WO2009139374A1 - ガスタービン翼およびこれを備えたガスタービン - Google Patents

ガスタービン翼およびこれを備えたガスタービン Download PDF

Info

Publication number
WO2009139374A1
WO2009139374A1 PCT/JP2009/058824 JP2009058824W WO2009139374A1 WO 2009139374 A1 WO2009139374 A1 WO 2009139374A1 JP 2009058824 W JP2009058824 W JP 2009058824W WO 2009139374 A1 WO2009139374 A1 WO 2009139374A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall portion
cooling
flow path
gas turbine
wing
Prior art date
Application number
PCT/JP2009/058824
Other languages
English (en)
French (fr)
Inventor
羽田 哲
由里 雅則
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP09744309.7A priority Critical patent/EP2186999B8/en
Priority to US12/599,833 priority patent/US8465255B2/en
Priority to CN200980000410.3A priority patent/CN102016235B/zh
Priority to KR1020097025541A priority patent/KR101163290B1/ko
Publication of WO2009139374A1 publication Critical patent/WO2009139374A1/ja
Priority to US13/919,324 priority patent/US20130280094A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/12Two-dimensional rectangular
    • F05D2250/121Two-dimensional rectangular square
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/13Two-dimensional trapezoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer

Definitions

  • the present invention relates to a gas turbine blade having a cooling structure.
  • the cooling fluid flowing in the serpentine flow path has a problem that the temperature rises due to the heat received by cooling the gas turbine blade, and the desired cooling performance cannot be exhibited on the downstream side.
  • measures have been taken to increase the heat transfer performance by providing a turbulator in the flow path, but this is not sufficient in view of the future temperature rise of the combustion gas.
  • the present invention has been made in view of such circumstances, and provides a gas turbine blade capable of improving the heat transfer performance of a serpentine flow path and a gas turbine including the same.
  • the gas turbine blade of the present invention and the gas turbine provided with the same employ the following means. That is, in the gas turbine blade according to the present invention, a plurality of cooling passages extending from the base end side to the tip end side of the blade are provided from the leading edge to the trailing edge of the blade, and at least two of these cooling passages are In the gas turbine blade having a serpentine flow path that is folded back and connected at the base end portion or the distal end portion, the serpentine flow path is a cooling flow path on the most downstream side from a cooling flow path on the most upstream side of the serpentine flow path.
  • the channel cross-sectional area is formed so as to become smaller in order.
  • the flow passage cross-sectional area of the cooling flow path constituting the serpentine flow path is gradually reduced from the most upstream side to the most downstream side, the flow velocity increases as the cooling fluid flows downstream. Therefore, even if the temperature of the cooling fluid rises as it flows downstream, a decrease in heat transfer performance can be compensated for by an increase in flow velocity.
  • the first cooling section that divides the first cooling flow path located on the front edge side and the second cooling flow path adjacent to the rear edge side of the first cooling flow path, and the second cooling A second wall section defining a flow path and a third cooling flow path adjacent to the rear edge side of the second cooling flow path, and a second wall portion adjacent to the rear edge side of the third cooling flow path and the third cooling flow path.
  • the serpentine channel is formed by the second to fourth cooling channels, so that the second cooling channel is located on the most downstream side.
  • the first wall portion and the third wall portion are arranged such that the distance between them is separated from the ventral side of the wing toward the back side, and the second wall portion is substantially parallel to the third wall portion.
  • the second flow path having a substantially triangular cross section is formed by the first wall portion, the second wall portion, and the back side wall portion of the wing, Wall, back side wall portion of the blade may be configured to the third wall portion and the third flow path having a substantially rectangular cross section by the ventral side wall portion of the blade is formed.
  • the first wall portion and the third wall portion are arranged so that the distance between them is separated from the ventral side of the wing toward the back side.
  • the cross-sectional shape formed by the head portion, the abdominal side wall portion of the wing and the back side wall portion of the wing is such that the abdominal side wall portion of the wing is a short side, the back side wall portion of the wing is a long side, the first wall portion and the third wall portion are It becomes a substantially trapezoid with a hypotenuse. This trapezoid was divided into a triangular shape and a quadrangular shape by a second wall portion extending in parallel with the third wall portion.
  • the rectangular shape which does not become flat as much as possible can be obtained by using the belly side wall part of the wing
  • the second wall portion may be connected to the first wall portion without being connected to the abdominal side wall portion of the blade.
  • the abdominal wall portion of the wing is covered with the thickness of the second wall portion. There is no. Therefore, it is possible to secure a heat transfer area in which the abdominal side wall portion of the blade is in direct contact with the cooling fluid without being disturbed by the second wall portion, and the cooling capacity is increased.
  • the first cooling section that divides the first cooling flow path located on the front edge side and the second cooling flow path adjacent to the rear edge side of the first cooling flow path, and the second cooling A second wall section defining a flow path and a third cooling flow path adjacent to the rear edge side of the second cooling flow path, and a second wall portion adjacent to the rear edge side of the third cooling flow path and the third cooling flow path.
  • the serpentine channel is formed by the second to fourth cooling channels, so that the second cooling channel is located on the most downstream side.
  • the first wall portion and the third wall portion are arranged such that the distance therebetween is spaced from the ventral side of the wing toward the back side, and the second wall portion is substantially parallel to the second wall portion.
  • the second channel having a substantially rectangular cross section is formed by the first wall portion, the back side wall portion of the wing, the second wall portion, and the abdominal side wall portion of the wing.
  • the second wall portion, the ventral side wall portion of the blade may be configured to the third flow path having a substantially triangular cross-section by the third wall portion is formed.
  • the first wall portion and the third wall portion are arranged so that the distance between them is separated from the ventral side of the wing toward the back side.
  • the cross-sectional shape formed by the head portion, the abdominal side wall portion of the wing and the back side wall portion of the wing is such that the abdominal side wall portion of the wing is a short side, the back side wall portion of the wing is a long side, the first wall portion and the third wall portion are It becomes a substantially trapezoid with a hypotenuse.
  • the trapezoid is divided into a quadrangular shape and a triangular shape by a second wall portion extending in parallel with the first wall portion.
  • the rectangular shape which does not become flat as much as possible can be obtained by using the belly side wall part of the wing
  • the heat-transfer area of an abdominal side wall part can be enlarged, and the cooling capacity of a wing
  • the second wall portion may be connected to the third wall portion without being connected to the abdominal side wall portion of the blade.
  • the abdominal side wall portion of the wing is covered with the thickness of the second wall portion. There is no. Therefore, it is possible to secure a heat transfer area in which the abdominal side wall portion of the blade is in direct contact with the cooling fluid without being disturbed by the second wall portion, and the cooling capacity is increased.
  • the gas turbine of this invention is good also as a structure provided with one of said gas turbine blades. According to this configuration, since the gas turbine blade described in any of the above is provided, a gas turbine having excellent cooling performance can be provided.
  • the cross-sectional area of the cooling flow path constituting the serpentine flow path is gradually reduced from the most upstream side to the most downstream side, even if the temperature of the cooling fluid rises as it flows downstream, it is transmitted by the increase in flow rate. It can compensate for the decrease in heat. Thereby, high cooling efficiency can be obtained with a small amount of cooling air which is the minimum necessary.
  • FIG. 1 is a cross-sectional view of a gas turbine blade according to a first embodiment of the present invention. It is a cross-sectional view of the gas turbine blade concerning 2nd Embodiment of this invention. It is a cross-sectional view of the gas turbine blade concerning 3rd Embodiment of this invention. It is a longitudinal section of a gas turbine blade concerning one embodiment of the present invention.
  • FIG. 4 shows a longitudinal section of the gas turbine blade according to the present embodiment.
  • the gas turbine blade 1 shown in the figure is suitable for use in a moving blade.
  • the gas turbine blade 1 includes a base portion 6 that forms a platform, and a blade portion 4 that stands up (in the radial direction) above the base portion 6 and that forms a blade profile.
  • the base 6 is provided with a first air introduction path 10A, a second air introduction path 10B, and a third air introduction path 10C through which cooling air that is a cooling fluid is introduced.
  • a cooling air a part of the air compressed by the compressor that compresses the combustion air is used.
  • a plurality of cooling passages extending in the span direction of the blade are formed in the blade portion 4, and the first cooling passage 12A, the second cooling passage 12B, A third cooling channel 12C, a fourth cooling channel 12D, a fifth cooling channel 12E, a sixth cooling channel 12F, a seventh cooling channel 12G, and an eighth cooling channel 12H are formed.
  • the first cooling flow path 12A is connected to the first air introduction path 10A.
  • the cooling air introduced from the first air introduction passage 10A flows in the first cooling passage 12A from the lower side to the upper side (outward in the radial direction), and flows out from a film cooling hole (not shown) to the outside. Cool the outer surface of the.
  • the second to fourth cooling flow paths 12B, 12C, and 12D form a series of serpentine flow paths. That is, the fourth cooling flow path 12D is connected so that it is the most upstream, the third cooling flow path 12C is downstream, and the second cooling flow path 12B is most downstream.
  • the fourth cooling flow path 12D and the third cooling flow path 12C are folded back and connected at the tip of the blade. Further, the third cooling flow path 12C and the second cooling flow path 12B are folded and connected at the base end portion of the blade.
  • the second air introduction path 10B is connected to the fourth cooling flow path 12D, and the cooling air introduced from the second air introduction path 10B is the fourth cooling flow path 12D, the third cooling flow path 12C, It flows in the order of 2 cooling flow paths 12B.
  • the cooling air that has flowed to the second cooling flow path 12B flows out from the film cooling hole (not shown) to cool the outer surface of the blade.
  • the fifth to seventh cooling channels 12E, 12F, 12G form a series of serpentine channels. That is, the fifth cooling channel 12E is connected to the most upstream, the sixth cooling channel 12F is connected to the downstream, and the seventh cooling channel 12G is connected to the most downstream.
  • the fifth cooling flow path 12E and the sixth cooling flow path 12F are folded and connected at the tip of the blade. Further, the sixth cooling flow path 12F and the seventh cooling flow path 12G are folded and connected at the base end portion of the blade.
  • the third air introduction path 10C is connected to the fifth cooling flow path 12E, and the cooling air introduced from the third air introduction path 10C is the fifth cooling flow path 12E, the sixth cooling flow path 12F, It flows in the order of 7 cooling flow paths 12G.
  • the cooling air that has flowed into the seventh cooling flow path 12G flows out from the film cooling hole (not shown) to cool the outer surface of the blade.
  • Cooling air is introduced into the eighth cooling passage 12H from an air introduction passage (not shown), and the introduced cooling air flows upward (radially outward) in the eighth cooling passage 12H and the trailing edge of the blade. Out to the outside.
  • FIG. 1 shows a cross section of the gas turbine blade 1.
  • a symbol with a solid point in the circle means that the cooling air flows radially outward (from below to above in FIG. 4) in the channel.
  • a symbol with a cross in the circle means that the cooling air flows inward in the radial direction (from top to bottom in FIG. 4).
  • the first cooling channel 12A and the second cooling channel 12B are partitioned by the first wall portion 22A.
  • the second cooling channel 12B and the third cooling channel 12C are the second wall portion 22B
  • the third cooling channel 12C and the fourth cooling channel 12D are the third wall portion 22C and the fourth cooling channel 12D.
  • the fifth cooling channel 12E is the fourth wall 22D
  • the fifth cooling channel 12E and the sixth cooling channel 12F are the fifth wall 22E
  • the sixth cooling channel 12F and the seventh cooling channel 12G are the sixth wall.
  • the part 22F, the seventh cooling channel 12G, and the eighth cooling channel 12H are each partitioned by the seventh wall 22G.
  • the serpentine flow path formed by the second to fourth cooling flow paths 12B, 12C, and 12D has a flow path cross-sectional area that is sequentially reduced according to the flow direction of the cooling air. That is, the cross-sectional area of the third cooling flow path 12C downstream of the fourth cooling flow path 12D that is the most upstream is smaller than that of the third cooling flow path 12C.
  • the cooling channel 12B has a smaller channel cross-sectional area.
  • the serpentine flow paths formed by the fifth to seventh cooling flow paths 12E, 12F, and 12G also have flow path cross-sectional areas that are sequentially reduced in accordance with the flow direction of the cooling air. That is, the cross-sectional area of the sixth cooling flow path 12F downstream of the fifth cooling flow path 12E that is the most upstream is smaller than that of the sixth cooling flow path 12F.
  • the cooling channel 12G has a smaller channel cross-sectional area.
  • the flow passage cross-sectional area of the cooling flow passage constituting the serpentine flow passage sequentially smaller from the most upstream side to the most downstream side, the following effects can be obtained.
  • the cooling air As the cooling air flows through the serpentine flow path, the cooling air receives the heat and rises in temperature by cooling the blades, so that the cooling capacity decreases.
  • the cross-sectional area of the serpentine flow path is sequentially reduced, the flow velocity can be increased as the cooling air flows downstream. Therefore, even if the temperature of the cooling fluid rises as it flows downstream, a decrease in heat transfer performance can be compensated for by increasing the flow velocity, and a desired cooling capacity can be exhibited.
  • the first wall portion 22A and the third wall portion 22C are arranged such that the distance between them is separated from the abdominal side wall portion 4A of the wing toward the back side wall portion 4B.
  • the second wall portion 22B extends substantially parallel to the third wall portion 22C.
  • the 2nd flow path 12B which has a substantially triangular cross section is formed of 22 A of 2nd wall parts, 22 A of 2nd wall parts, and the back wall part 4B of a wing
  • a third flow path 12C having a substantially rectangular cross section is formed by the second wall portion 22B, the back side wall portion 4B of the wing, the third wall portion 22C, and the abdominal side wall portion 4A of the wing.
  • the first wall portion 22A and the third wall portion 22C are arranged such that the distance between them is separated from the abdominal side wall portion 4A of the wing toward the back side wall portion 4B, the first wall portion 22A and the third wall portion 22C are arranged.
  • the cross-sectional shape formed by the wall portion 22C, the wing ventral side wall portion 4A, and the wing back side wall portion 4B is such that the wing ventral side wall portion 4A has a short side, the wing back side wall portion 4B has a long side, and the first wall portion. 22A and the 3rd wall part 22C become a substantially trapezoid made into the hypotenuse.
  • the trapezoid is divided into a triangular shape and a quadrangular shape by the second wall portion 22B extending in parallel with the third wall portion 22C.
  • the rectangular shape which is not flattened as much as possible can be obtained by using the ventral side wall portion 4A of the wing which becomes the short side of the trapezoid as one side of the quadrangle. Therefore, the heat transfer area of the abdominal wall portion 4A can be increased, and the cooling capacity of the blade is increased.
  • the second wall portion 22B is connected to the first wall portion 22A without being connected to the abdominal side wall portion 4A of the wing.
  • the effect by this is as follows. If the second wall portion 22B is connected to the abdominal side wall portion 4A of the wing, and the abdominal side wall portion 4A of the wing is covered by the thickness of the second wall portion 22B, this covered portion interferes with cooling. Air cannot directly contact the flank side wall portion 4A of the wing, and cooling may be insufficient. Therefore, in the present embodiment, the second wall portion 22B is connected to the first wall portion 22A without being connected to the abdominal wall portion 4A of the wing, so that the abdominal wall portion 4A of the wing is thicker than the second wall portion 22B. It was made not to be covered by. As a result, the heat transfer area in which the ventral side wall portion 4A of the blade is in direct contact with the cooling fluid without being obstructed by the second wall portion 22B can be secured, and the cooling capacity is increased.
  • the fourth to sixth wall portions 22D, 22E, and 22F are also substantially parallel to the third wall portion 22C. This is because there is an advantage that when the core for forming the cooling flow path used when casting the gas turbine blade 1 is manufactured, the die can be punched in the same direction.
  • the second wall portion 22B extends substantially parallel to the first wall portion 22A.
  • the 2nd flow path 12B which has a substantially square cross section is formed by 22 A of 1st wall parts, the back side wall part 4B of a wing
  • a third flow path 12C having a substantially triangular cross section is formed by the second wall portion 22B, the back wall portion 4B of the wing, and the third wall portion 22C.
  • the first wall portion 22A and the third wall portion 22C are arranged such that the distance between them is separated from the abdominal side wall portion 4A of the wing toward the back side wall portion 4B, the first wall portion 22A and the third wall portion 22C are arranged.
  • the cross-sectional shape formed by the wall portion 22C, the wing ventral side wall portion 4A, and the wing back side wall portion 4B is such that the wing ventral side wall portion 4A has a short side, the wing back side wall portion 4B has a long side, and the first wall portion. 22A and the 3rd wall part 22C become a substantially trapezoid made into the hypotenuse.
  • the trapezoid is divided into a quadrangular shape and a triangular shape by the second wall portion 22B extending in parallel with the first wall portion 22A.
  • the rectangular shape which is not flattened as much as possible can be obtained by using the ventral side wall portion 4A of the wing which becomes the short side of the trapezoid as one side of the quadrangle. Therefore, the heat transfer area of the abdominal wall portion 4A can be increased, and the cooling capacity of the blade is increased.
  • the second wall portion 22B is connected to the third wall portion 22C without being connected to the abdominal side wall portion 4A of the wing.
  • the effect by this is as follows. If the second wall portion 22B is connected to the abdominal side wall portion 4A of the wing, and the abdominal side wall portion 4A of the wing is covered by the thickness of the second wall portion 22B, this covered portion interferes with cooling. Air cannot directly contact the flank side wall portion 4A of the wing, and cooling may be insufficient. Therefore, in the present embodiment, the second wall portion 22B is connected to the third wall portion 22C without being connected to the wing belly side wall portion 4A, so that the wing belly side wall portion 4A is thicker than the second wall portion 22B. It was made not to be covered by. As a result, the heat transfer area in which the ventral side wall portion 4A of the blade is in direct contact with the cooling fluid without being obstructed by the second wall portion 22B can be secured, and the cooling capacity is increased.
  • FIG. 1 a third embodiment of the present invention will be described with reference to FIG.
  • This embodiment is different from the first embodiment and the second embodiment in the shape of the second wall portion, and the other configurations are the same. Accordingly, only the differences will be described below, and the same operation and effect will be obtained for the other points.
  • the second cooling channel and the third cooling channel are not divided into a triangular shape and a rectangular shape by the second wall portion. Therefore, the effect derived from these configurations is not achieved.
  • the second wall portion 25 has a bent shape. That is, the ventral portion 25a of the second wall portion 25 is formed in parallel with the third wall portion 22C, and the back portion 25b of the second wall portion 25 is formed in parallel with the first wall portion 22A. In this way, by forming the second wall portion 25 to be bent, the channel cross-sectional area ratio of the second cooling channel 12B and the third cooling channel 12C constituting the serpentine channel can be adjusted. Further, in the present embodiment, similarly to the first embodiment and the second embodiment, the serpentine flow path constituted by the second to fourth cooling flow paths 12B, 12C, and 12D, and the fifth to seventh cooling flows.
  • the cross-sectional area of the serpentine flow path constituted by the paths 12E, 12F, and 12G is formed to become smaller in order from the most upstream side to the most downstream side, the flow velocity is increased as the cooling air flows downstream. Even if the temperature of the cooling fluid rises as it flows downstream, a decrease in heat transfer can be compensated for by increasing the flow velocity, and a desired cooling capacity can be exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 サーペンタイン流路の伝熱性能を向上させることができるガスタービン翼を提供する。翼の基端部側から先端部側にわたって延在する冷却流路(12)が翼の前縁から後縁にかけて複数設けられ、これら冷却流路(12)の少なくとも2つが基端部または先端部にて折り返して接続されたサーペンタイン流路を有するガスタービン翼(1)において、サーペンタイン流路は、サーペンタイン流路の最上流側の冷却流路(12)から最下流側の冷却流路(12)にかけて、流路断面積が順次小さく形成されている。

Description

ガスタービン翼およびこれを備えたガスタービン
 本発明は、冷却構造を備えたガスタービン翼に関するものである。
 近年、ガスタービン性能向上のため、ガスタービン翼に流入する燃焼ガスの入口温度は上昇傾向にあり、将来的には1700℃に達する。このため、ガスタービン翼の冷却構造が種々開発されている。その冷却構造の一つとして、翼の内部にスパン方向に沿って冷却流路を複数形成し、これらを翼の基端部または先端部にて折り返して接続したサーペンタイン流路が知られている(特許文献1参照)。
特開平8-144704号公報(図1参照)
 サーペンタイン流路内を流れる冷却流体は、ガスタービン翼を冷却することによって受け取った熱によって温度上昇し、下流側では所望の冷却性能を発揮できないという問題がある。これに対して、流路内にタービュレータを設けて伝熱性能を増大させるといった対策が施されているが、将来的な燃焼ガスの温度上昇を考慮すると十分とはいえない。
 本発明は、このような事情に鑑みてなされたものであって、サーペンタイン流路の伝熱性能を向上させることができるガスタービン翼およびこれを備えたガスタービンを提供する。
 上記課題を解決するために、本発明のガスタービン翼およびこれを備えたガスタービンは以下の手段を採用する。
 すなわち、本発明にかかるガスタービン翼は、翼の基端部側から先端部側にわたって延在する冷却流路が翼の前縁から後縁にかけて複数設けられ、これら冷却流路の少なくとも2つが前記基端部または前記先端部にて折り返して接続されたサーペンタイン流路を有するガスタービン翼において、前記サーペンタイン流路は、該サーペンタイン流路の最上流側の冷却流路から最下流側の冷却流路にかけて、流路断面積が順次小さく形成されていることを特徴とする。
 サーペンタイン流路を構成する冷却流路の流路断面積が最上流側から最下流側にかけて順次小さく形成されているので、冷却流体が下流に流れるにしたがい流速が上昇する。したがって、下流に流れるにしたがい冷却流体の温度が上昇しても流速の増大によって伝熱性能の低下を補うことができる。
 本発明のガスタービン翼では、前縁側に位置する第1冷却流路と該第1冷却流路の後縁側に隣接する第2冷却流路とを区画する第1壁部と、前記第2冷却流路と該第2冷却流路の後縁側に隣接する第3冷却流路とを区画する第2壁部と、前記第3冷却流路と該第3冷却流路の後縁側に隣接する第4冷却流路とを区画する第3壁部とを備え、前記第2冷却流路が最下流側とされるように、前記第2乃至第4冷却流路によって前記サーペンタイン流路が形成され、前記第1壁部と前記第3壁部とは、これらの間隔が翼の腹側から背側に向かって離間するように配置され、前記第2壁部は、前記第3壁部と略平行に延在し、前記第1壁部、前記第2壁部および翼の背側壁部によって、略三角形状の横断面を有する前記第2流路が形成され、前記第2壁部、翼の背側壁部、前記第3壁部および翼の腹側壁部によって略四角形状の横断面を有する前記第3流路が形成されている構成としてもよい。
 この構成によれば、第1壁部と第3壁部とは、これらの間隔が翼の腹側から背側に向かって離間するように配置されているので、第1壁部、第3壁部、翼の腹側壁部および翼の背側壁部によって形成される横断面形状は、翼の腹側壁部が短辺、翼の背側壁部が長辺、第1壁部および第3壁部が斜辺とされた略台形となる。この台形を、第3壁部と平行に延在させた第2壁部によって三角形状と四角形状に分けることとした。これにより、台形の短辺となる翼の腹側壁部を四角形の一辺として用いることとして、可及的に扁平とならない四角形状を得ることができる。したがって、腹側壁部の伝熱面積を大きくすることができ、翼の冷却能力が増大する。
 本発明のガスタービン翼では、前記第2壁部は、翼の腹側壁部に接続されずに、前記第1壁部に接続されている構成としてもよい。
 この構成によれば、第2壁部を翼の腹側壁部に接続せずに第1壁部に接続することとしたので、翼の腹側壁部が第2壁部の肉厚によって覆われることがない。したがって、翼の腹側壁部が第2壁部によって邪魔されずに冷却流体に直接的に接する伝熱面積を確保することができ、冷却能力が増大する。
 本発明のガスタービン翼では、前縁側に位置する第1冷却流路と該第1冷却流路の後縁側に隣接する第2冷却流路とを区画する第1壁部と、前記第2冷却流路と該第2冷却流路の後縁側に隣接する第3冷却流路とを区画する第2壁部と、前記第3冷却流路と該第3冷却流路の後縁側に隣接する第4冷却流路とを区画する第3壁部とを備え、前記第2冷却流路が最下流側とされるように、前記第2乃至第4冷却流路によって前記サーペンタイン流路が形成され、前記第1壁部と前記第3壁部とは、これらの間隔が翼の腹側から背側に向かって離間するように配置され、前記第2壁部は、前記第2壁部と略平行に延在し、前記第1壁部、翼の背側壁部、前記第2壁部および翼の腹側壁部によって、略四角形状の横断面を有する前記第2流路が形成され、前記第2壁部、翼の腹側壁部、前記第3壁部によって略三角形状の横断面を有する前記第3流路が形成されている構成としてもよい。
 この構成によれば、第1壁部と第3壁部とは、これらの間隔が翼の腹側から背側に向かって離間するように配置されているので、第1壁部、第3壁部、翼の腹側壁部および翼の背側壁部によって形成される横断面形状は、翼の腹側壁部が短辺、翼の背側壁部が長辺、第1壁部および第3壁部が斜辺とされた略台形となる。この台形を、第1壁部と平行に延在させた第2壁部によって四角形状と三角形状に分けることとした。これにより、台形の短辺となる翼の腹側壁部を四角形の一辺として用いることとして、可及的に扁平とならない四角形状を得ることができる。これにより、腹側壁部の伝熱面積を大きくすることができ、翼の冷却能力が増大する。
 本発明のガスタービン翼では、前記第2壁部は、翼の腹側壁部に接続されずに、前記第3壁部に接続されている構成としてもよい。
 この構成によれば、第2壁部を翼の腹側壁部に接続せずに第3壁部に接続することとしたので、翼の腹側壁部が第2壁部の肉厚によって覆われることがない。したがって、翼の腹側壁部が第2壁部によって邪魔されずに冷却流体に直接的に接する伝熱面積を確保することができ、冷却能力が増大する。
 本発明のガスタービンは、上記のいずれかのガスタービン翼を備えている構成としてもよい。
 この構成によれば、上記のいずれかに記載されたガスタービン翼を備えているので、冷却性能に優れたガスタービンを提供することができる。
 サーペンタイン流路を構成する冷却流路の流路断面積が最上流側から最下流側にかけて順次小さく形成されているので、下流に流れるにしたがい冷却流体の温度が上昇しても流速の増大によって伝熱の低下を補うことができる。これにより、必要最小限とした少ない冷却空気量で高い冷却効率を得ることができる。
本発明の第1実施形態にかかるガスタービン翼の横断面図である。 本発明の第2実施形態にかかるガスタービン翼の横断面図である。 本発明の第3実施形態にかかるガスタービン翼の横断面図である。 本発明の一実施形態にかかるガスタービン翼の縦断面図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 図4には、本実施形態にかかるガスタービン翼の縦断面が示されている。
 同図に示されたガスタービン翼1は、動翼に用いられて好適なものである。ガスタービン翼1は、プラットフォームを形成する基部6と、基部6の上方(半径方向)に立設するとともに翼のプロファイルを形成する翼部4とを備えている。
 基部6には、冷却流体である冷却空気が導入される第1空気導入路10A、第2空気導入路10Bおよび第3空気導入路10Cが設けられている。冷却空気は、燃焼用空気を圧縮する圧縮機によって圧縮された空気の一部が用いられる。
 翼部4には、翼のスパン方向に延在する複数の冷却流路が形成されており、翼の前縁から後縁に向かって、第1冷却流路12A、第2冷却流路12B、第3冷却流路12C、第4冷却流路12D、第5冷却流路12E、第6冷却流路12F、第7冷却流路12Gおよび第8冷却流路12Hが形成されている。
 第1冷却流路12Aは、第1空気導入路10Aと接続されている。第1空気導入路10Aから導入された冷却空気は、第1冷却流路12A内を下方から上方へと(半径方向外側へと)流れ、図示しないフィルム冷却穴から外部へと流出して、翼の外表面を冷却する。
 第2乃至第4冷却流路12B,12C,12Dは、一連のサーペンタイン流路を形成している。すなわち、第4冷却流路12Dが最上流、第3冷却流路12Cがその下流、第2冷却流路12Bが最下流となるように接続されている。第4冷却流路12Dと第3冷却流路12Cは、翼の先端部にて折り返して接続されている。さらに、第3冷却流路12Cと第2冷却流路12Bは、翼の基端部にて折り返して接続されている。第4冷却流路12Dに対して、第2空気導入路10Bが接続されており、第2空気導入路10Bから導入された冷却空気が第4冷却流路12D、第3冷却流路12C、第2冷却流路12Bの順に流れる。第2冷却流路12Bへと流れた冷却空気は、フィルム冷却穴(図示せず)から外部へと流出して、翼の外表面を冷却する。
 第5乃至第7冷却流路12E,12F,12Gは、一連のサーペンタイン流路を形成している。すなわち、第5冷却流路12Eが最上流、第6冷却流路12Fがその下流、第7冷却流路12Gが最下流となるように接続されている。第5冷却流路12Eと第6冷却流路12Fは、翼の先端部にて折り返して接続されている。さらに、第6冷却流路12Fと第7冷却流路12Gは、翼の基端部にて折り返して接続されている。第5冷却流路12Eに対して、第3空気導入路10Cが接続されており、第3空気導入路10Cから導入された冷却空気が第5冷却流路12E、第6冷却流路12F、第7冷却流路12Gの順に流れる。第7冷却流路12Gへと流れた冷却空気は、フィルム冷却穴(図示せず)から外部へと流出して、翼の外表面を冷却する。
 第8冷却流路12Hには図示しない空気導入路から冷却空気が導入され、導入された冷却空気は、第8冷却流路12H内を上方(半径方向外側)へと流れるとともに、翼の後縁から外部へと流出する。
 図1には、ガスタービン翼1の横断面が示されている。同図の各冷却流路12に記入された記号のうち、○内に中実点がある記号は、流路内を半径方向外側(図4において下方から上方)に冷却空気が流れることを意味し、○内に×印がある記号は、流路内を半径方向内側(図4において上方から下方)に冷却空気が流れることを意味する。
 同図に示されているように、第1冷却流路12Aと第2冷却流路12Bとは、第1壁部22Aによって仕切られている。同様に、第2冷却流路12Bと第3冷却流路12Cは第2壁部22B、第3冷却流路12Cと第4冷却流路12Dは第3壁部22C、第4冷却流路12Dと第5冷却流路12Eは第4壁部22D、第5冷却流路12Eと第6冷却流路12Fは第5壁部22E、第6冷却流路12Fと第7冷却流路12Gは第6壁部22F、第7冷却流路12Gと第8冷却流路12Hは第7壁部22Gによって、それぞれ仕切られている。
 第2乃至第4冷却流路12B,12C,12Dによって形成されるサーペンタイン流路は、冷却空気の流れ方向にしたがって流路断面積が順次小さく形成されている。すなわち、最上流の第4冷却流路12Dよりも、その下流の第3冷却流路12Cの方が流路断面積が小さくされており、第3冷却流路12Cよりも、その下流の第2冷却流路12Bの方が流路断面積が小さくされている。
 また、第5乃至第7冷却流路12E,12F,12Gによって形成されるサーペンタイン流路についても、冷却空気の流れ方向にしたがって流路断面積が順次小さく形成されている。すなわち、最上流の第5冷却流路12Eよりも、その下流の第6冷却流路12Fの方が流路断面積が小さくされており、第6冷却流路12Fよりも、その下流の第7冷却流路12Gの方が流路断面積が小さくされている。
 このように、サーペンタイン流路を構成する冷却流路の流路断面積を最上流側から最下流側にかけて順次小さく形成することにより、以下の作用効果を奏する。
 冷却空気は、サーペンタイン流路を流れるに従い、翼を冷却することによって熱を受け取り温度上昇するので、冷却能力が低下する。本実施形態では、サーペンタイン流路の流路断面積を順次小さくすることとしたので、冷却空気が下流に流れるにしたがい流速を上昇させることができる。したがって、下流に流れるにしたがい冷却流体の温度が上昇しても流速の増大によって伝熱性能の低下を補うことができ、所望の冷却能力を発揮することができる。
 第1壁部22Aと第3壁部22Cとは、これらの間隔が翼の腹側壁部4Aから背側壁部4Bに向かって離間するように配置されている。そして、第2壁部22Bは、第3壁部22Cと略平行に延在している。これにより、第1壁部22A、第2壁部22Bおよび翼の背側壁部4Bによって、略三角形状の横断面を有する第2流路12Bが形成されている。そして、第2壁部22B、翼の背側壁部4B、第3壁部22Cおよび翼の腹側壁部4Aによって略四角形状の横断面を有する第3流路12Cが形成されている。
 このような構成とすることにより、以下の作用効果を奏する。
 第1壁部22Aと第3壁部22Cとは、これらの間隔が翼の腹側壁部4Aから背側壁部4Bに向かって離間するように配置されているので、第1壁部22A、第3壁部22C、翼の腹側壁部4Aおよび翼の背側壁部4Bによって形成される横断面形状は、翼の腹側壁部4Aが短辺、翼の背側壁部4Bが長辺、第1壁部22Aおよび第3壁部22Cが斜辺とされた略台形となる。この台形を、第3壁部22Cと平行に延在させた第2壁部22Bによって三角形状と四角形状に分けることとした。これにより、台形の短辺となる翼の腹側壁部4Aを四角形の一辺として用いることとして、可及的に扁平とならない四角形状を得ることができる。したがって、腹側壁部4Aの伝熱面積を大きくすることができ、翼の冷却能力が増大する。
 また、第2壁部22Bは、翼の腹側壁部4Aに接続されずに、第1壁部22Aに接続されている。これによる作用効果は以下の通りである。
 仮に、第2壁部22Bを翼の腹側壁部4Aに接続し、翼の腹側壁部4Aを第2壁部22Bの肉厚によって覆ってしまうと、この覆われた部分が邪魔をして冷却空気が翼の腹側壁部4Aに直接的に接触することができず、冷却が不十分となるおそれがある。そこで、本実施形態では、第2壁部22Bを翼の腹側壁部4Aに接続せずに第1壁部22Aに接続することで、翼の腹側壁部4Aが第2壁部22Bの肉厚によって覆われることがないようにした。これにより、翼の腹側壁部4Aが第2壁部22Bによって邪魔されずに冷却流体に直接的に接する伝熱面積を確保することができ、冷却能力が増大する。
 なお、本実施形態では、第4乃至第6壁部22D,22E,22Fについても、第3壁部22Cと略平行となっている。これは、ガスタービン翼1を鋳造する際に用いる冷却流路形成用の中子を製造する際に、同一方向に型抜きができるという利点があるからである。
[第2実施形態]
 次に、本発明の第2実施形態について、図2を用いて説明する。本実施形態は、第1実施形態に対して、第2壁部24Bの延在方向が異なり、その他の構成については同様である。したがって、以下では相違点のみついて説明し、その他については同様の作用効果を奏するものとする。
 第2壁部22Bは、第1壁部22Aと略平行に延在している。これにより、第1壁部22A、翼の背側壁部4B、第2壁部22Bおよび翼の腹側壁部4Aによって、略四角形状の横断面を有する第2流路12Bが形成されている。そして、第2壁部22B、翼の背側壁部4B、第3壁部22Cによって略三角形状の横断面を有する第3流路12Cが形成されている。
 このような構成とすることにより、以下の作用効果を奏する。
 第1壁部22Aと第3壁部22Cとは、これらの間隔が翼の腹側壁部4Aから背側壁部4Bに向かって離間するように配置されているので、第1壁部22A、第3壁部22C、翼の腹側壁部4Aおよび翼の背側壁部4Bによって形成される横断面形状は、翼の腹側壁部4Aが短辺、翼の背側壁部4Bが長辺、第1壁部22Aおよび第3壁部22Cが斜辺とされた略台形となる。この台形を、第1壁部22Aと平行に延在させた第2壁部22Bによって四角形状と三角形状に分けることとした。これにより、台形の短辺となる翼の腹側壁部4Aを四角形の一辺として用いることとして、可及的に扁平とならない四角形状を得ることができる。したがって、腹側壁部4Aの伝熱面積を大きくすることができ、翼の冷却能力が増大する。
 また、第2壁部22Bは、翼の腹側壁部4Aに接続されずに、第3壁部22Cに接続されている。これによる作用効果は以下の通りである。
 仮に、第2壁部22Bを翼の腹側壁部4Aに接続し、翼の腹側壁部4Aを第2壁部22Bの肉厚によって覆ってしまうと、この覆われた部分が邪魔をして冷却空気が翼の腹側壁部4Aに直接的に接触することができず、冷却が不十分となるおそれがある。そこで、本実施形態では、第2壁部22Bを翼の腹側壁部4Aに接続せずに第3壁部22Cに接続することで、翼の腹側壁部4Aが第2壁部22Bの肉厚によって覆われることがないようにした。これにより、翼の腹側壁部4Aが第2壁部22Bによって邪魔されずに冷却流体に直接的に接する伝熱面積を確保することができ、冷却能力が増大する。
[第3実施形態]
 次に、本発明の第3実施形態について、図3を用いて説明する。本実施形態は、第1実施形態および第2実施形態に対して、第2壁部の形状が異なり、その他の構成については同様である。したがって、以下では相違点のみついて説明し、その他については同様の作用効果を奏するものとする。なお、本実施形態は、第1実施形態および第2実施形態と異なり、第2壁部によって第2冷却流路および第3冷却流路を三角形状および四角形状に分けるものではない。したがって、これらの構成から導かれる作用効果は奏しない。
 第2壁部25は、屈曲された形状となっている。すなわち、第2壁部25の腹側部分25aは第3壁部22Cと平行に形成され、第2壁部25の背側部分25bは第1壁部22Aと平行に形成されている。このように、第2壁部25を屈曲して形成することにより、サーペンタイン流路を構成する第2冷却流路12B及び第3冷却流路12Cの流路断面積比を調整することができる。
 また、本実施形態は、第1実施形態および第2実施形態と同様に、第2乃至第4冷却流路12B,12C,12Dによって構成されるサーペンタイン流路、及び、第5乃至第7冷却流路12E,12F,12Gによって構成されるサーペンタイン流路の流路断面積が最上流側から最下流側にかけて順次小さく形成するようになっているので、冷却空気が下流に流れるにしたがい流速を上昇させることができ、下流に流れるにしたがい冷却流体の温度が上昇しても流速の増大によって伝熱の低下を補うことができ、所望の冷却能力を発揮することができる。
1 ガスタービン翼
4 翼部
6 基部
12A 第1冷却流路
12B 第2冷却流路
12C 第3冷却流路
12D 第4冷却流路
22A 第1壁部
22B 第2壁部
22C 第3壁部

Claims (6)

  1.  翼の基端部側から先端部側にわたって延在する冷却流路が翼の前縁から後縁にかけて複数設けられ、これら冷却流路の少なくとも2つが前記基端部または前記先端部にて折り返して接続されたサーペンタイン流路を有するガスタービン翼において、
     前記サーペンタイン流路は、該サーペンタイン流路の最上流側の冷却流路から最下流側の冷却流路にかけて、流路断面積が順次小さく形成されていることを特徴とするガスタービン翼。
  2.  前縁側に位置する第1冷却流路と該第1冷却流路の後縁側に隣接する第2冷却流路とを区画する第1壁部と、
     前記第2冷却流路と該第2冷却流路の後縁側に隣接する第3冷却流路とを区画する第2壁部と、
     前記第3冷却流路と該第3冷却流路の後縁側に隣接する第4冷却流路とを区画する第3壁部と、
     を備え、
     前記第2冷却流路が最下流側とされるように、前記第2乃至第4冷却流路によって前記サーペンタイン流路が形成され、
     前記第1壁部と前記第3壁部とは、これらの間隔が翼の腹側から背側に向かって離間するように配置され、
     前記第2壁部は、前記第3壁部と略平行に延在し、
     前記第1壁部、前記第2壁部および翼の背側壁部によって、略三角形状の横断面を有する前記第2流路が形成され、
     前記第2壁部、翼の背側壁部、前記第3壁部および翼の腹側壁部によって略四角形状の横断面を有する前記第3流路が形成されていることを特徴とする請求項1に記載のガスタービン翼。
  3.  前記第2壁部は、翼の腹側壁部に接続されずに、前記第1壁部に接続されていることを特徴とする請求項2に記載のガスタービン翼。
  4.  前縁側に位置する第1冷却流路と該第1冷却流路の後縁側に隣接する第2冷却流路とを区画する第1壁部と、
     前記第2冷却流路と該第2冷却流路の後縁側に隣接する第3冷却流路とを区画する第2壁部と、
     前記第3冷却流路と該第3冷却流路の後縁側に隣接する第4冷却流路とを区画する第3壁部と、
     を備え、
     前記第2冷却流路が最下流側とされるように、前記第2乃至第4冷却流路によって前記サーペンタイン流路が形成され、
     前記第1壁部と前記第3壁部とは、これらの間隔が翼の腹側から背側に向かって離間するように配置され、
     前記第2壁部は、前記第2壁部と略平行に延在し、
     前記第1壁部、翼の背側壁部、前記第2壁部および翼の腹側壁部によって、略四角形状の横断面を有する前記第2流路が形成され、
     前記第2壁部、翼の腹側壁部、前記第3壁部によって略三角形状の横断面を有する前記第3流路が形成されていることを特徴とする請求項1に記載のガスタービン翼。
  5.  前記第2壁部は、翼の腹側壁部に接続されずに、前記第3壁部に接続されていることを特徴とする請求項4に記載のガスタービン翼。
  6.  請求項1から5のいずれかに記載されたガスタービン翼を備えていることを特徴とするガスタービン。
PCT/JP2009/058824 2008-05-14 2009-05-12 ガスタービン翼およびこれを備えたガスタービン WO2009139374A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09744309.7A EP2186999B8 (en) 2008-05-14 2009-05-12 Gas turbine blade and gas turbine equipped with the same
US12/599,833 US8465255B2 (en) 2008-05-14 2009-05-12 Gas turbine blade and gas turbine having the same
CN200980000410.3A CN102016235B (zh) 2008-05-14 2009-05-12 燃气轮机叶片和具备该燃气轮机叶片的燃气轮机
KR1020097025541A KR101163290B1 (ko) 2008-05-14 2009-05-12 가스 터빈 블레이드 및 이것을 구비한 가스 터빈
US13/919,324 US20130280094A1 (en) 2008-05-14 2013-06-17 Gas turbine blade and gas turbine having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008127702A JP5189406B2 (ja) 2008-05-14 2008-05-14 ガスタービン翼およびこれを備えたガスタービン
JP2008-127702 2008-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/919,324 Continuation US20130280094A1 (en) 2008-05-14 2013-06-17 Gas turbine blade and gas turbine having the same

Publications (1)

Publication Number Publication Date
WO2009139374A1 true WO2009139374A1 (ja) 2009-11-19

Family

ID=41318741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058824 WO2009139374A1 (ja) 2008-05-14 2009-05-12 ガスタービン翼およびこれを備えたガスタービン

Country Status (6)

Country Link
US (2) US8465255B2 (ja)
EP (1) EP2186999B8 (ja)
JP (1) JP5189406B2 (ja)
KR (1) KR101163290B1 (ja)
CN (2) CN102016235B (ja)
WO (1) WO2009139374A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189406B2 (ja) * 2008-05-14 2013-04-24 三菱重工業株式会社 ガスタービン翼およびこれを備えたガスタービン
US8974182B2 (en) * 2012-03-01 2015-03-10 General Electric Company Turbine bucket with a core cavity having a contoured turn
WO2015020720A2 (en) * 2013-06-17 2015-02-12 United Technologies Corporation Gas turbine engine component with rib support
JP6245740B2 (ja) * 2013-11-20 2017-12-13 三菱日立パワーシステムズ株式会社 ガスタービン翼
KR101790146B1 (ko) * 2015-07-14 2017-10-25 두산중공업 주식회사 외부 케이싱으로 우회하는 냉각공기 공급유로가 마련된 냉각시스템을 포함하는 가스터빈.
CN108026775B (zh) * 2015-08-28 2020-03-13 西门子公司 具有流动移位特征件的内部冷却的涡轮翼型件
EP3176371A1 (en) * 2015-12-03 2017-06-07 Siemens Aktiengesellschaft Component for a fluid flow engine and method
EP3433040B1 (en) * 2016-04-27 2023-01-25 Siemens Energy, Inc. Gas turbine blade with corrugated tip wall and manufacturing method thereof
JP6996947B2 (ja) * 2017-11-09 2022-01-17 三菱パワー株式会社 タービン翼及びガスタービン
DE102021204782A1 (de) * 2021-05-11 2022-11-17 Siemens Energy Global GmbH & Co. KG Verbesserte Schaufelspitze im Neuteil oder repariertem Bauteil und Verfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189603A (ja) * 1993-12-28 1995-07-28 Toshiba Corp タービン冷却翼及び冷却部材
JPH11200893A (ja) * 1998-01-12 1999-07-27 Hitachi Ltd 冷媒回収型ガスタービン
JP2000213304A (ja) * 1998-12-09 2000-08-02 General Electric Co <Ge> 側壁インピンジメント冷却チャンバ―を備えた後方流動蛇行エ―ロフォイル冷却回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533711A (en) * 1966-02-26 1970-10-13 Gen Electric Cooled vane structure for high temperature turbines
US5165852A (en) * 1990-12-18 1992-11-24 General Electric Company Rotation enhanced rotor blade cooling using a double row of coolant passageways
US5156526A (en) * 1990-12-18 1992-10-20 General Electric Company Rotation enhanced rotor blade cooling using a single row of coolant passageways
US5660524A (en) * 1992-07-13 1997-08-26 General Electric Company Airfoil blade having a serpentine cooling circuit and impingement cooling
JP3004478B2 (ja) * 1992-07-22 2000-01-31 三菱重工業株式会社 ガスタービン空冷動翼の冷却空気通路断面形状
US5348446A (en) * 1993-04-28 1994-09-20 General Electric Company Bimetallic turbine airfoil
JP3040674B2 (ja) 1994-11-16 2000-05-15 三菱重工業株式会社 ガスタービン冷却動翼
US5498133A (en) * 1995-06-06 1996-03-12 General Electric Company Pressure regulated film cooling
JP3477296B2 (ja) 1995-11-21 2003-12-10 三菱重工業株式会社 ガスタービン翼
JP2000230401A (ja) 1999-02-09 2000-08-22 Mitsubishi Heavy Ind Ltd ガスタービン動翼
US6206638B1 (en) * 1999-02-12 2001-03-27 General Electric Company Low cost airfoil cooling circuit with sidewall impingement cooling chambers
US6672836B2 (en) 2001-12-11 2004-01-06 United Technologies Corporation Coolable rotor blade for an industrial gas turbine engine
US7186085B2 (en) 2004-11-18 2007-03-06 General Electric Company Multiform film cooling holes
JP2007292006A (ja) 2006-04-27 2007-11-08 Hitachi Ltd 内部に冷却通路を有するタービン翼
JP5189406B2 (ja) * 2008-05-14 2013-04-24 三菱重工業株式会社 ガスタービン翼およびこれを備えたガスタービン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189603A (ja) * 1993-12-28 1995-07-28 Toshiba Corp タービン冷却翼及び冷却部材
JPH11200893A (ja) * 1998-01-12 1999-07-27 Hitachi Ltd 冷媒回収型ガスタービン
JP2000213304A (ja) * 1998-12-09 2000-08-02 General Electric Co <Ge> 側壁インピンジメント冷却チャンバ―を備えた後方流動蛇行エ―ロフォイル冷却回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2186999A4 *

Also Published As

Publication number Publication date
US20110044822A1 (en) 2011-02-24
KR20090131298A (ko) 2009-12-28
KR101163290B1 (ko) 2012-07-05
JP5189406B2 (ja) 2013-04-24
EP2186999A1 (en) 2010-05-19
CN102016235A (zh) 2011-04-13
CN103382857A (zh) 2013-11-06
US8465255B2 (en) 2013-06-18
JP2009275605A (ja) 2009-11-26
EP2186999B1 (en) 2014-11-26
EP2186999A4 (en) 2013-06-19
CN102016235B (zh) 2014-03-19
US20130280094A1 (en) 2013-10-24
EP2186999B8 (en) 2015-01-21
CN103382857B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2009139374A1 (ja) ガスタービン翼およびこれを備えたガスタービン
CN1840859B (zh) 带有渐缩后缘区的涡轮翼片
JP5383270B2 (ja) ガスタービン翼
US7637720B1 (en) Turbulator for a turbine airfoil cooling passage
JP4845957B2 (ja) インピンジメント冷却構造
EP1561902B1 (en) Turbine blade comprising turbulation promotion devices
JP5743118B2 (ja) ガスタービン動翼およびガスタービン
US7296972B2 (en) Turbine airfoil with counter-flow serpentine channels
US9017027B2 (en) Component having cooling channel with hourglass cross section
JP6169161B2 (ja) タービン翼
US20140328669A1 (en) Airfoil with cooling passages
US7156619B2 (en) Internally cooled gas turbine airfoil and method
US8920122B2 (en) Turbine airfoil with an internal cooling system having vortex forming turbulators
US8491263B1 (en) Turbine blade with cooling and sealing
CN108884716B (zh) 带有具备分流器特征的内部冷却通道的涡轮翼型件
CN105874168A (zh) 包括对以铸造人字纹布置增强型表面使用有角度冲击的后缘冷却的燃气涡轮发动机部件
JP6347893B2 (ja) 翼長方向に延びる流れブロッカを備えるタービン翼冷却システム
JP6203400B2 (ja) 内部冷却系を有する横方向に延在するスナッバを備えたタービン翼
CA2861171A1 (en) Internally cooled airfoil
US20150086381A1 (en) Internally cooled airfoil
JP5496263B2 (ja) ガスタービン翼およびこれを備えたガスタービン
US8602735B1 (en) Turbine blade with diffuser cooling channel
JP2017529483A (ja) 分岐した翼弦中間冷却チャンバを備えるタービン翼冷却システム
JP4831816B2 (ja) ガスタービンの翼冷却構造
EP2954169B1 (en) Component of a turbine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000410.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12599833

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009744309

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097025541

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09744309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE