WO2009146976A1 - Vorrichtung und verfahren zum ladezustandsausgleich von fahrzeug-batterien - Google Patents

Vorrichtung und verfahren zum ladezustandsausgleich von fahrzeug-batterien Download PDF

Info

Publication number
WO2009146976A1
WO2009146976A1 PCT/EP2009/054739 EP2009054739W WO2009146976A1 WO 2009146976 A1 WO2009146976 A1 WO 2009146976A1 EP 2009054739 W EP2009054739 W EP 2009054739W WO 2009146976 A1 WO2009146976 A1 WO 2009146976A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
cells
state
battery
vehicle
Prior art date
Application number
PCT/EP2009/054739
Other languages
English (en)
French (fr)
Inventor
Jochen Fassnacht
Uwe Wiedemann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009146976A1 publication Critical patent/WO2009146976A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for charge state compensation of vehicle batteries according to the preamble of patent claim 1, and to a control device according to the preamble of patent claim 9.
  • Known vehicle batteries such as e.g. NiMH batteries, Lilon batteries or DLC energy storage devices (DLC: double-layer capacitors) consist of several series-connected single cells each having a partial voltage of a few volts, e.g. 3.6 V, generate. The number of cells determines the nominal voltage of the battery, which is e.g. 12 V or 42 V, in hybrid vehicles but also up to 500 V.
  • DLC double-layer capacitors
  • State of charge SOC and the state of health of the individual cells usually vary in height. This affects the performance of the battery, since the cell with the lowest state of charge and the cell with the highest state of charge for the charging and discharging of the battery have a limiting effect. That the battery can not be recharged until the fullest cell is fully charged and will not be discharged until the charge of the weakest cell is exhausted. The deviation of the individual cells from each other usually increases with increasing life or load of the battery. In order to ensure a reliable power supply of an electrical network, it is necessary to monitor the individual cells of the battery and regularly perform a charge equalization.
  • Simple embodiments include one or more resistors that discharge the cells to ground. More elaborate circuits are designed so that the cells balance with each other by charging a cell with higher energy Charge state of another cell is supplied with a lower state of charge until a state of charge compensation has taken place.
  • the charge balance usually takes place outside of the normal driving operation, since the state of charge of the cells can be easily determined only in this driving condition by measuring the rest voltage. By continuously measuring the states of charge and discharging the more heavily charged single cells, finally, the charge balance is established.
  • this method has the disadvantage that it must be carried out in a follow-up phase, outside the regular driving operation. Because of the time required for charge equalization, usually more than 1 hour, it may happen that the process is interrupted by a restart of the vehicle. In addition, by discharging the cells, especially at low temperatures, it may happen that the battery is discharged so far that the threshold for a restart of the vehicle is exceeded.
  • An essential aspect of the invention is to determine once the state of charge of individual, preferably all cells at the beginning of the process, and then for at least one of these cells, depending on their state of charge, a charge amount or an equivalent size, such as. a period of time to determine that the cell should be unloaded.
  • the state of charge of the cells is preferably determined in a resting phase of the battery by voltage measurement.
  • the unloading of the cells takes place according to the invention during the operation of the vehicle and can optionally be carried out in several steps. In this case, operating phases in which the battery is not or only slightly loaded, such. if the vehicle is at a traffic light, particularly suitable. This method thus has the significant advantage that the
  • Charge state compensation can be performed during operation of the vehicle. In addition, since the battery is charged regularly during the ferry service, excessive discharge of the battery can be avoided.
  • the state of charge of the individual cells is measured at the beginning of a journey, even before the battery is used to drive the vehicle.
  • a suitable time is, for example, immediately after the action "ignition ON” or after the activation of the control unit that performs the measurement.
  • This control unit can, for example, in a known manner by operation of the radio remote control for the central locking, the operation of a door handle or be activated in any other way.
  • the state of charge of the cells is preferably determined in the idle state (cell voltage no longer changes appreciably without charging or discharging) of the battery. At rest, there is a defined relationship between the rest voltage and the state of charge of the cells. Thus, from the rest voltage of the state of charge of the individual cells can be determined relatively accurately.
  • those cells which are more heavily charged are preferably discharged to the charge level of those cells with the lowest state of charge. After that, all cells have the same state of charge again.
  • the more highly charged cells but also up to a predetermined charge level, z. B. be discharged to an average level of charge.
  • the discharge of the individual cells can be carried out in several steps, in particular in operating phases in which the battery is not or only slightly loaded. This has the advantage that the energy supply of the electrical consumers is not affected by the discharge.
  • a particularly suitable state is especially at standstill of the vehicle when the vehicle z. B. is in front of a traffic light.
  • the state of charge of certain cells can also be increased before or during the discharge, so that the state of charge of the battery does not change or only insignificantly changes as a result of the discharging.
  • the performance potential of the battery is thus essentially maintained.
  • a charge state compensation device comprises a device which is connected to the individual cells and serves to measure the rest voltage.
  • the device further comprises a discharge circuit for discharging the stronger cells to a charge level of the weaker cells.
  • the measuring of the quiescent voltage and discharging the cells is controlled by means of a control device.
  • FIG. 1 is a schematic block diagram of a device for charge state compensation of a vehicle battery. and FIG. 2 shows the essential method steps of a method for charge state compensation.
  • Fig. 1 shows an arrangement for charge state equalization of the cells 2a-2n of a vehicle battery 1.
  • the vehicle battery 1 comprises a plurality of series-connected cells 2a-2n each having a partial voltage of a few volts, e.g. 3.6 V, deliver.
  • the battery 1 in the present example is a hybrid vehicle of a hybrid vehicle, e.g. has more than 100 cells 2a-2n and provides a voltage in the range of several hundred volts.
  • the individual cells 2a-2n are connected to a discharge circuit 7 via associated terminals 6a to 6n + 1.
  • a control unit 4 is provided, which is connected via the terminals 6a to 6n + 1 with the individual cells 2a-2n.
  • the control unit 4 comprises an algorithm 5 which determines the state of charge (SOC) of the individual cells 2a-2n from the cell voltage and also controls the discharging process.
  • step 10 For the purpose of charge state equalization of the cells 2a-2n, a method as exemplified in FIG. 2 is performed. Therein, it is first checked in step 10 whether the control unit 4 is active. As soon as the control unit 4 is active, the quiescent voltage of the individual cells 2a-2n is measured in step 1 1, and the state of charge (SOC) is determined therefrom. The voltage measurement is carried out in the starting phase of the vehicle, even before the battery is used to drive the vehicle. From the states of charge (SOC) of the individual cells 2a-2n is calculated which each cell 2a-2n to be discharged until the state of charge corresponds to that of the weakest cell then an amount of charge in step 12 (0 Q). With the help of Ohm's law and knowledge of the discharge resistance, it is also possible to use the cell voltage to optionally calculate a time duration t 0 which must be discharged by each cell 2a-2n (step 12).
  • SOC state of charge
  • step 13 it is checked whether the discharge period determined for the individual cells has been reached or the corresponding amount of charge has already been reduced. If one of the cells 2a-2n has been discharged to the desired charge level, the discharge process for that cell ends (case J in step 15). The other cells that have not been fully discharged (case N in step 15) will continue to be discharged until complete charge equalization has occurred. The process branches back to step 13 in this case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Ladezustandsausgleich von Fahrzeug-Batterien (1), insbesondere Lilonen-Batterien mit mehreren Zellen (2a-2n). Der Ladezustandsausgleich kann während des Fahrbetriebs durchgeführt werden, wenn zunächst der Ladezustand (SOC) einzelner Zellen (2a-2n) ermittelt, danach für wenigstens zwei dieser Zellen (2a-2n) eine Ladungsmenge, die die Zellen (2a-2n) entladen werden sollen, oder eine dazu äquivalente Größe, wie z.B. eine Zeit, bestimmt wird und die einzelnen Zellen (2a-2n) während des Fahrbetriebs entsprechend der berechneten Ladungsmenge entladen werden.

Description

Beschreibung
Titel
Vorrichtung und Verfahren zum Ladezustandsausqleich von Fahrzeug-Batterien
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Ladezustandsausgleich von Fahrzeug-Batterien gemäß dem Oberbegriff des Patentanspruchs 1 , sowie ein Steuergerät gemäß dem Oberbegriff des Patentanspruchs 9.
Bekannte Fahrzeug-Batterien wie z.B. NiMH-Batterien, Lilonen-Batterien oder DLC- Energiespeicher (DLC: Doppelschichtkondensator), bestehen aus mehreren in Reihe geschalteten Einzelzellen, die jeweils eine Teilspannung von wenigen Volt, z.B. 3.6 V, erzeugen. Die Anzahl der Zellen bestimmt dabei die Nennspannung der Batterie, die z.B. 12 V oder 42 V, bei Hybrid-Fahrzeugen aber auch bis zu 500 V betragen kann.
Aufgrund fertigungstechnischer Toleranzen oder thermischer Einflüsse sind der
Ladezustand SOC (State of Charge) und die Leistungsfähig SOH (State of Health) der einzelnen Zellen üblicherweise unterschiedlich hoch. Dies beeinträchtigt die Leistungsfähigkeit der Batterie, da diejenige Zelle mit dem geringsten Ladezustand und diejenige Zelle mit dem höchsten Ladezustand für das Auf- bzw. Entladen der Batterie limitierend wirken. D.h. die Batterie kann nicht weiter aufgeladen werden, als bis die vollste Zelle voll aufgeladen ist, und nicht weiter entladen werden, als bis die Ladung der schwächsten Zelle verbraucht ist. Die Abweichung der einzelnen Zellen voneinander nimmt in der Regel mit zunehmender Lebensdauer bzw. Belastung der Batterie zu. Um eine zuverlässige Energieversorgung eines elektrischen Netzes zu gewährleisten, ist es notwendig, die einzelnen Zellen der Batterie zu überwachen und regelmäßig einen Ladungsausgleich durchzuführen.
Aus dem Stand der Technik sind verschiedene Arten von Ladungsausgleichsschaltungen bekannt. Einfache Ausführungen umfassen einen oder mehrere Widerstände, über die die Zellen nach Masse entladen werden. Aufwändigere Schaltungen sind so ausgelegt, dass sich die Zellen untereinander abgleichen, indem die Ladung einer Zelle mit höherem Ladezustand einer anderen Zelle mit niedrigerem Ladezustand zugeführt wird, bis ein Ladezustandsausgleich stattgefunden hat.
Der Ladungsausgleich findet üblicherweise außerhalb des normalen Fahrbetriebs statt, da der Ladezustand der Zellen nur in diesem Fahrzustand durch Messung der Ruhespannung einfach ermittelt werden kann. Durch kontinuierliches Messen der Ladezustände und Entladen der stärker geladenen Einzelzellen wird schließlich der Ladungsausgleich hergestellt. Dieses Verfahren hat jedoch den Nachteil, dass es in einer Nachlaufphase, außerhalb des regulären Fahrbetriebs, durchgeführt werden muss. Wegen der für den Ladungsausgleich benötigten Zeitdauer von üblicherweise mehr als 1 Stunde kann es vorkommen, dass der Prozess durch einen erneuten Start des Fahrzeugs unterbrochen wird. Darüber hinaus kann es durch das Entladen der Zellen, insbesondere bei niedrigen Temperaturen, dazu kommen, dass die Batterie so weit entladen wird, dass die Schwelle für einen Neustart des Fahrzeugs unterschritten wird.
Offenbarung der Erfindung
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zu schaffen, mittels dessen bzw. derer der Ladungsausgleich auch während des normalen Fahrbetriebs durchgeführt werden kann.
Gelöst wird diese Aufgabe gemäß der Erfindung durch die im Patentanspruch 1 sowie im Patentanspruch 9 angegebenen Merkmale. Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.
Ein wesentlicher Aspekt der Erfindung besteht darin, den Ladezustand einzelner, vorzugsweise aller Zellen zu Beginn des Verfahrens einmal zu ermitteln, und dann für wenigstens eine dieser Zellen, in Abhängigkeit von deren Ladezustand eine Ladungsmenge oder eine dazu äquivalente Größe, wie z.B. eine Zeitdauer, zu bestimmen, die die Zelle entladen werden soll. Der Ladezustand der Zellen wird vorzugsweise in einer Ruhephase der Batterie durch Spannungsmessung ermittelt. Das Entladen der Zellen erfolgt erfindungsgemäß während des Betriebs des Fahrzeugs und kann gegebenenfalls in mehreren Schritten ausgeführt werden. Dabei sind Betriebsphasen, in denen die Batterie nicht oder nur gering belastet ist, wie z.B. wenn das Fahrzeug an einer Ampel steht, besonders geeignet. Dieses Verfahren hat somit den wesentlichen Vorteil, dass der
Ladezustandsausgleich während des Betriebs des Fahrzeugs durchgeführt werden kann. Da die Batterie im Fährbetrieb regelmäßig aufgeladen wird, kann außerdem eine zu starke Entladung der Batterie vermieden werden.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird der Ladezustand der einzelnen Zellen zu Beginn einer Fahrt gemessen, noch bevor die Batterie zum Antrieb des Fahrzeugs genutzt wird. Ein geeigneter Zeitpunkt ist beispielsweise unmittelbar nach der Aktion „Zündung EIN" oder nach der Aktivierung desjenigen Steuergeräts, das die Messung durchführt. Dieses Steuergerät kann z. B. in bekannter Weise durch Bedienung der Funk- Fernbedienung für die Zentralverriegelung, die Betätigung eines Türgriffs oder in sonstiger Weise aktiviert werden.
Der Ladezustand der Zellen wird vorzugsweise im Ruhezustand (Zellspannung ändert sich ohne Laden oder Entladen nicht mehr merklich) der Batterie bestimmt. Im Ruhezustand besteht ein definierter Zusammenhang zwischen der Ruhespannung und dem Ladezustand der Zellen. Somit kann aus der Ruhespannung der Ladezustand der einzelnen Zellen relativ genau bestimmt werden.
Beim Entladen werden diejenigen Zellen, die stärker geladen sind, vorzugsweise bis auf das Ladungsniveau derjenigen Zellen mit dem geringsten Ladezustand entladen. Danach haben alle Zellen wieder den gleichen Ladezustand. Wahlweise könnten die stärker aufgeladenen Zellen aber auch bis zu einem vorgegebenen Ladungsniveau, z. B. einem durchschnittlichen Ladungsniveau entladen werden.
Das Entladen der einzelnen Zellen kann in mehreren Schritten durchgeführt werden, insbesondere in Betriebsphasen, in denen die Batterie nicht oder nur gering belastet wird. Dies hat den Vorteil, dass die Energieversorgung der elektrischen Verbraucher durch das Entladen nicht beeinträchtigt wird. Ein besonders geeigneter Zustand ist insbesondere im Stillstand des Fahrzeugs, wenn das Fahrzeug z. B. vor einer Ampel steht.
Gemäß einer speziellen Ausführungsform der Erfindung kann der Ladezustand bestimmter Zellen vor oder während des Entladens auch erhöht werden, so dass sich der Ladezustand der Batterie durch das Entladen nicht oder nur unwesentlich ändert. Das Leistungspotenzial der Batterie bleibt somit im Wesentlichen erhalten.
Eine erfindungsgemäße Vorrichtung zum Ladezustandsausgleich umfasst eine Einrichtung, die mit den einzelnen Zellen verbunden ist und zur Messung der Ruhespannung dient. Die Vorrichtung umfasst ferner eine Entladeschaltung zum Entladen der stärkeren Zellen auf ein Ladungsniveau der schwächeren Zellen. Das Messen der Ruhespannung und Entladen der Zellen wird mittels eines Steuergeräts gesteuert.
Kurze Beschreibung der Zeichnungen
Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:
Fig. 1 eine schematische Blockdarstellung einer Vorrichtung zum Ladezustandsausgleich einer Fahrzeug-Batterie; und Fig. 2 die wesentlichen Verfahrensschritte eines Verfahrens zum Ladezustandsausgleich.
Ausführungsformen der Erfindung
Fig. 1 zeigt eine Anordnung zum Ladezustandsausgleich der Zellen 2a-2n einer Fahrzeug- Batterie 1. Die Fahrzeug-Batterie 1 umfasst eine Vielzahl von in Serie geschalteten Zellen 2a-2n, die jeweils eine Teilspannung von einigen Volt, z.B. 3.6 V, liefern. Bei der Batterie 1 handelt es sich im vorliegenden Beispiel um eine Lilonen-Batterie eines Hybrid-Fahrzeugs, die z.B. mehr als 100 Zellen 2a-2n aufweist und eine Spannung im Bereich von mehreren hundert Volt bereit stellt.
Die einzelnen Zellen 2a-2n sind über zugehörige Anschlüsse 6a bis 6n+1 mit einer Entladeschaltung 7 verbunden. Außerdem ist ein Steuergerät 4 vorgesehen, welches über die Anschlüsse 6a bis 6n+1 mit den einzelnen Zellen 2a-2n verbunden ist. Das Steuergerät 4 umfasst einen Algorithmus 5, der aus der Zellenspannung den Ladezustand (SOC) der einzelnen Zellen 2a-2n bestimmt und ferner den Entladevorgang steuert.
Zum Zwecke des Ladezustandsausgleichs der Zellen 2a-2n wird ein Verfahren durchgeführt, wie es beispielhaft in Figur 2 dargestellt ist. Darin wird in Schritt 10 zunächst überprüft, ob das Steuergerät 4 aktiv ist. Sobald das Steuergerät 4 aktiv ist, wird in Schritt 1 1 die Ruhespannung der einzelnen Zellen 2a-2n gemessen und daraus der Ladezustand (SOC) ermittelt. Die Spannungsmessung wird dabei in der Startphase des Fahrzeugs durchgeführt, noch bevor die Batterie zum Antrieb des Fahrzeugs genutzt wird. Aus den Ladezuständen (SOC) der einzelnen Zellen 2a-2n wird dann in Schritt 12 eine Ladungsmenge (Q0) berechnet, die jede Zelle 2a-2n entladen werden muss, bis deren Ladezustand demjenigen der schwächsten Zelle entspricht. Mit Hilfe des Ohmschen Gesetzes und Kenntnis des Entlade-Widerstandes kann anhand der Zellspannung wahlweise auch eine Zeitdauer t0 berechnet werden, die jede Zelle 2a-2n entladen werden muss (Schritt 12).
Die folgenden Schritte 13 bis 15 beschreiben den Entladevorgang. Dabei wird in Schritt 13 zunächst überprüft, ob sich die Batterie gerade in einer Ruhephase befindet, in der sie nur gering belastet ist. Falls ein solcher Zustand erkannt wurde, wird die Entladeschaltung 7 in Schritt 14 aktiviert und eine oder mehrere Zellen entladen. Andernfalls wird der Algorithmus verlassen (Fall N in Schritt 13) und nach einer vorgegebenen Zeit erneut überprüft, ob ein Ruhezustand vorliegt. In Schritt 15 wird überprüft, ob die für die einzelnen Zellen bestimmte Entlade-Zeitdauer erreicht wurde oder die entsprechende Ladungsmenge bereits abgebaut wurde. Falls eine der Zellen 2a-2n auf das gewünschte Ladungsniveau entladen wurde, endet der Entladeprozess für diese Zelle (Fall J in Schritt 15). Die anderen Zellen, die noch nicht vollständig entladen wurden (Fall N in Schritt 15), werden weiterhin entladen, bis ein vollständiger Ladungsausgleich stattgefunden hat. Das Verfahren verzweigt in diesem Fall N zurück zu Schritt 13.
Um die Leistungsfähigkeit der Batterie zu erhalten, kann sie zwischen einzelnen Entladephasen immer wieder aufgeladen werden, so dass sich der Ladezustand der Batterie insgesamt nicht oder nur unwesentlich ändert.

Claims

Ansprüche
1. Verfahren zum Ladezustandsausgleich von Fahrzeug-Batterien (1 ), insbesondere Lilonen-Batterien, mit mehreren Zellen (2a-2n), dadurch gekennzeichnet, dass der Ladezustand (SOC) einzelner Zellen (2a-2n) ermittelt, für wenigstens eine dieser Zellen (2a-2n) eine Ladungsmenge, die die Zelle (2a- 2n) entladen werden soll, oder eine dazu äquivalente Größe (t) bestimmt wird, und die wenigstens eine Zelle (2a-2n) während des Betriebs des Fahrzeugs entsprechend der berechneten Ladungsmenge entladen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Ladezustand (SOC) der Zellen (2a-2n) im Ruhezustand der Batterie (1 ) mittels Spannungsmessung bestimmt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Ladezustand (SOC) in der Startphase des Fahrzeugs, noch bevor die Batterie (1 ) erheblich belastet wird, gemessen wird.
4. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Zellen (2a-2n) im Betrieb des Fahrzeugs auf ein Ladungsniveau derjenigen Zelle mit dem geringsten Ladezustand (SOC) entladen werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zellen (2a-2n) in Betriebsphasen des Fahrzeugs entladen werden, in denen die Batterie (1 ) nicht oder nur gering belastet ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zellen (2a-2n) in mehreren, zeitlich unterbrochenen Betriebsphasen entladen werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Batterie (1 ) oder einzelne Zellen (2a-2n) im Betrieb des Fahrzeugs aufgeladen werden, so dass sich der Ladezustand (SOC) der Batterie (1 ) durch das Entladen der einzelnen Zellen (2a-2n) insgesamt nicht oder nur unwesentlich ändert.
8. Steuergerät, umfassend Mittel zum Durchführen eines der vorstehend beanspruchten Verfahren.
9. Batterie (1 ) mit einer Entladeschaltung (7), die für die Durchführung eines der vorherstehend beanspruchten Verfahren vorgesehen ist.
PCT/EP2009/054739 2008-06-03 2009-04-21 Vorrichtung und verfahren zum ladezustandsausgleich von fahrzeug-batterien WO2009146976A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002190.3 2008-06-03
DE102008002190A DE102008002190A1 (de) 2008-06-03 2008-06-03 Vorrichtung und Verfahren zum Ladezustandsausgleich von Fahrzeug-Batterien

Publications (1)

Publication Number Publication Date
WO2009146976A1 true WO2009146976A1 (de) 2009-12-10

Family

ID=40823471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054739 WO2009146976A1 (de) 2008-06-03 2009-04-21 Vorrichtung und verfahren zum ladezustandsausgleich von fahrzeug-batterien

Country Status (2)

Country Link
DE (1) DE102008002190A1 (de)
WO (1) WO2009146976A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467071A (zh) * 2013-09-23 2015-03-25 罗伯特·博世有限公司 用于蓄电池的充电平衡的方法及用于为蓄电池充电的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220691A1 (de) * 2013-10-14 2015-04-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen eines Batteriestatus einer Fahrzeugbatterie in einem Fahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498950A (en) * 1994-04-29 1996-03-12 Delco Electronics Corp. Battery monitoring, charging and balancing apparatus
EP0795947A2 (de) * 1996-03-14 1997-09-17 Fuji Jukogyo Kabushiki Kaisha Stromversorgungseinheit für Fahrzeuge
EP0814556A2 (de) * 1996-06-21 1997-12-29 Ford Global Technologies, Inc. Verfahren und Vorrichtung zum Batterieladungsausgleich
US20040135546A1 (en) * 2002-11-25 2004-07-15 Tiax, Llc System and method for balancing state of charge among series-connected electrical energy storage units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498950A (en) * 1994-04-29 1996-03-12 Delco Electronics Corp. Battery monitoring, charging and balancing apparatus
EP0795947A2 (de) * 1996-03-14 1997-09-17 Fuji Jukogyo Kabushiki Kaisha Stromversorgungseinheit für Fahrzeuge
EP0814556A2 (de) * 1996-06-21 1997-12-29 Ford Global Technologies, Inc. Verfahren und Vorrichtung zum Batterieladungsausgleich
US20040135546A1 (en) * 2002-11-25 2004-07-15 Tiax, Llc System and method for balancing state of charge among series-connected electrical energy storage units

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467071A (zh) * 2013-09-23 2015-03-25 罗伯特·博世有限公司 用于蓄电池的充电平衡的方法及用于为蓄电池充电的方法

Also Published As

Publication number Publication date
DE102008002190A1 (de) 2009-12-10

Similar Documents

Publication Publication Date Title
DE102014100077B4 (de) Verfahren und systeme zum ausgleichen von batterieabschnitten sowie fahrzeug mit einem solchen system
DE10246383B4 (de) Verfahren und Einrichtung zum Berechnen des Ladewirkungsgrads und der elektrischen Ladungsmenge einer Batterie
WO2006131164A1 (de) Verfahren und vorrichtung zum bestimmten des ladungs- und/oder alterungszustands eines energiespeichers
DE102013113951A1 (de) Verfahren zum Detektieren von Leerlaufsspannungsverschiebungen mittels Optimierung durch Anpassen der Anodenelektrodenhalbzellspannungskurve
DE102014221547A1 (de) Verfahren zur Überwachung des Ladezustands einer Batterie
EP2052271A1 (de) Verfahren zum bestimmen der batteriekapazität anhand kapazitätsabhängiger parameter
EP3095153B1 (de) Verfahren zum ladezustandsausgleich einer batterie
EP1128187A2 (de) Verfahren zur Ermittlung des Ladezustandes von Bleiakkumulatoren
WO2013041656A2 (de) Steuerung einer energie-rückspeisung von einer anzahl von kraftfahrzeug-akkumulatoren in ein energienetz
WO2017194263A1 (de) Verfahren und vorrichtung zum betrieb einer energiespeicherzelle, batteriemodul und fahrzeug
EP2750922B1 (de) Verfahren und vorrichtung zum laden eines energiespeichers eines fahrzeugs
DE102013204885A1 (de) Verfahren zur Reduzierung des Gesamtladungsverlusts von Batterien
EP3708416A1 (de) Verfahren und ladeeinrichtung zur bestimmung einer maximalen speicherkapazität eines energiespeichers
DE102006033629A1 (de) Verfahren und Vorrichtung zum Bestimmen des Zustands einer Batterie
WO2019020303A1 (de) Vorrichtung und verfahren zur symmetrierung eines energiespeichermoduls
EP2856189B1 (de) Verfahren und vorrichtung zum feststellen der tatsächlichen kapazität einer batterie
WO2019072488A1 (de) Energiespeichereinrichtung sowie vorrichtung und verfahren zur bestimmung einer kapazität einer energiespeichereinrichtung
WO2012126722A1 (de) Verfahren zum ermitteln eines ladezustandes einer elektrischen energiespeichervorrichtung und elektrische energiespeichervorrichtung
DE102014108601A1 (de) Verfahren zum Anschließen mehrerer Batterieeinheiten an einen zweipoligen Eingang eines bidirektionalen Batteriewandlers sowie bidirektionaler Batteriewandler und Photovoltaikwechselrichter
WO2009146976A1 (de) Vorrichtung und verfahren zum ladezustandsausgleich von fahrzeug-batterien
DE102018129426B3 (de) Verfahren zum aktiven Ladungsausgleich in Energiespeichern
DE102017200548A1 (de) Verfahren zur Ermittlung einer aktuellen Kennlinie für einen ein Kraftfahrzeug versorgenden elektrochemischen Energiespeicher, Kraftfahrzeug und Server
DE102014221549B4 (de) Verfahren zur Überwachung des Ladezustands einer Batterie
WO2019206623A1 (de) Verfahren zum erfassen von wenigstens einem ruhespannungswert eines hochvoltspeichers
WO2018103946A1 (de) Verfahren, maschinenlesbares speichermedium und elektronische steuereinheit zum betrieb eines elektrischen energiespeichersystems sowie entsprechendes elektrisches energiespeichersystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09757359

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09757359

Country of ref document: EP

Kind code of ref document: A1