outside the oral cavity of the patient and detecting an image projected into the oral cavity.
  • a tungsten filament type X-ray tube as described above, in order to derive the desired amount of electron emission through hot electron emission, a high power power source is required on the cathode side, and the size of the radiation source is huge so that the dental diagnosis is possible. And very inconvenient to apply to systems for oral cancer treatment.
  • the size of the radiation source is relatively large, which may cause inconvenience to be inserted into the oral cavity and used for dental diagnosis and treatment of oral cancer.
  • the present invention is to solve the above problems of the prior art, by forming a curved surface or slope by grinding the edge portion of the substrate nano-structured material is grown, the nano-structure to improve the emission efficiency of the electron beam An X-ray tube using a material and a system using the same are provided.
  • the present invention provides an X-ray tube using a nano-structured material and a system using the same to facilitate the replacement of the sample by implementing a sample probe that can be attached or detached while maintaining the vacuum in the vacuum chamber .
  • the present invention also provides an X-ray tube using a nano-structured material to reduce the damage of radiation exposure to other normal tissues by making a small module for emitting X-rays and directly irradiated to the affected area requiring close treatment; It is to provide a system using the same.
  • the present invention also provides an X-ray tube using a nano-structured material and a system using the same by applying a pierce-type electron focusing module to improve the electron focusing speed.
  • the system using the X-ray tube includes an X-ray emission module for emitting X-rays using a nano-structure material, characterized in that the X-ray emission module comprises a structure that is separated from the body do.
  • a method for diagnosing a system using an X-ray tube includes: emitting X-rays using a nano-structured material and projecting the X-ray onto a diagnosis target; And detecting the X-rays passing through the diagnosis object by a detector and displaying a corresponding image, and replacing the nano-structured material-based cathode part included in the X-ray emission module emitting the X-rays.
  • the module is characterized by using an X-ray tube system of the structure separated from the body.
  • an X-ray tube includes a substrate on which a nano-structure material cathode is formed; A spacer having a hole or a recessed portion, for coupling the substrate to have a predetermined height difference to the hole or the recessed portion; A grid coupled with the spacer; And an electron focusing module coupled over the spacer to which the grid is coupled, and focusing the electron beam generated from the nano-structure material cathode using the voltage difference between the substrate and the grid to the electron focusing module.
  • the electron beam is used for X-ray generation.
  • an X-ray tube has a predetermined thickness and has a cup type focus electrode having a hole near a center thereof; A substrate coupled to the housing to be fastened into the hole and electrically connected to the cup type focus electrode, the substrate having a carbon nanotube cathode formed on an end surface of the housing in a fastening direction; And a grid provided spaced apart from the carbon nanotube cathode at a predetermined distance, and focusing the electron beam generated from the carbon nanotube cathode to the cup type focus electrode by using a voltage difference between the substrate and the grid.
  • the electron beam can be used for X-ray generation.
  • a system using an X-ray tube includes a nano-structured material-based small X-ray tube positioned adjacent to an affected part of a patient to generate X-rays and provided to the affected part of the patient; A power supply unit supplying operation power to the nano-structure material based small X-ray tube; Cooling unit for cooling the heat generated by the nano-structure material-based small X-ray tube; And a controller for controlling the operation of the nano-structured material based small X-ray tube, the power supply unit, and the cooling unit.
  • FIG. 1 is a schematic diagram showing a proximity treatment system using a carbon nanotube-based small X-ray tube according to an embodiment of the present invention
  • FIG. 2 is a view showing a proximity treatment system using a carbon nanotube-based X-ray tube according to another embodiment of the present invention
  • FIG. 3 is a diagram showing the radiation dose distribution performance of the X-ray tube compared with I (125) and Pd (103), which is currently applied to clinical trials as a radioisotope for treating breast cancer,
  • FIG. 4 is a diagram showing the anisotropy dose distribution performance of the X-ray tube compared with Ir (192), which is currently applied to the clinical radioisotope for treating breast cancer,
  • FIG. 5 is a view showing the total radiation dose (dose) measurement of the X-ray tube compared with Ir (192) currently applied in clinical trials as a radioisotope for the treatment of breast cancer,
  • FIG. 7 is a view schematically showing a cross section of a substrate on which carbon nanotubes are grown in an X-ray tube according to the present invention
  • FIG. 8 is a view showing an electron emission source of an X-ray tube adopting a substrate having a smooth curved shape by grinding the edge according to an embodiment of the present invention
  • FIG. 9 is a view showing a plan view of the carbon nanotubes grown on the substrate from the grid electrode side in the embodiment shown in FIG. 8;
  • FIG. 10 is a view showing an electron emission source of the X-ray tube according to another embodiment of the present invention.
  • FIG. 11 is a view showing an electron emission source of the X-ray tube according to another embodiment of the present invention.
  • FIGS. 12 to 13 are diagrams illustrating electron emission sources according to still other embodiments of the present invention.
  • FIG. 14 is a view showing the structure of a grid electrode according to embodiments of the present invention.
  • FIG. 15 is an example of an experiment comparing the effects of electron emission when using a substrate having a smooth curved surface and a substrate having a sharp edge;
  • FIG. 16 shows a schematic configuration of an X-ray tube system for electric field emission and electrical property evaluation measurement according to an embodiment of the present invention
  • FIG. 17 is a view for explaining the detailed configuration of the vacuum chamber shown in Figure 16 and the sample probe as the cathode portion used therein,
  • 18 to 19 is a view showing a state in which a measurement sample is mounted on the sample probe of the present invention
  • 20 to 22 are vacuum chambers in which a negative electrode separate sample probe is used for measuring physical properties such as field emission characteristics and electrical conductivity characteristics of a substrate on which nanotubes are grown and a measurement sample in a cryogenic state according to an embodiment of the present invention.
  • a negative electrode separate sample probe is used for measuring physical properties such as field emission characteristics and electrical conductivity characteristics of a substrate on which nanotubes are grown and a measurement sample in a cryogenic state according to an embodiment of the present invention.
  • FIG. 23 is a view illustrating an X-ray tube system capable of rotating a carbon nanotube based pen shape according to an embodiment of the present invention.
  • FIG. 24 is a view for explaining a carbon nanotube-based electron emission module according to an embodiment of the present invention.
  • 25 is a detailed view of an X-ray tube system equipped with an electron emission module according to an embodiment of the present invention.
  • 26 is a view for explaining a dental carbon nanotube-based radiation imaging system according to an embodiment of the present invention.
  • FIG. 27 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce-type electron focusing module according to an embodiment of the present invention.
  • FIG. 28 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
  • 29 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce-type electron focusing module according to another embodiment of the present invention.
  • FIG. 30 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
  • FIG. 31 is a view illustrating a carbon nanotube-based X-ray tube employing a focusing cup type electron focusing module according to another embodiment of the present invention.
  • FIG. 32 is a view showing a result of experiments of electron beam focusing on a carbon nanotube-based X-ray tube employing a pierce-type electron focusing module according to an embodiment of the present invention.
  • an X-ray tube using a nano-structured material and a proximity therapy system using the same will be described in detail with reference to FIGS. 1 to 32.
  • the present invention will be described as an example of using a carbon nanotube (CNT) as a nano-structure material for electron emission in the X-ray tube, but is not necessarily limited thereto, for example, carbon nanofibers (Carbon Nano) Fiber, CNF), nano-wire (nano-wire), graphene (graphene), nano-diamond (nano-diamond) and the like concept can be used a material having excellent electron emission efficiency.
  • CNT carbon nanofibers
  • CNF Carbon Nano-wire
  • graphene graphene
  • nano-diamond nano-diamond
  • brachytherapy system of the present invention a small radiation tube using carbon nanotubes known to have the best performance as an electron emitter using a quantum mechanical field emission principle in which electrons are emitted.
  • an implantable brachytherapy system for the treatment of cancer such as breast cancer and cervical cancer, it is intended for clinical application and commercialization.
  • the present invention seeks to provide a brachytherapy system that is safe without the risk of unnecessary radiation exposure to tissue sites and that allows the user to easily treat patients with simpler manipulations.
  • Embodiments of the present invention for achieving this object may include the following parts.
  • high dose of radiation is required to improve the treatment efficiency for tumors such as breast cancer.
  • the radiation therapy device should be located near the affected area, and the radiation is emitted.
  • High efficiency electron emitters should be used to increase the efficiency of the system. Therefore, the treatment apparatus of the present invention uses a carbon nanotube-based small X-ray tube that can be manufactured in a small size so that it can be inserted into a human body (for example, a breast, etc.) and has an excellent electron beam generation efficiency.
  • Such carbon nanotube-based small X-ray tube should have a characteristic of consumables that can be replaced with new ones if used for a certain period of time.
  • an optimized structure should be designed to be manufactured at economical cost.
  • the cooling unit may include a power supply unit connected to the small X-ray tube to supply the necessary power.
  • the cooling unit may include a cooling unit for cooling the heat emitted during the X-ray generation process. It may include a controller that provides a real-time measurement or control of the dose or dose required for treatment, a user interface, and the like to coordinate the system.
  • the small X-ray tube, power supply, and cooling unit mentioned above can be simply attached to a controller operating as a main control system, and the controller can be manufactured to be movable as necessary.
  • FIG. 1 is a schematic diagram showing an embodiment of a proximity treatment system using a carbon nanotube-based small X-ray tube of the present invention.
  • the system of the present invention is for the proximity treatment for diseases such as cancer, carbon nanotube based small X-ray tube 100, power supply 101, cooling unit 106, controller 115, optical sensor 118, And a computer monitor 114.
  • diseases such as cancer, carbon nanotube based small X-ray tube 100, power supply 101, cooling unit 106, controller 115, optical sensor 118, And a computer monitor 114.
  • the carbon nanotube-based small X-ray tube 100 is disposed adjacent to the affected part of the patient to generate X-rays to provide the affected part.
  • the carbon nanotube-based small X-ray tube 100 may include a carbon nanotube 103, an anode part or an X-ray target 104, a case 107, and a connection part 109.
  • the carbon nanotubes 103 generate an electron beam.
  • the carbon nanotubes 103 are used as electron emission sources and may be formed on a surface of a metal or silicon substrate by various methods such as CVD, screen printing, and paste.
  • CNTs carbon nanotubes
  • Carbon nanotubes can be grown on small sized substrates (e.g. mm or ⁇ m) on a patterned substrate, making them compact, allowing them to be treated by inserting carbon nanotube-based X-ray tubes near cancer cells do.
  • Dose measurement and analysis were performed to allow the fabricated carbon nanotube-based small X-ray tube to emit more than the doses of radioisotopes such as Ir (192), Cs (137), and Pd (103).
  • the optimum tube current (mA) and tube voltage (kVp) are obtained.
  • the support 108 serves to support the carbon nanotubes 103, which are electron emission sources, and may be made of various metal materials such as insulators such as ceramics or SUS.
  • the small X-ray tube is manufactured in the form of a consumable that can be replaced with a new one and thus uniform radiation during treatment. Keep the dose.
  • the electron beam generated by the carbon nanotubes 103 collides with the X-ray target 104 to generate X-rays.
  • the carbon nanotube-based small X-ray tube 100 is transmissive as shown in FIG. 28, tungsten or molybdenum or tungsten + molybdenum having excellent X-ray generation efficiency may be coated on the Be window.
  • the shape of the X-ray target 104 in the embodiment of the present invention shown in Figs. 1 and 2 shows the shape of the curved surface, but not only the shape of the silk surface, but also any structure that can evenly radiate the radiation in the affected area It is possible.
  • the case 107 houses the carbon nanotubes 103.
  • the X-ray tube 100 maintains the internal pressure of about 10 -7 to 10 -6 Torr and is manufactured in a small size to enable insertion into the human body.
  • the material may be made of a conductive material such as a metal or an insulating material such as a ceramic, and may be formed by bonding tungsten and kovar (kovar), which is a material of a site generating X-rays when the ceramic is made of a ceramic.
  • the power supply 101 supplies operating power to the carbon nanotube-based small X-ray tube 100.
  • the power supply unit 101 electrically connects the carbon nanotube-based small X-ray tube 100 and the controller 115 and is a high voltage from a high voltage power supply (not shown) mounted on the controller 115. It may be composed of a high-voltage cable that performs a function of providing a power source to the carbon nanotube-based small X-ray tube 100. In addition, the high voltage cable terminal 101 may be connected to an automatic data acquisition system (not shown) for measuring and supplementing the tube current and the tube voltage generated in the X-ray tube 100 in real time.
  • the cooling unit 106 may be provided to cool the heat generated by the carbon nanotube-based small X-ray tube 100.
  • the cooling unit 106 also performs a function of supporting the carbon nanotube-based small X-ray tube 100 from the outside, and the cooling water circulation space 130 between the carbon nanotube-based small X-ray tube 100. Can provide.
  • the cooling unit 106 is to prevent damage to the lesion due to heat generated around the X-ray tube when the X-ray from the carbon nanotube-based small X-ray tube 100.
  • the insulator 102 is configured for high-pressure insulation between the power supply unit 101 composed of the high voltage cable and the cooling unit 106 including the applicator, and uses a material having excellent insulation such as ceramics.
  • the controller 115 controls the operations of the carbon nanotube-based small X-ray tube 100, the power supply 101 and the cooling unit 106, and in real time the appropriate amount of radiation dose required for the treatment of the patient It can be measured.
  • the controller 115 may be configured to include a body 140, a handle 117, and a wheel 116 for convenience.
  • the main body 140 may include a variety of devices for operating the brachytherapy device of the present invention, for example, hardware and software devices, such as high pressure power, cooling water circulation system GPIB board.
  • the handle 117 may be installed on the side surface of the main body 140 so that the main body 140 can be conveniently moved.
  • the wheel 116 may be installed at the bottom of the main body 140 to allow the main body 140 to move.
  • the controller uses a computer-programmed automatic data acquisition system (DAQ), a high voltage power supply, and a coolant device (not shown). It may be a structure or a similar structure in which a moving device such as a wheel 116 is installed on the main body 140 so as to be movable.
  • DAQ computer-programmed automatic data acquisition system
  • a high voltage power supply a high voltage power supply
  • a coolant device not shown. It may be a structure or a similar structure in which a moving device such as a wheel 116 is installed on the main body 140 so as to be movable.
  • the controller 115 can determine all the variables necessary for the treatment of the patient (eg, beam current (mA) and tube voltage (kVp) of x-rays, x-ray exposure time, etc.). ) Can be input on the screen of the computer monitor 114, and the X-ray tube is automatically turned off after the treatment is completed, and the indication of the completion of the treatment can be informed to the patient and the therapist through a display method such as an alarm. Can be.
  • mA beam current
  • kVp tube voltage
  • an optical sensor 118 may be attached, which is located adjacent to the affected part of the patient and electrically connected to the controller, so as to output image data by illuminating the affected part and collecting reflected light. do.
  • a computer monitor 114 may be electrically connected to the controller 115 and the operating power supplied to the carbon nanotube based X-ray tube 100, the patient being generated from the carbon nanotube based X-ray tube 100.
  • the tube current and tube voltage or radiation dose which are parameters necessary for the treatment, information about the state of the cooling unit 106 and image data from the optical sensor are displayed.
  • a connection line 119 connects the controller 115 and the optical sensor 118 to transfer the power and the collected image to the controller 115 to operate the optical sensor 118 to the computer monitor 114. This allows the user to observe the inside of the patient's body.
  • Reference numeral 105 shows a part of the body of the patient (eg, stomach or uterus) so that the carbon nanotube-based small X-ray tube 100 can understand the inserted state for the treatment of cancer or the like in the human body.
  • Reference numerals 112 and 113 denote connection lines for cooling water circulation.
  • reference numeral 120 exemplifies a lesion site in the human body that requires treatment, and an X-ray tube 100 of an endoscope type (or pencil method) is inserted at a position close to the lesion and irradiated with radiation to indicate a state in which treatment is performed. Shows.
  • FIG. 2 is a view showing a proximity treatment system using a carbon nanotube-based X-ray tube according to another embodiment of the present invention.
  • the cooling unit 150 functions to support the carbon nanotube-based small X-ray tube 100, and provides a cooling water circulation space 130 between the carbon nanotube-based small X-ray tube 100.
  • the cooling unit 106 is to prevent damage to the lesion due to heat generated around the X-ray tube when the X-ray from the carbon nanotube-based small X-ray tube 100.
  • the applicator 150 may be further included to accurately insert the therapeutic X-ray tube into the affected part.
  • the applicator 150 has an oval or spherical shape so that the therapeutic X-ray tube is well fixed to facilitate radiation treatment.
  • the coolant inlet 109 and the coolant outlet 110 are formed on the upper part of the applicator 150 to be spaced apart from each other by a predetermined distance.
  • Reference numeral 105 is an example for understanding the state where the carbon nanotube-based small X-ray tube 100 is virtually inserted for the treatment of cancer and the like in the human body, and a breast which is a part of the patient's body is shown.
  • the carbon nanotube-based small X-ray tube 100 may be inserted into the treatment region of the cancer, and may be configured to supply the optimal X-rays by connecting to the controller 115 only at the time of treatment.
  • a circulation cooling system is provided to allow a coolant such as water, which is a coolant, to circulate through the X-ray tube and to control the controller 115. ) Can be controlled.
  • the carbon nanotube-based small X-ray tube 100 can be configured to be easily replaced with a new source by separating it from the cooling unit 106 if necessary, and manufactured to be sized to be inserted into the affected area requiring treatment and require treatment.
  • the controller 115 By configuring the controller 115 to be connected to the controller 115 only at a time or period of time, it is possible to minimize discomfort during the treatment of the patient.
  • the dose of radiation decreases as the number of treatments and the time elapses, and the treatment time increases gradually with each treatment. It acts as a burden, according to the present invention can control the dose by controlling the characteristics of the carbon nanotube-based small X-ray tube 100 of the controller 115 can solve this problem.
  • radioisotopes such as linear accelerator, Ir (192), Cs (137), and Pd (103), which are expensive equipments that have been used to treat cancers such as breast cancer. It improves the shortcomings of brachytherapy system and tungsten filament x-ray tube brachytherapy system, so that non-technical users such as doctors can use it safely without fear of radiation exposure. It is possible to provide a carbon nanotube-based small radiation brachytherapy system capable of X-ray generation by high efficiency electron beam.
  • Figure 3 is a view showing the radiation dose distribution performance of the X-ray tube of the present invention compared to I (125) and Pd (103) which is currently applied clinically as a radioisotope for the treatment of breast cancer.
  • tube current ⁇ 300 ⁇ A @ 40 kVp x-ray, it shows the same treatment efficiency as the radioisotope used in the clinic.
  • FIG. 4 is a diagram showing the anisotropy dose distribution performance of the X-ray tube compared with Ir (192) which is currently applied to the clinical radioisotope for the treatment of breast cancer.
  • tube current ⁇ 300 ⁇ A @ 40 kVp x-ray, it shows the same treatment efficiency as the radioisotope used in the clinic.
  • FIG. 5 is a diagram showing the total radiation dose (dose) measurement of the X-ray tube compared with Ir (192) which is currently applied to the clinical radioisotope for the treatment of breast cancer. As shown in FIG. 30, if tube current ⁇ 300 ⁇ A @ 50 kVp x-ray shows the same treatment efficiency as the radioisotope used in the clinic, alternative use is possible.
  • FIG. 6 is a view showing the characteristics of the CNT electron emission source according to the present invention.
  • the carbon nanotubes 103 are carbon nanotubes grown by CVD on a metal substrate having a diameter of 5 mm, as shown in FIG. 5 used as an electron emission source in a small X-ray tube using carbon nanotubes. Is showing.
  • FIG. 6 is a current characteristic of the carbon nanotube electron emission source according to the present invention, in the embodiment of the X-ray tube using carbon nanotubes using a carbon nanotube electron emission source having a diameter of 5 mm carbon nanotube (103) The measured current is shown and the maximum value of the total current is 5 mA. If the X-ray tube is manufactured to reduce the diameter of the carbon nanotube electron source to 2 mm for insertion into the human body, a current of up to about 800 ⁇ A can be obtained. It is possible to provide an excellent dose of 300 ⁇ A or more, which is equivalent to the isotope Ir (192).
  • FIG. 7 illustrates a cross section of a substrate on which carbon nanotubes are grown as a substrate constituting a cathode of an electron emission source.
  • the illustrated cathode portion includes carbon nanotubes 206 grown on a substrate 207 made of a material having good electrical conductivity, such as SUS (Steel Use Stainless) or iron or tungsten.
  • a substrate 207 made of a material having good electrical conductivity, such as SUS (Steel Use Stainless) or iron or tungsten.
  • the edge portion of the substrate 207 may be formed into a smooth curved surface and the carbon nanotubes 206 may be grown thereon.
  • the edges of the surface on which the carbon nanotubes are to be grown are gently bent, there may be a method of grinding the sharp edges, for example, before growing the carbon nanotubes. Thereafter, the carbon nanotubes are grown on the substrate 207 by screen printing or CVD.
  • a buffer layer such as TIN is applied on a substrate having smooth edges, and a catalyst layer such as Ni or Fe is applied.
  • carbon nanotube source gas such as C2H2 'and the like are injected to grow carbon nanotubes.
  • they may be grown only at the center of the substrate except for the outside of the curved portion of the substrate.
  • FIG. 8 illustrates a configuration of an electron emission source of an X-ray tube employing a substrate 207 as shown in FIG.
  • Exemplary electron emission sources include a substrate 207 having a smooth curved shape as described above and a carbon nanotube 206 formed thereon, a cathode probe 209 supporting the substrate 207, and a carbon nanotube 206.
  • the insulating layer 202, the second focusing lens 201, and the third insulating layer 200 may be included.
  • the cathode probe 209 is made of a material having good electrical conductivity such as, for example, stainless alloy, iron, tungsten, and the like, and a substrate 207 on which carbon nanotubes 206 are grown is mounted (for example, not shown). Mounted through one silver paste), and if necessary, the substrate 207 including the carbon nanotubes 206 is required to be separated from the X-ray tube while the vacuum of the X-ray tube is maintained. It is preferable.
  • the first conductive layer 208 is a conductive layer for applying voltage to or grounding the carbon nanotubes 206 corresponding to the cathode of the X-ray tube.
  • the first conductive layer 208 is made of a material having good electrical conductivity such as stainless alloy, iron, or tungsten. do.
  • the first insulating layer 205 for insulating between the grid electrode 204 and the carbon nanotube 206 as a cathode as described later, the first insulating layer 205 ) Is made of a highly insulating material such as ceramic or Teflon.
  • the first insulating layer 205 has an inner hole through which electrons emitted from the carbon nanotubes 206 pass, and the size of the inner hole may be viewed from the carbon electrode tube 206 toward the grid electrode 204.
  • the first insulating layer 205 is preferably formed to cover the edge portion of the growth region of the carbon nanotubes 206, it is not necessarily limited to this structure.
  • a grid electrode 204 for extracting electrons from the carbon nanotubes 206 is mounted on the first insulating layer 205, and the grid electrode 204 is a grid mesh or a metal paper as described later.
  • the one produced by laser processing can be used.
  • FIG. 9 is a plan view of the carbon nanotube 206 forming portion on the substrate 207 viewed from the grid electrode 204 direction according to the embodiment shown in FIG. 8.
  • the inner hole of the first insulating layer 205 has a radius that decreases from the first conductive layer 208 toward the grid electrode 204 (that is, from the bottom to the top in FIG. 8).
  • the edge portion 206 ′ of the carbon nanotubes 206 may be configured to be covered by the first insulating layer 205.
  • the first focusing lens 203 may be mounted on the grid electrode 204 while simultaneously applying a voltage to the grid electrode 204.
  • the first focusing lens 203 is made of a material having good electrical conductivity such as SUS, iron, tungsten, etc., and includes a first focusing hole for focusing electrons emitted from the carbon nanotubes 206.
  • the size of the focusing area of the electron beam reaching the anode may be adjusted by adjusting the size of the first focusing hole.
  • the carbon nanotubes 206 are interposed between the first focusing lens 203 via a second insulating layer 202 made of a material having excellent insulation such as ceramic and teflon.
  • a second focusing lens 201 is mounted for further focusing the electrons emitted from the.
  • the second focusing lens 202 is made of a material having good electrical conductivity such as SUS, iron, tungsten, and the like, and focuses electrons emitted from the carbon nanotubes 206.
  • a second focusing hole may be formed to have a size similar to that of the first focusing hole, and similarly to the first focusing hole, the size of the focusing area of the electron beam reaching the anode may be adjusted by adjusting the size of the second focusing hole.
  • the second focusing lens 201 may further include a third insulating layer 200 made of a material having excellent insulating properties such as ceramic and Teflon to insulate the anode part (not shown).
  • a third insulating layer 200 made of a material having excellent insulating properties such as ceramic and Teflon to insulate the anode part (not shown).
  • Reference numeral 213 denotes a support for fixing internal components, such as the second and third insulating layers 202 and 200 and the second focusing lens 201, wherein the support 213 is a respective support member.
  • the support 213 is a respective support member.
  • an electrical connection structure with the outside may be formed through the connection pin, and the conductive layer shown by reference numeral 210 passes through the support 213 to connect the voltage to the second focusing lens 201.
  • the conductive layer shown by reference numeral 211 penetrates the support 213 to apply a voltage to the grid electrode 204 and to apply a voltage for primary electron beam focusing to the first focusing lens 203.
  • the conductive layer shown by reference numeral 212 represents a connecting pin for applying a voltage to or grounding the carbon nanotube cathode through the first conductive layer 208 through the support 213.
  • the conductive layers 210 to 212 are preferably made of a material having good electrical conductivity such as stainless alloy, iron, tungsten, or the like.
  • FIG. 10 illustrates a configuration of an electron emission source of an X-ray tube according to another embodiment of the present invention.
  • the same parts as in the embodiment shown in FIG. 8 are omitted for convenience and only different parts will be described.
  • a first insulating layer 205 having excellent insulating property such as ceramic or Teflon is used for insulating between the grid electrode 204 and the carbon nanotube 206 as a cathode. 208 above.
  • the first insulating layer 205 has an inner hole for passing electrons emitted from the carbon nanotubes 206, but the inner wall of the inner hole has a structure different from that of the embodiment of FIG. It is formed to have the smallest radius in the middle part.
  • the smallest radial portion of the inner hole may have a radius such that when the carbon nanotubes are viewed from the grid electrode 204, the edges of the portions where the carbon nanotubes 206 are grown may be covered as shown in FIG. 9. It's okay.
  • the thickness of the first focusing lens 203 gradually decreases from the focusing hole of the first focusing lens 203 to a predetermined point in the outward direction, thereby reducing the thickness of the first focusing lens 203.
  • a bottom surface is formed in the shape of a shell that protrudes toward the grid electrode 204.
  • the grid electrode 204 is disposed as shown in FIG. 10 so that the grid electrode 204 may be tightly fixed between the lower surface of the first focusing lens 203 and the upper surface of the first insulating layer 205.
  • FIG. 11 is a view showing a portion excluding an anode part of the X-ray tube according to another preferred embodiment of the present invention.
  • FIG. 11 for the sake of convenience, the same parts as in the embodiment shown in FIG. 8 will be omitted, and only different parts will be described.
  • a first insulating layer 205 having excellent insulating property such as ceramic or Teflon is mounted on the first conductive layer 208 to insulate between the grid electrode 204 and the carbon nanotube 206 as a cathode.
  • the first insulating layer 205 has an inner hole for passing electrons emitted from the carbon nanotubes 206.
  • the inner wall structure of the inner hole has a structure in which inner holes having different diameters and depths are connected to each other at the upper end and the lower end.
  • the substrate 207 having the surface edge portion treated with a smooth curved surface is used.
  • the edge portion of the sharp edge of the substrate 207 may be used as a slope. .
  • FIGS. 12 to 13 illustrate still another embodiment, in which an example in which a substrate is not formed separately from the sample probe but a part of the sample probe is used as the substrate.
  • the same parts as in the embodiment shown in FIG. 8 are omitted for convenience and only different parts will be described.
  • a substrate having a predetermined thickness and a curved edge portion is bonded to the sample probe, but according to the present embodiment, the intermediate substrate is not provided.
  • the edge of the top surface of the sample probe 215 itself is sloped, and the top surface of the sloped sample probe 215 is used as a substrate for carbon nanotube 216 growth. Therefore, according to the present exemplary embodiment, the process of mounting the substrate on the sample probe may be omitted while maintaining the advantages of the embodiments illustrated in FIGS. 8 to 11.
  • the lower surface of the sample probe 215 may further include a coupling structure 216 such as a bolt.
  • a separate insulator holder Prior to mounting on the X-ray tube, a separate insulator holder (not shown) to allow the carbon nanotube growth to proceed well at the top of the insulation and at the top of the sample probe during the process of growing the carbon nanotubes. It is easy to engage with the back and may be advantageous in other handling.
  • FIG. 14 is a diagram illustrating various structures of the grid electrode of the present invention.
  • the grid electrode may be a mesh structure fabricated by weaving a metal wire having a diameter of about several micrometers or less as shown in (a), but a thickness of about several micrometers or less as shown in (b) or (c).
  • the metal foil can be used to make holes such as circles or hexagons through laser processing. In this case, it is easy to control the distribution or arrangement of the holes, and each hole can obtain a hole array having a uniform size. There is an advantage.
  • FIG. 15 shows the case of using a substrate having a smooth curved surface or a sloped surface in accordance with the present invention, and using a substrate having a sharp edge (i.e. a thin cylindrical shape such as a coin) without processing the edge portion.
  • a substrate having a sharp edge i.e. a thin cylindrical shape such as a coin
  • the experiment was measured by a method in which electron emission distribution was visually observed by colliding electrons emitted from an X-ray tube employing both structures with a transparent electrode such as ITO coated with phosphors to emit phosphors.
  • the electron emission was concentrated only at the edge portion of the substrate, but the edge of the substrate was ground.
  • a smooth curved or sloped surface as shown in (b) electrons emitted from the front surface of the cathode of the carbon nanotubes evenly collide with the phosphor, and thus the electron emission effect is more uniform.
  • edge portion by processing the edge portion, it is possible to reduce the concentration of the electric field on the edge of the substrate and to increase the electric field of the central portion relatively to improve the electron emission distribution and increase the efficiency. arcing) problem can be solved, thereby preventing the damage of the cathode of the carbon nanotubes to improve the lifetime.
  • 16 shows a schematic configuration of an X-ray tube system for measuring field emission and electrical property evaluation according to an embodiment of the present invention.
  • an X-ray tube system includes a vacuum chamber 300, a turbo pump 301, a CCD controller 302, an imaging and processing system 303, a pump and a vacuum gauge controller 304, and a temperature. It may include a meter 306 and a high voltage power source 305, and may optionally include a rotary pump 307.
  • the vacuum chamber 300 may have a problem in a cathode part to which the measurement sample is mounted to measure physical properties of the measurement sample, or may complete measurement of the physical property of one measurement sample to another measurement sample.
  • the sample probe can be mounted and detached with a structure capable of removing and assembling the cathode only when it is to be replaced, while maintaining the vacuum inside the vacuum chamber when the sample probe is mounted or detached to replace the measurement sample. It is configured to.
  • the physical properties of the measurement sample may be a field emission property, a current, or a voltage property of the field emission device when the measurement sample is a field emission device such as carbon nanotube (CNT), and the measurement sample is a nanomaterial.
  • CNT carbon nanotube
  • a new element or a new material may be an electrical characteristic, a temperature, or a pressure characteristic such as electrical conductivity, voltage, and current of the measurement sample, and in some cases, for example, in a high vacuum state or a cryogenic state of 10 -7 Torr or more It can also be a superconducting property.
  • a heating wire is installed on the outer wall of the vacuum chamber 300 so as to outgas from the material forming the inner wall and the pipe so as to increase the degree of vacuum if necessary.
  • it may be configured to rapidly dry the wet vacuum chamber by forming a liquid refrigerant circulation path at the same time as the installation of the hot wire.
  • the turbo pump 301 is for evacuating the vacuum chamber 300 together with the rotary pump 307, which is optionally included, to exhaust the vacuum chamber 300 to a high vacuum of at least 10 ⁇ 6 Torr or more. Any kind of pump may be used, and since this is well known to those skilled in the art, the detailed description thereof will be omitted.
  • the CCD controller 302 is for visualizing electron beam characteristics generated in the cathode portion of the vacuum chamber 300, particularly when the measurement sample is a field emission device, and the imaging and processing system 303 and the vacuum chamber (described later) It is used to measure the field emission characteristics of the field emission device in conjunction with a CCD camera installed on the upper surface of the device 300, and to simultaneously image the light emission pattern generated from the field emission device.
  • the imaging and processing system 303 is equipped with a LabView-based automated data acquisition (DAQ) program to synchronize data with the CCD controller 302 and other components to automatically obtain data about the physical characteristics of the measurement sample. Acquire and convert the obtained data into an image. Therefore, according to the present invention, since the LabView-based DAQ can be developed and interlocked with the measurement system to acquire, display and store data on the physical characteristics of the measurement sample to be measured in real time, the accuracy of the measured data At the same time, the electron generating shape of the field emission device such as carbon nanotubes (CNT) can be measured in real time.
  • DAQ LabView-based automated data acquisition
  • the pump and vacuum gauge controller 304 is to control the turbo pump 301 and / or the rotary pump 307 to precisely control the degree of vacuum of the vacuum chamber 300, the high voltage power supply 305 Is for applying a high voltage to the various electrodes in the vacuum chamber 300, the temperature measuring instrument 306 is for measuring the temperature of the sample mounted on the cathode in the vacuum chamber (300).
  • FIG. 17 is a view for explaining the detailed configuration of the vacuum chamber 300 shown in FIG. 16 and the sample probe 315 as the cathode part used therein.
  • the vacuum chamber 300 is preferably manufactured using a metal capable of maintaining a vacuum for field emission experiments and superconductivity experiments, and a grid as an anode part inside the vacuum chamber 300.
  • a sample probe 315 configured to mount an electrode 310, a measurement sample 311 so that the measurement sample 311 is placed inside the vacuum chamber 300, and the sample probe 315 to which the measurement sample is mounted is the vacuum.
  • the voltage applying unit 314 is applied.
  • the grid electrode 310 is made of, for example, a material having good electrical conductivity, such as stainless specicial use stainless steel (SUS), copper, iron, tungsten, and the like, particularly when the measurement sample 311 is a field emission device. It may be formed of a metal structure in a mesh or solid form. The grid electrode 310 may be formed to abut the measurement sample mounted on the cathode of the sample probe 315 as shown, but according to the present invention by changing the mounting position of the sample probe 315 The distance between the electrode 310 and the cathode of the sample probe 315 may be easily changed.
  • SUS stainless specicial use stainless steel
  • the grid electrode 310 may also be made of a transparent electrode (eg, MgO or ITO electrode) to measure the light emission phenomenon of a field emission source such as carbon nanotubes mounted on the sample probe 315.
  • This transparent electrode may be manufactured to be coated.
  • a fluorescent material such as a phosphor such that an electron beam generated from an electron emission source such as a carbon nanotube is shaped by using a CCD camera 324 provided on an upper surface of the outside of the vacuum chamber 300. This may be coated, and thus may be configured to identify the image in real time simultaneously with image acquisition as described above in conjunction with the image and processing system 303 shown in FIG.
  • the grid electrode 310 is shown as a single electrode, the grid electrode 310 is an electron beam due to the collision by the electrons emitted from the cathode when measuring the field emission characteristics of the field emission device It should be noted that it includes a positive electrode electrode for emitting light or an electron focusing electrode for focusing electrons emitted from the negative electrode portion, and encompasses the structure of any positive electrode portion together with the negative electrode portion described later.
  • the measurement sample 311 is a measurement sample mounted on the cathode, and is manufactured to have a size that fits into the probe at the upper end of the sample probe 315 as described below.
  • the measurement sample 311 may be formed to form ohmic contact with the cathode using silver paint.
  • the measurement sample 311 may be fixed to the sample probe 315 by a bolt 316 as shown, in some cases, the sample probe 315 using only silver paint It may be fixed to the sample probe 315 by being adhered to the top.
  • An insulating layer 312 may be formed between the grid electrode 310 and the sample probe 315.
  • the grid electrode 310 may be formed.
  • it is made of a low conductivity material, such as ceramic, Teflon, bellspell, alumina.
  • a support 313 may be formed in the vacuum chamber 300, which is an insulating layer supporting the grid electrode 310, the measurement sample 311, and the insulating layer 312.
  • the material is made of a material having low electrical conductivity, such as ceramic, Teflon, bellspell, alumina, or the like.
  • the vacuum chamber 300 may further include a voltage applying unit 314 and a feed through 317 for applying a high voltage to the grid electrode 310.
  • the voltage applying unit 314 is preferably made of a material having good conductivity such as SUS, copper, iron, and the like, and the feedthrough 317 is outside the vacuum chamber 310 through the voltage applying unit 314. It is preferably made of a high pressure MHV, SHV, etc. in order to facilitate the application of high voltage as a role of applying a voltage to the).
  • the sample probe 315 is for mounting the measurement sample 311, and moves along the sample probe guideline 312 to place the measurement sample 311 inside the vacuum chamber 310 as described below. And when coupled with the valve system 325 and the two o-rings 326, 326 ', when taken out of the vacuum chamber 300 to replace the measurement sample, the sample chamber is maintained while maintaining the vacuum of the vacuum chamber 300. Only the bottom portion 315 is configured to be detachable from the vacuum chamber 300.
  • the measurement sample 311 is preferably mounted on the measurement sample 311 so as to be fixed to the sample probe 315 as the cathode, and then fixed by being twisted with a bolt 316, if necessary.
  • the measurement sample 311 may be mounted on the top surface of the 315 to be in ohmic contact with silver paint.
  • sample probe 315 is equipped with a thermometer 328 such as a thermometer, and the temperature probe shown in FIG. 16 with the sample probe 315 mounted to the vacuum chamber 300 ( In conjunction with 306, it is desirable to be able to measure the temperature of the measurement sample in real time.
  • a thermometer 328 such as a thermometer
  • the sample probe 315 may also include liquid coolant jets and liquid coolant inlets 318 and 319, wherein the liquid coolant jets and liquid coolant inlets 318 and 319 may be used to determine the temperature of the measurement sample 311.
  • the liquid refrigerant is ejected to form a circulation path 327 which is designed to circulate through the sample probe 315 from the outside of the vacuum chamber 310 to coolant such as liquid nitrogen or liquid helium to be cryogenic.
  • the pressure gauge 320 is a gauge for measuring the pressure of the liquid refrigerant, and the reservoir 321 is preferably installed outside the vacuum chamber 310 to circulate the liquid refrigerant from the outside of the vacuum chamber 300.
  • the vacuum chamber 300 may further include a side viewport 322 and a top viewport 323, and the top viewport 323 may be equipped with a CCD camera 324.
  • the side viewport 322 is a viewport for observing the side view inside the vacuum chamber
  • the upper viewport 323 is a viewport for measuring the emission of the grid electrode 310
  • the transparent inside the grid electrode 310 In order to measure the appearance of light emitted from an electrode, the CCD camera 324 may be manufactured to an outer diameter, and materials such as quartz and metal may be used.
  • the CCD camera 324 is connected to the CCD controller 302 shown in FIG. 16 through a cable (not shown) to measure light emission of the grid electrode 310.
  • the vacuum chamber 300 preferably includes the turbo pump 301 integrally, and although not shown, a small turbo pump, which does not generate vibration, is required by mounting the vacuum chamber to be implemented in the present invention. It can also have a structure that maintains the vacuum at time.
  • the X-ray tube system according to the present invention having the structure as described above is largely used to investigate the field emission characteristics of field emission devices such as silicon or carbon nanotubes (CNT) and the physical properties such as current and voltage of new materials or new materials. Can be. Of course, in performing these two experiments, it is common that only the measurement sample can be taken out and mounted when a measurement sample needs to be replaced.
  • field emission devices such as silicon or carbon nanotubes (CNT)
  • CNT carbon nanotubes
  • the sample probe 315 serving as the cathode part composed of the field emission emitter and the electrons generated at the cathode part may be extracted. It is composed of a grid electrode 310, the structure to be fixed in the vacuum chamber 300 up to the insulating layer 312 that can electrically insulate the grid electrode 310 and the carbon nanotube (CNT) cathode that is the electron emission source Will have In this case, when the cathode portion does not operate correctly, the sample probe 315 to which the CNT field emission source is mounted may be easily extracted to the outside of the vacuum chamber 300 while the high vacuum inside the vacuum chamber 300 is maintained. After replacing only the emission element, it may be inserted into the vacuum chamber 300 again.
  • CNT carbon nanotube
  • a structure for measuring field emission characteristics fixed in the vacuum chamber 300 may be used as it is.
  • the grid electrode 310 which is already fixed in the vacuum chamber 300, may be brought into contact with the upper surface of the measurement sample. In this way, the current and voltage characteristics of the measurement sample can be investigated.
  • the liquid nitrogen, liquid helium, etc. are circulated inside the sample probe 315. Since the circuit 327 is included, the measurement sample can be easily cooled.
  • FIGS. 18 to 19 show a state in which the measurement sample 311 is mounted on the sample probe 315 according to the present invention, and FIG. 18 shows the growth of the carbon nanotubes 331 as the measurement sample 311.
  • the negative electrode substrate 332 is mounted on the sample probe 315.
  • FIG. 19 illustrates a nanomaterial-based measurement sample for measuring physical properties such as superconductivity or voltage and current in a cryogenic state.
  • 333 is shown mounted to the sample probe 315.
  • the measurement sample 333 based on the substrate 332 or the nanomaterial may be manufactured to have a size that fits into the sample probe at the top of the sample probe 315. It is configured to.
  • the cathode substrate 332 or the measurement sample 333 may be mounted on the top surface of the sample probe 315 using silver paint.
  • 20 to 22 are negative electrode-separated samples for measuring physical properties such as field emission characteristics and electrical conductivity characteristics of substrates grown with nanotubes and measured samples in a cryogenic state according to a preferred embodiment of the present invention. This is a view for explaining a process in which the probe is separated from the vacuum chamber.
  • the negative electrode separation type sample probe 315 is configured to be detachable from the vacuum chamber 300 by moving through the sample probe guide line 312.
  • 312 includes two O-rings 326 and 326'and a valve system 325 installed between the two O-rings 326 and 326'for maintaining vacuum in the vacuum chamber 300.
  • the measurement sample 311 is a vacuum chamber of the two O-rings 326 and 326 '.
  • the valve system 325 By locking the valve system 325 after it has been moved up to line A through the O-ring 326 and valve system 325 adjacent to 300, the vacuum in the vacuum chamber 300 is not destroyed, as shown in FIG. 22. In this state, only the sample probe 315 can be separated.
  • the sample probe 315 used in the present invention may have a configuration in which an insulating layer made of ceramic, Teflon, or the like is inserted in the middle of the sample probe to insulate the portion where the cathode is mounted.
  • the X-ray tube system according to the present invention is commercialized, it is very easy to develop a new concept x-ray light source based on CNTs, which is superior in technology and function, compared to the thermal cathode type x-ray light source, which consumes a lot of power. Therefore, it is possible to replace the X-ray light source, which was only imported, and to supply it at a relatively low price, thereby having a great economic and industrial ripple effect.
  • the present invention can easily measure the field emission characteristics of the CNT in a high vacuum, cryogenic state that can not be measured by the conventional CNT field emission device, the field emission phenomenon of CNT generated at cryogenic temperatures By providing new research results, new technologies can be created and led.
  • the present invention contributes to the development of basic science by providing an experimental system that can facilitate the physical property test of CNT, and in terms of price and quality, It is expected to take the lead.
  • the present invention can be easily used by the user as compared to the equipment for measuring the field emission characteristics of the conventional CNT, and also can significantly improve the measurement time and improve the accuracy of the measurement data by incorporating LabView-based automatic DAQ system It can work.
  • Pen-type rotatable x-ray tube system Pen-type rotatable x-ray tube system:
  • FIG. 23 is a view illustrating an X-ray tube system capable of rotating a carbon nanotube-based pen shape according to an embodiment of the present invention.
  • an X-ray tube system may include an X-ray emission module 402 including an X-ray emission window 401, an X-ray emission module separator 403, and an X-ray emission system body 404.
  • the pen-shaped dental X-ray tube system has a short lifetime in which the negative electrode portion of the X-ray emission module 402 to which the electron-emitting device is mounted has to be replaced after use for a certain period of time.
  • the X-ray emission module separator 403 the X-ray emission module 402 may be easily separated from the body and assembled.
  • the pen or pencil type small and simple structure can emit X-rays
  • the pen or pencil can be easily inserted into the oral cavity and photographed to acquire an image. That is, the dental X-ray tube system shown in FIG.
  • X-ray detector installed outside. It can be used simply for dental diagnosis.
  • the appropriate amount of radiation can be irradiated by directly approaching the affected area inside the oral cavity, it can be used in various medical systems such as a brachytherapy system in which radiation can be projected only to cancer cells without exposure to normal tissue.
  • carbon nanotubes which are electron-emitting devices in the X-ray emission module 402 can be chipped to standardize in size and downsized, and can be operated in a user-friendly environment by simple button operation using a simple program in conjunction with an external measurement system. It was made possible.
  • FIGS. 24 to 26 an X-ray tube system according to an exemplary embodiment of the present invention will be described in more detail with reference to FIGS. 24 to 26.
  • shape of the X-ray tube described in the second embodiment and the third embodiment may be applied to the X-ray emission module of the present invention, a more preferred embodiment will be described below.
  • 24 is a view for explaining a carbon nanotube-based electron emission module according to an embodiment of the present invention.
  • the electron emission module according to the exemplary embodiment of the present invention mounted on the X-ray emission module 402 includes a holder 411 and carbon including a fixed holder 409 and a hole 410.
  • a fixed holder and power supply line module 415 to fix the right part of the grid part 414 and to fix the right part of the holder and power supply line 416 and the cathode part 412 to supply power.
  • a holder and a power supply line 417 for supplying power.
  • the left and right sides of the grid portion 414 may be fixed by using the fixed holder 409 and the holder and power supply line 416.
  • a predetermined hole is provided in the fixed holder 409 and the holder and power supply line 416. It can be fixed by inserting a fixing means such as a material that can be bored and bolted to it.
  • the left wing portion of the cathode portion 412 may be inserted into the hole 410, and the cathode portion 412 may be fixed by inserting the right portion of the cathode portion 412 into the holder and power supply line 417. Power may be supplied to the grid portion 414 through the holder and power supply line 416, and power may be supplied to the cathode portion 412 through the holder and power supply line 417.
  • the carbon nanotube field emission source for use as the cathode 413 for electron emission, it may be ground to smoothly bend the corners of the metal-substrate with sharp edges.
  • a buffer layer such as TiN is applied onto a metal substrate with smooth edges as described above, and a catalytic material such as Ni or Fe is applied thereto.
  • the etching may be performed with a gas such as argon or helium to form seed particles, and then carbon nanotubes such as C2H2 may be injected to grow carbon nanotubes.
  • the cathode when growing the carbon nanotubes as a field emission source on the substrate, the cathode can be prepared by applying the carbon nanotubes only to the center portion except the outside of the substrate.
  • Carbon nanotubes such as hexagonal crystal lattice consisting of six carbons are connected to each other to form a tubular shape, and the diameter of the tube is only several tens to tens of nanometers. Since these carbon nanotubes are nanometers in diameter and can grow from tens of nanometers to tens of micrometers in length, the field enhancement factor, which is a parameter that determines the field emission ability of electrons, is more than 1000, compared to other materials. Since it is large, it has a structure that emits electrons much more easily than the method of extracting electrons by hot electron emission from the conventional tungsten filament, and it uses the quantum mechanical field emission method to extract the same amount of electrons. Relatively less power is consumed.
  • an X-ray emission module 402 is manufactured based on carbon nanotubes, which has recently been spotlighted as an electron emitting device, and is mounted and used in a dental X-ray tube system. It can be utilized in radiation tube (X-ray tube) system for human diagnosis or cancer treatment, such as low power consumption, high efficiency dental diagnosis and oral cancer treatment with high resolution.
  • radiation tube X-ray tube
  • FIG. 25 is a detailed view of an X-ray tube system equipped with the electron emission module of FIG. 24, according to an exemplary embodiment.
  • the X-ray emission module 402 including the electron emission module of FIG. 24 may be mounted and coupled to the upper portion of the body of the X-ray tube system as shown in FIG. 23, and the cable-type pipe 418 passes through the inside of the X-ray tube system body to form a vacuum vacuum line.
  • the vacuum vacuum line 419 may be coupled to a corresponding hole of the X-ray emission module 402. Accordingly, the vacuum pump may be connected to the pipe 418 to operate to suck the air inside the X-ray emission module 402 to maintain the vacuum atmosphere.
  • electrons passing through the grid portion 414 are focused by the focusing lens 431 and generate X-rays by the anode portion 432. That is, electrons are generated in the carbon nanotubes by the voltages applied to the cathode 413 and the grid portion 414, and the electrons generated as described above are focused by the focusing lens 431, and are mounted for X-ray generation. The X-rays are generated at the same time as the collision to the unit 432.
  • the electron emission module inside the X-ray tube system is configured by chipping, and a pipe 418 for vacuum is connected to the inside of the X-ray tube system to form a sufficient vacuum, and electrons are generated through field emission.
  • the structure of the anode portion 432 may be in the form of a transmission type target in which a material having excellent x-ray generating efficiency such as tungsten or molybdenum is coated on a beryllium (Be) window, and the electron beam is such an anode portion 432. X-rays are transmitted through the anode target and emitted to the outside.
  • the anode portion 432 may emit high resolution X-rays in the form of an ideal point light source of several tens of micrometers or less. Can be. Such a structure may be applicable to X-ray microscopy.
  • 26 is a view for explaining a dental carbon nanotube-based radiation imaging system according to an embodiment of the present invention.
  • a radiation imaging system includes a body 420 for embedding a power supply device and a vacuum pump, a computer system 421 for imaging, and a portable radiation tube for dental diagnosis.
  • An x-ray tube accommodating device 426 may be arranged to accommodate and store the tube system 422.
  • the portable radiation tube 422 may include an X-ray tube system having the structure described with reference to FIGS. 22 to 24, and an X-ray detector that detects X-rays emitted from the X-ray tube system 422 and passing through the oral tissue.
  • the portable radiation tube 422 can be operated with certain application programs of the computer system 421.
  • predetermined software or hardware mounted on the computer system 421 may be controlled to maintain a power supply or a vacuum degree required for the portable radiation tube 422, and an X, as shown in FIG. Inserting the cannula system and rotating by using the rotary shaft 408 to operate the switch 407 to irradiate X-rays, outside the oral cavity can be easily made oral diagnosis process in the form of detecting the image in the X-ray detector.
  • an image detected by the X-ray detector may be stored in a predetermined memory and displayed on the imaging display monitor 423.
  • the radiation imaging system for dental diagnosis which is utilized in this way, it is possible to access and acquire images of local parts of the human body, such as the oral cavity, which is difficult to measure in the conventional portable radiation system. It is designed to be easy to use and is expected to help a lot in the medical field. In addition, since the system size is not large, the space utilization is increased, which is more practical. In the case of currently available dental diagnostic X-ray camera, there is some convenience, but its weight is about 2 kg, which is low in utilization due to the problem of blurring due to the blurring of the image when the user takes an X-ray. Therefore, the radiation system proposed in the present invention can significantly reduce the weight in the shape of a pen or pencil type, and therefore, it is expected to provide many benefits to related fields when commercializing.
  • the X-ray tube system by reducing the size and weight of the existing tungsten filament or carbon nanotube-based radiation tube, it can be developed as a user-friendly product.
  • the efficiency of the tube current can be increased according to the even emission of the electron beam in the carbon nanotube cathode portion, and the commercialization period of the carbon nanotube-based radiation tube can be advanced according to the long life of the cathode portion. have.
  • the voltage and current amount can be selected according to the photographing site, and also can be adjusted in the form of a manual, so that the restriction according to the shape of the subject can be largely eliminated.
  • the X-ray tube system according to the present invention, by overcoming the limitations of the prior art for the measurement and inspection of micro-defects below the micro-class and developing an X-ray light source, which was dependent only on existing imports, with new high-efficiency new technology in its own country, the lower price As a result, it can be supplied for application to electronic medical devices, thereby creating economic and industrial benefits, and increasing the usability of the medical diagnosis-related industries.
  • brachytherapy to oral cancer patients that require radiation therapy, it is possible to alleviate the concern of radiation exposure of normal tissues that were previously concerned with direct radiation.
  • FIG. 27 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to an embodiment of the present invention.
  • an X-ray tube may include a housing 511, a spacer 512, a carbon nano-tube (CNT) substrate 513, a grid electrode, or a grid. 514, an anode portion 518, and an electron focusing module.
  • the electron focus module may include an insulating dielectric 515, a focus electrode 516, and a beam guide dielectric 517.
  • a carbon nanotube cathode for emitting electrons is formed on the CNT substrate 513.
  • the edge portion of the metal substrate for the CNT substrate 513 may be ground for smooth bending.
  • a buffer layer such as TiN is applied onto a metal substrate with smooth edges as described above, and a catalytic material such as Ni or Fe is applied thereto.
  • the etching may be performed with a gas such as argon or helium to form seed particles, and then carbon nanotubes such as C2H2 may be injected to grow carbon nanotubes.
  • the cathode when the carbon nanotubes are grown on the substrate, the cathode may be prepared by applying the carbon nanotubes only to the center portion except for the outside of the substrate.
  • Carbon nanotubes such as hexagonal crystal lattice consisting of six carbons are connected to each other to form a tubular shape, and the diameter of the tube is only several tens to tens of nanometers. Since these carbon nanotubes are nanometers in diameter and can grow from tens of nanometers to tens of micrometers in length, the field enhancement factor, which is a parameter that determines the field emission ability of electrons, is more than 1000, compared to other materials. Since it is large, it has a structure that emits electrons much more easily than the method of extracting electrons by hot electron emission from the conventional tungsten filament, and it uses the quantum mechanical field emission method to extract the same amount of electrons. Relatively less power is consumed.
  • the spacer 512 is mounted to the housing 511, the spacer 512 has a hole or recessed portion in the form of a circular shape, and the like CNT substrate 513 to have a predetermined height difference in the hole or recessed portion. Can be combined.
  • the grid 514 is coupled with the spacer 512 and there is some space between the cathode and the grid 514 on the CNT substrate 513 by the step (height difference) between the CNT substrate 513 and the spacer 512 as described above. This can be formed.
  • the electron focusing module including the insulating dielectric 515, the focus electrode 516, and the beam guide dielectric 517, which are sequentially coupled and have a through hole therein, has a spacer 512 to which the grid 514 is coupled as described above. ) Can be combined.
  • an appropriate voltage is applied between the CNT substrate 513 and the grid 514, for example, the CNT substrate 513 is grounded, and a positive voltage is applied to the grid 514 so that the CNT substrate 513 and the grid
  • the electron beam may be generated from the carbon nanotube cathode on the CNT substrate 513 by the voltage difference between the 514 and the electron beam is collected by the electron focusing module having the structure as described above and proceeds to the anode portion 518. do.
  • the electron beam focused and emitted as described above is received by the anode portion 518, and the electron beam collided with the metal inclined surface of the anode portion 518 may generate X-rays by applying high energy to the metal.
  • the through hole of the focus electrode 516 has a radius smaller than the radius of one end (the side that is coupled with the insulating dielectric 515) than the other end (the side that is coupled with the beam guide dielectric 517). It may be formed in a circle. The radius of the beam guide dielectric 517 and the through hole of the focus electrode 516 coincide with each other at the corresponding portion, and the through hole of the insulating dielectric 515 and the focus electrode 516 at the corresponding portion is combined. The radius of the coincidence.
  • the electron focusing module for manufacturing a carbon nanotube-based X-ray tube can be manufactured in a highly focused manner in a manner that has not been seen previously, and when using a pierce type electrode as compared to a conventional date type focus electrode, The ability to focus can be significantly improved. In this case, the amount of electrons lost to the inner wall of the focus electrode is also reduced, and the electron collecting speed can be improved according to the dielectric constant of each dielectric material. In addition, it is possible to increase the efficiency of the tube current by inducing the even emission of the electron beam from the carbon nanotube cathode and to accelerate the commercialization time of the carbon nanotube-based radiation tube regardless of the lifetime of the cathode portion.
  • FIG. 28 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
  • an X-ray tube may include a housing 521, a spacer 522, a CNT substrate 523, a grid 524, an anode portion 530, and an electron focusing module.
  • the electron focusing module may include an insulating dielectric 525, a first focus electrode 526, an insulating dielectric 527, a second focus electrode 528, and a beam guide dielectric 529.
  • the housing 521, the spacer 522, the CNT substrate 523, the grid 524, and the anode portion 530 include the housing 511, the spacer 512, and the CNT substrate 513 of FIG. 27. ), Grid 514, and anode portion 518 operate similarly.
  • the through holes of all the focus electrodes 526 and 528 and the dielectric 527 coupled between the insulating dielectric 525 and the beam guide dielectric 529 of the electron focusing module have opposite radii at one end. It is formed in a circular shape larger than the radius, and is successively coupled so that the radii of the coupling sites between the corresponding focus electrode and the dielectric to be joined coincide with each other.
  • the electron focusing module may further improve the focusing ability by combining the voltage of each focus and the dielectric constant of the insulating dielectric including the multi focus electrode.
  • 29 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
  • an X-ray tube may include a housing 531, a spacer 532, a CNT substrate 533, a grid 534, an anode part 538, and an electron focusing module. It includes.
  • the electron focusing module may include an insulating dielectric 535, a focus electrode 536, and a beam guide dielectric 537.
  • FIG. 29 The structure of FIG. 29 is similar to that of FIG. 27, except that the radius difference between one end and the other end of the focus electrode 536 is different from that of the focus electrode 516 of FIG. 27, and the depth of the through hole is different from each other. There is a difference. That is, as described above, the anode part 538 may be adjusted by adjusting the depth of the through hole of the focus electrode 536, by varying the radius difference between one end and the opposite end of the focus electrode 536, or by changing the inclination angle of the through hole. The focal length of the electron beam emitted toward the camera can be adjusted.
  • FIG. 30 is a view for explaining a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
  • an X-ray tube may include a housing 541, a spacer 542, a CNT substrate 543, a grid 544, an anode part 554, and an electron focusing module. It includes.
  • the electron focusing module includes an insulating dielectric 545, a first focus electrode 546, an insulating dielectric 550, a second focus electrode 547, an insulating dielectric 551, and a third focus electrode 548.
  • the housing 541, the spacer 542, the CNT substrate 543, the grid 544, and the anode portion 554 include the housing 511, the spacer 512, and the CNT substrate 513 of FIG. 27. And operate similarly to the grid 514 and the anode portion 518.
  • the structure of FIG. 28 is expanded to combine the insulating dielectric between more focus electrodes and the focus electrodes. That is, the structure in which the insulating dielectric is used only once between the first focusing electrode 546 and the fourth focusing electrode 549 is the same as that of FIG.
  • the first focusing electrode 546 and the fourth focusing electrode ( In addition to the insulating dielectric (e.g., 550) coupled between 549, at least one other focus electrode and a pair of other dielectrics (e.g., a pair of pairs of 547 and 551, or a pair of pairs of 548 and 552) Additionally coupled.
  • the insulating dielectric e.g., 550
  • a pair of other dielectrics e.g., a pair of pairs of 547 and 551, or a pair of pairs of 548 and 552
  • the through-holes of all the focus electrodes 546, 547, 548, 549 and all the dielectrics 550, 551, 552 coupled between the insulating dielectric 545 and the beam guide dielectric 553 have one end.
  • the radius is formed in a circular shape smaller than the radius of the opposite end, and are successively coupled so that the radiuses of the coupling sites between the focus electrode and the dielectric to be joined coincide with each other.
  • the anode portion 554 may use a metal material having a simple inclined surface as shown in FIGS. 27 to 29. However, as shown in FIG. In addition, the X-rays generated by the energy of the electron beam that enters the traveling direction of the electron beam and collides on the inclined plane in the hole may be emitted in the direction perpendicular to the electron beam through the above hole.
  • FIG. 28 illustrates a structure in which two focus electrodes 526 and 528 are applied
  • FIG. 29 illustrates a structure in which four focus electrodes 546, 547, 548 and 549 are applied, but the present invention is not limited thereto.
  • a single focus electrode may be used between the insulating dielectric 545 and the beam guide dielectric 553 as shown in FIG. 27 or 29.
  • 3, 5, 6, 7,... Two focus electrodes may be used.
  • an insulating dielectric may be coupled between the focus electrodes.
  • FIG. 31 is a diagram illustrating a carbon nanotube-based X-ray tube employing a focusing cup type electron focusing module according to another embodiment of the present invention.
  • a focusing cup type X-ray tube may include a housing 561, a cup type focus electrode 562, a CNT substrate 563, a grid 564, and an anode portion. 565.
  • the cup type focus electrode 562 is a hollow hemispherical body having a certain thickness and having a hole near the center.
  • the housing 561 may be fastened through the hole of the cup type focus electrode 562, and the CNT substrate 563 may be coupled to an end surface of the fastening direction of the housing 561.
  • the CNT substrate 563 is coupled to be electrically connected to the cup type focus electrode 562, and the grid 564 is spaced apart from the carbon nanotube cathode on the CNT substrate 563 by a predetermined distance.
  • a suitable voltage is applied between the CNT substrate 563 and the grid 564, for example, the CNT substrate 563 is grounded, and a positive voltage is applied to the grid 564, thereby providing the CNT substrate 563 and the grid 564.
  • the electron beam may be generated from the carbon nanotube cathode on the CNT substrate 563 by the voltage difference between the 564, and the electron beam may be focused by the cup type focus electrode 562 having the above structure. Proceed to 565.
  • the electron beam focused and emitted in this manner is accommodated in the anode portion 565, and the electron beam impinged on the metal inclined surface of the anode portion 565 may generate X-rays by applying high energy to the metal.
  • the anode part 565 may be in the form of a simple inclined surface as shown in FIGS. 27 to 29, or may have a shape having an L-shaped or inverse L-shaped hole as illustrated in FIG. 30.
  • the X-ray tube according to the embodiments of the present invention having the structure as shown in FIGS. 27 to 31 is a structure that can be developed as a user-friendly product by allowing the size of the X-ray tube to be freely positioned. It can be used as an internal module for radiation generation in industrial fields such as radiation therapy or non-destructive testing by high concentration of electron beam, such as dental diagnosis or brachytherapy, so that the amount of voltage and current can be selected according to the imaging area. It is also easy to develop so that it can be used without restrictions according to the shape of the subject by adjusting the shape.
  • the electron focusing module for manufacturing a carbon nanotube-based X-ray tube can be manufactured in a highly focused manner in a manner that has not been seen before, and pierced in comparison with a conventional date type focus electrode.
  • the use of this type of electrode can significantly improve the electron focusing capability. In this case, the amount of electrons lost to the inner wall of the focus electrode is also reduced, and the electron collecting speed can be improved according to the dielectric constant of each dielectric material.
  • the focusing ability may be further improved by using a combination of the voltage of each focus and the dielectric constant of the insulating dielectric using a multi focus electrode.
  • the X-ray tube according to the present invention it is possible to increase the efficiency of the tube current by inducing the even emission of the electron beam from the carbon nanotube cathode portion and to accelerate the commercialization time of the carbon nanotube-based radiation tube regardless of the lifetime of the cathode portion Can be.
  • the X-ray tube according to the present invention by reducing the size of the X-ray tube to be freely positioned to have a structure that can be developed as a user-friendly product, radiation treatment by high focusing of the electron beam, such as for dental diagnostics or brachytherapy It can be used as an internal module for radiation generation in industrial fields such as non-destructive inspection, so that the voltage and current can be selected according to the photographing part, and it can be adjusted in the form of manual so that restrictions on the shape of the subject can be removed. .
  • an X-ray tube using a nano-structure material and an X-ray tube system using the same may be modified and applied in various forms within the scope of the technical idea of the present invention, and the present invention is not limited to the above-described embodiment.
  • the embodiments and drawings are merely for the purpose of describing the contents of the invention in detail, and are not intended to limit the scope of the technical idea of the invention, the present invention described above is common knowledge in the technical field to which the present invention belongs As those skilled in the art may have various substitutions, modifications, and changes without departing from the technical spirit of the present invention, it is not limited to the embodiments and the accompanying drawings. Judgment should be made including scope and equivalence.

Abstract

The present invention discloses an x-ray tube using a nano-structure material and a system using the same. The x-ray tube system according to the invention has: an x-ray emission module that emits x-rays using the nano-structure material, and a structure in which the x-ray emission module is separated from the body of the X-ray tube system. Therefore, the invention is able to improve the emission efficiency of an electron beam and enables convenient replacement of samples. In addition, the invention is capable of reducing damage caused by radiation exposure to other normal tissues and improving the focus of the electron beam.

Description

[규칙 제26조에 의한 보정 25.02.2009] 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 시스템[Revision according to Rule 26.02.2009] X-ray tube using nano-structured material and system using the same
본 발명은 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 시스템에 관한 것이다.The present invention relates to an X-ray tube using a nano-structured material and a system using the same.
현재 상용되고 있는 엑스선관은 진공 밀봉된 벌브 내부에 음극부와 양극부가 설치되어 있고 음극부에서 발생된 전자가 음극부와 양극부 사이에 인가되는 고전압에 의해 가속되어 양극부의 타깃에 충돌하면서 X-선이 발생하는 현상을 이용하고 있다.The X-ray tube currently used has a negative electrode part and an anode part inside a vacuum-sealed bulb, and electrons generated at the cathode part are accelerated by a high voltage applied between the cathode part and the anode part, and collide with the target of the anode part. The phenomenon that a line generate | occur | produces is used.
이와 같이 음극부에서 전자를 발생시키는 종래의 대표적인 엑스선관으로서는 텅스텐 필라멘트를 가열하여 전자를 발생시키는 열전자 방출 음극 구조를 갖는 장치를 들 수 있다. 이러한 열전자 방출 구조를 갖는 엑스선관의 경우 음극부의 구조가 관 전류를 형성하는 전자빔이 집속되도록 되어 있고, 음극부의 필라멘트를 가열하는 단순한 방법으로 전자를 방출시킬 수 있으며 가열온도를 조절함으로써 관 전류를 용이하게 조절할 수 있다는 등의 장점이 있어서 널리 사용되고 있다.As a typical representative X-ray tube that generates electrons in the cathode portion, a device having a hot electron emission cathode structure that generates electrons by heating tungsten filaments is mentioned. In the case of the X-ray tube having such a hot electron emission structure, the structure of the cathode portion is such that the electron beam forming the tube current is focused, and electrons can be emitted by a simple method of heating the filament of the cathode portion, and the tube current is easily controlled by adjusting the heating temperature. It is widely used because there is an advantage such that it can be adjusted.
그러나, 이러한 열전자 방출 현상을 이용하는 엑스선관의 경우 텅스텐 필라멘트의 가열이 반복됨에 따라 필라멘트의 열화가 진행되어 전자 방출 특성을 변화하게 하고 엑스선관의 수명을 제한하며, 열전자를 방출시키기 위해 필라멘트를 가열할 때 생기는 열적 문제 때문에 필라멘트 및 집속부에서 발생하는 탈기체(outgas) 및 내부 가열로 인해 진공도가 떨어지며, 필라멘트의 가열 시 증발된 텅스텐이 타깃 표면, 진공 챔버 내벽 등에 증착되어 고압 절연을 저하시키고 투과 방사선량을 감소시키는 등의 문제점이 발생한다.However, in the case of an X-ray tube using such a hot electron emission phenomenon, as the tungsten filament is repeatedly heated, deterioration of the filament proceeds to change electron emission characteristics, limit the life of the X-ray tube, and heat the filament to emit hot electrons. Due to thermal problems, the degree of vacuum decreases due to outgassing and internal heating generated from the filament and the focusing part.Tungsten evaporated during heating of the filament is deposited on the target surface, the inner wall of the vacuum chamber, and so on, deteriorates high pressure insulation and transmits radiation. Problems such as reducing the amount occur.
이러한 문제점들을 해결하기 위하여, 최근에는 열전자 방출 현상 대신에 전기장을 인가하였을 때 전자가 고체 표면의 전위 장벽(일함수)를 넘어서 방출되는 전계 방출 현상을 이용하는 엑스선관에 관한 연구가 활발히 진행되고 있다. 특히 일함수가 금속재료에 비해 낮고 전자 방출 전압이 1 ~ 3 V/um로서 다른 금속 팁보다 수십 배 정도 낮은 탄소 나노튜브(carbon nanotube)를 전자 방출원의 재료로서 이용하는 엑스선관에 관한 연구가 활발히 진행되고 있으나, 아직까지 상용화가 가능한 정도의 최적화된 구성은 제안되지 않고 있는 실정이다.In order to solve these problems, an X-ray tube using an electric field emission phenomenon in which electrons are emitted beyond a potential barrier (work function) on a solid surface when an electric field is applied instead of a hot electron emission phenomenon has been actively studied. In particular, research on X-ray tubes using carbon nanotubes, which have lower work functions and lower electron emission voltages of 1 to 3 V / um and dozens of times lower than other metal tips, is used as an electron emission source. Although progressing, an optimized configuration to the extent that it is commercially available has not been proposed yet.
또한, 치과 진단이나 구강암 치료 등의 의료 분야에서도 엑스선관이 이용되고 있으나, 주로 방사선을 환자의 구강 외부에서 조사하고 구강 안쪽으로 투영되는 이미지를 검출하여 구강 내 결함을 판정할 수 있도록 하는 방식이다. 이와 같이 텅스텐 필라멘트 타입의 엑스선관을 이용하는 경우에, 열전자 방출을 통해서 원하는 양 만큼의 전자방출을 도출하기 위해서는 음극부 쪽에 고 전력의 전원이 필요하게 되고, 또한 방사선 소스의 크기가 거대하여 치과용 진단 및 구강암 치료를 위한 시스템에 적용하기에는 매우 불편함을 초래할 수 있다. 기존의 탄소 나노튜브기반의 엑스선관을 이용하는 경우에도, 방사선 소스의 크기가 비교적 거대하며, 이에 따라 구강 내에 삽입하여 치과 진단 및 구강암의 치료를 위해 사용하기에는 불편을 초래할 수 있다.In addition, X-ray tubes are also used in medical fields such as dental diagnosis and oral cancer treatment, but are mainly a method of determining defects in the oral cavity by irradiating radiation outside the oral cavity of the patient and detecting an image projected into the oral cavity. In the case of using a tungsten filament type X-ray tube as described above, in order to derive the desired amount of electron emission through hot electron emission, a high power power source is required on the cathode side, and the size of the radiation source is huge so that the dental diagnosis is possible. And very inconvenient to apply to systems for oral cancer treatment. Even when using an existing carbon nanotube-based X-ray tube, the size of the radiation source is relatively large, which may cause inconvenience to be inserted into the oral cavity and used for dental diagnosis and treatment of oral cancer.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것으로서, 나노-구조 물질이 성장된 기판의 가장자리 부분을 그라인딩 처리하여 곡면 또는 사면으로 형성함으로써, 전자빔의 방출 효율을 향상시킬 수 있도록 하는 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 시스템을 제공하는데 있다.The present invention is to solve the above problems of the prior art, by forming a curved surface or slope by grinding the edge portion of the substrate nano-structured material is grown, the nano-structure to improve the emission efficiency of the electron beam An X-ray tube using a material and a system using the same are provided.
또한, 본 발명은 진공 챔버 내의 진공을 유지하면서 음극의 장착 또는 탈착이 가능한 샘플 프루브를 구현함으로써, 샘플을 용이하게 교체할 수 있도록 하는 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 시스템을 제공하는데 있다.In addition, the present invention provides an X-ray tube using a nano-structured material and a system using the same to facilitate the replacement of the sample by implementing a sample probe that can be attached or detached while maintaining the vacuum in the vacuum chamber .
또한, 본 발명은 엑스선을 방출하기 위한 모듈을 소형으로 제작하여 근접 치료가 요구되는 환부에 직접 조사함으로써, 다른 정상 조직에 대한 방사선 피폭의 피해를 줄일 수 있도록 하는 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 시스템을 제공하는데 있다.The present invention also provides an X-ray tube using a nano-structured material to reduce the damage of radiation exposure to other normal tissues by making a small module for emitting X-rays and directly irradiated to the affected area requiring close treatment; It is to provide a system using the same.
또한, 본 발명은 피어스 타입의 전자 집속 모듈을 적용함으로써, 전자의 집속도를 향상시킬 수 있도록 하는 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 시스템을 제공하는데 있다.The present invention also provides an X-ray tube using a nano-structured material and a system using the same by applying a pierce-type electron focusing module to improve the electron focusing speed.
이를 위하여, 본 발명의 한 측면에 따른 엑스선관을 이용한 시스템은 나노-구조 물질을 이용하여 엑스선을 방출하는 엑스선방출 모듈을 포함하고, 상기 엑스선방출 모듈이 몸체로부터 분리되는 구조를 포함하는 것을 특징으로 한다.To this end, the system using the X-ray tube according to an aspect of the present invention includes an X-ray emission module for emitting X-rays using a nano-structure material, characterized in that the X-ray emission module comprises a structure that is separated from the body do.
본 발명의 다른 한 측면에 따른 엑스선관을 이용한 시스템의 진단 방법은 나노-구조물질을 이용하여 엑스선을 방출하여 진단 대상으로 투영하는 단계; 및 상기 진단 대상을 투과한 엑스선을 디텍터에 의하여 검출하여 해당 영상을 표시하는 단계를 포함하고, 상기 엑스선을 방출하는 엑스선방출 모듈에 포함된 상기 나노-구조물질 기반의 음극부를 교체하기 위하여 상기 엑스선방출 모듈이 몸체로부터 분리되는 구조의 엑스선관 시스템을 이용하는 것을 특징으로 한다.According to another aspect of the present invention, a method for diagnosing a system using an X-ray tube includes: emitting X-rays using a nano-structured material and projecting the X-ray onto a diagnosis target; And detecting the X-rays passing through the diagnosis object by a detector and displaying a corresponding image, and replacing the nano-structured material-based cathode part included in the X-ray emission module emitting the X-rays. The module is characterized by using an X-ray tube system of the structure separated from the body.
본 발명의 또 다른 한 측면에 따른 엑스선관은 나노-구조 물질 음극이 형성된 기판; 구멍 또는 함몰 부분을 가지며, 상기 구멍 또는 함몰 부분에 일정 높이 차이를 가지도록 상기 기판을 결합시키기 위한 스페이서; 상기 스페이서와 결합된 그리드; 및 상기 그리드가 결합된 상기 스페이서 위에 결합된 전자 집속 모듈을 포함하고, 상기 기판과 상기 그리드 사이의 전압차를 이용하여 상기 나노-구조 물질 음극으로부터 발생시킨 전자빔을 상기 전자 집속 모듈로 집속하고, 집속된 전자빔을 엑스선 발생에 이용하는 것을 특징으로 한다.According to another aspect of the present invention, an X-ray tube includes a substrate on which a nano-structure material cathode is formed; A spacer having a hole or a recessed portion, for coupling the substrate to have a predetermined height difference to the hole or the recessed portion; A grid coupled with the spacer; And an electron focusing module coupled over the spacer to which the grid is coupled, and focusing the electron beam generated from the nano-structure material cathode using the voltage difference between the substrate and the grid to the electron focusing module. The electron beam is used for X-ray generation.
본 발명의 또 다른 한 측면에 따른 엑스선관은 일정 두께를 가지며, 중심 부근에 구멍을 가지는 컵 타입 포커스 전극; 상기 구멍에 들어가 체결되는 하우징 상에 결합되며, 상기 컵 타입 포커스 전극과 전기적으로 연결되고, 상기 하우징의 체결 방향의 끝면에 탄소나노튜브 음극이 형성된 기판; 및 상기 탄소나노튜브 음극과 일정 거리 이격되어 설치된 그리드를 포함하고, 상기 기판과 상기 그리드 사이의 전압차를 이용하여 상기 탄소나노튜브 음극으로부터 발생시킨 전자빔을 상기 컵 타입 포커스 전극으로 집속하고, 집속된 전자빔을 엑스선 발생에 이용할 수 있다.According to another aspect of the present invention, an X-ray tube has a predetermined thickness and has a cup type focus electrode having a hole near a center thereof; A substrate coupled to the housing to be fastened into the hole and electrically connected to the cup type focus electrode, the substrate having a carbon nanotube cathode formed on an end surface of the housing in a fastening direction; And a grid provided spaced apart from the carbon nanotube cathode at a predetermined distance, and focusing the electron beam generated from the carbon nanotube cathode to the cup type focus electrode by using a voltage difference between the substrate and the grid. The electron beam can be used for X-ray generation.
본 발명의 한 측면에 따른 엑스선관을 이용한 시스템은 환자의 환부에 인접하게 위치하여 엑스 선을 발생하여 상기 환자의 환부에 제공하는 나노-구조 물질 기반 소형 엑스선관; 상기 나노-구조 물질 기반 소형 엑스선관에 동작 전원을 공급하는 전원 공급부; 상기 나노-구조 물질 기반 소형 엑스선관이 발생하는 열을 냉각하기 위한 냉각부; 상기 나노-구조 물질 기반 소형 엑스선관, 상기 전원 공급부, 및 상기 냉각부의 동작을 제어하는 제어기를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, a system using an X-ray tube includes a nano-structured material-based small X-ray tube positioned adjacent to an affected part of a patient to generate X-rays and provided to the affected part of the patient; A power supply unit supplying operation power to the nano-structure material based small X-ray tube; Cooling unit for cooling the heat generated by the nano-structure material-based small X-ray tube; And a controller for controlling the operation of the nano-structured material based small X-ray tube, the power supply unit, and the cooling unit.
도 1은 본 발명의 실시예에 따른 탄소나노튜브 기반 소형 엑스선관을 이용한 근접 치료 시스템을 나타낸 개략도이고,1 is a schematic diagram showing a proximity treatment system using a carbon nanotube-based small X-ray tube according to an embodiment of the present invention,
도 2는 본 발명의 다른 실시예에 따른 탄소 나노튜브 기반 엑스선관을 이용한 근접 치료 시스템을 나타낸 도면이고,2 is a view showing a proximity treatment system using a carbon nanotube-based X-ray tube according to another embodiment of the present invention,
도 3은 현재 유방암 치료용 방사선 동위원소로 임상에 적용하고 있는 I(125)와 Pd(103)과 비교한 엑스선관의 방사선 선량 분포 성능을 나타낸 도면이고,3 is a diagram showing the radiation dose distribution performance of the X-ray tube compared with I (125) and Pd (103), which is currently applied to clinical trials as a radioisotope for treating breast cancer,
도 4는 현재 유방암 치료용 방사선 동위원소로 임상에서 적용하고 있는 Ir(192)와 비교한 엑스선관의 이방성(anisotropy) dose 분포 성능을 나타낸 도면이고,4 is a diagram showing the anisotropy dose distribution performance of the X-ray tube compared with Ir (192), which is currently applied to the clinical radioisotope for treating breast cancer,
도 5는 현재 유방암 치료용 방사선 동위원소로 임상에서 적용하고 있는 Ir(192)와 비교한 엑스선관의 총 방사선 선량(dose) 측정치를 나타낸 도면이고,5 is a view showing the total radiation dose (dose) measurement of the X-ray tube compared with Ir (192) currently applied in clinical trials as a radioisotope for the treatment of breast cancer,
도 6은 본 발명에 따른 CNT 전자 방출원의 특성 실험 결과를 나타낸 도면이고,6 is a view showing the results of the characteristic experiment of the CNT electron emission source according to the present invention,
도 7은 본 발명에 따른 엑스선관에서 탄소 나노튜브가 성장되는 기판의 단면을 개략적으로 도시하는 도면이고,7 is a view schematically showing a cross section of a substrate on which carbon nanotubes are grown in an X-ray tube according to the present invention,
도 8은 본 발명의 일 실시예에 따라 가장자리를 그라인딩 처리하여 부드러운 곡면의 형상을 갖는 기판을 채택한 엑스선관의 전자 방출원을 도시하는 도면이고,8 is a view showing an electron emission source of an X-ray tube adopting a substrate having a smooth curved shape by grinding the edge according to an embodiment of the present invention,
도 9는 도 8에 도시된 실시예에서 기판 위에 성장된 탄소 나노튜브가 성장된 부분을 그리드 전극 쪽에서 바라본 평면도를 도시하는 도면이고,FIG. 9 is a view showing a plan view of the carbon nanotubes grown on the substrate from the grid electrode side in the embodiment shown in FIG. 8;
도 10은 본 발명의 다른 일 실시예에 따른 엑스선관의 전자 방출원을 도시하는 도면이고,10 is a view showing an electron emission source of the X-ray tube according to another embodiment of the present invention,
도 11은 본 발명의 또 다른 일 실시예에 따른 엑스선관의 전자 방출원을 도시하는 도면이고,11 is a view showing an electron emission source of the X-ray tube according to another embodiment of the present invention,
도 12 내지 도 13은 본 발명의 또 다른 실시예들에 따른 전자 방출원을 도시하는 도면이고,12 to 13 are diagrams illustrating electron emission sources according to still other embodiments of the present invention.
도 14는 본 발명의 실시예들에 따른 그리드 전극의 구조를 도시하는 도면이고,14 is a view showing the structure of a grid electrode according to embodiments of the present invention,
도 15는 가장자리 부분이 부드러운 곡면으로 처리된 기판을 사용하는 경우와 날카로운 모서리 부분을 가지는 기판을 사용하는 경우의 전자 방출의 효과를 비교 도시한 실험예이고,FIG. 15 is an example of an experiment comparing the effects of electron emission when using a substrate having a smooth curved surface and a substrate having a sharp edge; FIG.
도 16은 본 발명의 일 실시예에 따른 전계 방출 및 전기적 특성 평가 측정을 위한 엑스선관 시스템의 개략적인 구성을 도시하고,16 shows a schematic configuration of an X-ray tube system for electric field emission and electrical property evaluation measurement according to an embodiment of the present invention,
도 17은 도 16에 도시된 진공 챔버 및 이에 사용되는 음극부로서의 샘플 프루브의 세부 구성을 설명하기 위한 도면이고,17 is a view for explaining the detailed configuration of the vacuum chamber shown in Figure 16 and the sample probe as the cathode portion used therein,
도 18 내지 도 19는 측정 샘플이 본 발명의 샘플 프루브에 장착되는 상태를 도시한 도면이고,18 to 19 is a view showing a state in which a measurement sample is mounted on the sample probe of the present invention,
도 20 내지 도 22는 본 발명의 실시예에 따라 나노튜브를 성장시킨 기판 및 극저온 상태에서의 측정 샘플의 전계 방출 특성 및 전기전도 특성과 같은 물리적 특성을 측정하기 위한 음극부 분리형 샘플 프루브가 진공 챔버로부터 분리되는 과정을 설명하기 위한 도면이고,20 to 22 are vacuum chambers in which a negative electrode separate sample probe is used for measuring physical properties such as field emission characteristics and electrical conductivity characteristics of a substrate on which nanotubes are grown and a measurement sample in a cryogenic state according to an embodiment of the present invention. To explain the process of separating from,
도 23은 본 발명의 일 실시예에 따른 탄소나노튜브 기반 펜 모양의 회전이 가능한 엑스선관 시스템을 설명하기 위한 도면이고,FIG. 23 is a view illustrating an X-ray tube system capable of rotating a carbon nanotube based pen shape according to an embodiment of the present invention.
도 24는 본 발명의 일 실시예에 따른 탄소나노튜브 기반 전자방출모듈을 설명하기 위한 도면이고,24 is a view for explaining a carbon nanotube-based electron emission module according to an embodiment of the present invention,
도 25는 본 발명의 일 실시예에 따른 전자방출모듈이 장착된 엑스선관 시스템의 구체적인 도면이고,25 is a detailed view of an X-ray tube system equipped with an electron emission module according to an embodiment of the present invention.
도 26은 본 발명의 일 실시예에 따른 치과용 탄소나노튜브 기반의 방사선 이미징 시스템을 설명하기 위한 도면이고,26 is a view for explaining a dental carbon nanotube-based radiation imaging system according to an embodiment of the present invention,
도 27은 본 발명의 일 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이고,27 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce-type electron focusing module according to an embodiment of the present invention.
도 28은 본 발명의 다른 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이고,28 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
도 29는 본 발명의 또 다른 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이고,29 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce-type electron focusing module according to another embodiment of the present invention.
도 30은 본 발명의 또 다른 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이고,30 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
도 31은 본 발명의 또 다른 실시예에 따른 포커싱 컵 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이고,31 is a view illustrating a carbon nanotube-based X-ray tube employing a focusing cup type electron focusing module according to another embodiment of the present invention.
도 32는 본 발명의 일 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관에서의 전자빔 포커싱 형태를 실험한 결과를 나타내는 도면이다.32 is a view showing a result of experiments of electron beam focusing on a carbon nanotube-based X-ray tube employing a pierce-type electron focusing module according to an embodiment of the present invention.
이하에서는, 본 발명의 일 실시예에 따른 나노-구조 물질(nano-structured material)을 이용하는 엑스선관 및 이를 이용한 근접 치료 시스템을 첨부된 도 1 내지 도 32를 참조하여 상세히 설명한다. 특히, 본 발명은 엑스선관에서 전자 방출을 위한 나노-구조 물질로서 탄소 나노튜브(carbon nano tube, CNT)를 사용한 경우를 일 예로 설명하겠지만 반드시 이에 한정되는 것은 아니며, 예컨대, 탄소 나노섬유(Carbon Nano Fibre, CNF), 나노-와이어(nano-wire), 그래핀(graphene), 나노-다이아몬드(nano-diamond) 등을 포괄하는 개념의 전자 방출 효율이 우수한 물질을 사용할 수 있다.Hereinafter, an X-ray tube using a nano-structured material and a proximity therapy system using the same according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 32. In particular, the present invention will be described as an example of using a carbon nanotube (CNT) as a nano-structure material for electron emission in the X-ray tube, but is not necessarily limited thereto, for example, carbon nanofibers (Carbon Nano) Fiber, CNF), nano-wire (nano-wire), graphene (graphene), nano-diamond (nano-diamond) and the like concept can be used a material having excellent electron emission efficiency.
근접 치료 시스템:Brachytherapy System:
본 발명의 근접 치료 시스템은 전자가 방출되는 양자역학적 전계 방출(Field emission) 원리를 이용하여, 전자 방출원(electron emitter)으로서의 성능이 가장 우수한 것으로 알려진 탄소나노튜브(carbon nanotube)를 이용한 소형 방사선관을 제작하여 유방암, 자궁경부암과 같은 암 치료를 위한 체내 삽입형 근접 치료 시스템으로서, 임상 적용 및 상용화를 목적으로 한 것이다. In the brachytherapy system of the present invention, a small radiation tube using carbon nanotubes known to have the best performance as an electron emitter using a quantum mechanical field emission principle in which electrons are emitted. As an implantable brachytherapy system for the treatment of cancer such as breast cancer and cervical cancer, it is intended for clinical application and commercialization.
본 발명을 통하여, 현재 세계적으로 주로 유방암 등의 치료용으로 임상에서 사용되고 있는 고가의 방사선 동위 원소 치료 장치에서 제공하는 방사선 선량과 동등하거나 그보다 더 우수한 정도의 선량을 제공할 수 있으며, 사용하는 동안에 정상 조직 부위에 대한 불필요한 방사선 피폭의 위험성이 없어 안전하고, 또한, 사용자가 보다 단순한 조작으로 용이하게 환자를 치료할 수 있도록 하는 근접 치료 시스템을 제공하고자 한다.Through the present invention, it is possible to provide a dose equivalent to or better than that provided by an expensive radioisotope treatment apparatus currently used in clinical practice mainly for the treatment of breast cancer and the like, and during normal use, The present invention seeks to provide a brachytherapy system that is safe without the risk of unnecessary radiation exposure to tissue sites and that allows the user to easily treat patients with simpler manipulations.
이러한 목적을 달성하기 위한 본 발명의 실시예는 다음과 같은 부분들을 포함할 수 있다. 첫째, 유방암 등과 같은 종양에 대하여 치료효율을 높이기 위해서는 고 선량(high dose)의 방사선이 필요한데 고 선량의 방사선을 얻고 정상 조직에 대한 손상을 막기 위해서는 방사선 치료기가 환부와 가까운 곳에 위치해야 하며, 방사선 방출의 효율을 증가시킬 수 있는 고 효율의 전자빔 소스(electron emitter)를 사용하여야 한다. 따라서 본 발명의 치료장치에서는 인체(가령, 유방 등) 내에 삽입이 가능하도록 소형으로 제작이 가능하고 전자빔 발생 효율이 우수한 탄소 나노튜브 기반의 소형 엑스선관을 사용한다.Embodiments of the present invention for achieving this object may include the following parts. First, high dose of radiation is required to improve the treatment efficiency for tumors such as breast cancer. To obtain high dose of radiation and prevent damage to normal tissues, the radiation therapy device should be located near the affected area, and the radiation is emitted. High efficiency electron emitters should be used to increase the efficiency of the system. Therefore, the treatment apparatus of the present invention uses a carbon nanotube-based small X-ray tube that can be manufactured in a small size so that it can be inserted into a human body (for example, a breast, etc.) and has an excellent electron beam generation efficiency.
이러한 탄소 나노튜브 기반의 소형 엑스선관은 일정기간 사용하면 새로운 것으로 바꾸어 사용할 수 있는 소모품의 성격을 가지는 것이 바람직하며, 이를 위하여 최적화된 구조로 설계되어 경제적인 비용으로 제작이 가능하여야 한다.Such carbon nanotube-based small X-ray tube should have a characteristic of consumables that can be replaced with new ones if used for a certain period of time. For this purpose, an optimized structure should be designed to be manufactured at economical cost.
둘째로 상기 소형 엑스선관에 연결되어 필요한 전원을 공급하는 전원 공급부를 포함할 수 있으며, 세 번째로, 엑스선 발생 과정에서 방출되는 열을 냉각시키기 위한 냉각부를 포함할 수 있으며, 네 번째로는 암의 치료를 위해 필요한 적정량의 방사선 선량 혹은 도스(dose)의 실시간 측정이나 제어, 사용자 인터페이스 등을 제공하고 시스템을 총괄적으로 조정하는 제어기를 포함할 수 있다.Secondly, it may include a power supply unit connected to the small X-ray tube to supply the necessary power. Third, the cooling unit may include a cooling unit for cooling the heat emitted during the X-ray generation process. It may include a controller that provides a real-time measurement or control of the dose or dose required for treatment, a user interface, and the like to coordinate the system.
위에서 언급한 소형 엑스선관, 전원 공급부, 냉각부는 간단히 주 조정 시스템으로 동작하는 제어기에 부착하여 사용할 수 있으며, 필요에 따라 제어기는 이동이 가능하도록 제작될 수 있다.The small X-ray tube, power supply, and cooling unit mentioned above can be simply attached to a controller operating as a main control system, and the controller can be manufactured to be movable as necessary.
도 1은 본 발명의 탄소나노튜브 기반 소형 엑스선관을 이용한 근접 치료 시스템의 한 실시예를 나타낸 개략도이다.1 is a schematic diagram showing an embodiment of a proximity treatment system using a carbon nanotube-based small X-ray tube of the present invention.
본 발명의 시스템은 암과 같은 질병에 대한 근접 치료용으로서, 탄소나노튜브 기반 소형 엑스선관(100), 전원 공급부(101), 냉각부(106), 제어기(115), 광학 센서(118), 및 컴퓨터 모니터(114)를 포함하여 구성될 수 있다.The system of the present invention is for the proximity treatment for diseases such as cancer, carbon nanotube based small X-ray tube 100, power supply 101, cooling unit 106, controller 115, optical sensor 118, And a computer monitor 114.
탄소나노튜브 기반 소형 엑스선관(100)은 환자의 환부에 인접하게 배치되어 엑스선을 발생시켜 환부에 제공한다.The carbon nanotube-based small X-ray tube 100 is disposed adjacent to the affected part of the patient to generate X-rays to provide the affected part.
상기 탄소나노튜브 기반 소형 엑스선관(100)은 탄소나노튜브(103), 양극부 또는 엑스선 타켓(104), 케이스(107), 연결부(109) 등을 포함할 수 있다. 탄소나노튜브(103)는 전자 빔을 발생한다. 상기 탄소나노튜브(103)는 전자 방출원으로 사용되며 금속 혹은 실리콘 기판 등의 표면에 CVD, 스크린 프린팅, 페이스트 등 다양한 방법을 통하여 형성시킬 수 있다.The carbon nanotube-based small X-ray tube 100 may include a carbon nanotube 103, an anode part or an X-ray target 104, a case 107, and a connection part 109. The carbon nanotubes 103 generate an electron beam. The carbon nanotubes 103 are used as electron emission sources and may be formed on a surface of a metal or silicon substrate by various methods such as CVD, screen printing, and paste.
고효율의 엑스선을 발생하기 위해서는 전자빔을 발생하는 음극 에미터(cathode emitter)의 효율이 우수하여야 하는데, 본 발명에서는 현재까지 알려진 가장 전자빔 발생효율이 우수한 재료인 탄소 나노튜브(carbon nanotube: CNT)를 엑스선 음극 에미터로 사용한다.In order to generate high-efficiency X-rays, the efficiency of a cathode emitter for generating an electron beam should be excellent. In the present invention, carbon nanotubes (CNTs), which are known to have the highest electron beam generation efficiency, are X-rays. Used as cathode emitter.
열 전자 방출 방식인 기존 텅스텐 필라멘트 음극에 비하여 탄소 나노튜브는 전계 방출 원리에 의해 전자를 방출하므로 저 전력 구동으로 고효율의 전자 빔을 발생할 수 있어서 에너지 절약형 시스템으로 개발이 가능하며 또한 암 치료를 위한 기존 방사선 동위원소가 지니고 있는 고 선량(high dose)에 버금가는 방사선 선량을 확보한다.Compared to the conventional tungsten filament cathode, which is a thermal electron emission method, carbon nanotubes emit electrons according to the field emission principle, so that a high-efficiency electron beam can be generated with low power driving, which can be developed as an energy-saving system, and also used for cancer treatment. Obtain radiation doses comparable to the high doses of radioisotopes.
탄소 나노튜브는 작은 크기(예를 들면, mm 혹은 μm)로 패터닝한 기판 위에 성장시킬 수 있어서 소형으로 제작이 가능하여, 탄소 나노튜브 기반의 엑스선관을 암 세포 근접 부위에 삽입하여 치료가 가능하게 된다.Carbon nanotubes can be grown on small sized substrates (e.g. mm or μm) on a patterned substrate, making them compact, allowing them to be treated by inserting carbon nanotube-based X-ray tubes near cancer cells do.
제작된 탄소 나노튜브 기반의 소형 엑스선관이 기존 임상에 적용하고 있는 Ir(192), Cs(137), Pd(103)과 같은 방사선 동위 원소의 선량 이상을 방출할 수 있도록, 선량측정 및 분석을 통한 최적 관 전류(mA) 및 관 전압(kVp)을 도출한다.Dose measurement and analysis were performed to allow the fabricated carbon nanotube-based small X-ray tube to emit more than the doses of radioisotopes such as Ir (192), Cs (137), and Pd (103). The optimum tube current (mA) and tube voltage (kVp) are obtained.
지지대(108)는 전자방출원인 탄소 나노튜브(103)를 지탱하는 역할을 하며 세라믹과 같은 절연체 재질이나 SUS등 다양한 금속 재질로 제작이 가능하다. 탄소 나노튜브(103)를 이용한 엑스선관(100)을 치료를 위해 장기간 사용함으로써 발생할 수 있는 선량의 감소를 피하기 위하여 소형 엑스선관은 새로운 것으로 갈아 끼울 수 있는 소모품의 형태로 제작하여 치료 시 균일한 방사선 선량을 유지할 수 있도록 한다.The support 108 serves to support the carbon nanotubes 103, which are electron emission sources, and may be made of various metal materials such as insulators such as ceramics or SUS. In order to avoid the reduction of dose which may occur due to long-term use of the X-ray tube 100 using the carbon nanotubes 103, the small X-ray tube is manufactured in the form of a consumable that can be replaced with a new one and thus uniform radiation during treatment. Keep the dose.
상기 탄소 나노튜브(103)에 의해 발생한 상기 전자 빔은 상기 엑스선 타켓(104)에 충돌하여 엑스선을 발생한다. 상기 탄소 나노튜브 기반 소형 엑스선관(100)이 도 28에 도시된 바와 같이 투과형일 경우, Be 윈도우에 엑스선 발생 효율이 우수한 텅스텐 혹은 몰리브덴, 혹은 텅스텐+몰리브덴 등을 코팅시켜 사용할 수 있다.The electron beam generated by the carbon nanotubes 103 collides with the X-ray target 104 to generate X-rays. When the carbon nanotube-based small X-ray tube 100 is transmissive as shown in FIG. 28, tungsten or molybdenum or tungsten + molybdenum having excellent X-ray generation efficiency may be coated on the Be window.
상기 엑스선 타켓(104)의 형태는 도 1 및 도 2에 도시된 본 발명의 실시예에서는 곡면의 형태를 보여주고 있지만 비단 곡면의 모양뿐만이 아니고 환부 내에 골고루 방사선을 조사할 수 있는 어떠한 형태의 구조도 가능하다.The shape of the X-ray target 104 in the embodiment of the present invention shown in Figs. 1 and 2 shows the shape of the curved surface, but not only the shape of the silk surface, but also any structure that can evenly radiate the radiation in the affected area It is possible.
케이스(107)는 상기 탄소나노튜브(103)를 내장한다. 엑스선관(100)은 내부 압력이 10-7 ~ 10-6 Torr 정도로 유지되며, 인체 내 삽입이 가능하도록 소형으로 제작한다. 재질은 금속과 같은 도체나 세라믹과 같은 절연 물질로 제작될 수 있으며, 세라믹으로 제작될 경우 엑스 선을 발생하는 부위의 재질인 텅스텐과 코바(kovar) 접합하여 형성할 수 있다.The case 107 houses the carbon nanotubes 103. The X-ray tube 100 maintains the internal pressure of about 10 -7 to 10 -6 Torr and is manufactured in a small size to enable insertion into the human body. The material may be made of a conductive material such as a metal or an insulating material such as a ceramic, and may be formed by bonding tungsten and kovar (kovar), which is a material of a site generating X-rays when the ceramic is made of a ceramic.
전원 공급부(101)는 상기 탄소 나노튜브 기반 소형 엑스선관(100)에 동작 전원을 공급한다.The power supply 101 supplies operating power to the carbon nanotube-based small X-ray tube 100.
상기 전원 공급부(101)는 상기 탄소나노튜브 기반 소형 엑스선관(100)과 상기 제어기(115)을 전기적으로 연결하고, 상기 제어기(115)에 장착되어있는 고압용 전원(도시 안됨)으로부터의 고압인 동작 전원을 상기 탄소 나노튜브 기반 소형 엑스선관(100)으로 제공하는 기능을 수행하는 고압 케이블로 구성될 수 있다. 또한, 고압 케이블 단자(101)는 에 엑스선관(100)에서 발생하는 관 전류 및 관 전압을 실시간으로 측정 및 보완하기 위한 데이터 자동획득 시스템(도시 안됨)과 연결될 수 있다.The power supply unit 101 electrically connects the carbon nanotube-based small X-ray tube 100 and the controller 115 and is a high voltage from a high voltage power supply (not shown) mounted on the controller 115. It may be composed of a high-voltage cable that performs a function of providing a power source to the carbon nanotube-based small X-ray tube 100. In addition, the high voltage cable terminal 101 may be connected to an automatic data acquisition system (not shown) for measuring and supplementing the tube current and the tube voltage generated in the X-ray tube 100 in real time.
상기 탄소 나노튜브 기반 소형 엑스선관(100)이 발생하는 열을 냉각하도록 냉각부(106)를 둘 수 있다. 상기 냉각부(106)는 상기 탄소 나노튜브 기반 소형 엑스선관(100)을 외부에서 지지하는 기능도 수행하며, 상기 탄소 나노튜브 기반 소형 엑스선관(100)과의 사이에 냉각수 순환 공간(130)을 제공할 수 있다. 상기 냉각부(106)는 상기 탄소 나노튜브 기반 소형 엑스선관(100)으로부터 엑스선 발생시 엑스선관 주변에 발생하는 열로 인한 환부손상을 막기 위함이다.The cooling unit 106 may be provided to cool the heat generated by the carbon nanotube-based small X-ray tube 100. The cooling unit 106 also performs a function of supporting the carbon nanotube-based small X-ray tube 100 from the outside, and the cooling water circulation space 130 between the carbon nanotube-based small X-ray tube 100. Can provide. The cooling unit 106 is to prevent damage to the lesion due to heat generated around the X-ray tube when the X-ray from the carbon nanotube-based small X-ray tube 100.
절연체(102)는 상기 고압 케이블로 구성된 전원 공급부(101)와 어플리케이터를 포함하는 냉각부(106) 사이의 고압 절연을 위해 구성되고, 세라믹 등 절연성이 우수한 재료를 사용한다.The insulator 102 is configured for high-pressure insulation between the power supply unit 101 composed of the high voltage cable and the cooling unit 106 including the applicator, and uses a material having excellent insulation such as ceramics.
제어기(115)는 상기 탄소 나노튜브 기반 소형 엑스선관(100), 상기 전원 공급부(101) 및 상기 냉각부(106)의 동작을 제어하고, 상기 환자의 치료를 위해 필요한 적정량의 방사선 선량을 실시간으로 측정할 수 있다. 상기 제어기(115)는 편의를 위해 본체(140), 손잡이(117), 및 바퀴(116)를 포함하도록 구성할 수 있다. 상기 본체(140)에는 본 발명의 근접치료장치를 동작시키기 위한 각종 장치 예를 들면, 고압파워, 냉각수 순환시스템 GPIB 보드 등의 하드웨어 및 소프트웨어 장치가 내장될 수 있다. 손잡이(117)는 상기 본체(140)가 편리하게 이동이 가능하도록 상기 본체(140)의 측면 등에 설치될 수 있다. 상기 바퀴(116)는 상기 본체(140)가 이동이 가능하도록 상기 본체(140)의 바닥에 설치될 수 있다.The controller 115 controls the operations of the carbon nanotube-based small X-ray tube 100, the power supply 101 and the cooling unit 106, and in real time the appropriate amount of radiation dose required for the treatment of the patient It can be measured. The controller 115 may be configured to include a body 140, a handle 117, and a wheel 116 for convenience. The main body 140 may include a variety of devices for operating the brachytherapy device of the present invention, for example, hardware and software devices, such as high pressure power, cooling water circulation system GPIB board. The handle 117 may be installed on the side surface of the main body 140 so that the main body 140 can be conveniently moved. The wheel 116 may be installed at the bottom of the main body 140 to allow the main body 140 to move.
탄소 나노튜브 기반의 엑스선 근접치료 시스템을 최적의 상태에서 안전하게 작동시키기 위한 주 조정 시스템인 제어기는 컴퓨터 프로그램을 이용한 자동 데이터획득시스템(data acquisition system: DAQ), 고전압 전원 및 냉각수 장치(도시 안됨)를 포함하며 이동이 가능하도록 본체(140)에 바퀴(116) 등 이동 장치가 함께 설치되어 있는 구조 또는 이와 유사한 구조일 수 있다.The controller, the main control system for optimally and safely operating a carbon nanotube-based x-ray brachytherapy system, uses a computer-programmed automatic data acquisition system (DAQ), a high voltage power supply, and a coolant device (not shown). It may be a structure or a similar structure in which a moving device such as a wheel 116 is installed on the main body 140 so as to be movable.
최적의 사용자 인터페이스를 위해 상기 제어기(115)는 환자의 치료를 위해 필요한 모든 변수(예를 들면, 엑스선의 빔 전류(mA) 및 관 전압(kVp), 엑스선 조사 시간(x-ray exposure time) 등)을 컴퓨터 모니터(114)의 화면 상에 입력할 수 있도록 하며, 치료가 끝나면 자동적으로 엑스선관이 오프 되도록 하며 치료가 끝났다는 표시를 알람 등의 표시 방법을 통하여 환자 및 담당 치료자에게 알려줄 수 있도록 할 수 있다.For an optimal user interface, the controller 115 can determine all the variables necessary for the treatment of the patient (eg, beam current (mA) and tube voltage (kVp) of x-rays, x-ray exposure time, etc.). ) Can be input on the screen of the computer monitor 114, and the X-ray tube is automatically turned off after the treatment is completed, and the indication of the completion of the treatment can be informed to the patient and the therapist through a display method such as an alarm. Can be.
필요에 따라 광학 센서(118)가 부착될 수 있으며, 이는 상기 환자의 환부에 인접하게 위치하고 상기 제어기에 전기적으로 연결되어, 상기 환부에 조명을 비추고 반사된 빛을 수집함으로써 영상 데이터를 출력할 수 있도록 한다.If necessary, an optical sensor 118 may be attached, which is located adjacent to the affected part of the patient and electrically connected to the controller, so as to output image data by illuminating the affected part and collecting reflected light. do.
컴퓨터 모니터(114)가 상기 제어기(115)에 전기적으로 연결될 수 있으며 상기 탄소 나노튜브 기반 엑스선관(100)에 공급되는 상기 동작 전원, 상기 탄소 나노튜브 기반 엑스선관(100)로부터 발생하는 상기 환자의 치료에 필요한 파라미터인 관 전류 및 관 전압 혹은 방사선 선량, 상기 냉각부(106)의 상태에 관한 정보와 상기 광학 센서로부터의 영상 데이터를 디스플레이한다.A computer monitor 114 may be electrically connected to the controller 115 and the operating power supplied to the carbon nanotube based X-ray tube 100, the patient being generated from the carbon nanotube based X-ray tube 100. The tube current and tube voltage or radiation dose which are parameters necessary for the treatment, information about the state of the cooling unit 106 and image data from the optical sensor are displayed.
연결선(119)이 상기 제어기(115)와 상기 광학 센서(118)를 연결하여 상기 광학 센서(118)를 동작시키기 위한 전원 및 수집된 영상을 상기 제어기(115)에 전달하여 컴퓨터 모니터(114)에 나타내도록 함으로써, 사용자가 환자의 인체 내부를 관찰할 수 있도록 한다.A connection line 119 connects the controller 115 and the optical sensor 118 to transfer the power and the collected image to the controller 115 to operate the optical sensor 118 to the computer monitor 114. This allows the user to observe the inside of the patient's body.
도면 부호 105는 탄소 나노튜브 기반의 소형 엑스선관(100)이 인체 내의 암 등의 치료를 위해서 삽입된 상태를 이해할 수 있도록 환자의 신체 일부를 도시한다(가령, 위 또는 자궁 등). 도면 부호 112 및 113은 냉각수 순환을 위한 연결선을 나타낸다. 여기서, 도면 부호 120은 치료를 요하는 인체 내의 병변 부위를 예시하며, 내시경 타입(혹은 pencil 방식)의 엑스선관(100)이 병변에 근접한 위치에 삽입되어 방사선을 조사함으로써 치료를 수행하고 있는 상태를 보여준다. Reference numeral 105 shows a part of the body of the patient (eg, stomach or uterus) so that the carbon nanotube-based small X-ray tube 100 can understand the inserted state for the treatment of cancer or the like in the human body. Reference numerals 112 and 113 denote connection lines for cooling water circulation. Here, reference numeral 120 exemplifies a lesion site in the human body that requires treatment, and an X-ray tube 100 of an endoscope type (or pencil method) is inserted at a position close to the lesion and irradiated with radiation to indicate a state in which treatment is performed. Shows.
도 2는 본 발명의 다른 실시예에 따른 탄소 나노튜브 기반 엑스선관을 이용한 근접 치료 시스템을 나타낸 도면이다.2 is a view showing a proximity treatment system using a carbon nanotube-based X-ray tube according to another embodiment of the present invention.
도 2에 도시된 실시예에 따른 엑스선관 시스템은 냉각부(150)의 기능을 하는 어플리케이터를 제외한 모든 구성 요소가 도 1에 도시된 실시예와 동일하고, 동일한 구성 요소에 대한 상세한 설명은 생략된다.In the X-ray tube system according to the embodiment shown in FIG. 2, all components except for the applicator functioning as the cooling unit 150 are the same as those of the embodiment shown in FIG. 1, and detailed descriptions of the same components are omitted. .
냉각부(150)는 상기 탄소 나노튜브 기반 소형 엑스선관(100)을 지지하는 기능을 하고, 상기 탄소 나노튜브 기반 소형 엑스선관(100)과의 사이에 냉각수 순환 공간(130)을 제공한다. 상기 냉각부(106)는 상기 탄소 나노튜브 기반 소형 엑스선관(100)으로부터 엑스선 발생시 엑스선관 주변에 발생하는 열로 인한 환부손상을 막기 위함이다. 또한, 어플리케이터(150)가 더 포함될 수 있는데, 이는 치료용 엑스선관을 정확하게 환부에 삽입하기 위함이다. 상기 어플리케이터(150)는 타원형 또는 구형의 형태를 갖도록 하여 치료용 엑스선관이 잘 고정되어 방사선 치료를 원활하게 한다. 상기 어플리케이터(150)의 상부에는 상호 소정 거리 이격되어 냉각수 입구(109) 및 냉각수 출구(110)가 형성되어 있다.The cooling unit 150 functions to support the carbon nanotube-based small X-ray tube 100, and provides a cooling water circulation space 130 between the carbon nanotube-based small X-ray tube 100. The cooling unit 106 is to prevent damage to the lesion due to heat generated around the X-ray tube when the X-ray from the carbon nanotube-based small X-ray tube 100. In addition, the applicator 150 may be further included to accurately insert the therapeutic X-ray tube into the affected part. The applicator 150 has an oval or spherical shape so that the therapeutic X-ray tube is well fixed to facilitate radiation treatment. The coolant inlet 109 and the coolant outlet 110 are formed on the upper part of the applicator 150 to be spaced apart from each other by a predetermined distance.
도면 부호 105는 탄소 나노튜브 기반의 소형 엑스선관(100)이 인체 내의 암 등의 치료를 위해서 가상적으로 삽입된 상태에 대한 이해를 위한 예시로서, 환자의 신체 일부인 유방이 도시되어 있다. Reference numeral 105 is an example for understanding the state where the carbon nanotube-based small X-ray tube 100 is virtually inserted for the treatment of cancer and the like in the human body, and a breast which is a part of the patient's body is shown.
상기 탄소 나노튜브 기반 소형 엑스선관(100)은 암의 치료 부위에 삽입된 상태로 두고, 치료를 요하는 시간에만 제어기(115)와 연결하여 최적의 엑스선을 공급할 수 있도록 구성할 수 있다.The carbon nanotube-based small X-ray tube 100 may be inserted into the treatment region of the cancer, and may be configured to supply the optimal X-rays by connecting to the controller 115 only at the time of treatment.
상기 탄소 나노튜브 기반 소형 엑스선관(100)이 동작할 때 발생할 수 있는 열을 냉각시키기 위하여, 냉각제인 물 등의 냉각제가 엑스선관을 경유하여 순환할 수 있도록 순환 냉각 시스템을 구비하고 이를 제어기(115)에서 제어하도록 할 수 있다.In order to cool the heat generated when the carbon nanotube-based small X-ray tube 100 operates, a circulation cooling system is provided to allow a coolant such as water, which is a coolant, to circulate through the X-ray tube and to control the controller 115. ) Can be controlled.
탄소 나노튜브 기반 소형 엑스선관(100)은 필요시 냉각부(106)에서 분리하여 새로운 소스로 용이하게 갈아 끼울 수 있도록 구성할 수 있고, 치료를 요하는 환부에 삽입 가능한 크기로 제작하며 치료를 요하는 시간 혹은 기간에만 제어기(115)와 접속되도록 구성함으로써, 환자가 겪는 치료시의 불편을 최소화할 수 있다.The carbon nanotube-based small X-ray tube 100 can be configured to be easily replaced with a new source by separating it from the cooling unit 106 if necessary, and manufactured to be sized to be inserted into the affected area requiring treatment and require treatment. By configuring the controller 115 to be connected to the controller 115 only at a time or period of time, it is possible to minimize discomfort during the treatment of the patient.
또한, 기존 암 치료용 선형 가속기(linear accelerator)를 사용함에 있어 수반하게 될 고가의 치료비용을 해소하고, 장비의 거대화로 인한 사용상의 불편함을 극복하고, 환부를 제외한 정상 부위에의 방사선 노출을 최소화할 뿐 아니라, 환부의 치료만을 위한 최적의 방사선 선량을 집중적으로 제공할 수 있게 된다.In addition, it eliminates the expensive treatment costs that would be involved in using the existing linear accelerator for cancer treatment, overcomes the inconvenience of use due to the enlargement of the equipment, and prevents radiation exposure to the normal area except the affected area. In addition to minimizing, it is possible to intensively provide the optimal radiation dose only for the treatment of the affected area.
또한, 기존 방사선 동위원소를 사용하는 치료 장치에 있어서는 방사성 동위원소의 반감기로 인하여, 치료 횟수 및 시간이 경과함에 따라 방사선의 선량이 감소하여, 매 치료 시마다 치료시간이 점점 길어지는 단점이 있어 환자에게 부담으로 작용하는데, 본 발명에 의하면 제어기(115)의 탄소 나노튜브 기반 소형 엑스선관(100)의 특성 제어에 의하여 선량의 제어가 가능하므로 이러한 문제점을 해소할 수 있게 된다.In addition, in the treatment device using a conventional radioisotope, due to the half-life of the radioisotope, the dose of radiation decreases as the number of treatments and the time elapses, and the treatment time increases gradually with each treatment. It acts as a burden, according to the present invention can control the dose by controlling the characteristics of the carbon nanotube-based small X-ray tube 100 of the controller 115 can solve this problem.
한편, 본 발명에 의하면, 기존의 유방암과 같은 암 치료에 사용해 왔던 고가장비인 선형가속기(linear accelerator), Ir(192), Cs(137), Pd(103)과 같은 방사선 동위원소를 사용하는 방사선 근접 치료 시스템, 그리고 텅스텐 필라멘트 방식의 엑스선관 근접 치료 시스템의 단점을 개선하여, 의사와 같이 방사선에 대한 전문적인 지식이 없는 일반 사용자들도 방사선 피폭의 우려 없이 안전하게 사용할 수 있고, 소형 및 저가 제작이 가능하면서도 고효율 전자 빔에 의한 엑스선 발생이 가능한 탄소나노튜브 기반의 소형 방사선 근접치료 시스템을 제공할 수 있다.On the other hand, according to the present invention, radiation using radioisotopes such as linear accelerator, Ir (192), Cs (137), and Pd (103), which are expensive equipments that have been used to treat cancers such as breast cancer. It improves the shortcomings of brachytherapy system and tungsten filament x-ray tube brachytherapy system, so that non-technical users such as doctors can use it safely without fear of radiation exposure. It is possible to provide a carbon nanotube-based small radiation brachytherapy system capable of X-ray generation by high efficiency electron beam.
도 3은 현재 유방암 치료용 방사선 동위원소로 임상에 적용하고 있는 I(125)와 Pd(103)과 비교한 본 발명의 엑스선관의 방사선 선량 분포 성능을 나타낸 도면이다. 관전류 ≥ 300 μA @40 kVp x-ray인 경우, 임상에서 사용하는 방사선 동위원소와 동등한 치료효율을 나타내므로 대체사용이 가능하다.Figure 3 is a view showing the radiation dose distribution performance of the X-ray tube of the present invention compared to I (125) and Pd (103) which is currently applied clinically as a radioisotope for the treatment of breast cancer. In the case of tube current ≥ 300 μA @ 40 kVp x-ray, it shows the same treatment efficiency as the radioisotope used in the clinic.
도 4는 현재 유방암 치료용 방사선 동위원소로 임상에서 적용하고 있는 Ir(192)와 비교한 엑스선관의 이방성(anisotropy) dose 분포 성능을 나타낸 도면이다. 관전류 ≥ 300 μA @40 kVp x-ray인 경우, 임상에서 사용하는 방사선 동위원소와 동등한 치료효율을 나타내므로 대체사용이 가능하다.4 is a diagram showing the anisotropy dose distribution performance of the X-ray tube compared with Ir (192) which is currently applied to the clinical radioisotope for the treatment of breast cancer. In the case of tube current ≥ 300 μA @ 40 kVp x-ray, it shows the same treatment efficiency as the radioisotope used in the clinic.
도 5는 현재 유방암 치료용 방사선 동위원소로 임상에서 적용하고 있는 Ir(192)와 비교한 엑스선관의 총 방사선 선량(dose) 측정치를 나타낸 도면이다. 도 30에 나타난 바와 같이 관 전류 ≥ 300 μA @50 kVp x-ray이면 임상에서 사용하는 방사선 동위원소와 동등한 치료효율을 나타내므로 대체사용이 가능하다.5 is a diagram showing the total radiation dose (dose) measurement of the X-ray tube compared with Ir (192) which is currently applied to the clinical radioisotope for the treatment of breast cancer. As shown in FIG. 30, if tube current ≥ 300 μA @ 50 kVp x-ray shows the same treatment efficiency as the radioisotope used in the clinic, alternative use is possible.
도 6은 본 발명에 따른 CNT 전자 방출원의 특성을 나타낸 도면이다.6 is a view showing the characteristics of the CNT electron emission source according to the present invention.
탄소 나노튜브(103)는 탄소 나노튜브(carbon nanotube)를 이용한 소형 엑스선관에서 전자 방출원으로 사용되는 도 5에 나타낸 바와 같이 지름이 5 mm인 금속 기판 위에 탄소 나노튜브가 CVD로 성장되어 있는 모습을 보이고 있다.The carbon nanotubes 103 are carbon nanotubes grown by CVD on a metal substrate having a diameter of 5 mm, as shown in FIG. 5 used as an electron emission source in a small X-ray tube using carbon nanotubes. Is showing.
도 6은 본 발명에 따른 탄소 나노튜브 전자 방출원의 전류 특성으로서, 탄소 나노튜브를 이용한 엑스선관의 실시 예에서 탄소 나노튜브(103)의 지름이 5 mm 인 탄소 나노튜브 전자 방출원을 이용하여 전류를 측정한 값을 보여주고 있으며 총 전류의 최대값이 5 mA를 보이고 있다. 만약 인체 내의 삽입을 위하여 탄소 나노튜브 전자 방출원의 지름을 2 mm로 줄여서 엑스선관을 제작한다고 해도 최대 약 800 ㎂의 전류를 얻을 수 있기 때문에, 임상에서 가장 많이 사용하는 고선량(high dose) 방사성 동위원소인 Ir(192)와 동등한 수준인 300 ㎂ 이상으로 우수한 선량을 제공할 수 있다.6 is a current characteristic of the carbon nanotube electron emission source according to the present invention, in the embodiment of the X-ray tube using carbon nanotubes using a carbon nanotube electron emission source having a diameter of 5 mm carbon nanotube (103) The measured current is shown and the maximum value of the total current is 5 mA. If the X-ray tube is manufactured to reduce the diameter of the carbon nanotube electron source to 2 mm for insertion into the human body, a current of up to about 800 ㎂ can be obtained. It is possible to provide an excellent dose of 300 ㎂ or more, which is equivalent to the isotope Ir (192).
전자 방출원 구조(Electron Emitter Structure):Electron Emitter Structure:
이하에서는 엑스선관 내부에 장착되는 전자 방출원의 실시예에 관하여 설명한다. 도 7은 전자 방출원의 음극부(cathode)를 구성하는 기판으로서, 탄소 나노튜브가 성장되는 기판의 단면을 예시한다.Hereinafter, an embodiment of an electron emission source mounted inside an X-ray tube will be described. 7 illustrates a cross section of a substrate on which carbon nanotubes are grown as a substrate constituting a cathode of an electron emission source.
예시된 음극부는, SUS(Steel Use Stainless)나 철 또는 텅스텐과 같은 전기 전도도가 좋은 재료로 제작된 기판(207) 위에 성장된 탄소 나노튜브(206)를 포함하여 이루어진다. 여기서, 기판(207)의 가장자리 부분을 부드러운 곡면으로 형성하며 그 위에 탄소 나노튜브(206)가 성장되도록 할 수 있다.The illustrated cathode portion includes carbon nanotubes 206 grown on a substrate 207 made of a material having good electrical conductivity, such as SUS (Steel Use Stainless) or iron or tungsten. Here, the edge portion of the substrate 207 may be formed into a smooth curved surface and the carbon nanotubes 206 may be grown thereon.
이와 같이 탄소 나노튜브가 성장될 면의 모서리 부분을 부드럽게 굴곡 처리한 기판을 형성하기 위해서는, 탄소 나노튜브를 성장시키기 전에 날카로운 가장자리를 가령 그라인딩 처리하는 방법 등이 있을 수 있다. 이후 기판(207) 위에 스크린 프린팅(screen printing) 방법이나 CVD 방법 등에 의해 탄소 나노튜브가 성장된다.In order to form a substrate in which the edges of the surface on which the carbon nanotubes are to be grown are gently bent, there may be a method of grinding the sharp edges, for example, before growing the carbon nanotubes. Thereafter, the carbon nanotubes are grown on the substrate 207 by screen printing or CVD.
여기서, 스크린 프린팅 방법에 의해 탄소 나노튜브를 성장시킬 경우에는 기판의 전면에 실버 페이스트를 도포한 후 스프레이 건을 이용하여 탄소 나노튜브 파우더를 2회 내지 3회 반복하여 뿌림으로써 적정량의 탄소 나노튜브가 기판 위에 골고루 도포되게 할 수 있다.Here, in the case of growing the carbon nanotubes by the screen printing method, after applying a silver paste on the entire surface of the substrate and spraying the carbon nanotube powder 2 to 3 times repeatedly using a spray gun, an appropriate amount of carbon nanotubes It can be applied evenly on the substrate.
한편, CVD 방법에 의해 탄소 나노튜브를 성장시킬 경우에는, 모서리가 부드럽게 처리된 기판 위에 TIN과 같은 버퍼층(buffer layer)을 도포하고, Ni이나 Fe 같은 촉매(catalyst) 층을 도포한 후, 아르곤이나 헬륨과 같은 가스로 에칭 작업을 하여 촉매 층 표면에 시드 입자(seed particle)를 생성한 후, C2H2 등과 같은 탄소 나노튜브 소스 가스를 주입하여 탄소 나노튜브를 성장시킨다. 탄소 나노튜브를 성장시킬 때에는 기판의 곡면 부분인 바깥쪽을 제외한 중심 부분에서만 성장되도록 할 수도 있다.On the other hand, in the case of growing the carbon nanotubes by the CVD method, a buffer layer such as TIN is applied on a substrate having smooth edges, and a catalyst layer such as Ni or Fe is applied. After etching with a gas such as helium to produce seed particles on the surface of the catalyst layer, carbon nanotube source gas such as C2H2 'and the like are injected to grow carbon nanotubes. When growing carbon nanotubes, they may be grown only at the center of the substrate except for the outside of the curved portion of the substrate.
도 8은 도 7에 도시된 바와 같은 기판(207)을 채택한 엑스선관의 전자 방출원의 구성을 예시한다.FIG. 8 illustrates a configuration of an electron emission source of an X-ray tube employing a substrate 207 as shown in FIG.
예시된 전자 방출원은, 상술한 바와 같은 부드러운 곡면의 형상을 갖고 탄소 나노튜브(206)가 형성된 기판(207), 상기 기판(207)을 지지하는 음극 프루브(209), 탄소 나노튜브(206)에 전압을 인가하기 위한 제 1 전도층(208), 상기 제 1 전도층(208) 위에 차례로 형성되는 제 1 절연층(205), 그리드 전극(204), 제 1 집속 렌즈(203), 제 2 절연층(202), 제 2 집속 렌즈(201) 및 제 3 절연층(200)을 포함하여 구성될 수 있다.Exemplary electron emission sources include a substrate 207 having a smooth curved shape as described above and a carbon nanotube 206 formed thereon, a cathode probe 209 supporting the substrate 207, and a carbon nanotube 206. A first conductive layer 208 for applying a voltage to the first conductive layer 208, a first insulating layer 205, a grid electrode 204, a first focusing lens 203, and a second formed sequentially on the first conductive layer 208. The insulating layer 202, the second focusing lens 201, and the third insulating layer 200 may be included.
상기 음극 프루브(209)는 예를 들어 스테인레스 합금, 철, 텅스텐 등과 같은 전기 전도도가 좋은 재질로 제작되며, 그 위에 탄소 나노튜브(206)가 성장된 기판(207)이 장착되며(가령, 도시 생략한 실버 페이스트를 개재하여 장착), 필요에 따라 탄소 나노튜브(206)를 포함하는 기판(207)의 교체가 필요할 경우 엑스선관의 진공을 유지시킨 상태에서 엑스선관으로부터 외부로 분리시킬 수 있도록 구성되는 것이 바람직하다.The cathode probe 209 is made of a material having good electrical conductivity such as, for example, stainless alloy, iron, tungsten, and the like, and a substrate 207 on which carbon nanotubes 206 are grown is mounted (for example, not shown). Mounted through one silver paste), and if necessary, the substrate 207 including the carbon nanotubes 206 is required to be separated from the X-ray tube while the vacuum of the X-ray tube is maintained. It is preferable.
상기 제 1 전도층(208)은 엑스선관의 음극에 해당하는 탄소 나노튜브(206)에 전압을 인가하거나 접지시키기 위한 전도층으로서, 스테인레스 합금이나, 철, 텅스텐 등과 같은 전기 전도도가 좋은 재질로 제작된다.The first conductive layer 208 is a conductive layer for applying voltage to or grounding the carbon nanotubes 206 corresponding to the cathode of the X-ray tube. The first conductive layer 208 is made of a material having good electrical conductivity such as stainless alloy, iron, or tungsten. do.
상기 제 1 전도층(208) 위에는 후술하는 바와 같은 그리드 전극(204)과 음극으로서의 탄소 나노튜브(206) 사이의 절연을 위한 제 1 절연층(205)이 장착되며, 상기 제 1 절연층(205)은 세라믹 또는 테프론과 같은 절연성이 뛰어난 재질로 제작된다. 또한 상기 제 1 절연층(205)은 탄소 나노튜브(206)로부터 방출된 전자를 통과시키기 위한 내부 홀을 가지며, 상기 내부 홀의 크기는 상기 그리드 전극(204) 쪽에서 상기 탄소 나노튜브(206)를 보았을 때 상기 제 1 절연층(205)이 상기 탄소 나노튜브(206) 성장 영역의 가장자리 부분을 가리도록 형성되는 것이 바람직하나, 반드시 이러한 구조에 한하는 것은 아니다.On the first conductive layer 208 is mounted a first insulating layer 205 for insulating between the grid electrode 204 and the carbon nanotube 206 as a cathode as described later, the first insulating layer 205 ) Is made of a highly insulating material such as ceramic or Teflon. In addition, the first insulating layer 205 has an inner hole through which electrons emitted from the carbon nanotubes 206 pass, and the size of the inner hole may be viewed from the carbon electrode tube 206 toward the grid electrode 204. When the first insulating layer 205 is preferably formed to cover the edge portion of the growth region of the carbon nanotubes 206, it is not necessarily limited to this structure.
상기 제 1 절연층(205) 위에는 상기 탄소 나노튜브(206)로부터 전자를 추출하기 위한 그리드 전극(204)이 장착되며, 상기 그리드 전극(204)은 그리드 메시(mesh) 또는 후술할 바와 같이 금속 종이를 레이저 가공 등을 통하여 제작된 것을 사용할 수 있다.A grid electrode 204 for extracting electrons from the carbon nanotubes 206 is mounted on the first insulating layer 205, and the grid electrode 204 is a grid mesh or a metal paper as described later. The one produced by laser processing can be used.
도 9는 도 8에 도시된 실시예에 따라 기판(207) 위의 탄소 나노튜브(206) 형성 부분을 그리드 전극(204) 방향에서 바라본 평면도이다. 본 실시예에 따르면, 상기 제 1 절연층(205)의 내부 홀은 상기 제 1 전도층(208)에서부터 그리드 전극(204)쪽으로 갈수록(즉, 도 8에서 하부로부터 상부로 갈수록) 작아지는 반경을 가지며, 도 9에 도시된 바와 같이, 탄소 나노튜브(206)의 가장자리 부분(206')이 상기 제 1 절연층(205)에 의해 가려지도록 구성될 수 있다.FIG. 9 is a plan view of the carbon nanotube 206 forming portion on the substrate 207 viewed from the grid electrode 204 direction according to the embodiment shown in FIG. 8. According to the present embodiment, the inner hole of the first insulating layer 205 has a radius that decreases from the first conductive layer 208 toward the grid electrode 204 (that is, from the bottom to the top in FIG. 8). 9, the edge portion 206 ′ of the carbon nanotubes 206 may be configured to be covered by the first insulating layer 205.
상기 그리드 전극(204) 위에는 상기 그리드 전극(204)에 전압을 인가하면서 동시에 1차 전자 빔 집속을 위한 제 1 집속 렌즈(203)가 장착될 수 있다. 상기 제 1 집속 렌즈(203)는 예를 들면 SUS, 철, 텅스텐 등과 같은 전기 전도도가 좋은 재질로 제작되며, 상기 탄소 나노튜브(206)로부터 방출된 전자를 집속시키기 위한 제 1 집속 홀을 포함하고, 상기 제 1 집속 홀의 크기를 조절함으로써 양극에 도달하는 전자 빔의 집속 면적의 크기를 조절할 수 있다.The first focusing lens 203 may be mounted on the grid electrode 204 while simultaneously applying a voltage to the grid electrode 204. The first focusing lens 203 is made of a material having good electrical conductivity such as SUS, iron, tungsten, etc., and includes a first focusing hole for focusing electrons emitted from the carbon nanotubes 206. The size of the focusing area of the electron beam reaching the anode may be adjusted by adjusting the size of the first focusing hole.
상기 제 1 집속 렌즈(203) 위에는 상기 제 1 집속 렌즈(203)와의 절연을 위하여 세라믹, 테플론 등의 절연성이 뛰어난 재질로 제작된 제 2 절연층(202)를 개재하여 상기 탄소 나노튜브(206)로부터 방출된 전자를 보다 집속시키기 위한 제 2 집속 렌즈(201)가 장착된다. 상기 제 1 집속 렌즈(203)와 마찬가지로 상기 제 2 집속 렌즈(202)는 SUS, 철, 텅스텐 등과 같은 전기 전도도가 좋은 재질로 제작되며, 상기 탄소 나노튜브(206)로부터 방출된 전자를 집속시키기 위한 제 2 집속 홀을 포함한다. 상기 제 2 집속 홀은 상기 제 1 집속 홀과 유사한 크기로 형성될 수 있으며, 상기 제 1 집속 홀과 마찬가지로 제 2 집속 홀의 크기를 조절함으로써 양극에 도달하는 전자빔의 집속 면적의 크기를 조절할 수 있다.On the first focusing lens 203, the carbon nanotubes 206 are interposed between the first focusing lens 203 via a second insulating layer 202 made of a material having excellent insulation such as ceramic and teflon. A second focusing lens 201 is mounted for further focusing the electrons emitted from the. Like the first focusing lens 203, the second focusing lens 202 is made of a material having good electrical conductivity such as SUS, iron, tungsten, and the like, and focuses electrons emitted from the carbon nanotubes 206. And a second focusing hole. The second focusing hole may be formed to have a size similar to that of the first focusing hole, and similarly to the first focusing hole, the size of the focusing area of the electron beam reaching the anode may be adjusted by adjusting the size of the second focusing hole.
상기 제 2 집속 렌즈(201) 위에는 도시 생략한 양극부와의 절연을 위하여 세라믹, 테플론 등의 절연성이 뛰어난 재질로 제작된 제 3 절연층(200)을 더 포함할 수도 있다.The second focusing lens 201 may further include a third insulating layer 200 made of a material having excellent insulating properties such as ceramic and Teflon to insulate the anode part (not shown).
도면 부호 213은 상기 제 2 및 제 3 절연층(202 및 200) 및 상기 제 2 집속렌즈(201)와 같은 내부 구성 요소들을 고정하기 위한 지지대를 도시한 것으로서, 상기 지지대(213)는 상기 각각의 내부 구성요소들을 절연시킬 수 있도록 세라믹 또는 테프론 등과 같은 절연성이 뛰어난 재질로 제작되는 것이 바람직하다. Reference numeral 213 denotes a support for fixing internal components, such as the second and third insulating layers 202 and 200 and the second focusing lens 201, wherein the support 213 is a respective support member. In order to insulate the internal components, it is desirable to be made of an excellent insulating material such as ceramic or Teflon.
필요에 따라 접속 핀을 통하여 외부와 전기적 연결 구조를 형성할 수 있는데, 도면 부호 210로 도시된 전도층은 지지대(213)를 관통하여 상기 제 2 집속렌즈(201)에 전압을 인가하기 위한 접속핀을 나타내며, 도면 부호 211로 도시된 전도층은 지지대(213)를 관통하여 상기 그리드 전극(204)에 전압을 인가함과 동시에 상기 제 1 집속렌즈(203)에 1차 전자빔 집속을 위한 전압을 인가하기 위한 접속핀을 나타내며, 도면 부호 212로 도시된 전도층은 지지대(213)을 관통하여 제 1 전도층(208)을 거쳐 탄소 나노튜브 음극에 전압을 인가하거나 접지시키기 위한 접속핀을 나타낸다. 상기 전도층들(210 내지 212)은 예를 들어 스테인레스 합금, 철, 텅스텐 등과 같은 전기 전도도가 좋은 재질로 제작되는 것이 바람직하다.If necessary, an electrical connection structure with the outside may be formed through the connection pin, and the conductive layer shown by reference numeral 210 passes through the support 213 to connect the voltage to the second focusing lens 201. The conductive layer shown by reference numeral 211 penetrates the support 213 to apply a voltage to the grid electrode 204 and to apply a voltage for primary electron beam focusing to the first focusing lens 203. The conductive layer shown by reference numeral 212 represents a connecting pin for applying a voltage to or grounding the carbon nanotube cathode through the first conductive layer 208 through the support 213. The conductive layers 210 to 212 are preferably made of a material having good electrical conductivity such as stainless alloy, iron, tungsten, or the like.
도 10은 본 발명의 다른 일 실시예에 따른 엑스선관의 전자 방출원의 구성을 예시한다. 도 10과 관련한 이하의 설명에서는 편의상 도 8에 도시된 실시예와 동일한 부분에 대해서는 생략하고 상이한 부분에 대해서만 설명한다.10 illustrates a configuration of an electron emission source of an X-ray tube according to another embodiment of the present invention. In the following description with reference to FIG. 10, the same parts as in the embodiment shown in FIG. 8 are omitted for convenience and only different parts will be described.
도 10에 도시된 실시예에 따르면, 그리드 전극(204)과 음극으로서의 탄소 나노튜브(206) 사이의 절연을 위하여 세라믹 또는 테프론과 같은 절연성이 뛰어난 제 1 절연층(205)이 제 1 전도층 (208) 위에 장착된다. 상기 제 1 절연층(205)은 탄소 나노튜브(206)로부터 방출된 전자를 통과시키기 위한 내부 홀을 가지나, 내부 홀의 내벽이 도 8의 실시예와는 다른 구조를 갖도록, 즉, 내부 홀의 내벽이 중간 부위에서 가장 작은 반경을 가지도록 형성된다. 상기 내부 홀의 가장 작은 반경 부위는 상기 그리드 전극(204) 쪽에서 상기 탄소 나노튜브를 보았을 때 도 9에 도시된 바와 같이 상기 탄소 나노튜브(206)가 성장된 부분의 가장자리를 가릴 수 있는 정도의 반경이어도 무방하다.According to the embodiment shown in FIG. 10, a first insulating layer 205 having excellent insulating property such as ceramic or Teflon is used for insulating between the grid electrode 204 and the carbon nanotube 206 as a cathode. 208 above. The first insulating layer 205 has an inner hole for passing electrons emitted from the carbon nanotubes 206, but the inner wall of the inner hole has a structure different from that of the embodiment of FIG. It is formed to have the smallest radius in the middle part. The smallest radial portion of the inner hole may have a radius such that when the carbon nanotubes are viewed from the grid electrode 204, the edges of the portions where the carbon nanotubes 206 are grown may be covered as shown in FIG. 9. It's okay.
도 10에 도시된 실시예에서는 제 1 집속 렌즈(203)가 상기 제 1 집속 렌즈(203)의 집속 홀로부터 외곽 방향으로 일정 지점까지는 두께가 점점 작아지도록 하여, 상기 제 1 집속 렌즈(203)의 밑면이 상기 그리드 전극(204) 쪽으로 돌출되는 고깔 모양의 형상으로 형성된다. 또한, 그리드 전극(204)은 제1 집속 렌즈(203) 하면과 제 1 절연층(205)의 상면 사이에서 팽팽하게 고정될 수 있도록 도 10과 같이 배치된다.In the embodiment shown in FIG. 10, the thickness of the first focusing lens 203 gradually decreases from the focusing hole of the first focusing lens 203 to a predetermined point in the outward direction, thereby reducing the thickness of the first focusing lens 203. A bottom surface is formed in the shape of a shell that protrudes toward the grid electrode 204. In addition, the grid electrode 204 is disposed as shown in FIG. 10 so that the grid electrode 204 may be tightly fixed between the lower surface of the first focusing lens 203 and the upper surface of the first insulating layer 205.
도 11은 본 발명의 또 다른 바람직한 일실시예에 따른 엑스선관의 양극부를 제외한 부분을 도시하는 도면이다. 도 11에 대한 이하의 설명에서도 편의상 도 8에 도시된 실시예와 동일한 부분에 대해서는 생략하고 상이한 부분에 대해서만 설명한다.11 is a view showing a portion excluding an anode part of the X-ray tube according to another preferred embodiment of the present invention. In the following description of FIG. 11, for the sake of convenience, the same parts as in the embodiment shown in FIG. 8 will be omitted, and only different parts will be described.
도 11의 실시예에서도 그리드 전극(204)과 음극으로서의 탄소 나노튜브(206) 사이의 절연을 위하여 세라믹 또는 테프론과 같은 절연성이 뛰어난 제 1 절연층(205)이 제 1 전도층 (208) 위에 장착되는데, 상기 제 1 절연층(205)은 탄소 나노튜브(206)로부터 방출된 전자를 통과시키기 위한 내부 홀을 가진다. 다만 상기 내부 홀의 내벽 구조는 도 8의 실시예와는 달리, 상단부와 하단부에 상이한 직경 및 깊이의 내부 홀이 서로 연결된 구조를 갖는다.In the embodiment of FIG. 11, a first insulating layer 205 having excellent insulating property such as ceramic or Teflon is mounted on the first conductive layer 208 to insulate between the grid electrode 204 and the carbon nanotube 206 as a cathode. The first insulating layer 205 has an inner hole for passing electrons emitted from the carbon nanotubes 206. However, unlike the embodiment of FIG. 8, the inner wall structure of the inner hole has a structure in which inner holes having different diameters and depths are connected to each other at the upper end and the lower end.
도 8 내지 도 11에 도시된 실시예들에는 표면 가장자리 부분이 부드러운 곡면으로 처리된 기판(207)이 사용되었으나, 기판(207)의 날카로운 가장자리의 모서리 부분을 사면으로 처리한 경우도 사용이 가능하다.8 to 11, the substrate 207 having the surface edge portion treated with a smooth curved surface is used. However, the edge portion of the sharp edge of the substrate 207 may be used as a slope. .
도 12 내지 도 13은 또 다른 실시예를 도시한 도면으로서, 기판이 샘플 프루브와 별도로 형성되는 것이 아니라, 샘플 프루브의 일부를 바로 기판으로 사용하는 예를 도시한다. 도 12 내지 도 13과 관련한 이하의 설명에서도 편의상 도 8에 도시된 실시예와 동일한 부분에 대해서는 생략하고 상이한 부분에 대해서만 설명한다.12 to 13 illustrate still another embodiment, in which an example in which a substrate is not formed separately from the sample probe but a part of the sample probe is used as the substrate. In the following description with reference to FIGS. 12 to 13, the same parts as in the embodiment shown in FIG. 8 are omitted for convenience and only different parts will be described.
도 8 내지 도 11에 도시된 실시예들에서는 일정 두께를 가지며 가장자리 부분이 곡면 처리된 기판을 샘플 프루브에 접합하여 사용하고 있으나, 본 실시예에 따르면 이러한 중간 기판을 두지 않고, 도 12에 도시된 바와 같이 샘플 프루브(215) 자체의 윗면의 가장자리 부분을 사면 처리하고 사면 처리된 샘플 프루브(215)의 윗면을 탄소 나노튜브(216) 성장을 위한 기판으로 사용하고 있는 점에서 상이하다. 따라서 본 실시예에 따르면 도 8 내지 도 11에 도시된 실시예들이 갖는 장점을 그대로 살리면서, 기판을 샘플 프루브에 장착하는 과정을 생략할 수 있다는 장점이 있다.In the embodiments shown in FIGS. 8 to 11, a substrate having a predetermined thickness and a curved edge portion is bonded to the sample probe, but according to the present embodiment, the intermediate substrate is not provided. As described above, the edge of the top surface of the sample probe 215 itself is sloped, and the top surface of the sloped sample probe 215 is used as a substrate for carbon nanotube 216 growth. Therefore, according to the present exemplary embodiment, the process of mounting the substrate on the sample probe may be omitted while maintaining the advantages of the embodiments illustrated in FIGS. 8 to 11.
또한, 도 12 내지 도 13에 도시된 바와 같이 본 실시예에서는 샘플 프루브(215)의 하면에 볼트 등 결합 구조(216)를 더 포함할 수도 있는데, 이러한 결합 구조(216)는 에 의하면 샘플 프루브가 엑스선관에 장착되기 이전에, 탄소 나노튜브의 성장을 위한 공정 과정을 거칠 경우에 샘플 프루브의 절연 및 상단 일정 부위에서 탄소 나노튜브 성장이 잘 진행될 수 있도록 하기 위한 별도의 절연체 홀더(도시 안 됨) 등과 결합이 용이하게 되고, 기타 핸들링에 있어 유리할 수 있다.In addition, in the present embodiment, as shown in FIGS. 12 to 13, the lower surface of the sample probe 215 may further include a coupling structure 216 such as a bolt. Prior to mounting on the X-ray tube, a separate insulator holder (not shown) to allow the carbon nanotube growth to proceed well at the top of the insulation and at the top of the sample probe during the process of growing the carbon nanotubes. It is easy to engage with the back and may be advantageous in other handling.
도 14는 본 발명의 그리드 전극의 다양한 구조를 예시하는 도면이다.14 is a diagram illustrating various structures of the grid electrode of the present invention.
그리드 전극은, (a)에 도시된 바와 같이 대략 직경 수 um 이하의 금속 와이어를 그물 짜듯 엮어서 제작한 메시 구조일 수도 있으나, (b) 또는 (c)에 도시된 바와 같이 대략 수 um 이하 두께의 금속 박에 레이저 가공을 통하여 원이나 육각형과 같은 홀을 뚫어 제작한 것들이 사용될 수 있으며, 이 경우 홀의 분포나 배치를 제어하기가 용이하고, 각각의 홀이 균일한 크기를 갖는 홀 배열을 얻을 수 있는 장점이 있다.The grid electrode may be a mesh structure fabricated by weaving a metal wire having a diameter of about several micrometers or less as shown in (a), but a thickness of about several micrometers or less as shown in (b) or (c). The metal foil can be used to make holes such as circles or hexagons through laser processing. In this case, it is easy to control the distribution or arrangement of the holes, and each hole can obtain a hole array having a uniform size. There is an advantage.
도 15는 본 발명에 따라 가장자리 부분이 부드러운 곡면으로 처리되거나 사면 처리된 기판을 사용하는 경우와, 가장자리 부분에 대한 처리 없이 날카로운 모서리 부분을 가진 기판(즉, 동전과 같이 얇은 원통형)을 사용한 경우의 전자 방출 효과를 비교 도시한 실험 예이다. 실험은 양 구조를 각각 채용한 엑스선관에서 방출되는 전자를 형광체가 도포된 ITO 등의 투명 전극에 충돌시켜 형광체를 발광시킴으로써 전자 방출 분포를 시각적으로 관측할 수 있도록 하는 방법에 의해 측정하였다.15 shows the case of using a substrate having a smooth curved surface or a sloped surface in accordance with the present invention, and using a substrate having a sharp edge (i.e. a thin cylindrical shape such as a coin) without processing the edge portion. It is an experiment example showing the electron emission effect compared. The experiment was measured by a method in which electron emission distribution was visually observed by colliding electrons emitted from an X-ray tube employing both structures with a transparent electrode such as ITO coated with phosphors to emit phosphors.
가장자리 부분에 대한 처리가 없이 날카로운 모서리 부분을 갖는 기판을 사용한 엑스선관에 의하면 (a)에 도시된 바와 같이 기판의 가장자리 부분에서만 전자 방출이 집중적으로 발생하였음을 알 수 있으나, 기판의 가장자리를 그라인딩 처리하여 부드러운 곡면이나 사면으로 처리한 경우에는, (b)에 도시된 바와 같이 탄소 나노튜브의 음극 전면에서 방출된 전자가 고르게 형광체에 충돌하는 결과를 얻어 보다 균일한 전자 방출 효과를 나타냄을 알 수 있다. According to the X-ray tube using a substrate having a sharp edge portion without processing the edge portion, as shown in (a), the electron emission was concentrated only at the edge portion of the substrate, but the edge of the substrate was ground. In the case of a smooth curved or sloped surface, as shown in (b), electrons emitted from the front surface of the cathode of the carbon nanotubes evenly collide with the phosphor, and thus the electron emission effect is more uniform. .
즉, 가장자리 부분의 처리에 의해 기판의 가장자리 부분에 걸리는 전계 집중을 완화시켜주고 중심 부분의 전계를 상대적으로 높여 전자 방출 분포를 개선하고 효율을 높이는 효과를 얻을 수 있으며, 그 외에도 가장자리에서의 아킹(arcing) 문제를 해결할 수 있으며, 이로써 탄소 나노튜브의 음극의 손상을 방지하여 수명을 향상시킬 수 있다.In other words, by processing the edge portion, it is possible to reduce the concentration of the electric field on the edge of the substrate and to increase the electric field of the central portion relatively to improve the electron emission distribution and increase the efficiency. arcing) problem can be solved, thereby preventing the damage of the cathode of the carbon nanotubes to improve the lifetime.
전계 방출 및 전기적 특성 평가를 위한 엑스선관 시스템:X-ray tube systems for field emission and electrical characterization:
도 16은 본 발명의 바람직한 일실시예에 따른 전계 방출 및 전기 특성 평가 측정을 위한 엑스선관 시스템의 개략적인 구성을 도시한다.16 shows a schematic configuration of an X-ray tube system for measuring field emission and electrical property evaluation according to an embodiment of the present invention.
도 16을 참조하면, 본 발명에 따른 엑스선관 시스템은 진공챔버(300), 터보 펌프(301), CCD 콘트롤러(302), 이미징 및 프로세싱 시스템(303), 펌프 및 진공 게이지 콘트롤러(304), 온도 측정기(306) 및 고전압 전원(305)을 포함하여 구성되고, 선택적으로 로터리 펌프(307)를 포함할 수도 있다.Referring to FIG. 16, an X-ray tube system according to the present invention includes a vacuum chamber 300, a turbo pump 301, a CCD controller 302, an imaging and processing system 303, a pump and a vacuum gauge controller 304, and a temperature. It may include a meter 306 and a high voltage power source 305, and may optionally include a rotary pump 307.
상기 진공 챔버(300)는, 후술할 바와 같이 측정 샘플의 물리적 특성을 측정하기 위해 상기 측정 샘플이 장착되는 음극부에 문제가 발생하거나 혹은 어느 측정 샘플의 물리적 특성의 측정을 완료하여 다른 측정 샘플로 교체하고자 할 때 음극부만의 분리 및 조립이 가능한 구조의 샘플 프루브가 장착 및 탈착될 수 있음과 동시에, 측정 샘플을 교체하기 위해 샘플 프루브를 장착 또는 탈착시킬 때 그 진공챔버 내부의 진공을 유지할 수 있도록 구성되어 있다. 본 명세서에서의 측정 샘플의 물리적 특성이란, 측정 샘플이 탄소나노튜브(CNT)와 같은 전계 방출 소자인 경우에는 전계 방출 소자의 전계 방출 특성이나 전류, 전압 특성이 될 수도 있으며, 측정 샘플이 나노 물질 기반의 신소자나 신물질인 경우에는 그 측정 샘플의 전기전도도, 전압, 전류 등의 전기적 특성이나 온도 또는 압력 특성일 수 있으며, 경우에 따라서는 예를 들어 10-7 Torr 이상의 고진공 상태 또는 극저온 상태에서의 초전도 특성이 될 수도 있다. 또한, 상기 진공 챔버(300)에는 도시생략하였으나 그 내벽 및 관을 이루고 있는 재질로부터 탈기체(outgas) 할 수 있도록 진공 챔버(300) 외벽에 열선을 설치하여 필요 시 진공도를 증대시킬 수 있도록 구성될 수도 있으며, 상기 열선의 설치와 동시에 액체 냉매 순환로를 형성함으로써 습한 진공 챔버를 빠르게 건조시킬 수 있도록 구성될 수도 있다.As described below, the vacuum chamber 300 may have a problem in a cathode part to which the measurement sample is mounted to measure physical properties of the measurement sample, or may complete measurement of the physical property of one measurement sample to another measurement sample. The sample probe can be mounted and detached with a structure capable of removing and assembling the cathode only when it is to be replaced, while maintaining the vacuum inside the vacuum chamber when the sample probe is mounted or detached to replace the measurement sample. It is configured to. In the present specification, the physical properties of the measurement sample may be a field emission property, a current, or a voltage property of the field emission device when the measurement sample is a field emission device such as carbon nanotube (CNT), and the measurement sample is a nanomaterial. In the case of a new element or a new material, it may be an electrical characteristic, a temperature, or a pressure characteristic such as electrical conductivity, voltage, and current of the measurement sample, and in some cases, for example, in a high vacuum state or a cryogenic state of 10 -7 Torr or more It can also be a superconducting property. In addition, although not shown in the vacuum chamber 300, a heating wire is installed on the outer wall of the vacuum chamber 300 so as to outgas from the material forming the inner wall and the pipe so as to increase the degree of vacuum if necessary. In addition, it may be configured to rapidly dry the wet vacuum chamber by forming a liquid refrigerant circulation path at the same time as the installation of the hot wire.
상기 터보 펌프(301)는 선택적으로 포함되는 상기 로터리 펌프(307)와 함께 상기 진공챔버(300)를 진공배기시키기 위한 것으로서, 상기 진공 챔버(300)를 적어도 10-6 Torr 이상의 고진공으로 배기시키기 위하여 어떠한 종류의 펌프를 사용하여도 무방하며, 이에 대해서는 당업자에게 널리 알려져 있기 때문에 이하에서는 그 자세한 설명은 생략한다.The turbo pump 301 is for evacuating the vacuum chamber 300 together with the rotary pump 307, which is optionally included, to exhaust the vacuum chamber 300 to a high vacuum of at least 10 −6 Torr or more. Any kind of pump may be used, and since this is well known to those skilled in the art, the detailed description thereof will be omitted.
상기 CCD 콘트롤러(302)는, 특히 측정 샘플이 전계 방출 소자인 경우 상기 진공 챔버(300) 내의 음극부에서 발생되는 전자빔 특성을 가시화하기 위한 것으로서, 후술하는 이미징 및 프로세싱 시스템(303)과 진공 챔버(300)의 상부면에 설치된 CCD 카메라와 연계하여 전계 방출 소자의 전계 방출 특성을 측정하면서 동시에 전계 방출 소자로부터 발생하는 발광 패턴을 실시간으로 이미징하는데 사용된다.The CCD controller 302 is for visualizing electron beam characteristics generated in the cathode portion of the vacuum chamber 300, particularly when the measurement sample is a field emission device, and the imaging and processing system 303 and the vacuum chamber (described later) It is used to measure the field emission characteristics of the field emission device in conjunction with a CCD camera installed on the upper surface of the device 300, and to simultaneously image the light emission pattern generated from the field emission device.
상기 이미징 및 프로세싱 시스템(303)은 랩뷰(LabView) 기반의 자동 데이터 획득(DAQ) 프로그램이 탑재되어 상기 CCD 콘트롤러(302)를 비롯한 다른 구성 부품들을 동기화시켜 측정 샘플의 물리적 특성에 관한 데이터를 자동으로 획득하고, 획득된 데이터를 이미지로 변환시키는 역할을 한다. 따라서, 본 발명에 따르면 측정하고자 하는 상기 측정 샘플의 물리적 특성에 관한 데이터를 실시간으로 획득, 디스플레이 및 저장시킬 수 있도록 LabView 기반의 DAQ를 개발하여 이를 측정 시스템과 연동시킬 수 있기 때문에 측정된 데이터의 정밀성을 향상시킬 수 있음과 동시에, 탄소 나노튜브(CNT)와 같은 전계방출 소자의 전자 발생 형상을 실시간으로 측정할 수 있다는 장점이 있다.The imaging and processing system 303 is equipped with a LabView-based automated data acquisition (DAQ) program to synchronize data with the CCD controller 302 and other components to automatically obtain data about the physical characteristics of the measurement sample. Acquire and convert the obtained data into an image. Therefore, according to the present invention, since the LabView-based DAQ can be developed and interlocked with the measurement system to acquire, display and store data on the physical characteristics of the measurement sample to be measured in real time, the accuracy of the measured data At the same time, the electron generating shape of the field emission device such as carbon nanotubes (CNT) can be measured in real time.
상기 펌프 및 진공 게이지 콘트롤러(304)는 상기 터보 펌프(301) 및/또는 상기 로터리 펌프(307)를 제어하여 상기 진공 챔버(300)의 진공도를 정밀하게 제어하기 위한 것이고, 상기 고전압 전원(305)는 상기 진공 챔버(300) 내의 각종 전극들에 고전압을 인가하기 위한 것이며, 상기 온도 측정기(306)는 상기 진공 챔버(300) 내의 음극부에 장착된 샘플의 온도를 측정하기 위한 것이다.The pump and vacuum gauge controller 304 is to control the turbo pump 301 and / or the rotary pump 307 to precisely control the degree of vacuum of the vacuum chamber 300, the high voltage power supply 305 Is for applying a high voltage to the various electrodes in the vacuum chamber 300, the temperature measuring instrument 306 is for measuring the temperature of the sample mounted on the cathode in the vacuum chamber (300).
도 17은 도 16에 도시된 진공 챔버(300) 및 이에 사용되는 음극부로서의 샘플 프루브(315)의 세부 구성을 설명하기 위한 도면이다.FIG. 17 is a view for explaining the detailed configuration of the vacuum chamber 300 shown in FIG. 16 and the sample probe 315 as the cathode part used therein.
도 17을 참조하면, 본 발명에 따른 진공 챔버(300)는 전계 방출 실험 및 초전도 실험을 위하여 진공 유지가 가능한 금속을 사용하여 제작되는 것이 바람직하며, 상기 진공 챔버(300) 내부에 양극부로서의 그리드 전극(310), 측정 샘플(311)이 장착되어 상기 측정 샘플(311)이 진공 챔버(300) 내부에 놓이도록 구성된 샘플 프루브(315), 측정 샘플이 장착된 상기 샘플 프루브(315)가 상기 진공 챔버(300)에 장착되거나 이로부터 탈착되는 경우 상기 샘플 프루브(315)를 안내해주는 샘플 프루브 가이드라인(312), 상기 그리드 전극(310) 등을 지지하기 위한 지지대(313), 상기 그리드 전극(310)에 전압을 인가하기 전압 인가부(314)를 포함하여 이루어진다.Referring to FIG. 17, the vacuum chamber 300 according to the present invention is preferably manufactured using a metal capable of maintaining a vacuum for field emission experiments and superconductivity experiments, and a grid as an anode part inside the vacuum chamber 300. A sample probe 315 configured to mount an electrode 310, a measurement sample 311 so that the measurement sample 311 is placed inside the vacuum chamber 300, and the sample probe 315 to which the measurement sample is mounted is the vacuum. When mounted to or detached from the chamber 300, a sample probe guide line 312 for guiding the sample probe 315, a support 313 for supporting the grid electrode 310, and the like, and the grid electrode 310. The voltage applying unit 314 is applied.
상기 그리드 전극(310)은, 예를 들어 SUS(Steel specicial Use Stainless), 구리, 철, 텅스텐 등과 같은 전기전도도가 좋은 물질로 구성되며, 특히 상기 측정 샘플(311)이 전계 방출 소자인 경우에는 금속 메쉬나 고체 형태의 금속 구조로 형성될 수 있다. 상기 그리드 전극(310)은 도시된 바와 같이 샘플 프루브(315)의 음극부에 장착되는 측정샘플과 맞닿도록 형성될 수도 있으나, 본 발명에 따르면 상기 샘플 프루브(315)의 장착 위치를 변경시킴으로써 상기 그리드 전극(310)과 상기 샘플 프루브(315)의 음극부와의 간격이 용이하게 변경될 수 있다.The grid electrode 310 is made of, for example, a material having good electrical conductivity, such as stainless specicial use stainless steel (SUS), copper, iron, tungsten, and the like, particularly when the measurement sample 311 is a field emission device. It may be formed of a metal structure in a mesh or solid form. The grid electrode 310 may be formed to abut the measurement sample mounted on the cathode of the sample probe 315 as shown, but according to the present invention by changing the mounting position of the sample probe 315 The distance between the electrode 310 and the cathode of the sample probe 315 may be easily changed.
상기 그리드 전극(310)은 또한, 상기 샘플 프루브(315)에 장착된 탄소나노튜브 등과 같은 전계 방출원의 발광 현상을 측정하기 위하여 투명전극(예를 들면, MgO 또는 ITO 전극 등)으로 제작할 수도 있으며, 이러한 투명 전극이 코팅되도록 제작될 수도 있다. 또한 상기 투명 전극에는, 탄소 나노 튜브와 같은 전자 방출원으로부터 발생되는 전자빔을 진공 챔버(300)의 외부의 상부면에 설치된 CCD 카메라(324)를 이용하여 형상화시키도록 형광체(phosphor)와 같은 형광물질이 코팅될 수도 있으며, 따라서 도 16에 도시된 이미지 및 프로세싱 시스템(303)과 연계하여 상술한 바와 같은 이미지 획득과 동시에 실시간으로 그 이미지를 확인할 수 있도록 구성될 수 있다.The grid electrode 310 may also be made of a transparent electrode (eg, MgO or ITO electrode) to measure the light emission phenomenon of a field emission source such as carbon nanotubes mounted on the sample probe 315. This transparent electrode may be manufactured to be coated. In the transparent electrode, a fluorescent material such as a phosphor such that an electron beam generated from an electron emission source such as a carbon nanotube is shaped by using a CCD camera 324 provided on an upper surface of the outside of the vacuum chamber 300. This may be coated, and thus may be configured to identify the image in real time simultaneously with image acquisition as described above in conjunction with the image and processing system 303 shown in FIG.
본 실시예에서는 상기 그리드 전극(310)이 단일한 전극으로서 도시되고 있으나, 상기 그리드 전극(310)은 전계 방출 소자의 전계 방출 특성을 측정하는 경우에는 음극부로부터 방출된 전자에 의한 충돌에 의해 전자빔을 방출하는 양극전극이나 음극부로부터 방출된 전자의 집속을 위한 전자 집속 전극 등을 포함하는 것으로서, 후술하는 음극부와 함께 여하한의 양극부의 구조를 포괄하는 개념임에 주의해야 한다.In the present embodiment, the grid electrode 310 is shown as a single electrode, the grid electrode 310 is an electron beam due to the collision by the electrons emitted from the cathode when measuring the field emission characteristics of the field emission device It should be noted that it includes a positive electrode electrode for emitting light or an electron focusing electrode for focusing electrons emitted from the negative electrode portion, and encompasses the structure of any positive electrode portion together with the negative electrode portion described later.
상기 측정 샘플(311)은 음극부에 장착되는 측정 샘플로서 후술하는 바와 같이 샘플 프루브(315)의 상단에서 프루브안에 들어가는 크기로 제작된다. 이때 상기 측정 샘플(311)은 실버 페인트를 이용하여 음극부와 오믹 콘택트를 형성하도록 하는 것이 바람직하다. 또한, 상기 측정 샘플(311)은 도시된 바와 같이 볼트(316)에 의해 상기 샘플 프루브(315)에 고정될 수 있도록 하는 것이 바람직하며, 경우에 따라서는 실버 페인트만을 이용하여 상기 샘플 프루브(315) 상단에 접착됨으로써 상기 샘플 프루브(315)에 고정될 수도 있다.The measurement sample 311 is a measurement sample mounted on the cathode, and is manufactured to have a size that fits into the probe at the upper end of the sample probe 315 as described below. In this case, the measurement sample 311 may be formed to form ohmic contact with the cathode using silver paint. In addition, the measurement sample 311 may be fixed to the sample probe 315 by a bolt 316 as shown, in some cases, the sample probe 315 using only silver paint It may be fixed to the sample probe 315 by being adhered to the top.
상기 그리드 전극(310)과 상기 샘플 프루브(315) 사이에는 절연층(312)이 형성될 수 있는데, 특히 상기 측정 샘플(311)이 탄소 나노 튜브 등과 같은 전계 방출 소자인 경우 상기 그리드 전극(310)와 상기 샘플 프루브(315) 사이에 절연을 위하여, 예를 들어 세라믹이나 테프론, 벨스펠, 알루미나 등과 같은 전도도가 낮은 물질로 제작된다.An insulating layer 312 may be formed between the grid electrode 310 and the sample probe 315. In particular, when the measurement sample 311 is a field emission device such as a carbon nanotube, the grid electrode 310 may be formed. In order to insulate between and the sample probe 315, for example, it is made of a low conductivity material, such as ceramic, Teflon, bellspell, alumina.
또한, 상기 진공 챔버(300) 내에는 지지대(313)가 형성될 수 있는데, 이는 상기 그리드 전극(310), 측정 샘플(311) 및 절연층(312)를 지지하고 있는 절연층으로서, 상기 절연층(312)과 마찬가지로 세라믹, 테프론, 벨스펠, 알루미나 등과 같은 전기전도도가 낮은 물질로 이루어지는 것이 바람직하다.In addition, a support 313 may be formed in the vacuum chamber 300, which is an insulating layer supporting the grid electrode 310, the measurement sample 311, and the insulating layer 312. Like (312), it is preferable that the material is made of a material having low electrical conductivity, such as ceramic, Teflon, bellspell, alumina, or the like.
상기 진공 챔버(300) 내부에는 또한 상기 그리드 전극(310)에 고전압을 인가하기 위한 전압 인가부(314) 및 피드 스루(317)를 포함할 수 있다. 상기 전압 인가부(314)는 SUS, 구리, 철 등과 같은 전도도가 좋은 물질로 이루어지는 것이 바람직하며, 상기 피드스루(317)는 상기 전압 인가부(314)를 통하여 진공 챔버 외부에서 상기 그리드 전극(310)에 전압을 인가해주는 역할을 하는 것으로서 고전압 인가를 용이하게 하기 위하여 고압용 MHV, SHV 등으로 이루어지는 것이 바람직하다.The vacuum chamber 300 may further include a voltage applying unit 314 and a feed through 317 for applying a high voltage to the grid electrode 310. The voltage applying unit 314 is preferably made of a material having good conductivity such as SUS, copper, iron, and the like, and the feedthrough 317 is outside the vacuum chamber 310 through the voltage applying unit 314. It is preferably made of a high pressure MHV, SHV, etc. in order to facilitate the application of high voltage as a role of applying a voltage to the).
상기 샘플 프루브(315)는 측정 샘플(311)을 장착하기 위한 것으로서, 후술하는 바와 같이 샘플 프루브 가이드라인(312)을 따라 이동하여 상기 진공 챔버(310) 내부에 상기 측정 샘플(311)이 놓이도록 하며, 밸브 시스템(325) 및 2개의 오링(326, 326')과 결합하여 측정 샘플을 교체하기 위하여 상기 진공 챔버(300)로부터 꺼내어질 때, 진공 챔버(300)의 진공을 유지하면서 상기 샘플 프루부(315)만이 상기 진공 챔버(300)로부터 탈착될 수 있는 구조로 이루어진다.The sample probe 315 is for mounting the measurement sample 311, and moves along the sample probe guideline 312 to place the measurement sample 311 inside the vacuum chamber 310 as described below. And when coupled with the valve system 325 and the two o-rings 326, 326 ', when taken out of the vacuum chamber 300 to replace the measurement sample, the sample chamber is maintained while maintaining the vacuum of the vacuum chamber 300. Only the bottom portion 315 is configured to be detachable from the vacuum chamber 300.
상기 측정 샘플(311)은 상기 음극부로서의 샘플 프루브(315)에 고정되도록 상기 측정 샘플(311)을 장착한 후 볼트(316)로 쪼여 고정할 수 있도록 하는 것이 바람직하며, 필요 시에는 샘플 프루브(315)의 상단 면에 실버 페인트를 이용하여 오믹 접촉하도록 상기 측정 샘플(311)을 장착 시킬 수도 있다.The measurement sample 311 is preferably mounted on the measurement sample 311 so as to be fixed to the sample probe 315 as the cathode, and then fixed by being twisted with a bolt 316, if necessary. The measurement sample 311 may be mounted on the top surface of the 315 to be in ohmic contact with silver paint.
또한, 상기 샘플 프루브(315)에는 서머미터(thermometer) 등의 온도계(328)가 장착되고, 상기 샘플 프루브(315)가 상기 진공 챔버(300)에 장착된 상태에서 도 16에 도시된 온도측정기(306)와 연동하여 측정 샘플의 온도를 실시간으로 측정할 수 있도록 하는 것이 바람직하다.In addition, the sample probe 315 is equipped with a thermometer 328 such as a thermometer, and the temperature probe shown in FIG. 16 with the sample probe 315 mounted to the vacuum chamber 300 ( In conjunction with 306, it is desirable to be able to measure the temperature of the measurement sample in real time.
상기 샘플 프루브(315)는 또한 액체 냉매 분출구 및 액체 냉매 주입구(318 및 319)를 포함할 수 있는데, 상기 액체 냉매 분출구 및 액체 냉매 주입구(318 및 319)는, 상기 측정 샘플(311)의 온도를 극저온(cryogenic)으로 낮추기 위한 액체질소 혹은 액체헬륨과 같은 냉매가 진공 챔버(310) 외부로부터 상기 샘플 프루브(315)를 관통하여 순환할 수 있도록 제작된 순환로(327)를 구성하도록 액체 냉매를 분출하고 주입하기 위한 것이다. 압력 게이지(320)는 상기 액체 냉매의 압력측정을 위한 게이지이고, 저장통(321)은 진공 챔버(300) 외부로부터 상기 액체 냉매를 순환시키기 위해 진공 챔버(310) 외부에 설치되는 것이 바람직하다.The sample probe 315 may also include liquid coolant jets and liquid coolant inlets 318 and 319, wherein the liquid coolant jets and liquid coolant inlets 318 and 319 may be used to determine the temperature of the measurement sample 311. The liquid refrigerant is ejected to form a circulation path 327 which is designed to circulate through the sample probe 315 from the outside of the vacuum chamber 310 to coolant such as liquid nitrogen or liquid helium to be cryogenic. To inject. The pressure gauge 320 is a gauge for measuring the pressure of the liquid refrigerant, and the reservoir 321 is preferably installed outside the vacuum chamber 310 to circulate the liquid refrigerant from the outside of the vacuum chamber 300.
본 발명에 따른 진공 챔버(300)에는 또한, 측면 뷰포트(322), 상면 뷰포트(323)를 포함할 수도 있으며, 상기 상면 뷰포트(323)에는 CCD 카메라(324)가 장착될 수도 있다. 상기 측면 뷰포트(322)는 진공 챔버 내부의 옆면 모습을 관찰하기 위한 뷰포트이고, 상기 상면 뷰포트(323)은 상기 그리드 전극(310)의 발광측정을 위한 뷰포트로서, 상기 그리드 전극(310) 내부의 투명전극에서 발광되는 모습을 측정할 수 있도록 상기 CCD 카메라(324)의 외경 정도로 제작하며, 재질로는 퀄츠 및 금속 등이 사용될 수 있다. 상기 CCD 카메라(324)는 도시 생략한 케이블을 통해 도 16에 도시된 CCD 콘트롤러(302)와 연결되어 상기 그리드 전극(310)의 발광현상을 측정하기 위한 것이다.The vacuum chamber 300 according to the present invention may further include a side viewport 322 and a top viewport 323, and the top viewport 323 may be equipped with a CCD camera 324. The side viewport 322 is a viewport for observing the side view inside the vacuum chamber, the upper viewport 323 is a viewport for measuring the emission of the grid electrode 310, the transparent inside the grid electrode 310 In order to measure the appearance of light emitted from an electrode, the CCD camera 324 may be manufactured to an outer diameter, and materials such as quartz and metal may be used. The CCD camera 324 is connected to the CCD controller 302 shown in FIG. 16 through a cable (not shown) to measure light emission of the grid electrode 310.
또한, 본 발명에 따른 진공 챔버(300)는 상기 터보 펌프(301)가 일체로 형성되는 것이 바람직하며, 도시하지는 않았지만 진동이 거의 발생하지 않는 소형 터보 펌프를 본 발명에서 이루어질 진공 챔버에 장착하여 필요 시 진공을 유지하는 구조를 갖게 할 수도 있다.In addition, the vacuum chamber 300 according to the present invention preferably includes the turbo pump 301 integrally, and although not shown, a small turbo pump, which does not generate vibration, is required by mounting the vacuum chamber to be implemented in the present invention. It can also have a structure that maintains the vacuum at time.
상술한 바와 같은 구조를 갖는 본 발명에 따른 엑스선관 시스템은 크게, 실리콘이나 탄소나노튜브(CNT)와 같은 전계 방출 소자의 전계 방출 특성과 신소재 또는 신물질의 전류, 전압 등의 물리적 특성을 조사하는데 사용될 수 있다. 물론 이들 2가지의 실험을 수행하는데 있어서 측정 샘플의 교체가 필요할 때 단지 측정 샘플만을 꺼내어 장착할 수 있다는 점은 공통적이다.The X-ray tube system according to the present invention having the structure as described above is largely used to investigate the field emission characteristics of field emission devices such as silicon or carbon nanotubes (CNT) and the physical properties such as current and voltage of new materials or new materials. Can be. Of course, in performing these two experiments, it is common that only the measurement sample can be taken out and mounted when a measurement sample needs to be replaced.
먼저 측정 샘플이 탄소 나노 튜브(CNT) 등과 같은 전계 방출 소자인 경우, 전계 방출 특성을 조사하기 위해서는 전계 방출 에미터로 구성되는 음극부로서의 샘플 프루브(315)와 음극부에서 발생되는 전자를 추출할 그리드 전극(310)으로 구성되며, 그리드 전극(310)과 전자 방출원인 탄소 나노튜브(CNT) 음극을 전기적으로 절연시킬 수 있는 절연층(312)까지가 진공 챔버(300) 내부에 고정되게 하는 구조를 갖게 된다. 이때, 음극부가 올바르게 작동을 하지 않을 경우 CNT 전계 방출원이 장착되는 샘플 프루브(315)는, 진공 챔버(300) 내부의 고진공이 유지된 채로 용이하게 진공 챔버(300) 외부로 추출될 수 있고 전계 방출 소자만을 교체한 후 다시 진공 챔버(300) 내부로 삽입될 수 있다.First, when the measurement sample is a field emission device such as a carbon nanotube (CNT), in order to investigate the field emission characteristics, the sample probe 315 serving as the cathode part composed of the field emission emitter and the electrons generated at the cathode part may be extracted. It is composed of a grid electrode 310, the structure to be fixed in the vacuum chamber 300 up to the insulating layer 312 that can electrically insulate the grid electrode 310 and the carbon nanotube (CNT) cathode that is the electron emission source Will have In this case, when the cathode portion does not operate correctly, the sample probe 315 to which the CNT field emission source is mounted may be easily extracted to the outside of the vacuum chamber 300 while the high vacuum inside the vacuum chamber 300 is maintained. After replacing only the emission element, it may be inserted into the vacuum chamber 300 again.
 그리고 측정 샘플이 신소재 및 신물질로 합성된 재료인 경우의 전류 및 전압 측정 시에도 이미 진공 챔버(300)내에 고정된 전계 방출 특성 측정을 위한 구조를 그대로 사용할 수 있다. 예를 들면, 샘플 프루브(315)위에 CNT 등과 같은 전계방출원 대신에 측정하고자 하는 측정 샘플을 올려놓고 이미 진공 챔버(300)내에 고정되어 있는 그리드 전극(310)을 측정 샘플의 윗면과 접촉할 수 있게 구성하면 측정 샘플의 전류 및 전압 특성을 조사할 수 있게 된다.In addition, even in the case of measuring current and voltage when the measurement sample is a new material and a material synthesized with a new material, a structure for measuring field emission characteristics fixed in the vacuum chamber 300 may be used as it is. For example, in place of a field emission source such as CNT on the sample probe 315, the grid electrode 310, which is already fixed in the vacuum chamber 300, may be brought into contact with the upper surface of the measurement sample. In this way, the current and voltage characteristics of the measurement sample can be investigated.
또한, 위에서 언급한 전계 방출 소자를 포함하는 모든 측정 샘플에 있어서 극저온(cryogenic) 상태에서의 물리적인 특성을 조사하기 위한 방법으로는, 상기 샘플 프루브(315) 내부에서 액체질소 및 액체 헬륨 등을 순환시킬 수 있는 순환로(327)를 포함하고 있기 때문에 측정 샘플을 용이하게 냉각시킬 수 있게 된다.In addition, as a method for examining the physical properties in the cryogenic state in all the measurement samples including the above-mentioned field emission device, the liquid nitrogen, liquid helium, etc. are circulated inside the sample probe 315. Since the circuit 327 is included, the measurement sample can be easily cooled.
이하에서는 본 발명에 따른 진공 챔버(300)의 진공을 유지하면서 분리 및 삽입을 할 수 있는 샘플 프루브(315)의 구성을 자세히 설명한다.Hereinafter will be described in detail the configuration of the sample probe 315 that can be separated and inserted while maintaining the vacuum of the vacuum chamber 300 according to the present invention.
우선, 도 18 내지 도 19는 측정 샘플(311)이 본 발명에 따른 샘플 프루브(315)에 장착되는 상태를 도시한 도면으로서, 도 18은 측정 샘플(311)로서 탄소나노튜브(331)를 성장시킨 음극부 기판(332)이 샘플 프루브(315)에 장착된 상태를 도시하고 있으며, 도 19는 극저온 상태에서의 초전도 특성이나 전압, 전류 등의 물리적 특성을 측정하기 위한 나노 물질 기반의 측정 샘플(333)이 샘플 프루브(315)에 장착된 상태를 도시하고 있다. 상기 기판(332)이나 나노 물질 기반의 측정 샘플(333)은 상기 샘플 프루브(315)의 상부에서 샘플 프루브 안에 들어가는 크기로 제작되는 것이 바람직하며, 이들을 장착한 후에 볼트(316)로 쪼여 고정할 수 있도록 구성된다. 또는 상술한 바와 같이 상기 음극부 기판(332)이나 측정 샘플(333)은 상기 샘플 프루브(315)의 상단 표면에 실버 페인트를 이용하여 장착될 수도 있음은 물론이다.First, FIGS. 18 to 19 show a state in which the measurement sample 311 is mounted on the sample probe 315 according to the present invention, and FIG. 18 shows the growth of the carbon nanotubes 331 as the measurement sample 311. The negative electrode substrate 332 is mounted on the sample probe 315. FIG. 19 illustrates a nanomaterial-based measurement sample for measuring physical properties such as superconductivity or voltage and current in a cryogenic state. 333 is shown mounted to the sample probe 315. The measurement sample 333 based on the substrate 332 or the nanomaterial may be manufactured to have a size that fits into the sample probe at the top of the sample probe 315. It is configured to. Alternatively, as described above, the cathode substrate 332 or the measurement sample 333 may be mounted on the top surface of the sample probe 315 using silver paint.
도 20 내지 도 22는 본 발명의 바람직한 실시예에 따라 나노튜브를 성장시킨 기판 및 극저온(cryogenic)상태에서의 측정 샘플의 전계 방출 특성 및 전기전도특성과 같은 물리적 특성을 측정하기 위한 음극부 분리형 샘플 프루브가 진공 챔버로부터 분리되는 과정을 설명하기 위한 도면이다.20 to 22 are negative electrode-separated samples for measuring physical properties such as field emission characteristics and electrical conductivity characteristics of substrates grown with nanotubes and measured samples in a cryogenic state according to a preferred embodiment of the present invention. This is a view for explaining a process in which the probe is separated from the vacuum chamber.
도 20을 참조하면, 본 발명에 따른 음극부 분리형 샘플 프루브(315)는 샘플 프루브 가이드라인(312)를 관통하여 이동됨으로써 상기 진공 챔버(300)에 탈착가능하도록 구성되어 있으며, 상기 샘플 프루브 가이드라인(312)에는 상기 진공 챔버(300)의 진공을 유지시키기 위한 2개의 오링(326 및 326')와 상기 2개의 오링(326, 326') 사이에 설치된 밸브 시스템(325)를 포함하여 구성된다.Referring to FIG. 20, the negative electrode separation type sample probe 315 according to the present invention is configured to be detachable from the vacuum chamber 300 by moving through the sample probe guide line 312. 312 includes two O-rings 326 and 326'and a valve system 325 installed between the two O-rings 326 and 326'for maintaining vacuum in the vacuum chamber 300.
측정 샘플(311)이 장착된 샘플 프루브(315)를 진공 챔버(300)로부터 빼내는 경우에는, 도 21에 도시된 바와 같이 측정 샘플(311)이 상기 2개의 오링(326, 326') 중 진공 챔버(300)에 인접한 오링(326) 및 밸브 시스템(325)을 통과하도록 A선까지 이동된 후에 밸브 시스템(325)를 잠금으로써, 도 22에 도시된 바와 같이 진공 챔버(300)의 진공이 파기되지 않은 상태에서 샘플 프루브(315)만을 분리시킬 수 있게 된다.When the sample probe 315 equipped with the measurement sample 311 is withdrawn from the vacuum chamber 300, as shown in FIG. 21, the measurement sample 311 is a vacuum chamber of the two O-rings 326 and 326 '. By locking the valve system 325 after it has been moved up to line A through the O-ring 326 and valve system 325 adjacent to 300, the vacuum in the vacuum chamber 300 is not destroyed, as shown in FIG. 22. In this state, only the sample probe 315 can be separated.
또한 본 발명에서 사용하는 샘플 프루브(315)는, 자세히 도시하지는 않았으나, 음극이 장착되는 부분과의 절연을 위해 샘플 프루브 중간에 세라믹이나 테플론 등으로 구성되는 절연층이 삽입되는 구성을 가질 수도 있다.In addition, although not shown in detail, the sample probe 315 used in the present invention may have a configuration in which an insulating layer made of ceramic, Teflon, or the like is inserted in the middle of the sample probe to insulate the portion where the cathode is mounted.
이와 같이, 본 발명에 따른 엑스선관 시스템이 상용화된다면, 종래의 전력의 소비가 막대하였던 열음극 방식의 x-ray 광원에 비하여 기술과 기능면에서 우수한 CNT기반의 신개념 x-ray 광원의 개발이 매우 용이하게 이루어지고, 따라서 수입에만 의존하던 X-ray 광원을 대체하고 상대적으로 저렴한 가격으로 공급할 수 있어 경제적, 산업적 파급 효과가 크다는 장점이 있다.As such, if the X-ray tube system according to the present invention is commercialized, it is very easy to develop a new concept x-ray light source based on CNTs, which is superior in technology and function, compared to the thermal cathode type x-ray light source, which consumes a lot of power. Therefore, it is possible to replace the X-ray light source, which was only imported, and to supply it at a relatively low price, thereby having a great economic and industrial ripple effect.
또한, 본 발명은 종래 CNT 전계방출장치로는 측정할 수 없었던 고진공, 극저온(cryogenic)상태에서의 CNT의 전계방츨특성을 측정을 용이하게 할 수 있기 때문에, 극저온에서 발생하는 CNT의 전계방출현상에 대한 새로운 연구결과를 제공함으로서 신기술을 창출하고 선도할 수 있다.In addition, the present invention can easily measure the field emission characteristics of the CNT in a high vacuum, cryogenic state that can not be measured by the conventional CNT field emission device, the field emission phenomenon of CNT generated at cryogenic temperatures By providing new research results, new technologies can be created and led.
또한, 현재 CNT에 대해서 상술한 바와 같이 백라이트 유닛(BLU)이나 전계방출디스플레이(FED) 혹은 진공전자소자(vacuum electronic devices), 냉음극 x-ray source 및 각종 나노-바이오 센서로 활용하기 위한 연구가 전세계적으로 활발히 진행되고 있는 상황에서, 본 발명은 CNT의 물성시험을 용이하게 할 수 있는 실험 시스템을 제공함으로써 기초과학의 발전에 공헌하며 가격적인 면에서나 질적인 면에서 종래의 시스템에 비하여 기술의 우위를 차지할 수 있을 것으로 기대된다.In addition, as described above with respect to the CNT, a research for the use as a backlight unit (BLU), a field emission display (FED) or vacuum electronic devices, a cold cathode x-ray source, and various nano-bio sensors has been conducted. In an active situation around the world, the present invention contributes to the development of basic science by providing an experimental system that can facilitate the physical property test of CNT, and in terms of price and quality, It is expected to take the lead.
또한, 본 발명은 종래 CNT의 전계방출특성 측정을 위한 장비에 비하여 사용자가 용이하게 이용할 수 있으며, 또한 측정시간을 월등히 개선할 수 있으며 LabView 기반의 자동 DAQ시스템을 접목하고 있어서 측정데이터의 정밀도를 개선할 수 있는 효과가 있다.In addition, the present invention can be easily used by the user as compared to the equipment for measuring the field emission characteristics of the conventional CNT, and also can significantly improve the measurement time and improve the accuracy of the measurement data by incorporating LabView-based automatic DAQ system It can work.
펜 형의 회전 가능한 엑스선관 시스템:Pen-type rotatable x-ray tube system:
도 23은 본 발명의 일 실시예에 따른 탄소나노튜브 기반 펜 모양의 회전이 가능한 엑스선관 시스템을 설명하기 위한 도면이다.FIG. 23 is a view illustrating an X-ray tube system capable of rotating a carbon nanotube-based pen shape according to an embodiment of the present invention.
도 23을 참조하면, 본 발명의 일 실시예에 따른 엑스선관 시스템은, 엑스선 방출 윈도우(401)를 포함한 엑스선방출 모듈(402), 엑스선방출 모듈 분리부(403), 엑스선방출 시스템 몸체(404), 탄소나노튜브 음극부(도 25의 412)와 그리도 전극 또는 그리드부(도 25의 414)에 전원인가를 위한 피드스루(feed-through)(405), 고압 및 시스템 내부 진공 분위기 조성을 위한 케이블(406), 탄소나노튜브 음극부로부터 전자 추출을 가능하게 하는 그리드부 전원공급스위치(407), 및 엑스선 방출모듈(402) 부분의 회전축(408)을 포함한다.Referring to FIG. 23, an X-ray tube system according to an exemplary embodiment of the present invention may include an X-ray emission module 402 including an X-ray emission window 401, an X-ray emission module separator 403, and an X-ray emission system body 404. A feed-through 405 for powering the carbon nanotube cathode portion 412 of FIG. 25 and the electrode or grid portion 414 of FIG. 406, a grid portion power supply switch 407 that enables electron extraction from the carbon nanotube cathode portion, and a rotation shaft 408 of the portion of the X-ray emission module 402.
도 23과 같이 본 발명의 일 실시예에 따른 펜 모양의 치과용 엑스선관 시스템은, 전자방출소자가 장착되는 엑스선방출 모듈(402) 내의 음극부가 수명이 짧아 일정 기간 사용 후 교체되어야 함을 고려하여, 엑스선방출 모듈 분리부(403)를 이용하여 엑스선방출 모듈(402)을 몸체로부터 쉽게 분리 및 조립이 가능하도록 하였다. 이와 같은 펜 또는 펜슬 타입의 작고 간편한 구조로 엑스선을 방출할 수 있도록 함에 따라, 구강 내에 쉽게 삽입하여 촬영하고 영상을 획득하는 것이 가능하다. 즉, 구강내의 진단이 필요한 부분에 도 23과 같은 치과용 엑스선관 시스템을 삽입하고 회전축(408)을 이용해 회전하면서 스위치(407)를 조작해 엑스선을 조사하여 외부에 설치된 엑스선 디텍터에서 영상을 검출하는 형태로 간편하게 치과 진단용으로 사용될 수 있도록 하였다. 구강암 치료 시에는 구강 안쪽의 환부에 직접 근접시켜서 적정량의 방사선을 조사할 수도 있기 때문에, 정상 조직의 피폭 없이 암세포에만 방사선의 투영이 가능한 근접치료시스템(brachytherapy) 등 다양한 의료용 시스템에 활용될 수도 있다.As shown in FIG. 23, the pen-shaped dental X-ray tube system according to an exemplary embodiment of the present invention has a short lifetime in which the negative electrode portion of the X-ray emission module 402 to which the electron-emitting device is mounted has to be replaced after use for a certain period of time. By using the X-ray emission module separator 403, the X-ray emission module 402 may be easily separated from the body and assembled. As the pen or pencil type small and simple structure can emit X-rays, the pen or pencil can be easily inserted into the oral cavity and photographed to acquire an image. That is, the dental X-ray tube system shown in FIG. 23 is inserted into a portion requiring diagnosis in the oral cavity, rotates using the rotating shaft 408, and operates the switch 407 to irradiate X-rays to detect an image from an X-ray detector installed outside. It can be used simply for dental diagnosis. In the treatment of oral cancer, since the appropriate amount of radiation can be irradiated by directly approaching the affected area inside the oral cavity, it can be used in various medical systems such as a brachytherapy system in which radiation can be projected only to cancer cells without exposure to normal tissue.
또한, 엑스선방출 모듈(402) 내의 전자방출소자인 탄소 나노튜브는 칩화하여 사이즈를 규격화하고 소형화가 가능하며, 외부의 측정 시스템과 연동하여 간단한 프로그램을 이용하여 간편한 버튼 조작으로 사용자 친화적인 사용 환경이 가능하도록 하였다.In addition, carbon nanotubes, which are electron-emitting devices in the X-ray emission module 402, can be chipped to standardize in size and downsized, and can be operated in a user-friendly environment by simple button operation using a simple program in conjunction with an external measurement system. It was made possible.
그리고, 소정 진공 펌프와 상시 연결되도록 하여 엑스선방출 모듈(402) 내의 진공도가 일정하게 유지되도록 하면서, 탄소나노튜브 기반의 고품질 엑스선 발생이 가능하여 저선량으로 치과 진단 및 구강암 치료나 기타 인체 진단 및 암치료에 유용하게 이용될 수 있도록 하였다.In addition, while maintaining a constant vacuum degree in the X-ray emission module 402 by being constantly connected to a predetermined vacuum pump, high-quality X-ray generation based on carbon nanotubes is possible, so that low-dose dental diagnosis and oral cancer treatment or other human diagnosis and cancer treatment It can be usefully used.
이하, 도 24내지 도 26을 참조하여 본 발명의 일 실시예에 따른 엑스선관 시스템에 대하여 좀 더 자세히 설명한다. 앞의 실시예 2와 실시예 3에서 설명하는 엑스선관의 형태가 본 발명의 엑스선방출 모듈에 적용될 수도 있으나, 보다 바람직한 실시예를 이하에서 설명하고자 한다.Hereinafter, an X-ray tube system according to an exemplary embodiment of the present invention will be described in more detail with reference to FIGS. 24 to 26. Although the shape of the X-ray tube described in the second embodiment and the third embodiment may be applied to the X-ray emission module of the present invention, a more preferred embodiment will be described below.
도 24는 본 발명의 일실시예에 따른 탄소나노튜브 기반 전자방출 모듈을 설명하기 위한 도면이다.24 is a view for explaining a carbon nanotube-based electron emission module according to an embodiment of the present invention.
도 24를 참조하면, 엑스선방출 모듈(402)에 장착되는 본 발명의 일실시예에 따른 전자방출 모듈은, 고정 홀더(409)와 홀(hole)(410)을 포함하는 홀더(411), 탄소나노튜브를 칩화시킨 음극부(412), 전자방출을 위한 탄소나노튜브 음극(413), 음극(413)으로부터 나오는 전자를 추출하기 위한 그리드부(414), 및 고정홀더 겸 전원공급라인 모듈(415)를 포함하고, 고정홀더 겸 전원공급라인 모듈(415)에는 그리드부(414) 오른쪽 부분을 고정하고 전원을 공급하기 위한 홀더 겸 전원공급라인(416)과 음극부(412) 오른쪽 부분을 고정하고 전원을 공급하기 위한 홀더 겸 전원공급라인(417)을 포함한다.Referring to FIG. 24, the electron emission module according to the exemplary embodiment of the present invention mounted on the X-ray emission module 402 includes a holder 411 and carbon including a fixed holder 409 and a hole 410. Cathode portion 412 in which nanotubes are chipped, carbon nanotube cathode 413 for electron emission, grid portion 414 for extracting electrons from cathode 413, and fixed holder and power supply line module 415 And a fixed holder and power supply line module 415 to fix the right part of the grid part 414 and to fix the right part of the holder and power supply line 416 and the cathode part 412 to supply power. And a holder and a power supply line 417 for supplying power.
고정 홀더(409)와 홀더 겸 전원공급라인(416)을 이용하여 그리드부(414)의 좌우를 고정할 수 있으며, 이때, 고정 홀더(409)와 홀더 겸 전원공급라인(416)에 소정 홀을 뚫고 여기에 볼팅이 가능한 재질 등 고정 수단을 삽입하여 고정시킬 수 있다. 홀(410)에는 음극부(412)의 왼쪽 날개 부분을 삽입하고, 홀더 겸 전원공급라인(417)에 음극부(412) 오른쪽 부분을 삽입하여, 음극부(412)를 고정시킬 수 있다. 홀더 겸 전원공급라인(416)을 통하여는 그리드부(414)에 전원이 공급될 수 있으며, 홀더 겸 전원공급라인(417)을 통하여는 음극부(412)에 전원이 공급될 수 있다.The left and right sides of the grid portion 414 may be fixed by using the fixed holder 409 and the holder and power supply line 416. In this case, a predetermined hole is provided in the fixed holder 409 and the holder and power supply line 416. It can be fixed by inserting a fixing means such as a material that can be bored and bolted to it. The left wing portion of the cathode portion 412 may be inserted into the hole 410, and the cathode portion 412 may be fixed by inserting the right portion of the cathode portion 412 into the holder and power supply line 417. Power may be supplied to the grid portion 414 through the holder and power supply line 416, and power may be supplied to the cathode portion 412 through the holder and power supply line 417.
이와 같은 전자방출을 위한 음극(413)으로 사용하기 위한 탄소나노튜브 전계방출원을 성장시키기 전에, 가장자리가 날카로운 금속 기판의 모서리 부분을 부드럽게 굴곡 처리하기 위하여 그라인딩할 수 있다.Before growing the carbon nanotube field emission source for use as the cathode 413 for electron emission, it may be ground to smoothly bend the corners of the metal-substrate with sharp edges.
이때, 스크린프린팅 방법(screen printing method)으로 탄소나노튜브의 음극을 제조할 경우에, 전도성 금속 기판의 전면에 스프레이건을 이용하여 탄소나노튜브 파우더를 2내지 3회 반복하여 뿌려 적정량의 탄소나노튜브가 기판 위에 도포되도록 할 수 있다.At this time, when manufacturing the cathode of the carbon nanotubes by the screen printing method (screen printing method), by spraying the carbon nanotube powder 2 to 3 times repeatedly using a spray gun on the front surface of the conductive metal substrate, the appropriate amount of carbon nanotubes May be applied over the substrate.
또는, 탄소나노튜브를 CVD(chemical vapor deposition)방법을 통하여 제작할 때에는, 위와 같이 모서리가 부드럽게 처리된 금속 기판 위에 TiN과 같은 버퍼층(buffer layer)을 도포하고, 그 위에 Ni 혹은 Fe와 같은 촉매 물질(catalyst)를 도포한 후, 아르곤이나 헬륨과 같은 가스로 에칭 작업을 하여 시드 입자(seed particle)를 형성하고, 이 후 C2H2와 같은 탄소나노튜브 소스 가스를 주입하여 탄소나노튜브를 성장시킬 수 있다.Alternatively, when fabricating carbon nanotubes through a chemical vapor deposition (CVD) method, a buffer layer such as TiN is applied onto a metal substrate with smooth edges as described above, and a catalytic material such as Ni or Fe is applied thereto. After the catalyst is applied, the etching may be performed with a gas such as argon or helium to form seed particles, and then carbon nanotubes such as C2H2 may be injected to grow carbon nanotubes.
이때, 전계방출원인 탄소나노튜브를 기판에 성장 시킬 때, 기판의 바깥쪽을 제외한 중심 부분에만 탄소나노튜브가 도포되도록 하여 음극을 제조할 수 있다.At this time, when growing the carbon nanotubes as a field emission source on the substrate, the cathode can be prepared by applying the carbon nanotubes only to the center portion except the outside of the substrate.
이와 같은 탄소나노튜브는 탄소 6개로 이루어진 육각형 모양의 결정 격자가 서로 연결되어 관 모양을 이루고 있으며, 관의 지름이 수∼수십 나노미터에 불과하여 탄소나노튜브라고 일컬어지게 되었다. 이러한 탄소나노튜브는 직경이 나노미터 크기이며 길이는 수십 나노에서 수십 마이크로미터까지 성장이 가능하므로 전자의 전계방출 능력을 결정하는 파라미터인 β값(field enhancement factor)이 1000이상으로 다른 물질들에 비해 크므로 기존의 텅스텐 필라멘트에서 열전자 방출로 전자를 추출하는 방법보다 훨씬 손쉽게 전자를 방출하는 구조를 가지며, 같은 양의 전자를 추출하는데 있어서 양자역학적인 전계방출(field emission)방식을 이용하므로 열전자방출방식에 비하여 상대적으로 적은 전력이 소비된다.Carbon nanotubes such as hexagonal crystal lattice consisting of six carbons are connected to each other to form a tubular shape, and the diameter of the tube is only several tens to tens of nanometers. Since these carbon nanotubes are nanometers in diameter and can grow from tens of nanometers to tens of micrometers in length, the field enhancement factor, which is a parameter that determines the field emission ability of electrons, is more than 1000, compared to other materials. Since it is large, it has a structure that emits electrons much more easily than the method of extracting electrons by hot electron emission from the conventional tungsten filament, and it uses the quantum mechanical field emission method to extract the same amount of electrons. Relatively less power is consumed.
따라서, 이와 같이, 최근 전자방출소자로 각광을 받고 있는 탄소나노튜브를 기반으로 하여 엑스선방출 모듈(402)이 제작되어 치과용 엑스선관 시스템에 장착되어 사용됨으로써, 기존의 텅스텐 필라멘트 타입의 엑스선관 보다 저전력을 소비하며, 고분해능을 가지는 고효율의 치과용 진단 및 구강암 치료 등 인체 진단이나 암치료를 위한 방사선관(엑스선관) 시스템에 활용될 수 있다.Thus, as described above, an X-ray emission module 402 is manufactured based on carbon nanotubes, which has recently been spotlighted as an electron emitting device, and is mounted and used in a dental X-ray tube system. It can be utilized in radiation tube (X-ray tube) system for human diagnosis or cancer treatment, such as low power consumption, high efficiency dental diagnosis and oral cancer treatment with high resolution.
도 25는 본 발명의 일 실시예에 따른 도 24의 전자방출모듈이 장착된 엑스선관 시스템의 구체적인 도면이다.FIG. 25 is a detailed view of an X-ray tube system equipped with the electron emission module of FIG. 24, according to an exemplary embodiment.
도 24의 전자방출모듈을 포함한 엑스선방출 모듈(402)이 도 23과 같이 엑스선관 시스템의 몸체 상부에 장착 결합될 수 있고, 케이블 형태 파이프(418)가 엑스선관 시스템 몸체 내부를 관통하여 진공베큠라인(419)까지 연결되며, 진공베큠라인(419)이 엑스선방출 모듈(402)의 대응되는 홀과 결합될 수 있다. 이에 따라 파이프(418)에 진공 펌프를 연결하여 동작시켜서 엑스선방출 모듈(402) 내부의 공기를 흡입하여 진공 분위기가 유지되도록 할 수 있다.The X-ray emission module 402 including the electron emission module of FIG. 24 may be mounted and coupled to the upper portion of the body of the X-ray tube system as shown in FIG. 23, and the cable-type pipe 418 passes through the inside of the X-ray tube system body to form a vacuum vacuum line. Connected to 419, the vacuum vacuum line 419 may be coupled to a corresponding hole of the X-ray emission module 402. Accordingly, the vacuum pump may be connected to the pipe 418 to operate to suck the air inside the X-ray emission module 402 to maintain the vacuum atmosphere.
이와 같은 진공 분위기에서 전자방출모듈의 음극(413)을 통하여 전자가 방출되면, 그리드부(414)를 통과하여 나오는 전자들은 집속렌즈(431)에서 집속되고 양극부(432)에서 엑스선을 발생시킨다. 즉, 음극(413)과 그리드부(414)에 인가된 전압에 의해 탄소나노튜브에서 전자들이 발생되고, 이와 같이 발생되는 전자들은 집속렌즈(431)에 의해 집속되면서, 엑스선 발생을 위해 장착된 양극부(432)에 충돌과 동시에 엑스선을 발생하게 된다.When electrons are emitted through the cathode 413 of the electron emission module in the vacuum atmosphere, electrons passing through the grid portion 414 are focused by the focusing lens 431 and generate X-rays by the anode portion 432. That is, electrons are generated in the carbon nanotubes by the voltages applied to the cathode 413 and the grid portion 414, and the electrons generated as described above are focused by the focusing lens 431, and are mounted for X-ray generation. The X-rays are generated at the same time as the collision to the unit 432.
엑스선관 시스템 내부의 전자방출모듈은 칩화하여 구성되어 있으며, 진공을 위한 파이프(418)가 연결되어 엑스선관 시스템 내부는 충분한 진공이 형성되며, 전계방출을 통하여 전자발생이 가능하도록 되어 있다. 양극부(432) 구조는 베릴륨(Be) 창에 텅스텐 혹은 몰리브데늄(Molybdenum)과 같은 x-선 발생효율이 우수한 물질을 도포한 투과형 타깃 형태로 할 수 있고, 전자빔이 이와 같은 양극부(432)와 충돌하게 되면, 엑스선은 양극 타깃을 투과하여 외부로 방출되게 된다. 이때, 그리드부(414)와 양극부(432) 사이에 장착된 집속렌즈(431)에 의해 전자빔이 집속되면, 양극부(432)에서는 수십 마이크로미터 이하의 이상적인 점광원 형태의 고분해능 엑스선을 방출할 수 있다. 이와 같은 구조는 엑스선 현미경에도 응용이 가능할 것이다.The electron emission module inside the X-ray tube system is configured by chipping, and a pipe 418 for vacuum is connected to the inside of the X-ray tube system to form a sufficient vacuum, and electrons are generated through field emission. The structure of the anode portion 432 may be in the form of a transmission type target in which a material having excellent x-ray generating efficiency such as tungsten or molybdenum is coated on a beryllium (Be) window, and the electron beam is such an anode portion 432. X-rays are transmitted through the anode target and emitted to the outside. At this time, when the electron beam is focused by the focusing lens 431 mounted between the grid portion 414 and the anode portion 432, the anode portion 432 may emit high resolution X-rays in the form of an ideal point light source of several tens of micrometers or less. Can be. Such a structure may be applicable to X-ray microscopy.
도 26은 본 발명의 일 실시예에 따른 치과용 탄소나노튜브 기반의 방사선 이미징 시스템을 설명하기 위한 도면이다.26 is a view for explaining a dental carbon nanotube-based radiation imaging system according to an embodiment of the present invention.
도 26을 참조하면, 본 발명의 일 실시예에 따른 방사선 이미징 시스템은, 전원공급 장치 및 진공펌프 등을 내장하기 위한 바디(420), 이미징 획득을 위한 컴퓨터 시스템(421), 치과진단용 포터블 방사선관(422), 이미징 디스플레이 모니터(423), 내부 냉각을 위한 팬장치(424), 엑스선관 시스템(422)에 필요한 전원을 공급하기 위한 케이블과 진공분위기 조성을 위한 케이블 형태의 파이프(425), 및 엑스선관 시스템(422)을 정리 및 수납할 수 있는 엑스선관 수납장치(426)를 포함한다. 포터블 방사선관(422)은 도 22 내지 도 24에서 설명한 바와 같은 구조의 엑스선관 시스템과, 엑스선관 시스템(422)으로부터 방출되어 구강 조직을 통과하여 나오는 엑스선을 검출하는 엑스선 디텍터를 포함할 수 있다.Referring to FIG. 26, a radiation imaging system according to an exemplary embodiment of the present invention includes a body 420 for embedding a power supply device and a vacuum pump, a computer system 421 for imaging, and a portable radiation tube for dental diagnosis. 422, imaging display monitor 423, fan unit 424 for internal cooling, cable for supplying power to the X-ray tube system 422 and pipe 425 in the form of a cable for vacuum atmosphere composition, and An x-ray tube accommodating device 426 may be arranged to accommodate and store the tube system 422. The portable radiation tube 422 may include an X-ray tube system having the structure described with reference to FIGS. 22 to 24, and an X-ray detector that detects X-rays emitted from the X-ray tube system 422 and passing through the oral tissue.
컴퓨터 시스템(421)의 소정 응용 프로그램과 함께 포터블 방사선관(422)이 동작될 수 있다. 예를 들어, 컴퓨터 시스템(421)에 탑재된 소정 소프트웨어나 하드웨어는 포터블 방사선관(422)에 필요한 전원이나 진공 정도를 유지시키도록 콘트롤할 수 있으며, 구강내의 진단이 필요한 부분에 도 23과 같은 엑스선관 시스템을 삽입하고 회전축(408)을 이용해 회전하면서 스위치(407)를 조작해 엑스선을 조사하고, 구강 외부에서는 엑스선 디텍터에서 영상을 검출하는 형태로 간편하게 구강 진단 과정이 이루어질 있다. 컴퓨터 시스템(421)의 제어에 따라 엑스선 디텍터에서 검출하는 영상은 소정 메모리에 저장되고 이미징 디스플레이 모니터(423)에 표시될 수 있다.The portable radiation tube 422 can be operated with certain application programs of the computer system 421. For example, predetermined software or hardware mounted on the computer system 421 may be controlled to maintain a power supply or a vacuum degree required for the portable radiation tube 422, and an X, as shown in FIG. Inserting the cannula system and rotating by using the rotary shaft 408 to operate the switch 407 to irradiate X-rays, outside the oral cavity can be easily made oral diagnosis process in the form of detecting the image in the X-ray detector. Under the control of the computer system 421, an image detected by the X-ray detector may be stored in a predetermined memory and displayed on the imaging display monitor 423.
이와 같은 방법으로 활용되는 치과 진단 등을 위한 방사선 이미징 시스템에서는, 기존의 포터블 방사선 시스템에서는 측정하기 어려웠던 구강 내 등 해당 인체의 국소 부분까지도 접근하여 그에 대한 이미지를 획득할 수 있으며, 특히, 치과 의사들이 사용하기 편리한 디자인으로 설계되어 관련 의료 분야에 많은 도움을 줄 수 있을 것으로 기대된다. 또한, 시스템의 규격이 크지 않아 공간 활용성이 높아지기 때문에 보다 실용적이라 할 수 있다. 현재 상용화되어 있는 치과 진단용 엑스선 카메라의 경우, 어느 정도 편리한 면이 있지만 그 무게가 약 2 kg 정도로 사용자가 엑스레이 촬영을 할 때에 흔들림이 존재하여 촬영 영상이 희미해지는 문제점 등으로 인하여 활용성이 낮다. 따라서, 본 발명에서 제안하는 방사선 시스템은 펜 또는 펜슬 타입의 모양으로 무게를 상당량 줄일 수 있으므로 상용화 시 관련 분야에 많은 혜택을 제공할 것으로 기대된다.In the radiation imaging system for dental diagnosis, which is utilized in this way, it is possible to access and acquire images of local parts of the human body, such as the oral cavity, which is difficult to measure in the conventional portable radiation system. It is designed to be easy to use and is expected to help a lot in the medical field. In addition, since the system size is not large, the space utilization is increased, which is more practical. In the case of currently available dental diagnostic X-ray camera, there is some convenience, but its weight is about 2 kg, which is low in utilization due to the problem of blurring due to the blurring of the image when the user takes an X-ray. Therefore, the radiation system proposed in the present invention can significantly reduce the weight in the shape of a pen or pencil type, and therefore, it is expected to provide many benefits to related fields when commercializing.
이와 같이, 본 발명에 따른 엑스선관 시스템에 따르면, 기존의 텅스텐 필라멘트 혹은 탄소나노튜브 기반의 방사선관의 크기 및 중량을 줄이고, 자유롭게 위치할 수 있게 함으로써 사용자 친화적 상품으로 개발할 수 있다.Thus, according to the X-ray tube system according to the present invention, by reducing the size and weight of the existing tungsten filament or carbon nanotube-based radiation tube, it can be developed as a user-friendly product.
또한, 본 발명에 따른 엑스선관 시스템에 따르면, 탄소나노튜브 음극부에서 전자빔의 고른 방출에 따라 관전류의 효율을 높일 수 있으며 음극부의 긴 수명에 따라 탄소나노튜브 기반의 방사선관의 상업화시기를 앞당길 수 있다.In addition, according to the X-ray tube system according to the present invention, the efficiency of the tube current can be increased according to the even emission of the electron beam in the carbon nanotube cathode portion, and the commercialization period of the carbon nanotube-based radiation tube can be advanced according to the long life of the cathode portion. have.
또한, 본 발명에 따른 엑스선관 시스템에 따르면, 전압 및 전류량을 촬영부위에 따라 선택할 수도 있으며, 매뉴얼 형태로 조절도 가능하게 하므로 피사체의 모양에 따른 제약을 상당부분 해소 할 수 있다.In addition, according to the X-ray tube system according to the present invention, the voltage and current amount can be selected according to the photographing site, and also can be adjusted in the form of a manual, so that the restriction according to the shape of the subject can be largely eliminated.
또한, 본 발명에 따른 엑스선관 시스템에 따르면, 마이크로급 이하의 미세결함 계측 및 검사에 대한 종래 기술의 한계성을 극복하고 기존의 수입에만 의존하던 엑스선 광원을 자국의 고효율의 신기술로 개발하여 보다 저렴한 가격으로 전자의료기기에 적용하도록 공급할 수 있어 경제적, 산업적 이익을 창출할 수 있고, 의료진단 관련 산업에의 이용성을 증대시킬 수 있다. 또한, 근접치료장치(brachytherapy)에 적용하여 방사선 치료를 요하는 구강암 환자에 사용함으로써, 기존에 방사선 직접 조사로 우려되었던 정상 조직의 방사선 피폭의 우려를 해소할 수도 있다.In addition, according to the X-ray tube system according to the present invention, by overcoming the limitations of the prior art for the measurement and inspection of micro-defects below the micro-class and developing an X-ray light source, which was dependent only on existing imports, with new high-efficiency new technology in its own country, the lower price As a result, it can be supplied for application to electronic medical devices, thereby creating economic and industrial benefits, and increasing the usability of the medical diagnosis-related industries. In addition, by applying to brachytherapy to oral cancer patients that require radiation therapy, it is possible to alleviate the concern of radiation exposure of normal tissues that were previously concerned with direct radiation.
전자 방출원의 전자 집속 구조:Electron Focusing Structure of Electron Emission Source:
도 27은 본 발명의 일실시예에 따른 피어스(pierce) 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이다.FIG. 27 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to an embodiment of the present invention.
도 27을 참조하면, 본 발명의 일실시예에 따른 엑스선관은, 하우징(housing)(511), 스페이서(spacer)(512), CNT(Carbon Nano-Tube) 기판(513), 그리드 전극 또는 그리드(514), 양극부(518), 및 전자 집속 모듈을 포함한다. 전자 집속 모듈은 절연용 유전체(515), 포커스 전극(516), 및 빔 가이드용 유전체(517)를 포함할 수 있다.Referring to FIG. 27, an X-ray tube according to an exemplary embodiment may include a housing 511, a spacer 512, a carbon nano-tube (CNT) substrate 513, a grid electrode, or a grid. 514, an anode portion 518, and an electron focusing module. The electron focus module may include an insulating dielectric 515, a focus electrode 516, and a beam guide dielectric 517.
CNT 기판(513) 상에는 전자방출을 위한 탄소나노튜브 음극이 형성된다. CNT 기판(513)을 위한 금속 기판의 모서리 부분은 부드럽게 굴곡 처리하기 위하여 그라인딩될 수 있다.A carbon nanotube cathode for emitting electrons is formed on the CNT substrate 513. The edge portion of the metal substrate for the CNT substrate 513 may be ground for smooth bending.
이때, 스크린프린팅 방법(screen printing method)으로 탄소나노튜브의 음극을 제조할 경우에, 전도성 금속 기판의 전면에 스프레이건을 이용하여 탄소나노튜브 파우더를 2내지 3회 반복하여 뿌려 적정량의 탄소나노튜브가 기판위에 도포되도록 할 수 있다.At this time, when manufacturing the cathode of the carbon nanotubes by the screen printing method (screen printing method), by spraying the carbon nanotube powder 2 to 3 times repeatedly using a spray gun on the front surface of the conductive metal substrate, the appropriate amount of carbon nanotubes Can be applied onto the substrate.
또는, 탄소나노튜브를 CVD(chemical vapor deposition)방법을 통하여 제작할 때에는, 위와 같이 모서리가 부드럽게 처리된 금속 기판 위에 TiN과 같은 버퍼층(buffer layer)을 도포하고, 그 위에Ni 혹은 Fe와 같은 촉매 물질(catalyst)를 도포한 후, 아르곤이나 헬륨과 같은 가스로 에칭 작업을 하여 시드 입자(seed particle)를 형성하고, 이 후 C2H2와 같은 탄소나노튜브 소스 가스를 주입하여 탄소나노튜브를 성장시킬 수 있다.Alternatively, when fabricating carbon nanotubes through a chemical vapor deposition (CVD) method, a buffer layer such as TiN is applied onto a metal substrate with smooth edges as described above, and a catalytic material such as Ni or Fe is applied thereto. After the catalyst is applied, the etching may be performed with a gas such as argon or helium to form seed particles, and then carbon nanotubes such as C2H2 may be injected to grow carbon nanotubes.
이때, 탄소나노튜브를 기판에 성장 시킬 때, 기판의 바깥쪽을 제외한 중심 부분에만 탄소나노튜브가 도포되도록 하여 음극을 제조할 수 있다.In this case, when the carbon nanotubes are grown on the substrate, the cathode may be prepared by applying the carbon nanotubes only to the center portion except for the outside of the substrate.
이와 같은 탄소나노튜브는 탄소 6개로 이루어진 육각형 모양의 결정 격자가 서로 연결되어 관 모양을 이루고 있으며, 관의 지름이 수∼수십 나노미터에 불과하여 탄소나노튜브라고 일컬어지게 되었다. 이러한 탄소나노튜브는 직경이 나노미터 크기이며 길이는 수십 나노에서 수십 마이크로미터까지 성장이 가능하므로 전자의 전계방출 능력을 결정하는 파라미터인 β값(field enhancement factor)이 1000이상으로 다른 물질들에 비해 크므로 기존의 텅스텐 필라멘트에서 열전자 방출로 전자를 추출하는 방법보다 훨씬 손쉽게 전자를 방출하는 구조를 가지며, 같은 양의 전자를 추출하는데 있어서 양자역학적인 전계방출(field emission)방식을 이용하므로 열전자방출방식에 비하여 상대적으로 적은 전력이 소비된다.Carbon nanotubes such as hexagonal crystal lattice consisting of six carbons are connected to each other to form a tubular shape, and the diameter of the tube is only several tens to tens of nanometers. Since these carbon nanotubes are nanometers in diameter and can grow from tens of nanometers to tens of micrometers in length, the field enhancement factor, which is a parameter that determines the field emission ability of electrons, is more than 1000, compared to other materials. Since it is large, it has a structure that emits electrons much more easily than the method of extracting electrons by hot electron emission from the conventional tungsten filament, and it uses the quantum mechanical field emission method to extract the same amount of electrons. Relatively less power is consumed.
한편, 하우징(511)에 스페이서(512)가 장착되고, 스페이서(512)는 원형 등의 형태로 구멍 또는 함몰 부분을 가지며, 이와 같은 구멍 또는 함몰 부분에 일정 높이 차이를 가지도록 CNT 기판(513)을 결합시킬 수 있다.On the other hand, the spacer 512 is mounted to the housing 511, the spacer 512 has a hole or recessed portion in the form of a circular shape, and the like CNT substrate 513 to have a predetermined height difference in the hole or recessed portion. Can be combined.
그리드(514)는 스페이서(512)와 결합되고 위와 같은 CNT 기판(513)과 스페이서(512) 사이의 단차(높이 차이)에 의하여 CNT 기판(513) 상의 음극과 그리드(514) 사이에는 약간의 공간이 형성될 수 있다.The grid 514 is coupled with the spacer 512 and there is some space between the cathode and the grid 514 on the CNT substrate 513 by the step (height difference) between the CNT substrate 513 and the spacer 512 as described above. This can be formed.
순차로 결합되고 내부에 관통 구멍이 형성된 절연용 유전체(515), 포커스 전극(516), 및 빔 가이드용 유전체(517)로 이루어지는 전자 집속 모듈은, 위와 같이 그리드(514)가 결합된 스페이서(512) 위에 결합될 수 있다.The electron focusing module including the insulating dielectric 515, the focus electrode 516, and the beam guide dielectric 517, which are sequentially coupled and have a through hole therein, has a spacer 512 to which the grid 514 is coupled as described above. ) Can be combined.
이에 따라 CNT 기판(513)과 그리드(514) 사이에 적절한 전압, 예를 들어, CNT 기판(513)은 접지하고, 그리드(514)에는 양의 전압을 인가함으로써, CNT 기판(513)과 그리드(514) 사이의 전압차에 의하여 CNT 기판(513) 상의 탄소나노튜브 음극으로부터 전자빔을 발생시킬 수 있고, 이와 같이 발생된 전자빔은 위와 같은 구조의 전자 집속 모듈에 의하여 집속되어 양극부(518)로 진행한다. 이와 같이 집속되어 방출되는 전자빔은 양극부(518)에서 수용되고, 양극부(518)의 금속 경사면에 충돌된 전자빔은 고 에너지를 금속에 가함으로써 엑스선을 발생시킬 수 있다.Accordingly, an appropriate voltage is applied between the CNT substrate 513 and the grid 514, for example, the CNT substrate 513 is grounded, and a positive voltage is applied to the grid 514 so that the CNT substrate 513 and the grid ( The electron beam may be generated from the carbon nanotube cathode on the CNT substrate 513 by the voltage difference between the 514 and the electron beam is collected by the electron focusing module having the structure as described above and proceeds to the anode portion 518. do. The electron beam focused and emitted as described above is received by the anode portion 518, and the electron beam collided with the metal inclined surface of the anode portion 518 may generate X-rays by applying high energy to the metal.
포커스 전극(516)의 관통 구멍은, 도 27과 같이 한쪽 끝(절연용 유전체(515)와 결합되는 쪽)의 반경이 반대쪽 끝(빔 가이드용 유전체(517)와 결합되는 쪽)의 반경보다 작게 원형으로 형성될 수 있다. 해당 결합되는 부분에서 빔 가이드용 유전체(517)의 반경과 포커스 전극(516)의 관통 구멍의 반경은 일치하며, 또한 해당 결합되는 부분에서 절연용 유전체(515)와 포커스 전극(516)의 관통 구멍의 반경은 일치한다.As shown in FIG. 27, the through hole of the focus electrode 516 has a radius smaller than the radius of one end (the side that is coupled with the insulating dielectric 515) than the other end (the side that is coupled with the beam guide dielectric 517). It may be formed in a circle. The radius of the beam guide dielectric 517 and the through hole of the focus electrode 516 coincide with each other at the corresponding portion, and the through hole of the insulating dielectric 515 and the focus electrode 516 at the corresponding portion is combined. The radius of the coincidence.
이와 같은 구조에 따라 도 27과 같은 구조의 음극 중심선상(R=0, Z=0)으로부터 상부에서 전자빔의 포커싱 형태에 대한 추정 결과를 도시한 도 32와 같이, 적절히 전압이 인가된 포커스 전극(516)쪽으로 전자의 흐름이 이동되었다가 빔 가이드용 유전체(517)의 끝(Z=30) 쪽에서 전자빔이 포커싱되어 잘 집속되고 있음을 알 수 있다.According to this structure, as shown in FIG. 32, which shows an estimation result of the focusing form of the electron beam from the cathode center line (R = 0, Z = 0) of the structure as shown in FIG. It can be seen that the flow of electrons is moved toward 516 and the electron beam is focused and focused at the end (Z = 30) of the beam guide dielectric 517.
이와 같이, 본 발명에서는 탄소나노튜브 기반 엑스선관 제작을 위한 전자 집속 모듈을 기존에는 볼수 없었던 방식으로 고집속 형태로 제작할 수 있으며, 기존의 일자 형태의 포커스 전극에 비해서 피어스 타입의 전극을 이용할 경우 전자 집속 능력을 상당히 개선할 수 있다. 이때, 포커스 전극의 안쪽 벽면으로 손실되는 전자의 양도 줄어들며, 각 유전체의 유전율에 따라서 전자의 집속도를 개선할 수 있다. 또한, 탄소나노튜브 음극으로부터의 전자빔의 고른 방출을 유도하여 관전류의 효율을 높일 수 있고 음극부의 수명에 관계없이 탄소나노튜브 기반의 방사선관의 상업화 시기를 앞당길 수 있다.As such, in the present invention, the electron focusing module for manufacturing a carbon nanotube-based X-ray tube can be manufactured in a highly focused manner in a manner that has not been seen previously, and when using a pierce type electrode as compared to a conventional date type focus electrode, The ability to focus can be significantly improved. In this case, the amount of electrons lost to the inner wall of the focus electrode is also reduced, and the electron collecting speed can be improved according to the dielectric constant of each dielectric material. In addition, it is possible to increase the efficiency of the tube current by inducing the even emission of the electron beam from the carbon nanotube cathode and to accelerate the commercialization time of the carbon nanotube-based radiation tube regardless of the lifetime of the cathode portion.
도 28은 본 발명의 다른 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이다.FIG. 28 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
도 28을 참조하면, 본 발명의 다른 실시예에 따른 엑스선관은, 하우징(521), 스페이서(522), CNT 기판(523), 그리드(524), 양극부(530), 및 전자 집속 모듈을 포함한다. 여기서, 전자 집속 모듈은 절연용 유전체(525), 제1포커스 전극(526), 절연용 유전체(527), 제2포커스 전극(528), 및 빔 가이드용 유전체(529)를 포함할 수 있다.Referring to FIG. 28, an X-ray tube according to another embodiment of the present invention may include a housing 521, a spacer 522, a CNT substrate 523, a grid 524, an anode portion 530, and an electron focusing module. Include. Herein, the electron focusing module may include an insulating dielectric 525, a first focus electrode 526, an insulating dielectric 527, a second focus electrode 528, and a beam guide dielectric 529.
도 28에서, 하우징(521), 스페이서(522), CNT 기판(523), 그리드(524), 및 양극부(530)는, 도 27의 하우징(511), 스페이서(512), CNT기판(513), 그리드(514), 및 양극부(518)와 유사하게 결합되어 동작한다. 다만, 전자 집속 모듈의 절연용 유전체(525)와 빔 가이드용 유전체(529) 사이에 결합된 모든 포커스 전극(526, 528)과 유전체(527)의 관통 구멍은, 한쪽 끝의 반경이 반대쪽 끝의 반경보다 크게 원형으로 형성되며, 결합되는 해당 포커스 전극과 유전체 사이의 결합 부위의 반경이 서로 일치하도록 연이어 결합되어 있다. 이와 같이 전자 집속 모듈이 멀티 포커스 전극을 포함하여 각 포커스의 전압과 절연용 유전체의 유전율의 조합으로 집속 능력을 더욱 개선할 수 있도록 하였다.In FIG. 28, the housing 521, the spacer 522, the CNT substrate 523, the grid 524, and the anode portion 530 include the housing 511, the spacer 512, and the CNT substrate 513 of FIG. 27. ), Grid 514, and anode portion 518 operate similarly. However, the through holes of all the focus electrodes 526 and 528 and the dielectric 527 coupled between the insulating dielectric 525 and the beam guide dielectric 529 of the electron focusing module have opposite radii at one end. It is formed in a circular shape larger than the radius, and is successively coupled so that the radii of the coupling sites between the corresponding focus electrode and the dielectric to be joined coincide with each other. As described above, the electron focusing module may further improve the focusing ability by combining the voltage of each focus and the dielectric constant of the insulating dielectric including the multi focus electrode.
도 29는 본 발명의 또 다른 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이다.29 is a view illustrating a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
도 29를 참조하면, 본 발명의 또 다른 실시예에 따른 엑스선관은, 하우징(531), 스페이서(532), CNT 기판(533), 그리드(534), 양극부(538), 및 전자 집속 모듈을 포함한다. 여기서, 전자 집속 모듈은 절연용 유전체(535), 포커스 전극(536), 및 빔 가이드용 유전체(537)를 포함할 수 있다.Referring to FIG. 29, an X-ray tube according to another embodiment of the present invention may include a housing 531, a spacer 532, a CNT substrate 533, a grid 534, an anode part 538, and an electron focusing module. It includes. Here, the electron focusing module may include an insulating dielectric 535, a focus electrode 536, and a beam guide dielectric 537.
도 29의 구조는 도 27과 유사하다, 다만, 포커스 전극(536)의 한쪽 끝과 반대쪽 끝의 반경 차이가 도 27의 포커스 전극(516)에서의 그 차이와 다르며, 그 관통 구멍의 깊이에서도 서로 차이가 있다. 즉, 이와 같이, 포커스 전극(536)의 관통 구멍의 깊이를 조절하거나 포커스 전극(536)의 한쪽 끝과 반대쪽 끝의 반경 차이를 다르게 하기, 또는 관통 구멍의 경사 각도를 다르게 함으로써 양극부(538) 쪽으로 방출되는 전자빔의 초점 거리를 조절할 수 있도록 한 것이다.The structure of FIG. 29 is similar to that of FIG. 27, except that the radius difference between one end and the other end of the focus electrode 536 is different from that of the focus electrode 516 of FIG. 27, and the depth of the through hole is different from each other. There is a difference. That is, as described above, the anode part 538 may be adjusted by adjusting the depth of the through hole of the focus electrode 536, by varying the radius difference between one end and the opposite end of the focus electrode 536, or by changing the inclination angle of the through hole. The focal length of the electron beam emitted toward the camera can be adjusted.
도 30은 본 발명의 또 다른 실시예에 따른 피어스 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이다.30 is a view for explaining a carbon nanotube-based X-ray tube employing a pierce type electron focusing module according to another embodiment of the present invention.
도 30을 참조하면, 본 발명의 또 다른 실시예에 따른 엑스선관은, 하우징(541), 스페이서(542), CNT 기판(543), 그리드(544), 양극부(554), 및 전자 집속 모듈을 포함한다. 여기서, 전자 집속 모듈은 절연용 유전체(545), 제1포커스 전극(546), 절연용 유전체(550), 제2포커스 전극(547), 절연용 유전체(551), 제3포커스 전극(548), 절연용 유전체(552), 제4포커스 전극(549), 및 빔 가이드용 유전체(553)를 포함할 수 있다.Referring to FIG. 30, an X-ray tube according to another embodiment of the present invention may include a housing 541, a spacer 542, a CNT substrate 543, a grid 544, an anode part 554, and an electron focusing module. It includes. Here, the electron focusing module includes an insulating dielectric 545, a first focus electrode 546, an insulating dielectric 550, a second focus electrode 547, an insulating dielectric 551, and a third focus electrode 548. , An insulating dielectric 552, a fourth focus electrode 549, and a beam guide dielectric 553.
도 28에서, 하우징(541), 스페이서(542), CNT 기판(543), 그리드(544), 양극부(554)는, 도 27의 하우징(511), 스페이서(512), CNT기판(513), 그리드(514), 및 양극부(518)와 유사하게 결합되어 동작한다. 다만, 전자 집속 모듈의 절연용 유전체(545)와 빔 가이드용 유전체(553) 사이에는, 도 28의 구조를 확장하여 더 많은 포커스 전극과 포커스 전극 사이에 절연용 유전체를 결합한 구조이다. 즉, 제1포커스 전극(546)과 제4포커스 전극(549) 사이에 절연용 유전체를 한번만 사용한 구조는 도 28의 구조와 동일하지만, 더 나아가 제1포커스 전극(546)과 제4포커스 전극(549) 사이에 결합된 절연용 유전체(예를 들어, 550) 이외에도, 적어도 한번 이상의 다른 포커스 전극과 다른 유전체의 쌍(예를 들어, 547과 551의 결합 쌍, 또는 548과 552의 결합 쌍)이 추가적으로 결합되어 있다.In FIG. 28, the housing 541, the spacer 542, the CNT substrate 543, the grid 544, and the anode portion 554 include the housing 511, the spacer 512, and the CNT substrate 513 of FIG. 27. And operate similarly to the grid 514 and the anode portion 518. However, between the insulating dielectric 545 and the beam guide dielectric 553 of the electron focusing module, the structure of FIG. 28 is expanded to combine the insulating dielectric between more focus electrodes and the focus electrodes. That is, the structure in which the insulating dielectric is used only once between the first focusing electrode 546 and the fourth focusing electrode 549 is the same as that of FIG. 28, but further, the first focusing electrode 546 and the fourth focusing electrode ( In addition to the insulating dielectric (e.g., 550) coupled between 549, at least one other focus electrode and a pair of other dielectrics (e.g., a pair of pairs of 547 and 551, or a pair of pairs of 548 and 552) Additionally coupled.
여기서, 절연용 유전체(545)와 빔 가이드용 유전체(553) 사이에 결합된 모든 포커스 전극(546, 547, 548, 549)과 모든 유전체(550, 551, 552)의 관통 구멍은, 한쪽 끝의 반경이 반대쪽 끝의 반경보다 작게 원형으로 형성되며, 결합되는 포커스 전극과 유전체 사이의 결합 부위의 반경이 서로 일치하도록 연이어 결합되어 있다.Here, the through-holes of all the focus electrodes 546, 547, 548, 549 and all the dielectrics 550, 551, 552 coupled between the insulating dielectric 545 and the beam guide dielectric 553 have one end. The radius is formed in a circular shape smaller than the radius of the opposite end, and are successively coupled so that the radiuses of the coupling sites between the focus electrode and the dielectric to be joined coincide with each other.
양극부(554)는 도 27 내지 도 29와 같이 단순한 경사면이 있는 금속 재질을 사용할 수도 있지만, 도 30과 같이, 전자빔의 진행 방향으로부터 전자빔과 직각 방향으로 관통하는 L자 또는 역 L자 형 구멍을 가지고, 전자빔의 진행 방향으로 들어와 구멍 속의 경사면에서 충돌하는 전자빔의 에너지에 의하여 발생된 엑스선이 위와 같은 구멍을 통하여 전자빔의 직각 방향으로 방출되도록 할 수도 있다.The anode portion 554 may use a metal material having a simple inclined surface as shown in FIGS. 27 to 29. However, as shown in FIG. In addition, the X-rays generated by the energy of the electron beam that enters the traveling direction of the electron beam and collides on the inclined plane in the hole may be emitted in the direction perpendicular to the electron beam through the above hole.
여기서, 도 28은 2개의 포커스 전극(526, 528)을 적용한 구조를 설명하였고, 도 29는 4개의 포커스 전극(546, 547, 548, 549)을 적용하는 구조를 설명하였으나, 이에 한정되지 않으며, 예를 들어, 절연용 유전체(545)와 빔 가이드용 유전체(553) 사이에는 도 27 또는 도 29와 같이 한 개의 포커스 전극이 사용될 수도 있으며, 도시하지는 않았지만, 3,5,6,7,…개의 포커스 전극이 사용될 수도 있다. 이때 포커스 전극들 사이에는 해당 절연용 유전체가 결합될 수 있다.28 illustrates a structure in which two focus electrodes 526 and 528 are applied, and FIG. 29 illustrates a structure in which four focus electrodes 546, 547, 548 and 549 are applied, but the present invention is not limited thereto. For example, a single focus electrode may be used between the insulating dielectric 545 and the beam guide dielectric 553 as shown in FIG. 27 or 29. Although not shown, 3, 5, 6, 7,... Two focus electrodes may be used. In this case, an insulating dielectric may be coupled between the focus electrodes.
도 31은 본 발명의 또 다른 실시예에 따른 포커싱 컵 타입의 전자 집속 모듈을 채용한 탄소나노튜브 기반 엑스선관을 설명하기 위한 도면이다.FIG. 31 is a diagram illustrating a carbon nanotube-based X-ray tube employing a focusing cup type electron focusing module according to another embodiment of the present invention.
도 31을 참조하면, 본 발명의 또 다른 실시예에 따른 포커싱 컵 타입의 엑스선관은, 하우징(561), 컵 타입 포커스 전극(562), CNT 기판(563), 그리드(564), 및 양극부(565)를 포함한다.Referring to FIG. 31, a focusing cup type X-ray tube according to another embodiment of the present invention may include a housing 561, a cup type focus electrode 562, a CNT substrate 563, a grid 564, and an anode portion. 565.
컵 타입 포커스 전극(562)은 속이 빈 반구 형체로서 일정 두께를 가지며, 중심 부근에 구멍을 가진다. 컵 타입 포커스 전극(562)의 구멍을 통하여 하우징(561)이 체결될 수 있고, 하우징(561)의 체결 방향의 끝면에 CNT 기판(563)이 결합된다. CNT 기판(563)은 컵 타입 포커스 전극(562)과 전기적으로 연결되도록 결합되며, 그리드(564)는CNT 기판(563) 상의 탄소나노튜브 음극과 일정 거리 이격되어 설치된다.The cup type focus electrode 562 is a hollow hemispherical body having a certain thickness and having a hole near the center. The housing 561 may be fastened through the hole of the cup type focus electrode 562, and the CNT substrate 563 may be coupled to an end surface of the fastening direction of the housing 561. The CNT substrate 563 is coupled to be electrically connected to the cup type focus electrode 562, and the grid 564 is spaced apart from the carbon nanotube cathode on the CNT substrate 563 by a predetermined distance.
이에 따라, CNT 기판(563)과 그리드(564) 사이에 적절한 전압, 예를 들어, CNT 기판(563)은 접지하고, 그리드(564)에는 양의 전압을 인가함으로써, CNT 기판(563)과 그리드(564) 사이의 전압차에 의하여 CNT 기판(563) 상의 탄소나노튜브 음극으로부터 전자빔을 발생시킬 수 있고, 이와 같이 발생된 전자빔은 위와 같은 구조의 컵 타입 포커스 전극(562)에 의하여 집속되어 양극부(565)로 진행한다. 이와 같이 집속되어 방출되는 전자빔은 양극부(565)에서 수용되고, 양극부(565)의 금속 경사면에 충돌된 전자빔은 고 에너지를 금속에 가함으로써 엑스선을 발생시킬 수 있다.Accordingly, a suitable voltage is applied between the CNT substrate 563 and the grid 564, for example, the CNT substrate 563 is grounded, and a positive voltage is applied to the grid 564, thereby providing the CNT substrate 563 and the grid 564. The electron beam may be generated from the carbon nanotube cathode on the CNT substrate 563 by the voltage difference between the 564, and the electron beam may be focused by the cup type focus electrode 562 having the above structure. Proceed to 565. The electron beam focused and emitted in this manner is accommodated in the anode portion 565, and the electron beam impinged on the metal inclined surface of the anode portion 565 may generate X-rays by applying high energy to the metal.
여기서도, 양극부(565)는 도 27내지 도 29와 같은 단순 경사면 형태일 수도 있고, 또는 도 30과 같은 L자 또는 역 L자 형태의 구멍을 가지는 형태일 수도 있다.Here, the anode part 565 may be in the form of a simple inclined surface as shown in FIGS. 27 to 29, or may have a shape having an L-shaped or inverse L-shaped hole as illustrated in FIG. 30.
이와 같은 도 27 내지 도 31과 같은 구조의 본 발명의 실시예들에 따른 엑스선관은, 엑스선관의 크기를 줄여서 자유롭게 위치할 수 있게 함으로써 사용자 친화적 상품으로 개발 가능한 구조이다. 이는 치과진단용이나 근접치료기(brachytherapy)와 같이 전자빔의 고집속에 의한 방사선 치료나 비파괴 검사와 같은 산업 분야의 방사선 발생을 위한 내부 모듈로 사용되어 전압 및 전류량을 촬영부위에 따라 선택할 수 있도록 실현 가능하고 매뉴얼 형태로 조절도 가능하게 하여 피사체의 모양에 따른 제약 없이 사용될 수 있도록 개발이 용이하게 하였다.The X-ray tube according to the embodiments of the present invention having the structure as shown in FIGS. 27 to 31 is a structure that can be developed as a user-friendly product by allowing the size of the X-ray tube to be freely positioned. It can be used as an internal module for radiation generation in industrial fields such as radiation therapy or non-destructive testing by high concentration of electron beam, such as dental diagnosis or brachytherapy, so that the amount of voltage and current can be selected according to the imaging area. It is also easy to develop so that it can be used without restrictions according to the shape of the subject by adjusting the shape.
이와 같이, 본 발명에 따른 엑스선 발생 장치에 따르면, 탄소나노튜브 기반 엑스선관 제작을 위한 전자 집속 모듈을 기존에는 볼수 없었던 방식으로 고집속 형태로 제작할 수 있으며, 기존의 일자 형태의 포커스 전극에 비해서 피어스 타입의 전극을 이용할 경우 전자 집속 능력이 상당히 개선될 수 있다. 이때, 포커스 전극의 안쪽 벽면으로 손실되는 전자의 양도 줄어들며, 각 유전체의 유전율에 따라서 전자의 집속도를 개선할 수 있다.As described above, according to the X-ray generator according to the present invention, the electron focusing module for manufacturing a carbon nanotube-based X-ray tube can be manufactured in a highly focused manner in a manner that has not been seen before, and pierced in comparison with a conventional date type focus electrode. The use of this type of electrode can significantly improve the electron focusing capability. In this case, the amount of electrons lost to the inner wall of the focus electrode is also reduced, and the electron collecting speed can be improved according to the dielectric constant of each dielectric material.
또한, 본 발명에 따른 엑스선관에 따르면, 멀티 포커스 전극을 이용하여 각 포커스의 전압과 절연용 유전체의 유전율의 조합으로 집속 능력을 더욱 개선할 수 있다.In addition, according to the X-ray tube according to the present invention, the focusing ability may be further improved by using a combination of the voltage of each focus and the dielectric constant of the insulating dielectric using a multi focus electrode.
또한, 본 발명에 따른 엑스선관에 따르면, 탄소나노튜브 음극부로부터의 전자빔의 고른 방출을 유도하여 관전류의 효율을 높일 수 있고 음극부의 수명에 관계없이 탄소나노튜브 기반의 방사선관의 상업화 시기를 앞당길 수 있다.In addition, according to the X-ray tube according to the present invention, it is possible to increase the efficiency of the tube current by inducing the even emission of the electron beam from the carbon nanotube cathode portion and to accelerate the commercialization time of the carbon nanotube-based radiation tube regardless of the lifetime of the cathode portion Can be.
그리고, 본 발명에 따른 엑스선관에 따르면, 엑스선관의 크기를 줄여서 자유롭게 위치할 수 있게 함으로써 사용자 친화적 상품으로 개발 가능한 구조를 가지며, 치과진단용이나 근접치료기(brachytherapy)와 같이 전자빔의 고집속에 의한 방사선 치료나 비파괴 검사와 같은 산업 분야의 방사선 발생을 위한 내부 모듈로 사용되어 전압 및 전류량을 촬영부위에 따라 선택할 수 있도록 실현 가능하고 매뉴얼 형태로 조절도 가능하게 하여 피사체의 모양에 따른 제약을 해소 할 수 있다.In addition, according to the X-ray tube according to the present invention, by reducing the size of the X-ray tube to be freely positioned to have a structure that can be developed as a user-friendly product, radiation treatment by high focusing of the electron beam, such as for dental diagnostics or brachytherapy It can be used as an internal module for radiation generation in industrial fields such as non-destructive inspection, so that the voltage and current can be selected according to the photographing part, and it can be adjusted in the form of manual so that restrictions on the shape of the subject can be removed. .
본 발명에 의한, 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 엑스선관 시스템은 본 발명의 기술적 사상의 범위 내에서 다양한 형태로 변형, 응용 가능하며 상기 실시 예에 한정되지 않는다. 또한, 상기 실시 예와 도면은 발명의 내용을 상세히 설명하기 위한 목적일 뿐, 발명의 기술적 사상의 범위를 한정하고자 하는 목적은 아니며, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형, 및 변경이 가능하므로 상기 실시 예 및 첨부된 도면에 한정되는 것은 아님은 물론이며, 후술하는 청구범위뿐만이 아니라 청구범위와 균등 범위를 포함하여 판단되어야 한다.According to the present invention, an X-ray tube using a nano-structure material and an X-ray tube system using the same may be modified and applied in various forms within the scope of the technical idea of the present invention, and the present invention is not limited to the above-described embodiment. In addition, the embodiments and drawings are merely for the purpose of describing the contents of the invention in detail, and are not intended to limit the scope of the technical idea of the invention, the present invention described above is common knowledge in the technical field to which the present invention belongs As those skilled in the art may have various substitutions, modifications, and changes without departing from the technical spirit of the present invention, it is not limited to the embodiments and the accompanying drawings. Judgment should be made including scope and equivalence.

Claims (55)

  1. 나노-구조 물질을 이용하여 엑스선을 방출하는 엑스선방출 모듈을 포함하고,X-ray emission module for emitting X-rays using a nano-structure material,
    상기 엑스선방출 모듈이 몸체로부터 분리되는 구조를 포함하는 것을 특징으로 하는 엑스선관 시스템.X-ray tube system comprising a structure in which the X-ray emission module is separated from the body.
  2. 제1 항에 있어서,According to claim 1,
    상기 엑스선방출 모듈이,The X-ray emission module,
    상기 몸체에 형성한 회전축을 통하여 회전되는 구조를 포함하는 것을 특징으로 하는 엑스선관 시스템.X-ray tube system comprising a structure that is rotated through a rotating shaft formed in the body.
  3. 제1 항에 있어서,According to claim 1,
    상기 엑스선관 시스템은,The X-ray tube system,
    펜 또는 펜슬 타입으로 제작되고,Is made of pen or pencil type,
    상기 엑스선방출 모듈이, 구강 내외부를 포함하는 인체 내외부의 국소 부위까지 근접하여 엑스선을 방출하여 치과 진단 및 구강암 치료를 포함한 인체 진단 및 암치료에 이용되는 것을 특징으로 하는 엑스선관 시스템.The X-ray emission module is X-ray tube system, characterized in that the X-ray tube is used in the human diagnosis and cancer treatment including dental diagnosis and oral cancer by emitting X-rays in close proximity to the local area of the inside and outside of the human body, including oral and external.
  4. 제1 항에 있어서,According to claim 1,
    상기 엑스선관 시스템은,The X-ray tube system,
    상기 엑스선방출 모듈을 이용하여 정상 조직 이외의 암세포에만 방사선을 투영하는 근접치료장치로 이용되는 것을 특징으로 하는 엑스선관 시스템.X-ray tube system, characterized in that used as a proximity therapy device to project radiation only to cancer cells other than normal tissue by using the X-ray emission module.
  5. 제1 항에 있어서,According to claim 1,
    상기 나노-구조 물질은,The nano-structured material,
    탄소 나노튜브(CNT), 탄소 나노섬유(CNF), 나노와이어(nano-wire), 그래핀(graphene) 및 나노다이아몬드(nano-diamond) 중 어느 하나인 것을 특징으로 하는 엑스선관 시스템.X-ray tube system characterized in that any one of carbon nanotubes (CNT), carbon nanofibers (CNF), nano-wire (nano-wire), graphene and nano-diamond (nano-diamond).
  6. 제1 항에 있어서,According to claim 1,
    상기 엑스선방출 모듈은,The X-ray emission module,
    고정 수단에 의하여 고정된 음극과 그리드부를 포함하는 전자방출모듈을 포함하고, It includes an electron-emitting module comprising a cathode and a grid portion fixed by the fixing means,
    진공 상태에서 상기 음극으로부터의 전자빔이 상기 그리드부에서 추출되어 나오는 것을 특징으로 하는 엑스선관 시스템.And the electron beam from the cathode is extracted from the grid portion in a vacuum state.
  7. 제1 항에 있어서,According to claim 1,
    상기 엑스선방출 모듈의 홀에 결합된 진공베큠라인에 케이블 형태의 파이프를 연결하고, 상기 파이프를 통하여 상기 엑스선방출 모듈 내부의 공기를 흡입하여 상기 진공 상태가 유지되는 것을 특징으로 하는 엑스선관 시스템.An X-ray tube system comprising: connecting a pipe in the form of a cable to a vacuum vacuum line coupled to a hole of the X-ray emission module, and sucking the air inside the X-ray emission module through the pipe to maintain the vacuum state.
  8. 제1 항에 있어서,According to claim 1,
    상기 엑스선방출 모듈은,The X-ray emission module,
    상기 나노구조물질 기반의 전자방출모듈;An electron emission module based on the nanostructure material;
    상기 전자방출모듈로부터 나오는 전자빔을 집속하는 집속렌즈; 및A focusing lens for focusing the electron beam emitted from the electron emission module; And
    상기 집속렌즈로부터의 전자빔에 의하여 엑스선을 방출하는 양극부를 포함하는 것을 특징으로 하는 엑스선관 시스템.And an anode portion for emitting X-rays by the electron beam from the focusing lens.
  9. 제8 항에 있어서,The method of claim 8,
    상기 양극부는,The anode portion,
    베릴륨(Be) 창에 텅스텐, 또는 몰리브데늄(Molybdenum)을 도포한 투과형 타깃 형태를 포함하는 것을 특징으로 하는 엑스선관 시스템.An x-ray tube system comprising a transmission target type in which tungsten or molybdenum is coated on a beryllium (Be) window.
  10. 제1 항에 있어서,According to claim 1,
    상기 엑스선관 시스템은,The X-ray tube system,
    컴퓨터 시스템에 의하여 전원 공급과 진공 상태에 대한 제어를 받고,Under the control of power supply and vacuum state by computer system,
    상기 엑스선방출 모듈로부터 방출되어 진단 대상을 투과한 엑스선이 디텍터에 의하여 검출되어 상기 컴퓨터 시스템과 연동하는 디스플레이 수단에서 해당 영상이 표시되는 것을 특징으로 하는 엑스선관 시스템.X-ray tube system, characterized in that the X-rays emitted from the X-ray emission module and transmitted through the diagnosis object is detected by the detector and the corresponding image is displayed on the display means interlocked with the computer system.
  11. 제1 항에 있어서,According to claim 1,
    상기 엑스선방출 모듈은,The X-ray emission module,
    제 1 전도층을 통한 전원의 인가에 의해 전자를 방출하는 나노-구조 물질이 성장된 기판;A substrate on which a nano-structured material is grown that emits electrons by application of a power source through the first conductive layer;
    상기 제 1 전도층 위에 장착되고 상기 제 1 전도층 쪽에서 바라보았을 때 상기 기판 상에 성장된 나노-구조 물질의 일부 또는 전부가 보이도록 형성된 내부홀을 포함하는 제 1 절연층;A first insulating layer mounted on the first conductive layer and including an inner hole formed to show some or all of the nano-structured material grown on the substrate when viewed from the side of the first conductive layer;
    상기 제 1 절연층 위에 장착되어 상기 나노-구조 물질로부터 전자를 추출하기 위한 그리드 전극; 및A grid electrode mounted on the first insulating layer to extract electrons from the nano-structured material; And
    상기 그리드 전극 위에 장착되어 상기 그리드 전극에 전압을 인가하기 위한 제 1 집속렌즈를 포함하고,A first focusing lens mounted on the grid electrode to apply a voltage to the grid electrode,
    상기 나노-구조 물질이 성장된 기판의 가장자리 부분은 그라인딩 처리에 의해 곡면 또는 사면으로 형성되며,The edge portion of the substrate on which the nano-structured material is grown is formed into a curved surface or a slope by grinding processing,
    상기 제 1 집속렌즈에는 상기 나노-구조 물질에서 방출된 전자를 집속시키기 위한 집속홀이 형성되는 것을 특징으로 하는 엑스선관 시스템.The first focusing lens is formed with a focusing hole for focusing electrons emitted from the nano-structured material.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 나노-구조 물질은 스크린 프린팅 방법에 의해 상기 기판 상에 성장되는 것을 특징으로 하는 엑스선관 시스템.The nano-structured material is grown on the substrate by a screen printing method.
  13. 제11 항에 있어서,The method of claim 11, wherein
    상기 나노-구조 물질은 CVD 방법에 의해 상기 기판 상에 성장되는 것을 특징으로 하는 엑스선관 시스템.The nano-structured material is grown on the substrate by a CVD method.
  14. 제11 항에 있어서,The method of claim 11, wherein
    상기 그리드 전극은 금속 종이를 레이저 가공을 통하여 제작되는 것을 특징으로 하는 엑스선관 시스템.The grid electrode is an X-ray tube system, characterized in that the metal paper is produced through laser processing.
  15. 제11 항에 있어서,The method of claim 11, wherein
    상기 엑스선방출 모듈은,The X-ray emission module,
    상기 기판과 분해 및 조립이 가능하도록 결합된 음극 프루브를 더 포함하는 것을 특징으로 하는 엑스선관 시스템.And an anode probe coupled to the substrate so as to be disassembled and assembled.
  16. 제11 항에 있어서,The method of claim 11, wherein
    제 2 절연층을 개재하여 상기 제 1 집속 렌즈 위에 장착되고 상기 제 1 집속 렌즈에 형성된 상기 집속홀과 동일한 반경을 갖는 집속홀이 형성된 제 2 집속 렌즈를 포함하는 것을 특징으로 하는 엑스선관 시스템.And a second focusing lens mounted on the first focusing lens via a second insulating layer and having a focusing hole having the same radius as the focusing hole formed in the first focusing lens.
  17. 제11 항에 있어서, The method of claim 11, wherein
    상기 제 1 절연층의 상기 내부 홀은 상기 제 1 전도층에서부터 상기 그리드 전극으로 갈수록 작아지는 반경을 갖는 것을 특징으로 하는 엑스선관 시스템.And the inner hole of the first insulating layer has a radius that decreases from the first conductive layer to the grid electrode.
  18. 제11 항에 있어서,The method of claim 11, wherein
    상기 제 1 집속렌즈는 상기 제 1 집속렌즈의 집속홀로부터 일정 지점까지는 두께가 점점 작아지도록 밑면이 상기 그리드 전극쪽으로 돌출되는 형상으로 형성되며, The first focusing lens is formed in a shape where a bottom surface protrudes toward the grid electrode such that the thickness becomes smaller from a focusing hole of the first focusing lens to a predetermined point.
    상기 그리드 전극은 상기 제 1 집속렌즈의 밑면의 형상에 대응하여 구부러지도록 형성되며, The grid electrode is formed to bend to correspond to the shape of the bottom surface of the first focusing lens,
    상기 제 1 절연층의 윗면은 상기 그리드 전극의 형상에 대응하도록 상기 내부홀로 갈수록 경사진 것을 특징으로 하는 엑스선관 시스템.The upper surface of the first insulating layer is X-ray tube system, characterized in that inclined toward the inner hole to correspond to the shape of the grid electrode.
  19. 제11 항에 있어서, The method of claim 11, wherein
    상기 제 1 절연층은 상기 그리드 전극에 가까운 부위에서 상기 내부홀의 중심으로 돌출된 부분을 갖는 것을 특징으로 하는 엑스선관 시스템.And the first insulating layer has a portion protruding toward the center of the inner hole at a portion close to the grid electrode.
  20. 제11 항에 있어서,The method of claim 11, wherein
    상기 엑스선방출 모듈은,The X-ray emission module,
    실버 페이스트를 이용하여 상기 기판과 결합하기 위한 샘플 프루브를 더 포함하는 것을 특징으로 하는 엑스선관 시스템.And a sample probe for bonding the silver paste to the substrate.
  21. 제11 항에 있어서,The method of claim 11, wherein
    상기 기판을 샘플 프루브와 일체로 형성되도록 하기 위하여, 상기 샘플 프루브 자체의 윗면의 가장자리 부분을 처리하여 상기 기판으로 사용하는 것을 특징으로 하는 엑스선관 시스템.In order to form the substrate integrally with the sample probe, the edge portion of the upper surface of the sample probe itself is processed and used as the substrate.
  22. 제21 항에 있어서,The method of claim 21,
    상기 샘플 프루브의 하단에는 상기 샘플 프루브의 탈착을 위한 볼트를 포함하는 것을 특징으로 하는 엑스선관 시스템.The bottom of the sample probe X-ray tube system, characterized in that it comprises a bolt for detachment of the sample probe.
  23. 제1 항에 있어서,According to claim 1,
    상기 엑스선방출 모듈은,The X-ray emission module,
    진공 챔버;A vacuum chamber;
    상기 진공 챔버 내에 형성되는 그리드 전극; 및A grid electrode formed in the vacuum chamber; And
    상기 측정 샘플이 장착되고 상기 진공 챔버 내에 삽입된 상태에서 상기 측정 샘플의 물리적 특성을 측정하기 위한 음극부로서의 샘플 프루브를 포함하여 이루어지고,And a sample probe as a cathode for measuring the physical properties of the measurement sample with the measurement sample mounted and inserted into the vacuum chamber,
    상기 샘플 프루브는, 상기 측정 샘플을 장착한 상태에서 상기 진공 챔버의 진공도에 영향을 주지 않으면서 상기 진공챔버로부터 탈착가능하도록 구성된 것을 특징으로 하는 엑스선관 시스템.And the sample probe is configured to be detachable from the vacuum chamber without affecting the degree of vacuum of the vacuum chamber while the measuring sample is mounted.
  24. 제23 항에 있어서,The method of claim 23, wherein
    상기 물리적 특성은 상기 측정 샘플이 전계 방출 소자인 경우에는 전계 방출 특성이거나, 상기 측정 샘플의 전기전도도, 전압, 전류, 온도 또는 압력 특성이거나, 극저온 상태에서의 초전도 특성인 것을 특징으로 하는 엑스선관 시스템.The physical property is an X-ray tube system characterized in that the field emission characteristics when the measurement sample is a field emission device, the electrical conductivity, voltage, current, temperature or pressure characteristics of the measurement sample, or superconducting characteristics in a cryogenic state .
  25. 제23 항에 있어서,The method of claim 23, wherein
    상기 샘플 프루브에 장착되는 상기 측정 샘플은 실버 페인트를 이용하여 오믹 콘택트를 형성하는 것을 특징으로 하는 엑스선관 시스템.And the measurement sample mounted to the sample probe forms an ohmic contact using silver paint.
  26. 제23 항에 있어서,The method of claim 23, wherein
    상기 샘플 프루브는 샘플 프루브 가이드라인을 관통하도록 형성되어 상기 진공 챔버로 또는 상기 진공 챔버로부터 장착 또는 탈착이 가능한 것을 특징으로 하는 엑스선관 시스템.The sample probe is formed to penetrate the sample probe guideline, it is possible to install or detach from the vacuum chamber or the X-ray tube system, characterized in that.
  27. 제26 항에 있어서,The method of claim 26,
    상기 샘플 프루브 가이드라인에는 2개의 오링 및 상기 2개의 오링 사이에 형성된 밸브 시스템을 포함하고, 상기 샘플 프루브의 상기 측정 샘플이 장착된 일단이 2개의 오링 중 상기 진공 챔버에 가까운 오링과 상기 밸브 시스템을 통과한 이후에 상기 밸브 시스템을 잠금으로써, 상기 샘플 프루브가 상기 진공 챔버로부터 탈착될 때 상기 진공 챔버의 진공도가 유지되는 것을 특징으로 하는 엑스선관 시스템.The sample probe guideline includes a valve system formed between two O-rings and the two O-rings, and one end of the sample probe of the sample probe mounted with the O-ring close to the vacuum chamber of the two O-rings and the valve system. Locking the valve system after passing, thereby maintaining the degree of vacuum in the vacuum chamber when the sample probe is detached from the vacuum chamber.
  28. 제23 항에 있어서,The method of claim 23, wherein
    상기 샘플 프루브의 일단에는 볼트를 개재하여 상기 측정 샘플이 고정되거나 상기 샘플 프루브의 상단 표면에 실버 페인트를 이용하여 상기 측정 샘플이 장착되는 것을 특징으로 하는 엑스선관 시스템.One end of the sample probe is fixed to the measurement sample via a bolt, or the measurement sample is mounted on the upper surface of the sample probe using silver paint.
  29. 제23 항에 있어서,The method of claim 23, wherein
    상기 샘플 프루브에는 액체 냉매가 상기 샘플 프루브를 관통하도록 공급되기 위한 액체 냉매 순환로를 더 포함하는 것을 특징으로 하는 엑스선관 시스템.The sample probe further comprises a liquid refrigerant circulation path for supplying a liquid refrigerant to pass through the sample probe X-ray tube system.
  30. 제23 항에 있어서,The method of claim 23, wherein
    상기 엑스선방출 모듈은,The X-ray emission module,
    상기 측정 샘플이 전계 방출 소자인 경우 상기 그리드 전극과 상기 샘플 프루브에 장착된 상기 전계 방출 소자 사이에 형성되는 절연층을 더 포함하는 것을 특징으로 하는 엑스선관 시스템.And the insulation layer formed between the grid electrode and the field emission device mounted to the sample probe when the measurement sample is a field emission device.
  31. 제23 항에 있어서,The method of claim 23, wherein
    상기 그리드 전극은 금속 메쉬 또는 고체 형태의 금속 구조로 형성되는 것을 특징으로 하는 엑스선관 시스템.The grid electrode is an X-ray tube system, characterized in that formed of a metal mesh or solid metal structure.
  32. 제30 항에 있어서,The method of claim 30,
    상기 그리드 전극은 투명 전극으로 형성되는 것을 특징으로 하는 엑스선관 시스템.The grid electrode is an X-ray tube system, characterized in that formed as a transparent electrode.
  33. 제32 항에 있어서,33. The method of claim 32 wherein
    상기 그리드 전극에 상기 샘플 프루브에 장착된 전계 방출 소자로부터 발생되는 전자빔을 가시화하기 위한 형광 물질이 코팅되는 것을 특징으로 하는 엑스선관 시스템.And a fluorescent material coated on the grid electrode to visualize an electron beam generated from a field emission device mounted on the sample probe.
  34. 제23 항에 있어서,The method of claim 23, wherein
    상기 진공 챔버 외벽에 열선이 설치되거나 액체 냉매 순환로가 설치되는 것을 특징으로 하는 엑스선관 시스템.X-ray tube system, characterized in that the heating wire is installed on the outer wall of the vacuum chamber or a liquid refrigerant circulation path.
  35. 나노-구조물질을 이용하여 엑스선을 방출하여 진단 대상으로 투영하는 단계; 및Emitting the X-rays using the nano-structured material and projecting them to a diagnosis target; And
    상기 진단 대상을 투과한 엑스선을 디텍터에 의하여 검출하여 해당 영상을 표시하는 단계를 포함하고,Detecting an X-ray having passed through the diagnosis object by a detector and displaying a corresponding image;
    상기 엑스선을 방출하는 엑스선방출 모듈에 포함된 상기 나노-구조물질 기반의 음극부를 교체하기 위하여 상기 엑스선방출 모듈이 몸체로부터 분리되는 구조의 엑스선관 시스템을 이용하는 것을 특징으로 하는 엑스선관 시스템의 진단 방법.And an X-ray tube system having a structure in which the X-ray emission module is separated from a body in order to replace the nano-structure material-based negative electrode included in the X-ray emission module emitting the X-rays.
  36. 나노-구조 물질 음극이 형성된 기판;A substrate on which a nano-structure material cathode is formed;
    구멍 또는 함몰 부분을 가지며, 상기 구멍 또는 함몰 부분에 일정 높이 차이를 가지도록 상기 기판을 결합시키기 위한 스페이서;A spacer having a hole or a recessed portion, for coupling the substrate to have a predetermined height difference to the hole or the recessed portion;
    상기 스페이서와 결합된 그리드; 및A grid coupled with the spacer; And
    상기 그리드가 결합된 상기 스페이서 위에 결합된 전자 집속 모듈을 포함하고,An electron focusing module coupled onto the spacer to which the grid is coupled;
    상기 기판과 상기 그리드 사이의 전압차를 이용하여 상기 나노-구조 물질 음극으로부터 발생시킨 전자빔을 상기 전자 집속 모듈로 집속하고, 집속된 전자빔을 엑스선 발생에 이용하는 것을 특징으로 하는 엑스선관.And an electron beam generated from the nano-structure material cathode by using the voltage difference between the substrate and the grid to the electron focusing module, and using the focused electron beam to generate X-rays.
  37. 제36 항에 있어서,The method of claim 36,
    상기 전자 집속 모듈은,The electron focusing module,
    순차로 결합되고 내부에 관통 구멍이 형성된 제1 유전체, 제1 포커스 전극, 및 제2 유전체를 포함하는 것을 특징으로 하는 엑스선관.An X-ray tube comprising a first dielectric, a first focus electrode, and a second dielectric, which are sequentially coupled and have through holes formed therein.
  38. 제37 항에 있어서,The method of claim 37,
    상기 제1 포커스 전극의 관통 구멍은,The through hole of the first focus electrode,
    한쪽 끝의 반경이 반대쪽 끝의 반경보다 작게 원형으로 형성되며, 상기 한쪽 끝이 상기 제1 유전체 쪽에 결합되고 상기 반대쪽 끝이 상기 제2 유전체 쪽에 결합되는 것을 특징으로 하는 엑스선관.The radius of one end is formed in a circular shape smaller than the radius of the opposite end, the one end is coupled to the first dielectric side and the opposite end is coupled to the second dielectric side, characterized in that the X-ray tube.
  39. 제38 항에 있어서,The method of claim 38, wherein
    상기 제1 포커스 전극의 관통 구멍의 상기 한쪽 끝의 반경은 상기 제1 유전체의 관통 구멍의 반경과 일치하고,The radius of the one end of the through hole of the first focus electrode is equal to the radius of the through hole of the first dielectric,
    상기 제1 포커스 전극의 관통 구멍의 상기 반대쪽 끝의 반경은 상기 제2 유전체의 관통 구멍의 반경과 일치하는 것을 특징으로 하는 엑스선관.The radius of the opposite end of the through hole of the first focus electrode coincides with the radius of the through hole of the second dielectric.
  40. 제39 항에 있어서, The method of claim 39,
    상기 제1 포커스 전극에 인가하는 전압과A voltage applied to the first focus electrode;
    상기 제1 포커스 전극의 관통 구멍의 깊이 및 상기 한쪽 끝과 상기 반대쪽 끝의 반경 차이에 의한 상기 제1 포커스 전극의 관통 구멍의 경사 각도에 의하여 상기 전자빔의 초점 거리를 조절하는 것을 특징으로 하는 엑스선관.An X-ray tube of which the focal length of the electron beam is adjusted according to an inclination angle of the through hole of the first focus electrode due to a depth of the through hole of the first focus electrode and a radius difference between the one end and the opposite end. .
  41. 제36 항에 있어서,The method of claim 36, wherein
    상기 전자 집속 모듈은,The electron focusing module,
    상기 그리드 위에 순차 결합되고 내부에 관통 구멍이 형성된 제1 유전체, 제1 포커스 전극, 제2 유전체, 제2 포커스 전극 및 제3 유전체를 포함하는 것을 특징으로 하는 엑스선관.And a first dielectric, a first focus electrode, a second dielectric, a second focus electrode, and a third dielectric sequentially coupled to the grid and having through holes therein.
  42. 제41 항에 있어서,42. The method of claim 41 wherein
    상기 제1 포커스 전극과 상기 제2 포커스 전극 사이에 상기 제2 유전체 이외에 적어도 한번 이상의 다른 포커스 전극과 다른 유전체의 쌍A pair of at least one other focus electrode and another dielectric other than the second dielectric between the first focus electrode and the second focus electrode
    을 더 포함하는 것을 특징으로 하는 엑스선관.X-ray tube, characterized in that it further comprises.
  43. 제41 항 또는 제42 항에 있어서,43. The method of claim 41 or 42,
    상기 제1 유전체와 상기 제3 유전체 사이에 결합된 모든 포커스 전극과 모든 유전체의 관통 구멍은,Through holes of all the focus electrodes and all the dielectrics coupled between the first dielectric and the third dielectric,
    한쪽 끝의 반경이 반대쪽 끝의 반경보다 작게 원형으로 형성되며, 결합되는 포커스 전극과 유전체 사이의 결합 부위의 반경이 서로 일치하도록 연이어 결합되는 것을 특징으로 하는 엑스선관.The radius of one end is formed in a circular shape smaller than the radius of the opposite end, the X-ray tube, characterized in that the successive coupling so that the radius of the coupling portion between the focus electrode and the dielectric to be coupled to each other.
  44. 일정 두께를 가지며, 중심 부근에 구멍을 가지는 컵 타입 포커스 전극;A cup type focus electrode having a predetermined thickness and having a hole near a center thereof;
    상기 구멍에 들어가 체결되는 하우징 상에 결합되며, 상기 컵 타입 포커스 전극과 전기적으로 연결되고, 상기 하우징의 체결 방향의 끝면에 나노-구조 물질 음극이 형성된 기판; 및A substrate coupled to the housing to be fastened into the hole and electrically connected to the cup type focus electrode, the substrate having a nano-structure material cathode formed on an end surface of the housing in a fastening direction; And
    상기 나노-구조 물질 음극과 일정 거리 이격되어 설치된 그리드를 포함하고,A grid disposed spaced apart from the nano-structure material cathode by a predetermined distance,
    상기 기판과 상기 그리드 사이의 전압차를 이용하여 상기 나노-구조 물질 음극으로부터 발생시킨 전자빔을 상기 컵 타입 포커스 전극으로 집속하고, 집속된 전자빔을 엑스선 발생에 이용하는 것을 특징으로 하는 엑스선관.And an electron beam generated from the nano-structure material cathode by using the voltage difference between the substrate and the grid to focus on the cup type focus electrode, and use the focused electron beam for X-ray generation.
  45. 제36 항 내지 제44 항 중 어느 한 항에 있어서,The method according to any one of claims 36 to 44,
    상기 전자빔을 수용하여 엑스선을 발생시키는 양극부An anode part that receives the electron beam and generates X-rays
    를 더 포함하는 것을 특징으로 하는 엑스선관.X-ray tube, characterized in that it further comprises.
  46. 제45 항에 있어서,46. The method of claim 45,
    상기 양극부는,The anode portion,
    경사면을 가지는 금속을 포함하고,Including a metal having an inclined surface,
    상기 경사면에 충돌하는 상기 전자빔의 에너지에 의하여 엑스선을 발생시키는 것을 특징으로 하는 엑스선관.X-ray tube is generated by the energy of the electron beam impinging on the inclined surface.
  47. 제45 항에 있어서,46. The method of claim 45,
    상기 양극부는,The anode portion,
    상기 전자빔의 진행 방향으로부터 상기 전자빔과 직각 방향으로 관통하는 L자 또는 역 L자 형 구멍을 가지고, 상기 진행 방향으로 들어와 상기 구멍 속의 경사면에서 충돌하는 상기 전자빔의 에너지에 의하여 발생된 엑스선이 상기 구멍을 통하여 상기 직각 방향으로 방출되는 것을 특징으로 하는 엑스선관.X-rays generated by the energy of the electron beam, which has an L-shaped or inverted L-shaped hole penetrating in a direction perpendicular to the electron beam from the traveling direction of the electron beam, and impinges on the inclined plane in the traveling direction. X-ray tube, characterized in that emitted through the perpendicular direction.
  48. 환자의 환부에 인접하게 위치하여 엑스 선을 발생하여 상기 환자의 환부에 제공하는 나노-구조 물질 기반 소형 엑스선관;A small X-ray tube based on a nano-structured material positioned adjacent to the affected part of the patient to generate X-rays and provide the same to the affected part of the patient;
    상기 나노-구조 물질 기반 소형 엑스선관에 동작 전원을 공급하는 전원 공급부;A power supply unit supplying operation power to the nano-structure material based small X-ray tube;
    상기 나노-구조 물질 기반 소형 엑스선관이 발생하는 열을 냉각하기 위한 냉각부;Cooling unit for cooling the heat generated by the nano-structure material-based small X-ray tube;
    상기 나노-구조 물질 기반 소형 엑스선관, 상기 전원 공급부, 및 상기 냉각부의 동작을 제어하는 제어기Controller for controlling the operation of the nano-structured material based small X-ray tube, the power supply, and the cooling unit
    를 포함하는 엑스선관 시스템.X-ray tube system comprising a.
  49. 제48 항에 있어서,49. The method of claim 48 wherein
    상기 탄소 나노튜브 기반 소형 엑스선관은,The carbon nanotube-based small X-ray tube,
    전자 빔을 발생하는 탄소 나노튜브;Carbon nanotubes for generating electron beams;
    상기 탄소 나노튜브에 의해 발생한 상기 전자 빔과 충돌하여 상기 엑스 선을 발생하는 양극부; 및An anode portion colliding with the electron beam generated by the carbon nanotubes to generate the X-rays; And
    상기 탄소 나노튜브를 내장하는 케이스를 포함하는 엑스선관 시스템.X-ray tube system comprising a case containing the carbon nanotubes.
  50. 제48 항에 있어서,49. The method of claim 48 wherein
    상기 전원 공급부는,The power supply unit,
    상기 나노-구조 물질 기반 소형 엑스선관에 연결된 고압 케이블 단자 및 상기 고압 케이블 단자를 상기 제어기에 전기적으로 연결하는 케이블을 포함하는 엑스선관 시스템.And a cable for electrically connecting the high voltage cable terminal to the controller and the high voltage cable terminal connected to the nano-structure material based small X-ray tube.
  51. 제48 항에 있어서,49. The method of claim 48 wherein
    상기 냉각부는,The cooling unit,
    상기 나노-구조 물질 기반 소형 엑스선관을 지지하고, 상기 나노-구조 물질 기반 소형 엑스선관과의 사이에 냉각수 순환공간을 제공하고, 상기 나노-구조 물질 기반 소형 엑스선관으로부터 발생된 상기 엑스선을 상기 환부에 균일하게 전달하는 어플리케이터를 포함하는 엑스선관 시스템.Supporting the nano-structured material-based small X-ray tube, providing a cooling water circulation space between the nano-structured material-based small X-ray tube, and applying the X-rays generated from the nano-structured material-based small X-ray tube to the affected part X-ray tube system comprising an applicator to uniformly deliver.
  52. 제51 항에 있어서,The method of claim 51, wherein
    상기 어플리케이터는 타원형 또는 구형 형상을 가지는 엑스선관 시스템.The applicator is an x-ray tube system having an elliptical or spherical shape.
  53. 제48 항에 있어서,49. The method of claim 48 wherein
    상기 제어기는The controller
    본체;main body;
    상기 본체의 측면에 설치되는 손잡이; 및A handle installed at a side of the main body; And
    상기 본체의 바닥에 설치되는 바퀴를 포함하는 엑스선관 시스템.X-ray tube system including a wheel installed on the bottom of the main body.
  54. 제48 항에 있어서,49. The method of claim 48 wherein
    상기 환자의 환부에 인접하게 위치하고 상기 제어기에 전기적으로 연결되어, 상기 환자에 조명을 비추고 반사된 빛을 수집하여 영상 데이터를 출력하는 광학 센서An optical sensor positioned adjacent to the affected part of the patient and electrically connected to the controller, illuminating the patient and collecting reflected light to output image data.
    를 더 포함하는 엑스선관 시스템.X-ray tube system further comprising.
  55. 제54 항에 있어서,55. The method of claim 54,
    상기 제어기에 전기적으로 연결되며 상기 나노-구조 물질 기반 엑스선 소스에 공급되는 상기 동작 전원, 상기 나노-구조 물질 기반 엑스선관으로부터 발생하는 상기 환자의 치료에 필요한 파라미터, 상기 냉각부의 정보를 제어하고, 실시간으로 해당 데이터, 및 상기 광학 센서로부터의 영상 데이터를 디스플레이하는 사용자 그래픽 인터페이스 프로그램이 내장된 컴퓨터 모니터Control the operating power supplied to the nano-structured material based X-ray source, the parameters necessary for the treatment of the patient generated from the nano-structured material based X-ray tube, information of the cooling unit, Computer monitor with a built-in user graphic interface program for displaying the corresponding data and image data from the optical sensor
    를 더 포함하는 엑스선관 시스템.X-ray tube system further comprising.
PCT/KR2009/000413 2008-06-13 2009-01-28 X-ray tube using nano-structure material and system using the same WO2009151197A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0055589 2008-06-13
KR20080055589 2008-06-13
KR1020080065933A KR101023704B1 (en) 2008-07-08 2008-07-08 X-ray Generation Apparatus using Carbon Nano-tube
KR10-2008-0065933 2008-07-08

Publications (1)

Publication Number Publication Date
WO2009151197A1 true WO2009151197A1 (en) 2009-12-17

Family

ID=41416882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000413 WO2009151197A1 (en) 2008-06-13 2009-01-28 X-ray tube using nano-structure material and system using the same

Country Status (1)

Country Link
WO (1) WO2009151197A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003236A1 (en) * 2015-06-30 2017-01-05 주식회사바텍 Portable x-ray generation device having electric field emission x-ray source
WO2017039360A1 (en) * 2015-09-01 2017-03-09 부산대학교 산학협력단 Target material coating tip for low temperature atmospheric pressure plasma apparatus
US9668333B2 (en) 2011-12-22 2017-05-30 3M Innovative Properties Company Electrically conductive article with high optical transmission
US10041748B2 (en) 2011-12-22 2018-08-07 3M Innovative Properties Company Carbon coated articles and methods for making the same
WO2019011980A1 (en) * 2017-07-11 2019-01-17 Thales Compact, ionising ray-generating source, assembly comprising a plurality of sources and method for producing the source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110722A (en) * 2003-10-02 2005-04-28 Shimadzu Corp X-ray tube and x-ray equipment
US20070009081A1 (en) * 2000-10-06 2007-01-11 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
KR20070007512A (en) * 2005-07-11 2007-01-16 가톨릭대학교 산학협력단 A digital radiography system using a flat-panel type x-ray source and the method of using the same
KR20070071900A (en) * 2005-12-30 2007-07-04 한국전기연구원 Phase-contrasted x-ray diagnosis system using carbon nanotube micro-focusing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070009081A1 (en) * 2000-10-06 2007-01-11 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
JP2005110722A (en) * 2003-10-02 2005-04-28 Shimadzu Corp X-ray tube and x-ray equipment
KR20070007512A (en) * 2005-07-11 2007-01-16 가톨릭대학교 산학협력단 A digital radiography system using a flat-panel type x-ray source and the method of using the same
KR20070071900A (en) * 2005-12-30 2007-07-04 한국전기연구원 Phase-contrasted x-ray diagnosis system using carbon nanotube micro-focusing

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668333B2 (en) 2011-12-22 2017-05-30 3M Innovative Properties Company Electrically conductive article with high optical transmission
US10041748B2 (en) 2011-12-22 2018-08-07 3M Innovative Properties Company Carbon coated articles and methods for making the same
WO2017003236A1 (en) * 2015-06-30 2017-01-05 주식회사바텍 Portable x-ray generation device having electric field emission x-ray source
US10993679B2 (en) 2015-06-30 2021-05-04 Vatech Co., Ltd. Portable x-ray generation device having electric field emission x-ray source
US10932734B2 (en) 2015-06-30 2021-03-02 Vatech Co., Ltd. Portable x-ray generation device having electric field emission x-ray source
WO2017039360A1 (en) * 2015-09-01 2017-03-09 부산대학교 산학협력단 Target material coating tip for low temperature atmospheric pressure plasma apparatus
KR101758256B1 (en) * 2015-09-01 2017-07-17 주식회사 피글 Purposeful material coated tip of low temperature plasma device
JP2020526868A (en) * 2017-07-11 2020-08-31 タレス Small sources for producing ionizing radiation, assemblies with multiple sources, and processes for producing sources
CN110870036A (en) * 2017-07-11 2020-03-06 塔莱斯公司 Compact ionizing radiation generating source, assembly comprising a plurality of sources and method for producing the source
FR3069098A1 (en) * 2017-07-11 2019-01-18 Thales COMPACT IONIZING RAY GENERATING SOURCE, MULTIPLE SOURCE ASSEMBLY AND SOURCE REALIZATION METHOD
WO2019011980A1 (en) * 2017-07-11 2019-01-17 Thales Compact, ionising ray-generating source, assembly comprising a plurality of sources and method for producing the source
US11004647B2 (en) 2017-07-11 2021-05-11 Thales Compact source for generating ionizing radiation, assembly comprising a plurality of sources and process for producing the source
JP7073407B2 (en) 2017-07-11 2022-05-23 タレス Small sources for producing ionizing radiation, assemblies with multiple sources, and processes for manufacturing sources
TWI783006B (en) * 2017-07-11 2022-11-11 法商達樂股份有限公司 Compact source for generating ionizing radiation, assembly comprising a plurality of sources and process for producing the source
AU2018298781B2 (en) * 2017-07-11 2023-03-02 Thales Compact, ionising ray-generating source, assembly comprising a plurality of sources and method for producing the source
CN110870036B (en) * 2017-07-11 2023-06-02 塔莱斯公司 Compact ionizing radiation generating source, assembly comprising a plurality of sources and method for producing the source

Similar Documents

Publication Publication Date Title
WO2009151197A1 (en) X-ray tube using nano-structure material and system using the same
US7771117B2 (en) X-ray system for dental diagnosis and oral cancer therapy based on nano-material and method thereof
JP4056890B2 (en) Improved environmental scanning electron microscope
US7582885B2 (en) Charged particle beam apparatus
JP2002141382A (en) Charged particle beam equipment and sample manufacturing equipment
KR100473794B1 (en) A Plasma Electron Density Measuring And Monitoring Device
US7675034B2 (en) Charged particle instrument equipped with optical microscope
GB2034149A (en) X-ray apparatus for computed tomography scanner
WO2016056729A1 (en) Radiographic imaging apparatus, method of controlling radiographic imaging apparatus and computed tomography apparatus
JP5015869B2 (en) Modular gas ion source
US6556654B1 (en) High voltage cable and clamp system for an X-ray tube
WO2014209039A1 (en) Apparatus and method for x-ray imaging of breast
JP6727193B2 (en) High voltage feedthrough assembly, electron diffraction or imaging device, and method of operating an electrode device in a vacuum environment
Bhattacharya et al. Ultraviolet light stimulated water desorption effect on emission performance of gated field emitter array
US20030223545A1 (en) Electromagnetic wave energy emitter
KR100886212B1 (en) Carbon Nanotube Based X-ray Tube
WO2018008825A1 (en) X-ray brachytherapy system for keloid and skin cancer treatment using carbon nanotube-based x-ray tube
WO2016085211A1 (en) X-ray apparatus and x-ray system
JP2001126655A5 (en)
JPH0644936A (en) Electron beam device and sample holder therfor
WO2015152640A1 (en) Cartridge-type x-ray source apparatus and x-ray emission apparatus using same
WO2020111755A1 (en) Field emission tomosynthesis system, emitter thereof and preparation method thereof
WO2013154259A1 (en) Vacuum-sealed small x-ray tube using carbon nanotube-based electron beam emitter
JP3799496B2 (en) X-ray microscope performance test method and apparatus
JP2759949B2 (en) Ion beam equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762584

Country of ref document: EP

Kind code of ref document: A1