WO2009150967A1 - スクリュ圧縮装置 - Google Patents

スクリュ圧縮装置 Download PDF

Info

Publication number
WO2009150967A1
WO2009150967A1 PCT/JP2009/060120 JP2009060120W WO2009150967A1 WO 2009150967 A1 WO2009150967 A1 WO 2009150967A1 JP 2009060120 W JP2009060120 W JP 2009060120W WO 2009150967 A1 WO2009150967 A1 WO 2009150967A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
bearing
lubricating fluid
target gas
screw
Prior art date
Application number
PCT/JP2009/060120
Other languages
English (en)
French (fr)
Inventor
哲也 垣内
靖士 天野
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP09762397.9A priority Critical patent/EP2306027B1/en
Priority to CN200980122341.3A priority patent/CN102066760B/zh
Priority to BRPI0914997-0A priority patent/BRPI0914997B1/pt
Priority to US12/995,076 priority patent/US8512019B2/en
Publication of WO2009150967A1 publication Critical patent/WO2009150967A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/005Structure and composition of sealing elements such as sealing strips, sealing rings and the like; Coating of these elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/02Liquid sealing for high-vacuum pumps or for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation

Definitions

  • the present invention relates to a screw compressor.
  • an oil-cooled screw compressor that cools and lubricates the screw rotors and between the screw rotor and the rotor chamber with cooling oil has been widely used.
  • the target gas to be compressed is a hydrocarbon-based gas
  • the target gas dissolves in the cooling oil, lowering the viscosity of the cooling oil, resulting in insufficient lubrication of the bearings. May damage the bearing.
  • the target gas when the target gas is a corrosive gas, the target gas may corrode and damage the bearing.
  • Patent Document 1 describes a technique of depressurizing a target gas discharged from a screw compressor in a decompression tank and separating the target gas dissolved in cooling oil.
  • the target gas cannot be greatly depressurized, and in the apparatus of Patent Document 1, the degassing of the cooling oil is not always sufficient.
  • an object of the present invention is to provide a screw compression device in which the properties of the target gas to be compressed do not affect the life of the bearing.
  • a screw compression device includes a rotor shaft of a screw rotor, which is rotatably accommodated in a rotor chamber formed in a housing so as to be engaged with each other and compresses a target gas together with a rotor lubricating fluid.
  • a screw compressor provided with a shaft sealing member that is supported by a bearing disposed in a bearing space formed in the housing adjacent to the rotor chamber and that separates the rotor chamber and the bearing space; and the screw compressor, Lubricating fluid separation and recovery device for separating the rotor lubricating fluid from the discharged target gas, rotor lubricating fluid supply means for introducing the rotor lubricating fluid separated by the lubricating fluid separation and recovery device into the rotor chamber, and the bearing space
  • a bearing lubrication system for supplying a bearing lubrication fluid to the bearing space and circulating the bearing lubrication fluid flowing out of the bearing space into the bearing space; It shall be.
  • the rotor lubricating fluid that lubricates the screw rotor and the rotor chamber and the bearing lubricating fluid that lubricates the bearing of the rotor shaft are separated by the shaft seal member and circulate in different systems independently of each other. It is said. As a result, there is almost no contact between the bearing lubricating fluid and the target gas, deterioration of the bearing lubricating fluid due to the target gas can be prevented, and shortening of the bearing life can be prevented.
  • the screw compression device of the present invention may further include a rotor lubricating flow path for circulating the rotor lubricating fluid collected by the lubricating fluid separating and collecting device into the rotor chamber.
  • the rotor lubricating fluid can be circulated and used, and the rotor lubricating fluid can be easily cooled.
  • the bearing lubricating fluid may be supplied also to the shaft seal member.
  • the shaft seal member is configured to connect the rotor chamber and the bearing space via a plurality of narrow gaps, and the lubricating fluid is disposed in the middle of the shaft seal member. A part of the target gas from which the rotor lubricating fluid has been separated by the separation and recovery device may be supplied.
  • the target gas from which the rotor lubricating fluid is separated in the middle of the shaft seal member is supplied in the middle of the shaft seal member, so that the supplied target gas is gradually reduced in pressure from the narrow gap formed by the shaft seal member. It is possible to prevent the target gas containing the rotor lubricating fluid from flowing into the bearing chamber from flowing into the bearing chamber. Since the target gas flowing into the bearing chamber through the shaft seal member is extremely small, the bearing lubricating oil is not deteriorated and the bearing is not directly corroded.
  • the screw compressor may include a slide valve that controls a discharge position of the target gas from the rotor chamber.
  • the bearing lubricating fluid may also serve as a working medium for the slide valve.
  • This configuration requires less auxiliary equipment for circulating and supplying the fluid.
  • the rotor chamber of the screw compressor and the bearing space are isolated by the shaft seal member, and different fluids are supplied to each to perform lubrication and cooling. For this reason, the target gas compressed by the screw compressor is brought into little or no contact with the bearing and the bearing lubricating fluid, so that the life of the bearing is not greatly affected by the properties of the target gas.
  • the block diagram of the screw compression apparatus of 1st Embodiment of this invention The block diagram of the screw compression apparatus of 2nd Embodiment of this invention.
  • the block diagram of the screw compression apparatus of 3rd Embodiment of this invention The block diagram of the screw compression apparatus of 4th Embodiment of this invention.
  • FIG. 1 shows a screw compression apparatus 1 according to a first embodiment of the present invention.
  • the screw compressor 1 compresses and discharges a target gas (for example, propane gas) by the screw compressor 2, and lubricates the screw compressor 2 from the target gas discharged by the screw compressor 2 by the lubricating fluid separation and recovery device 3.
  • the rotor lubricating fluid for example, lubricating oil
  • the rotor lubricating fluid mixed in the target gas for cooling is separated, and the compressed target gas is supplied to the demand facility.
  • the screw compressor 2 has a screw rotor 6 rotatably accommodated in a rotor chamber 5 formed in the housing 4 so as to engage with each other.
  • the screw rotor 6 has a screw shaft 9 extending into bearing spaces 7 and 8 formed in the housing 4 adjacent to the rotor chamber 5 and is supported by bearings 9 and 10 disposed in the bearing spaces 7 and 8.
  • the male and female screw rotors 9 are connected to each other by a timing gear 12 so as to rotate synchronously in the bearing space 8 on the discharge side.
  • the screw compressor 2 includes a mechanical seal (seal member) 13 and 14 that separates the rotor chamber 5 and the bearing spaces 7 and 8 from each other, and a rotor shaft 9 that protrudes outside the housing 4 and is connected to a motor (not shown). And a mechanical seal 15 for axially sealing the open end of the bearing space 7 on the suction side. Furthermore, the screw compressor 2 has a slide valve 16 that changes the opening position on the discharge side of the rotor chamber 5.
  • the screw compressor 1 has a bearing lubrication system 17 that supplies a bearing lubricating fluid (for example, lubricating oil) for lubricating the bearings 9 and 10 to the bearing spaces 7 and 8.
  • the bearing lubrication system 17 collects and stores the bearing lubrication fluid flowing out from the bearing spaces 7 and 8, the lubrication pump 19 that sends the bearing lubrication fluid from the supply tank 18, and the lubrication pump 19.
  • a cooler 20 for cooling the bearing lubricating fluid.
  • the screw compressor 1 uses the bearing lubricating fluid as a working medium of the fluid pressure cylinder 21 that drives the slide valve 16.
  • the screw compressor 1 supplies the bearing lubricating fluid pumped from the driving pump 22 to either of the two ports of the fluid pressure cylinder 21 and the driving pump 22 that pumps the bearing lubricating fluid from the supply tank 18. And a three-position switching valve 23 for selecting the above.
  • the screw compressor 1 circulates the rotor lubricating fluid separated from the target gas by the lubricating fluid separator / collector 3 to the suction portion of the rotor chamber 5 of the screw compressor 2 via the cooler 24 by the pressure of the target gas.
  • a rotor lubricating flow path (rotor lubricating fluid supply means) 25 is provided. As a result, the rotor lubricating fluid circulates inside the screw compressor 1.
  • the bearing lubricating fluid is also supplied to the mechanical seals 13 and 14.
  • Each of the mechanical seals 13 and 14 includes two stators that are airtightly fixed to the housing 4 and a rotor that is airtightly fixed to the rotor shaft 9 between the two rotors and rotates together with the rotor shaft 9.
  • the rotor is in sliding contact with each other.
  • the bearing lubricating fluid supplied to the mechanical seals 13 and 14 is confined in a sealed space formed by the housing 4, the stator and the rotor, so that the rotor chamber 5 and the bearing spaces 7 and 8 are transferred from the mechanical seals 13 and 14. Do not leak into.
  • the bearing lubricating fluid circulates in a system independent of the rotor lubricating fluid and does not come into contact with the target gas and the rotor lubricating fluid, the bearing lubricating fluid may be deteriorated (decrease in viscosity) by the target gas. The optimum conditions for lubrication and cooling of the bearings 10 and 11 can be maintained.
  • the timing gear 12 may be omitted, and the male and female screw rotors 6 may be rotated synchronously by occlusion of the screw rotors 6.
  • FIG. 2 shows a screw compressor 1a according to a second embodiment of the present invention.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the screw compressor 1a is always supplied with a certain amount of rotor lubricating fluid from a reservoir 27 by a quantitative replenishment pump 26. Since the supply amount from the replenishing pump 26 is small, the rotor lubricating fluid is supplied to the screw compressor 2 also from the lubricating fluid separation and recovery unit 3.
  • the lubricating fluid separation / recovery unit 3 has a level switch 28 and controls the opening degree of the discharge valve 29 for discharging the rotor lubricating fluid from the sliding fluid separation / recovery unit 3 so that the liquid level thereof falls within a predetermined range. It has become.
  • the target gas is, for example, a gas containing a corrosive component and the rotor lubricating fluid is lubricating oil
  • the target gas is gradually dissolved in the rotor lubricating fluid with the operation of the screw compressor 1 to deteriorate the rotor lubricating fluid.
  • the rotor lubricating fluid can be kept at a certain quality.
  • the rotor lubricating fluid discharged from the screw compressor 1 may be consumed in other plants.
  • an oil refinery plant consumes liquefied heavy hydrocarbons that can be used as a rotor lubricating fluid. This eliminates the need for waste liquid treatment of the rotor lubricating fluid discharged from the screw compressor 1 that uses liquefied heavy hydrocarbons as the rotor lubricating fluid.
  • FIG. 3 shows a screw compressor 1b according to a third embodiment of the present invention.
  • the rotor lubricating fluid supplied to the rotor chamber 5 of the screw compressor 2 is entirely supplied from the outside of the screw compressor 1, and all of the rotor lubricating fluid recovered in the lubricating fluid separating and recovering unit 3 is It is discharged outside the screw compressor 1.
  • liquefied heavy hydrocarbons such as octane are produced as by-products. Normally, these are refined, but in the screw compression apparatus 1b of the present embodiment, the target gas dissolved in the rotor lubricating fluid is treated at the same time by refining after being used as the rotor lubricating fluid. There is no worry of contamination.
  • FIG. 4 shows a screw compressor 1c according to a fourth embodiment of the present invention.
  • the screw compression apparatus 1 includes carbon ring seals 30 and 31 for shaft sealing between the rotor chamber 5 and the bearing spaces 7 and 8. Further, the screw compressor 1 c introduces a part of the target gas from which the rotor lubricating fluid has been separated by the lubricating fluid separation and recovery device 3 into the carbon ring seals 30 and 31. The supply amount is adjusted by introducing the target gas into the carbon ring seal on the suction side through the orifice 32.
  • the bearing lubricating fluid not only the bearing lubricating fluid but also part of the target gas supplied to the carbon ring seals 30 and 31 flows out from the bearing spaces 7 and 8. These are all collected in the pressure tank 33.
  • the upper space communicates with the suction side of the screw compressor 2, the target gas in the upper space is sucked by the suction pressure of the screw compressor 2, and the internal pressure is kept the same as the suction pressure of the screw compressor 2. .
  • a part of the bearing lubricating fluid discharged from the lubrication pump 19 is circulated to the pressurized tank 33 through the regenerator 34 so that the target gas dissolved in the regenerator 34 is removed and the quality is maintained. It has become.
  • a plurality of carbon rings 35 that form minute gaps between the rotor shaft 9 are held in an airtight manner in the housing 4, and the target gas passes through the gaps between the rotor shaft 9 and the carbon rings 35.
  • the amount of the target gas that passes through is limited to a very small amount due to the pressure loss during the process.
  • a target gas having a pressure higher than that of the rotor chamber 5 and the bearing spaces 7 and 8 is introduced in the middle of the carbon ring seals 30 and 31.
  • the target gas introduced in the middle of the carbon ring seals 30 and 31 flows into the rotor chamber 5 and the bearing spaces 7 and 8, and the target gas containing the rotor lubricating fluid does not flow into the bearing spaces 7 and 8 from the rotor chamber 5. Therefore, the rotor lubricating fluid is not mixed into the bearing lubricating fluid.
  • the target gas flowing into the bearing spaces 7 and 8 is not a lubricating fluid carrier medium, and therefore the flow rate thereof may be very small. Therefore, in the present embodiment, the influence on the bearing lubricating fluid is not great, and the quality of the bearing lubricating fluid can be maintained by the compact regenerator 34.
  • the completely airtight shaft seal may be only the mechanical seal 15 provided at the portion where the rotor shaft 9 protrudes from the housing 4.
  • a strict standard such as the lubricating oil system standard of the American Petroleum Institute is not required for the bearing lubricating fluid that comes into contact with the target gas as in this embodiment, its structure does not become a significant cost factor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 圧縮する対象気体の性状が軸受の寿命に影響しないスクリュ圧縮装置1は、ハウジング4に形成したロータ室5内に雌雄咬合して回転可能に収容され、対象気体をロータ潤滑流体と共に圧縮するスクリュロータ6のロータ9軸を、ロータ室5に隣接してハウジング4に形成された軸受空間7,8に配設した軸受10,11によって支持し、ロータ室5と軸受空間7,8とを隔離する軸封部材13,14を備えるスクリュ圧縮機2と、スクリュ圧縮機2が吐出した対象気体からロータ潤滑流体を分離する潤滑流体分離回収器3と、潤滑流体分離回収器3が分離したロータ潤滑流体をロータ室5に導入するロータ潤滑流路25と、軸受空間7,8に軸受潤滑流体を供給し、軸受空間7,8から流出する軸受潤滑流体を冷却して軸受空間7,8に環流させる軸受潤滑システム17とを有する。

Description

スクリュ圧縮装置
 本発明はスクリュ圧縮装置に関する。
 従来、スクリュロータ同士、および、スクリュロータとロータ室との間を冷却用油で冷却および潤滑する油冷式スクリュ圧縮機が広く使用されている。従来の油冷式スクリュ圧縮機では、圧縮する対象気体が炭化水素系ガス等である場合、対象気体が冷却用油に溶け込んで冷却用油の粘度を低下させ、軸受の潤滑が不十分になって、軸受を損傷させることがある。また、従来のスクリュ圧縮機において、対象気体が腐食性ガスである場合、対象気体が軸受を腐蝕して損傷させることもある。
 特許文献1には、スクリュ圧縮機から吐出された対象気体を減圧タンクにおいて減圧して、冷却用油に溶け込んだ対象気体を分離する技術が記載されている。しかしながら、対象気体を大きく減圧することはできず、特許文献1の装置では、冷却用油の脱気が必ずしも十分ではなかった。
特開平10-26093号公報
 前記問題点に鑑みて、本発明は、圧縮する対象気体の性状が軸受の寿命に影響しないスクリュ圧縮装置を提供することを課題とする。
 前記課題を解決するために、本発明によるスクリュ圧縮装置は、ハウジングに形成したロータ室内に雌雄咬合して回転可能に収容され、対象気体をロータ潤滑流体と共に圧縮するスクリュロータのロータ軸を、前記ロータ室に隣接して前記ハウジングに形成された軸受空間内に配設した軸受によって支持し、前記ロータ室と前記軸受空間とを隔離する軸封部材を備えるスクリュ圧縮機と、前記スクリュ圧縮機が吐出した前記対象気体から前記ロータ潤滑流体を分離する潤滑流体分離回収器と、前記潤滑流体分離回収器が分離した前記ロータ潤滑流体を前記ロータ室に導入するロータ潤滑流体供給手段と、前記軸受空間に軸受潤滑流体を供給し、前記軸受空間から流出する前記軸受潤滑流体を前記軸受空間に環流させる軸受潤滑システムとを有するものとする。
 この構成は、スクリュロータおよびロータ室の潤滑をするロータ潤滑流体と、ロータ軸の軸受の潤滑をする軸受潤滑流体とを、軸封部材によって隔離され、互いに独立して異なる系内で循環する流体としている。これにより、軸受潤滑流体と対象気体との接触を殆どなくして、対象気体による軸受潤滑流体の劣化を防ぎ、軸受の寿命短縮を防止することができる。
 また、本発明のスクリュ圧縮装置は、前記潤滑流体分離回収器に回収した前記ロータ潤滑流体を、前記ロータ室内に環流させるロータ潤滑流路をさらに有してもよい。
 この構成によれば、ロータ潤滑流体を循環利用でき、ロータ潤滑流体の冷却等も容易にできる。
 また、本発明のスクリュ圧縮装置において、前記軸受潤滑流体は、前記軸封部材にも供給されてもよい。
 この構成によれば、軸受潤滑流体を軸封部材の軸封を助けるシール流体としても利用することで、軸受室への対象気体の侵入を確実に防止できる。
 また、本発明のスクリュ圧縮装置において、前記軸封部材は、前記ロータ室と前記軸受空間とを複数の狭い隙間を介して接続するように構成され、前記軸封部材の途中に、前記潤滑流体分離回収器で前記ロータ潤滑流体を分離された前記対象気体の一部が供給されてもよい。
 この構成によれば、軸封部材の途中にロータ潤滑流体を分離した対象気体を軸封部材の途中に供給するので、供給された対象気体が、軸封部材が形成する狭い隙間から僅かずつ低圧側に漏出し、ロータ室からロータ潤滑流体を含んだ対象気体が軸受室に流入することを防止できる。軸封部材を介して軸受室に流入する対象気体は、極少量であるので、軸受潤滑油を劣化させたり、軸受を直接腐蝕させることがない。
 また、本発明のスクリュ圧縮装置において、前記スクリュ圧縮機は、前記対象気体の前記ロータ室からの吐出位置を制御するスライド弁を備えてもよい。
 スライド弁を使用する場合、オイルフリー構造とすることが困難であるため、従来、腐食性ガスなどに対応できなかったが、本発明により、スライド弁を使用する場合にも、軸受の寿命を確保することができるようになった。
 また、本発明のスクリュ圧縮装置において、前記軸受潤滑流体は、前記スライド弁の作動媒体を兼ねてもよい。
 この構成によれば、流体の循環供給のための付属設備が少なくて済む。
 本発明によれば、スクリュ圧縮機のロータ室と軸受空間とを軸封部材で隔離し、それぞれに異なる流体を供給して、潤滑および冷却を行う。このため、スクリュ圧縮機で圧縮される対象気体を、軸受および軸受潤滑流体に少しだけしか、または、全く接触させないので、軸受の寿命が対象気体の性状に大きく影響されない。
本発明の第1実施形態のスクリュ圧縮装置の構成図。 本発明の第2実施形態のスクリュ圧縮装置の構成図。 本発明の第3実施形態のスクリュ圧縮装置の構成図。 本発明の第4実施形態のスクリュ圧縮装置の構成図。
 これより、本発明の実施形態について、図面を参照しながら説明する。図1に、本発明の第1実施形態のスクリュ圧縮装置1を示す。スクリュ圧縮装置1は、スクリュ圧縮機2で対象気体(例えばプロパンガス)を圧縮して吐出し、潤滑流体分離回収器3によってスクリュ圧縮機2が吐出した対象気体から、スクリュ圧縮機2内の潤滑および冷却のために対象気体に混入されているロータ潤滑流体(例えば潤滑油)を分離して、需要設備に圧縮した対象気体を供給するものである。
 スクリュ圧縮機2は、ハウジング4に形成されたロータ室5の中に、雌雄咬合して回転可能に収容されたスクリュロータ6を有する。スクリュロータ6は、ロータ室5に隣接してハウジング4に形成された軸受空間7,8内に延伸するスクリュ軸9を有し、軸受空間7,8内に配設した軸受9,10によって支持されている。また、雌雄のスクリュロータ9は、吐出側の軸受空間8内において、タイミングギア12によって互いに同期回転するように連結されている。また、スクリュ圧縮機2は、ロータ室5と軸受空間7,8とをそれぞれ隔離するメカニカルシール(シール部材)13,14と、ハウジング4の外にロータ軸9が突出して不図示のモータに接続される吸込側の軸受空間7の開放端を軸封するメカニカルシール15とを有する。さらに、スクリュ圧縮機2は、ロータ室5の吐出側の開口位置を変化させるスライド弁16を有している。
 また、スクリュ圧縮装置1は、軸受空間7,8に、軸受9,10を潤滑するための軸受潤滑流体(例えば潤滑油)を供給する軸受潤滑システム17を有している。軸受潤滑システム17は、軸受空間7,8から流出した軸受潤滑流体を回収して貯留する供給タンク18と、供給タンク18から軸受潤滑流体を送出する潤滑ポンプ19と、潤滑ポンプ19から吐出された軸受潤滑流体を冷却する冷却器20とを有する。また、スクリュ圧縮装置1は、軸受潤滑流体をスライド弁16を駆動する流体圧シリンダ21の作動媒体としても利用するようになっている。具体的には、スクリュ圧縮装置1は、供給タンク18から軸受潤滑流体を圧送する駆動ポンプ22と、流体圧シリンダ21の2つのポートのいずれに駆動ポンプ22から圧送される軸受潤滑流体を供給するかを選択する3位置切換弁23とを有している。
 また、スクリュ圧縮装置1は、潤滑流体分離回収器3によって対象気体から分離したロータ潤滑流体を、対象気体の圧力によって、冷却器24を介してスクリュ圧縮機2のロータ室5の吸込部に環流させるロータ潤滑流路(ロータ潤滑流体供給手段)25を有している。これにより、ロータ潤滑流体は、スクリュ圧縮装置1の内部で循環する。
 スクリュ圧縮装置1では、軸受潤滑流体は、メカニカルシール13,14にも供給されている。メカニカルシール13,14は、それぞれ、ハウジング4に気密に固定された2つのステータと、2つのロータの間でロータ軸9に気密に固定され、ロータ軸9と共に回転するロータとからなり、ステータとロータとが互いに摺接し合う。このステータとロータとの摺接面に軸受潤滑流体を供給することで、ステータとロータとの間のシールが完全となり、ロータ室5と軸受空間7,8とがそれぞれ隔離される。なお、メカニカルシール13,14に供給された軸受潤滑流体は、ハウジング4と、ステータとロータとで形成される密閉空間に閉じこめられるので、メカニカルシール13,14からロータ室5や軸受空間7,8に漏出しない。
 スクリュ圧縮装置1では、対象気体が軸受空間7,8に侵入しないので、軸受10,11が対象気体の腐食性により浸食されて寿命が短くなるおそれがない。また、軸受潤滑流体は、ロータ潤滑流体とは独立した系内で循環し、対象気体およびロータ潤滑流体と接触することがないので、軸受潤滑流体が対象気体によって劣化(粘度低下)させられることがなく、軸受10,11の潤滑および冷却の最適な条件を維持することができる。
 なお、本実施形態において、タイミングギア12を省略して、スクリュロータ6同士の咬合によって雌雄のスクリュロータ6を同期回転させてもよい。
 図2に、本発明の第2実施形態のスクリュ圧縮装置1aを示す。なお、これ以降の説明において、先に説明した実施形態と同じ構成要素には、同じ符号を付して重複する説明を省略する。
 スクリュ圧縮装置1aは、定量式の補給ポンプ26によりリザーバ27から、常に一定量のロータ潤滑流体が供給される。補給ポンプ26からの供給量は、少量であるので、潤滑流体分離回収器3からも、スクリュ圧縮機2にロータ潤滑流体が供給される。潤滑流体分離回収器3は、レベルスイッチ28を有し、その液面が所定範囲に収まるように、滑流体分離回収器3からロータ潤滑流体を排出する排出バルブ29の開度を制御するようになっている。
 対象気体が例えば腐食性分を含むガスであり、ロータ潤滑流体が潤滑油である場合、スクリュ圧縮装置1の運転に伴い、ロータ潤滑流体に対象気体が少しずつ溶け込んで、ロータ潤滑流体を劣化させる。しかしながら、本実施形態では、新しいロータ潤滑流体が常に供給されるので、ロータ潤滑流体を一定以上の品質に保つことができる。
 また、スクリュ圧縮装置1から排出されるロータ潤滑流体は、他のプラントで消費してもよい。例えば、石油精製プラントでは、ロータ潤滑流体として使用し得る液化重炭化水素を消費する。これにより、液化重炭化水素をロータ潤滑流体として使用するスクリュ圧縮装置1から排出したロータ潤滑流体を廃液処理する必要がなくなる。
 図3に、本発明の第3実施形態のスクリュ圧縮装置1bを示す。本実施形態では、スクリュ圧縮機2のロータ室5に供給されるロータ潤滑流体は、全量がスクリュ圧縮装置1の外部から供給され、潤滑流体分離回収器3において回収されたロータ潤滑流体は、全てスクリュ圧縮装置1の外部に排出される。
 例えば、石油精製プラントでは、副生成物として、オクタンのような液化重炭化水素が生成される。通常、これらは、精製処理されるが、本実施形態のスクリュ圧縮装置1bにおいて、ロータ潤滑流体として使用してから、精製処理することで、ロータ潤滑流体に溶け込んだ対象気体も同時に処理され、環境汚染の心配がない。
 さらに、図4に、本発明の第4実施形態のスクリュ圧縮装置1cを示す。スクリュ圧縮装置1は、ロータ室5と軸受空間7,8との間の軸封のために、カーボンリングシール30,31を備える。また、スクリュ圧縮装置1cは、潤滑流体分離回収器3でロータ潤滑流体を分離した対象気体の一部を、カーボンリングシール30,31の途中に導入している。なお、吸込側のカーボンリングシールには、オリフィス32を介して対象気体を導入することで、その供給量を調整している。
 また、本実施形態では、軸受空間7,8から、軸受潤滑流体だけでなく、カーボンリングシール30,31に供給された対象気体の一部も流出する。これらは、いずれも、有圧タンク33に回収される。有圧タンク33は、上部空間がスクリュ圧縮機2の吸込側に連通し、上部空間の対象気体がスクリュ圧縮機2の吸込圧によって吸引され、内圧をスクリュ圧縮機2の吸込圧と同じに保つ。また、潤滑ポンプ19から吐出された軸受潤滑流体の一部は、再生装置34を介して有圧タンク33に環流させられ、再生装置34において溶け込んだ対象気体が除去されて、その品質を保つようになっている。
 カーボンリングシール30,31は、ロータ軸9との間に微小な隙間を形成する複数のカーボンリング35がハウジング4に気密に保持され、ロータ軸9とカーボンリング35との隙間を対象気体が通過する際の圧損により、通過する対象気体の量を極少量に制限するものである。
 また、本実施形態では、カーボンリングシール30,31の途中にロータ室5および軸受空間7,8よりも高圧の対象気体を導入している。これにより、カーボンリングシール30,31の途中に導入した対象気体がロータ室5および軸受空間7,8に流れ込み、ロータ室5からロータ潤滑流体を含んだ対象気体を軸受空間7,8に流入させないので、軸受潤滑流体にロータ潤滑流体が混入することがない。
 また、本実施形態において、軸受空間7,8に流入する対象気体は、潤滑流体の搬送媒体ではないため、その流量が非常に少量でよい。よって、本実施形態では、軸受潤滑流体に与える影響は大きくなく、コンパクトな再生装置34で軸受潤滑流体の品質を維持することが可能になっている。
 本実施形態では、完全に気密な軸封は、ロータ軸9がハウジング4から突出する部分に設けたメカニカルシール15だけでよい。また、本実施形態のように対象気体と接触する軸受潤滑流体には、米国石油協会の潤滑油システム規格のような厳密な規格が要求されないので、その構造が大きなコスト要因にはならない。
 1…スクリュ圧縮装置
 2…スクリュ圧縮機
 3…潤滑流体分離回収器
 4…ハウジング
 5…ロータ室
 6…スクリュロータ
 7,8…軸受室
 9…ロータ軸
 10,11…軸受
 13,14…メカニカルシール(軸封部材)
 15…メカニカルシール
 16…スライド弁
 17…軸受潤滑システム
 19…潤滑ポンプ
 20…冷却器
 21…流体圧シリンダ
 24…冷却器
 25…ロータ潤滑流路(ロータ潤滑流体供給手段)
 30,31…カーボンリングシール(軸封部材)
 35…カーボンリング

Claims (6)

  1.  ハウジングに形成したロータ室内に雌雄咬合して回転可能に収容され、対象気体をロータ潤滑流体と共に圧縮するスクリュロータのロータ軸を、前記ロータ室に隣接して前記ハウジングに形成された軸受空間内に配設した軸受によって支持し、前記ロータ室と前記軸受空間とを隔離する軸封部材を備えるスクリュ圧縮機と、
     前記スクリュ圧縮機が吐出した前記対象気体から前記ロータ潤滑流体を分離する潤滑流体分離回収器と、
     前記潤滑流体分離回収器が分離した前記ロータ潤滑流体を前記ロータ室に導入するロータ潤滑流体供給手段と、
     前記軸受空間に軸受潤滑流体を供給し、前記軸受空間から流出する前記軸受潤滑流体を前記軸受空間に環流させる軸受潤滑システムとを有することを特徴とするスクリュ圧縮装置。
  2.  前記潤滑流体分離回収器に回収した前記ロータ潤滑流体を、前記ロータ室内に環流させるロータ潤滑流路をさらに有することを特徴とする請求項1に記載のスクリュ圧縮装置。
  3.  前記軸受潤滑流体は、前記軸封部材にも供給されることを特徴とする請求項1に記載のスクリュ圧縮装置。
  4.  前記軸封部材は、前記ロータ室と前記軸受空間とを複数の狭い隙間を介して接続するように構成され、
     前記軸封部材の途中に、前記潤滑流体分離回収器で前記ロータ潤滑流体を分離された前記対象気体の一部が供給されることを特徴とする請求項3に記載のスクリュ圧縮装置。
  5.  前記スクリュ圧縮機は、前記対象気体の前記ロータ室からの吐出位置を制御するスライド弁を備えることを特徴とする請求項1に記載のスクリュ圧縮装置。
  6.  前記軸受潤滑流体は、前記スライド弁の作動媒体を兼ねることを特徴とする請求項5に記載のスクリュ圧縮機。
PCT/JP2009/060120 2008-06-13 2009-06-03 スクリュ圧縮装置 WO2009150967A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09762397.9A EP2306027B1 (en) 2008-06-13 2009-06-03 Screw compression apparatus
CN200980122341.3A CN102066760B (zh) 2008-06-13 2009-06-03 螺旋压缩装置
BRPI0914997-0A BRPI0914997B1 (pt) 2008-06-13 2009-06-03 Aparelho de compressão de parafuso
US12/995,076 US8512019B2 (en) 2008-06-13 2009-06-03 Screw compression apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-155107 2008-06-13
JP2008155107A JP4431184B2 (ja) 2008-06-13 2008-06-13 スクリュ圧縮装置

Publications (1)

Publication Number Publication Date
WO2009150967A1 true WO2009150967A1 (ja) 2009-12-17

Family

ID=41416676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060120 WO2009150967A1 (ja) 2008-06-13 2009-06-03 スクリュ圧縮装置

Country Status (7)

Country Link
US (1) US8512019B2 (ja)
EP (1) EP2306027B1 (ja)
JP (1) JP4431184B2 (ja)
CN (1) CN102066760B (ja)
BR (1) BRPI0914997B1 (ja)
RU (1) RU2466298C2 (ja)
WO (1) WO2009150967A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458215A3 (en) * 2010-11-26 2016-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Capacity control for a screw compressor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896834B1 (en) * 2012-09-14 2017-10-25 Mayekawa Mfg. Co., Ltd. Oil-cooled screw compressor system and oil-cooled screw compressor
CN103867449B (zh) * 2012-12-18 2016-05-11 珠海格力电器股份有限公司 压缩机供油***及控制方法
WO2014183204A1 (en) * 2013-05-17 2014-11-20 Victor Juchymenko Methods and systems for sealing rotating equipment such as expanders or compressors
JP5950870B2 (ja) * 2013-06-20 2016-07-13 株式会社神戸製鋼所 油冷式スクリュ圧縮機
CN105829716B (zh) * 2013-12-18 2019-05-31 开利公司 提高压缩机轴承可靠性的方法
RU2559411C2 (ru) * 2013-12-26 2015-08-10 Общество с ограниченной ответственностью "Научно-производственное предприятие ВИКОМ-М" Винтовая маслозаполненная компрессорная установка (варианты) и система смазки подшипников винтовой маслозаполненной компрессорной установки
CN104454462A (zh) * 2014-11-27 2015-03-25 山东明天机械有限公司 一种蒸汽压缩机机械密封冷却用循环水***
DE102015007552A1 (de) * 2015-06-16 2016-12-22 Man Diesel & Turbo Se Schraubenmaschine und Verfahren zum Betreiben derselben
BR112018011758B1 (pt) * 2015-12-11 2022-12-20 Atlas Copco Airpower, Naamloze Vennootschap Método para controlar injeção de líquido de dispositivo compressor e dispositivo compressor injetado com líquido
DE202016100419U1 (de) 2016-01-28 2017-05-02 Hugo Vogelsang Maschinenbau Gmbh Kolben für eine Drehkolbenpumpe
JP6778581B2 (ja) * 2016-10-25 2020-11-04 株式会社神戸製鋼所 オイルフリースクリュ圧縮機
DE202016106107U1 (de) * 2016-10-31 2018-02-01 Hugo Vogelsang Maschinenbau Gmbh Drehkolbenpumpe mit Sperrkammerdichtung
JP6707021B2 (ja) * 2016-12-22 2020-06-10 株式会社日立産機システム スクリュー圧縮機
MX2020002121A (es) * 2017-08-29 2020-07-20 Atlas Copco Airpower Nv Maquina provista de una bomba de aceite y un metodo para arrancar dicha maquina.
JP6826512B2 (ja) 2017-09-06 2021-02-03 株式会社神戸製鋼所 圧縮装置
CA3016521A1 (en) * 2017-09-06 2019-03-06 Joy Global Surface Mining Inc Lubrication system for a compressor
JP7146478B2 (ja) * 2018-06-22 2022-10-04 株式会社神戸製鋼所 スクリュー圧縮機及びガス圧縮システム
EP3742079A1 (en) * 2019-05-21 2020-11-25 Carrier Corporation Refrigeration apparatus
AU2021202410A1 (en) 2020-04-21 2021-11-11 Joy Global Surface Mining Inc Lubrication system for a compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008684A (en) * 1977-11-28 1979-06-06 Stal Refrigeration Ab Plant for Compressing a Gas
JPS6426093A (en) 1987-07-02 1989-01-27 Freudenberg Carl Fa Engine mount
JPH10501862A (ja) * 1994-06-21 1998-02-17 スベンスカ ロツタア マスキナア アクチボラグ 液体循環システムを備えた回転式容積圧縮機
WO2006013636A1 (ja) * 2004-08-03 2006-02-09 Mayekawa Mfg.Co.,Ltd. 多系統潤滑式スクリュー圧縮機の潤滑油供給システム及び運転方法
JP3803812B2 (ja) * 1996-09-12 2006-08-02 北越工業株式会社 スクリュロータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721747A (en) * 1951-12-21 1955-10-25 Read Standard Corp Hydraulic shaft seal
US3734653A (en) * 1971-08-23 1973-05-22 S Edstrom Screw compressor
GB1484994A (en) * 1973-09-03 1977-09-08 Svenska Rotor Maskiner Ab Shaft seal system for screw compressors
DE2948992A1 (de) * 1979-12-05 1981-06-11 Karl Prof.Dr.-Ing. 3000 Hannover Bammert Rotorverdichter, insbesondere schraubenrotorverdichter, mit schmiermittelzufuhr zu und schmiermitteldrainage von den lagern
SU1714200A1 (ru) * 1990-04-09 1992-02-23 Ленинградский технологический институт холодильной промышленности Винтовой компрессор
US5135374A (en) * 1990-06-30 1992-08-04 Kabushiki Kaisha Kobe Seiko Sho Oil flooded screw compressor with thrust compensation control
JP3456090B2 (ja) * 1996-05-14 2003-10-14 北越工業株式会社 油冷式スクリュ圧縮機
BE1010376A3 (nl) * 1996-06-19 1998-07-07 Atlas Copco Airpower Nv Rotatieve kompressor.
JPH1026093A (ja) 1996-07-10 1998-01-27 Kobe Steel Ltd 油冷式容積形圧縮機
KR20010108082A (ko) * 1999-01-11 2001-12-07 메리 이. 보울러 스크루 압축기
CN100564808C (zh) * 2005-02-24 2009-12-02 开利公司 压缩机的卸载阀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008684A (en) * 1977-11-28 1979-06-06 Stal Refrigeration Ab Plant for Compressing a Gas
JPS6426093A (en) 1987-07-02 1989-01-27 Freudenberg Carl Fa Engine mount
JPH10501862A (ja) * 1994-06-21 1998-02-17 スベンスカ ロツタア マスキナア アクチボラグ 液体循環システムを備えた回転式容積圧縮機
JP3803812B2 (ja) * 1996-09-12 2006-08-02 北越工業株式会社 スクリュロータ
WO2006013636A1 (ja) * 2004-08-03 2006-02-09 Mayekawa Mfg.Co.,Ltd. 多系統潤滑式スクリュー圧縮機の潤滑油供給システム及び運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458215A3 (en) * 2010-11-26 2016-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Capacity control for a screw compressor

Also Published As

Publication number Publication date
CN102066760A (zh) 2011-05-18
JP4431184B2 (ja) 2010-03-10
EP2306027A4 (en) 2015-01-21
CN102066760B (zh) 2014-12-24
EP2306027A1 (en) 2011-04-06
BRPI0914997A2 (pt) 2015-10-27
US20110076174A1 (en) 2011-03-31
EP2306027B1 (en) 2020-11-18
RU2011100838A (ru) 2012-07-20
JP2009299584A (ja) 2009-12-24
US8512019B2 (en) 2013-08-20
RU2466298C2 (ru) 2012-11-10
BRPI0914997B1 (pt) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2009150967A1 (ja) スクリュ圧縮装置
EP2314874B1 (en) Oil-free screw compressor
US9568001B2 (en) Oil-cooled screw compressor system and oil-cooled screw compressor
US8714910B2 (en) Compressor unit and assembly method
JP2008513676A (ja) 着脱可能なオイル貯蔵カートリッジを備えたポータブルベーン式ロータリ真空ポンプ
US9658001B2 (en) Stuffing box cooling system
KR20120090851A (ko) 물분사식 스크류 압축기
WO2008002148A1 (en) Method and apparatus for protection of compressor modules against influx of contaminated gas
US20080112832A1 (en) Hermetic screw compressor
CN1371452A (zh) 密闭型电动压缩机
JP4145830B2 (ja) 油冷式圧縮機
CN112105822B (zh) 带有滑动环密封件的磁力泵
JP2008232005A (ja) スクリュ圧縮機
KR101355114B1 (ko) 전동 스크롤 압축기의 급유 시스템
CN112969857B (zh) 无油注水式螺杆空气压缩机
CN118088506A (zh) 压力交换器
CN113167278B (zh) 螺杆压缩机
US20220042512A1 (en) Subsea pump system with process lubricated bearings
DE19812819B4 (de) Schraubenverdichter mit mechanischer Gleitringwellenabdichtung
KR20030000735A (ko) 개선된 시일구조를 가지는 진공펌프 장치
US6033196A (en) Rotary pump
JP2006177299A (ja) 電動ポンプ
JP2005069186A (ja) 油冷式スクリュ圧縮機
JP2014074367A (ja) スクリュ圧縮機
JP2004053199A (ja) 圧縮機における冷却媒体の供給方法及び供給機構

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122341.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12995076

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009762397

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8022/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011100838

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0914997

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101210