WO2009144954A1 - Heat-hardened resin composition and printed wiring board - Google Patents

Heat-hardened resin composition and printed wiring board Download PDF

Info

Publication number
WO2009144954A1
WO2009144954A1 PCT/JP2009/002385 JP2009002385W WO2009144954A1 WO 2009144954 A1 WO2009144954 A1 WO 2009144954A1 JP 2009002385 W JP2009002385 W JP 2009002385W WO 2009144954 A1 WO2009144954 A1 WO 2009144954A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
epoxy
filler
epoxy resin
plating
Prior art date
Application number
PCT/JP2009/002385
Other languages
French (fr)
Japanese (ja)
Inventor
林亮
中居弘進
邑田勝人
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Publication of WO2009144954A1 publication Critical patent/WO2009144954A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Definitions

  • the present invention relates to a thermosetting resin composition suitable for forming a resin insulating layer excellent in adhesion (peel strength) to a conductor layer by ultraviolet treatment, a resin sheet comprising the thermosetting resin composition, and
  • the present invention relates to a printed wiring board in which a resin insulating layer is formed using these.
  • the adhesion between the conductor layer formed by plating and the resin insulating layer must satisfy the impact resistance test of the conductor circuit pattern and the mounted component. . Therefore, after the surface of the resin insulating layer is roughened (desmeared), plating is performed.
  • the roughening treatment is performed by etching the surface of the resin insulating layer using an oxidizing agent such as sodium permanganate or potassium permanganate.
  • High adhesion is obtained by an anchor effect due to the conductor layer entering into the recesses on the surface of the resin insulating layer formed into irregularities by the roughening treatment.
  • the etching solution easily enters the side surface of the conductor circuit pattern, thereby affecting the pattern accuracy and extremely fine.
  • the conductor circuit pattern cannot be formed with high accuracy.
  • Another problem is that the high-frequency signal transmission loss increases in the electrical characteristics of the wiring board due to the deterioration of the shape of the pattern side surface.
  • a method of performing a plating process after a pretreatment by ultraviolet irradiation is disclosed (for example, see Patent Documents 4 and 5).
  • a polar group such as a carboxyl group (—COOH), a carbonyl group (C ⁇ O), or an OH group is introduced to the resin surface by irradiating the resin insulating layer surface with ultraviolet rays before the electroless plating process.
  • the surface energy can be increased to activate the resin surface, whereby the polar groups on the activated resin surface are chemically bonded to the active metal particles that are the direct plating material, The adhesiveness with the metal film formed on the resin surface is strengthened.
  • Patent Document 6 a method for improving the adhesion between the conductor layer and the resin insulation layer by performing both plasma treatment and ultraviolet treatment on the resin insulation layer has been proposed (see Patent Document 6).
  • the ultraviolet wavelength used is 172 nm, it is easily absorbed by oxygen, nitrogen, etc., and it is necessary to perform treatment at a short distance from the irradiation lamp. For this reason, it becomes difficult to uniformly perform the processing without any unevenness on the processing surface.
  • JP-A-7-304931 (Claims) JP-A-7-304933 (Claims) JP-A-11-87927 (Claims) JP-A-8-253869 (Claims) JP-A-10-88361 (Claims) JP 2002-57456 A (Claims)
  • the present invention mainly solves the problems of the prior art described above in the production of a build-up type printed wiring board in which a resin insulation layer and a conductor layer are alternately stacked on a conductor layer of an inner layer circuit board.
  • the purpose of this is to form a conductor layer on the surface of the resin insulation layer by plating, and to perform resin pre-treatment by ultraviolet irradiation without using a conventional harmful oxidant.
  • thermosetting resin composition capable of suppressing the surface roughness of the layer to be extremely small, and improving adhesion between the resin insulating layer and the conductor layer, thereby enabling formation of an extremely fine conductor circuit pattern;
  • An object of the present invention is to provide a resin sheet made of the thermosetting resin composition, and a printed wiring board having excellent electrical characteristics in which a resin insulating layer is formed using these.
  • the resin insulating layer is used to form the resin insulating layer.
  • a thermosetting resin composition comprising a phenol resin, a filler, and a polyhydroxycarboxylic acid or a derivative thereof is provided.
  • the filler is preferably at least one of calcium carbonate and silica. Further, the blending amount of the filler is preferably 10 to 150 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin. Furthermore, according to this invention, the said thermosetting resin composition was coated on the carrier film, and then the resin sheet formed by drying, or the sheet-like fibrous base material was impregnated with the thermosetting resin composition. Thereafter, a dried resin sheet is also provided.
  • the surface of the resin insulation layer formed from the cured product or resin sheet of the thermosetting resin composition is irradiated with ultraviolet rays, and then a conductor layer is formed by plating.
  • a printed wiring board characterized by the above is provided.
  • the plating treatment includes electroless plating and electrolytic plating.
  • thermosetting resin composition of the present invention comprises a bifunctional epoxy resin not containing a naphthalene skeleton and an epoxy resin not containing a naphthalene skeleton having an epoxy equivalent of 250 g / eq or more having 3 or more epoxy groups in one molecule. Since it contains a combination of at least one of a phenol resin, a filler, and a polyhydroxycarboxylic acid or a derivative thereof, the surface of the resin insulating layer formed from the composition is irradiated with ultraviolet rays, and then subjected to plating treatment to conduct a conductor.
  • thermosetting resin composition of the present invention and the resin sheet (dry film or prepreg) in a build-up system in which conductor circuit layers and insulating layers are alternately stacked, the adhesion strength of the plated conductor layer is high.
  • a multilayer printed wiring board on which an interlayer insulating layer excellent in heat resistance, electrical insulation and the like is formed can be produced.
  • a resin insulation layer formed from a thermosetting resin composition containing a combination of at least one epoxy resin not containing a skeleton and a phenol resin, a filler, and a polyhydroxycarboxylic acid or a derivative thereof has ultraviolet rays on its surface.
  • the adhesion strength of the conductor layer is remarkably increased despite the fact that it has excellent wettability with the plating solution and is a relatively flat surface.
  • the present inventors have found that it is optimal as an interlayer insulating layer of a plate and have completed the present invention.
  • the effect of irradiating the surface of the resin insulation layer with ultraviolet rays (polar groups such as carboxyl groups (—COOH), carbonyl groups (C ⁇ O), OH groups, etc. are introduced on the resin surface), and the surface energy increases.
  • the resin surface can be activated, whereby the polar group on the activated resin surface forms a chemical bond directly with the active metal particles that are the plating material, and the metal film formed on the resin surface
  • the polar groups of these compounds are likely to be present on the surface of the resin insulation layer. Excellent wettability with plating solution, improved penetration and adsorption of plating solution with respect to cured film, and extremely high adhesion strength of conductor layer despite its relatively flat surface. It made.
  • polyhydroxycarboxylic acid or a derivative thereof promotes the penetration of a plating solution, particularly a catalyst solution, due to the presence of its functional group (hydroxyl group, carboxyl group, amide group, ester group, etc.), and also has the effect of the above ultraviolet irradiation.
  • the naphthalene skeleton needs to contain no naphthalene skeleton because the naphthalene skeleton is likely to inhibit the penetration of the plating solution into the cured film. Moreover, even if it does not contain a naphthalene skeleton, in the case of a trifunctional or higher polyfunctional epoxy resin having an epoxy equivalent of 250 g / eq or less, the crosslink density becomes too high and the penetration of the plating catalyst is hindered. Since it is easy to deteriorate, it is not preferable.
  • the crosslink density is relatively high during thermosetting compared to the case of using dicyandiamide, which is conventionally used, and the glass transition point Tg is compared. Therefore, a cured product having high water absorption and excellent toughness can be obtained.
  • the inside of the insulating layer with improved durability against thermal stress and the surface of the insulating layer with good catalyst liquid permeability during plating, it is formed as a highly reliable multilayer printed wiring board. This can greatly contribute to the coexistence of fine circuit formation of the conductor layer.
  • the epoxy resin includes an epoxy resin having two epoxy groups in one molecule and an epoxy resin having three or more epoxy groups in one molecule and having an epoxy equivalent of 250 g / eq or more.
  • Any epoxy compound that is selected from the above and does not contain a naphthalene skeleton can be used.
  • the bifunctional epoxy resin include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, Biphenol type epoxy resins and the like are listed.
  • Examples of the tri- or higher functional epoxy resins include phenol novolac type epoxy resins, alkylphenol novolac type epoxy resins, bisphenol A novolac type epoxy resins, dicyclopentadiene type epoxy resins, glycidyl amine type epoxy resins, Trihydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin, diglycidyl phthalate resin, aromatic alcohols having phenols and phenolic hydroxyl groups Examples include epoxidized products of condensates with hydrides, bromine atom-containing epoxy resins and phosphorus atom-containing epoxy resins, triglycidyl isocyanurate and other epoxy resins, alicyclic epoxy resins, and the like. These can be used alone or in combination of two or more. Moreover, you may contain the monofunctional epoxy resin as a reactive diluent.
  • the epoxy resin as described above may be used alone, but it is preferable to use a combination of two or more.
  • a liquid epoxy resin and a solid epoxy resin are used in combination at room temperature, a low molecular weight
  • the liquid epoxy resin contributes to improving the flexibility and adhesion of the resulting cured film
  • the solid epoxy resin contributes to raising the glass transition point. By adjusting these ratios, the above characteristics can be obtained. It is possible to adjust the balance.
  • Epoxy resins having an epoxy equivalent of more than 200 g / eq have little cure shrinkage and are effective in preventing warpage of the substrate and imparting flexibility to the cured product.
  • the melt viscosity at the time of heating lamination and leveling can be increased, which is effective in controlling the amount of resin oozing after molding.
  • an epoxy resin having an epoxy equivalent of 200 g / eq or less has high reactivity and gives mechanical strength to the cured product.
  • the melt viscosity at the time of heat lamination is low, it contributes to the filling property of the resin composition into the gaps between the inner layer circuits and the followability to the rough surface of the copper foil.
  • a phenol resin is used as an epoxy resin curing agent used as an essential component together with the epoxy resin.
  • the phenol resin include a phenol novolak resin, an alkylphenol novolak resin, a triazine structure-containing phenol novolak resin, a bisphenol A novolak resin, a dicyclopentadiene structure-containing phenol resin, a xylok type phenol resin, a terpene-modified phenol resin, and polyvinyl.
  • examples include phenols, naphthalene structure-containing phenolic curing agents, and fluorene structure-containing phenolic curing agents. These can be used alone or in combination of two or more.
  • a suitable proportion of the phenol resin is such that the phenolic hydroxyl group of the phenol resin is 0.2 to 1.2 equivalent, preferably 0.3 to 0.9 equivalent per equivalent of epoxy group of the epoxy resin. .
  • the amount is less than 0.2 equivalent, the properties of the obtained cured product are inferior, and sufficient adhesion to the substrate cannot be obtained.
  • it exceeds 1.2 equivalents the proportion of the phenol resin remaining without participating in the reaction with the epoxy resin is increased, and this tends to lead to a decrease in physical properties of the cured film, which is not preferable.
  • a curing accelerator can be used as necessary.
  • the curing accelerator include triethylamine, tributylamine, dimethylbenzylamine, diethylbenzylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4 Tertiary amines such as methyl-N, N-dimethylbenzylamine, quaternary ammonium salts such as benzyltrimethylammonium chloride and benzyltriethylammonium chloride, phosphines such as triethylphosphine and triphenylphosphine, n-butyltriphenylphosphonium Phosphonium salts such as bromide, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimi
  • inorganic fillers include barium sulfate, barium titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, and aluminum nitride.
  • extender pigments such as copper, tin, zinc, nickel, silver, palladium, aluminum, iron, cobalt, gold and platinum.
  • These inorganic fillers also suppress the curing shrinkage of the coating film and contribute to improving properties such as adhesion and hardness.
  • calcium carbonate and silica, particularly calcium carbonate are preferable.
  • These fillers are preferably spherical fillers from the viewpoint that they can be blended in a high proportion in the composition, and the average particle diameter is preferably 0.1 ⁇ m to 3 ⁇ m.
  • the blending amount of the filler is 10 to 150 parts by mass, preferably 20 to 150 parts by mass, with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin.
  • the blending amount of the filler is less than the above range, it becomes difficult to obtain good adhesion strength with the conductor circuit layer.
  • it exceeds the above range the fluidity of the composition is deteriorated, and the strength of the cured film is low. It is not preferable because it tends to decrease.
  • polyhydroxycarboxylic acid or its derivative is not limited to a specific compound, but an amide or ester of polyhydroxycarboxylic acid can be suitably used.
  • examples of commercially available products include BYK-405 (polyhydroxycarboxylic acid amide), BYK-LPR6795 (polyhydroxycarboxylic acid ester) manufactured by Big Chemie Japan.
  • the blending amount of the polyhydroxycarboxylic acid or derivative thereof is suitably from 0.1 to 15 parts by weight, preferably from 0.3 to 10 parts by weight, based on 100 parts by weight of the total of the epoxy resin and the phenol resin. .
  • the blending amount of the polyhydroxycarboxylic acid or its derivative is less than the above range, it becomes difficult to obtain good adhesion strength with the conductor circuit layer.
  • the conductor circuit layer Further improvement of the adhesion strength with the resin cannot be expected, which is not preferable in terms of economy.
  • the softening point of a cured film falls and heat resistance etc. become easy to fall, it is unpreferable.
  • thermosetting resin composition of the present invention can contain an organic solvent in order to dissolve the solid resin or adjust the viscosity of the composition, if necessary.
  • Organic solvents include ordinary solvents such as ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and cellosolves such as cellosolve and butylcellosolve.
  • Carbitols such as carbitol and butyl carbitol
  • aromatic hydrocarbons such as toluene and xylene
  • dimethylformamide dimethylacetamide and the like
  • thermosetting resin composition of the present invention may further include a known and commonly used colorant such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc. , Known and commonly used thickeners such as asbestos, olben, benton, fine silica, etc., defoamers and / or leveling agents such as silicones, fluorines and polymers, thiazoles, triazoles, silane coupling agents, etc. Adhesiveness imparting agents, titanate-based, and aluminum-based commonly used additives can be used.
  • a known and commonly used colorant such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc.
  • Known and commonly used thickeners such as asbestos, olben, benton, fine silica, etc., defoamers and
  • thermosetting resin composition of the present invention may be provided as a coating material whose viscosity is appropriately adjusted, or the thermosetting resin composition is applied onto a carrier film (support base film), and a solvent is used. It is good also as a dried resin sheet (dry film). Furthermore, it is good also as a resin sheet (prepreg sheet
  • the carrier film include polyolefin such as polyethylene and polyvinyl chloride, polyester such as polyethylene terephthalate, polycarbonate and polyimide, and metal foil such as release paper, copper foil, and aluminum foil.
  • the carrier film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.
  • the coating material, dry film, or prepreg using the thermosetting resin composition is directly coated on the inner circuit board on which the circuit is formed and dried or cured, or the dry film is laminated by heating to be integrally formed. Then, it may be cured in an oven or cured by a hot plate press. In the case of a prepreg, it is placed on an inner circuit board, sandwiched between metal plates through a release film, and pressed by pressing and heating.
  • the method of laminating or hot plate pressing is preferable because unevenness due to the inner layer circuit is eliminated when heated and melted and is cured as it is, so that a multilayer plate having a flat surface state is finally obtained. Further, when laminating or hot plate pressing the base material on which the inner layer circuit is formed and the dry film or prepreg of the thermosetting resin composition of the present invention, the copper foil or the base material on which the circuit is formed may be laminated at the same time. it can.
  • Holes are made in the substrate thus obtained with a semiconductor laser such as a CO 2 laser or a UV-YAG laser or a drill.
  • the hole is a through hole (through hole) that is intended to connect the front and back of the substrate, but it is also a partial hole (conformal via) that is intended to connect the inner layer circuit and the circuit on the surface of the interlayer insulating layer. either will do.
  • the surface of the resin insulation layer is preferably irradiated with ultraviolet light having an irradiation intensity of at least 10 mW / cm 2 .
  • the dominant wavelength of the ultraviolet light is 150 nm to 310 nm or less, preferably 150 to 260 nm or less, and more preferably about 150 to 200 nm.
  • the wavelength of ultraviolet rays is composed of two types of about 184 nm and about 254 nm.
  • a low-pressure mercury lamp excimer laser, barrier discharge lamp, dielectric barrier discharge lamp, microwave electrodeless discharge lamp, transient discharge lamp, or the like can be used.
  • a low-pressure mercury lamp excimer laser, barrier discharge lamp, dielectric barrier discharge lamp, microwave electrodeless discharge lamp, transient discharge lamp, or the like
  • a dominant wavelength of 184.9 nm and 253.7 nm is particularly effective.
  • Ar2 * (126 nm), Kr2 * (146 nm), F2 * (153 nm), ArBr * (165 nm), Xe2 * (172 nm), ArCl * (175 nm), ArF (193 nm), KrBr * (207 nm), KrCl * (222 nm), KrF (248 nm), Xel * (253 nm), Cl2 * (259 nm), XeBr * (283 nm), Br2 * (289 nm), XeCl * (308 nm) ) Is preferred.
  • Xe2 * and KrCl * are preferable because they are stable and have a relatively small wavelength and large energy, so that the surface modification effect is large.
  • the irradiation time of the ultraviolet light varies depending on the resin material used and the intensity (irradiation amount) of the ultraviolet light, but in the range of about 10 seconds to 30 minutes (when the intensity of the ultraviolet light is about 5 to 20 mW / cm 2 ). Can be adjusted as appropriate, and is preferably about 20 seconds to 10 minutes.
  • the irradiation with ultraviolet light may be performed a plurality of times before the conductor layer is formed by electroless plating.
  • a circuit is formed on the surface of the film treated with ultraviolet rays by a subtractive method or a semi-additive method.
  • a heat treatment called annealing at about 80 to 180 ° C. for about 10 to 60 minutes for the purpose of removing stress from the metal and improving the strength. May be applied.
  • the metal plating used here is not particularly limited, such as copper, tin, solder, nickel, etc., and can be used in combination.
  • Electroless copper plating is for forming a power supply layer for performing electrolytic copper plating, and is usually formed to a thickness of about 0.1 to 2.0 ⁇ m.
  • copper plating has the difficulty that adhesiveness with resin is low compared with nickel plating etc., when performing copper plating on the surface of the resin insulation layer formed according to the present invention, and forming a conductor layer Excellent adhesion strength can be obtained by the above-described action.
  • the electroless plating and electrolytic plating performed on the surface of the resin insulating layer may be any known method, and is not limited to a specific method, but the catalyst in the electroless plating treatment step is a palladium-tin mixed catalyst, The primary particle size of the catalyst is preferably 10 nm or less. Moreover, it is preferable that the plating composition of the electroless plating treatment step contains hypophosphorous acid as a reducing agent.
  • the electroless plating is described in, for example, the above-mentioned Patent Documents 4 and 6 and Japanese Patent Application Laid-Open No. 2000-212762.
  • a desired multilayer printed wiring board can be obtained by repeating the formation of the resin insulating layer and the conductor circuit layer several times as necessary as described above.
  • thermosetting resin composition was obtained, respectively.
  • Test board production process Each thermosetting resin composition obtained as described above was applied to a 1.6 mm thick FR-T substrate (etch-out substrate, pretreatment: buffing) with an applicator.
  • UV treatment process The test substrate obtained as described above was subjected to ultraviolet treatment under the following conditions using an ultraviolet cleaning reformer (manufactured by Sen Engineering Co., Ltd., power source: UVE-200J, light source: PL16-110D).
  • Electroless copper plating and electrolytic copper plating process The test substrate treated with ultraviolet rays as described above is subjected to electroless copper plating for 30 minutes under the following conditions to obtain an electroless copper plating film having a thickness of about 0.3 ⁇ m, and then electrolysis is performed on the electroless copper plating. Copper plating was performed until the thickness was about 20 ⁇ m.
  • Pretreatment process After degreasing the test substrate, the CLEANER-CONDITIONER 231 (100 ml / l) manufactured by Rohm and Haas was used to perform the cleaner / conditioner process at 60 ° C. for 5 minutes, followed by a water washing process at 25 ° C. for 1 minute and hydrochloric acid (50 ml / liter). l) Pre-dip process at 25 ° C.
  • Electroless copper plating bath composition copper sulfate (hexahydrate) 8 g / l, sodium citrate (dihydrate) 14 g / l, sodium hypophosphite (monohydrate) 57 g / l, boric acid 31 g / l, ⁇ bath conditions> bath temperature 60 ° C., pH 8.0 to 11.0.
  • Current density of electrolytic copper plating 1 A / dm 2 .
  • the test substrate plated as described above was measured for adhesion (peel strength) between the conductor layer and the resin insulating layer.
  • the peel strength was measured by using AGS-G 100N manufactured by Shimadzu Corporation as a peel strength measuring device under the condition of a peel speed of 50 mm / min according to JIS C 6481 and evaluated according to the following criteria. In addition, the measurement was performed twice and the average value thereof was used. The results are also shown in Table 1. Evaluation criteria: A: Peel strength is 3 N / cm or more. ⁇ : Peel strength is 2 N / cm or more and less than 3 N / cm. X: Peel strength is less than 2 N / cm.
  • Example 7 As shown in Table 2 below, the main component and the curing agent are mixed together in various formulations with different filler contents, kneaded and dispersed with a three-roll mill, and about 30 dPa ⁇ The viscosity was adjusted to s (rotary viscometer, 25 ° C.) to obtain thermosetting resin compositions. Next, test substrates were prepared in the same manner as in Examples 1 to 6, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner. The results are also shown in Table 2.
  • Example No. containing a filler was used.
  • the peel strength was high and the adhesiveness between the conductor layer and the resin insulating layer was excellent.
  • the peel strength was low and the adhesion was poor. From this, it can be seen that the inclusion of the filler is essential in order to improve the adhesion between the conductor layer and the resin insulating layer.
  • Example 8 As shown in Table 3 below, the components of the main agent and the curing agent are mixed together in various formulations with different contents of the polyhydroxycarboxylic acid derivative, kneaded and dispersed in a three-roll mill, and added to the solvent (cyclohexanone). The viscosity was adjusted to about 30 dPa ⁇ s (rotary viscometer, 25 ° C.) to obtain a thermosetting resin composition. Next, test substrates were prepared in the same manner as in Examples 1 to 6, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner. The results are also shown in Table 3.
  • Example No. 1 containing a polyhydroxycarboxylic acid derivative was used.
  • the peel strength was high and the adhesiveness between the conductor layer and the resin insulating layer was excellent, but no polyhydroxycarboxylic acid derivative was contained.
  • the peel strength was low and the adhesion was poor. From this, it can be seen that the inclusion of the polyhydroxycarboxylic acid derivative is essential in order to improve the adhesion between the conductor layer and the resin insulating layer.
  • Examples 9 to 11 and Comparative Examples 1 to 3 As shown in Table 4 below, the components of the main agent and the curing agent were mixed together in various formulations with different types of epoxy resin, kneaded and dispersed with a three roll mill, and about 30 dPa ⁇ The viscosity was adjusted to s (rotary viscometer, 25 ° C.) to obtain thermosetting resin compositions. Next, test substrates were prepared in the same manner as in Examples 1 to 6, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner. The results are also shown in Table 4.
  • thermosetting resin composition that enables the formation of a conductor layer having high adhesion strength with the resin insulating layer
  • thermosetting The resin sheet which consists of a resin composition, and the printed wiring board by which a resin insulating layer is formed using these can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

Provided are a heat-hardened resin composition which can form a conductive layer having high adhesive strength with a resin insulation layer when a conductive layer is formed on the surface of a resin insulation layer by a plating process, a resin sheet composed of the heat-hardened resin composition, and a printed wiring board which forms a resin insulation layer by using the composition and the sheet. In the manufacture of a printed wiring board which forms a conductive layer by a plating process after ultraviolet light irradiates the surface of a resin insulation layer, the heat-hardened resin composition used to form the resin insulation layer includes at least one of either a bifunctional epoxy resin which does not include a naphthalene skeleton or an epoxy resin which does not include a naphthalene skeleton which has an epoxy equivalent greater than 250 g/eq with three or more epoxy bases in one molecule, and includes phenol resin, filler, and polyhydroxycarboxylic acid or a derivative thereof.

Description

熱硬化性樹脂組成物及びプリント配線板Thermosetting resin composition and printed wiring board
 本発明は、紫外線処理により導体層との密着性(ピール強度)に優れた樹脂絶縁層を形成するのに好適な熱硬化性樹脂組成物、該熱硬化性樹脂組成物からなる樹脂シート、並びにこれらを用いて樹脂絶縁層が形成されてなるプリント配線板に関する。 The present invention relates to a thermosetting resin composition suitable for forming a resin insulating layer excellent in adhesion (peel strength) to a conductor layer by ultraviolet treatment, a resin sheet comprising the thermosetting resin composition, and The present invention relates to a printed wiring board in which a resin insulating layer is formed using these.
近年、多層プリント配線板の製造方法として、内層回路板の導体層上に有機絶縁層と導体層を交互に積み上げていくビルドアップ方式の製造技術が注目されている。例えば、回路形成された内層回路板にエポキシ樹脂組成物を塗布し、加熱硬化した後、粗化剤により表面に凸凹状の粗化面を形成し、導体層をめっきにより形成する多層プリント配線板の製造法が提案されている(特許文献1及び特許文献2参照)。また、回路形成された内層回路板にエポキシ樹脂組成物の接着シートをラミネートし、加熱硬化した後、粗化剤により表面に凸凹状の粗化面を形成し、導体層をめっきにより形成する多層プリント配線板の製造法が提案されている(特許文献3参照)。 In recent years, as a method for producing a multilayer printed wiring board, a build-up production technique in which an organic insulating layer and a conductor layer are alternately stacked on a conductor layer of an inner circuit board has attracted attention. For example, a multilayer printed wiring board in which an epoxy resin composition is applied to a circuit-formed inner layer circuit board, heat-cured, a roughened surface is formed on the surface with a roughening agent, and a conductor layer is formed by plating Has been proposed (see Patent Document 1 and Patent Document 2). Also, after laminating an adhesive sheet of an epoxy resin composition on a circuit-formed inner layer circuit board and heat-curing it, a roughening surface is formed on the surface with a roughening agent, and a conductor layer is formed by plating A method for manufacturing a printed wiring board has been proposed (see Patent Document 3).
従来、めっき処理により樹脂絶縁層の表面に導体層を形成する場合、めっき処理により形成した導体層と樹脂絶縁層との密着性は導体回路パターンや実装部品の衝撃耐性試験を満足する必要がある。そのため、樹脂絶縁層の表面に粗面化処理(デスミア処理)を行った後、めっきを施す工法が行われている。粗面化処理は、過マンガン酸ナトリウム、過マンガン酸カリウム等の酸化剤を用いて樹脂絶縁層の表面をエッチングすることによって行われる。 Conventionally, when a conductor layer is formed on the surface of a resin insulating layer by plating, the adhesion between the conductor layer formed by plating and the resin insulating layer must satisfy the impact resistance test of the conductor circuit pattern and the mounted component. . Therefore, after the surface of the resin insulating layer is roughened (desmeared), plating is performed. The roughening treatment is performed by etching the surface of the resin insulating layer using an oxidizing agent such as sodium permanganate or potassium permanganate.
高い密着性は、粗面化処理によって凹凸に形成された樹脂絶縁層表面の凹部に導体層が入り込むことによるアンカー効果により得られる。しかしながら、樹脂絶縁層の表面凹凸が大きくなると、導体層をエッチングして導体回路パターンを形成する際に、エッチング液が導体回路パターン側面に入り込み易くなることでパターン精度に影響を及ぼし、極めて微細な導体回路パターンを精度良く形成することができないといった問題が生じる。また、パターン側面の形状が悪化することにより、配線基板における電気的特性において高周波信号の伝送損失が大きくなるという問題も挙げられる。 High adhesion is obtained by an anchor effect due to the conductor layer entering into the recesses on the surface of the resin insulating layer formed into irregularities by the roughening treatment. However, when the surface unevenness of the resin insulating layer becomes large, when the conductor layer is etched to form the conductor circuit pattern, the etching solution easily enters the side surface of the conductor circuit pattern, thereby affecting the pattern accuracy and extremely fine. There arises a problem that the conductor circuit pattern cannot be formed with high accuracy. Another problem is that the high-frequency signal transmission loss increases in the electrical characteristics of the wiring board due to the deterioration of the shape of the pattern side surface.
また、配線基板の設計においては、樹脂絶縁層の凹凸における深度が大きくなるほど上下導体層を電気的に絶縁するために必要な層の厚みが大きくなり、配線基板の軽薄化が困難になる。
 さらに、表面粗化に用いる過マンガン酸カリウムや過マンガン酸ナトリウムは、危険性があり、また環境汚染等の公害問題を発生し易いため、これらを使用しないめっき処理技術は市場から強く要望されている。
Further, in designing a wiring board, as the depth of the resin insulating layer in the unevenness increases, the thickness of the layer necessary to electrically insulate the upper and lower conductor layers increases, making it difficult to reduce the thickness of the wiring board.
Furthermore, since potassium permanganate and sodium permanganate used for surface roughening are dangerous and easily cause pollution problems such as environmental pollution, plating technology that does not use them is strongly demanded by the market. Yes.
これらの問題を解決する手法として、紫外線照射による前処理後にめっき処理を行う方法が開示されている(例えば、特許文献4、5参照)。この方法は、無電解めっき工程の前に、樹脂絶縁層表面に紫外線を照射することにより、樹脂表面にカルボキシル基(-COOH)、カルボニル基(C=O)、OH基等の極性基が導入され、その表面エネルギーが増大して樹脂表面を活性化することができ、それにより、活性化された樹脂表面の極性基が、直接めっき材料である活性な金属粒子と化学的な結合を生じ、樹脂表面上に形成される金属膜との密着性を強固なものとするものである。しかしながら、このような方法の場合、樹脂表面が平坦であることに加えて、樹脂表面の極性基とめっき材料の金属粒子との化学的結合力も不充分なため、導体回路パターンや実装部品の衝撃耐性試験を満足できる導体層と樹脂絶縁層との密着強度が得られない。 As a technique for solving these problems, a method of performing a plating process after a pretreatment by ultraviolet irradiation is disclosed (for example, see Patent Documents 4 and 5). In this method, a polar group such as a carboxyl group (—COOH), a carbonyl group (C═O), or an OH group is introduced to the resin surface by irradiating the resin insulating layer surface with ultraviolet rays before the electroless plating process. And the surface energy can be increased to activate the resin surface, whereby the polar groups on the activated resin surface are chemically bonded to the active metal particles that are the direct plating material, The adhesiveness with the metal film formed on the resin surface is strengthened. However, in the case of such a method, in addition to the resin surface being flat, the chemical bonding force between the polar group on the resin surface and the metal particles of the plating material is insufficient, so that the impact of the conductor circuit pattern and the mounted component Adhesive strength between the conductor layer and the resin insulating layer that can satisfy the resistance test cannot be obtained.
また、樹脂絶縁層にプラズマ処理及び紫外線処理の両処理を施すことにより、導体層と樹脂絶縁層との密着性を向上させる方法も提案されているが(特許文献6参照)、樹脂絶縁層にプラズマ処理及び紫外線処理の両処理を施す必要があることに加え、用いる紫外線波長は172nmであることから、酸素、窒素等に吸収され易く、さらに、照射ランプから近距離で処理を行う必要があることから、処理面に斑無く均一に処理を行うことが困難となる。 In addition, a method for improving the adhesion between the conductor layer and the resin insulation layer by performing both plasma treatment and ultraviolet treatment on the resin insulation layer has been proposed (see Patent Document 6). In addition to the necessity of performing both plasma treatment and ultraviolet treatment, since the ultraviolet wavelength used is 172 nm, it is easily absorbed by oxygen, nitrogen, etc., and it is necessary to perform treatment at a short distance from the irradiation lamp. For this reason, it becomes difficult to uniformly perform the processing without any unevenness on the processing surface.
特開平7-304931号公報(特許請求の範囲)JP-A-7-304931 (Claims) 特開平7-304933号公報(特許請求の範囲)JP-A-7-304933 (Claims) 特開平11-87927号公報(特許請求の範囲)JP-A-11-87927 (Claims) 特開平8-253869号公報(特許請求の範囲)JP-A-8-253869 (Claims) 特開平10-88361号公報(特許請求の範囲)JP-A-10-88361 (Claims) 特開2002-57456号公報(特許請求の範囲)JP 2002-57456 A (Claims)
本発明は、主として、内層回路板の導体層上に樹脂絶縁層と導体層を交互に積み上げていくビルドアップ方式のプリント配線板の製造において、前記のような従来技術の問題を解決するためになされたものであり、その目的は、めっき処理により樹脂絶縁層の表面に導体層を形成する際に、従来の有害な酸化剤を用いることなく、紫外線照射により前処理を行うことにより、樹脂絶縁層の表面粗度を極めて小さく抑えることができ、且つ、樹脂絶縁層と導体層との密着性を向上させることによって、極めて微細な導体回路パターンの形成を可能とする熱硬化性樹脂組成物、該熱硬化性樹脂組成物からなる樹脂シート、並びにこれらを用いて樹脂絶縁層が形成されてなる電気的特性に優れたプリント配線板を提供することにある。 The present invention mainly solves the problems of the prior art described above in the production of a build-up type printed wiring board in which a resin insulation layer and a conductor layer are alternately stacked on a conductor layer of an inner layer circuit board. The purpose of this is to form a conductor layer on the surface of the resin insulation layer by plating, and to perform resin pre-treatment by ultraviolet irradiation without using a conventional harmful oxidant. A thermosetting resin composition capable of suppressing the surface roughness of the layer to be extremely small, and improving adhesion between the resin insulating layer and the conductor layer, thereby enabling formation of an extremely fine conductor circuit pattern; An object of the present invention is to provide a resin sheet made of the thermosetting resin composition, and a printed wiring board having excellent electrical characteristics in which a resin insulating layer is formed using these.
 前記目的を達成するために、本発明によれば、樹脂絶縁層の表面に紫外線を照射した後、めっき処理により導体層を形成するプリント配線板の製造において、上記樹脂絶縁層の形成に用いられる組成物であって、ナフタレン骨格を含有しない2官能エポキシ樹脂、及び1分子中に3個以上のエポキシ基を有するエポキシ当量が250g/eq以上のナフタレン骨格を含有しないエポキシ樹脂のいずれか少なくとも一種と、フェノール樹脂、フィラー、及びポリヒドロキシカルボン酸またはその誘導体を含有することを特徴とする熱硬化性樹脂組成物が提供される。 In order to achieve the above object, according to the present invention, in the production of a printed wiring board in which a conductor layer is formed by plating after the surface of a resin insulating layer is irradiated with ultraviolet rays, the resin insulating layer is used to form the resin insulating layer. And at least one of a bifunctional epoxy resin that does not contain a naphthalene skeleton and an epoxy resin that has 3 or more epoxy groups in one molecule and does not contain a naphthalene skeleton having an epoxy equivalent of 250 g / eq or more. A thermosetting resin composition comprising a phenol resin, a filler, and a polyhydroxycarboxylic acid or a derivative thereof is provided.
 前記フィラーとしては、炭酸カルシウム及びシリカのうちいずれか少なくとも1種が好ましい。また、前記フィラーの配合量は、前記エポキシ樹脂とフェノール樹脂の総和100質量部に対して、10~150質量部含有することが好ましい。
 さらに本発明によれば、前記熱硬化性樹脂組成物をキャリアフィルム上に塗工した後、乾燥してなる樹脂シート、あるいは前記熱硬化性樹脂組成物をシート状繊維質基材に含浸させた後、乾燥してなる樹脂シートも提供される。
The filler is preferably at least one of calcium carbonate and silica. Further, the blending amount of the filler is preferably 10 to 150 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin.
Furthermore, according to this invention, the said thermosetting resin composition was coated on the carrier film, and then the resin sheet formed by drying, or the sheet-like fibrous base material was impregnated with the thermosetting resin composition. Thereafter, a dried resin sheet is also provided.
さらにまた、本発明によれば、前記熱硬化性樹脂組成物の硬化物又は樹脂シートから形成された樹脂絶縁層の表面に、紫外線を照射した後、めっき処理により導体層が形成されてなることを特徴とするプリント配線板が提供される。好適な態様においては、前記めっき処理は、無電解めっき及び電解めっきからなる。 Furthermore, according to the present invention, the surface of the resin insulation layer formed from the cured product or resin sheet of the thermosetting resin composition is irradiated with ultraviolet rays, and then a conductor layer is formed by plating. A printed wiring board characterized by the above is provided. In a preferred embodiment, the plating treatment includes electroless plating and electrolytic plating.
 本発明の熱硬化性樹脂組成物は、ナフタレン骨格を含有しない2官能エポキシ樹脂、及び1分子中に3個以上のエポキシ基を有するエポキシ当量が250g/eq以上のナフタレン骨格を含有しないエポキシ樹脂のいずれか少なくとも一種と共に、フェノール樹脂、フィラー、及びポリヒドロキシカルボン酸またはその誘導体を組み合わせて含有するため、該組成物から形成された樹脂絶縁層の表面に、紫外線を照射した後、めっき処理により導体層を形成する際に、めっき液との濡れ性に優れ、比較的平坦な面であるにも拘わらず、樹脂絶縁層と導体層との密着強度が高く、極めて微細な導体回路パターンの形成が可能となる。
従って、本発明の熱硬化性樹脂組成物、その樹脂シート(ドライフィルム又はプリプレグ)を、導体回路層と絶縁層とを交互に積み上げるビルドアップ方式に用いることにより、めっき導体層の密着強度が高く、耐熱性や電気絶縁性等に優れた層間絶縁層が形成された多層プリント配線板を製造することができる。 
The thermosetting resin composition of the present invention comprises a bifunctional epoxy resin not containing a naphthalene skeleton and an epoxy resin not containing a naphthalene skeleton having an epoxy equivalent of 250 g / eq or more having 3 or more epoxy groups in one molecule. Since it contains a combination of at least one of a phenol resin, a filler, and a polyhydroxycarboxylic acid or a derivative thereof, the surface of the resin insulating layer formed from the composition is irradiated with ultraviolet rays, and then subjected to plating treatment to conduct a conductor. When forming the layer, it has excellent wettability with the plating solution and has a high adhesion strength between the resin insulation layer and the conductor layer, despite the fact that it is a relatively flat surface, and it can form extremely fine conductor circuit patterns. It becomes possible.
Therefore, by using the thermosetting resin composition of the present invention and the resin sheet (dry film or prepreg) in a build-up system in which conductor circuit layers and insulating layers are alternately stacked, the adhesion strength of the plated conductor layer is high. A multilayer printed wiring board on which an interlayer insulating layer excellent in heat resistance, electrical insulation and the like is formed can be produced.
 以下、本発明の実施形態について説明する。
 本発明者らは、前記した課題を解決すべく鋭意研究した結果、ナフタレン骨格を含有しない2官能エポキシ樹脂、及び1分子中に3個以上のエポキシ基を有するエポキシ当量が250g/eq以上のナフタレン骨格を含有しないエポキシ樹脂のいずれか少なくとも一種と共に、フェノール樹脂、フィラー、及びポリヒドロキシカルボン酸もしくはその誘導体を組み合わせて含有する熱硬化性樹脂組成物から形成された樹脂絶縁層は、その表面に紫外線を照射した後、めっき処理により導体層を形成する際に、めっき液との濡れ性に優れ、比較的平坦な面であるにも拘わらず、導体層の密着強度が著しく高くなり、多層プリント配線板の層間絶縁層として最適であることを見出し、本発明を完成するに至ったものである。
Hereinafter, embodiments of the present invention will be described.
As a result of diligent research to solve the above-mentioned problems, the present inventors have found that a bifunctional epoxy resin not containing a naphthalene skeleton and a naphthalene having an epoxy equivalent of 250 g / eq or more having three or more epoxy groups in one molecule. A resin insulation layer formed from a thermosetting resin composition containing a combination of at least one epoxy resin not containing a skeleton and a phenol resin, a filler, and a polyhydroxycarboxylic acid or a derivative thereof has ultraviolet rays on its surface. When the conductor layer is formed by plating after irradiation, the adhesion strength of the conductor layer is remarkably increased despite the fact that it has excellent wettability with the plating solution and is a relatively flat surface. The present inventors have found that it is optimal as an interlayer insulating layer of a plate and have completed the present invention.
即ち、樹脂絶縁層表面に紫外線を照射することによる効果(樹脂表面にカルボキシル基(-COOH)、カルボニル基(C=O)、OH基等の極性基が導入され、その表面エネルギーが増大して樹脂表面を活性化することができ、それにより、活性化された樹脂表面の極性基が、直接めっき材料である活性な金属粒子と化学的な結合を生じ、樹脂表面上に形成される金属膜との密着性を向上できる。)に加えて、フェノール樹脂、フィラー、及びポリヒドロキシカルボン酸またはその誘導体を組み合わせて含有することにより、これらの化合物の極性基が樹脂絶縁層表面に存在し易くなり、めっき液との濡れ性に優れ、硬化皮膜に対するめっき液の浸透性や吸着性が向上し、比較的平坦な面であるにも拘わらず、導体層の密着強度が著しく高くなる。 That is, the effect of irradiating the surface of the resin insulation layer with ultraviolet rays (polar groups such as carboxyl groups (—COOH), carbonyl groups (C═O), OH groups, etc. are introduced on the resin surface), and the surface energy increases. The resin surface can be activated, whereby the polar group on the activated resin surface forms a chemical bond directly with the active metal particles that are the plating material, and the metal film formed on the resin surface In addition to phenolic resins, fillers, and polyhydroxycarboxylic acids or their derivatives, the polar groups of these compounds are likely to be present on the surface of the resin insulation layer. Excellent wettability with plating solution, improved penetration and adsorption of plating solution with respect to cured film, and extremely high adhesion strength of conductor layer despite its relatively flat surface. It made.
特に、ポリヒドロキシカルボン酸またはその誘導体は、その官能基(水酸基、カルボキシル基、アミド基、エステル基等)の存在により、めっき液、特に触媒液の浸透を促進し、また上記紫外線照射による効果を増大し、その上に形成される導体層の密着強度向上に大きく貢献できる。その結果、めっき導体層の密着強度が高く、耐熱性や電気絶縁性等に優れた層間絶縁層が形成された多層プリント配線板を製造することができる。但し、エポキシ樹脂がナフタレン骨格を有する場合、ナフタレン骨格は、硬化皮膜に対するめっき液の浸透を阻害し易いので、ナフタレン骨格を含有していないことが必要である。また、ナフタレン骨格を含有しなくても、エポキシ当量が250g/eq以下の3官能以上の多官能エポキシ樹脂の場合、架橋密度が高くなり過ぎ、めっき触媒の浸透を妨げ、その結果、密着性を悪化し易いので好ましくない。 In particular, polyhydroxycarboxylic acid or a derivative thereof promotes the penetration of a plating solution, particularly a catalyst solution, due to the presence of its functional group (hydroxyl group, carboxyl group, amide group, ester group, etc.), and also has the effect of the above ultraviolet irradiation. This greatly increases the adhesion strength of the conductor layer formed thereon. As a result, it is possible to manufacture a multilayer printed wiring board in which an interlayer insulating layer having high adhesion strength of the plated conductor layer and excellent heat resistance, electrical insulation, and the like is formed. However, when the epoxy resin has a naphthalene skeleton, the naphthalene skeleton needs to contain no naphthalene skeleton because the naphthalene skeleton is likely to inhibit the penetration of the plating solution into the cured film. Moreover, even if it does not contain a naphthalene skeleton, in the case of a trifunctional or higher polyfunctional epoxy resin having an epoxy equivalent of 250 g / eq or less, the crosslink density becomes too high and the penetration of the plating catalyst is hindered. Since it is easy to deteriorate, it is not preferable.
また、エポキシ樹脂の硬化剤としてフェノール樹脂を用いているため、従来一般に使用されているジシアンジアミドを用いる場合に比べて、熱硬化の際に比較的に架橋密度が高くなり、ガラス転移点Tgが比較的高く、低吸水性及び靭性に優れた硬化物が得られる。その結果、サーマルストレスに対する耐久性が向上した絶縁層内部と、めっき処理の際に触媒液の浸透性が良い絶縁層表面を共有することにより、多層プリント配線板として高い信頼性とその上に形成される導体層の微細回路形成の両立に大きく貢献できる。 In addition, since a phenol resin is used as a curing agent for the epoxy resin, the crosslink density is relatively high during thermosetting compared to the case of using dicyandiamide, which is conventionally used, and the glass transition point Tg is compared. Therefore, a cured product having high water absorption and excellent toughness can be obtained. As a result, by sharing the inside of the insulating layer with improved durability against thermal stress and the surface of the insulating layer with good catalyst liquid permeability during plating, it is formed as a highly reliable multilayer printed wiring board. This can greatly contribute to the coexistence of fine circuit formation of the conductor layer.
以下、本発明の熱硬化性樹脂組成物の各構成成分について詳細に説明する。
 まず、前記エポキシ樹脂としては、1分子中に2個のエポキシ基を有するエポキシ樹脂及び1分子中に3個以上のエポキシ基を有し、エポキシ当量が250g/eq以上であるエポキシ樹脂よりなる群から選ばれ、且つ、ナフタレン骨格を含有しないエポキシ化合物であれば全て用いることができる。2官能のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂などが挙げられ、3官能以上のエポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジグリシジルフタレート樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、又はそれらの臭素原子含有エポキシ樹脂やリン原子含有エポキシ樹脂、トリグリシジルイソシアヌレート等のエポキシ樹脂、脂環式エポキシ樹脂などが挙げられ、これら公知慣用のエポキシ樹脂を、単独であるいは2種以上組み合わせて使用することができる。また、反応性希釈剤としての単官能エポキシ樹脂を含有していてもよい。
Hereinafter, each component of the thermosetting resin composition of the present invention will be described in detail.
First, the epoxy resin includes an epoxy resin having two epoxy groups in one molecule and an epoxy resin having three or more epoxy groups in one molecule and having an epoxy equivalent of 250 g / eq or more. Any epoxy compound that is selected from the above and does not contain a naphthalene skeleton can be used. Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, Biphenol type epoxy resins and the like are listed. Examples of the tri- or higher functional epoxy resins include phenol novolac type epoxy resins, alkylphenol novolac type epoxy resins, bisphenol A novolac type epoxy resins, dicyclopentadiene type epoxy resins, glycidyl amine type epoxy resins, Trihydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin, diglycidyl phthalate resin, aromatic alcohols having phenols and phenolic hydroxyl groups Examples include epoxidized products of condensates with hydrides, bromine atom-containing epoxy resins and phosphorus atom-containing epoxy resins, triglycidyl isocyanurate and other epoxy resins, alicyclic epoxy resins, and the like. These can be used alone or in combination of two or more. Moreover, you may contain the monofunctional epoxy resin as a reactive diluent.
また、前記したようなエポキシ樹脂は、単独で使用してもよいが、2種以上を組み合わせて用いることが好ましく、例えば室温で液状のエポキシ樹脂と固体のエポキシ樹脂を併用した場合、低分子量の液状のエポキシ樹脂が、得られる硬化皮膜の可撓性及び密着性向上に寄与し、固体のエポキシ樹脂が、ガラス転移点を上昇させるのに寄与するので、これらの比率を調整することにより上記特性のバランスを調整することが可能となる。また、他の方法としては、エポキシ当量が200g/eq以下のエポキシ樹脂と200g/eqを超えるエポキシ樹脂を併用することも好ましい。エポキシ当量が200g/eqを超えるエポキシ樹脂は、硬化収縮が少なく、基材のそり防止と硬化物への柔軟性付与に効果的である。また加熱ラミネート時やレベリング時の溶融粘度を高くすることができ、成型後の樹脂染み出し量のコントロールに有効である。一方、エポキシ当量が200g/eq以下のエポキシ樹脂は、反応性が高く、硬化物に機械的強度を与える。また、加熱ラミネート時の溶融粘度が低いため、内層回路間の隙間への樹脂組成物の充填性や銅箔の凹凸粗面に対する追随性に寄与する。 In addition, the epoxy resin as described above may be used alone, but it is preferable to use a combination of two or more. For example, when a liquid epoxy resin and a solid epoxy resin are used in combination at room temperature, a low molecular weight The liquid epoxy resin contributes to improving the flexibility and adhesion of the resulting cured film, and the solid epoxy resin contributes to raising the glass transition point. By adjusting these ratios, the above characteristics can be obtained. It is possible to adjust the balance. Moreover, as another method, it is also preferable to use together the epoxy resin whose epoxy equivalent is 200 g / eq or less, and the epoxy resin exceeding 200 g / eq. Epoxy resins having an epoxy equivalent of more than 200 g / eq have little cure shrinkage and are effective in preventing warpage of the substrate and imparting flexibility to the cured product. In addition, the melt viscosity at the time of heating lamination and leveling can be increased, which is effective in controlling the amount of resin oozing after molding. On the other hand, an epoxy resin having an epoxy equivalent of 200 g / eq or less has high reactivity and gives mechanical strength to the cured product. Moreover, since the melt viscosity at the time of heat lamination is low, it contributes to the filling property of the resin composition into the gaps between the inner layer circuits and the followability to the rough surface of the copper foil.
次に、本発明の熱硬化性樹脂組成物においては、前記エポキシ樹脂と共に必須成分として用いるエポキシ樹脂硬化剤として、フェノール樹脂が用いられる。
フェノール樹脂の具体例としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、トリアジン構造含有フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン構造含有フェノール樹脂、ザイロック(Xylok)型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類、ナフタレン構造含有フェノール系硬化剤、フルオレン構造含有フェノール系硬化剤などが挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
Next, in the thermosetting resin composition of the present invention, a phenol resin is used as an epoxy resin curing agent used as an essential component together with the epoxy resin.
Specific examples of the phenol resin include a phenol novolak resin, an alkylphenol novolak resin, a triazine structure-containing phenol novolak resin, a bisphenol A novolak resin, a dicyclopentadiene structure-containing phenol resin, a xylok type phenol resin, a terpene-modified phenol resin, and polyvinyl. Examples include phenols, naphthalene structure-containing phenolic curing agents, and fluorene structure-containing phenolic curing agents. These can be used alone or in combination of two or more.
 フェノール樹脂の配合割合は、前記エポキシ樹脂のエポキシ基1当量当り、フェノール樹脂のフェノール性水酸基が0.2~1.2当量、好ましくは0.3~0.9当量となる割合が適当である。0.2当量未満の場合、得られる硬化物の特性が劣り、また基材に対する充分な密着性が得られなくなるので好ましくない。一方、1.2当量を超えると、エポキシ樹脂との反応に関与せずに残存するフェノール樹脂の割合が高くなり、硬化皮膜の物性低下につながり易いので好ましくない。 A suitable proportion of the phenol resin is such that the phenolic hydroxyl group of the phenol resin is 0.2 to 1.2 equivalent, preferably 0.3 to 0.9 equivalent per equivalent of epoxy group of the epoxy resin. . When the amount is less than 0.2 equivalent, the properties of the obtained cured product are inferior, and sufficient adhesion to the substrate cannot be obtained. On the other hand, if it exceeds 1.2 equivalents, the proportion of the phenol resin remaining without participating in the reaction with the epoxy resin is increased, and this tends to lead to a decrease in physical properties of the cured film, which is not preferable.
本発明の熱硬化性樹脂組成物においては、必要に応じて硬化促進剤を用いることができる。硬化促進剤の具体例としては、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン、ジエチルベンジルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミンなどの第3級アミン、ベンジルトリメチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライドなどの4級アンモニウム塩、トリエチルホスフィン、トリフェニルホスフィンなどのホスフィン類、n-ブチルトリフェニルホスホニウムブロマイドなどのホスホニウム塩、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾールなどのイミダゾール類又はこれらの有機酸塩類、アセトグアナミン、ベンゾグアナミン等のグアナミン類を挙げることができる。これらの中で好ましい硬化促進剤はイミダゾール類及びホスフィン類である。 In the thermosetting resin composition of the present invention, a curing accelerator can be used as necessary. Specific examples of the curing accelerator include triethylamine, tributylamine, dimethylbenzylamine, diethylbenzylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4 Tertiary amines such as methyl-N, N-dimethylbenzylamine, quaternary ammonium salts such as benzyltrimethylammonium chloride and benzyltriethylammonium chloride, phosphines such as triethylphosphine and triphenylphosphine, n-butyltriphenylphosphonium Phosphonium salts such as bromide, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1- (2-cyanoethyl) -2 Ethyl-4-imidazole or an organic acid salts such as methyl imidazole, may be mentioned acetoguanamine, guanamine such as benzoguanamine. Of these, preferred curing accelerators are imidazoles and phosphines.
次に、前記フィラーとしては従来公知の全ての無機フィラー及び有機フィラーが使用でき、特定のものに限定されないが、めっき液との親和性が良好な無機フィラーが好ましい。無機フィラーとしては、例えば、硫酸バリウム、チタン酸バリウム、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム等の体質顔料や、銅、錫、亜鉛、ニッケル、銀、パラジウム、アルミニウム、鉄、コバルト、金、白金等の金属粉体が挙げられる。これらの無機フィラーは、塗膜の硬化収縮を抑制し、密着性、硬度などの特性を向上させるのにも寄与する。これらの中でも、炭酸カルシウム及びシリカ、特に炭酸カルシウムが好ましい。また、これらのフィラーは、組成物中に高い割合で配合可能な点から、球状フィラーが好ましく、その平均粒径は0.1μm~3μmであることが好ましい。 Next, as the filler, all conventionally known inorganic fillers and organic fillers can be used, and the filler is not limited to a specific one, but an inorganic filler having good affinity with the plating solution is preferable. Examples of inorganic fillers include barium sulfate, barium titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, and aluminum nitride. And extender pigments such as copper, tin, zinc, nickel, silver, palladium, aluminum, iron, cobalt, gold and platinum. These inorganic fillers also suppress the curing shrinkage of the coating film and contribute to improving properties such as adhesion and hardness. Among these, calcium carbonate and silica, particularly calcium carbonate are preferable. These fillers are preferably spherical fillers from the viewpoint that they can be blended in a high proportion in the composition, and the average particle diameter is preferably 0.1 μm to 3 μm.
フィラーの配合量は、前記エポキシ樹脂とフェノール樹脂の総和100質量部に対して、10~150質量部、好ましくは20~150質量部の割合が適当である。フィラーの配合量が上記範囲よりも少なくなると、導体回路層との良好な密着強度が得られ難くなり、一方、上記範囲を超えると、組成物の流動性が悪くなり、また硬化皮膜の強度が低下し易くなるので好ましくない。 The blending amount of the filler is 10 to 150 parts by mass, preferably 20 to 150 parts by mass, with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin. When the blending amount of the filler is less than the above range, it becomes difficult to obtain good adhesion strength with the conductor circuit layer. On the other hand, when it exceeds the above range, the fluidity of the composition is deteriorated, and the strength of the cured film is low. It is not preferable because it tends to decrease.
また、前記ポリヒドロキシカルボン酸もしくはその誘導体としては、特定の化合物に限定されるものではないが、ポリヒドロキシカルボン酸のアマイド又はエステルを好適に用いることができる。市販品としては、ビックケミージャパン(株)製のBYK-405(ポリヒドロキシカルボン酸のアマイド)、BYK-LPR6795(ポリヒドロキシカルボン酸のエステル)等が挙げられる。 Further, the polyhydroxycarboxylic acid or its derivative is not limited to a specific compound, but an amide or ester of polyhydroxycarboxylic acid can be suitably used. Examples of commercially available products include BYK-405 (polyhydroxycarboxylic acid amide), BYK-LPR6795 (polyhydroxycarboxylic acid ester) manufactured by Big Chemie Japan.
ポリヒドロキシカルボン酸またはその誘導体の配合量は、前記エポキシ樹脂とフェノール樹脂の総和100質量部に対して、0.1~15質量部、好ましくは0.3~10質量部の割合が適当である。ポリヒドロキシカルボン酸またはその誘導体の配合量が上記範囲よりも少なくなると、導体回路層との良好な密着強度が得られ難くなり、一方、上記範囲を超えて多量に配合しても、導体回路層との密着強度の更なる向上は望めないので、経済性の点で好ましくない。また、硬化皮膜の軟化点が下がり、耐熱性等が低下し易くなるため好ましくない。 The blending amount of the polyhydroxycarboxylic acid or derivative thereof is suitably from 0.1 to 15 parts by weight, preferably from 0.3 to 10 parts by weight, based on 100 parts by weight of the total of the epoxy resin and the phenol resin. . When the blending amount of the polyhydroxycarboxylic acid or its derivative is less than the above range, it becomes difficult to obtain good adhesion strength with the conductor circuit layer. On the other hand, even if the blending amount exceeds the above range, the conductor circuit layer Further improvement of the adhesion strength with the resin cannot be expected, which is not preferable in terms of economy. Moreover, since the softening point of a cured film falls and heat resistance etc. become easy to fall, it is unpreferable.
さらに、本発明の熱硬化性樹脂組成物は、必要に応じて、固型樹脂を溶解したり、組成物の粘度を調整するため、有機溶剤を含有することができる。有機溶剤としては、通常の溶剤、例えばアセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素の他、ジメチルホルムアミド、ジメチルアセトアミドなどを、単独で又は2種以上組み合わせて使用することができる。 Furthermore, the thermosetting resin composition of the present invention can contain an organic solvent in order to dissolve the solid resin or adjust the viscosity of the composition, if necessary. Organic solvents include ordinary solvents such as ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and cellosolves such as cellosolve and butylcellosolve. , Carbitols such as carbitol and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide and the like can be used alone or in combination of two or more.
本発明の熱硬化性樹脂組成物は、さらに必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の公知慣用の着色剤、アスベスト、オルベン、ベントン、微紛シリカ等の公知慣用の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤及び/又はレベリング剤、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、チタネート系、アルミニウム系の公知慣用の添加剤類を用いることができる。 The thermosetting resin composition of the present invention may further include a known and commonly used colorant such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc. , Known and commonly used thickeners such as asbestos, olben, benton, fine silica, etc., defoamers and / or leveling agents such as silicones, fluorines and polymers, thiazoles, triazoles, silane coupling agents, etc. Adhesiveness imparting agents, titanate-based, and aluminum-based commonly used additives can be used.
本発明の熱硬化性樹脂組成物の形態は、適度に粘度調整されたコーティング材料として提供されてもよいし、キャリアフィルム(支持ベースフィルム)上に熱硬化性樹脂組成物を塗布し、溶剤を乾燥させた樹脂シート(ドライフィルム)としてもよい。さらにはガラスクロス、ガラス及びアラミド不織布等のシート状繊維質基材に塗工、または含浸させて半硬化させた樹脂シート(プリプレグシート)としてもよい。キャリアフィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド、さらには離型紙や銅箔、アルミニウム箔の如き金属箔などが挙げられる。尚、キャリアフィルムにはマッド処理、コロナ処理の他、離型処理を施してあってもよい。 The form of the thermosetting resin composition of the present invention may be provided as a coating material whose viscosity is appropriately adjusted, or the thermosetting resin composition is applied onto a carrier film (support base film), and a solvent is used. It is good also as a dried resin sheet (dry film). Furthermore, it is good also as a resin sheet (prepreg sheet | seat) which apply | coated to the sheet-like fibrous base materials, such as glass cloth, glass, and an aramid nonwoven fabric, or was made to make it semi-harden. Examples of the carrier film include polyolefin such as polyethylene and polyvinyl chloride, polyester such as polyethylene terephthalate, polycarbonate and polyimide, and metal foil such as release paper, copper foil, and aluminum foil. The carrier film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.
前記熱硬化性樹脂組成物を用いたコーティング材料、ドライフィルム、又はプリプレグは、回路が形成された内層回路基板に直接コーティングし、乾燥、硬化を行うか、又はドライフィルムを加熱ラミネートして一体成形し、その後オーブン中で硬化、もしくは熱板プレスで硬化させてもよい。プリプレグの場合には、内層回路基板に重ね、離型フィルムを介して金属板で挟み、加圧・加熱してプレスする。 The coating material, dry film, or prepreg using the thermosetting resin composition is directly coated on the inner circuit board on which the circuit is formed and dried or cured, or the dry film is laminated by heating to be integrally formed. Then, it may be cured in an oven or cured by a hot plate press. In the case of a prepreg, it is placed on an inner circuit board, sandwiched between metal plates through a release film, and pressed by pressing and heating.
 上記工程のうち、ラミネートもしくは熱板プレスする方法は、内層回路による凹凸が加熱溶融する際に解消され、そのまま硬化するので、最終的にはフラットな表面状態の多層板が得られるので好ましい。また、内層回路が形成された基材と本発明の熱硬化性樹脂組成物のドライフィルム又はプリプレグをラミネートもしくは熱板プレスする際に、銅箔もしくは回路形成された基材を同時に積層することもできる。 Among the above steps, the method of laminating or hot plate pressing is preferable because unevenness due to the inner layer circuit is eliminated when heated and melted and is cured as it is, so that a multilayer plate having a flat surface state is finally obtained. Further, when laminating or hot plate pressing the base material on which the inner layer circuit is formed and the dry film or prepreg of the thermosetting resin composition of the present invention, the copper foil or the base material on which the circuit is formed may be laminated at the same time. it can.
 このようにして得られた基板に、COレーザーやUV-YAGレーザー等の半導体レーザー又はドリルにて穴をあける。穴は、基板の表と裏を導通させることを目的とする貫通穴(スルーホール)でも、内層の回路と層間絶縁層表面の回路を導通させることを目的とする部分穴(コンフォーマルビア)のどちらでもよい。 Holes are made in the substrate thus obtained with a semiconductor laser such as a CO 2 laser or a UV-YAG laser or a drill. The hole is a through hole (through hole) that is intended to connect the front and back of the substrate, but it is also a partial hole (conformal via) that is intended to connect the inner layer circuit and the circuit on the surface of the interlayer insulating layer. either will do.
穴明け後、必要に応じてデスミヤ液で穴の内壁や底部に存在する残渣(スミヤ)を除去した後、好ましくはプラズマ処理し、次いで導体層(その後に形成する金属めっき層)との密着強度を向上させるために紫外線処理する。 After drilling, if necessary, remove the residue (smear) present on the inner wall and bottom of the hole with desmear liquid, preferably plasma treatment, and then the adhesion strength with the conductor layer (the metal plating layer to be formed thereafter) UV treatment to improve.
本発明においては、樹脂絶縁層表面に無電解めっきによる導体層を形成する前に、樹脂絶縁層表面に、好ましくは少なくとも照射強度10mW/cm以上の紫外光を照射する。この際の紫外光の主波長は150nm~310nm以下、好ましくは150~260nm以下、さらに好ましくは150~200nm程度である。特に、紫外線の波長が約184nmと約254nmの2種からなることが好ましい。紫外光の光源は、低圧水銀ランプ、エキシマレーザー、バリア放電ランプ、誘電体バリア放電ランプ、マイクロ波無電極放電ランプ、過渡放電ランプ等を用いることができる。例えば、低圧水銀ランプを用いた場合、184.9nm、253.7nmの主波長が特に有効である。また、エキシマランプを用いた場合は、具体的にはAr2*(126nm),Kr2*(146nm),F2*(153nm),ArBr*(165nm),Xe2*(172nm),ArCl*(175nm),ArF(193nm),KrBr*(207nm),KrCl*(222nm),KrF(248nm),Xel*(253nm),Cl2*(259nm),XeBr*(283nm),Br2*(289nm),XeCl*(308nm)の波長の光が望ましい。特にXe2*とKrCl*は安定性があり、波長も比較的小さくエネルギーが大きいため表面改質効果が大きく好ましい。紫外光の照射時間は、用いる樹脂材料、紫外光の強さ(照射量)により異なるが、(紫外光の強さが5~20mW/cm程度の場合、)10秒~30分程度の範囲で適宜調整することができ、20秒~10分程度がより好ましい。なお、この場合の紫外光の照射は、無電解めっきによって導体層を形成する前に複数回にわたって行ってもよい。 In the present invention, before forming a conductor layer by electroless plating on the surface of the resin insulation layer, the surface of the resin insulation layer is preferably irradiated with ultraviolet light having an irradiation intensity of at least 10 mW / cm 2 . In this case, the dominant wavelength of the ultraviolet light is 150 nm to 310 nm or less, preferably 150 to 260 nm or less, and more preferably about 150 to 200 nm. In particular, it is preferable that the wavelength of ultraviolet rays is composed of two types of about 184 nm and about 254 nm. As the ultraviolet light source, a low-pressure mercury lamp, excimer laser, barrier discharge lamp, dielectric barrier discharge lamp, microwave electrodeless discharge lamp, transient discharge lamp, or the like can be used. For example, when a low-pressure mercury lamp is used, a dominant wavelength of 184.9 nm and 253.7 nm is particularly effective. When an excimer lamp is used, specifically, Ar2 * (126 nm), Kr2 * (146 nm), F2 * (153 nm), ArBr * (165 nm), Xe2 * (172 nm), ArCl * (175 nm), ArF (193 nm), KrBr * (207 nm), KrCl * (222 nm), KrF (248 nm), Xel * (253 nm), Cl2 * (259 nm), XeBr * (283 nm), Br2 * (289 nm), XeCl * (308 nm) ) Is preferred. In particular, Xe2 * and KrCl * are preferable because they are stable and have a relatively small wavelength and large energy, so that the surface modification effect is large. The irradiation time of the ultraviolet light varies depending on the resin material used and the intensity (irradiation amount) of the ultraviolet light, but in the range of about 10 seconds to 30 minutes (when the intensity of the ultraviolet light is about 5 to 20 mW / cm 2 ). Can be adjusted as appropriate, and is preferably about 20 seconds to 10 minutes. In this case, the irradiation with ultraviolet light may be performed a plurality of times before the conductor layer is formed by electroless plating.
 次に、紫外線処理した皮膜表面に、サブトラクティブ法やセミアディティブ法等により回路を形成する。いずれの方法においても、無電解めっき又は電解めっき後、あるいは両方のめっきを施した後に、金属のストレス除去、強度向上の目的で、約80~180℃で10~60分程度のアニールと呼ばれる熱処理を施してもよい。 Next, a circuit is formed on the surface of the film treated with ultraviolet rays by a subtractive method or a semi-additive method. In either method, after electroless plating or electrolytic plating, or after both plating, a heat treatment called annealing at about 80 to 180 ° C. for about 10 to 60 minutes for the purpose of removing stress from the metal and improving the strength. May be applied.
 ここで用いる金属めっきとしては、銅、ズズ、はんだ、ニッケル等、特に制限は無く、複数組み合わせて使用することもできる。 The metal plating used here is not particularly limited, such as copper, tin, solder, nickel, etc., and can be used in combination.
樹脂絶縁層の表面に銅めっきを施す場合は、無電解銅めっきを施し、次いで電解銅めっきを施して所定の厚さの導体層(銅層)を形成する。無電解銅めっきは、電解銅めっきを施すための給電層を形成するためのものであり、通常は0.1~2.0μm程度の厚さに形成する。なお、銅めっきはニッケルめっき等と比較して樹脂との密着性が低いという難点があるが、本発明に従って形成された樹脂絶縁層の表面に銅めっきを施して導体層を形成する場合には、前述したような作用により優れた密着強度が得られる。 When copper plating is applied to the surface of the resin insulating layer, electroless copper plating is performed, and then electrolytic copper plating is performed to form a conductor layer (copper layer) having a predetermined thickness. Electroless copper plating is for forming a power supply layer for performing electrolytic copper plating, and is usually formed to a thickness of about 0.1 to 2.0 μm. In addition, although copper plating has the difficulty that adhesiveness with resin is low compared with nickel plating etc., when performing copper plating on the surface of the resin insulation layer formed according to the present invention, and forming a conductor layer Excellent adhesion strength can be obtained by the above-described action.
樹脂絶縁層の表面に施す無電解めっき及び電解めっきは公知の方法であればよく、特定の方法に限定されるものではないが、無電解めっき処理工程の触媒がパラジウム-すず混合触媒からなり、触媒の1次粒子径が10nm以下であることが好ましい。また、無電解めっき処理工程のめっき組成が次亜リン酸を還元剤として含有することが好ましい。無電解めっきについては、例えば前掲した特許文献4、6や特開2000-212762号公報に記載されているので参照されたい。 The electroless plating and electrolytic plating performed on the surface of the resin insulating layer may be any known method, and is not limited to a specific method, but the catalyst in the electroless plating treatment step is a palladium-tin mixed catalyst, The primary particle size of the catalyst is preferably 10 nm or less. Moreover, it is preferable that the plating composition of the electroless plating treatment step contains hypophosphorous acid as a reducing agent. The electroless plating is described in, for example, the above-mentioned Patent Documents 4 and 6 and Japanese Patent Application Laid-Open No. 2000-212762.
また、前記したようにして樹脂絶縁層と導体回路層の形成を、必要に応じて数回繰り返すことにより、所望の多層プリント配線板を得ることができる。 Moreover, a desired multilayer printed wiring board can be obtained by repeating the formation of the resin insulating layer and the conductor circuit layer several times as necessary as described above.
 以下、本発明の実施例、比較例及び試験例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。なお、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be specifically described with reference to examples, comparative examples and test examples of the present invention, but the present invention is not limited to the following examples. In the following, “parts” and “%” are based on mass unless otherwise specified.
実施例1~6
 下記表1に示す処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
試験基板の作製工程:
 上記のようにして得られた各熱硬化性樹脂組成物を、1.6mm厚のFR-T基板(エッチアウト基板、前処理:バフ研磨)に、アプリケーターにて塗布した。次いで、熱風循環式乾燥炉にて110℃で20分間乾燥させた後、熱風循環式乾燥炉にて150℃×30分の条件で硬化させ、試験基板を得た。
紫外線処理工程:
 以上のようにして得られた試験基板に対して、紫外線洗浄改質装置(センエンジニアリング(株)製、電源:UVE-200J、光源:PL16-110D)を用い、以下の条件で紫外線処理した。
試験基板表面からランプ間距離:30mm
照射時間:5~10分
照射強度:20~30mW/cm
波長:184nm、254nm
無電解銅めっき及び電解銅めっき処理工程:
 以上のように紫外線処理した試験基板に対して、以下の条件で無電解銅めっきを30分間行い、約0.3μmの厚さの無電解銅めっき被膜を得、次いで無電解銅めっき上に電解
銅めっきを約20μmの厚さになるまで行った。
前処理工程:
 試験基板を脱脂した後、ロームアンドハース社製CLEANER-CONDITIONER231(100ml/l)を用いてクリーナー・コンディショナー工程を60℃で5分行い、次いで、水洗工程を25℃で1分、塩酸(50ml/l)へのプレディップ工程を25℃で2分、荏原ユージライト社製PB-318(20ml/l)、塩酸(50ml/l)を用いたキャタライジング工程を50℃で5分、水洗工程を25℃で1分、塩化パラジウム(0.5g/l)を用いたパラジウムイオン溶液処理工程を40℃で2分、水洗工程を25℃で1分、次亜リン酸ナトリウム(57g/l)を用いた還元工程を25℃で10分、水洗工程を25℃で1分行った。
無電解銅めっきの浴組成:硫酸銅(6水和物)8g/l、クエン酸ナトリウム(2水和物)14g/l、次亜リン酸ナトリウム(1水和物)57g/l、ホウ酸31g/l、<浴条件>浴温60℃、pH8.0~11.0。
電解銅めっきの電流密度:1A/dm
 以上のようにめっき処理した試験基板について、導体層と樹脂絶縁層との密着性(ピール強度)を測定した。ピール強度の測定は、ピール強度測定装置として(株)島津製作所製AGS-G 100Nを用い、ピール速度50mm/minの条件で、JIS C 6481に準拠して測定し、以下の基準で評価した。尚、測定は2回行い、それらの平均値を用いた。その結果を、表1に併せて示す。
評価基準:
 ◎:ピール強度が3N/cm以上。
 ○:ピール強度が2N/cm以上、3N/cm未満。
 ×:ピール強度が2N/cm未満。 
Figure JPOXMLDOC01-appb-T000001
Examples 1-6
The components of the main agent and the curing agent are mixed together with the formulation shown in Table 1 below, kneaded and dispersed with a three-roll mill, and the viscosity is adjusted to about 30 dPa · s (rotary viscometer, 25 ° C.) with a solvent (cyclohexanone). And the thermosetting resin composition was obtained, respectively.
Test board production process:
Each thermosetting resin composition obtained as described above was applied to a 1.6 mm thick FR-T substrate (etch-out substrate, pretreatment: buffing) with an applicator. Subsequently, after drying at 110 degreeC for 20 minute (s) with a hot-air circulation type drying furnace, it was made to harden | cure on the conditions of 150 degreeC * 30 minutes in a hot-air circulation type drying furnace, and the test board | substrate was obtained.
UV treatment process:
The test substrate obtained as described above was subjected to ultraviolet treatment under the following conditions using an ultraviolet cleaning reformer (manufactured by Sen Engineering Co., Ltd., power source: UVE-200J, light source: PL16-110D).
Distance from lamp to test board surface: 30mm
Irradiation time: 5-10 minutes Irradiation intensity: 20-30 mW / cm 2
Wavelength: 184nm, 254nm
Electroless copper plating and electrolytic copper plating process:
The test substrate treated with ultraviolet rays as described above is subjected to electroless copper plating for 30 minutes under the following conditions to obtain an electroless copper plating film having a thickness of about 0.3 μm, and then electrolysis is performed on the electroless copper plating. Copper plating was performed until the thickness was about 20 μm.
Pretreatment process:
After degreasing the test substrate, the CLEANER-CONDITIONER 231 (100 ml / l) manufactured by Rohm and Haas was used to perform the cleaner / conditioner process at 60 ° C. for 5 minutes, followed by a water washing process at 25 ° C. for 1 minute and hydrochloric acid (50 ml / liter). l) Pre-dip process at 25 ° C. for 2 minutes, Catalyzing process using PB-318 (20 ml / l) and hydrochloric acid (50 ml / l) manufactured by Sugawara Eugelite, 5 minutes at 50 ° C., water washing process 1 minute at 25 ° C., palladium ion solution treatment step using palladium chloride (0.5 g / l) at 40 ° C. for 2 minutes, water washing step at 25 ° C. for 1 minute, sodium hypophosphite (57 g / l) The reduction process used was performed at 25 ° C. for 10 minutes, and the water washing process was performed at 25 ° C. for 1 minute.
Electroless copper plating bath composition: copper sulfate (hexahydrate) 8 g / l, sodium citrate (dihydrate) 14 g / l, sodium hypophosphite (monohydrate) 57 g / l, boric acid 31 g / l, <bath conditions> bath temperature 60 ° C., pH 8.0 to 11.0.
Current density of electrolytic copper plating: 1 A / dm 2 .
The test substrate plated as described above was measured for adhesion (peel strength) between the conductor layer and the resin insulating layer. The peel strength was measured by using AGS-G 100N manufactured by Shimadzu Corporation as a peel strength measuring device under the condition of a peel speed of 50 mm / min according to JIS C 6481 and evaluated according to the following criteria. In addition, the measurement was performed twice and the average value thereof was used. The results are also shown in Table 1.
Evaluation criteria:
A: Peel strength is 3 N / cm or more.
○: Peel strength is 2 N / cm or more and less than 3 N / cm.
X: Peel strength is less than 2 N / cm.
Figure JPOXMLDOC01-appb-T000001
実施例7
 下記表2に示すように、フィラーの含有量を変えた種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
 次いで、前記実施例1~6と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
  その結果を、表2に併せて示す。
Figure JPOXMLDOC01-appb-T000002
Example 7
As shown in Table 2 below, the main component and the curing agent are mixed together in various formulations with different filler contents, kneaded and dispersed with a three-roll mill, and about 30 dPa · The viscosity was adjusted to s (rotary viscometer, 25 ° C.) to obtain thermosetting resin compositions.
Next, test substrates were prepared in the same manner as in Examples 1 to 6, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
前記表2に示す結果から明らかなように、フィラーを含有する例No.2、3ではピール強度が高く、導体層と樹脂絶縁層との密着性に優れていたが、フィラーを含有しない例No.1ではピール強度が低く、密着性が悪かった。このことから、導体層と樹脂絶縁層との密着性を向上させるためには、フィラーの含有は必須であることがわかる。 As is apparent from the results shown in Table 2, Example No. containing a filler was used. In Nos. 2 and 3, the peel strength was high and the adhesiveness between the conductor layer and the resin insulating layer was excellent. In No. 1, the peel strength was low and the adhesion was poor. From this, it can be seen that the inclusion of the filler is essential in order to improve the adhesion between the conductor layer and the resin insulating layer.
実施例8
 下記表3に示すように、ポリヒドロキシカルボン酸誘導体の含有量を変えた種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
 次いで、前記実施例1~6と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
 その結果を、表3に併せて示す。
Figure JPOXMLDOC01-appb-T000003
Example 8
As shown in Table 3 below, the components of the main agent and the curing agent are mixed together in various formulations with different contents of the polyhydroxycarboxylic acid derivative, kneaded and dispersed in a three-roll mill, and added to the solvent (cyclohexanone). The viscosity was adjusted to about 30 dPa · s (rotary viscometer, 25 ° C.) to obtain a thermosetting resin composition.
Next, test substrates were prepared in the same manner as in Examples 1 to 6, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
前記表3に示す結果から明らかなように、ポリヒドロキシカルボン酸誘導体を含有する例No.1、2ではピール強度が高く、導体層と樹脂絶縁層との密着性に優れていたが、ポリヒドロキシカルボン酸誘導体を含有しない例No.3ではピール強度が低く、密着性が悪かった。このことから、導体層と樹脂絶縁層との密着性を向上させるためには、ポリヒドロキシカルボン酸誘導体の含有は必須であることがわかる。 As is apparent from the results shown in Table 3, Example No. 1 containing a polyhydroxycarboxylic acid derivative was used. In Nos. 1 and 2, the peel strength was high and the adhesiveness between the conductor layer and the resin insulating layer was excellent, but no polyhydroxycarboxylic acid derivative was contained. In No. 3, the peel strength was low and the adhesion was poor. From this, it can be seen that the inclusion of the polyhydroxycarboxylic acid derivative is essential in order to improve the adhesion between the conductor layer and the resin insulating layer.
実施例9~11及び比較例1~3
 下記表4に示すように、エポキシ樹脂の種類を変えた種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
 次いで、前記実施例1~6と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
 その結果を、表4に併せて示す。
Figure JPOXMLDOC01-appb-T000004
  
Examples 9 to 11 and Comparative Examples 1 to 3
As shown in Table 4 below, the components of the main agent and the curing agent were mixed together in various formulations with different types of epoxy resin, kneaded and dispersed with a three roll mill, and about 30 dPa · The viscosity was adjusted to s (rotary viscometer, 25 ° C.) to obtain thermosetting resin compositions.
Next, test substrates were prepared in the same manner as in Examples 1 to 6, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 4.
Figure JPOXMLDOC01-appb-T000004

前記表4に示す結果から明らかなように、ナフタレン含有エポキシ樹脂を含有する比較例1、2ではピール強度が低く、密着性が悪かった。また、比較例3の場合、用いたエポキシ樹脂N770はナフタレン骨格を含有しないが、エポキシ当量が250g/eq未満の多官能エポキシ樹脂であるため、架橋密度が高くなり過ぎ、めっき触媒の浸透を妨げ、その結果、ピール強度が低く、密着性が悪かったものと考えられる。 As is apparent from the results shown in Table 4, in Comparative Examples 1 and 2 containing a naphthalene-containing epoxy resin, the peel strength was low and the adhesion was poor. Further, in the case of Comparative Example 3, the used epoxy resin N770 does not contain a naphthalene skeleton, but since the epoxy equivalent is a polyfunctional epoxy resin having an epoxy equivalent of less than 250 g / eq, the crosslinking density becomes too high and impedes the penetration of the plating catalyst. As a result, it is considered that the peel strength was low and the adhesion was poor.
以上のように、めっき処理により樹脂絶縁層の表面に導体層を形成する際に、樹脂絶縁層との密着強度が高い導体層の形成を可能とする熱硬化性樹脂組成物、該熱硬化性樹脂組成物からなる樹脂シート、並びにこれらを用いて樹脂絶縁層が形成されてなるプリント配線板を提供することができる。 As described above, when the conductor layer is formed on the surface of the resin insulating layer by plating, the thermosetting resin composition that enables the formation of a conductor layer having high adhesion strength with the resin insulating layer, the thermosetting The resin sheet which consists of a resin composition, and the printed wiring board by which a resin insulating layer is formed using these can be provided.

Claims (16)

  1. ナフタレン骨格を含有しない2官能エポキシ樹脂、及び1分子中に3個以上のエポキシ基を有するエポキシ当量が250g/eq以上のナフタレン骨格を含有しないエポキシ樹脂のいずれか少なくとも一種のエポキシ樹脂と、
    フェノール樹脂と、
    フィラーと、
    ポリヒドロキシカルボン酸又はその誘導体
    とを含有することを特徴とする熱硬化性樹脂組成物。
    At least one epoxy resin selected from a bifunctional epoxy resin not containing a naphthalene skeleton and an epoxy resin having an epoxy equivalent of 250 g / eq or more having 3 or more epoxy groups in one molecule;
    Phenolic resin,
    A filler,
    A thermosetting resin composition comprising polyhydroxycarboxylic acid or a derivative thereof.
  2.  樹脂絶縁層の表面に紫外線を照射した後、めっき処理により導体層を形成するプリント配線板の製造において、前記樹脂絶縁層の形成に用いられる組成物であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 The composition used for forming the resin insulation layer in the production of a printed wiring board in which a conductor layer is formed by plating after the surface of the resin insulation layer is irradiated with ultraviolet rays. Thermosetting resin composition.
  3. 前記フェノール樹脂の配合割合が、前記エポキシ樹脂のエポキシ基1当量当り、フェノール樹脂のフェノール性水酸基が0.2~1.2当量であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 2. The thermosetting resin according to claim 1, wherein the phenol resin has a compounding ratio of 0.2 to 1.2 equivalents of phenolic hydroxyl groups of the phenol resin per equivalent of epoxy groups of the epoxy resin. Composition.
  4. 前記フィラーが、炭酸カルシウム及びシリカのうちいずれか少なくとも1種であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the filler is at least one of calcium carbonate and silica.
  5. 前記フィラーの平均粒径が、0.1μm~3μmであることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 2. The thermosetting resin composition according to claim 1, wherein the filler has an average particle size of 0.1 μm to 3 μm.
  6. 前記フィラーの配合量が、前記エポキシ樹脂と前記フェノール樹脂の総和100質量部に対して10~150質量部であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the blending amount of the filler is 10 to 150 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin.
  7. 前記ポリヒドロキシカルボン酸又はその誘導体の配合量が、前記エポキシ樹脂とフェノール樹脂の総和100質量部に対して、0.1~15質量部であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 The thermosetting according to claim 1, wherein the blending amount of the polyhydroxycarboxylic acid or a derivative thereof is 0.1 to 15 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin. Resin composition.
  8. ナフタレン骨格を含有しない2官能エポキシ樹脂、及び1分子中に3個以上のエポキシ基を有するエポキシ当量が250g/eq以上のナフタレン骨格を含有しないエポキシ樹脂のいずれか少なくとも一種のエポキシ樹脂と、
    フェノール樹脂と、
    フィラーと、
    ポリヒドロキシカルボン酸又はその誘導体
    とを含有する熱硬化性樹脂組成物をキャリアフィルム上に塗工した後、又はシート状繊維質基材に含浸させた後、乾燥してなる樹脂シート。
    At least one epoxy resin selected from a bifunctional epoxy resin not containing a naphthalene skeleton and an epoxy resin having an epoxy equivalent of 250 g / eq or more having 3 or more epoxy groups in one molecule;
    Phenolic resin,
    A filler,
    A resin sheet formed by applying a thermosetting resin composition containing polyhydroxycarboxylic acid or a derivative thereof onto a carrier film, or impregnating a sheet-like fibrous base material and then drying.
  9.  樹脂絶縁層の表面に紫外線を照射した後、めっき処理により導体層を形成するプリント配線板の製造において、前記樹脂絶縁層の形成に用いられるシートであることを特徴とする請求項8に記載の樹脂シート。 9. The sheet according to claim 8, wherein the sheet is used for forming the resin insulation layer in manufacturing a printed wiring board in which a conductor layer is formed by plating after the surface of the resin insulation layer is irradiated with ultraviolet rays. 10. Resin sheet.
  10. 前記フェノール樹脂の配合割合が、前記エポキシ樹脂のエポキシ基1当量当り、フェノール樹脂のフェノール性水酸基が0.2~1.2当量であることを特徴とする請求項8に記載の樹脂シート。 9. The resin sheet according to claim 8, wherein the phenol resin is blended such that the phenolic hydroxyl group of the phenol resin is 0.2 to 1.2 equivalent per equivalent of epoxy group of the epoxy resin.
  11. 前記フィラーが、炭酸カルシウム及びシリカのうちいずれか少なくとも1種であることを特徴とする請求項8に記載の樹脂シート。 The resin sheet according to claim 8, wherein the filler is at least one of calcium carbonate and silica.
  12. 前記フィラーの平均粒径が、0.1μm~3μmであることを特徴とする請求項8に記載の樹脂シート。 9. The resin sheet according to claim 8, wherein the filler has an average particle size of 0.1 μm to 3 μm.
  13. 前記フィラーの配合量が、前記エポキシ樹脂と前記フェノール樹脂の総和100質量部に対して10~150質量部であることを特徴とする請求項8に記載の樹脂シート。 The resin sheet according to claim 8, wherein the blending amount of the filler is 10 to 150 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin.
  14. 前記ポリヒドロキシカルボン酸又はその誘導体の配合量が、前記エポキシ樹脂とフェノール樹脂の総和100質量部に対して、0.1~15質量部であることを特徴とする請求項8に記載の樹脂シート。 The resin sheet according to claim 8, wherein the compounding amount of the polyhydroxycarboxylic acid or a derivative thereof is 0.1 to 15 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the phenol resin. .
  15. ナフタレン骨格を含有しない2官能エポキシ樹脂、及び1分子中に3個以上のエポキシ基を有するエポキシ当量が250g/eq以上のナフタレン骨格を含有しないエポキシ樹脂のいずれか少なくとも一種のエポキシ樹脂と、
    フェノール樹脂と、
    フィラーと、
    ポリヒドロキシカルボン酸又はその誘導体
    とを含有する熱硬化性樹脂組成物の硬化物から形成された樹脂絶縁層の表面に、紫外線を照射した後、めっき処理により導体層が形成されてなることを特徴とするプリント配線板。
    At least one epoxy resin selected from a bifunctional epoxy resin not containing a naphthalene skeleton and an epoxy resin having an epoxy equivalent of 250 g / eq or more having 3 or more epoxy groups in one molecule;
    Phenolic resin,
    A filler,
    The surface of a resin insulation layer formed from a cured product of a thermosetting resin composition containing polyhydroxycarboxylic acid or a derivative thereof is irradiated with ultraviolet rays, and then a conductor layer is formed by plating. Printed wiring board.
  16. 前記紫外線の波長が150nm~310nmであることを特徴とする請求項15に記載のプリント配線板の導体層の製造方法。
                      
    The method for producing a conductor layer of a printed wiring board according to claim 15, wherein the wavelength of the ultraviolet light is 150 nm to 310 nm.
PCT/JP2009/002385 2008-05-29 2009-05-29 Heat-hardened resin composition and printed wiring board WO2009144954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-140562 2008-05-29
JP2008140562A JP5325462B2 (en) 2008-05-29 2008-05-29 Thermosetting resin composition and printed wiring board

Publications (1)

Publication Number Publication Date
WO2009144954A1 true WO2009144954A1 (en) 2009-12-03

Family

ID=41376843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002385 WO2009144954A1 (en) 2008-05-29 2009-05-29 Heat-hardened resin composition and printed wiring board

Country Status (3)

Country Link
JP (1) JP5325462B2 (en)
KR (1) KR101612974B1 (en)
WO (1) WO2009144954A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630241B2 (en) * 2010-02-15 2014-11-26 日立化成株式会社 Insulating resin, wiring board, and method of manufacturing wiring board
JP5797883B2 (en) * 2010-06-07 2015-10-21 住友電気工業株式会社 PCB for printed wiring board
US20130199830A1 (en) * 2010-08-10 2013-08-08 Hitachi Chemical Company Ltd Resin composition, cured resin product, wiring board, and manufacturing method for wiring board
KR101116181B1 (en) * 2010-09-29 2012-03-06 주식회사 두산 Epoxy resin laminate having excellent formability and method for preparing the same
TW201307470A (en) * 2011-05-27 2013-02-16 Taiyo Ink Mfg Co Ltd Thermocuring resin composition, dry film and printed wiring board
JP5983141B2 (en) * 2012-07-24 2016-08-31 東レ株式会社 Laminated film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019834A (en) * 1999-07-06 2001-01-23 Taiyo Ink Mfg Ltd Liquid thermosetting resin composition and method for permanently filling hole of printed-wiring board by usings same
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
JP2002296777A (en) * 2001-03-29 2002-10-09 Tamura Kaken Co Ltd Photosensitive resin composition
JP2003096368A (en) * 2001-09-26 2003-04-03 Tamura Kaken Co Ltd Resist ink composition and printed wiring board
JP2005048117A (en) * 2003-07-31 2005-02-24 Taiyo Ink Mfg Ltd Curable composition
JP2005241977A (en) * 2004-02-26 2005-09-08 Taiyo Ink Mfg Ltd Photosetting/thermosetting resin composition and printed wiring board using the same
JP2008133426A (en) * 2006-10-26 2008-06-12 Hitachi Chem Co Ltd Ink, method for forming spacer for liquid crystal display and liquid crystal display
WO2008087890A1 (en) * 2007-01-15 2008-07-24 Taiyo Ink Mfg. Co., Ltd. Thermosetting resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303379A (en) * 2007-05-07 2008-12-18 Aica Kogyo Co Ltd Epoxy resin composition
JP5074981B2 (en) * 2008-03-28 2012-11-14 太陽ホールディングス株式会社 Thermosetting resin composition and printed wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019834A (en) * 1999-07-06 2001-01-23 Taiyo Ink Mfg Ltd Liquid thermosetting resin composition and method for permanently filling hole of printed-wiring board by usings same
JP2001181375A (en) * 1999-10-13 2001-07-03 Ajinomoto Co Inc Epoxy resin composition, adhesive film and pre-preg thereby, multilayer printed circuit board using same and its producing method
JP2002296777A (en) * 2001-03-29 2002-10-09 Tamura Kaken Co Ltd Photosensitive resin composition
JP2003096368A (en) * 2001-09-26 2003-04-03 Tamura Kaken Co Ltd Resist ink composition and printed wiring board
JP2005048117A (en) * 2003-07-31 2005-02-24 Taiyo Ink Mfg Ltd Curable composition
JP2005241977A (en) * 2004-02-26 2005-09-08 Taiyo Ink Mfg Ltd Photosetting/thermosetting resin composition and printed wiring board using the same
JP2008133426A (en) * 2006-10-26 2008-06-12 Hitachi Chem Co Ltd Ink, method for forming spacer for liquid crystal display and liquid crystal display
WO2008087890A1 (en) * 2007-01-15 2008-07-24 Taiyo Ink Mfg. Co., Ltd. Thermosetting resin composition

Also Published As

Publication number Publication date
KR20110033114A (en) 2011-03-30
JP2009286889A (en) 2009-12-10
JP5325462B2 (en) 2013-10-23
KR101612974B1 (en) 2016-04-15

Similar Documents

Publication Publication Date Title
JP4117690B2 (en) Method for producing multilayer printed wiring board using adhesive film for multilayer printed wiring board
JP5150381B2 (en) Thermosetting resin composition
JP5238342B2 (en) Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same
JP2020023714A (en) Resin material and multilayer printed board
JP7385344B2 (en) Thermosetting resin composition and multilayer substrate
JP2007254710A (en) Resin composition for interlayer insulation layer of multi-layer printed circuit board
JPWO2008087890A1 (en) Thermosetting resin composition
WO2002044274A1 (en) Liquid thermosetting resin composition, printed wiring boards and process for their production
JP5325462B2 (en) Thermosetting resin composition and printed wiring board
WO2009096507A1 (en) Resin composition and multilayer resin film employing the same
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
JP2018115334A (en) Epoxy resin material and multilayer substrate
KR100726247B1 (en) Method for forming board
JP2012041386A (en) Thermosetting resin composition for circuit board
JP2013036042A (en) Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board
JP5074981B2 (en) Thermosetting resin composition and printed wiring board
JP2017066399A (en) Resin composition, laminate, and manufacturing method of laminate structure
JP2013082873A (en) B-stage film and multilayer board
JP3669663B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards
JP2006176795A (en) Interlaminar insulating resin composition for multilayer printed wiring board
JP7241569B2 (en) Curable resin composition, dry film or prepreg, cured product, and wiring board
JP3703143B2 (en) Interlayer insulating adhesive for multilayer printed wiring board and copper foil with interlayer insulating adhesive for multilayer printed wiring board
JP2013076004A (en) Thermosetting resin composition for laser beam machining, cured product, and printed wiring board
JP2012140570A (en) Epoxy resin material and multilayer substrate
JP5116921B2 (en) Thermosetting resin composition for wiring board, molded product thereof and multilayer printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026523

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754462

Country of ref document: EP

Kind code of ref document: A1