WO2009143693A1 - 通信***中采用交织规则重排的数据重传方法及其装置 - Google Patents

通信***中采用交织规则重排的数据重传方法及其装置 Download PDF

Info

Publication number
WO2009143693A1
WO2009143693A1 PCT/CN2009/000540 CN2009000540W WO2009143693A1 WO 2009143693 A1 WO2009143693 A1 WO 2009143693A1 CN 2009000540 W CN2009000540 W CN 2009000540W WO 2009143693 A1 WO2009143693 A1 WO 2009143693A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
retransmission
interleaving
symbol
processing
Prior art date
Application number
PCT/CN2009/000540
Other languages
English (en)
French (fr)
Inventor
徐朝军
韩锋
郑武
沈钢
Original Assignee
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿尔卡特朗讯 filed Critical 阿尔卡特朗讯
Publication of WO2009143693A1 publication Critical patent/WO2009143693A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Definitions

  • the present invention relates to hybrid automatic repeat request (HARQ) technology, and more particularly to a data retransmission method and apparatus for interleaving rule rearrangement in a communication system.
  • HARQ hybrid automatic repeat request
  • Error control technology is adopted in the communication system to improve the signal transmission quality and ensure information reliability.
  • Traditional error control techniques include Forward Error Correction (FEC) and Error Detection plus Automatic Repeat Request (ARQ).
  • FEC Forward Error Correction
  • ARQ Error Detection plus Automatic Repeat Request
  • the FEC technology performs error correction based on redundant information in the received data, and is characterized by "correction only, no retransmission”.
  • ARQ technology relies on error detection and retransmission requests to ensure signal quality. It is characterized by "retransmission only, no error correction”.
  • the same forward error correction coding is used for retransmission, and the redundant information does not change.
  • the Chase merge improves the first type of HARQ to a certain extent, does not discard the wrong data packet, but stores it.
  • the decoder first weights the data transmitted multiple times by the signal-to-noise ratio, that is, the maximum ratio. Merge (MRC) and then decode to obtain time diversity gain.
  • the second type of HARQ is an ARQ mechanism that adds redundancy (IR) in a fully redundant manner.
  • IR redundancy
  • the retransmission does not include system bit information, but only carries new redundant information to assist decoding, and combines with the previously received information at the receiving end to form a forward error correction code with stronger error correction capability, so that the error rate is further reduced.
  • Redundant information version is coded by several codes Produced.
  • the third type of HARQ also known as partially redundant HARQ, also belongs to the addition of redundancy mechanisms.
  • the receiver combines the data transmitted multiple times and decodes it.
  • the retransmission data contains both redundancy and system bits and is self-decoding. Since the system bits have a great influence on the decoding, if the noise and interference in the system are relatively large, the data of the first transmission is seriously damaged, and even if the redundant information is added, the data packet is difficult to decode. In this case, retransmission of data self-decoding will improve system performance.
  • the third type of HARQ can be seen as a combination of the first two categories.
  • Fig. 1 is a block diagram showing the system of the above-mentioned prior art transmitting terminal device. All of the above prior art techniques can improve the performance of the HARQ technology, but there are also disadvantages such as a complicated implementation scheme. Summary of the invention
  • the present invention proposes a low complexity and improved HARQ scheme, which can obtain reordering diversity and frequency with constellation diagrams during retransmission combining by changing interleaving rules when erroneous data packets are retransmitted. Diversity equals the effect, thus improving The performance of HARQ technology.
  • a method for data retransmission in a transmitting device of a communication network comprising the steps of: a. using data that needs to be retransmitted in one or more previous transmissions Performing at least one interleaving rule with different interleaving rules, performing interleaving processing on the data to be retransmitted to obtain retransmission data after interleaving; b. performing retransmission data after the interleaving process Each of the previous transmissions has the same symbol modulation processing to obtain retransmission data after symbol modulation processing; d. The retransmission data after the symbol modulation processing is transmitted to the receiving device.
  • a method for receiving and combining retransmitted data in a receiving device of a communication network comprising the steps of: 1. receiving a weight of said retransmitted data from a transmitting device Transmitting a version; 11.
  • a data retransmission apparatus for data retransmission in a transmitting device of a communication network, comprising: an interleaving processing apparatus, configured to use data that needs to be retransmitted at a previous time or Interleaving rules using different interleaving rules for at least one of the multiple transmissions are performed by interleaving the data to be retransmitted to obtain retransmitted data after interleaving; and symbol modulating means for processing the interleaving
  • the subsequent retransmission data is subjected to the same symbol modulation processing as each of the previous transmissions to obtain retransmission data after the symbol modulation processing; and the transmitting means is configured to transmit the retransmission data after the symbol modulation processing to the receiving device.
  • a receiving and combining apparatus for receiving and combining retransmitted data in a receiving device of a communication network, comprising: receiving means, Receiving a retransmission version of the retransmission data from the transmitting device; and symbol demodulating means, configured to perform, by using the received retransmission version, one or more versions of the previously received retransmission data a symbol demodulation process to obtain a retransmission version after the symbol demodulation process; and a deinterleaving device, configured to deinterleave the retransmission version after the symbol demodulation process according to an interleaving rule adopted by the transmitting device Processing, to obtain a retransmitted version after the deinterleaving process, where the interleaving rule adopted by the sending device is different from the interleaving rule used for at least one of the previous one or more transmissions of the retransmitted data;
  • the merging device combines the de-interleaved retransmitted version with one
  • a transmitting device for use in a communication network, comprising the data retransmission device of the third aspect of the invention.
  • a receiving device for use in a communication network comprising the receiving and combining device of the fourth aspect of the invention.
  • the technical solution provided by the present invention mainly improves the interleaver and deinterleaver used in the equipment in the communication network, so that the cost is relatively reasonable.
  • only the interleave rules can be changed each time the erroneous data packet is retransmitted, and the effect equivalent to constellation rearrangement diversity and frequency diversity can be obtained at the time of retransmission combining, thereby improving the performance of the HARQ technique.
  • the interleaving rules employed are compatible with the interleaving rules employed in the existing IEEE 802.16e protocol.
  • Figure 1 shows a system block diagram of several prior art sender devices
  • FIG. 2 shows a flow chart of a method for data retransmission in a transmitting device of a communication network in accordance with an embodiment of the present invention
  • Figure 3 illustrates reception at a communication network in accordance with an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a data retransmission apparatus for data retransmission in a transmitting device of a communication network according to an embodiment of the present invention
  • FIG. 5 is a structural diagram of an accepting and combining apparatus for receiving and combining retransmitted data in a receiving device of a communication network according to an embodiment of the present invention
  • Figures 6a, 6b, 6c are diagrams of system performance simulations in accordance with an embodiment of the present invention.
  • the transmitting device performs block processing on the channel coded data, and each data block is interleaved and processed to be transmitted to the receiving device.
  • the most commonly used interleaving method is matrix interleaving, that is, the channel-coded codeword sequence (data block) is filled line by line into a matrix of size m x n, and after the matrix is filled, it is read out column by column.
  • the deinterleaver of the receiving device fills the received signal into the matrix of m x n column by column, fills it up and reads it line by line, and then sends it to the decoder for decoding.
  • the receiving device If the receiving device cannot correctly recover the received data block, it will send a reception failure message or a retransmission request message, and the transmitting device will retransmit the data block after receiving the message.
  • FIG. 2 shows a flow chart of a method for data retransmission in a transmitting device of a communication network in accordance with an embodiment of the present invention. This process will be described in detail below in conjunction with the prior art.
  • the data retransmission in the communication network in the present invention may be based on the prior art, and the transmitting device retransmits the data block according to the receiving failure message or the retransmission request message from the receiving device; or the receiving device cannot correctly recover the received data. Wait for the data block, such as If the transmitting device does not receive the receiving feedback message from the receiving device within a specified time after issuing a data block, the transmitting device defaults to the data block transmission failure and retransmits the data block.
  • step S11 the transmitting device performs interleaving processing on the data that needs to be retransmitted by using an interleaving rule different from the interleaving rule used by the data to be retransmitted in at least one of the previous one or more transmissions.
  • the retransmission data after the interleaving process is obtained.
  • step S12 the transmitting device performs the same symbol modulation processing as the previous retransmission data on the retransmission data after the interleaving process to obtain the retransmission data after the symbol modulation processing.
  • the symbol modulation processing here refers to the bit-to-symbol mapping in multi-digit digital modulation.
  • the multi-ary modulation methods that can be adopted include M-PSK (Multi-Phase Keying) and M-QAM (Multi-input). Quadrature amplitude modulation).
  • M-PSK Multi-Phase Keying
  • M-QAM Multi-input
  • Quadrature amplitude modulation Taking 16QAM with 16 constellation points as an example, each constellation point represents a vector state, and each 4-bit binary number specifies a vector state. Therefore, each 16QAM symbol can transmit 4-bit data information.
  • the transmitting device performs the same symbol modulation processing on the retransmission data after the interleaving process, that is, when the retransmission data is transmitted, the 4-
  • step S14 the transmitting device transmits the processed retransmission data to the receiving device.
  • the interleaving process in the technical solution of the present invention is based on matrix interleaving.
  • most of the same interleaving rules are used in the transmission device for multiple transmissions of a certain data block, where multiple transmissions include the first transmission of the data block and possibly one or more retransmissions. .
  • the transmitting device when it retransmits a data block, it uses an interleaving rule different from the interleaving rule used for at least one transmission of the data block to be retransmitted in the previous one or more transmissions.
  • the retransmitted data block is subjected to interleaving processing to obtain retransmitted data after interleaving processing.
  • interleaving processing For example, when the transmitting device first transmits a certain data block, it performs interleaving processing by using the first interleaving rule; when the data block needs to be retransmitted for any reason, the transmitting device retransmits the data block for the first time, that is, the second When the data block is sent, it is different from the first interleaving rule.
  • the second interleaving rule performs interleaving processing; thus, after the data block is interleaved in two transmissions, the order of the encoded bit sequence changes, and after receiving the same symbol modulation processing in step S12, the receiving device receives By going to the two transmitted data blocks and performing information merging after the deinterleaving process, the diversity effect equivalent to the constellation rearrangement can be obtained, thereby improving the performance of the HARQ technique.
  • the transmitting device may adopt the first interleaving rule or the second interleaving rule when retransmitting the data block for the second time, that is, when the data block is sent for the third time.
  • the processing performed by the transmitting device and the receiving device is similar to the processing in the second retransmission described above, and it is no longer preferred here for the transmitting device to perform a certain data block.
  • Different interleaving rules are used in multiple transmissions, where multiple transmissions include the first transmission of the data block and possibly one or more retransmissions, that is, when the transmitting device retransmits a data block, it is in step S11.
  • the data that needs to be retransmitted is interleaved by using an interleaving rule in which the interleaving rules used in the previous one or more transmissions are different from the data to be retransmitted to obtain the retransmitted data after the interleaving process.
  • the sending device may determine, according to the following manner, an interleaving rule used for the data that needs to be retransmitted in a certain transmission: the sending device determines retransmission times information of the data block that needs to be retransmitted, and in step S11 above
  • the interleaving rule used in the retransmission is determined based on the retransmission number information, and the data to be retransmitted is interleaved by using the interleaving rule.
  • the retransmission number information here is used to indicate that the retransmission is the first retransmission of the data block.
  • the retransmission number information may be determined by the receiving device by the retransmission request message, or may be determined by the transmitting device according to the local transmission record.
  • interleaving rules used herein may be described as follows according to their physical meanings: II. Write data that needs to be retransmitted into an interleaving matrix row by row in sequence; 12. Perform data on each row of the interleaving matrix separately Cyclic shifting to obtain an interleaving matrix after row shifting, wherein the number of bits of the cyclic shift is determined according to the retransmission times information; 13. pressing each column data of the interleaved matrix after the row is pressed The order is grouped every s, where s Determining, according to the number of data bits included in each symbol in the symbol modulation processing in step S12, each column data length is an integer multiple of s; 14.
  • each group in each column data of the grouped interleaving matrix The data is cyclically shifted, and the number of bits of the cyclic shift is determined according to the sequence number of the column to which the packet data belongs; 15.
  • the data in the interleaving matrix cyclically shifted by the packet is sequentially read out column by column.
  • step S12 the method for data retransmission in the transmitting device is based on the flowchart shown in FIG. 2.
  • step S13 (not shown) should be further included, and the retransmission after the symbol modulation processing is obtained.
  • the data is subjected to subcarrier mapping processing to obtain retransmission data after subcarrier mapping processing.
  • step S14 the transmitting device transmits the subcarrier mapping processed retransmission data to the receiving device.
  • the subcarrier mapping processing in the above step S13 is a mapping process in which the data blocks to be transmitted are allocated to the respective subcarriers after the symbol modulation processing in step S12 is completed.
  • the transmitting device may use a different subcarrier mapping process when the data block is retransmitted for the first time, so that the receiving device receives the data blocks of the two transmissions and performs information after the deinterleaving process.
  • the frequency diversity effect can also be obtained when merging, thereby improving the performance of the HARQ technology.
  • the transmitting device retransmits the data block for the second time, that is, when the data block is sent for the third time, the child may be different from the previous two transmissions.
  • Carrier mapping processing In each subsequent retransmission of the data block, the transmitting device may use different subcarrier mapping processing for the data block.
  • the transmitting device uses the same symbol modulation processing and the same subcarrier mapping processing each time in multiple transmissions to a certain data block, and interleaves the data block each time using different interleaving rules.
  • the multiple transmissions here include the first transmission of the data block and possibly one or more retransmissions.
  • the data block is interleaved in each transmission
  • the receiving device can obtain the constellation rearrangement diversity and the frequency diversity when receiving the transmitted data blocks and performing information combining after the deinterleaving process.
  • the same diversity effect improves the performance of HARQ technology.
  • the interleaving rules used by the data block in each transmission need to be specially designed.
  • the communication network employs OFDM technology
  • the digital modulation method employs M-QAM modulation (e.g., 16QAM, 64QAM).
  • M-QAM modulation e.g., 16QAM, 64QAM.
  • the number of data bits of the data block to be transmitted by the transmitting device is an integral multiple of the product of the number of data bits included in each symbol in the symbol modulation process and the minimum number of subcarriers allocated to the transmitting device.
  • the size of the interleaving matrix (the product of the number of rows and the number of columns) is half the number of bits of the data bits of the data block to be transmitted.
  • the number of columns of the interleaving matrix is taken as a factor of the minimum number of subcarriers, and the number of rows is an even multiple of s.
  • the number of bits of the cyclic shift is a product of a retransmission number factor based on the retransmission number information and a cyclic shift factor.
  • the cyclic shift factor is A positive integer equal to s; for example, when the system adopts 16QAM modulation, s takes a value of 2, and the cyclic shift factor should be mutually prime; if the system can adopt either 16QAM modulation or 64QAM modulation, s value It may be 2 or 3, and the cyclic shift factor should be mutually prime with 2 and 3.
  • the number of bits of the cyclic shift of each packet data is the number of sorts of the columns to which the packet data belongs in all columns of the interlace matrix.
  • s in step 13 can also be taken as the number of data bits included in each symbol in the symbol modulation process.
  • the interleaving rules still apply when the number of data bits per symbol contained in the digital modulation scheme employed in the communication system is odd (e.g., using 32QAM modulation).
  • step S21 the receiving device receives a retransmission version of the retransmission data from the transmitting device.
  • step S23 the receiving device performs symbol demodulation processing on the received retransmission version that is identical to one or more versions of the previously received retransmission data, to obtain a weight after symbol demodulation processing. Pass the version.
  • step S24 the receiving device performs corresponding deinterleaving processing on the retransmission version after the symbol demodulation process according to the interleaving rule adopted by the sending device, to obtain a retransmitted version after the deinterleaving process.
  • the interleaving rule adopted by the sending device is different from the interleaving rule used for at least one of the previous one or more transmissions of the retransmitted data.
  • step S25 the receiving device merges the de-interleaved retransmitted version with one or more de-interleaved versions of the previously received retransmitted data.
  • step S23 the receiving device performs symbol demodulation processing corresponding to the symbol modulation processing in the transmitting device on the retransmitted version of the received retransmission data to obtain a retransmission version after symbol demodulation, in the retransmission
  • the symbol demodulation process performed after multiple receptions of the data block remains unchanged.
  • step S24 the receiving device performs a deinterleaving process on the retranscoded version of the received retransmitted data block after the symbol demodulation by using a deinterleaving rule corresponding to the interleaving rule adopted by the transmitting device.
  • the retransmission version after the deinterleaving process wherein the interleaving rule adopted by the sending device is different from the interleaving rule used for at least one of the previous one or more transmissions of the retransmitted data block.
  • the sending device and the receiving device respectively determine corresponding interleaving rules and deinterleaving rules according to the retransmission times information of the retransmitted data.
  • the interleaving rules adopted by the transmitting device are different, and are different from the interleaving rules used in the first transmission of the data block; accordingly, the receiving device receives each time.
  • the de-interleaving rules used after the retransmission version of the data block are different, and are different from the de-interleaving rules used after receiving the data block for the first time.
  • the data block is adjacent twice After the same symbol modulation processing, the receiving device can obtain the diversity effect equivalent to the constellation rearrangement after receiving the data blocks of the two transmissions and performing information combining after the deinterleaving process, thereby improving the HARQ technology. performance.
  • the above retransmission times information may be determined by the receiving device according to the local reception record.
  • the receiving device determines the required deinterleaving rule based on the retransmission number information of the retransmitted version of the received retransmission data, and uses the deinterleaving rule to receive the retransmitted data.
  • the retransmission version after the symbol demodulation process is subjected to deinterleave processing.
  • the deinterleaving rule employed herein may be described as follows according to its physical meaning: DI1.
  • the data to be deinterleaved is sequentially written into a deinterleaving matrix column by column; DI2.
  • Each of the deinterleaving matrices The column data is grouped in order every s, wherein s is determined according to the number of data bits included in each symbol in the symbol demodulation process, and the data length of each column is an integer multiple of s; DI3.
  • Each packet data in each column of the deinterleaving matrix is cyclically shifted to obtain a deinterleaving matrix after the cyclic shift of the packet, wherein the number of bits of the cyclic shift is determined according to the sequence number of the column to which the packet data belongs.
  • Determining; DI4. cyclically shifting each row of data of the de-interlaced matrix after the grouping to obtain a de-interlacing matrix after row shifting, wherein the number of bits of the cyclic shift is according to the number of retransmissions Information determination; DI5.
  • the data in the deinterleaving matrix after the row is cyclically shifted is sequentially read out in line.
  • the shift direction of the cyclic shift of each packet data in step DI3 is opposite to the shift direction of the cyclic shift of the corresponding packet data in the interleaving process of the transmitting device, and the shift direction of the cyclic shift of each row of data in step DI4 is interleaved with the transmitting device.
  • the shift direction of the corresponding data cyclic shift in the processing is reversed.
  • step S25 the receiving device combines the de-interleaved retransmission version with one or more de-interleaved versions of the previously received retransmission data.
  • the information combination in step S25 may be merged using Chase.
  • the receiving device performs processing such as decoding. If the data block sent by the sending device is correctly restored, the receiving device sends a receiving success message to the sending device; The data block sent by the sending device cannot be recovered, and the receiving device sends a receiving failure message or a retransmission request to the sending device. Interest, or do not send a feedback message and wait for the sending device to retransmit the data block according to the agreement.
  • step S21 step S21
  • step S22 (not shown) should also be included, for the received weight.
  • the retransmission version of the transmitted data is subjected to subcarrier demapping processing to obtain a retransmission version after subcarrier demapping processing.
  • the subcarrier demapping process here corresponds to subcarrier mapping processing in the transmitting device.
  • the transmitting device uses the same subcarrier mapping process for multiple transmissions of a certain data block, and different interleaving rules are adopted for the multiple transmissions of the data block, as described herein.
  • Multiple transmissions include the first transmission of the data block and possibly one or more retransmissions. In this way, after the data block is interleaved in each transmission, the order of the encoded bit sequence changes, and after the same symbol modulation processing and the same subcarrier mapping processing, it is sent to the receiving device; the receiving device receives the transmission.
  • the same subcarrier demapping process and symbol demapping process are performed, and when the information is combined after the deinterleaving process, the diversity effect equivalent to the constellation rearrangement diversity and the frequency diversity can be obtained, thereby improving the HARQ.
  • the interleaving rules and de-interleaving rules used by the data block in each transmission need to be specially designed.
  • the communication network employs OFDM technology
  • the digital modulation method employs M-QAM modulation (eg, 16QAM, 64QAM).
  • M-QAM modulation eg, 16QAM, 64QAM.
  • the number of data bits of the retransmitted version of the retransmitted data after symbol demodulation is an integer of the product of the number of data bits included in each symbol in the symbol demodulation process and the minimum number of subcarriers allocated to the transmitting device. Times.
  • the size of the deinterleaving matrix (the product of the number of rows and the number of columns) is the same as the number of data bits of the retransmitted version.
  • the number of data bits included in each symbol in the symbol demodulation process is an even number.
  • the s in step DI2 is taken as each of the symbol demodulation processes
  • the symbols contain half of the number of data bits.
  • the number of columns of the deinterleaving matrix is a factor of the minimum number of subcarriers, and the number of rows is an even multiple of s.
  • the number of bits of the cyclic shift of each packet data is the number of sorts of the columns to which the packet data belongs in all columns of the deinterleaving matrix.
  • the number of bits of the cyclic shift is a product of a retransmission number factor based on the retransmission number information and a cyclic shift factor; when the value of s is not 1, the cyclic shift factor is A positive integer with s is a positive integer with s being a positive integer with s; for example, when the system adopts 16QAM modulation, s takes a value of 2, and the cyclic shift factor should be mutually prime; The system can adopt either 16QAM modulation or 64QAM modulation, and the value of s can be 2 or 3, and the cyclic shift factor should be mutually prime with 2 and 3.
  • s in step DI2 can also be taken as the number of data bits included in each symbol in the symbol demodulation process.
  • the de-interleaving rule still applies.
  • the transmitting device determines the interleaving rule it uses to notify the receiving device of the interleaving rule; the receiving device determines the interleaving rule according to the interleaving rule. Corresponding deinterleaving rules are performed, and the received data block is deinterleaved by using the deinterleaving rule.
  • FIG. 4 is a block diagram showing a data retransmission apparatus for data retransmission in a transmitting device of a communication network according to an embodiment of the present invention.
  • the data retransmission device 10 is typically located in a transmitting device 1 (not shown) in the communication network.
  • the data retransmission device 10 includes an interleave processing device 101, a symbol modulation device 102, a subcarrier mapping device 103, a transmitting device 104, and a first determining device 105.
  • the process of data retransmission by the data retransmission device 10 shown in FIG. 4 will be described in detail below in conjunction with the prior art.
  • the data retransmission in the communication network in the present invention may be based on the prior art, and the transmitting device 1 retransmits the data block according to the reception failure message or the retransmission request message from the receiving device; or the receiving device cannot correctly recover the received data.
  • the data block continues to wait. If the transmitting device 1 does not receive the received feedback message of the transmitted data block within the specified time, the transmitting device 1 defaults to the data block transmission failure and retransmits the data block.
  • the interleaving processing apparatus 101 performs interleaving processing on the data to be retransmitted to obtain interleaving by using an interleaving rule different from the interleaving rule used for at least one of the previous one or more transmissions of the data to be retransmitted. Reprocessed data after processing.
  • the symbol modulating means 102 performs the same symbol modulation processing as that of the previous transmission on the retransmission data after the interleaving processing to obtain retransmission data after the symbol modulation processing.
  • the symbol modulation processing here refers to the bit-to-symbol mapping in multi-digit digital modulation.
  • the multi-ary modulation methods that can be adopted include M-PSK (Multi-Phase Keying) and M-QAM (Multi-input). Orthogonal amplitude modulation). Taking 16QAM with 16 constellation points as an example, each constellation point represents a vector state, and each 4-bit binary number specifies a vector state. Therefore, each symbol of 16QAM can transmit 4 bits of data information.
  • the transmitting device performs the same symbol modulation processing on the retransmission data after the interleaving process, that is, when the retransmission data is transmitted, the 4-bit binary number is corresponding to each symbol in the 16QAM.
  • the mapping rules are unchanged.
  • the transmitting device 104 transmits the processed retransmission data to the receiving device.
  • the first transmission of one data block and possibly one or more retransmissions are preferably performed by the same device, which is the data retransmission device 10. That is, the data retransmission device 10 is also used for the first transmission of each data block.
  • the above data retransmission device 10 will be described in detail below in conjunction with the prior art.
  • the interleaving process in the technical solution of the present invention is based on matrix interleaving.
  • most of the same interleaving rules are used in the transmission device for multiple transmissions of a certain data block, where multiple transmissions include the first transmission of the data block and possibly one or more retransmissions. .
  • the interleave processing device 101 uses the data to be retransmitted in the previous one or more transmissions.
  • the interleaving rules using different interleaving rules for at least one transmission perform interleaving processing on the data to be retransmitted to obtain retransmitted data after interleaving. For example, when the data retransmission device 10 first transmits a certain data block, the interleaving processing device 101 performs interleaving processing using the first interleaving rule; when the data block needs to be retransmitted for any reason, the data retransmission device
  • the interleave processing apparatus 101 when the data block is retransmitted for the first time, that is, when the data block is transmitted for the second time, the interleave processing apparatus 101 performs interleaving processing by using a second interleaving rule different from the first interleaving rule; thus, the data block After the interleaving process in the two transmissions, the order of the coded bit sequences is changed.
  • the symbol modulation device 102 After the symbol modulation device 102 performs the same symbol modulation process and is transmitted, the receiving device receives the data blocks of the two transmissions and is in the solution.
  • the interleaving processing device 101 adopts the first interleaving rule.
  • the second interleaving rule performs interleaving processing, or may perform interleaving processing by using a third interleaving rule that is different from the first and second interleaving rules.
  • the processing performed by the interleaving processing apparatus 101 is similar to the processing in the second retransmission described above, and will not be described herein.
  • the data retransmission device 10 uses different interleaving rules for multiple transmissions of a certain data block, where the multiple transmissions include the first transmission of the data block and possibly one or more retransmissions, that is, data.
  • the interleave processing device 101 adopts an interleaving rule that is different from the interleaving rule used in the previous one or more transmissions of the data to be retransmitted, and the retransmission required to be retransmitted.
  • the data is interleaved to obtain retransmitted data after interleaving.
  • the data retransmission device 10 further includes a first determining device 105.
  • the first determining device 105 determines retransmission times information of the data block that needs to be retransmitted, and the interleaving processing device 101 determines, based on the retransmission frequency information, that the retransmission is used. Interleaving rules, and using the interleaving rules to interleave the data that needs to be retransmitted.
  • the retransmission number information here is used to indicate that the retransmission is the first retransmission of the data block.
  • the retransmission number information may be a retransmission request message by the receiving device.
  • the notification to the transmitting device 1 may also be determined by the transmitting device 1 based on the locally transmitted record.
  • the interleaving processing apparatus 101 can implement the interleaving processing according to the above-described interleaving rule by performing the following processing operations: II. Write data that needs to be retransmitted into an interleaving matrix row by row in sequence; 12. For each row of the interleaving matrix The data is cyclically shifted to obtain a row-shifted interleaving matrix, wherein the number of bits of the cyclic shift is determined according to the number of retransmission times; 13.
  • each of the interleaving matrices after shifting the row The column data is grouped in order every s, wherein s is determined according to the number of data bits included in each symbol in the symbol modulation process performed by the symbol modulation device 102, and the data length of each column is an integer multiple of s;
  • Each packet data in each column data of the subsequent interleaving matrix is cyclically shifted, and the number of bits of the cyclic shift is determined according to the sequence number of the column to which the packet data belongs; 15.
  • the interleaving matrix after cyclically shifting the packet The data is read out column by column.
  • the above technical solution can also be applied to a multi-carrier communication network, especially a wireless multi-carrier communication network, such as a wireless network employing OFDM technology.
  • the data retransmission device 10 further includes a subcarrier mapping device 103 that performs subcarrier mapping processing on the retransmission data subjected to symbol modulation processing by the symbol modulation device 102 to obtain subcarrier mapping processing.
  • the transmitting device 104 transmits the subcarrier mapping processed retransmission data to the receiving device.
  • the subcarrier mapping processing in the above-described subcarrier mapping apparatus 103 is a mapping process in which each of the symbols to be transmitted is allocated to each subcarrier after the symbol modulation process is completed.
  • the data retransmission device 10 may use a different subcarrier mapping process when the data block is retransmitted for the first time, so that the receiving device receives the data blocks of the two transmissions and performs deinterleaving processing. After the information is merged, the frequency diversity effect can also be obtained, thereby improving the performance of the HARQ technology.
  • the data retransmission device 10 can use the previous two transmissions when retransmitting the data block for the second time, that is, when the data block is sent for the third time.
  • Different subcarrier mapping processing In the subsequent retransmissions of the data block, the processing performed by the subcarrier mapping device 103 is similar to the processing in the second retransmission described above, and will not be described herein.
  • the transmitting device 1 is in multiple transmissions of a certain data block by the data retransmission device 10.
  • the interleaving processing device 101 adopts different interleaving rules each time, and its symbol modulation device 102 adopts the same symbol modulation processing each time, and its subcarrier mapping device 103 adopts the same subcarrier mapping processing every time, here
  • Multiple transfers include the first transmission of the data block and possibly one or more retransmissions. In this way, after the data block is interleaved in each transmission, the order of the encoded bit sequence changes, and after receiving the same symbol modulation processing and the same subcarrier mapping processing, the receiving device receives the transmitted data.
  • the block can achieve the diversity effect equivalent to constellation rearrangement diversity and frequency diversity when performing information merging after deinterleaving, thereby improving the performance of the HARQ technique.
  • the interleaving rules used by the data block in each transmission need to be specially designed.
  • the interleaving rule employed by the aforementioned interleaving processing apparatus 101 as an example, a design for the interleaving rule used in the preferred embodiment will be described in detail based on the processing operations II to 15 performed thereon.
  • the communication network employs OFDM technology
  • the digital modulation method employs M-QAM modulation (e.g., 16QAM, 64QAM).
  • M-QAM modulation e.g., 16QAM, 64QAM
  • the number of data bits of the data block to be transmitted by the data retransmission device 10 in the transmitting device 1 is the product of the number of data bits included in each symbol in the symbol modulation process and the number of minimum subcarriers allocated to the transmitting device 1. Integer multiple.
  • the size of the interleaving matrix (the product of the number of rows and the number of columns) is the same as the number of data bits of the data block to be transmitted.
  • the s in the processing operation 13 is taken as one half of the number of data bits included in each symbol in the symbol modulation process.
  • the number of columns of the interleaving matrix is taken as a factor of the minimum number of subcarriers, and the number of rows is an even multiple of s.
  • the number of bits of the cyclic shift is a product of a retransmission number factor based on the retransmission number information and a cyclic shift factor, and when the value of s is not 1, the cyclic shift factor For a positive integer with s; for example, when the system adopts 16QAM modulation, s takes a value of 2, and the cyclic shift factor should be mutually prime; if the system can adopt either 16QAM modulation or 64QAM modulation, The value may be 2 or 3, and the cyclic shift factor should be relatively prime to both 2 and 3.
  • the number of bits of the cyclic shift of each packet data is the number of sorts of the columns to which the packet data belongs in all columns of the interlaced matrix.
  • s in the processing operation 13 can also be taken as a symbol modulation process.
  • the number of data bits per symbol is an odd number (for example, 32QAM modulation), the interleaving rule still applies.
  • FIG. 5 is a block diagram showing an arrangement of an accepting and combining device for receiving and combining retransmitted data in a receiving device of a communication network in accordance with an embodiment of the present invention.
  • the receiving and merging device 20 is typically located in a receiving device 2 (not shown) in the communication network, the receiving device 2 corresponding to the transmitting device 1.
  • the receiving and combining device 20 includes a receiving device 201, a subcarrier demapping device 202, a symbol demodulating device 203, a deinterleaving device 204, a message combining device 205, and a second determining device 206.
  • the receiving device 201 the symbol demodulating device 203, and the de-interlacing device are understood.
  • the information combining device 205 is a device necessary for implementing the present invention, and the other sub-devices are optional devices.
  • the receiving device 201 receives the retransmitted version of the retransmitted data from the transmitting device 1. Then, the symbol demodulation device 203 performs symbol demodulation processing on the received retransmission version that is identical to one or more versions of the previously received retransmission data to obtain a retransmission version after the symbol demodulation process. .
  • the deinterleaving device 204 performs corresponding deinterleaving processing on the retransmission version after the symbol demodulation process according to the interleaving rule adopted by the transmitting device 1, to obtain a retransmitted version after the deinterleaving process, where
  • the interleaving rule employed by the transmitting device is different from the interleaving rule employed for at least one of the previous one or more transmissions of the retransmitted data.
  • the information combining means 205 signals and merges the deinterleaved version of the retransmitted version with one or more deinterleaved versions of the previously received retransmitted data.
  • the symbol demodulation device 203 performs symbol demodulation processing corresponding to symbol modulation processing in the transmitting device 1 on the retransmitted version of the received retransmission data to obtain The retransmission version after symbol demodulation, after the multiple reception of the retransmission data block, the symbol demodulation process employed by the symbol demodulation device 203 remains unchanged.
  • the de-interleaving device 204 performs deinterleaving processing on the re-transmitted version of the received retransmitted data block after the symbol demodulation by using a de-interleaving rule corresponding to the interleaving rule adopted by the transmitting device 1 to obtain a A retransmission version after deinterleaving, wherein the interleaving rule adopted by the transmitting device 1 is different from the interleaving rule used for at least one of the previous one or more transmissions of the retransmitted data block.
  • the transmitting device 1 and the receiving device 2 respectively determine the corresponding interleaving rule and the deinterleaving rule according to the retransmission number information of the retransmitted data.
  • the interleaving rules adopted by the transmitting device 1 are different, and are different from the interleaving rules used in the first transmission of the data block; accordingly, the receiving device 2 is in each The deinterleaving rules used after receiving the retransmission version of the data block are different, and are different from the deinterleaving rules used after receiving the data block for the first time.
  • the receiving and merging device 20 further includes second determining means 206 for determining the retransmission times information based on the local received record.
  • the deinterleaving device 204 determines the required deinterleaving rule based on the retransmission number information of the retransmitted version of the received retransmission data determined by the second determining device 206, and uses the deinterleaving rule to receive the retransmission received.
  • the data is deinterleaved by the retransmission version after the symbol demodulation process.
  • the de-interleaving apparatus 204 may perform the de-interleaving processing according to the above-described de-interleaving rule by performing the following processing operations: DI1. Write the data to be de-interleaved into a de-interleaving matrix column by column in sequence; DI2. Each column of data of the deinterleaving matrix is grouped in order every s, wherein s is determined according to the number of data bits included in each symbol in the symbol demodulation process performed by the symbol demodulation device 203, and the data length of each column is an integer multiple of s DI3.
  • the shift direction of the cyclic shift of each packet data in the processing operation DI3 is opposite to the shift direction of the cyclic shift of the corresponding packet data in the interleave processing of the transmitting device 1, and the shift direction of the cyclic shift of each row of data in the processing operation DI4 is The shift direction of the corresponding data line cyclic shift in the interleaving process of the transmitting device 1 is reversed.
  • the information combining means 205 signals and merges the deinterleaved version of the retransmitted version with one or more deinterleaved versions of the previously received retransmitted data. Specifically, the information combination in the information combining device 205 can be merged using Chase. Based on the prior art, the receiving device 2 will perform decoding and the like after the information is merged.
  • the receiving device 2 sends a receiving success message to the transmitting device 1; If the data block sent by the transmitting device 1 cannot be recovered, the receiving device 2 sends a receiving failure message or a retransmission request message to the transmitting device 1, or waits for the transmitting device 1 to retransmit the data block according to the agreement without issuing a feedback message.
  • the process of receiving and combining retransmission data by the receiving and combining apparatus of one embodiment of the present invention shown in FIG. 5 is described in detail above.
  • the above technical solution can also be applied to a multi-carrier communication network, especially a wireless multi-carrier communication network, such as a wireless network employing OFDM technology.
  • the receiving and merging device 20 further includes a subcarrier demapping device 202, and the subcarrier demapping device 202 is configured to perform subcarrier demapping processing on the retransmitted version of the received retransmitted data to obtain a subcarrier solution.
  • the processed retransmission version is mapped, and then the retransmitted version is sent to the symbol demodulation device 203 for symbol demodulation processing.
  • the subcarrier demapping processing here corresponds to the subcarrier mapping processing in the transmitting device 1.
  • the transmitting device 1 uses the same symbol modulation processing and subcarrier mapping processing for each transmission of a certain data block, and the interleaving rules used each time are different.
  • the secondary transmission includes the first transmission of the data block and possibly one or more retransmissions. Thus, in the transmitting device 1, after the data block is interleaved in each transmission, the order of the encoded bit sequence changes.
  • the receiving device 2 After being subjected to the same symbol modulation processing and the same subcarrier mapping processing, it is sent to the receiving device 2; after receiving the transmitted data blocks, the receiving device 2 is paired by its subcarrier demapping device 202 and the symbol demodulating device 203.
  • the data blocks are respectively subjected to the same subcarrier demapping process and symbol demapping process each time, and then the deinterleaving device 204 performs deinterleaving processing on each time using different deinterleaving rules, and then performs information combining to complete the information.
  • the combined data block can achieve the diversity effect equivalent to constellation rearrangement diversity and frequency diversity, thereby improving the performance of the HARQ technology.
  • the interleaving rules and de-interleaving rules used by the data block in each transmission need to be specially designed.
  • the communication network employs OFDM technology
  • the digital modulation method employs M-QAM modulation (e.g., 16QAM, 64QAM).
  • M-QAM modulation e.g., 16QAM, 64QAM.
  • the number of data bits of the retransmitted version of the symbol-demodulated retransmitted data is an integer multiple of the product of the number of data bits included in each symbol in the symbol demodulation process and the minimum number of subcarriers allocated to the transmitting device 1. .
  • the size of the deinterleaving matrix (the product of the number of rows and the number of columns) is the same as the number of data bits of the retransmitted version.
  • the number of data bits included in each symbol in the symbol demodulation process is an even number.
  • the s in the processing operation DI2 is taken as half of the number of data bits included in each symbol in the symbol demodulation process.
  • the number of columns of the deinterleaved matrix is a factor of the minimum number of subcarriers, and the number of rows is an even multiple of s.
  • the number of bits of the cyclic shift of each packet data is the number of sorts of the columns to which the packet data belongs in all columns of the deinterleaving matrix.
  • the number of bits of the cyclic shift is a product of a retransmission number factor based on the retransmission number information and a cyclic shift factor, and when the value of s is not 1, the cyclic shift factor For a positive integer with s; for example, when the system adopts 16QAM modulation, s takes a value of 2, and the cyclic shift factor should be mutually prime; if the system can adopt both 16QAM modulation and 64QAM modulation, s take The value may be 2 or 3, and the cyclic shift factor should be relatively prime to both 2 and 3.
  • s in the processing operation DI2 can also be taken as a symbol modulation The number of data bits contained in each symbol.
  • the number of data bits included in each symbol in the digital modulation method used in the communication system is an odd number, for example,
  • the transmitting device 1 determines the interleaving rule used by the transmitting device 1 and notifies the receiving device 2 of the interleaving rule; the receiving device 2 determines according to the interleaving rule.
  • the corresponding deinterleaving rule is used, and the deinterleaving device 204 performs deinterleaving processing on the received data block by using the deinterleaving rule.
  • the interleaving rules and deinterleaving rules employed in data transmission are compatible with the interleaving rules and de-interleaving rules employed in the IEEE 802.16e protocol.
  • the interleaving rules and de-interleaving rules employed in the preferred embodiment will be described in detail below in conjunction with the interleaving rules employed in the IEEE 802.16e protocol.
  • the transmitting end uses a secondary replacement process for interleaving the coded bits after channel coding.
  • the following is a description of the interleaving rule by taking a specific set of parameters as an example.
  • the minimum number of subcarriers allocated by the system to one user is 48, and the optional parameters of the number of subcarriers allocated to one user are integer multiples of the minimum number of subcarriers 48.
  • the modulation mode adopted on each subcarrier is QPSK, 16QAM or 64QAM. Let s be half of the number of bits per symbol in the modulation scheme used, that is, s is 1 when QPSK is used, s is 2 when 16QAM is used, s is 3 when 64QAM is used, and so on.
  • the number of bits of the data block that needs to be interleaved is N cbps , which should be an integer multiple of the product of the number of bits corresponding to each symbol 2s and the minimum number of subcarriers 48.
  • the parameter selection of the interlace matrix includes: selecting a suitable number of columns as the interleave matrix from the factors of the minimum number of subcarriers 48 of the user, and the optional values include 12, 16, 24, and the like. Taking the number of columns of the interlaced matrix as 16 as an example, the number of rows should be an integer multiple of the product of the number of bits corresponding to each symbol 2 ⁇ and 3. Taking H ⁇ as the bit index value before the first replacement, as the bit index value after the first replacement and before the second replacement, as the bit index value after the second replacement, the interleaving rule can be defined by the following formula: :
  • the second substitution uses the following formula:
  • the second permutation is to divide each column of data of the interleaving matrix into one cluster for each S in order, and then cyclically shift each cluster data in each column data of the interlacing matrix, and the cyclic shift follows the following rules: The data of each cluster in the column is not shifted, the data of each cluster in the second column is cyclically shifted by one bit, the data of each cluster in the third column is cyclically shifted by two, and so on.
  • the arrangement of the coded bits corresponding to the second permutation in the matrix is as shown in Table 2.
  • the output bit stream order is b0, M6, b32, b48 ⁇ 59, bl43, M91, M75, where bits b0, bl6, b32, b48 are mapped to the first 16QAM symbol, and so on, until bits bl59, bl43, bl91, M75 is mapped to the 48th 16QAM symbol, which is then mapped to 48 subcarriers in a predetermined order.
  • the first permutation described above can ensure that adjacent coded bits in the input coded bitstream are mapped to non-adjacent subcarriers.
  • the interleaving processing apparatus 101 in the data retransmission apparatus 10 also employs a secondary replacement process for interleaving the coded bits, which improves the interleaving rules employed by the aforementioned IEEE 802.16e protocol.
  • the corresponding formula is defined as follows:
  • the first substitution uses the following formula:
  • the second substitution uses the following formula:
  • the interleaving rule in the preferred embodiment differs from the interleaving rules employed in the aforementioned IEEE 802.16e protocol in that a cyclic shift term is introduced in the first permutation.
  • each symbol in the above equations (3) and (4) has the same definition as the same symbol in the equations (1) and (2), and cyc_shiftxvelx num in the equation (3) is a cyclic shift term.
  • cyc_shiftxvelx num in the equation (3) is a cyclic shift term.
  • a shift factor which is an integer that is prime with s.
  • the factor value is 0; when the transmitting device 1 retransmits the data block for the first time, That is, when the data block is sent for the second time, the factor value is 1; when the transmitting device 1 retransmits the data block for the second time, that is, when the data block is sent for the third time, the factor value is 2; In other possible retransmissions of the data block, the value of the factor is derived by analogy.
  • the data retransmission device 10 When the data retransmission device 10 transmits a data block, its first determining means 105 determines the number of retransmission times of the data block, that is, determines the retransmission number factor r rx_m .
  • the interleaving processing means 101 determines the corresponding interleaving rule based on the retransmission order factor, and performs interleaving processing on the input bit stream.
  • the modulation method is 16QAM as an example.
  • s is 2
  • the input bit stream of the input interleaver is still recorded as b0, bl, b2 bl91.
  • the cyclic shift factor yc /w/ is chosen to be 7.
  • the corresponding interleaving process will be described in detail below by taking the first retransmission of the data block as an example.
  • the first permutation is based on a simple matrix interleaving, and the rows of data in the matrix are cyclically shifted.
  • the number of bits of the cyclic shift is 7, and the corresponding coded bits are arranged in the matrix as shown in Table 3.
  • the second permutation is to divide each column data of the interlacing matrix into a cluster for each S in order, and then cyclically shift each cluster data in each column data of the interlacing matrix, and cyclically shift
  • the bits follow the following rules: The data of each cluster in the first column is not shifted, the data of each cluster in the second column is cyclically shifted by one bit, the data of each cluster in the third column is cyclically shifted by two, and so on.
  • the arrangement of the coded bits corresponding to the second permutation in the matrix is as shown in Table 4.
  • the coded bits in the matrix are then read out column by column, and the output bitstream order is b9, b25, b41, b57 M52, M36, M84, M68.
  • the symbol modulating means 102 performs symbol modulation processing on the output bit stream, wherein the bits b9, b25, b41, b57 are mapped to the first 16QAM symbol, and so on, until the bits M52, M36, M84, bl68 are mapped to the 48th 16QAM symbol.
  • the subcarrier mapping means 103 then maps the 48 16QAM symbols to 48 subcarriers in a predetermined order.
  • the coded bits in the input bitstream corresponding to the data block are mapped to different children when the data block is retransmitted each time.
  • the carrier, and each coded bit is alternately mapped to a high reliability bit or a low reliability bit of the constellation at each retransmission.
  • the de-interleaving device 204 in the receiving and combining device 20 in the receiving device 2 also adopts a secondary permutation de-interleaving process as the bit index value before the first replacement, as the first replacement, second.
  • Bit index value before sub-permutation, with ⁇ as The bit index value after the second replacement, the de-interleaving rule can be defined by the following formula:
  • the first substitution uses the following formula:
  • the above equations (5), (6) correspond to the equations (3), (4) of the interleaving rules in the aforementioned transmitting device 1, wherein the same symbol marks have the same definition and value range.
  • the input bit stream is subjected to interleaving processing using different interleaving rules each time, while maintaining the same symbol modulation processing and sub-interval
  • the carrier mapping process is such that the data block can obtain the same effect as the constellation rearrangement diversity and frequency diversity when receiving the merge, thereby improving the performance of the HARQ technique.
  • the preferred embodiment mainly modifies the interleaver and the deinterleaver, and thus is relatively simple in hardware implementation.
  • the simulation conditions are set as follows:
  • the mobile station is a single-input single-output system, and the channel model adopts the 3GPP SCM URBAN-MICRO LOS in the 3GPP spatial channel model.
  • the average moving rate of the mobile station is about 3 km/hour.
  • the channel coding uses a convolutional code with a coding rate of 1/2 or 3/4, and the maximum number of retransmissions is 4.
  • the interleaving algorithm and the deinterleaving algorithm are as shown in the above formulas (3) to (6).
  • the abscissa is the symbol-to-noise ratio, that is, the ratio of the average energy per symbol to the white noise power spectral density in the channel, and the ordinate is the error rate of the packet; in Figure 6b, the abscissa is the symbol-to-noise ratio, and the ordinate is Average number of transmissions; In Figure 6c, the abscissa is the symbol-to-noise ratio and the ordinate is the throughput.
  • cross symbols indicate simulation data under 16QAM modulation, 1/2 convolutional coding conditions, triangle symbols indicate 16QAM modulation, simulation data under 3/4 convolutional coding conditions, diamond symbols indicate 64QAM modulation, Imitation under 1/2 convolutional coding conditions Real data.
  • 611 represents a performance curve of a conventional HARQ scheme under 16QAM modulation, 1/2 convolutional coding conditions
  • 610 represents a performance curve of the above preferred embodiment of the present invention under 16QAM modulation, 1/2 convolutional coding conditions
  • 621 represents 16QAM modulation
  • 620 represents a performance curve of the above preferred embodiment of the present invention under 16QAM modulation, 3/4 convolutional coding conditions
  • 631 represents 64QAM modulation, 1/2 convolution
  • 630 represents the performance curve of the above preferred embodiment of the present invention under 64QAM modulation, 1/2 convolutional coding conditions.
  • the above preferred embodiment of the present invention achieves a 10% to 30% increase in throughput compared to the conventional HARQ technique, and the average number of transmissions decreases by about 10%. .
  • interleaving processing apparatus and deinterleaving processing apparatus may be processors that perform the above-described processing operations by running a suitably programmed program, or may be specially designed firmware or dedicated integration that can perform the above processing operations. Circuit, DSP, etc. Further, it is to be understood that the invention is not limited to the specific embodiments described above, and those skilled in the art can make various changes or modifications within the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

通信***中采用交织规则重排的数据重传方法及其装置 技术领域
本发明涉及混合自动重传请求 (HARQ ) 技术, 尤其涉及通信系 统中采用交织规则重排的数据重传方法及其装置。 背景技术
通信***中采用差错控制技术用以提高信号的传输质量, 保证信 息可靠性。 传统的差错控制技术包括前向纠错(FEC ) 和检错加自动 重传请求 (ARQ ) 。 FEC技术根据接收数据中冗余信息来进行纠错, 特点是 "只纠错、 不重传" 。 ARQ技术依靠错码检测和重发请求来 保证信号质量, 特点是 "只重传、 不纠错" 。
在当今具备高速数据业务传输能力的通信***中, 差错控制技术 越来越多的采用混合自动重传请求 (HARQ )技术。 HARQ技术综合 了 FEC与 ARQ的优点,是 FEC和 ARQ相结合的一种差错控制方法。 当通信***采用 HARQ 技术的情况下, 接收端在超出自身纠错能力 时快速请求发送端重发错误的数据块, 因此能自动适应信道条件的变 化, 且对测量误差和时延不敏感。 HARQ实现机制传统上分为三类: 第一类 HARQ ( HARQ Type I ) 又叫传统 ARQ, 接收端首先对 数据包进行糾错, 如果有错误不能糾正, 就发送数据包重传请求, 同 时丢弃错误的数据包。 重传时使用相同的前向纠错编码, 冗余信息不 变。 Chase 合并对第一类 HARQ作了一定程度的改进, 不丢弃错误的 数据包, 而是存储起来, 在接收端由解码器先将多次传输的数据按信 噪比加权相加, 即最大比合并(MRC ) , 再进行解码, 从而获得时间 分集增益。
第二类 HARQ( HARQ Type II )属于全冗余方式的增加冗余( IR ) 的 ARQ机制。 其重传不包含***比特信息, 只是携带新的冗余信息 来帮助解码, 在接收端与先前收到的信息合并形成纠错能力更强的前 向纠错码, 使错误率进一步降低。 冗余信息版本由若干编码打孔方式 产生。
第三类 HARQ ( HARQ Type III ) , 又叫部分冗余 HARQ, 也属 于增加冗余机制。 接收机将多次传输的数据合并后进行解码。 重传数 据中同时包含冗余和***比特, 能够自解码。 由于***比特对解码的 影响非常大, 如果***中噪声和干扰比较大, 使得第一次传输的数据 破坏非常严重, 那么即使增加冗余信息, 数据包也难以解码。 这种情 况下, 重传数据自解码将使***性能得到提高。 第三类 HARQ 可以 看作前两类的结合。
现有技术中存在许多对 HARQ进行改进以提高 HARQ技术性能 的技术方案。
现有技术 1 , 美国专利申请 US20070230613A1 , 通过每次重传时 重新安排信号星座图以获取星座重排分集, 以提高 HARQ 技术的性 匕。
现有技术 2, 美国专利申请 US20050207345A1 , 通过每次重传时 重新安排信号载波子集以获取频率分集增益, 以提高 HARQ 技术的 性能。
现有技术 3 , K. C. Beh等人提出的 "3GPP LTE OFDMA***中 混合重传机制的性能评估 (Performance Evaluation of Hybrid ARQ Schemes of 3GPP LTE OFDMA System, PIMRC 2007 ) " , 通过每次 重传时重新选择比特-符号映射规则和子载波映射规则以同时获取 星座重排分集和频率分集, 以提高 HARQ技术的性能。
图 1示出了上述现有技术中的发送端设备的***框图, 上述这些 现有技术均能改善 HARQ 技术的性能, 但也存在着实现方案复杂等 缺点。 发明内容
为解决上述现有技术中的问题, 本发明提出了一种低复杂度的改 进 HARQ 方案, 通过在出错数据包重传时改变交织规则可以在重传 合并时获得与星座图重排分集和频率分集等同的效果, 从而提高了 HARQ技术的性能。 为实现上述目的:
根据本发明的第一方面, 提供了一种在通信网络的发送设备中用 于数据重传的方法, 其中, 包括以下步骤: a. 采用与需要重传的数 据在前面一次或多次传输中的至少一次传输所采用的交织规则不同 的交织规则, 对所述需要重传的数据进行交织处理, 以获得交织处理 后的重传数据; b. 对所述交织处理后的重传数据进行与前面每次传 输均相同的符号调制处理, 以获得符号调制处理后的重传数据; d. 将 所述符号调制处理后的重传数据发送至接收设备。
根据本发明的第二方面, 提供了一种在通信网络的接收设备中用 于对重传数据进行接收合并的方法, 其包括以下步骤: 1. 接收来自发 送设备的所述重传数据的重传版本; 11. 对所述接收到的重传版本进 行与之前接收到的该重传数据一个或多个版本均相同的符号解调制 处理, 以获得符号解调制处理后的重传版本; 111. 根据所述发送设备 所采取的交织规则对所述符号解调制处理后的重传版本进行相应的 解交织处理, 以获得经解交织处理后的重传版本, 其中, 所述发送设 备采用的交织规则与所述重传数据的前面一次或多次传输中的至少 一次传输所采用的交织规则不同; iv. 将所述解交织处理后的重传版 本与之前接收到的所述重传数据的一个或多个解交织处理后的版本 进行信息合并。
根据本发明的第三方面, 提供了一种在通信网络的发送设备中用 于数据重传的数据重传装置, 其中包括: 交织处理装置, 用于采用与 需要重传的数据在前面一次或多次传输中的至少一次传输所采用的 交织规则不同的交织规则对所述需要重传的数据进行交织处理, 以获 得交织处理后的重传数据; 符号调制装置, 用于对所述交织处理后的 重传数据进行与前面每次传输均相同的符号调制处理, 以获得符号调 制处理后的重传数据; 发送装置, 用于将所述符号调制处理后的重传 数据发送至接收设备。
根据本发明的第四方面, 提供了一种在通信网络的接收设备中用 于对重传数据进行接收合并的接收合并装置, 其包括: 接收装置, 用 于接收来自发送设备的所述重传数据的重传版本; 符号解调制装置, 用于对所述接收到的重传版本进行与之前接收到的该重传数据一个 或多个版本均相同的符号解调制处理, 以获得符号解调制处理后的重 传版本; 解交织装置, 用于根据所述发送设备所采取的交织规则对所 述符号解调制处理后的重传版本进行相应的解交织处理, 以获得经解 交织处理后的重传版本, 其中, 所述发送设备采用的交织规则与所述 重传数据的前面一次或多次传输中的至少一次传输所采用的交织规 则不同; 信息合并装置, 将所述解交织处理后的重传版本与之前接收 到的所述重传数据的一个或多个解交织处理后的版本进行信息合并。
根据本发明的第五方面, 提供了一种用于通信网络中的发送设 备, 其包括本发明第三方面所述的数据重传装置。
根据本发明的第六方面, 提供了一种用于通信网络中的接收设 备, 其包括本发明第四方面所述的接收合并装置。
与现有技术相比, 本发明所提供的技术方案主要对通信网络中的 设备中所采用的交织器和解交织器进行改进, 因而实现成本比较合 理。 根据本发明的一个具体实施方案, 通过出错数据包每次重传时仅 改变交织规则可以在重传合并时获得与星座图重排分集和频率分集 等同的效果, 从而提高了 HARQ 技术的性能。 根据本发明的另一个 具体实施方案, 其所采用的交织规则可以兼容现有的 IEEE802.16e协 议中所采用的交织规则。 本发明的其它特点将在以下结合优选实施例 的描述中变得更为清晰。 附图说明
通过阅读以下参照附图所作的对非限制性实施例的详细描述, 本发 明的其它特征、 目的和优点将会变得更明显。
图 1示出了几种现有技术中的发送端设备的***框图;
图 2示出了根据本发明的一个具体实施方式的在通信网络的发送 设备中用于数据重传的方法流程图;
图 3示出了根据本发明的一个具体实施方式的在通信网络的接收 设备中用于对重传数据进行接收合并的方法流程图;
图 4示出了根据本发明的一个具体实施方式的在通信网络的发送 设备中用于数据重传的数据重传装置的结构图;
图 5示出了根据本发明的一个具体实施方式的在通信网络的接收 设备中用于对重传数据进行接收合并的接受合并装置的结构图;
图 6a、 6b、 6c 为根据本发明的一个具体实施方案的***性能仿 真效果图。
在附图中, 相同和相似的附图标记代表相同或相似的装置或方法 步骤。 具体实施方式
为了更好地理解本发明, 下面结合本发明的具体实施例作进一步说 明, 但其不限制本发明。
基于现有技术, 通信***中, 发送设备对信道编码处理后的数据 进行分块处理,每一个数据块经交织处理及其他处理后发送到接收设 备。 最常用的交织方式为矩阵交织, 即将信道编码后的码字序列 (数 据块) 逐行填入一个大小为 m x n的矩阵, 矩阵填满以后, 再逐列读 出。 同样, 接收设备的解交织器将接收到的信号逐列填入 m x n 的矩 阵, 填满后再逐行读出, 然后送往解码器进行解码。 这样, 信道中的 连续突发错误被解交织器分隔为多个孤立的错误, 因而可以起到了消 除突发错误的目的。 如果接收设备无法正确恢复接收到的数据块时, 其将发出接收失败消息或者重传请求消息, 发送设备接收到该消息后 将重传该数据块。
图 2示出了根据本发明的一个具体实施方式的在通信网络的发送 设备中用于数据重传的方法流程图。 以下将结合现有技术对该流程进 行详细描述。
本发明中的通信网络中的数据重传, 可以是基于现有技术, 由发 送设备根据来自接收设备的接收失败消息或者重传请求消息来重传 数据块; 或者接收设备无法正确恢复接收到的数据块时继续等待, 如 果发送设备在发出一个数据块之后的规定时间内没有收到来自接收 设备的接收反馈消息, 发送设备就默认为该数据块传输失败并重传该 数据块。
首先, 在步骤 S11中, 发送设备采用与需要重传的数据在前面一 次或多次传输中的至少一次传输所采用的交织规则不同的交织规则, 对所述需要重传的数据进行交织处理, 以获得交织处理后的重传数 据。
然后, 在步骤 S12中, 发送设备对所述交织处理后的重传数据进 行与前面每次传输均相同的符号调制处理, 以获得符号调制处理后的 重传数据。 这里的符号调制处理指的是多进制数字调制中的比特至符 号映射, 基于现有技术, 可以采用的多进制调制方式包括 M-PSK (多 相键控)、 M-QAM (多进制正交幅度调制) 等。 以具有 16个星座点 的 16QAM为例, 其每一个星座点表示一种矢量状态, 每 4位二进制 数规定了一种矢量状态, 因此, 每个 16QAM符号可以传送 4比特数 据信息。发送设备对所述交织处理后的重传数据进行与前面每次传输 时均相同的符号调制处理, 即是指重传数据每次传输时, 保持 4位二 进制数对应于 16QAM中的各符号的映射规则不变。
最后, 在步骤 S14中, 发送设备将处理后的重传数据发送至接收 设备。
下面将结合现有技术对上述步骤 S11进行详细说明。 本发明的技术 方案中的交织处理是基于矩阵交织的。 在现有 HARQ技术中, 大多数都 在发送设备对某一数据块的多次传输中采用相同的交织规则, 这里的多 次传输包括该数据块的首次传输和可能的一次或多次重传。 而在本发明 中,发送设备在重传一个数据块时,其采用与需要重传的数据块在前面 一次或多次传输中的至少一次传输所采用的交织规则不同的交织规 则对所述需要重传的数据块进行交织处理, 以获得交织处理后的重传 数据。 例如, 当发送设备首次发送某一数据块时, 采用第一交织规则 对其进行交织处理; 当该数据块因故需要重传, 发送设备在第一次重 传该数据块、 亦即第二次发送该数据块时, 采用不同于第一交织规则 的第二交织规则对其进行交织处理; 这样, 该数据块在两次传输中交 织处理后, 其编码比特序列的顺序发生了变化, 经过步骤 S12中相同 的符号调制处理后,接收设备在接收到这两次传输的数据块并在解交 织处理之后进行信息合并时可以取得与星座图重排等同的分集效果, 从而改善了 HARQ 技术的性能。 当接收设备仍然无法正确恢复该数 据块而需要重传时, 发送设备在第二次重传该数据块、 亦即第三次发 送该数据块时, 可以采用第一交织规则或第二交织规则对其进行交织 处理, 或者还可以采用与第一、 二交织规则均不相同的第三交织规则 对其进行交织处理。 在该数据块其后可能的各次重传中, 发送设备和 接收设备对其进行的处理与上述第二次重传中的处理类似, 在此不再 优选地, 发送设备对某一数据块的多次传输中均采用不同的交织规 则, 这里的多次传输包括该数据块的首次传输和可能的一次或多次重 传, 亦即发送设备在重传一个数据块时, 其在步骤 S11中采用与需要重 传的数据在前面一次或多次传输中所采用的交织规则均不相同的交 织规则对所述需要重传的数据进行交织处理, 以获得交织处理后的重 传数据。
具体地, 发送设备可以采用以下方式来确定在某次传输中对所述 需要重传的数据所采用的交织规则: 发送设备确定需要重传的数据块 的重传次数信息, 并在上述步骤 S11中基于该重传次数信息来确定本 次重传所采用的交织规则, 并采用该交织规则对所述需要重传的数据 进行交织处理。 这里的重传次数信息用以指示本次重传是该数据块的 第几次重传。 该重传次数信息可以是由接收设备通过重传请求消息告 知发送设备的, 也可以是发送设备根据本地发送记录来确定的。
更具体地, 这里所采用的交织规则根据其物理意义可以描述为如 下步骤: II . 将需要重传的数据按顺序逐行写入一个交织矩阵; 12. 对 所述交织矩阵的各行数据分别进行循环移位, 以获得行移位后的交织 矩阵,其中所述循环移位的位数根据所述重传次数信息来确定; 13. 将 所述行移位后的交织矩阵的各列数据按顺序每 s个进行分组, 其中 s 根据步骤 S12 中所述符号调制处理中每个符号包含的数据比特个数 来确定, 各列数据长度为 s的整数倍; 14. 对所述分组后的交织矩阵 的各列数据中的各分组数据进行循环移位, 循环移位的位数根据该分 组数据所属的列的序号来确定; 15. 将所述分组循环移位后的交织矩 阵中的数据按顺序逐列读出。
上面对图 2中所示的根据本发明的一个具体实施方式的在通信网 络的发送设备中用于数据重传的过程进行了详细说明。根据本发明的 一个优选实施例, 上述技术方案还可以用于多载波通信网络, 尤其是 无线多载波通信网络, 例如采用 OFDM技术的无线网络。 此时, 发 送设备中用于数据重传的方法在图 2 所示流程图的基础上, 在步骤 S12之后还应包括步骤 S13 (未示出), 对所述获得符号调制处理后的 重传数据进行子载波映射处理, 以获得子载波映射处理后的重传数 据; 最后, 在步骤 S14中, 发送设备将子载波映射处理后的重传数据 发送至所述接收设备。
上述步骤 S13中的子载波映射处理, 即是指需要发送的数据块在 完成步骤 S12中的符号调制处理之后,将各符号分配到各子载波的映 射处理。发送设备可以在第一次重传一个数据块时采用与首次发送该 数据块时不同的子载波映射处理, 以使得接收设备在接收到这两次传 输的数据块并在解交织处理之后进行信息合并时还可以取得频率分 集效果, 从而改善了 HARQ技术的性能。 当接收设备仍然无法正确 恢复该数据块而需要重传时, 发送设备在第二次重传该数据块、 亦即 第三次发送该数据块时, 可以采用与前两次发送中不同的子载波映射 处理。 在该数据块其后可能的各次重传中, 发送设备均可对该数据块 采用不同的子载波映射处理。
优选地, 发送设备在对某一数据块的多次传输中, 每次均采用相同 的符号调制处理和相同的子载波映射处理, 而每次均采用不同的交织规 则对该数据块进行交织处理, 这里的多次传输包括该数据块的首次传输 和可能的一次或多次重传。 这样, 该数据块在各次传输中经交织处理 中相同的符号调制处理和步骤 S13中相同的子载波映射处理后,接收 设备在接收到这些传输的数据块并在解交织处理之后进行信息合并 时可以取得与星座图重排分集以及频率分集相等同的分集效果, 从而 改善了 HARQ 技术的性能。 为达到上述目的, 该数据块在各次发送 时所采用的交织规则需要经过特别设计。
具体地, 以前述交织规则为例, 下面将才艮据其物理意义所对应的 步骤 II至 15 , 详细描述一种用于该优选实施例中的交织规则的设计。 例如但不限于,通信网络采用 OFDM技术,数字调制方式采用 M-QAM 调制 (例如 16QAM、 64QAM )。 发送设备所需要发送的数据块的数 据比特个数为所述符号调制处理中每个符号包含的数据比特个数与 分配给该发送设备的最小子载波数目的乘积的整数倍。 所述交织矩阵 的大小 (行数与列数的乘积)与需要发送的数据块的数据比特个数相 据比特个数的一半。 所述交织矩阵的列数取为所述最小子载波数目的 因子, 则其行数为 s的偶数倍。 其中步骤 12中, 所述循环移位的位数 为基于所述重传次数信息的重传次数因子与一个循环移位因子的乘 积, 当 s取值不为 1 , 所述循环移位因子为一个与 s互质的正整数; 例如***采用 16QAM调制时, s取值为 2, 所述循环移位因子应与 2 互质; 如果***既可采用 16QAM调制也可采用 64QAM调制, s取值 可为 2也可为 3 , 则所述循环移位因子应与 2、 3都互质。 其中步骤 14中,所述各分组数据的循环移位的位数为该分组数据所属的列在所 述交织矩阵的所有列中的排序数。
上述交织规则中,步骤 13中的 s还可以取为符号调制处理中每个 符号包含的数据比特个数。 这样, 当通信***中所采用的数字调制方 式中每个符号包含的数据比特个数为奇数(例如采用 32QAM调制) 时, 该交织规则仍然适用。
图 3示出了根据本发明的一个具体实施方式的在通信网络的接收 设备中用于对重传数据进行接收合并的方法流程图。 以下将结合现有 技术对该流程进行详细描述。 首先, 在步骤 S21中, 接收设备接收来自发送设备的所述重传数 据的重传版本。
然后, 在步骤 S23中, 接收设备对所述接收到的重传版本进行与 之前接收到的该重传数据一个或多个版本均相同的符号解调制处理, 以获得符号解调制处理后的重传版本。
接着, 在步骤 S24中, 接收设备根据所述发送设备所采取的交织 规则对所述符号解调制处理后的重传版本进行相应的解交织处理, 以 获得经解交织处理后的重传版本, 其中, 所述发送设备采用的交织规 则与所述重传数据的前面一次或多次传输中的至少一次传输所采用 的交织规则不同。
最后, 在步骤 S25中, 接收设备将所述解交织处理后的重传版本 与之前接收到的所述重传数据的一个或多个解交织处理后的版本进 行信息合并。
下面将结合现有技术对上述步骤进行详细说明。
在步骤 S23中, 接收设备对接收到的重传数据的重传版本进行与 发送设备中的符号调制处理相对应的符号解调制处理, 以获得符号解 调制之后的重传版本, 在该重传数据块的多次接收后所进行的符号解 调制处理均保持不变。
然后在步骤 S24中, 接收设备采用与发送设备所采取的交织规则 相对应的解交织规则来对接收到的重传数据块经符号解调制后的重 传版本进行相应的解交织处理, 以获得经解交织处理后的重传版本, 其中, 所述发送设备采用的交织规则与所述重传数据块的前面一次或 多次传输中的至少一次传输所采用的交织规则不同。 具体地, 在重传 数据块的各次重传中, 发送设备和接收设备分别根据重传数据的重传 次数信息来确定相应的交织规则和解交织规则。 优选地, 在重传数据 块的各次重传中, 发送设备所采用的交织规则均不相同, 也不同于该 数据块首次发送中所采用的交织规则; 相应地, 接收设备在各次接收 到该数据块的重传版本后所采用的解交织规则均不相同, 也不同于首 次接收该数据块后所采用的解交织规则。 这样, 该数据块在相邻两次 化, 经过相同的符号调制处理后, 接收设备在接收到这两次传输的数 据块并在解交织处理之后进行信息合并时可以取得与星座图重排等 同的分集效果, 从而改善了 HARQ技术的性能。 上述重传次数信息 可以是接收设备根据本地接收记录来确定的。 在步骤 S24中, 接收设 备基于其确定的接收到的重传数据的重传版本的重传次数信息来确 定其所需的解交织规则, 并采用该解交织规则对接收到的重传数据经 符号解调制处理之后的重传版本进行解交织处理。
更具体地, 这里所采用的解交织规则根据其物理意义可以描述为 如下步骤: DI1 . 将需要解交织的数据按顺序逐列写入一个解交织矩 阵; DI2. 将所述解交织矩阵的各列数据按顺序每 s个进行分组, 其中 s根据所述符号解调制处理中每个符号包含的数据比特个数来确定, 各列数据长度为 s的整数倍; DI3. 对所述分组后的解交织矩阵的各列 数据中的各分组数据进行循环移位, 以获得分组循环移位后的解交织 矩阵, 其中所述循环移位的位数根据所述该分组数据所属的列的序号 来确定; DI4. 对所述分组移位后的解交织矩阵的各行数据分别进行 循环移位, 以获得行移位后的解交织矩阵, 其中所述循环移位的位数 根据所述重传次数信息确定; DI5. 将所述行循环移位后的解交织矩 阵中的数据按顺序逐行读出。 其中, 步骤 DI3中各分组数据循环移位 的移位方向与发送设备交织处理中相应的分组数据循环移位的移位 方向相反, 步骤 DI4中各行数据循环移位的移位方向与发送设备交织 处理中相应的各行数据循环移位的移位方向相反。
最后, 在步骤 S25中, 接收设备将所述解交织处理后的重传版本 与之前接收到的所述重传数据的一个或多个解交织处理后的版本进 行信息合并。 具体地, 步骤 S25中的信息合并可以采用 Chase合并。 基于现有技术, 接收设备在完成步骤 S25中的信息合并后, 还将进行 译码等处理, 如果正确地恢复出发送设备发送的数据块, 则接收设备 向发送设备发出一个接收成功消息; 如果无法恢复出发送设备发送的 数据块, 则接收设备向发送设备发出一个接收失败消息或重传请求消 息, 或者不发出反馈消息而根据约定等待发送设备重传该数据块。 上面对图 3中所示的本发明的一个具体实施方式的在通信网络的 接收设备中用于对重传数据进行接收合并的过程进行了详细说明。根 据本发明的一个优选实施例, 上述技术方案还可以用于多载波通信网 络, 尤其是无线多载波通信网络, 例如采用 OFDM技术的无线网络。 此时,接收设备中用于对重传数据进行接收合并的方法在图 3所示流 程图的基础上, 在步骤 S21 之后还应包括步骤 S22 (未示出), 对所 述接收到的重传数据的重传版本进行子载波解映射处理, 以获得子载 波解映射处理后的重传版本。 这里的子载波解映射处理对应于发送设 备中的子载波映射处理。 根据该优选实施例, 发送设备对某一数据块 的多次传输中均采用相同的子载波映射处理, 而在该数据块的所述多次 传输中均采用不同的交织规则, 这里所述的多次传输包括该数据块的首 次发送和可能的一次或多次重传。 这样, 该数据块在各次传输中交织 处理后, 其编码比特序列的顺序发生了变化, 经过相同的符号调制处 理和相同的子载波映射处理后发送到接收设备; 接收设备在接收到这 些传输的数据块后, 经相同的子载波解映射处理和符号解映射处理, 并在解交织处理之后进行信息合并时可以取得与星座图重排分集以 及频率分集相等同的分集效果, 从而改善了 HARQ 技术的性能。 为 达到上述目的, 该数据块在各次发送时所采用的交织规则和解交织规 则需要经过特别设计。
具体地, 以前述解交织规则为例, 下面将才艮据其物理意义所对应 的步骤 DI1至 DI5 , 详细描述一种用于该优选实施例中的解交织规则 的设计。 例如但不限于, 通信网络采用 OFDM技术, 数字调制方式 采用 M-QAM调制 (例如 16QAM、 64QAM )。 重传数据经符号解调 制后的重传版本的数据比特个数为所述符号解调制处理中每个符号 包含的数据比特个数与分配给所述发送设备的最小子载波数目的乘 积的整数倍。 解交织矩阵的大小 (行数与列数的乘积)与该重传版本 的数据比特个数相同。 所述符号解调制处理中每个符号包含的数据比 特个数为偶数。 其中步骤 DI2中所述 s取为所述符号解调制处理中每 个符号包含的数据比特个数的一半。 所述解交织矩阵的列数为所述最 小子载波数目的因子, 则其行数为 s的偶数倍。 其中步骤 DI3中, 所 述各分组数据的循环移位的位数为该分组数据所属的列在所述解交 织矩阵的所有列中的排序数。 其中步骤 DI4中, 所述循环移位的位数 为基于所述重传次数信息的重传次数因子与一个循环移位因子的乘 积; 当 s取值不为 1 , 所述循环移位因子为一个与 s互质的正整数所 述循环移位因子为一个与 s互质的正整数; 例如***采用 16QAM调 制时, s取值为 2, 所述循环移位因子应与 2互质; 如果***既可采 用 16QAM调制也可采用 64QAM调制, s取值可为 2也可为 3 , 则所 述循环移位因子应与 2、 3都互质。
上述解交织规则中, 步骤 DI2中的 s还可以取为符号解调制处理 中每个符号包含的数据比特个数。 这样, 当通信***中所采用的数字 调制方式中每个符号包含的数据比特个数为奇数(例如采用 32QAM 调制) 时, 该解交织规则仍然适用。
根据本发明的另一变化例, 在重传数据块的各次重传中, 发送设 备确定其所采用的交织规则后将该交织规则通知给接收设备; 接收设 备才艮据该交织规则确定其相应的解交织规则, 并采用该解交织规则对 接收到的数据块进行解交织处理。
图 4示出了根据本发明的一个具体实施方式的在通信网络的发送 设备中用于数据重传的数据重传装置的结构图。 该数据重传装置 10 典型地位于通信网络中的发送设备 1 (未示出)之中。 如图 4所示, 该数据重传装置 10包括交织处理装置 101、 符号调制装置 102、 子载 波映射装置 103、 发送装置 104和第一确定装置 105。 这里为了简明 起见, 在图中示出了许多优选实施例中的可选子装置, 本领域技术人 员根据本说明书的教导, 应能理解其中仅交织处理装置 101、 符号调 制装置 102和发送装置 104是实施本发明所必要的装置, 其他子装置 为可选装置。
以下将结合现有技术对图 4中所示的数据重传装置 10进行数据 重传的过程进行详细描述。 本发明中的通信网络中的数据重传, 可以是基于现有技术, 由发 送设备 1根据来自接收设备的接收失败消息或者重传请求消息来重传 数据块; 或者接收设备无法正确恢复接收到的数据块时继续等待, 如 果发送设备 1 在规定时间内没有收到发送出的数据块的接收反馈消 息, 发送设备 1就默认为该数据块传输失败并重传该数据块。
首先, 交织处理装置 101采用与需要重传的数据在前面一次或多 次传输中的至少一次传输所采用的交织规则不同的交织规则, 对所述 需要重传的数据进行交织处理, 以获得交织处理后的重传数据。
然后, 符号调制装置 102对所述交织处理后的重传数据进行与前 面每次传输均相同的符号调制处理, 以获得符号调制处理后的重传数 据。 这里的符号调制处理指的是多进制数字调制中的比特至符号映 射, 基于现有技术, 可以采用的多进制调制方式包括 M-PSK (多相键 控)、M-QAM (多进制正交幅度调制)等。以具有 16个星座点的 16QAM 为例, 其每一个星座点表示一种矢量状态, 每 4位二进制数规定了一 种矢量状态, 因此, 16QAM的每符号可以传送 4比特数据信息。 发 送设备对所述交织处理后的重传数据进行与前面每次传输时均相同 的符号调制处理, 即是指重传数据每次传输时, 保持 4位二进制数对 应于 16QAM中的各符号的映射规则不变。
最后, 发送装置 104将处理后的重传数据发送至接收设备。
本领域技术人员应该理解, 在发送设备 1中, 对一个数据块的首 次传输和可能的一次或多次重传优选地都是由同一装置完成的, 该装 置即为数据重传装置 10。 也就是说, 数据重传装置 10还用于各数据 块的首次传输。
下面将结合现有技术对上述数据重传装置 10 进行详细说明。 本发 明的技术方案中的交织处理是基于矩阵交织的。 在现有 HARQ技术中, 大多数都在发送设备对某一数据块的多次传输中采用相同的交织规则, 这里的多次传输包括该数据块的首次传输和可能的一次或多次重传。 而 在本发明中, 发送设备 1 中的数据重传装置 10在重传一个数据块时, 其交织处理装置 101采用与需要重传的数据在前面一次或多次传输中 的至少一次传输所采用的交织规则不同的交织规则对所述需要重传 的数据进行交织处理, 以获得交织处理后的重传数据。 例如, 当数据 重传装置 10首次发送某一数据块时, 交织处理装置 101采用第一交 织规则对其进行交织处理; 当该数据块因故需要重传, 数据重传装置
10在第一次重传该数据块、 亦即第二次发送该数据块时, 由交织处理 装置 101 采用不同于第一交织规则的第二交织规则对其进行交织处 理; 这样, 该数据块在两次传输中经交织处理后, 其编码比特序列的 顺序发生了变化, 经过符号调制装置 102进行相同的符号调制处理并 发出后,接收设备在接收到这两次传输的数据块并在解交织处理之后 进行信息合并时可以取得与星座图重排等同的分集效果, 从而改善了
HARQ技术的性能。 当接收设备仍然无法正确恢复该数据块而需要重 传时, 发送设备 1在第二次重传该数据块、 亦即第三次发送该数据块 时, 由交织处理装置 101采用第一交织规则或第二交织规则对其进行 交织处理, 或者还可以采用与第一、 第二交织规则均不相同的第三交 织规则对其进行交织处理。 在该数据块其后可能的各次重传中, 交织 处理装置 101对其进行的处理与上述第二次重传中的处理类似, 在此 不再赘述。
优选地, 数据重传装置 10对某一数据块的多次传输中均采用不同 的交织规则, 这里的多次传输包括该数据块的首次传输和可能的一次或 多次重传, 亦即数据重传装置 10在重传一个数据块时, 其交织处理装 置 101采用与需要重传的数据在前面一次或多次传输中所采用的交织 规则均不相同的交织规则对所述需要重传的数据进行交织处理, 以获 得交织处理后的重传数据。
优选地, 数据重传装置 10还包括第一确定装置 105。 当数据重传 装置 10重传一个数据块时, 该第一确定装置 105确定需要重传的数 据块的重传次数信息, 交织处理装置 101基于该重传次数信息来确定 本次重传所采用的交织规则, 并采用该交织规则对所述需要重传的数 据进行交织处理。 这里的重传次数信息用以指示本次重传是该数据块 的第几次重传。 该重传次数信息可以是由接收设备通过重传请求消息 告知发送设备 1的,也可以是发送设备 1根据本地发送记录来确定的。 具体地, 交织处理装置 101可通过执行以下处理操作来实现根据 上述交织规则的交织处理: II . 将需要重传的数据按顺序逐行写入一 个交织矩阵; 12. 对所述交织矩阵的各行数据分别进行循环移位, 以 获得行移位后的交织矩阵, 其中所述循环移位的位数根据所述重传次 数信息来确定; 13. 将所述行移位后的交织矩阵的各列数据按顺序每 s个进行分组, 其中 s根据符号调制装置 102所作符号调制处理中每 个符号包含的数据比特个数来确定, 各列数据长度为 s的整数倍; 14. 对所述分组后的交织矩阵的各列数据中的各分组数据进行循环移位, 循环移位的位数根据该分组数据所属的列的序号来确定; 15. 将所述 分组循环移位后的交织矩阵中的数据按顺序逐列读出。
根据本发明的一个优选实施例, 上述技术方案还可以用于多载波 通信网络, 尤其是无线多载波通信网络, 例如采用 OFDM技术的无 线网络。 此时, 数据重传装置 10还包括子载波映射装置 103 , 该子载 波映射装置 103对经符号调制装置 102进行符号调制处理后的重传数 据进行子载波映射处理,以获得子载波映射处理后的重传数据;最后, 发送装置 104将子载波映射处理后的重传数据发送至接收设备。
上述子载波映射装置 103中的子载波映射处理, 即是指需要发送 的数据块在完成符号调制处理之后, 将各符号分配到各子载波的映射 处理。 数据重传装置 10可以在第一次重传一个数据块时采用与首次 发送该数据块时不同的子载波映射处理, 以使得接收设备在接收到这 两次传输的数据块并在解交织处理之后进行信息合并时还可以取得 频率分集效果, 从而改善了 HARQ技术的性能。 当接收设备仍然无 法正确恢复该数据块而需要重传时, 数据重传装置 10在第二次重传 该数据块、 亦即第三次发送该数据块时, 可以采用与前两次发送中不 同的子载波映射处理。 在该数据块其后可能的各次重传中, 子载波映 射装置 103对其进行的处理与上述第二次重传中的处理类似, 在此不 再赘述。
优选地, 发送设备 1在由数据重传装置 10对某一数据块的多次传 输中, 其交织处理装置 101每次采用不同的交织规则, 而其符号调制装 置 102每次均采用相同的符号调制处理, 其子载波映射装置 103每次均 采用相同的子载波映射处理, 这里的多次传输包括该数据块的首次传输 和可能的一次或多次重传。 这样, 该数据块在各次传输中经交织处理 后, 其编码比特序列的顺序发生了变化, 再经过相同的符号调制处理 和相同的子载波映射处理后,接收设备在接收到这些传输的数据块并 在解交织处理之后进行信息合并时可以取得与星座图重排分集以及 频率分集相等同的分集效果, 从而改善了 HARQ 技术的性能。 为达 到上述目的, 该数据块在各次传输时所采用的交织规则需要经过特别 设计。
具体地, 以前述交织处理装置 101所采用的交织规则为例, 下面 将根据其所执行的处理操作 II 至 15 , 详细描述一种用于该优选实施 例中的交织规则的设计。 例如但不限于, 通信网络采用 OFDM技术, 数字调制方式采用 M-QAM调制 (例如 16QAM、 64QAM )。 发送设 备 1 中数据重传装置 10所需要发送的数据块的数据比特个数为所述 符号调制处理中每个符号包含的数据比特个数与分配给发送设备 1的 最小子载波数目的乘积的整数倍。 所述交织矩阵的大小 (行数与列数 的乘积)与需要发送的数据块的数据比特个数相同。 其中处理操作 13 中所述 s取为所述符号调制处理中每个符号包含的数据比特个数的一 半。 所述交织矩阵的列数取为所述最小子载波数目的因子, 则其行数 为 s的偶数倍。 其中处理操作 12中, 所述循环移位的位数为基于所述 重传次数信息的重传次数因子与一个循环移位因子的乘积, 当 s取值 不为 1 , 所述循环移位因子为一个与 s互质的正整数; 例如***采用 16QAM调制时, s取值为 2 , 所述循环移位因子应与 2互质; 如果系 统既可采用 16QAM调制也可采用 64QAM调制, ^取值可为 2也可为 3 , 则所述循环移位因子应与 2、 3都互质。 其中处理操作 14 中, 所 述各分组数据的循环移位的位数为该分组数据所属的列在所述交织 矩阵的所有列中的排序数。
上述交织规则中,处理操作 13中的 s还可以取为符号调制处理中 每个符号包含的数据比特个数。 这样, 当通信***中所采用的数字调 制方式中每个符号包含的数据比特个数为奇数(例如采用 32QAM调 制) 时, 该交织规则仍然适用。
图 5示出了根据本发明的一个具体实施方式的在通信网络的接收 设备中用于对重传数据进行接收合并的接受合并装置的结构图。 该接 收合并装置 20典型地位于通信网络中的接收设备 2 (未示出)之中, 该接收设备 2与发送设备 1相对应。如图 5所示, 该接收合并装置 20 包括接收装置 201、 子载波解映射装置 202、 符号解调制装置 203、 解 交织装置 204、 信息合并装置 205和第二确定装置 206。 这里为了简 明起见, 在图中示出了许多优选实施例中的可选子装置, 本领域技术 人员根据本说明书的教导, 应能理解其中仅接收装置 201、 符号解调 制装置 203、 解交织装置 204、 信息合并装置 205是实施本发明所必 要的装置, 其他子装置为可选装置。
以下将结合现有技术对图 5中所示的接收合并装置 20对重传数 据进行接收合并的过程进行详细描述。
首先,接收装置 201接收来自发送设备 1的重传数据的重传版本。 然后, 符号解调制装置 203对所述接收到的重传版本进行与之前 接收到的该重传数据一个或多个版本均相同的符号解调制处理, 以获 得符号解调制处理后的重传版本。
接着, 解交织装置 204根据发送设备 1所采取的交织规则对所述 符号解调制处理后的重传版本进行相应的解交织处理, 以获得经解交 织处理后的重传版本, 其中, 所述发送设备采用的交织规则与所述重 传数据的前面一次或多次传输中的至少一次传输所采用的交织规则 不同。
最后, 信息合并装置 205将所述解交织处理后的重传版本与之前 接收到的所述重传数据的一个或多个解交织处理后的版本进行信 , 合并。
具体地, 符号解调制装置 203对接收到的重传数据的重传版本进 行与发送设备 1中的符号调制处理相对应的符号解调制处理, 以获得 符号解调制之后的重传版本, 在该重传数据块的多次接收后, 符号解 调制装置 203所采用的符号解调制处理均保持不变。
然后, 解交织装置 204采用与发送设备 1所采取的交织规则相对 应的解交织规则来对接收到的重传数据块经符号解调制后的重传版 本进行相应的解交织处理,以获得经解交织处理后的重传版本,其中, 发送设备 1采用的交织规则与所述重传数据块的前面一次或多次传输 中的至少一次传输所采用的交织规则不同。 具体地, 在重传数据块的 各次重传中, 发送设备 1和接收设备 2分别根据重传数据的重传次数 信息来确定相应的交织规则和解交织规则。 优选地, 在重传数据块的 各次重传中, 发送设备 1所采用的交织规则均不相同, 也不同于该数 据块首次发送中所采用的交织规则; 相应地, 接收设备 2在各次接收 到该数据块的重传版本后所采用的解交织规则均不相同, 也不同于首 次接收该数据块后所采用的解交织规则。 这样, 该数据块在相邻两次 传输中交织处理后, 其编码比特序列的顺序发生了变化, 经过相同的 符号调制处理后,接收设备 2在接收到这两次传输的数据块并在解交 织处理之后进行信息合并时可以取得与星座图重排等同的分集效果, 从而改善了 HARQ技术的性能。 根据上述方案, 接收合并装置 20还 包括第二确定装置 206 , 该第二确定装置 206用于根据本地接收记录 来确定上述重传次数信息。 解交织装置 204基于第二确定装置 206所 确定的接收到的重传数据的重传版本的重传次数信息来确定其所需 的解交织规则, 并采用该解交织规则对接收到的重传数据经符号解调 制处理之后的重传版本进行解交织处理。
更具体地, 解交织装置 204可通过执行以下处理操作来完成根据 上述解交织规则的解交织处理: DI1 . 将需要解交织的数据按顺序逐 列写入一个解交织矩阵; DI2. 将所述解交织矩阵的各列数据按顺序 每 s个进行分组, 其中 s根据符号解调制装置 203所作符号解调制处 理中每个符号包含的数据比特个数来确定, 各列数据长度为 s的整数 倍; DI3. 对所述分组后的解交织矩阵的各列数据中的各分组数据进 行循环移位, 以获得分组循环移位后的解交织矩阵, 其中所述循环移 位的位数根据所述该分组数据所属的列的序号来确定; DI4. 对所述 分组移位后的解交织矩阵的各行数据分别进行循环移位, 以获得行移 位后的解交织矩阵, 其中所述循环移位的位数根据所述重传次数信息 确定; DI5. 将所述行循环移位后的解交织矩阵中的数据按顺序逐行 读出。 其中, 处理操作 DI3中各分组数据循环移位的移位方向与发送 设备 1交织处理中相应的分组数据循环移位的移位方向相反, 处理操 作 DI4中各行数据循环移位的移位方向与发送设备 1交织处理中相应 的各行数据循环移位的移位方向相反。
最后, 信息合并装置 205将所述解交织处理后的重传版本与之前 接收到的所述重传数据的一个或多个解交织处理后的版本进行信 , 合并。具体地,信息合并装置 205中的信息合并可以采用 Chase合并。 基于现有技术,接收设备 2在完成信息合并后,还将进行译码等处理, 如果正确的恢复出发送设备 1发送的数据块, 则接收设备 2向发送设 备 1发出一个接收成功消息; 如果无法恢复出发送设备 1发送的数据 块, 则接收设备 2向发送设备 1发出一个接收失败消息或重传请求消 息, 或者不发出反馈消息而根据约定等待发送设备 1重传该数据块。
上面对图 5中所示的本发明的一个具体实施方式的接收合并装置 对重传数据进行接收合并的过程进行了详细说明。根据本发明的一个 优选实施例, 上述技术方案还可以用于多载波通信网络, 尤其是无线 多载波通信网络, 例如采用 OFDM技术的无线网络。 此时, 接收合 并装置 20还包括子载波解映射装置 202, 该子载波解映射装置 202 用于对所述接收到的重传数据的重传版本进行子载波解映射处理, 以 获得子载波解映射处理后的重传版本, 然后将该重传版本送到符号解 调制装置 203进行符号解调制处理。 这里的子载波解映射处理对应于 发送设备 1中的子载波映射处理。 根据该优选实施例, 发送设备 1对 某一数据块的多次传输中, 每次均采用相同的符号调制处理和子载波映 射处理, 而每次采用的交织规则各不相同, 这里所述的多次传输包括该 数据块的首次发送和可能的一次或多次重传。 这样, 在发送设备 1中, 该数据块在各次传输中交织处理后, 其编码比特序列的顺序发生了变 化, 经过相同的符号调制处理和相同的子载波映射处理后发送到接收 设备 2; 接收设备 2在接收到这些传输的数据块后, 由其子载波解映 射装置 202和符号解调制装置 203对这些数据块分别进行每次均相同 的子载波解映射处理和符号解映射处理, 然后由解交织装置 204采用 每次均不相同的解交织规则对其进行解交织处理之后进行信息合并, 完成信息合并后的数据块可以取得与星座图重排分集以及频率分集 相等同的分集效果, 从而改善了 HARQ技术的性能。 为达到上述目 的, 该数据块在各次发送时所采用的交织规则和解交织规则需要经过 特别设计。
具体地, 以前述解交织装置 204所采用的解交织规则为例, 下面 将根据其所执行的处理操作 DI1至 DI5, 详细描述一种用于该优选实 施例中的解交织规则的设计。例如但不限于,通信网络采用 OFDM技 术, 数字调制方式采用 M-QAM调制 (例如 16QAM、 64QAM )。 重 传数据经符号解调制后的重传版本的数据比特个数为所述符号解调 制处理中每个符号包含的数据比特个数与分配给发送设备 1的最小子 载波数目的乘积的整数倍。 解交织矩阵的大小 (行数与列数的乘积) 与该重传版本的数据比特个数相同。 所述符号解调制处理中每个符号 包含的数据比特个数为偶数。 其中处理操作 DI2中所述 s取为所述符 号解调制处理中每个符号包含的数据比特个数的一半。 所述解交织矩 阵的列数为所述最小子载波数目的因子, 则其行数为 s的偶数倍。 其 中处理操作 DI3中, 所述各分组数据的循环移位的位数为该分组数据 所属的列在所述解交织矩阵的所有列中的排序数。 其中处理操作 DI4 中, 所述循环移位的位数为基于所述重传次数信息的重传次数因子与 一个循环移位因子的乘积, 当 s取值不为 1 , 所述循环移位因子为一 个与 s互质的正整数; 例如***采用 16QAM调制时, s取值为 2, 所 述循环移位因子应与 2互质; 如果***既可采用 16QAM调制也可采 用 64QAM调制, s取值可为 2也可为 3 ,则所述循环移位因子应与 2、 3都互质。
上述解交织处理中, 处理操作 DI2中的 s还可以取为符号调制处 理中每个符号包含的数据比特个数。 这样, 当通信***中所采用的数 字调制方式中每个符号包含的数据比特个数为奇数时, 例如采用
32QAM调制时, 该解交织规则仍然适用。
根据本发明的另一变化例, 在重传数据块的各次重传中, 发送设 备 1确定其所采用的交织规则后将该交织规则通知给接收设备 2; 接 收设备 2根据该交织规则确定其相应的解交织规则, 并由解交织装置 204采用该解交织规则对接收到的数据块进行解交织处理。
根据本发明的一个优选实施例, 在数据传输时所采用的交织规则 和解交织规则可以兼容 IEEE802. 16e协议中所采用的交织规则和解交 织规则。 下面将结合 IEEE802. 16e协议中所采用的交织规则来详细描 述该优选实施例中所采用的交织规则和解交织规则。
在 IEEE802. 16e协议中, 发送端在信道编码后, 对编码比特进行 交织处理时采用了一个二次置换过程。 下面以一组具体参数为例说明 该交织规则。
***分配给一个用户的最小子载波数为 48 ,分配给一个用户的子 载波数的可选参数均为该最小子载波数 48 的整数倍。 每个子载波上 采用的调制方式为 QPSK、 16QAM或 64QAM等。 令 s为所采用的调 制方式中每符号对应的比特数的一半, 即采用 QPSK时 s为 1 , 采用 16QAM时 s为 2 , 采用 64QAM时 s为 3 , 依此类推。 需要交织处理 的数据块的比特数为 Ncbps , 其应该为每符号对应的比特数 2s与最小 子载波数 48 的乘积的整数倍, 待处理的数据块的实际比特数不满足 该条件的可以通过补零来满足该条件。 交织矩阵的参数选择包括: 从 用户最小子载波数 48 的因子中选择一个大小合适的作为交织矩阵的 列数, 可选的值包括 12、 16、 24等。 以交织矩阵的列数选为 16为例, 则其行数相应地应为每符号对应的比特数 2^与 3的乘积的整数倍。 以 H乍为第一次置换前的比特索引值, 作为第一次置换后、 第二次 置换前的比特索引值, 以 作为第二次置换后的比特索引值, 交织规 则可以用公式定义如下:
第一次置换采用以下公式: mk =
Figure imgf000025_0001
+floor(k/\6), k = 0,1, - 1 ( 1 ) 第二次置换采用以下公式:
=s' floor (mk /s) + (mk + Ncbps - floor(\ 6 · mk /Ncbps ))mod s
(2) k = 0X-,Ncbps -\
Ncbps为 192, 调制方式为 16QAM为例, 此时 s为 2, 输入交 织器的输入比特流 b0、 bl、 b2 Μ91。
第一次置换就是一个简单的矩阵交织, 对应的编码比特在矩阵中 的排列如表 1所示。
表 1. 802.16e中交织器中第一次置换对应的编码比特排列
Figure imgf000025_0002
第二次置换是对交织矩阵的各列数据按顺序每 S个为一簇进行划 分, 然后对交织矩阵的各列数据中的各簇数据进行循环移位, 循环移 位遵循以下规则: 第一列中各簇数据不移位、 第二列中各簇数据循环 移一位、 第三列中各簇数据循环移两位, 依此类推。 第二次置换对应 的编码比特在矩阵中的排列如表 2所示。
表 2. 802.16e中交织器中第二次置换对应的编码比特排列 b0 bl7 hi bl9 b4 b21 b6 b23 b8 b25 blO b27 bl2 b29 bl4 b31 bl6 bl bl8 b3 b20 b5 b22 b7 b24 b9 b26 bll b28 bl3 b30 bl5 b32 b49 b34 b51 b36 b53 b38 b55 b40 b57 b42 b59 b44 b61 b46 b63 b48 b33 b50 b35 b52 b37 b54 b39 b56 b41 b58 b43 b60 b45 b62 b47 b64 b81 b66 b83 b68 b85 b70 b87 b72 b89 b74 b91 b76 b93 b78 b95 b80 b65 b82 b67 b84 b69 b86 b71 b88 b73 b90 b75 b92 b77 b94 b79 b96 bll3 b98 bll5 blOO bll7 bl02 bll9 bl04 bl21 bl06 bl23 bl08 bl25 bllO bl27 bll2 b97 bll4 b99 bll6 blOl bll8 bl03 bl20 bl05 bl22 bl07 bl24 bl09 bl26 bill bl28 bl45 bl30 bl47 bl32 bl49 bl34 bl51 bl36 bl53 bl38 bl55 bl40 bl57 bl42 bl59 bl44 bl29 bl46 bl31 bl48 bl33 bl50 bl35 bl52 bl37 bl54 bl39 bl56 bl41 bl58 bl43 bl60 bl77 bl62 bl79 bl64 bl81 bl66 bl83 bl68 bl85 bl70 bl87 bl72 bl89 bl74 bl91 bl76 bl61 bl78 bl63 bl80 bl65 bl82 bl67 bl84 bl69 bl86 bl71 bl88 bl73 bl90 bl75 然后将矩阵中的编码比特按顺序逐列读出, 并进行符号调制处理和 子载波映射处理。 输出比特流顺序为 b0、 M6、 b32、 b48 Μ59、 bl43、 M91、 M75,其中, 比特 b0、 bl6、 b32、 b48映射为第 1个 16QAM 符号,以此类推,直至比特 bl59、bl43、bl91、M75映射为第 48个 16QAM 符号, 这 48个 16QAM符号再按预定顺序映射到 48个子载波。 上述第 一次置换可以保证输入编码比特流中相邻编码比特映射到不相邻的子 载波。
根据上述本发明的优选实施例, 数据重传装置 10 中的交织处理 装置 101对编码比特进行交织处理时也采用了一个二次置换过程, 其 对前述 IEEE802.16e协议所采用的交织规则加以改进, 相应的公式定 义如下:
第一次置换采用以下公式:
mk = (Ncbps /16)-(k + eye _ hift xreTx_ floor(k/\ 6), (
k = 0X-,Ncbps -l
第二次置换采用以下公式:
jk =s' floor(mk /s) + (mk + Ncbps - floor(\ 6. mk /Ncbps ))mods , ( ) k = 0X-,Ncbps -\
该优选实施例中的交织规则与前述 IEEE802.16e协议所采用的交 织规则相比, 区别在于在第一次置换中引入了一个循环移位项。 具体 地, 上面式子 (3)、 (4) 中的各符号与式子 ( 1 )、 (2) 中相同的符号 有着相同的定义, 式 (3) 中 cyc_shiftxvelx num 为循环移位项。 上式 (3) 中 为一个移位因子, 该移位因子是一个与 s互质 的整数。 例如, 当通信网络可以采用 16QAM调制或 64QAM调制时, eye— shift的取值应与 2、 3互质, 其可以取为 5、 7、 11或 13等; 本 领域技术人员应该理解, 当***可以采用 1024QAM调制时, s可以 取值为 5, 此时 yc /n/还应与 5互质, 其可以取为 7、 11、 13等。 上式(3) 中 r rx_m 表示重传次数因子, 当发送设备 1首次发送一 个数据块时, 该因子值为 0; 当发送设备 1第一次重传该数据块, 亦 即第二次发送该数据块时, 该因子值为 1 ; 当发送设备 1第二次重传 该数据块, 亦即第三次发送该数据块时, 该因子值为 2; 发送设备 1 对该数据块的其他可能的各次重传中, 该因子的取值依此类推。
数据重传装置 10在发送一个数据块时, 其第一确定装置 105确 定该数据块的重传次数信息, 亦即确定重传次数因子 r rx_m 。 交织 处理装置 101即才艮据该重传次数因子来确定相应的交织规则, 并对输 入比特流进行交织处理。
仍以 为 192, 调制方式为 16QAM为例, 此时 s为 2, 输入 交织器的输入比特流仍记为 b0、 bl、 b2 bl91。 这里的循环移位 因子 yc /w/选为 7。 需要注意的是, 在该数据块的首次传输时, 数 据重传装置 10 中的交织处理装置 101 对其进行的交织处理与前述 802.16e 协议中的交织处理实质上是一样的, 也就是说本发明的该优 选实施例中的交织算法可以兼容 802.16e协议中的交织算法。
下面以该数据块的第一次重传为例详细说明对应的交织处理。 第一次置换在简单的矩阵交织的基础上, 对矩阵中的各行数据进 行循环移位, 循环移位的位数为 7, 对应的编码比特在矩阵中的排列 如表 3所示。
表 3. 本发明优选实施例中第一次重传时 交织器中第一次置换对应的编码比特排列
Figure imgf000027_0001
第二次置换是对交织矩阵的各列数据按顺序每 S个为一簇进行划 分, 然后对交织矩阵的各列数据中的各簇数据进行循环移位, 循环移 位遵循以下规则: 第一列中各簇数据不移位、 第二列中各簇数据循环 移一位、 第三列中各簇数据循环移两位, 依此类推。 第二次置换对应 的编码比特在矩阵中的排列如表 4所示。
表 4. 本发明优选实施例中第一次重传时 交织器中第二次置换对应的编码比特排列
Figure imgf000028_0001
然后将矩阵中的编码比特按顺序逐列读出, 输出比特流顺序为 b9、 b25、 b41、 b57 M52、 M36、 M84、 M68。 符号调制装置 102对 该输出比特流进行符号调制处理, 其中, 比特 b9、 b25、 b41、 b57映射 为第 1个 16QAM符号, 以此类推, 直至比特 M52、 M36、 M84、 bl68 映射为第 48个 16QAM符号。子载波映射装置 103再将这 48个 16QAM 符号按预定顺序映射到 48个子载波。
根据上述公式 (3 )、 (4 ), 并结合上述对本发明该优选实施例中发 送设备 1第一次重传一个数据块的过程的描述, 本领域技术人员应该很 容易理解发送设备 1其他各次重传该数据块的过程, 在此不再赘述。
通过在上述第一次置换中引入与重传次数信息有关的循环移位, 可 以使得: 该数据块对应的输入比特流中的各编码比特在该数据块各次重 传时映射到不同的子载波, 且每一编码比特在各次重传时交替映射到星 座图的高可靠性比特或低可靠性比特。
相应的, 接收设备 2 中的接收合并装置 20 中的解交织装置 204 也采用一个二次置换的解交织过程, 以 作为第一次置换前的比特索 引值, 作为第一次置换后、 第二次置换前的比特索引值, 以 φ作为 第二次置换后的比特索引值, 解交织规则可以用公式定义如下: 第一次置换采用以下公式:
"! = s - floor(i/s) + (/ + floor(\ 6 - i/Ncbps ))mois , i = 0X-, Ncbps - 1 ( 5 ) 第二次置换采用以下公式:
q, = 16 · n! - Ncbps . floor(\ 6. ητ lNcbps ) + , ,、
, , ο,ι,· · ·υ ( 6 )
(floor (\6 · 16 - eye _shiftx reTx _num)modl6
上式(5 )、 ( 6 ) 与前述发送设备 1中的交织规则的公式(3 )、 (4 ) 相对应, 其中相同的符号标记具有相同的定义和取值范围。 才艮据前面对 本发明该优选实施例中发送设备 1重传或发送数据块的过程的描述, 并 结合上述解交织算法, 本领域技术人员应该很容易理解该优选实施例中 接收设备 2中的接收合并装置 20对重传数据的接收合并处理过程, 匕 f ϋ。
根据本发明的上述优选实施例, 在对一个接收解调出错的数据块 的各次重传中,每次均对输入比特流采用不同的交织规则进行交织处 理, 而保持相同的符号调制处理和子载波映射处理, 以使得该数据块 在接收合并时可以获得与星座图重排分集和频率分集等同的效果, 从 而提高了 HARQ 技术的性能。 与现有技术相比, 该优选实施方案主 要对交织器和解交织器进行了改动, 因而在硬件实现上比较简单。
图 6a、 图 6b、 图 6c是上述优选实施例的仿真效果图。 仿真条件 设置如下: 移动台为单输入单输出***, 信道模型采用 3GPP空间信 道模型中的市区视距场景 ( 3GPP SCM URBAN-MICRO LOS ), 移动 台平均移动速率约为 3km/小时, 调制方式为 16QAM或 64QAM, 信 道编码采用编码速率为 1/2或 3/4的卷积码, 最大重传次数为 4, 交 织算法和解交织算法即如上述公式 (3 ) 至 (6 )。 其中, 图 6a中横坐 标为符号噪声比, 即平均每符号能量与信道中白噪声功率谱密度的比 值, 纵坐标为数据包的错误率; 图 6b 中横坐标为符号噪声比, 纵坐 标为平均传输次数; 图 6c中横坐标为符号噪声比, 纵坐标为吞吐量。
在图 6a至图 6c中, 交叉符号表示 16QAM调制、 1/2卷积编码条 件下的仿真数据, 三角符号表示 16QAM调制、 3/4卷积编码条件下 的仿真数据, 菱形符号表示 64QAM调制、 1/2卷积编码条件下的仿 真数据。 611表示 16QAM调制、 1/2卷积编码条件下的传统 HARQ 方案的性能曲线, 610表示 16QAM调制、 1/2卷积编码条件下的本发 明上述优选实施方案的性能曲线, 621表示 16QAM调制、 3/4卷积编 码条件下的传统 HARQ方案的性能曲线, 620表示 16QAM调制、 3/4 卷积编码条件下的本发明上述优选实施方案的性能曲线, 631 表示 64QAM调制、 1/2卷积编码条件下的传统 HARQ方案的性能曲线, 630表示 64QAM调制、 1/2卷积编码条件下的本发明上述优选实施方 案的性能曲线。 如图 6a至图 6c 所示, 在相同条件下, 相比于传统 HARQ 技术, 本发明的上述优选实施方案在吞吐量上获得 10 % ~ 30 %的增长, 而平均传输次数下降了约 10 %。
以上对本发明的具体实施例进行了描述。 本领域技术人员应能理 解上述交织处理装置和解交织处理装置可以为处理器, 其通过运行经 适当编程的程序来执行上述处理操作, 也可为特别设计的可执行上述 处理操作的固件、 专用集成电路、 DSP等。 此外, 需要理解的是, 本 发明并不局限于上述特定实施方式, 本领域技术人员可以在所附权利 要求的范围内做出各种变形或修改。

Claims

权 利 要 求 书
1. 一种在通信网络的发送设备中用于数据重传的方法, 其中, 包括以下步骤:
a. 采用与需要重传的数据在前面一次或多次传输中的至少一次 传输所采用的交织规则不同的交织规则, 对所述需要重传的数据进行 交织处理, 以获得交织处理后的重传数据;
b. 对所述交织处理后的重传数据进行与前面每次传输均相同的 符号调制处理, 以获得符号调制处理后的重传数据;
d. 将所述符号调制处理后的重传数据发送至接收设备。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述步骤 a还包 括以下步骤:
- 采用与需要重传的数据在前面一次或多次传输中所采用的交织 规则均不相同的交织规则对所述需要重传的数据进行交织处理, 以获 得交织处理后的重传数据。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 还包括以下 步骤:
- 确定所述需要重传的数据的重传次数信息;
所述步骤 a还包括:
al . 基于所述重传次数信息确定重传交织规则, 并采用所述重传 交织规则对所述需要重传的数据进行交织处理。
4. 根据权利要求 3 所述的方法, 其特征在于, 其中所述重传交 织规则包括基于矩阵交织的交织规则, 所述步骤 al 中采用所述重传 交织规则对所述重传的数据进行交织处理的步骤包括以下步骤:
al l . 将所述需要重传的数据按顺序逐行写入一个交织矩阵; al2. 对所述交织矩阵的各行数据分别进行循环移位,以获得行移 位后的交织矩阵, 其中所述循环移位的位数根据所述重传次数信息确 定;
al 3. 将所述行移位后的交织矩阵的各列数据按顺序每 s个进行分 组, 其中 S根据所述符号调制处理中每个符号包含的数据比特个数来 确定, 各列数据长度为 S的整数倍;
al4. 对所述分组后的交织矩阵的各列数据中的各分组数据进行 循环移位, 循环移位的位数根据该分组数据所属的列的序号来确定; al 5. 将所述分组循环移位后的交织矩阵中的数据按顺序逐列读 出。
5. 根据权利要求 4 所述的方法, 其特征在于, 所述需要重传的 数据比特个数为所述符号调制处理中每个符号包含的数据比特个数 与分配给所述发送设备的最小子载波数目的乘积的整数倍, 所述交织 矩阵的列数为所述最小子载波数目的因子, 所述符号调制处理中每个 符号包含的数据比特个数为偶数;
其中所述步骤 al 3中所述 s为所述符号调制处理中每个符号包含 的数据比特个数的一半;
其中所述步骤 al2中, 所述循环移位的位数为基于所述重传次数 信息的重传次数因子与一个循环移位因子的乘积; 当 s的取值不为 1 , 所述循环移位因子为一个与 s互质的正整数;
其中所述步骤 al4中, 所述各分组数据的循环移位的位数为该分 组数据所属的列在所述交织矩阵的所有列中的排序数。
6. 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所 述通信网络包括多载波通信网络,在所述步骤 b之后还包括以下步骤: c . 对所述获得符号调制处理后的重传数据进行子载波映射处理, 以获得子载波映射处理后的重传数据;
其中, 所述步骤 d还包括以下步骤:
- 将所述子载波映射处理后的重传数据发送至所述接收设备。
7. 根据权利要求 6所述的方法, 其特征在于, 所述步骤 c还包 括以下步骤:
- 对所述获得符号调制处理后的重传数据进行与前面每次传输均 相同的子载波映射处理, 以获得子载波映射处理后的重传数据。
8. 根据权利要求 6或 7所述的方法, 所述多载波通信网络包括 多载波无线通信网络。
9. 根据权利要求 8 所述的方法, 所述多载波无线通信网络包括 OFDM无线通信网络, 所述符号调制包括 Q AM调制。
10. 一种在通信网络的接收设备中用于对重传数据进行接收合并 的方法, 其包括以下步骤:
I. 接收来自发送设备的所述重传数据的重传版本;
11. 对所述接收到的重传版本进行与之前接收到的该重传数据一 个或多个版本均相同的符号解调制处理, 以获得符号解调制处理后的 重传版本;
111. 根据所述发送设备所采取的交织规则对所述符号解调制处理 后的重传版本进行相应的解交织处理, 以获得经解交织处理后的重传 版本, 其中, 所述发送设备采用的交织规则与所述重传数据的前面一 次或多次传输中的至少一次传输所采用的交织规则不同;
iv. 将所述解交织处理后的重传版本与之前接收到的所述重传数 据的一个或多个解交织处理后的版本进行信息合并。
I I . 根据权利要求 10 所述的方法, 其特征在于, 还包括以下步 骤:
- 确定所述接收到的所述重传数据的重传版本的重传次数信息; 所述步骤 iii还包括:
- 基于所述重传次数信息确定所需的解交织规则;
- 采用所述解交织规则对所述符号解调制处理后的重传版本进行 相应的解交织处理。
12. 根据权利要求 11 所述的方法, 其特征在于, 其中所述解交 织规则包括基于矩阵交织的解交织规则, 其中, 所述采用所述解交织 规则对所述符号解调制处理后的重传版本进行解交织处理的步骤包 括以下步骤:
ml . 将所述需要解交织的数据按顺序逐列写入一个解交织矩阵; iii2. 将所述解交织矩阵的各列数据按顺序每 s个进行分组, 其中 s根据所述符号解调制处理中每个符号包含的数据比特个数来确定, 各列数据长度为 S的整数倍;
1113. 对所述分组后的解交织矩阵的各列数据中的各分组数据进 行循环移位, 以获得分组循环移位后的解交织矩阵, 其中所述循环移 位的位数根据所述该分组数据所属的列的序号来确定;
1114. 对所述分组移位后的解交织矩阵的各行数据分别进行循环 移位, 以获得行移位后的解交织矩阵, 其中所述循环移位的位数根据 所述重传次数信息确定;
1115. 将所述行循环移位后的解交织矩阵中的数据按顺序逐行读 出。
13. 根据权利要求 12 所述的方法, 其特征在于, 所述解交织矩 阵的比特个数为所述符号解调制处理中每个符号包含的数据比特个 数与分配给所述发送设备的最小子载波数目的乘积的整数倍, 所述解 交织矩阵的列数为所述最小子载波数目的因子, 所述符号解调制处理 中每个符号包含的数据比特个数为偶数;
其中所述步骤 iii2中所述 s为所述符号解调制处理中每个符号包 含的数据比特个数的一半;
其中所述步骤 iii3中, 所述各分组数据的循环移位的位数为该分 组数据所属的列在所述解交织矩阵的所有列中的排序数;
其中所述步骤 iii4中, 所述循环移位的位数为基于所述重传次数 信息的重传次数因子与一个循环移位因子的乘积; 当 s的取值不为 1 , 所述循环移位因子为一个与 s互质的正整数。
14. 根据权利要求 10至 13中任一项所述的方法, 其特征在于, 所述通信网络包括多载波通信网络,在所述步骤 ii之前还包括以下步 骤:
- 对所述接收到的重传数据的重传版本进行子载波解映射处理, 以获得子载波解映射处理后的重传版本;
其中, 所述步骤 ii还包括以下步骤:
- 对所述子载波解映射处理后的重传版本进行与之前接收到的该 重传数据一个或多个版本均相同的符号解调制处理, 以获得符号解调 制处理后的重传版本。
15. 根据权利要求 14 所述的方法, 其特征在于, 对所述接收到 的重传数据的重传版本进行子载波解映射处理的步骤中, 进行与之前 接收到的该重传数据一个或多个版本均相同的子载波解映射处理, 以 获得子载波映射处理后的重传数据。
16. 根据权利要求 14或 15所述的方法, 所述多载波通信网络包 括多载波无线通信网络。
17. 根据权利要求 16所述的方法, 所述多载波无线通信网络包 括 OFDM无线通信网络, 所述符号调制包括 Q AM调制。
18. 根据权利要求 10至 17中任一项所述的方法, 其特征在于, 所述信息合并包括 Chase合并。
19. 一种在通信网络的发送设备中用于数据重传的数据重传装 置, 其中包括:
交织处理装置, 用于采用与需要重传的数据在前面一次或多次传 输中的至少一次传输所采用的交织规则不同的交织规则对所述需要 重传的数据进行交织处理, 以获得交织处理后的重传数据;
符号调制装置, 用于对所述交织处理后的重传数据进行与前面每 次传输均相同的符号调制处理, 以获得符号调制处理后的重传数据; 发送装置, 用于将所述符号调制处理后的重传数据发送至接收设 备。
20. 根据权利要求 19 所述的数据重传装置, 其特征在于, 所述 交织处理装置还用于采用与需要重传的数据在前面一次或多次传输 中所采用的交织规则均不相同的交织规则对所述需要重传的数据进 行交织处理, 以获得交织处理后的重传数据。
21. 根据权利要求 20 所述的数据重传装置, 其特征在于, 还包 括:
第一确定装置, 用于确定所述需要重传的数据的重传次数信息; 所述交织处理装置还用于基于所述重传次数信息确定重传交织 规则, 采用所述重传交织规则对所述需要重传的数据进行交织处理。
22. 根据权利要求 21 所述的数据重传装置, 其特征在于, 其中 所述交织规则包括基于矩阵交织的交织规则, 其中, 所述交织处理装 置执行以下处理操作来实现所述交织处理:
al l . 将所述需要重传的数据按顺序逐行写入一个交织矩阵; al2. 对所述交织矩阵的各行数据分别进行循环移位,以获得行移 位后的交织矩阵, 其中所述循环移位的位数根据所述重传次数信息确 定;
al 3. 将所述行移位后的交织矩阵的各列数据按顺序每 s个进行分 组, 其中 s根据所述符号调制处理中每个符号包含的数据比特个数来 确定, 各列数据长度为 s的整数倍;
al4. 对所述分组后的交织矩阵的各列数据中的各分组数据进行 循环移位, 循环移位的位数根据该分组数据所属的列的序号来确定; al 5. 将所述分组循环移位后的交织矩阵中的数据按顺序逐列读 出。
23. 根据权利要求 21 所述的数据重传装置, 其特征在于, 所述 需要重传的数据的比特个数为所述符号调制处理中每个符号包含的 数据比特个数与分配给所述发送设备的最小子载波数目的乘积的整 数倍, 所述交织矩阵的列数为所述最小子载波数目的因子, 所述符号 调制处理中每个符号包含的数据比特个数为偶数;
其中所述处理操作 al3中所述 s为所述符号调制处理中每个符号 包含的数据比特个数的一半;
其中所述处理操作 al2中, 所述循环移位的位数为基于所述重传 次数信息的重传次数因子与一个循环移位因子的乘积; 当 s取值不为 1 , 所述循环移位因子为一个与 s互质的正整数;
其中所述处理操作 al4中, 所述各分组数据的循环移位的位数为 该分组数据所属的列在所述交织矩阵的所有列中的排序数。
24. 根据权利要求 19至 23中任一项所述的数据重传装置, 其特 征在于, 所述通信网络包括多载波通信网络, 还包括:
子载波映射装置, 用于对所述获得符号调制处理后的重传数据进 行子载波映射处理, 以获得子载波映射处理后的重传数据;
所述发送装置还用于将所述子载波映射处理后的重传数据发送 至所述接收设备。
25. 根据权利要求 24 所述的数据重传装置, 其特征在于, 所述 子载波映射装置还用于对所述获得符号调制处理后的重传数据进行 与前面每次传输均相同的子载波映射处理, 以获得子载波映射处理后 的重传数据。
26. 根据权利要求 24或 25所述的数据重传装置, 所述多载波通 信网络包括多载波无线通信网络。
27. 根据权利要求 26 所述的数据重传装置, 所述多载波无线通 信网络包括 OFDM无线通信网络, 所述符号调制包括 QAM调制。
28. 一种在通信网络的接收设备中用于对重传数据进行接收合并 的接收合并装置, 其包括:
接收装置, 用于接收来自发送设备的所述重传数据的重传版本; 符号解调制装置, 用于对所述接收到的重传版本进行与之前接收 到的该重传数据一个或多个版本均相同的符号解调制处理, 以获得符 号解调制处理后的重传版本;
解交织装置, 用于根据所述发送设备所采取的交织规则对所述符 号解调制处理后的重传版本进行相应的解交织处理, 以获得经解交织 处理后的重传版本, 其中, 所述发送设备采用的交织规则与所述重传 数据的前面一次或多次传输中的至少一次传输所采用的交织规则不 同;
信息合并装置, 将所述解交织处理后的重传版本与之前接收到的 所述重传数据的一个或多个解交织处理后的版本进行信息合并。
29. 根据权利要求 28 所述的接收合并装置, 其特征在于, 还包 括:
第二确定装置, 用于确定所述接收到的所述重传数据的重传版本 的重传次数信息;
所述解交织装置还用于基于所述重传次数信息确定所需的解交 织规则, 采用所述解交织规则对所述符号解调制处理后的重传版本进 行相应的解交织处理。
30. 根据权利要求 29 所述的接收合并装置, 其特征在于, 其中 所述解交织规则包括基于矩阵交织的解交织规则, 其中, 所述解交织 处理装置执行以下处理操作来实现所述解交织处理:
ml . 将所述需要解交织的数据按顺序逐列写入一个解交织矩阵;
1112. 将所述解交织矩阵的各列数据按顺序每 s个进行分组, 其中 s根据所述符号解调制处理中每个符号包含的数据比特个数来确定, 各列数据长度为 s的整数倍;
1113. 对所述分组后的解交织矩阵的各列数据中的各分组数据进 行循环移位, 以获得分组循环移位后的解交织矩阵, 其中所述循环移 位的位数根据所述该分组数据所属的列的序号来确定;
1114. 对所述分组移位后的解交织矩阵的各行数据分别进行循环 移位, 以获得行移位后的解交织矩阵, 其中所述循环移位的位数根据 所述重传次数信息确定;
1115. 将所述行循环移位后的解交织矩阵中的数据按顺序逐行读 出。
31. 根据权利要求 30 所述的接收合并装置, 其特征在于, 所述 解交织矩阵的比特个数为所述符号解调制处理中每个符号包含的数 据比特个数与分配给所述发送设备的最小子载波数目的乘积的整数 倍, 所述解交织矩阵的列数为所述最小子载波数目的因子, 所述符号 解调制处理中每个符号包含的数据比特个数为偶数;
其中所述处理操作 iii2中所述 s为所述符号解调制处理中每个符 号包含的数据比特个数的一半;
其中所述处理操作 iii3中, 所述各分组数据的循环移位的位数为 该分组数据所属的列在所述解交织矩阵的所有列中的排序数;
其中所述处理操作 iii4中, 所述循环移位的位数为基于所述重传 次数信息的重传次数因子与一个循环移位因子的乘积, 当 s取值不为 1 , 所述循环移位因子为一个与 s互质的正整数。
32. 根据权利要求 28至 31中任一项所述的接收合并装置, 其特 征在于, 所述通信网络包括多载波通信网络, 还包括:
子载波解映射装置, 用于对所述接收到的重传数据的重传版本进 行子载波解映射处理, 以获得子载波解映射处理后的重传版本;
所述符号解调制装置还用于对所述子载波解映射处理后的重传 版本进行与之前接收到的该重传数据一个或多个版本均相同的符号 解调制处理, 以获得符号解调制处理后的重传版本。
33. 根据权利要求 32 所述的接收合并装置, 其特征在于, 所述 子载波解映射装置还用于对所述接收到的重传数据的重传版本进行 与之前接收到的该重传数据一个或多个版本均相同的子载波解映射 处理, 以获得子载波映射处理后的重传数据。
34. 根据权利要求 32或 33所述的接收合并装置, 所述多载波通 信网络包括多载波无线通信网络。
35. 根据权利要求 34所述的接收合并装置, 所述多载波无线通 信网络包括 OFDM无线通信网络, 所述符号调制包括 QAM调制。
36. 根据权利要求 28至 35中任一项所述的接收合并装置, 其特 征在于, 所述信息合并包括 Chase合并。
37. —种用于通信网络中的发送设备, 其包括权利要求 19至 27 中任一项所述的数据重传装置。
38. —种用于通信网络中的接收设备, 其包括权利要求 28至 36 中任一项所述的接收合并装置。
PCT/CN2009/000540 2008-05-30 2009-05-19 通信***中采用交织规则重排的数据重传方法及其装置 WO2009143693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100383592A CN101594212B (zh) 2008-05-30 2008-05-30 通信***中采用交织规则重排的数据重传方法及其装置
CN200810038359.2 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009143693A1 true WO2009143693A1 (zh) 2009-12-03

Family

ID=41376566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000540 WO2009143693A1 (zh) 2008-05-30 2009-05-19 通信***中采用交织规则重排的数据重传方法及其装置

Country Status (2)

Country Link
CN (1) CN101594212B (zh)
WO (1) WO2009143693A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104243382B (zh) * 2013-06-09 2017-12-08 普天信息技术研究院有限公司 符号交织方法
CN110098891B (zh) * 2018-01-30 2021-09-07 华为技术有限公司 交织方法和交织装置
CN113039731A (zh) * 2018-11-22 2021-06-25 华为技术有限公司 用于支持ieee 802.11的harq的设备和方法
CN111224742B (zh) * 2018-11-23 2021-08-20 华为技术有限公司 发送信息的方法和装置
CN115361103A (zh) * 2022-08-18 2022-11-18 陈冠宇 用于选择-重复混合式自动重传请求协议的缓冲区管理机制

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496633A1 (en) * 2002-04-12 2005-01-12 Matsushita Electric Industrial Co., Ltd. Multi-carrier communication device and multi-carrier communication method
CN1917418A (zh) * 2005-08-19 2007-02-21 北京三星通信技术研究有限公司 可变子载波映射的设备和方法
CN101076960A (zh) * 2004-12-21 2007-11-21 松下电器产业株式会社 交织装置和交织方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496633A1 (en) * 2002-04-12 2005-01-12 Matsushita Electric Industrial Co., Ltd. Multi-carrier communication device and multi-carrier communication method
CN101076960A (zh) * 2004-12-21 2007-11-21 松下电器产业株式会社 交织装置和交织方法
CN1917418A (zh) * 2005-08-19 2007-02-21 北京三星通信技术研究有限公司 可变子载波映射的设备和方法

Also Published As

Publication number Publication date
CN101594212B (zh) 2012-11-07
CN101594212A (zh) 2009-12-02

Similar Documents

Publication Publication Date Title
JP5101703B2 (ja) ターボ−コーディングされたmimo−ofdm無線システムのための改善された循環式バッファーレートマッチング方法及び装置
TWI445347B (zh) 錯誤控制方法和裝置,以及適應性調變方法和裝置
JP4485597B2 (ja) データ送信装置およびデータ受信装置
TWI427947B (zh) 在多入多出通信系統中的遞增冗餘傳送
KR100474682B1 (ko) 무선통신시스템에서 패킷 재전송을 위한 송수신 장치 및 방법
CN1815939A (zh) Mimo多重发送装置及mimo多重发送方法
WO2009003403A1 (fr) Procédé et dispositif correspondant pour sélection d'un motif d'entrelaçage, et émetteur pour entrelaçage
WO2009065326A1 (fr) Procédé de mappage de bits de modulation d'ordre élevé
WO2009143693A1 (zh) 通信***中采用交织规则重排的数据重传方法及其装置
WO2007073678A1 (fr) Dispositif de demande de répétition automatique hybride pour système wimax
WO2012100484A1 (zh) 数据重构方法及装置
EP3868044B1 (en) Devices and methods for supporting harq for ieee 802.11
KR100651881B1 (ko) Ldpc 부호화된 데이터의 송수신 장치 및 그를 이용하는송수신 방법
WO2009137102A2 (en) Symbol vect0r-level combining wireeless communication system for incremental redundancy harq with mimo
WO2024099857A1 (en) Communication device and method
Kaidi Cross-layer Hybrid Automatic Repeat Request Error Control with Turbo Processing for Wireless System
Akkayaa et al. Generalized Type-II Hybrid SR ARQ Scheme Using Punctured Convolutional Coding and Code Combining Technique in Wavelet Packet Division Multiplexing (WPDM)
Li et al. A new LDPC-COFDM scheme in cooperative communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09753411

Country of ref document: EP

Kind code of ref document: A1