WO2009145333A1 - 生体関連分子の相互作用を検出するための方法およびユニット - Google Patents

生体関連分子の相互作用を検出するための方法およびユニット Download PDF

Info

Publication number
WO2009145333A1
WO2009145333A1 PCT/JP2009/059931 JP2009059931W WO2009145333A1 WO 2009145333 A1 WO2009145333 A1 WO 2009145333A1 JP 2009059931 W JP2009059931 W JP 2009059931W WO 2009145333 A1 WO2009145333 A1 WO 2009145333A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
support member
hollow holder
carrier support
hollow
Prior art date
Application number
PCT/JP2009/059931
Other languages
English (en)
French (fr)
Inventor
山野博文
亀井修一
丹花通文
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to CN200980119720.7A priority Critical patent/CN102047122B/zh
Priority to JP2010514568A priority patent/JP4950336B2/ja
Priority to US12/994,990 priority patent/US8778667B2/en
Publication of WO2009145333A1 publication Critical patent/WO2009145333A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays

Definitions

  • the present invention relates to a method for detecting an interaction of biologically relevant molecules using a carrier on which biologically relevant molecules are immobilized, and a unit for use in the method.
  • bio-related molecules include DNA, proteins, sugar chains, cells, etc., whose functions and structures have been elucidated are used in various industrial applications such as drug discovery, clinical testing, food testing, and environmental testing.
  • a sample is brought into contact with a device in which a probe molecule (hereinafter referred to as a ligand) that specifically binds to a biologically relevant molecule (hereinafter referred to as an analyte) to be detected is immobilized on a carrier
  • a probe molecule hereinafter referred to as a ligand
  • an analyte biologically relevant molecule
  • microarrays as devices include DNA microarrays (also called DNA chips), protein microarrays (also called protein chips), cell microarrays (also called cell chips), etc. There is.
  • an analyte contained in the specimen is detected by contacting the specimen that has been fluorescently labeled with a fluorescent substance in advance, and then detecting and measuring the fluorescent signal emitted by the fluorescent substance after washing the microarray. Identify or quantify (Special Table 2) 0 0 6-5 1 5 0 6 5).
  • a microarray such as a DNA chip is usually a slide glass-like size, and the sample is suspended on it and covered with a slide. In the future, it will be necessary to automatically process a large number of microarrays depending on the application. In that case, miniaturization of the microarray is desired, and further development of an efficient means for automatically processing the miniaturized microarray is desired.
  • an object of the present invention is to provide a means for sufficiently contacting a small amount of specimen with a microarray in automatic processing of a miniaturized microarray.
  • the present inventors fixed the microarray on a support member, and when inserting it into a hollow holder containing a reaction solution and reacting it, positioning is performed so that the support member is inserted into the hollow holder without deviation. As a result, it was found that the specimen and the microarray were sufficiently brought into contact with each other, and the present invention was completed.
  • the present invention includes the following inventions.
  • a hollow holder for detecting the interaction of biological molecules using a carrier on which biological molecules are immobilized the hollow holder having an opening at one end and the other end closed.
  • a carrier support member in which a carrier on which a bio-related molecule is immobilized is fixed and can be inserted into the hollow holder, and the carrier support member is inserted into the hollow holder.
  • the carrier fixing portion in the carrier support member is a recess having a bottom surface and a side surface, The unit according to (1), wherein is disposed on a bottom surface of the recess.
  • the ratio of the volume of the carrier support member to the volume of the hollow holder is 60% or more in the region closer to the tip than the carrier fixing portion of the carrier support member.
  • the ratio of the volume of the carrier support member to the volume of the hollow holder is 25 to 70%.
  • Each has a plurality of carrier support members to which the carrier is fixed, each rear end portion of the carrier support member is fixed to a face material, and each has a plurality of hollow holders corresponding to each support member.
  • the unit according to any one of (1) to (7).
  • a method for detecting the interaction of biological molecules using a carrier on which biological molecules are immobilized which has an opening at one end and is closed at the other end to contain a reaction solution.
  • Interaction process for interaction washing process for removing the carrier-related molecules that did not interact with the carrier-related molecules immobilized on the carrier by irradiating the carrier with excitation light, Including a detection step of detecting fluorescence, and in a posture in which the carrier support member is inserted into the hollow holder, the rear end portion of the carrier support member and the edge of the hollow holder opening are engaged, whereby the hollow holder is hermetically sealed.
  • the carrier supporting member and the hollow holder are positioned in the cross-sectional view taken along the plane including the axial center of the hollow holder in the positioning posture, and the side of the hollow holder and the outer side of the carrier supporting member on which the carrier is fixed.
  • the method wherein the defined areas are substantially the same on the left and right sides of the axis in the region from the carrier fixing part to the tip part of the carrier support member.
  • the carrier fixing portion in the carrier supporting member is a recess having a bottom surface and a side surface, The method according to (9), wherein the body is disposed on the bottom surface of the recess.
  • the ratio of the volume of the carrier support member to the volume of the hollow holder in the region on the tip side of the carrier fixing portion of the carrier support member is 60. % Or more, The method in any one of (9)-(1 3).
  • the volume ratio of the carrier support member to the volume of the hollow holder is 25 to 70%.
  • Each of the carrier support members has a plurality of carrier support members to which the carrier is fixed, the rear end portions of the carrier support members are each fixed to a face material, and a plurality of hollow holders corresponding to the respective support members.
  • the method according to any one of (9) to (15).
  • the present invention provides a means for sufficiently contacting a small amount of specimen with a microarray in automatic processing of a miniaturized microarray.
  • FIG. 1 shows an embodiment of the present invention.
  • FIG. 2 shows an embodiment of the present invention.
  • FIG. 3 shows an embodiment of the present invention.
  • FIG. 4 shows an embodiment of the present invention.
  • FIG. 5 shows an embodiment of the present invention.
  • FIG. 6 shows a result of comparison between the case where the rear end portion of the carrier support member is engaged with the edge of the hollow holder opening (a) and the case where it is not engaged (b).
  • FIG. 7 shows a carrier support member (a) having a waste liquid groove and a carrier support member having no waste liquid groove.
  • One embodiment of (b) and hollow holder (c) is shown.
  • FIG. 8 shows the detection results when the carrier support member having the waste liquid groove, the tray without the waste liquid groove, and the carrier support member are used.
  • Fig. 9 shows a carrier support member (a) in which the proportion of the volume of the carrier support member occupying the volume of the hollow holder is 80% and a carrier support member (b) in which the volume is 50%. The results are shown in which each was inserted into a hollow holder containing the reaction solution.
  • biologically relevant molecules include nucleic acids such as DNA and RNA, peptides, sugar chains and cells, complexes thereof, and complexes of these with other molecules.
  • peptides include oligopeptides, polypeptides, and proteins.
  • the biologically relevant molecule immobilized on the carrier is a peptide
  • a peptide of usually 1 to 1000 kDa, preferably 1 to 200 kDa is suitable.
  • the biologically relevant molecule immobilized on the carrier is a nucleic acid
  • a nucleic acid usually having 3 to 5000 bases, preferably 10 to 1000 bases, is suitable.
  • the biologically relevant molecule immobilized on the carrier is a sugar chain
  • a sugar chain of 1 to 100 sugars, preferably 1 to 30 sugars is preferable.
  • the biologically relevant molecule is preferably a nucleic acid, more preferably DNA.
  • the interaction of biologically relevant molecules preferably refers to a specific interaction between biologically relevant molecules, for example, interactions between proteins, interactions between proteins and peptides, interactions between nucleic acids, interactions between proteins and nucleic acids. Effects, and interactions between proteins and compounds. More specifically, hybridization between nucleic acid complementary strands, reaction between antigen and antibody or fragment thereof, binding reaction between enzyme and substrate or inhibitor, binding reaction between ligand and receptor, binding between avidin and piotin Reaction, Binding reaction between nucleic acid and transcription factor, Binding reaction between cell adhesion factor, Binding reaction between sugar chain and protein, Binding reaction between fatty chain and protein, Binding reaction between phosphate group and protein, Binding reaction between prosthetic factor and protein And so on.
  • the present invention relates to a detection of an interaction between biological molecules using a carrier (also referred to as a microarray) on which biological molecules are immobilized, and a hollow having an opening at one end and a closed end.
  • a carrier also referred to as a microarray
  • the holder and the microarray are fixed.
  • a unit having an insertable carrier support member is used. By inserting the carrier support member into a hollow holder containing the reaction solution, the microarray and the reaction solution are brought into contact with each other, and the biologically relevant molecules are brought into contact with each other. Interact.
  • the hollow holder having an opening at one end and closed at the other end is not particularly limited as long as it can accommodate the reaction solution.
  • the hollow holder may be a single holder or a plurality of hollow holders connected together.
  • Examples of the hollow holder include a microphone mouth tube and a microtiter plate (for example, 96 well plate) that are usually used in this technical field.
  • the dimension of the hollow holder can be appropriately set by those skilled in the art depending on the application.
  • the tube holder has a diameter in the range of 6 to 12 mm and a length of 15 to 35 mm. Can be used.
  • the hollow holder contains a specimen containing a fluorescently labeled biological molecule as a reaction solution, and a carrier support member is inserted into the hollow holder so that the carrier and the reaction solution are brought into contact with each other. And fluorescently labeled biologically relevant molecules in the reaction solution are allowed to interact.
  • a nucleic acid amplification product may be accommodated as a reaction solution.
  • the washing liquid is accommodated in the hollow holder, and the carrier supporting member is used as the carrier support member after the interaction. It can also be cleaned by inserting it.
  • a hollow holder containing a specimen as a reaction solution and a hollow holder containing a cleaning solution as a reaction solution may be used.
  • the reaction solution In the interaction step in which the biologically relevant molecule on the carrier interacts with the fluorescently labeled biologically relevant molecule in the reaction solution, it is preferable to heat the reaction solution by heating the hollow holder.
  • the hollow holder In the present invention, in the posture in which the carrier support member is inserted into the hollow holder, the hollow holder is sealed by the engagement of the rear end portion of the carrier support member and the edge of the hollow holder opening.
  • the evaporation of the reaction solution can be suppressed and heating can be performed efficiently.
  • the reaction liquid partially evaporated upon heating is cooled at the rear end of the carrier support member that closes the hollow holder to form droplets.
  • heating the rear end of the carrier support member together also suppresses the formation of droplets, reduces the amount of reaction liquid, and changes the concentration of biological molecules in the reaction liquid. Can be prevented.
  • the heating temperature in the interaction step is 30 to 60 ° C., preferably 35 to 55 ° C., and the heating temperature at the rear end of the carrier support member is the same.
  • the carrier support member and the hollow holder are positioned by engaging the rear end portion of the carrier support member with the edge of the hollow holder opening. Is done. For example, as shown in FIG.
  • the carrier supporting member 12 is engaged with the rear end portion 13 of the support member 1 2 and the edge 15 of the opening of the hollow holder 11 1 so that the support member is placed inside the hollow holder. (Fig. La), but if the rear end portion 13 of the carrier support member 12 and the edge 15 of the opening of the hollow holder 11 are not engaged, the carrier support member The position of the carrier support member in the hollow holder changes as the holder is inserted into the hollow holder, and cannot be positioned at a predetermined position (FIG. 16).
  • the carrier support in which the inside of the hollow holder and the carrier are fixed in a cross-sectional view taken along the plane including the axis of the hollow holder.
  • the carrier support member and the hollow holder are configured so that the area defined by the outside of the member is substantially the same on the left and right sides of the shaft center in the region from the carrier fixing part to the tip part of the carrier support member.
  • FIG. 2 shows an example of a cross-sectional view taken along a plane including the axis 21 of the hollow holder in the above-mentioned positioning posture in which the carrier support member is inserted into the hollow holder.
  • this sectional view of the area defined by the inside of the hollow holder 1 and the outside of the carrier support member on which the carrier is fixed, the area of the region from the carrier fixing part to the tip 24 of the carrier support member is The left side of the axis is the area of the part represented by 2 2, and the right side of the axis is the area of the part represented by 2 3.
  • the carrier support member and the hollow holder By configuring the carrier support member and the hollow holder so that the area of 22 and the area of 23 are substantially the same, the left and right surface tensions become equal, and the liquid level of the reaction liquid is not biased.
  • the carrier 14 can be sufficiently brought into contact with the reaction solution.
  • the area of 2 2 and the area of 2 3 are not the same, so the reaction solution is biased as shown by the dotted line.
  • the area of 2 2 and the area of 2 3 are almost the same, so the reaction solution becomes aqueous. “Substantially the same” means that the difference is 20% or less, preferably 10% or less, more preferably 5% or less.
  • the carrier fixing portion 3 1 in the carrier supporting member is a recess having a bottom surface 3 2 and side surfaces 3 3 (3 3 a and 3 3 b), and the carrier 1 4 Is disposed on the bottom surface 32 of the recess.
  • the side surface 3 3 a on the rear end portion 13 side of the carrier supporting member recess 3 1 is an inclined surface. It is preferable that the side surface 3 3 b of the carrier support member recess 3 1 on the front end portion 2 4 side is also an inclined surface.
  • the surface roughness of this inclined surface is 10 / zm or less, preferably 1 ⁇ or less, and the angle between the inclined surface and the bottom surface (34 in FIG. 3) is 75 ° or less, preferably 45 °. By making the following, bubbles can escape more easily.
  • the contact between the carrier and the reaction solution may be hindered, and the interaction of organism-related molecules may be hindered by a part of the carrier, but by adopting the above configuration that allows the bubbles to escape well, Good contact between the support and the reaction solution can be achieved.
  • a waste liquid groove is formed on the carrier support member from the side surface on the tip end side of the recess to the tip end portion.
  • the waste liquid groove 41 is formed from the side surface 33 b on the front end side of the recess to the front end 24, thereby lifting the carrier support member from the reaction liquid in the hollow holder.
  • the reaction solution that can remain in the recesses can be efficiently drained.
  • the tip portion 24 of the carrier support member is brought into contact with the filter paper, so that the waste liquid can be more efficiently drained.
  • a cleaning liquid containing a deliquescent substance is used.
  • the carrier can be irradiated with excitation light as it is without drying, and fluorescence can be detected by a detector. Since a solution containing salt is used in the interaction and washing of biological molecules, when the carrier is dried, drying unevenness due to salt occurs, and scattered light due to drying unevenness is strong, making accurate detection difficult. There is a case.
  • the detector of the imaging optical system scattered light due to drying unevenness is strong, and accurate detection may be difficult compared to a scanning detector, but a cleaning liquid containing a deliquescent substance is used. If the detection is performed without drying, the generation of scattered light due to uneven drying can be suppressed. Even in the case of detecting without drying the carrier, a detection error may occur if a liquid pool is formed in the concave portion of the carrier supporting member. However, by providing a waste liquid groove, excess cleaning liquid left in the concave portion is provided. As a result, the waste liquid can be drained immediately and detection errors can be reduced.
  • the deliquescent material is not particularly limited as long as it does not inhibit the interaction of biological molecules.
  • alkaline earth metal salts such as magnesium chloride, calcium chloride and magnesium hydroxide, potassium carbonate, bromide
  • alkali metal salts such as sodium.
  • the concentration of the deliquescent substance in the cleaning solution is usually from 0.01 to 3.
  • O mo 1 Z l preferably from 0.05 to 1: O mol Z l and more preferably from 0.2 to 0.5 mo 1 / 1.
  • the carrier support member occupies the volume of the hollow holder in the region on the tip 24 side from the carrier fixing portion of the carrier support member.
  • the volume ratio is 60% or more, preferably 80% or more, more preferably 90 to 95%. For example, in FIG.
  • the region on the tip side from the carrier fixing portion of the carrier support member 12 (the region below the dotted line), that is, the carrier fixing portion
  • the ratio of the volume of the carrier support member to the volume of the hollow holder on the side not including the carrier fixing portion is the above value.
  • the ratio of the volume of the carrier support member to the volume of the hollow holder is preferably 25 to 70%, more preferably 40 to 50%. .
  • the unit used in the present invention may have a plurality of carrier support members and a plurality of hollow holders corresponding to the respective support members.
  • the carrier is fixed to each of the plurality of carrier support members, and preferably the rear end portions of the carrier support members are fixed to the face material, respectively, so that they can operate as a unit.
  • Having a plurality of hollow holders corresponding to each carrier support member means that the carrier support members are respectively inserted into the plurality of hollow holders.
  • the carrier is washed to remove biologically related molecules that have not interacted with the biologically related molecules immobilized on the carrier, and then the carrier is irradiated with excitation light for detection.
  • the detection process which detects fluorescence with a container is implemented.
  • the imaging optical system detector detects the intensity of the fluorescence obtained by irradiating the carrier with excitation light.
  • the detector of the imaging optical system is usually a laser for irradiating excitation light, a fluorescence filter that transmits only the fluorescence of the target wavelength, and a light detector for detecting the fluorescence that has passed through the fluorescence filter ( For example, it has a CCD camera.
  • excitation light is obliquely irradiated on the entire carrier at once with a single laser, and fluorescence is detected from the front of the carrier.
  • the angle formed between the carrier surface and the laser beam is less than 90 °, and is usually 30 to 70 °, preferably 40 to 6 Irradiate at an angle of 0 °.
  • the carrier for immobilizing biological molecules is a relatively small carrier, for example, a size of 10 mm or less, preferably 5 mm or less, more preferably 3 Use a carrier of mm or less, most preferably 1 to 5 mm square.
  • the material for the carrier for immobilizing the biologically relevant molecule those known in the art can be used and are not particularly limited.
  • a carrier having a force layer and a chemically modifying group on the surface is preferably used as the carrier.
  • Carriers having a carbon layer and a chemical modification group on the surface include those having a carbon layer and a chemical modification group on the surface of the substrate, and those having a chemical modification group on the surface of the substrate made of the carbon layer. .
  • the material for the substrate those known in the art can be used, and there is no particular limitation, and the same materials as those described above can be used.
  • the present invention is suitably used for a carrier having a fine flat plate structure. Since it is easy to produce a carrier having a fine flat plate structure, it is preferable to use a substrate made of a silicon material or a resin material.
  • a carrier having a carbon layer and a chemical modifying group on the surface of a substrate made of single crystal silicon More preferred.
  • Single-crystal silicon includes crystal parts that have slightly changed the orientation of the crystal axis (sometimes called mosaic crystals), and atomic scale disturbances (lattice defects). What is included is also included.
  • the carbon layer to be formed on the substrate is not particularly limited, but synthetic diamond, high-pressure synthetic diamond, natural diamond, soft diamond (for example, diamond-like force), amorphous force, carbon-based material (for example, (Graphite, fullerene, carbon nanotube), a mixture thereof, or a laminate of them is preferably used.
  • carbides such as hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide, uranium carbide, tantalum carbide, zirconium carbide, molybdenum carbide, chromium carbide, and vanadium carbide may be used.
  • soft diamond is a generic term for incomplete diamond structures that are a mixture of diamond and carbon, such as so-called diamond-like carbon (DLC), and its mixing ratio.
  • DLC diamond-like carbon
  • the carbon layer is excellent in chemical stability and can withstand subsequent reactions in the introduction of chemical modification groups and binding to biologically relevant molecules, and the binding is flexible due to electrostatic binding to biologically relevant molecules. It is advantageous in that it has sex. It is also advantageous in that nonspecific adsorption is small in the binding reaction with biologically relevant molecules.
  • the substrate itself may be a carrier having a carbon layer force.
  • the carbon layer can be formed by a known method.
  • the raw gas (methane) is decomposed by glow discharge generated between electrodes due to high frequency, and a DLC (diamond-like carbon) layer is synthesized on the substrate.
  • the source gas (benzene) is decomposed and ionized using the thermoelectrons generated by the tungsten filament, and a bias layer is formed on the substrate by a bias voltage.
  • the DLC layer may be formed by ionized vapor deposition in a mixed gas composed of 1 to 99% by volume of hydrogen gas and 99 to 1% by volume of the remaining methane gas.
  • a DC voltage is applied between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to cause an arc discharge in a vacuum and generate a plasma of carbon atoms from the cathode. Then, by applying a negative bias voltage to the substrate even more than the evaporation source, the carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
  • a carbon layer can be formed by depositing carbon atoms on a glass substrate by irradiating and melting Nd: YAG laser (pulse oscillation) light on the target plate of the graph. .
  • the thickness of the carbon layer is usually about a monomolecular layer to about 100 ⁇ . If it is too thin, the surface of the base substrate may be locally exposed. When the thickness is too thick, the productivity deteriorates, so the thickness is preferably 2 nm to 1 ⁇ m, more preferably 5 nm to 500 nm.
  • the bio-related molecule By introducing a chemical modifying group into the surface of the substrate on which the carbon layer is formed, the bio-related molecule can be firmly immobilized on the carrier.
  • the chemical modification group to be introduced can be appropriately selected by those skilled in the art and is not particularly limited. For example, an amino group, a carboxyl group, an epoxy group, a formyl group, a hydroxyl group, a metal chelate, and an active ester group may be used. Can be mentioned.
  • the amino group is introduced by irradiating the carbon layer with ultraviolet rays in ammonia gas. Or by plasma treatment.
  • the carbon layer can be chlorinated by irradiating with ultraviolet rays in chlorine gas and further irradiating with ultraviolet rays in ammonia gas.
  • it can also be carried out by reacting with a chlorinated force layer in a polyvalent amine gas such as methylenediamine or ethylenediamine.
  • the introduction of the carboxyl group can be carried out, for example, by reacting an appropriate compound with the carbon layer aminated as described above.
  • Examples of the compound used for introducing a carboxyl group include, for example, the formula: X—R 1 —COOH (wherein X is a halogen atom, R 1 is a divalent hydrocarbon group having 10 to 12 carbon atoms) ) Halocarbonic acid such as chloroacetic acid, fluoroacetic acid, bromoacetic acid, sodoacetic acid, 2-chloropropionic acid, 3-propoxypropionic acid, 3_cloacrylic acid, 4-chloroform Benzoic acid; dicarboxylic acid represented by the formula: HOOC—R 2 _COOH (wherein R 2 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms), for example, oxalic acid, malonic acid , Succinic acid, maleic acid, fumaric acid, phthalic acid; polyacrylic acid, polymethacrylic acid, trimellitic acid, butanetetracarboxylic acid and other polyvalent carboxylic acids; formula
  • X- OC- R 5 - COOH (wherein, X is a halogen atom , R 5 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms.)
  • Monocarboxylic acid monohalides such as succinic acid monochloride, malonic acid monochloride; phthalic anhydride, anhydrous And acid anhydrides such as succinic acid, oxalic anhydride, maleic anhydride, and butanetetracarboxylic anhydride.
  • organic peracids include peracetic acid, perbenzoic acid, diperoxyphthalic acid, performic acid, and trifluoroperacetic acid.
  • the introduction of the formyl group can be carried out, for example, by reacting glutaraldehyde with the carbon layer aminated as described above.
  • the active ester group means an ester group having an electron-attracting group with high acidity on the alcohol side of the ester group and activating a nucleophilic reaction, that is, an ester group having a high reaction activity.
  • the active ester group has reactivity with groups such as amino group, thiol group, and hydroxyl group. More specifically, phenol esters, thiphenol esters, N-hydroxyamine esters, cyanomethyl esters, and esters of heterocyclic hydroxy compounds are much higher than alkyl esters.
  • the active ester group includes, for example, p-nitrophenyl group, N-hydroxysuccinimid group, succinic acid imide group, phthalic acid imide group, 5 _norbornene _ 2,3-dicad Examples include a lupoximid group, and an N-hydroxysuccinimid group is particularly preferred.
  • the introduction of the active ester group is, for example, by converting the carboxyl group introduced as described above to cyanamide carpositimide (for example, 1_ [3- (dimethylamino) propyl] -3_ethylcarbodiimide).
  • cyanamide carpositimide for example, 1_ [3- (dimethylamino) propyl] -3_ethylcarbodiimide.
  • This can be carried out by active esterification with a compound such as a dehydration condensing agent and N-hydroxysuccinimide.
  • a group in which an active ester group such as an N-hydroxysuccinimide group is bonded to the end of the hydrocarbon group via an amide bond can be formed (Japanese Patent Laid-Open No. 20 0 1- 1 3 9 5 3 2).
  • nucleic acids such as DNA and RNA are immobilized
  • immobilizing a polypeptide it is preferable to introduce an amino group, a carbohydride group, an epoxy group, a formyl group, a metal chelate or an active ester group.
  • a carrier into which a metal chelate has been introduced is used, a polypeptide having a label having an affinity for a metal ion such as a polyhistidine sequence can be immobilized effectively and stably.
  • the method for immobilizing the bio-related molecule on the carrier of the present invention is not particularly limited.
  • a biologically relevant molecule can be immobilized on the surface of the carrier by dissolving the biologically relevant molecule in a buffer to prepare a solution and immersing the carrier as described above. Immersion is usually performed at 0 to 98 ° C, preferably 4 ° C to 50 ° C, usually 1 minute to 24 hours, preferably 10 minutes to 1 hour.
  • the biologically relevant molecules that are not immobilized can be removed by immersing for a certain period of time and then washing the carrier. Also spotter By using a single device, many types of biological molecules can be immobilized on the surface of the carrier.
  • a biologically relevant molecule solution is spotted on a carrier with a spotter, followed by baking in a heated oven for a certain period of time, and then unfixed molecules are removed by washing.
  • a spotter device By using a spotter device, other types of bio-related molecules can be immobilized at different positions on the carrier, so many tests can be performed at once.
  • FIGS. 1a and 1b The carrier support member shown in FIGS. 1a and 1b was inserted into a hollow holder containing the reaction solution.
  • the results are shown in Fig. 6 a and b, respectively.
  • FIG. 6a the rear end portion of the carrier support member and the edge of the hollow holder opening are engaged to position the carrier support member so as to be inserted into the central portion of the hollow holder.
  • the liquid level of the substrate is horizontal and the carrier is in contact with the reaction solution.
  • FIG. 6b since the rear end portion of the carrier support member and the edge of the hollow holder opening are not engaged with each other, the carrier support member is inserted to the right in the hollow holder.
  • the surface of the reaction solution is tilted by the surface tension, and there is a portion where the carrier and the reaction solution are not in contact.
  • Source gas CH 4 7. 75 47.5, sscm
  • the DNA probe was dissolved in ⁇ ⁇ with Sol. 6 (Toyo Kohan Co., Ltd.) and spotted on a carrier. After baking at 80 ° C for 1 hour, washing with 2 XS SCZ0.2% SDS, washing with ultrapure water and centrifugal drying, the DNA probe was immobilized on the carrier. The region hybridizing with the probe was amplified by PCR. Labeling was performed using CyDye.
  • the composition of the PCR solution was as follows. A sample was prepared by dissolving 30 ⁇ l of the obtained CRC product in a hybrid solution (4 XS SCZO. 2% SDS solution) 30 1. A sample of 50 ⁇ 1 was placed in the hollow holder shown in Fig. 7c.
  • the carriers on which the DNA probes obtained above were immobilized were immobilized on the carrier support members shown in FIGS. 7a and 7b, respectively, and inserted into the hollow holders containing the samples.
  • the carrier support member shown in FIG. 7a has a waste liquid groove, but the carrier support member shown in FIG. 7b does not have a waste liquid groove.
  • After inserting the carrier support member react for 2 minutes at 55 ° C, 1 time with 2 XS SCZ 0.2% 505, 1 time with 1 N sodium acetate 0.5% twe 20 1, 1 NM g C 1 2 / 0. Washed once with 5% twe en 20.
  • the carrier supporting member (Fig. 9a) in which the volume ratio of the carrier supporting member to the volume of the hollow holder is 80% and the carrier supporting member (Fig. 9) is 50%. b) was inserted into each of the hollow holders containing the reaction solution.
  • Fig. 9a bubbles are generated at the time of insertion, but in the case of Fig. 9b, bubbles are not generated at the time of insertion, indicating that the contact between the reaction solution and the carrier is good.
  • 1 1 Hollow holder, 1 2: Carrier support member, 1 3: Rear end of carrier support member, 14: Carrier, 15: Hollow holder opening, 2 1: Hollow holder axis, 2 4: Carrier support 3 1: carrier fixing part, 3 2: bottom surface of carrier fixing part, 3 3: side surface of carrier fixing part (inclined surface), 3 4: angle formed between bottom surface and side surface (inclining surface), 4 1 : Waste liquid groove

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本発明は、生体関連分子が固定化された担体を用いた生体関連分子の相互作用の検出に使用するためのユニットであって、一端に開口部を有し他端が閉塞している中空ホルダーと、生体関連分子が固定化された担体が固定化されており中空ホルダーに挿入可能な担体支持部材とを有し、担体支持部材が中空ホルダーに挿入された姿勢において、担体支持部材の後端部と中空ホルダー開口部のエッジとが係合することによって、中空ホルダーが密閉されるとともに担体支持部材と中空ホルダーとが位置決めされ、位置決め姿勢で中空ホルダーの軸心を含む面で切った断面図において、中空ホルダーの内側と担体が固定化された担体支持部材の外側とで画成される面積が、担体支持部材の担体固定部から先端部までの領域で、軸心の左右で略同一である、前記ユニットに関する。

Description

生体関連分子の相互作用を検出するための方法及びユニット 技術分野
本発明は、 生体関連分子が固定化された担体を用いて生体関連分子の相互作用を 検出する方法及びそれに使用するためのュニットに関する。
背景技術
ゲノム解析の進展により、 種々の生物の生理書反応に関与する生体関連分子が解明 されてきた。 これら生体関連分子には、 D N A、 蛋白質、 糖鎖、 細胞などがあり、 機能や構造等が解明されたものは、 創薬や臨床検査、 食品検査、 環境検査などの各 種産業用途に利用される。
臨床検査を始めとする検査では、 以下の方法が一般的によく採用される。 すなわ ち、 検出したい生体関連分子 (以下、 アナライトと呼称する) と特異的に結合する プローブ分子 (以下、 リガンドと呼称する) を担体上に固定したデバイスに検体を 接触させると、 検体にアナライトが存在する場合、 リガンドと結合してアナライト が担体上に捕捉されるので、 この補足されたアナライトが検出される。
上記のような検査方法においても、 近年、 高速化、 自動化が求められ、 数百〜数 万の生体関連分子を同時に網羅的に計測する検出方法が要望されるようになり、 生 体関連分子固定の集積化技術、 いわゆる、 M E M S技術を用いたデバイス設計が可 能となり、 いわゆるマイクロアレイとして、 創薬研究やバイオ研究における網羅的 解析に用いられている。
デバイスとしてのマイクロアレイは、 担体上に固定されるプローブ分子の種類に より、 D N Aマイクロアレイ (D N Aチップとも呼ばれる) 、 蛋白質マイクロアレ ィ (蛋白質チップとも呼ばれる) 、 細胞マイクロアレイ (細胞チップとも呼ばれ る) 等がある。
解析は、 マイクロアレイ上に、 例えば、 蛍光物質で予め蛍光標識を行った検体を 接触させ、 その後にマイクロアレイを洗浄してから蛍光物質が発する蛍光シグナル を検出測定することにより検体に含まれるアナライ トを同定又は定量する(特表 2 0 0 6 - 5 1 5 0 6 5号公報)。
D N Aチップ等のマイクロアレイは、 通常、 スライ ドガラス様の大きさで、 専ら その上に検体を垂らしプレパラートで覆い反応させる。 今後は用途に応じてマイク ロアレイを大量に自動処理する必要がある。 その場合、 マイクロアレイの小型化が 望まれ、 さらに小型化したマイクロアレイを自動で処理するための効率的な手段の 開発が望まれる。 発明の概要
本発明者らは、 小型化したマイクロアレイを自動で処理するために、 マイクロア レイを支持部材に固定化し、 これを検体を収容した中空ホルダ一に揷入して反応さ せたところ、 検体の容積が微量 (数〜数百 μ ) であるために、 表面張力の影響によ り検体とマイクロアレイの接触が十分行われず、 反応不十分となることを見出した。 従って、 本発明の課題は、 小型化したマイクロアレイの自動処理において微量の 検体とマイクロアレイの接触を十分行うための手段を提供することである。
本発明者らは、 マイクロアレイを支持部材に固定化し、 これを反応液を収容した 中空ホルダーに揷入して反応させる際に、 支持部材が中空ホルダー内に偏りなく揷 入されるよう位置決めを行うことにより、 検体とマイクロアレイの接触が十分行わ れることを見出し、 本発明を完成するに至った。
すなわち、 本発明は以下の発明を包含する。
( 1 ) 生体関連分子が固定化された担体を用いた生体関連分子の相互作用の検出に 使用するためのュニットであって、 一端に開口部を有し他端が閉塞している中空ホ ルダ一と、 生体関連分子が固定化された担体が固定化されており中空ホルダ一に揷 入可能な担体支持部材とを有し、 担体支持部材が中空ホルダーに揷入された姿勢に おいて、 担体支持部材の後端部と中空ホルダー開口部のエッジとが係合することに よって、 中空ホルダ一が密閉されるとともに担体支持部材と中空ホルダ一とが位置 決めされ、 位置決め姿勢で中空ホルダーの軸心を含む面で切った断面図において、 中空ホルダーの内側と担体が固定化された担体支持部材の外側とで画成される面積 力、 担体支持部材の担体固定部から先端部までの領域で、 軸心の左右で略同一であ る、 前寅己ュニット。
( 2 ) 担体支持部材における担体固定部が底面と側面とを有する凹部であり、 担体 が凹部の底面に配置されている、 (1) 記載のユニット。
(3) 担体支持部材凹部の少なくとも後端部側の側面が傾斜面である、 ( 2 ) 記載 のュニット。
(4) 傾斜面の表面粗さが 1 0 /X m以下であり、 傾斜面と底面とのなす角度が 7 5° 以下である、 (3) 記載のユニット。
( 5 ) 担体支持部材凹部の先端部側の側面から先端部まで廃液溝が形成されている、 (2) 〜 (4) のいずれかに記載のユニット。
(6) 担体支持部材が中空ホルダーに挿入された姿勢において、 担体支持部材の担 体固定部より先端部側の領域で、 中空ホルダーの容積に占める担体支持部材の体積 の割合が 60%以上である、 (1) 〜 (5) のいずれかに記載のユニット。
(7) 担体支持部材が中空ホルダーに挿入された姿勢で、 中空ホルダーの容積に占 める担体支持部材の体積の割合が 25〜70%である、 (1) 〜 (6) のいずれか に記載のュニット。
(8) それぞれ担体が固定化された複数の担体支持部材を有し、 担体支持部材の後 端部がそれぞれ面材に固定されており、 それぞれの支持部材に対応した複数の中空 ホルダ一を有する、 (1) 〜 (7) のいずれかに記載のユニット。
(9) 生体関連分子が固定化された担体を用いて生体関連分子の相互作用を検出す る方法であって、 一端に開口部を有し他端が閉塞しており反応液を収容している中 空ホルダーに、 生体関連分子が固定化された担体が固定されている担体支持部材を 挿入することによって、 担体上の生体関連分子と反応液中の蛍光標識された生体関 連分子とを相互作用させる相互作用工程、 担体を洗浄することにより、 担体に固定 化された生体関連分子と相互作用しなかった生体関連分子を除去する洗浄工程、 担 体に励起光を照射し、 検出器で蛍光を検出する検出工程を含み、 担体支持部材が中 空ホルダーに挿入された姿勢において、 担体支持部材の後端部と中空ホルダー開口 部のエッジとが係合することによって、 中空ホルダ一が密閉されるとともに担体支 持部材と中空ホルダーとが位置決めされ、 前記位置決め姿勢で中空ホルダーの軸心 を含む面で切った断面図において、 中空ホルダーの內側と担体が固定化された担体 支持部材の外側とで画成される面積が、 担体支持部材の担体固定部から先端部まで の領域で、 軸心の左右で略同一である、 前記方法。
(1 0) 担体支持部材における担体固定部が底面と側面とを有する凹部であり、 担 体が凹部の底面に配置されている、 (9) 記載の方法。
( 1 1 ) 担体支持部材凹部の少なくとも後端部側の側面が傾斜面である、 (1 0) 記載の方法。
( 1 2) 傾斜面の表面粗さが 1 0 /z m以下であり、 傾斜面と底面とのなす角度が 7 5° 以下である、 (1 1) 記載の方法。
( 1 3) 担体支持部材凹部の先端部側の側面から先端部まで廃液溝が形成されてい る、 (1 0) 〜 (1 2) のいずれかに記載の方法。
( 1 4) 担体支持部材が中空ホルダ一に挿入された姿勢において、 担体支持部材の 担体固定部より先端部側の領域で、 中空ホルダーの容積に占める担体支持部材の体 積の割合が 6 0%以上である、 (9) 〜 ( 1 3) のいずれかに記載の方法。
( 1 5) 担体支持部材が中空ホルダ一に挿入された姿勢で、 中空ホルダーの容積に 占める担体支持部材の体積の割合が 2 5〜 70%である、 (9) 〜 (1 4) のいず れかに記載の方法。
( 1 6) それぞれ担体が固定化された複数の担体支持部材を有し、 担体支持部材の 後端部がそれぞれ面材に固定されており、 それぞれの支持部材に対応した複数の中 空ホルダ一を有する、 (9) 〜 (1 5) のいずれかに記載の方法。
本発明により、 小型化したマイクロアレイの自動処理において微量の検体とマイ クロアレイの接触を十分行うための手段が提供される。
本明細書は、 本願の優先権の基礎である特願 20 08 - 1 4 1 1 5 5号の明細書、 特許請求の範囲及び図面に記載された内容を包含する。 図面の簡単な説明
図 1は、 本発明の一実施形態を示す。
図 2は、 本発明の一実施形態を示す。
図 3は、 本発明の一実施形態を示す。
図 4は、 本発明の一実施形態を示す。
図 5は、 本発明の一実施形態を示す。
図 6は、 担体支持部材の後端部と中空ホルダー開口部のエッジとが係合している 場合 (a) と係合していない場合 (b) を比較した結果を示す。
図 7は、 廃液溝を有する担体支持部材 (a ) と廃液溝を有しない担体支持部材 (b) と中空ホルダー (c) の一実施形態を示す。
図 8は、 廃液溝を有する担体支持部材と廃液溝を有しなレ、担体支持部材を用レヽた 場合の検出結果を示す。
図 9は、 中空ホルダーに挿入された姿勢で、 中空ホルダーの容積に占める担体支 持部材の体積の割合が 80%である担体支持部材 (a) と、 50%である担体支持 部材 (b) を、 反応液を収容した中空ホルダ一にそれぞれ挿入した結果を示す。 発明を実施するための形態
本発明において、 生体関連分子には、 DNA及び RNAなどの核酸、 ペプチド、 糖鎖及び細胞、 これらの複合体、 並びにこれらとその他の分子との複合体などが包 含される。 本発明において、 ペプチドには、 オリゴペプチド、 ポリペプチド及びタ ンパク質が包含される。 担体に固定化される生体関連分子が、 ペプチドである場合、 通常 l〜1000 kDa、 好ましくは l〜200 kDaのぺプチドが好適である。 また、 担体に固定化される生体関連分子が核酸である場合、 通常 3〜5000塩基、 好ましくは 10〜 1000塩基の核酸が好適である。 また、 担体に固定化する生体 関連分子が糖鎖である場合、 通常 1〜 100糖、 好ましくは 1〜30糖の糖鎖が好 適である。 本発明において、 生体関連分子は、 好ましくは核酸、 より好ましくは D NAである。
生体関連分子の相互作用は、 好ましくは生体関連分子間の特異的な相互作用をさ し、 例えば、 タンパク質間の相互作用、 タンパク質とペプチドの相互作用、 核酸間 の相互作用、 タンパク質と核酸の相互作用、 タンパク質と化合物との相互作用など が包含される。 より具体的には、 核酸相補鎖間のハイブリダィゼーシヨン、 抗原と 抗体又はその断片との反応、 酵素と基質又は阻害剤の結合反応、 リガンドとレセプ ターの結合反応、 アビジンとピオチンの結合反応、 核酸と転写因子の結合反応、 細 胞接着因子の結合反応、 糖鎖とタンパク質の結合反応、 脂肪鎖とタンパク質の結合 反応、 リン酸基とタンパク質の結合反応、 補欠因子とタンパク質の結合反応などが 挙げられる。
本発明は、 生体関連分子が固定化された担体 (マイクロアレイと称する場合もあ る) を用いた生体関連分子の相互作用の検出において、 一端に開口部を有し他端が 閉塞している中空ホルダーと、 マイクロアレイが固定化されており中空ホルダーに 挿入可能な担体支持部材とを有するュニットを用いることを特徴とし、 反応液を収 容している中空ホルダーに担体支持部材を挿入することにより、 マイクロアレイと 反応液とを接触させ、 生体関連分子を相互作用させる。
一端に開口部を有し他端が閉塞している中空ホルダーは、 反応液を収容できるも のであれば特に制限されない。 中空ホルダーは単独のものでもよいし、 複数が連結 されたものでもよい。 中空ホルダーとしては、 当技術分野で通常用いられるマイク 口チューブやマイクロタイタープレート (例えば、 9 6ゥエルプレート) などが挙 げられる。 中空ホルダーの寸法は、 当業者であれば用途に応じ適宜設定できるが、 例えば、 開口部の直径が 6〜 1 2 mmの範囲にあり、 長さが 1 5〜3 5 mmのチュ —ブ状のものを使用できる。
中空ホルダーには反応液として、 蛍光標識された生体関連分子を含む検体を収容 させ、 これに担体支持部材を揷入することにより、 担体と反応液とを接触させ、 担 体上の生体関連分子と反応液中の蛍光標識された生体関連分子とを相互作用させる。 反応液として核酸増幅産物を収容させてもよい。 担体を洗浄することにより担体に 固定化された生体関連分子と相互作用しなかった生体関連分子を除去する洗浄工程 においては、 中空ホルダーに洗浄液を収容し、 相互作用後に担体支持部材をこれに 揷入することにより、 洗浄を行うこともできる。 反応液として検体を収容した中空 ホルダーと、 反応液として洗浄液を収容した中空ホルダ一を、 それぞれ用いてもよ レ、。
担体上の生体関連分子と反応液中の蛍光標識された生体関連分子とを相互作用さ せる相互作用工程においては、 中空ホルダーを加熱することにより反応液を加熱す ることが好ましい。 本発明では、 担体支持部材が中空ホルダーに挿入された姿勢に おいて、 担体支持部材の後端部と中空ホルダー開口部のェッジとが係合することに よって中空ホルダ一が密閉されることから、 反応液の蒸発を抑制するとともに効率 的に加熱することができる。 加熱の際に一部蒸発した反応液が、 中空ホルダーを密 閉している担体支持部材後端部において冷却されて液滴を形成する場合がある。 従 つて、 相互作用工程において、 担体支持部材後端部も合わせて加熱することにより、 液滴の形成を抑制し、 微量な反応液が減少して反応液における生体関連分子の濃度 が変化することを防止できる。 相互作用工程における加熱温度は 3 0〜6 0 °C、 好 ましくは 3 5〜5 5 °Cであり、 担体支持部材後端部の加熱温度も同様である。 本発明では、 担体支持部材が中空ホルダーに揷入された姿勢において、 担体支持 部材の後端部と中空ホルダ一開口部のェッジとが係合することによって、 担体支持 部材と中空ホルダーとが位置決めされる。 例えば、 図 1に示すように、 担体支持部 材 1 2の後端部 1 3と中空ホルダ一 1 1の開口部のェッジ 1 5とが係合することに よって、 担体支持部材が中空ホルダー内において所定の位置に位置決めされるが (図 l a ) 、 担体支持部材 1 2の後端部 1 3と中空ホルダ一 1 1の開口部のエッジ 1 5とが係合していないと、 担体支持部材を中空ホルダーに挿入するたぴに、 中空 ホルダー内における担体支持部材の位置が変わってしまい、 所定の位置に位置決め することができない (図 1 6 ) 。
本発明では、 担体支持部材が中空ホルダーに挿入された上記位置決め姿勢で、 中 空ホルダ一の軸心を含む面で切った断面図において、 中空ホルダ一の内側と担体が 固定化された担体支持部材の外側とで画成される面積が、 担体支持部材の担体固定 部から先端部までの領域で、 軸心の左右で略同一となるように、 担体支持部材と中 空ホルダーとが構成される。
例えば、 担体支持部材が中空ホルダーに挿入された上記位置決め姿勢で、 中空ホ ルダ一の軸心 2 1を含む面で切った断面図の一例を図 2に示す。 この断面図におい て、 中空ホルダ一の内側と担体が固定化された担体支持部材の外側とで画成される 面積のうち担体支持部材の担体固定部から先端部 2 4までの領域の面積は、 軸心の 左側は 2 2で表される部分の面積であり、 軸心の右側は 2 3で表される部分の面積 である。 この 2 2の面積と 2 3の面積が略同一となるように、 担体支持部材と中空 ホルダ一とを構成することにより、 左右の表面張力が等しくなり、 反応液の液面が 偏ることなく、 担体 1 4と反応液を十分接触させることができる。 図 2 aでは 2 2 の面積と 2 3の面積が略同一ではないため、 反応液は点線のように偏ってしまう。 一方、 図 2 bでは 2 2の面積と 2 3の面積が略同一であるため、 反応液は水性にな る。 略同一とは、 相違が 2 0 %以下、 好ましくは 1 0 %以下、 より好ましくは 5 % 以下であることを意味する。 図 2は、 中空ホルダーの軸心 2 1を含む面で切った断 面図のうち担体 1 4を切断するような断面図を示しており、 従って中空ホルダーの 軸心に対して左右対称ではないが、 中空ホルダ一の軸心に対して左右対称となる断 面についても同様である。 すなわち、 中空ホルダーの軸心を含むいずれの断面でも 上記左右の面積は略同一となる。 好ましい実施形態では、 例えば図 3に示すように、 担体支持部材における担体固 定部 3 1が底面 3 2と側面 3 3 ( 3 3 aと 3 3 b ) とを有する凹部であり、 担体 1 4が凹部の底面 3 2に配置されている。 さらに好ましくは、 担体支持部材凹部 3 1 の少なくとも後端部 1 3側の側面 3 3 aは傾斜面である。 担体支持部材凹部 3 1の 先端部 2 4側の側面 3 3 bも傾斜面であることが好ましい。 後端部側の側面 3 3 a を傾斜面とすることにより、 担体支持部材を中空ホルダー内の反応液に挿入すると きに混入しうる気泡が上部に逃げやすくなる。 また、 この傾斜面の表面粗さを 1 0 /z m以下、 好ましくは 1 μ ιη以下とし、 傾斜面と底面とのなす角度 (図 3の 3 4 ) を 7 5 ° 以下、 好ましくは 4 5 ° 以下とすることにより、 気泡がより逃げやすくな る。 気泡がうまく逃げないと、 担体と反応液との接触が阻害され、 担体の一部で生 体関連分子の相互作用が阻害される場合もあるが、 気泡をうまく逃がす上記構成と することにより、 担体と反応液との良好な接触が達成できる。
担体支持部材には、 凹部の先端部側の側面から先端部まで廃液溝が形成されてい ることが好ましい。 例えば図 4に示すように、 凹部の先端部側の側面 3 3 bから先 端部 2 4まで廃液溝 4 1が形成されていることにより、 中空ホルダー内の反応液か ら担体支持部材を引き上げたときに凹部に残留しうる反応液を、 効率よく廃液する ことができる。 担体支持部材を引き上げた後、 担体支持部材の先端部 2 4をろ紙と 接触させることにより、 より効率的に廃液することができる。 本発明では、 生体関 連分子の相互作用後に、 担体に固定化された生体関連分子と相互作用しなかった生 体関連分子を除去する洗浄工程において、 潮解性の物質を含む洗浄液を用いること により、 担体を乾燥させることなくそのまま担体に励起光を照射し、 検出器で蛍光 を検出することができる。 生体関連分子の相互作用及び洗浄では塩を含む溶液が使 用されることから、 担体を乾燥させると塩による乾燥ムラが発生し、 乾燥ムラによ る散乱光が強く、 正確な検出が困難な場合がある。 特に、 結像光学系の検出器にお いては、 乾燥ムラによる散乱光が強く、 走査型検出器と比較して、 正確な検出が非 常に難しい場合があるが、 潮解性物質を含む洗浄液を用いて乾燥させずに検出を行 えば、 乾燥ムラによる散乱光の発生を抑制できる。 担体を乾燥させないで検出する 態様においても、 担体支持部材の凹部に液溜まりができてしまうと検出誤差が生じ る可能性があるが、 廃液溝を設けることにより、 凹部に残昝した余分な洗浄液をす みやかに廃液することができ、 検出誤差を低減させることができる。 潮解性物質は、 生体関連分子の相互作用を阻害しないものであれば、 特に制限さ れないが、 例えば、 塩化マグネシウム、 塩化カルシウム、 水酸化マグネシウムなど のアルカリ土類金属塩、 炭酸カリウム、 臭化ナトリウムなどのアルカリ金属塩など が挙げられる。 洗浄液における潮解性物質の濃度は、 通常 0 . 0 1〜3 . O m o 1 Z l、 好ましくは 0 . 0 5〜: 1 . O m o l Z l さらに好ましくは 0 . 2〜0 . 5 m o 1 / 1である。
本発明の好ましい態様では、 担体支持部材が中空ホルダーに揷入された姿勢にお いて、 担体支持部材の担体固定部より先端部 2 4側の領域で、 中空ホルダーの容積 に占める担体支持部材の体積の割合は、 6 0 %以上、 好ましくは 8 0 %以上、 より 好ましくは 9 0〜9 5 %である。 例えば図 5においては、 担体支持部材が中空ホル ダ一に挿入された姿勢において、 担体支持部材 1 2の担体固定部より先端部側の領 域 (点線より下の領域) 、 即ち、 担体固定部の先端部側末端で中空ホルダ一 1 1の 軸心と垂直な面で切った場合に、 担体固定部を含まない側において中空ホルダーの 容積に占める担体支持部材の体積の割合が上記値となる。 担体支持部材の担体固定 部より先端部側を大きめに設計することで、 中空ホルダ一に担体支持部材を挿入し たときに、 中空ホルダーに収容された反応液が微量の場合にも、 液面が上昇して担 体と十分接触させることが可能になる。 従って、 操作の際の液量を少なくすること ができる。
また、 担体支持部材が中空ホルダーに挿入された姿勢で、 中空ホルダーの容積に 占める担体支持部材の体積の割合は、 好ましくは 2 5〜 7 0 %、 より好ましくは 4 0〜5 0 %である。 担体支持部材の体積の割合を一定の値以下とすることで担体支 持部材の揷入時に液体がこぼれるのを防ぐことができる。
本発明で用いるュニットは複数の担体支持部材と、 それぞれの支持部材に対応し た複数の中空ホルダーを有していてもよい。 複数の担体支持部材にはそれぞれ担体 が固定化されており、 好ましくは担体支持部材の後端部がそれぞれ面材に固定され ており、 一体として動作することができる。 それぞれの担体支持部材に対応した複 数の中空ホルダ一を有するとは、 複数の中空ホルダ一に担体支持部材がそれぞれ挿 入されるよう構成されていることをさす。 それぞれ担体が固定化された複数の担体 支持部材と複数の中空ホルダーを用いることで、 大量の試験を効率的に実施するこ とが可能になる。 本発明の検出方法では、 担体を洗浄することにより、 担体に固定化された生体関 連分子と相互作用しなかった生体関連分子を除去する洗浄工程の後、 担体に励起光 を照射し、 検出器で蛍光を検出する検出工程を実施する。
本発明では、 検出器として結像光学系の検出器を用いることが好ましい。 結像光 学系の検出器は、 励起光を担体に照射し、 得られる蛍光の強度を検出するものであ る。 結像光学系の検出器は、 通常、 励起光を照射するためのレーザー、 目的の波長 の蛍光のみを透過させる蛍光フィルタ一、 蛍光フィルタ一を透過した蛍光を検出す るための光検出部 (例えば、 C C Dカメラ) を有する。 本発明では、 通常、 レーザ 一で一度に担体全体に斜めに励起光を照射し、 担体の正面から蛍光を検出する。 励 起光を担体に対して斜めに照射するとは、 担体表面とレーザー光のなす角度が、 9 0 ° 未満であることをさし、 通常、 3 0〜 7 0 ° 、 好ましくは 4 0〜 6 0 ° の角度 で照射する。 結像光学系の検出器では、 担体の全面にレーザーを走査させる必要が なく、 検出を短時間で実施することができる。 一度に担体全体に励起光を照射する ため、 生体関連分子を固定化する担体としては、 比較的サイズの小さいもの、 例え ば、 寸法が 1 0 mm以下、 好ましくは 5 mm以下、 さらに好ましくは 3 mm以下の 担体、 最も好ましくは 1〜 5 mm四方の担体を用いる。
生体関連分子を固定化する担体の材料としては、 当技術分野で公知のものを使用 でき、 特に制限されない。 例えば、 白金、 白金黒、 金、 パラジウム、 ロジウム、 銀、 水銀、 タングステン及びそれらの化合物などの貴金属、 及びグラフアイ ト、 カーボ ンファイバ一に代表される炭素などの導電体材料;単結晶シリコン、 アモルファス シリコン、 炭化ケィ素、 酸化ケィ素、 窒化ケィ素などに代表されるシリコン材料、 S O I (シリコン .オン .インシユレ一タ) などに代表されるこれらシリコン材料 の複合素材;ガラス、 石英ガラス、 アルミナ、 サファイア、 セラミクス、 フォルス テライ ト、 感光性ガラスなどの無機材料;ポリエチレン、 エチレン、 ポリプロビレ ン、 環状ポリオレフイン、 ポリイソプチレン、 ポリエチレンテレフタレ一ト、 不飽 和ポリエステル、 含フッ素樹脂、 ポリ塩化ビエル、 ポリ塩化ビニリデン、 ポリ酢酸 ビエル、 ポリ ビニルアルコール、 ポリ ビュルァセタール、 アクリル樹脂、 ポリアク リロ-トリノレ、 ポリスチレン、 ァセタ一ル榭脂、 ポリカーボネート、 ポリアミ ド、 フエノール樹脂、 ユリア樹脂、 エポキシ榭脂、 メラミン樹脂、 スチレン 'アタリ口 二トリル共重合体、 アクリロニトリル 'ブタジエンスチレン共重合体、 ポリフエ二 レンォキサイ ド及びポリスルホンなどの有機材料等が挙げられる。
本発明においては、 担体として、 好ましくは表面に力一ボン層と化学修飾基とを 有する担体を用いる。 表面にカーボン層と化学修飾基とを有する担体には、 基板の 表面にカーボン層と化学修飾基とを有するもの、 及びカーボン層からなる基板の表 面に化学修飾基を有するものが包含される。 基板の材料としては、 当技術分野で公 知のものを使用でき、 特に制限されず、 上述の担体材料と同様のものを使用できる。 本発明は、 微細な平板状の構造を有する担体に対し好適に用いられる。 微細な平 板状の構造の担体を製造しやすいことから、 シリコン材料や樹脂材料からなる基板 を用いるのが好ましく、 特に単結晶シリコンからなる基板の表面にカーボン層及び 化学修飾基を有する担体がより好ましい。 単結晶シリコンには、 部分部分でごくわ ずかに結晶軸の向きが変わっているものや (モザイク結晶と称される場合もある) 、 原子的尺度での乱れ (格子欠陥) が含まれているものも包含される。
基板上に形成させるカーボン層としては、 特に制限されないが、 合成ダイヤモン ド、 高圧合成ダイヤモンド、 天然ダイヤモンド、 軟ダイヤモンド (例えば、 ダイヤ モンドライク力一ボン) 、 アモルファス力一ボン、 炭素系物質 (例えば、 グラファ イ ト、 フラーレン、 カーボンナノチューブ) のいずれか、 それらの混合物、 又はそ れらを積層させたものを用いることが好ましい。 また、 炭化ハフニウム、 炭化ニォ ブ、 炭化珪素、 炭化タンタル、 炭化トリウム、 炭化チタン、 炭化ウラン、 炭化タン ダステン、 炭化ジルコニウム、 炭化モリブデン、 炭化クロム、 炭化バナジウム等の 炭化物を用いてもよい。 ここで、 軟ダイヤモンドとは、 いわゆるダイヤモンドライ クカーボン (DLC : D i amo n d L i k e C a r b o n) 等の、 ダイヤモ ンドとカーボンとの混合体である不完全ダイヤモンド構造体を総称し、 その混合割 合は、 特に限定されない。 カーボン層は、 化学的安定性に優れておりその後の化学 修飾基の導入や生体関連分子との結合における反応に耐えることができる点、 生体 関連分子と静電結合によって結合できるためその結合が柔軟性を持っている点にお いて有利である。 また、 生体関連分子との結合反応において、 非特異的吸着が少な い点においても有利である。 前記のとおり基板自体がカーボン層力 らなる担体を用 いてもよレヽ。
本発明においてカーボン層の形成は公知の方法で行うことができる。 例えば、 マ イク口波プラズマ C VD (Ch em i c a l v a p o r d e p o s i t) 法、 ECRし VD (E l e c t r i c c y c l o t r o n r e s o n a n c e c h em i c a l v a p o r d e p o s i t) 法、 I C P ( I n d u c t i v e c o u p l e d p l a sma) 法、 直流スパッタリング法、 ECR (E l e c t r i c c y c l o t r o n r e s o n a n c e) スノヽ0ッタリング法、 ィオン匕 蒸着法、 アーク式蒸着法、 レーザー蒸着法、 EB (E l e c t r o n b e am) 蒸着法、 抵抗加熱蒸着法などが挙げられる。
高周波プラズマ CVD法では、 高周波によって電極間に生じるグロ一放電により 原料ガス .(メタン) を分解し、 基板上に DLC (ダイヤモンドライクカーボン) 層 を合成する。 イオン化蒸着法では、 タングステンフィラメントで生成される熱電子 を利用して、 原料ガス (ベンゼン) を分解 'イオン化し、 バイアス電圧によって基 板上に力一ボン層を形成する。 水素ガス 1〜99体積%と残りメタンガス 99〜1 体積%からなる混合ガス中で、 イオン化蒸着法により DLC層を形成してもよい。 アーク式蒸着法では、 固体のグラフアイ ト材料 (陰極蒸発源) と真空容器 (陽 極) の間に直流電圧を印加することにより真空中でアーク放電を起こして陰極から 炭素原子のプラズマを発生させ蒸発源よりもさらに負のバイアス電圧を基板に印加 することにより基板に向かってプラズマ中の炭素イオンを加速しカーボン層を形成 することができる。
レーザー蒸着法では、 例えば Nd : Y AGレーザー (パルス発振) 光をグラファ ィ トのターゲット板に照射して溶融させ、 ガラス基板上に炭素原子を堆積させるこ とによりカーボン層を形成することができる。
基板の表面にカーボン層を形成する場合、 カーボン層の厚さは、 通常、 単分子層 〜1 00 μιη程度であり、 薄すぎると下地基板の表面が局部的に露出する可能性が あり、 逆に厚くなると生産性が悪くなるので、 好ましくは 2 nm〜 1 μ m、 より好 ましくは 5 nm〜500 nmである。
カーボン層が形成された基板の表面に化学修飾基を導入することにより、 生体関 連分子を担体に強固に固定化できる。 導入する化学修飾基は、 当業者であれば適宜 選択することができ、 特に制限されないが、 例えば、 アミノ基、 カルボキシル基、 エポキシ基、 ホルミル基、 ヒ ドロキシル基、 金属キレート、 及び活性エステル基が 挙げられる。
ァミノ基の導入は、 例えば、 カーボン層をアンモニアガス中で紫外線照射するこ とにより又はプラズマ処理することにより実施できる。 又は、 カーボン層を塩素ガ ス中で紫外線を照射して塩素化し、 さらにアンモニアガス中で紫外線照射すること により実施できる。 又は、 メチレンジァミン、 エチレンジァミン等の多価アミン類 ガス中で、 塩素化した力一ボン層と反応させることによって実施することもできる。 カルボキシル基の導入は、 例えば、 前記のようにァミノ化したカーボン層に適当 な化合物を反応させることにより実施できる。 カルボキシル基を導入するために用 いられる化合物としては、 例えば、 式: X— R1— COOH (式中、 Xはハロゲン 原子、 R1は炭素数 1 0〜1 2の 2価の炭化水素基を表す。 ) で示されるハロカル ボン酸、 例えばクロ口酢酸、 フルォロ酢酸、 ブロモ酢酸、 ョード酢酸、 2—クロ口 プロピオン酸、 3—クロ口プロピオン酸、 3 _クロ口アクリル酸、 4一クロ口安息 香酸;式: HOOC— R2_COOH (式中、 R2は単結合又は炭素数 1〜 1 2の 2価の炭化水素基を表す。 ) で示されるジカルボン酸、 例えばシユウ酸、 マロン酸、 コハク酸、 マレイン酸、 フマル酸、 フタル酸;ポリアクリル酸、 ポリメタクリル酸、 トリメリ ット酸、 ブタンテトラカルボン酸などの多価カルボン酸;式: R3_CO -R4-COOH (式中、 R 3は水素原子又は炭素数 1〜 1 2の 2価の炭化水素基、 R4は炭素数 1〜 1 2の 2価の炭化水素基を表す。 ) で示されるケト酸又はアルデ ヒ ド酸;式: X— OC— R5— COOH (式中、 Xはハロゲン原子、 R 5は単結合 又は炭素数 1〜1 2の 2価の炭化水素基を表す。 ) で示されるジカルボン酸のモノ ハライ ド、 例えばコハク酸モノクロリ ド、 マロン酸モノクロリ ド;無水フタル酸、 無水コハク酸、 無水シユウ酸、 無水マレイン酸、 無水ブタンテトラカルボン酸など の酸無水物が挙げられる。
エポキシ基の導入は、 例えば、 前記のようにァミノ化したカーボン層に適当な多 価エポキシ化合物を反応させることによって実施できる。 あるいは、 カーボン層が 含有する炭素 =炭素 2重結合に有機過酸を反応させることにより得ることができる。 有機過酸としては、 過酢酸、 過安息香酸、 ジペルォキシフタル酸、 過ギ酸、 トリフ ルォロ過酢酸などが挙げられる。
ホルミル基の導入は、 例えば、 前記のようにァミノ化したカーボン層に、 グルタ ルアルデヒ ドを反応させることにより実施できる。
ヒ ドロキシル基の導入は、 例えば、 前記のように塩素化したカーボン層に、 水を 反応させることにより実施できる。 活性エステル基は、 エステル基のアルコール側に酸性度の高い電子求引性基を有 して求核反応を活性化するエステル群、 すなわち反応活性の高いエステル基を意味 する。 エステル基のアルコール側に、 電子求引性の基を有し、 アルキルエステルよ りも活性化されたエステル基である。 活性エステル基は、 アミノ基、 チオール基、 水酸基等の基に対する反応性を有する。 さらに具体的には、 フヱノールエステル類、 チォフエノールエステル類、 N—ヒ ドロキシァミンエステル類、 シァノメチルエス テル、 複素環ヒ ドロキシ化合物のエステル類等がアルキルエステル等に比べてはる かに高い活性を有する活性エステル基として知られている。 より具体的には、 活性 エステル基としては、 たとえば p—ニトロフエニル基、 N—ヒ ドロキシスクシンィ ミ ド基、 コハク酸イミ ド基、 フタル酸イミ ド基、 5 _ノルボルネン _ 2, 3—ジカ ルポキシイミ ド基等が挙げられ、 特に、 N—ヒ ドロキシスクシンイミ ド基が好まし く用いられる。
活性エステル基の導入は、 例えば、 前記のように導入したカルボキシル基を、 シ アナミ ドゃカルポジイミ ド (例えば、 1 _ [ 3— (ジメチルァミノ) プロピル] ― 3 _ェチルカルボジイミ ド) などの脱水縮合剤と N—ヒ ドロキシスクシンイミ ドな どの化合物で活性エステル化することにより実施できる。 この処理により、 アミ ド 結合を介して炭化水素基の末端に、 N—ヒ ドロキシスクシンイミ ド基等の活性エス テル基が結合した基を形成することができる (特開 2 0 0 1 - 1 3 9 5 3 2 ) 。
D N A及び R N A等の核酸を固定化する場合は、 アミノ基、 エポキシ基、 カルボ ジイミ ド基、 ホルミル基又は活性エステル基を導入するのが好ましい。 ポリべプチ ドを固定化する場合は、 アミノ基、 カルポジイミ ド基、 エポキシ基、 ホルミル基、 金属キレ一ト又は活性エステル基を導入するのが好ましい。 金属キレートを導入し た担体を使用すると、 ポリヒスチジン配列等の金属イオンと親和性のある標識を有 するポリべプチドを効果的かつ安定に固定化することができる。
本発明の担体に生体関連分子を固定化する方法は、 特に制限されない。 例えば、 生体関連分子をバッファ一に溶解して溶液を作成し、 これに上記のような担体を浸 漬することによって、 担体表面に生体関連分子を固定化することができる。 浸漬は、 通常、 0〜9 8 °C、 好ましくは 4 °C〜5 0 °Cで、 通常、 1分〜 2 4時間、 好ましく は 1 0分〜 1時間行う。 この場合、 一定時間浸潰した後、 担体を洗浄することによ つて、 固定化されていない生体関連分子を除去することができる。 また、 スポッタ 一といわれる装置を使用することによって、 多種類の生体関連分子を担体の表面に 固定化できる。 スポッターを用いる場合には、 例えば、 スポッターで生体関連分子 溶液を担体上にスポットした後、 加熱したオーブン中で一定時間べ一キングを行い、 その後洗浄によって固定していない分子を除去する。 スポッター装置を用いること により他種類の生体関連分子を担体上の異なる位置に固定化できるため一度に多数 の試験を実施することができる。 実施例
以下、 実施例を用いて本発明をより詳細に説明するが、 本発明の技術的範囲は以 下の実施例に限定されるものではない。
実施例 1
図 1の aと bに示す担体支持部材を反応液の入った中空ホルダ一に揷入した。 結 果を図 6の aと bにそれぞれ示す。 図 6 aでは、 担体支持部材の後端部と中空ホル ダー開口部のエッジとが係合することにより担体支持部材が中空ホルダーの中央部 に揷入されるよう位置決めされ、 その結果、 反応液の液面が水平となり担体と反応 液が接触している。 図 6 bでは、 担体支持部材の後端部と中空ホルダー開口部のェ ッジとが係合していないため、 担体支持部材が中空ホルダ一内で右側に偏ったかた ちで挿入されてしまい、 その結果、 表面張力によって反応液の液面が傾き、 担体と 反応液が接触していない部分が生じている。
実施例 2
3 m m角のシリコン基板にイオン化蒸着法を用いて、 下記の条件で 2層の D L C 層の製膜を行った。
1層目 • 2層目
原料ガス CH4 4. 75 47. 5 、sscmノ
H2 0. 25 2. 5 ossein)
作動圧力 3. 0 8. 0 (Pa)
基板バイアス 直流電圧 500 500 (V)
高周波出力 100 ― (W)
ァノ一ド電圧 50 50 (V)
フィラメント 電圧 7 7 (V)
¾ί¾Ε 22 22 (A) 得られた表面に DLC層を有するシリコン基板上に、 下記の条件でアンモニアプ ラズマを用いて、 アミノ基を導入した。 原料ガス H3 30 (sscm) 作動圧力 8.0 ^sscm) 基板バイアス 直流電圧 500 (Pa)
高周波出力 ― (w)
アノード電圧 50 (V)
フィラメント 電圧 7 (V)
亀流 22 (A)
14 OmM 無水コハク酸及び 0. 1M ホウ酸ナトリウムを含む 1—メチル—
2—ピロリ ドン溶液に 30分間浸漬し、 カルボキシル基を導入した。 0. 1M リ ン酸カリ ウムバッファー、 0. 1M 1 - [3 - (ジメチルァミノ) プロピル] 一 3—ェチルカルボジィミ ド、 2 OmM N—ヒ ドロキシスクシィミ ドを含む溶液に
30分間浸漬し、 活性化を行い、 シリコン基板表面に DLC層及び化学修飾基とし ての N—ヒ ドロキシスクシイミ ド基を有する担体を得た。
DNAプローブを S o l . 6 (東洋鋼鈑製) で Ι Ο μΜに溶解し、 担体上にスポ ットした。 80°Cで 1時間、 ベ一キングを行い、 2 X S SCZ0. 2%SDSで洗 浄した後、 超純水で洗浄し、 遠心乾燥を行うことにより、 担体に DNAプローブを 固定化した。 上記プローブとハイブリダィズする領域を PCRで増幅した。 標識は、 CyDy eを用いて行った。 P C R溶液の組成は以下のとおりとした。 得られた P CR産物 30 μ 1を、 ハイブリダィズ溶液 (4 X S SCZO. 2%SDS溶液) 3 0 1に溶かして試料を調製した。 試料 50 μ 1を図 7 cに示す中空ホルダーに入 れた。 図 7 a及び bに示す担体支持部材に、 上記で得られた DNAプローブを固定 化した担体をそれぞれ固定化し、 試料が入つた中空ホルダーにそれぞれ揷入した。 図 7 aに示す担体支持部材は廃液溝を有するが、 図 7 bに示す担体支持部材は廃液 溝を有しない。 担体支持部材を揷入後、 55°Cで 2分間反応させ、 2 X S SCZ0. 2%505で1回、 1 N酢酸ナトリウム 0. 5% t we e n 20で 1回、 1 NM g C 1 2/0. 5% t we e n 20で 1回洗浄した。 冷却 C CDカメラを用い、 蛍 光フィルター (Cy 5用、 エドモンド社製) を介して、 担体上の相互作用した生体 関連分子の蛍光標識を検出した。 <i> 5 mmのレーザー (6 4 0 n m波長) を用いて、 担体表面に対して 5 0 ° の角度で励起光を照射した。 結果を図 8に示す。
廃液溝を有する担体支持部材 (図 7 a ) を用いた場合には、 担体固定部に液溜ま りができず、 良好に検出することができた (図 8 a ) 。 一方、 廃液溝を有しない担 体支持部材 (図 7 b ) を用いた場合には、 一部液溜まりが観察された (図 8 b ) 。 実施例 3
中空ホルダーに揷入された姿勢で、 中空ホルダーの容積に占める担体支持部材の 体積の割合が 8 0 %である担体支持部材 (図 9 a ) と、 5 0 %である担体支持部材 (図 9 b ) を、 反応液を収容した中空ホルダーにそれぞれ挿入した。 図 9 aの場合 は、 挿入時に気泡が生成したが、 図 9 bの場合には、 挿入時に気泡が生成せず反応 液と担体の接触が良好であることがわかる。
本明細書中で引用した全ての刊行物、 特許及び特許出願をそのまま参考として本 明細書中にとり入れるものとする。 符号の説明
1 1 : 中空ホルダー、 1 2 :担体支持部材、 1 3 :担体支持部材の後端部、 1 4 : 担体、 1 5 : 中空ホルダー開口部、 2 1 : 中空ホルダー軸心、 2 4 :担体支持部材 の先端部、 3 1 :担体固定部、 3 2 :担体固定部の底面、 3 3 :担体固定部の側面 (傾斜面) 、 3 4 :底面と側面 (傾斜面) のなす角度、 4 1 :廃液溝

Claims

請 求 の 範 囲
1 . 生体関連分子が固定化された担体を用いた生体関連分子の相互作用の検出に使 用するためのュニットであって、
一端に開口部を有し他端が閉塞している中空ホルダ一と、 生体関連分子が固定化 された担体が固定化されており中空ホルダーに挿入可能な担体支持部材とを有し、 担体支持部材が中空ホルダーに揷入された姿勢において、 担体支持部材の後端部 と中空ホルダー開口部のエッジとが係合することによって、 中空ホルダ一が密閉さ れるとともに担体支持部材と中空ホルダーとが位置決めされ、
位置決め姿勢で中空ホルダ一の軸心を含む面で切った断面図において、 中空ホル ダ一の内側と担体が固定化された担体支持部材の外側とで画成される面積が、 担体 支持部材の担体固定部から先端部までの領域で、 軸心の左右で略同一である、 刖 g ュニッ卜。
2 . 担体支持部材における担体固定部が底面と側面とを有する凹部であり、 担体が 凹部の底面に配置されている、 請求の範囲第 1項記載のュニット。
3 . 担体支持部材凹部の少なくとも後端部側の側面が傾斜面である、 請求の範囲第 2項記載のュニット。
4 . 傾斜面の表面粗さが 1 0 /i in以下であり、 傾斜面と底面とのなす角度が 7 5 ° 以下である、 請求の範囲第 3項記載のユニット。
5 . 担体支持部材凹部の先端部側の側面から先端部まで廃液溝が形成されている、 請求の範囲第 2〜 4項のいずれか 1項記載のュニッ ト。
6 . 担体支持部材が中空ホルダーに挿入された姿勢において、 担体支持部材の担体 固定部より先端部側の領域で、 中空ホルダ一の容積に占める担体支持部材の体積の 割合が 6 0 %以上である、'請求の範囲第 1〜 5項のいずれか 1項記載のュニット。
7 . 担体支持部材が中空ホルダ一に挿入された姿勢で、 中空ホルダーの容積に占め る担体支持部材の体積の割合が 2 5〜7 0 %である、 請求の範囲第 1〜6項のいず れか 1項記載のュエツト。
8 . それぞれ担体が固定化された複数の担体支持部材を有し、 担体支持部材の後端 部がそれぞれ面材に固定されており、 それぞれの支持部材に対応した複数の中空ホ ルダーを有する、 請求の範囲第 1〜 7項のいずれか 1項記載のュニット。
9 . 生体関連分子が固定化された担体を用いて生体関連分子の相互作用を検出する 方法であって、
一端に開口部を有し他端が閉塞しており反応液を収容している中空ホルダーに、 生体関連分子が固定化された担体が固定されている担体支持部材を揷入することに よって、 担体上の生体関連分子と反応液中の蛍光標識された生体関連分子とを相互 作用させる相互作用工程、
担体を洗浄することにより、 担体に固定化された生体関連分子と相互作用しなか つた生体関連分子を除去する洗浄工程、
担体に励起光を照射し、 検出器で蛍光を検出する検出工程
を含み、
担体支持部材が中空ホルダーに揷入された姿勢において、 担体支持部材の後端部 と中空ホルダー開口部のエッジとが係合することによって、 中空ホルダーが密閉さ れるとともに担体支持部材と中空ホルダーとが位置決めされ、
前記位置決め姿勢で中空ホルダーの軸心を含む面で切った断面図において、 中空 ホルダ一の内側と担体が固定化された担体支持部材の外側とで画成される面積が、 担体支持部材の担体固定部から先端部までの領域で、 軸心の左右で略同一である、 前記方法。
1 0 . 担体支持部材における担体固定部が底面と側面とを有する凹部であり、 担体 が凹部の底面に配置されている、 請求の範囲第 9項記載の方法。
1 1. 担体支持部材凹部の少なく とも後端部側の側面が傾斜面である、 請求の範囲 第 1 0項記載の方法。
1 2. 傾斜面の表面粗さが 1 0 μ m以下であり、 傾斜面と底面とのなす角度が 7 5° 以下である、 請求の範囲第 1 1項記載の方法。
1 3. 担体支持部材凹部の先端部側の側面から先端部まで廃液溝が形成されている、 請求の範囲第 1 0〜1 2項のいずれか 1項記載の方法。
14. 担体支持部材が中空ホルダーに挿入された姿勢において、 担体支持部材の担 体固定部より先端部側の領域で、 中空ホルダーの容積に占める担体支持部材の体積 の割合が 60%以上である、 請求の範囲第 9〜1 3項のいずれか 1項記載の方法。
1 5. 担体支持部材が中空ホルダーに挿入された姿勢で、 中空ホルダーの容積に占 める担体支持部材の体積の割合が 25〜 70%である、 請求の範囲第 9〜 14項の いずれか 1項記載の方法。
1 6. それぞれ担体が固定化された複数の担体支持部材を有し、 担体支持部材の後 端部がそれぞれ面材に固定されており、 それぞれの支持部材に対応した複数の中空 ホルダーを有する、 請求の範囲第 9〜 1 5項のいずれか 1項記載の方法。
PCT/JP2009/059931 2008-05-29 2009-05-26 生体関連分子の相互作用を検出するための方法およびユニット WO2009145333A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980119720.7A CN102047122B (zh) 2008-05-29 2009-05-26 用于检测生物分子的相互作用的方法和单元
JP2010514568A JP4950336B2 (ja) 2008-05-29 2009-05-26 生体関連分子の相互作用を検出するための方法及びユニット
US12/994,990 US8778667B2 (en) 2008-05-29 2009-05-26 Method and unit for detection of interactions of biologically relevant molecules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-141155 2008-05-29
JP2008141155 2008-05-29

Publications (1)

Publication Number Publication Date
WO2009145333A1 true WO2009145333A1 (ja) 2009-12-03

Family

ID=41377200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059931 WO2009145333A1 (ja) 2008-05-29 2009-05-26 生体関連分子の相互作用を検出するための方法およびユニット

Country Status (4)

Country Link
US (1) US8778667B2 (ja)
JP (2) JP4950336B2 (ja)
CN (1) CN102047122B (ja)
WO (1) WO2009145333A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037363A (ja) * 2010-08-06 2012-02-23 Toyo Seikan Kaisha Ltd 生体関連分子の検出方法、検出用キット、及び検出システム
JP2015213465A (ja) * 2014-05-09 2015-12-03 東洋鋼鈑株式会社 遺伝子検査装置
JP2016034247A (ja) * 2014-08-01 2016-03-17 東洋鋼鈑株式会社 ハイブリダイズ反応装置及び核酸マイクロアレイ並びにそれらを用いた遺伝子検査方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127520B2 (ja) 2013-01-09 2017-05-17 日本軽金属株式会社 バイオチップ用基板及びその製造方法
CN114653415A (zh) * 2022-03-31 2022-06-24 深圳市曙芯生物科技有限公司 脱氧核糖核酸合成芯片及其合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017782A1 (en) * 1991-03-28 1992-10-15 Meiji Seika Kabushiki Kaisha Simple analyzing device
JPH10501069A (ja) * 1994-07-08 1998-01-27 ベクトン・ディッキンソン・アンド・カンパニー 混合作用を改善し試薬体積を減少させる分析用ディップスティック
JP2003107083A (ja) * 2001-09-28 2003-04-09 Olympus Optical Co Ltd 棒状担体およびこれを具備するシリンダー反応容器
JP2006003349A (ja) * 2004-05-18 2006-01-05 Mitsubishi Rayon Co Ltd Dnaマイクロアレイ処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985631A (en) * 1988-02-16 1991-01-15 Wannlund Jon C Luminescence exposure apparatus
US6486947B2 (en) * 1998-07-22 2002-11-26 Ljl Biosystems, Inc. Devices and methods for sample analysis
US6022700A (en) * 1998-03-12 2000-02-08 Intelligent Imaging Innovations, Inc. High throughput biological sample preparation device and methods for use thereof
DE60030436T2 (de) * 1999-05-20 2007-03-29 Illumina, Inc., San Diego Vorrichtung zur halterung und präsentation von mindestens einer mikrokugelmatrix zu lösungen und/oder zu optischen abbildungssystemen
US6905816B2 (en) * 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US7332328B2 (en) * 2001-09-07 2008-02-19 Corning Incorporated Microcolumn-platform based array for high-throughput analysis
CN1298849C (zh) * 2002-01-17 2007-02-07 准确***科学株式会社 载体存放处理装置及载体存放处理方法
US7402279B2 (en) * 2002-10-31 2008-07-22 Agilent Technologies, Inc. Device with integrated microfluidic and electronic components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017782A1 (en) * 1991-03-28 1992-10-15 Meiji Seika Kabushiki Kaisha Simple analyzing device
JPH10501069A (ja) * 1994-07-08 1998-01-27 ベクトン・ディッキンソン・アンド・カンパニー 混合作用を改善し試薬体積を減少させる分析用ディップスティック
JP2003107083A (ja) * 2001-09-28 2003-04-09 Olympus Optical Co Ltd 棒状担体およびこれを具備するシリンダー反応容器
JP2006003349A (ja) * 2004-05-18 2006-01-05 Mitsubishi Rayon Co Ltd Dnaマイクロアレイ処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037363A (ja) * 2010-08-06 2012-02-23 Toyo Seikan Kaisha Ltd 生体関連分子の検出方法、検出用キット、及び検出システム
JP2015213465A (ja) * 2014-05-09 2015-12-03 東洋鋼鈑株式会社 遺伝子検査装置
JP2016034247A (ja) * 2014-08-01 2016-03-17 東洋鋼鈑株式会社 ハイブリダイズ反応装置及び核酸マイクロアレイ並びにそれらを用いた遺伝子検査方法

Also Published As

Publication number Publication date
JP4950336B2 (ja) 2012-06-13
CN102047122B (zh) 2013-10-16
CN102047122A (zh) 2011-05-04
US20110111531A1 (en) 2011-05-12
JPWO2009145333A1 (ja) 2011-10-20
US8778667B2 (en) 2014-07-15
JP2012123012A (ja) 2012-06-28
JP5462293B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP3764779B2 (ja) 凸状領域を用いた分析方法
JP5462293B2 (ja) 生体関連分子の相互作用を検出するための方法及びユニット
JP5289843B2 (ja) 生体関連分子の相互作用を検出するための方法及びそれに用いる担体支持部材
JP4730808B2 (ja) 基板の活性化キット及びこれを用いたdna等の検出方法
WO2006046509A1 (ja) カンチレバーセンサ、センサシステム及び検体液中の検出対象物質の検出方法
JP2005172429A (ja) 生体物質蛍光標識剤及び生体物質蛍光標識方法、並びにバイオアッセイ方法及び装置
JP2006308307A (ja) 生体関連分子の非特異的吸着を阻害する方法および生体関連分子検出用キット
JP2011027632A (ja) 生体分子固定化基板、生体分子輸送基板及びバイオチップ
JP2009092420A (ja) マイクロアレイ処理装置
JP2007057458A (ja) バイオセンサー
JP2002365293A (ja) 表面処理層が形成された固体支持体
JP2005181350A (ja) 凸状領域を用いた分析方法
JP2003172737A (ja) 固体支持体、基体、バイオセンサ、およびそれらを用いた生体物質の解析方法
JP5188228B2 (ja) 蛍光標識された生体関連分子の検出方法
JPWO2009130797A1 (ja) Abo式血液型を判定するためのプローブセット
JP5456355B2 (ja) Ito層を有する生体物質固定化用担体
JP6028300B2 (ja) Abo式血液型を判定するためのプライマーセット及びプローブ
JP5598929B2 (ja) 光学顕微鏡
JP6028299B2 (ja) 人獣判定するためのプライマーセット及びプローブ
JP4569420B2 (ja) 検体反応装置及び標的分子検出装置
JPWO2004003551A1 (ja) プローブ担体、プローブ担体の作成方法及びプローブ担体の評価方法及びそれを用いた標的核酸の検出方法
JP2008200012A (ja) 耐熱性菌検出用マイクロアレイ
JP4706396B2 (ja) 検体反応装置
JP7456739B2 (ja) 骨髄増殖性腫瘍に関連する遺伝子変異評価用キット
JP4696782B2 (ja) 検体反応装置及び標的分子検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119720.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514568

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12994990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754841

Country of ref document: EP

Kind code of ref document: A1