WO2009138227A2 - Hybrideinheit mit schwungradeinrichtung für ein kraftfahrzeug - Google Patents

Hybrideinheit mit schwungradeinrichtung für ein kraftfahrzeug Download PDF

Info

Publication number
WO2009138227A2
WO2009138227A2 PCT/EP2009/003413 EP2009003413W WO2009138227A2 WO 2009138227 A2 WO2009138227 A2 WO 2009138227A2 EP 2009003413 W EP2009003413 W EP 2009003413W WO 2009138227 A2 WO2009138227 A2 WO 2009138227A2
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
hybrid
rotor
shaft
drive
Prior art date
Application number
PCT/EP2009/003413
Other languages
English (en)
French (fr)
Other versions
WO2009138227A3 (de
Inventor
Hubertus Doepke
Original Assignee
Hubertus Doepke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubertus Doepke filed Critical Hubertus Doepke
Priority to DE112009000841T priority Critical patent/DE112009000841A5/de
Publication of WO2009138227A2 publication Critical patent/WO2009138227A2/de
Publication of WO2009138227A3 publication Critical patent/WO2009138227A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/10Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel
    • B60K6/105Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel the accumulator being a flywheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/30Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by chargeable mechanical accumulators, e.g. flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid unit for a motor vehicle with a hybrid electric drive and a supply electric drive, which is arranged on a main shaft, which has an input side with a prime mover, e.g. an internal combustion engine, an electric drive or other drive units and the output side can be connected to a transmission.
  • a prime mover e.g. an internal combustion engine, an electric drive or other drive units
  • hybrid drives usually to achieve an improvement in the overall drive efficiency, or a reduction in fuel consumption of a vehicle, with the help of the electric drives mainly the speed and load-dependent variance of the engine is reduced and an increased operation in the internal combustion engine optimum range is sought ,
  • the invention has for its object to provide a hybrid unit with suitable Elektroüberla- gerungsantrieben and a highly resilient and cyclizable buffer that can control large mechanical output torques with low electrical power consumption to represent a relation to the prior art significantly low-consumption vehicle drive with improved overall efficiency, and still permits permanently highly dynamic operating states supported by the hybrid drive.
  • a supply electric drive and a hybrid electric drive both of which are designed as electric superposition drives, each have a main rotor with a field or excitation winding on a common main shaft and a respective coaxial with the corresponding main rotor arranged independent superposition rotor.
  • rotatably mounted to the main shaft is to be understood that the two rotors are rotatably mounted directly or indirectly on the main shaft or they are firmly connected to the housing or connected and mounted on the main shaft, that the main shaft can rotate ,
  • the main shaft of the hybrid unit can input side with a prime mover, e.g. an internal combustion engine and the output side be connected to a transmission shaft.
  • a prime mover e.g. an internal combustion engine
  • Characteristic of the electric superposition drives is that they have two rotors, between which, regardless of the machine housing, the mechanical drive torque is generated.
  • Analogous to known electric drives according to the prior art in which the drive torque is generated by a magnetic field in the air gap between the stator fixed to the housing and the rotor, the drive torque is generated by a magnetic field in the air gap between the main rotor and the superposition rotor in the electric superposition drive.
  • the superimposing rotor may be arranged so as to coaxially surround the corresponding main rotor. But it can also be arranged coaxially next to the corresponding main rotor. Consequently, in superposition drives, all the components which are known as stator in known electric drives or have a field winding are arranged on the main rotor of the main shaft and the components which are arranged on the rotor of conventional electric drives are assigned to the superposition rotor in the superposition drive ,
  • the superimposed electric drives differ only from prior art electric drives in that the reference system for the control or regulation of the electric machine speed is no longer dependent on the housing or the stator, but on the main rotor , or the rotational speed of the main shaft of the hybrid unit relates.
  • the superposition drives of the hybrid unit are designed as permanent magnet synchronous machines in which the magnetic field acts in the air gap between the main rotor and the superposition rotor in the radial flow direction.
  • permanent magnet synchronous machines such as reluctance machines or transverse flux machines and / or asynchronous machines can be used.
  • embodiments of superimposed electric machines in Axialpoundbauweise be implemented whose magnetic field acts in the axial flow direction in the air gap between the main rotor and the superposition rotor.
  • a power control device for both electric drives of the hybrid unit is accommodated in or on a rotatably connected to the main shaft carrier unit on which the field windings of both electric drives are provided.
  • the power controller comprises a four-quadrant power control unit associated with the supply electric drive and a four-quadrant power control unit associated with the hybrid electric drive.
  • the field windings of the two electric drives are electrically coupled to each other via the respective phase lines and their associated power control units.
  • a non-contact data transmission system is expedient between an operation control device and the power control device, comprising a first transmission part fixed to the housing and a second transmission rotatably connected to the power control.
  • the data transmission can be bidirectional, for example by inductive means.
  • the operation control unit via the data transmission system, the actual speed information of the main shaft and the two superimposed rotors to return in the opposite direction, the target control condition of the operation control unit to the power controls.
  • the present hybrid unit has two arranged on a continuous main shaft superposition Elektroantriebe with two main rotors with field windings, which are assigned to a supply electric drive and a hybrid electric drive.
  • the main shaft can be connected on the input side to the primary drive and on the output side to a gearbox.
  • the hybrid unit at least all current-carrying components of the high-voltage circuit, the field windings and the power control device of the supply and hybrid electric drive, and all connecting line guides and / or connected in a carrier unit with this main shaft mechanically non-rotatably and are suitably in operative electrical connection with each other.
  • the structure of the high-voltage circuit is extremely compact, whereby all line connections between field windings and power control can be reduced to a minimum length.
  • the main shaft preferably has a central bore, which is in fluid communication with a coolant supply device via the bore for a supply of coolant.
  • the hybrid electric drive and its superposition rotor are used in a suitable manner to control the output speed and the output torque of a suitable connected transmission.
  • the superposition rotor of the supply electric drive can be mechanically non-rotatable for storing or buffering or outputting drive energy or connected via a gear ratio with a flywheel device according to claims 7 and 8 in order to buffer the required control energy.
  • the flywheel device can be non-rotatably connected to the superposition rotor of the supply electric drive via a supply shaft rotatably mounted to the main shaft.
  • the flywheel device can also be connected directly to the superposition rotor or fixedly mounted thereon.
  • the supply shaft of the flywheel device via the translation of a planetary gear is connected to both the main shaft and with the superposition rotor of the supply drive.
  • the energy flow between the flywheel device and the main shaft can be controlled by the supply drive in an advantageous manner.
  • the flywheel device may be appropriate to surround the flywheel device by a vacuum housing and to connect the interior of the vacuum housing to a vacuum pump to produce a negative pressure.
  • the supply electric drive is in electrical interaction with the hybrid electric drive, wherein it is possible by appropriate control of the power control devices that in the flywheel device to exchange stored mechanical rotational energy via the supply electric drive with the hybrid electric drive.
  • the hybrid electric drive performs its via the supply drive removed from the memory mechanical output power via the associated with its overlay rotor rotatably coupled output shaft to a transmission, or the desired drive function.
  • the superposition drives of the proposed hybrid unit have the advantage that they can superimpose their drive torque relative to the main shaft, both in positive or negative direction with high torque, equal to or approximately equal to the starting torque at all speeds of the main shaft, the required speed range it is very low.
  • an overall drive according to claim 9-12 is an optimal overall efficiency of the vehicle drive with a consumption improvement potential of about 30% in the foreground, without having to accept restrictions in the area of driving performance functions.
  • a flywheel device via the translation of an input-side planetary gear, connected both to the main shaft and to the supply shaft of the supply drive.
  • Added to a controllable by the operation control braking device which is mounted between the ring gear of the planetary gear and the housing and the ring gear can brakes against the housing.
  • the two output shafts of the hybrid unit, the output-side main shaft and the second output shaft designed as a hollow shaft, are coupled to two shafts of a planetary gear connected on the output side.
  • the main shaft of the hybrid unit is in this case with a first sun gear and the second output shaft of the hybrid unit is rotatably connected to the planet carrier of the output-side planetary gear.
  • a second sun gear of the output-side planetary gear is expediently non-rotatably connected to the input shaft of a first sub-transmission, while the planet carrier of the output-side planetary gear is rotatably connected to the input hollow shaft of a second subtransmission.
  • the two partial transmissions are known embodiments of claw transmissions with two coaxial transmission input shafts. Similar embodiments are also referred to as dual-clutch transmission.
  • the configuration of the hybrid unit, output-side planetary gear and two connected partial transmissions represents an electromechanically controllable transmission, the so-called probably combined the function of a known remplinautomatikgetriebes, as well as the function of a transmission with continuously variable transmission.
  • n gears with a gear path and the gear ratio via only a partial transmission are possible, which mechanically coupled by means of a switching device, not shown, for example, a clutch or a locking claw, the main shaft and the superposition shaft of the hybrid drive, or the two transmission input shafts at synchronous speed.
  • a switching device not shown, for example, a clutch or a locking claw, the main shaft and the superposition shaft of the hybrid drive, or the two transmission input shafts at synchronous speed.
  • n-1 gears with fixed gear ratio so-called combined gears are available, in each of which a pair of teeth in both partial transmissions is engaged and a corresponding Mischüber GmbH results.
  • the brake In the first transmission operating mode identical to that of a conventional stepped automatic transmission, the brake is open at the ring gear of the input-side planetary gear.
  • the hybrid drive of the hybrid unit and the output-side planetary gear replace the function of the hydrodynamic converter or the clutches of a dual-clutch transmission and it can be controlled arbitrarily applicable switching operations.
  • An energetic advantage is that in this shift except the electrical losses no friction or heat losses occur because energy released when switching over the hybrid unit can be stored in memory.
  • the hybrid drive is primarily active only during the switching process by building a support torque corresponding to the drive torque to relieve the shift claw of the currently used tooth pairing, so as to allow a frictionless opening of the shift claw. After opening the shift dog, by varying the speed ratio of the main shaft and the output hollow shaft, the hybrid drive establishes the required synchronous speed on the gear shaft of the target gear to in turn enable frictionless closing of the shift dog on the target gear.
  • EVT mode Electrical Variable Transmission Mode
  • the number of usable, continuously synchronizable EVT gears corresponds to the total number (n) of the tooth pairings in both partial transmissions.
  • a second transmission operating mode is achieved by closing the brake on the ring gear of the input-side planetary gear.
  • the closing of the brake device takes place at synchronous speed of the Hohlradwindiere by the supply drive without friction losses in the brake device.
  • the superposition rotor of the supply drive is firmly braked against the housing via the ring gear.
  • the rotational speed range of the flywheel is coupled to the optimum operating rotational speed range of the primary drive, for example an internal combustion engine.
  • the internal combustion engine is coupled in its consumption-optimal speed range, at quasi-stationary speed to the flywheel storage and can be operated continuously in the consumption-optimal load point.
  • the internal combustion engine in this case leads its drive power to the overall drive, wherein the excess power flows into the coupled memory.
  • the required speed variance of the vehicle output is meanwhile controlled by the hybrid unit. If the retrieved total output power of the vehicle is smaller than the power supply, this corresponds to driving in EVT mode with simultaneous charging of the memory. If the total output power of the vehicle is greater than the power supply, the memory is discharged.
  • the internal combustion engine can be stored by opening the clutch on the main shaft without affecting the driving performance.
  • combustion-free EVT travel can be maintained for a long time even at high loads and high speeds.
  • the energy for the overall drive is obtained during the EVT driving over the mechanical path of the input-side planetary gear from the coupled memory.
  • the speed variance of the output is controlled by the hybrid drive of the hybrid unit. A spontaneous transition between the operating modes described above is ensured without any performance and comfort impairments.
  • the accumulator and the input-side planetary gearset are eliminated in comparison with the above-described hybrid vehicle overall drive.
  • the essential feature is that the superposition rotor of the supply drive is possibly connected via the supply hollow shaft fixed to the housing and a separating clutch between the primary drive and the main shaft can be omitted.
  • This embodiment represents an overall electrified transmission having the functional modes of a fully load-capable EVT and automatic transmission, but without the fuel-efficient, above-mentioned function of non-combustor EVT driving.
  • Another embodiment has a vehicle parallel hybrid overall drive with a hybrid unit and a flywheel device in conjunction with a conventional automatic or manual transmission.
  • the essential feature is that the overlay rotor of the hybrid drive, possibly via the second output shaft, is firmly connected to the housing.
  • This embodiment enables the known functions at the level of a parallel hybrid according to the prior art, such as e.g. Boost, engine start-stop system or recuperation of braking power.
  • Boost engine start-stop system
  • recuperation of braking power When the prime mover is disengaged, it is possible to drive with energy from the flywheel device for a short time, driven by the hybrid drive.
  • the consumption advantages correspond to those of a parallel hybrid according to the prior art.
  • the main advantage is the better efficiency when storing and using recuperated braking energy, as well as a significantly better torque behavior of hybrid operation at high speeds of the prime mover.
  • Fig. 1 shows the basic form of a hybrid unit according to the invention
  • Fig. 3 shows the hybrid unit of Fig. 1, combined with a first variant of a
  • Fig. 4 shows the hybrid unit of Fig. 1, combined with a second variant of a
  • Fig. 5 shows the hybrid unit of Fig. 1, combined with a third variant of a
  • FIG. 6 shows a vehicle drive train with primary drive, an extended variant of the hybrid unit according to FIG. 4 and transmission
  • FIG. 7 shows a first variant of a vehicle drive train with primary drive of the hybrid unit according to FIG. 1 and a transmission according to FIG.
  • Fig. 8 shows a second variant of a vehicle drive train with primary drive
  • the supply electric drive 103 comprises a first main rotor 120 and a radial superimposing rotor 124.
  • the first main rotor 120 is provided with field windings and mounted on the outside of a carrier drum 108. Both are rotatably connected to the main shaft 106.
  • the superimposing rotor 124 is attached to a carrier 126, which is non-rotatably connected to a supply shaft 130 designed as a hollow shaft, which is rotatably mounted on an input side to the main shaft 106.
  • the superposition rotor 124 may have permanent magnets or short-circuit windings depending on the design.
  • the hybrid electric drive 105 likewise comprises a second main rotor 116 with field windings mounted on the outside of the drum 108 and surrounded by a superposition rotor 121.
  • the overlay rotor 121 is attached to a carrier 128 which rotatably connected to a designed as a hollow shaft output shaft 132 is rotatably mounted on the output side to the main shaft 106.
  • the superposition rotor 121 may have permanent magnets or short-circuit windings, depending on the design.
  • a power control device 110 which comprises a four-quadrant control unit 1 12 and a four-quadrant control unit 114 associated with the first main rotor 120 and the second main rotor 1 16, respectively.
  • the control units 1 12, 1 14 are each connected via phase lines 122 and 1 18 (U-V-W lines) to the field windings of the main rotors 120 and 1 16.
  • the drum 108 is flowed through by a coolant (preferably transmission oil).
  • a coolant preferably transmission oil
  • the interior of the drum 108 may be connected to an axial central bore in the main shaft 106 with a source of coolant communicating with the bore (not shown).
  • bidirectional data communication or data transmission from an operation control unit 134 to the control unit 1 10 or to the control units 112 and 114 is required.
  • at least one drum 108 with the data transmission part 138 is provided with an integrated transmitting and receiving part on the drum 108 between the two electric drives 103, 105.
  • At least one further data transmission part 136 with an integrated transmitting and receiving part is fastened to the housing 107 with the first data transmission part 138 in suitable alignment with one another.
  • the data transmission to the operation control device 134 includes, inter alia, the actual rotational speed of the main shaft 106, the first superposition rotor 124 and the second superposition rotor 121, while from the operation control device to the power control unit 110 substantially the target control data for the speed and torque control of the two superimposed electric machines 103 and 105 are transmitted.
  • the transmission between the two data transmission parts 136, 138 takes place, for example, inductively. However, other forms of data transmission are possible.
  • the electronic components in the control unit 110 are powered by an internal, provided in the drum 108 suitable power supply.
  • FIG. 2 shows an alternative embodiment of a hybrid unit 100a according to the invention, which likewise has a supply electric drive 103a and a hybrid electric drive 105a. speaking embodiment has Fig. 1 and has functionally identical properties of the hybrid unit 100 in Figure 1.
  • Characteristic of this alternative embodiment is that the main shaft 106a is designed as a hollow shaft, the first superposition rotor 124a of the supply drive 103a rotatably connected to a central shaft formed input side supply shaft 130a and the second superposition rotor 124a of the hybrid drive 105a on the output side rotationally fixed with a central shaft designed as output shaft 132a connected is.
  • the power control 110a and the two main rotors 120a and 16a of the supply drive 103a and the hybrid drive 105a are rotatably connected to the main shaft 106a on or in the carrier unit 108a.
  • the power controller 110a circumferentially mounted radially on the carrier unit 108a includes two four-quadrant controllers 112a and 14a, as in the hybrid unit 100 in FIG are in electrical functional connection and allow the electrical power exchange between supply drive 103a and hybrid drive 105a.
  • bidirectional data transmission from the operation control device 134 to the control unit 1 10a is available, the rotating data transmission part 138 being in data communication with the power control unit 110a and the housing-fixed data transmission part 136 being in data communication with the operation control unit 134.
  • FIG. 3 shows the basic form of a hybrid unit 100 according to FIG. 1 with a supply shaft 130 on which a flywheel device 149 in the form of an annular, uniformly distributed mass is attached in a rotationally fixed manner at a radial distance.
  • the basic form of the hybrid unit 100 according to FIG. 1 is provided with a radially uniformly distributed mass inertia, which has the same function as the flywheel device 149 according to FIG. 3, attached to the first superimposing rotor 124 of the supply drive 103.
  • the three planetary shafts of a planetary gear P1 are connected to the flywheel device 149, as well as to the supply shaft 130 and the main shaft 106 of the hybrid unit 100 of FIG.
  • the planetary gear P1 makes it possible to control a mechanical energy flow between the flywheel device and the main shaft by the hybrid unit 100.
  • the supply hollow shaft 130 is connected to the ring gear 164 and the main shaft 106 rotatably coupled to the planet carrier 162 of the planetary gear P1.
  • the flywheel device 149 is rotatably coupled with a rotatably mounted on the main shaft 106 connecting hollow shaft 131 with the sun gear 168 of the planetary gear P1.
  • On the planet carrier 162 at least one planet gear 166 is mounted, which meshes with the sun gear 168 and the ring gear 164 of the planetary gear P1.
  • FIG. 6 shows a vehicle drive with a primary drive 158 of a hybrid unit shown in FIG. 5 with the flywheel device 149 and a gearbox 144 connected on the output side.
  • the planetary gear P1 is extended by a braking device B and the rotatable part 172 of the braking device B is connected to the ring gear 164 of the planetary gear P1.
  • the housing-fixed part 170 is controllable by the operation control device 134 as needed to allow the brake device B to brake or release the rotatable part 172 against the housing, thereby producing two different modes of operation of the overall drive.
  • the primary drive 158 can be coupled or disconnected from the main shaft 106 by a coupling K.
  • the two output shafts of the hybrid unit 100, the main shaft 106 and the output hollow shaft 132, are coupled to an output-side planetary gear P2.
  • the main shaft 106 of the hybrid unit 100 is connected to a first sun gear 181 and the output hollow shaft 132 is rotatably connected to the planet carrier 182 of the output-side planetary gear P2.
  • a second sun gear 183 of the output-side planetary gear P2 is rotatably connected to the input shaft 147 of a first Halgethebes148, while the planet carrier 182 of the output-side planetary gear P2 is rotatably connected to the input hollow shaft 145 of a second sub-transmission 146.
  • At least one Doppelplanetenrad 184 is rotatably mounted with a first toothing 185 and a rotatably coupled to the first second toothing 186 on the planet, wherein the main shaft 106 connected to the first sun gear 181 meshes with the first toothing 185 of the double planetary gear 184, and that with the first partial transmission 148 connected second sun gear 183 with the second teeth 186 of the double planetary gear 184 meshes.
  • the output shafts of the two partial transmissions 146, 148 are coupled by a Vernierpocung at the output of the transmission 144 to a common output A.
  • the planetary gear P2 and the two Ambigetriebe146 and 148 are part of the transmission 144th
  • the first overlay rotor 124 of the power supply 103 and the second overlay rotor 121 of the hybrid drive 105 are transmitted via the transmission means 136, 138, the actual speed information to the operation control unit 134.
  • the operating control unit 134 executes the setpoint data control for the power control 110, which are required to control the supply drive 103 and the hybrid drive 105 in order to set desired operating states. Further, the operation control apparatus 134 controls the clutch K, the brake device B, and the shifting units S for driving the shift dogs in the transmission 144. Optionally, a coupling of the flywheel device 149 is possible, as shown in Fig. 3 or Fig. 4.
  • this embodiment represents a recuperative hybrid vehicle drive, with a prime mover 158, a memory device 149, and a fully loadable EVT transmission 144 that is electromechanically controllable by hybrid unit 100 and that has an infinite transmission overall ratio.
  • the embodiment described can be operated in a first classic driving mode as a drive with a stepped automatic transmission, or optionally with EVT transmission.
  • the engine may operate intermittently, i. stored for a long time, while the vehicle drive controlled by the hybrid unit 100 without burners, is operated exclusively with energy from the memory device 149.
  • FIG. 7 shows an expense-reduced variant of a vehicle drive according to FIG. 6 with a primary drive 158, the hybrid unit 100 and a transmission 144, which, however, has no storage device.
  • the essential feature is that the supply hollow shaft 130 is fixedly connected to the housing 107, or (not shown) of the superposition rotor 124 of the supply drive 103 is fixedly connected to the housing 107. Between the primary drive 158 and the main shaft 106, no clutch K is required.
  • this embodiment represents, as above, an electromechanically controlled EVT transmission, which can optionally be operated as EVT or as a stepped automatic transmission.
  • the hybrid drive 105 in this embodiment derives its power to control the output hollow shaft 132 via the supply drive 103 from the main shaft 106th
  • FIG. 8 shows a second variant of a recuperative hybrid vehicle drive with a prime mover 158, the hybrid unit 100 with a flywheel device 149, as described in FIG. 5, and a conventional manual or automatic transmission 152.
  • the essential feature is that the second output shaft 132 of the hybrid drive 105 is fixedly connected to the housing 107, or possibly (not shown) of the superposition rotor 121 of the hybrid drive 105 is fixedly connected to the housing 107.
  • the output side main shaft 106 of the hybrid unit 100 is here coupled to the transmission input shaft 155 of the transmission 152.
  • the primary drive 158 can be coupled or disconnected via a clutch K controllable by the operating control unit 134 with the main shaft.
  • a coupling of the flywheel device 149 is possible, as shown in Fig. 3 or Fig. 4.
  • This embodiment fulfills the comparable functions of a mild hybrid drive with a stepped automatic transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Hybrideinheit für ein Kraftfahrzeug umfasst eine drehbar gelagerte Hauptwelle (106, 106a), die eingangseitig mit einem Primärantrieb (158) und ausgangsseitig mit einem Getriebe (144, 152) verbindbar ist, einen Versorgungs-Elektroantrieb (103, 103a), der einen drehfest mit der Hauptwelle (106, 106a) verbundenen ersten Hauptrotor (120, 120a) mit einer Feldwicklung und einen zum ersten Hauptrotor (120, 120a) koaxial angeordneten ersten Überlagerungsrotor (124, 124a) mit einem Permanentmagnet oder einer Kurzschlusswicklung umfasst, der zur Hauptwelle (106, 106a) drehbar gelagert ist, einen Hybrid-Elektroantrieb (105, 105a), der einen drehfest mit der Hauptwelle (106, 106a) verbundenen zweiten Hauptrotor (116, 116a) mit einer Feldwicklung und einen zum zweiten Hauptrotor (116, 1 16a) koaxial angeordneten zweiten Überlagerungsrotor (121, 121 a) mit einem Permanentmagnet oder einer Kurzschlusswicklung umfasst, der zur Hauptwelle (106, 106a) drehbar gelagert ist, und eine dem Versorgungs-Elektroantrieb (103, 103a) und dem Hybrid-Elektroantrieb (105, 105a) zugeordnete Leistungssteuereinrichtung (110, 110a), die mit der Hauptwelle (106, 106a) drehfest verbunden und mit den Feldwicklungen des ersten Hauptrotors (120, 120a) und des zweiten Hauptrotors (116, 116a) elektrisch gekoppelt ist.

Description

Hybrideinheit mit Schwungradeinrichtung für ein Kraftfahrzeug
Die Erfindung betrifft eine Hybrideinheit für ein Kraftfahrzeug mit einem Hybridelektroantrieb und einem Versorgungselektroantrieb, die auf einer Hauptwelle angeordnet ist, welche ein- gangsseitig mit einem Primärantrieb, z.B. einem Verbrennungsmotor, einem Elektroantrieb oder anderen Antriebsaggregaten und ausgangsseitig mit einem Getriebe verbindbar ist.
Bekannte Hybridantriebe, ob Parallel-, Seriell-, oder leistungsverzweigte Hybridantriebe besitzen fast ausschließlich klassische Elektroantriebe, vorwiegend Synchronmaschinen mit einem einer Antriebswelle zugeordneten Rotor und einem am Gehäuse angeordneten Stator. Die Bestromung solcher Antriebe erfolgt vorwiegend mit Energie aus einem im Fahrzeug angeordneten elektrochemischen Speicher, die über eine ebenfalls am Antriebsgehäuse oder Fahrzeug angeordnete Leistungssteuerung einem oder auch mehreren Elektroantrie- ben des hybriden Antriebs bedarfsgerecht zugeführt wird.
Der Zweck derartiger Hybridantriebe ist in der Regel, eine Verbesserung des Gesamtantriebswirkungsgrads, bzw. eine Verringerung des Kraftstoffverbrauchs eines Fahrzeugs zu erreichen, wobei mit Hilfe der Elektroantriebe vorwiegend die drehzahl- und lastabhängige Varianz des Verbrennungsmotors reduziert wird und ein vermehrter Betrieb im verbrennungsmotorischen Optimalbereich angestrebt wird.
Nachteil dieser Technik ist, dass die Verluste der elektrischen Hybridkomponenten dem o.g. Vorteil einer verbrennungsmotorischen Betriebspunktverbesserung entgegenwirken. Hinzu kommt, dass die erforderlichen elektrischen Speicher neben der hohen Anschaffungskosten, dem hohem Gewicht, dem erheblichen Platzbedarf, auch bedingt durch ihre thermische Empfindlichkeit ein hohes Lebensdauerrisiko besitzen. Funktional beeinträchtigt die thermische Empfindlichkeit elektrischer Speicher eine dauerhafte Be- und Entladezyklisie- rung mit großen Leistungen, die besonders bei dynamischer Fahrweise gefordert ist. In Summe schmälern der Aufwand und die Verluste der elektrischen Gesamtwirkungsgradkette der Hybridkomponenten die Kosten- und Nutzenbilanz von Hybridantrieben. Der Erfindung liegt die Aufgabe zugrunde, eine Hybrideinheit mit geeigneten Elektroüberla- gerungsantrieben und einem hoch belastbaren und zyklisierbaren Zwischenspeicher zu schaffen, die mit geringem elektrischen Leistungsaufwand große mechanische Abtriebsmomente steuern kann, um einen gegenüber den Stand der Technik deutlich verbrauchsgünstigen Fahrzeugantrieb mit verbessertem Gesamtwirkungsgrad darzustellen, und trotzdem dauerhaft hochdynamische durch den Hybridantrieb unterstützte Betriebszustände zulässt.
Diese Aufgabe wird erfindungsgemäß durch eine Hybrideinheit für ein Kraftfahrzeug mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen dieser Hybrideinheit sind Gegenstand der Patentansprüche 2 bis 13.
Bei der erfindungsgemäßen Hybrideinheit besitzen ein Versorgungselektroantrieb und ein Hybridelektroantrieb, die beide als Elektro-Überlagerungsantriebe ausgebildet sind, auf einer gemeinsamen Hauptwelle je einen Hauptrotor mit einer Feld- oder Erregerwicklung und jeweils einen koaxial zu dem entsprechenden Hauptrotor angeordneten unabhängigen Überlagerungsrotor.
Der Ausdruck „zur Hauptwelle drehbar gelagert" ist so zu verstehen, dass die beiden Rotoren direkt oder indirekt auf der Hauptwelle drehbar gelagert sind oder sie fest mit dem Gehäuse verbindbar oder verbunden sind und so auf der Hauptwelle angebracht sind, dass sich die Hauptwelle drehen kann.
Die Hauptwelle der Hybrideinheit kann eingangsseitig mit einem Primärantrieb, z.B. einem Verbrennungsmotor und ausgangsseitig mit einer Getriebewelle verbindbar sein.
Kennzeichnend für die Elektro-Überlagerungsantriebe ist, dass sie zwei Rotoren besitzen, zwischen denen unabhängig vom Maschinengehäuse das mechanische Antriebsmoment erzeugt wird. Analog zu bekannten Elektroantrieben nach dem Stand der Technik, bei denen das Antriebsmoment durch ein Magnetfeld im Luftspalt zwischen dem gehäusefesten Stator und dem Rotor erzeugt wird, wird beim Elektro-Überlagerungsantrieb das Antriebsmoment durch ein Magnetfeld im Luftspalt zwischen dem Hauptrotor und dem Überlagerungsrotor erzeugt.
Der Überlagerungsrotor kann so angeordnet werden, dass er den entsprechenden Hauptrotor koaxial umgibt. Er kann aber auch koaxial neben dem entsprechenden Hauptrotor angeordnet sein. Demzufolge sind bei Überlagerungsantrieben alle Bauteile, die bei bekannten Elektroantrie- ben als Stator bezeichnet werden, bzw. eine Feldwicklung aufweisen, auf dem Hauptrotor der Hauptwelle angeordnet und die Bauteile die auf dem Rotor herkömmlicher Elektroantrie- be angeordnet sind, sind beim Überlagerungsantrieb dem Überlagerungsrotor zugeordnet.
In ihrer elektromotorischen Funktionsweise unterscheiden sich die Überlagerungs-Elektro- antriebe nur insofern von Elektroantrieben nach dem Stand der Technik, dass sich das Bezugssystem für die Steuerung, bzw. Regelung der Elektromaschinendrehzahl nicht mehr auf das Gehäuse, bzw. den Stator, sondern auf den Hauptrotor, bzw. die Drehzahl der Hauptwelle der Hybrideinheit bezieht.
Vorzugsweise sind die Überlagerungsantriebe der Hybrideinheit als permanentmagneterregte Synchronmaschinen ausgeführt, in denen das magnetische Feld im Luftspalt zwischen dem Hauptrotor und dem Überlagerungsrotor in radialer Flussrichtung wirkt. Grundsätzlich können dabei alle Prinzipien permanentmagneterregter Synchronmaschinen wie Reluktanzmaschinen oder Transversalflussmaschinen oder/und auch Asynchronmaschinen eingesetzt werden. Ebenso sind auch Ausführungen von Überlagerungselektromaschinen in Axialflussbauweise umsetzbar, deren magnetisches Feld in axialer Flussrichtung im Luftspalt zwischen dem Hauptrotor und den Überlagerungsrotor wirkt.
Eine Leistungssteuereinrichtung für beide Elektroantriebe der Hybrideinheit ist in oder an einer drehfest mit der Hauptwelle verbundenen Trägereinheit untergebracht, auf der auch die Feldwicklungen beider Elektroantriebe vorgesehen sind. Vorzugsweise umfasst die Leistungssteuerung eine dem Versorgungselektroantrieb zugeordnete Vier-Quadranten- Leistungssteuereinheit und eine dem Hybridelektroantrieb zugeordnete Vier-Quadranten- Leistungssteuereinheit. Für den elektrischen Leistungsaustausch zwischen dem Versorgungselektroantrieb und dem Hybridelektroantrieb sind die Feldwicklungen der beiden Elektroantriebe über die jeweiligen Phasen-Leitungen und die ihnen zugehörigen Leistungssteuereinheiten miteinander elektrisch gekoppelt.
Zur Datenübertragung von Steuerbefehlen die zum Betrieb der Hybrideinheit erforderlich sind, ist zwischen einem Betriebssteuergerät und der Leistungssteuereinrichtung ein berührungsloses Datenübertragungssystem zweckmäßig, das einen gehäusefesten ersten Ü- bertragerteil und einen drehfest mit der Leistungssteuerung verbundenen zweiten Übertra- gerteil umfasst. Die Datenübertragung kann bidirektional beispielsweise auf induktivem Wege erfolgen.
Für die Ansteuerung der beiden Elektroantriebe bezieht das Betriebssteuergerät über das Datenübertragungssystem die Ist-Drehzahlinfomation von Hauptwelle und den beiden Überlagerungsrotoren, um in Gegenrichtung die Soll-Steuerungsbedatung vom Betriebssteuergerät an die Leistungssteuerungen zurückzuführen.
Überlagerungsmaschinen sind aus dem Stand der Technik z. B. durch Bosch DE198 49 156 Al; VW DE 3335 923 Al; Ziegler DE 102005 010 138 Al; Schopf DE 10012 494 Al; Toyota US 006 087 734 bekannt. Diese Antriebe nach dem Stand der Technik, klassische Elektroantriebe mit einem Rotor, oder auch Überlagerungselektroantriebe mit zwei Rotoren, oder auch Kombinationen beider, weisen alle gehäuse- oder fahrzeugfeste Bauteile des Hochvoltstromkreises auf, wie zum Beispiel die Feldwicklung eines Stators, die Leistungssteuerung, die Leitungsführungen, oder sie benötigen Stromübertragungselemente wie z.B. Schleifringe die zur Bestromung von wellenseitig angeordneten Feldwicklungen aus einem gehäusefesten elektrischen Speicher notwendig sind.
Im Gegensatz zum Stand der Technik weist die vorliegende Hybrideinheit zwei auf einer durchgängigen Hauptwelle angeordnete Überlagerungselektroantriebe mit je zwei Hauptrotoren mit Feldwicklungen auf, die einem Versorgungselektroantrieb und einen Hybridelektroan- trieb zugeordnet sind. Die Hauptwelle ist eingangsseitig mit dem Primärantrieb und aus- gangsseitig mit einem Getriebe verbindbar.
In der Hybrideinheit sind wenigstens alle stromführenden Bauteile des Hochvoltstromkreises, die Feldwicklungen und die Leistungssteuereinrichtung des Versorgungs- und des Hybrid- Elektroantriebs, sowie alle verbindenden Leitungsführungen an und/oder in einer Trägereinheit mit dieser Hauptwelle mechanisch drehfest verbunden und stehen zweckmäßigerweise miteinander in elektrischer Funktionsverbindung.
In den dargestellten Ausführungsformen der Hybrideinheit ist der Aufbau des Hochvoltstromkreises extrem kompakt, wodurch alle Leitungsverbindungen zwischen Feldwicklungen und Leistungssteuerung auf eine minimale Länge reduziert werden können. Zur Kühlung der Feldwicklungen und der Leistungssteuereinrichtung weist die Hauptwelle bevorzugt eine Zentralbohrung auf, die mit einer Kühlmittelzufuhreinrichtung über die Bohrung für eine Zufuhr von Kühlmittel in Fluidverbindung steht.
Für einen optimalen Einsatz der Antriebsenergie steht in der Hybrideinheit der Hybrid- Elektroantrieb in elektrischer Funktionsverbindung mit dem Versorgungselektroantrieb. Der Hybridelektroantrieb und dessen Überlagerungsrotor dienen hierbei in geeigneter Weise der Steuerung der Abtriebsdrehzahl und des Abtriebsmoments eines geeigneten angeschlossenen Getriebes.
Der Überlagerungsrotor des Versorgungselektroantriebs kann zum Speichern, bzw. Puffern, oder Abgeben von Antriebsenergie mechanisch drehfest oder über eine Getriebeübersetzung mit einer Schwungradeinrichtung entsprechend den Ansprüchen 7 und 8 verbunden sein, um die erforderliche Steuerungsenergie zwischenzuspeichern.
In einer ersten Ausführung kann die Schwungradeinrichtung über eine zur Hauptwelle drehbar gelagerte Versorgungswelle drehfest mit dem Überlagerungsrotor des Versorgungselektroantriebs verbunden werden.
In einer zweiten Ausführung kann die Schwungradeinrichtung aber auch direkt mit dem Ü- berlagerungsrotor verbunden bzw. auf diesem fest angeordnet werden.
In einer zweckmäßigen dritten Ausführung ist die Versorgungswelle der Schwungradeinrichtung über die Übersetzung eines Planetengetriebes sowohl mit der Hauptwelle als auch mit dem Überlagerungsrotor des Versorgungsantriebs verbunden. Hierbei kann in vorteilhafter Weise der Energiefluss zwischen Schwungradeinrichtung und Hauptwelle durch den Versorgungsantrieb gesteuert werden.
Zur Reduzierung aerodynamischer Verluste ist es gegebenenfalls zweckmäßig, die Schwungradeinrichtung durch ein Unterdruckgehäuse zu umschließen und zur Herstellung eines Unterdrucks den Innenraum des Unterdruckgehäuses an eine Vakuumpumpe anzuschließen.
Bei allen o.g. Ausführungsformen der Hybrideinheit steht der Versorgungselektroantrieb in elektrischer Wechselwirkung mit dem Hybridelektroantrieb, wobei es durch entsprechende Ansteuerung der Leistungssteuereinrichtungen möglich ist, die in der Schwungradeinrichtung gespeicherte mechanische Rotationsenergie über den Versorgungselektroantrieb mit dem Hybridelektroantrieb auszutauschen.
Im Antriebsfall führt der Hybridelektroantrieb seine über den Versorgungsantrieb aus dem Speicher entnommene mechanische Abtriebsleistung über die mit seinem zugehörigen Überlagerungsrotor drehfest gekoppelte Ausgangswelle einem Getriebe, bzw. der gewünschten Antriebsfunktion zu.
Umgekehrt ist es möglich, beispielsweise beim Bremsen, im Schleppbetrieb, bei Schaltvorgängen oder auch durch ein bewusstes Erhöhen der Antriebslast durch den Hybridelektroantrieb dem Versorgungselektroantrieb Energie zuzuführen, die dann in Form von Rotationsenergie in der Schwungradeinrichtung gespeichert wird.
Gegenüber konventionellen elektrischen Antrieben besitzen die Überlagerungsantriebe der vorgeschlagenen Hybrideinheit dabei den Vorteil, dass sie bei allen Drehzahlen der Hauptwelle ihr Antriebsmoment relativ zur Hauptwelle, sowohl in positiver oder negativer Drehrichtung mit hohem Moment, gleich oder annähernd gleich dem Anlaufmoment überlagern können, wobei der erforderliche Drehzahlbereich dabei sehr gering ist.
Damit sind mit vergleichsweise kleinen elektrischen Leistungsauslegungen der Elektroüber- lagerungsantriebe Gesamtabtriebsleistungen für dynamische Spitzenlasten eines sportlichen Fahrzeugs abzudecken. Wichtige Folge, es ist eine Schwungradeinrichtung mit geringer Speicherkapazität, kleinen Massenträgheiten und geringen max. Speicherdrehzahlen unter 17000 1/min ausreichend. Dadurch bleiben auch die bekannten Sekundärauswirkungen von Schwungradspeichern, wie Kreiselreaktionsmomente, sowie das Betriebsfestigkeitsrisiko beherrschbar.
In Folge sind drei vorteilhafte Ausführungsformen eines hybriden Fahrzeug-Gesamtantriebs mit Primärantrieb, Hybrideinheit und Speicher, sowie einem angeschlossenen Getriebe beschrieben, die neben verbesserten funktionalen Gesamteigenschaften, Vorteile im Fahrzeugbauraum, sowie erhebliche Verbrauchs- und Kosteneinsparungen erwarten lassen.
In einer ersten Ausführungsform eines Gesamtantriebs nach Anspruch 9-12 steht ein optimaler Gesamtwirkungsgrad des Fahrzeugantriebs mit einem Verbrauchsverbesserungspotenzial von ca 30% im Vordergrund, ohne dabei Einschränkungen im Bereich Fahrleistungsfunk- tionen hinnehmen zu müssen. Hierbei ist eine Schwungradeinrichtung über die Übersetzung eines eingangsseitigen Planetengetriebes, sowohl mit der Hauptwelle als auch mit der Versorgungswelle des Versorgungsantriebs verbunden. Ergänzt ist eine von der Betriebssteuerung steuerbare Bremsvorrichtung, die zwischen dem Hohlrad des Planetengetriebes und dem Gehäuse angebracht ist und das Hohlrad gegen das Gehäuse festbremsen kann.
Die beiden Ausgangswellen der Hybrideinheit, die ausgangsseitige Hauptwelle und die als Hohlwelle ausgebildete zweite Ausgangswelle, sind mit zwei Wellen eines ausgangsseitig angeschlossenem Planetengetriebes gekoppelt. Die Hauptwelle der Hybrideinheit ist in diesem Fall mit einem ersten Sonnenrad und die zweite Ausgangswelle der Hybrideinheit ist mit dem Planetenradträger des ausgangsseitigen Planetengetriebes drehfest verbunden. Ein zweites Sonnenrad des ausgangsseitigen Planetengetriebes ist zweckmäßigerweise mit der Eingangswelle eines ersten Teilgetriebes drehfest verbunden, während der Planetenradträger des ausgangsseitigen Planetengetriebes mit der Eingangshohlwelle eines zweiten Teilgetriebes drehfest verbunden ist. Auf dem Planetenradträger ist wenigstens ein Doppelplanetenrad mit einer ersten Verzahnung und einer, mit der ersten drehfest gekoppelten zweiten Verzahnung drehbar gelagert, wobei das mit der Hauptwelle verbundene erste Sonnenrad mit der ersten Verzahnung des Doppelplanetenrads kämmt, und das mit dem ersten Teilgetriebe verbundene zweite Sonnenrad mit der zweiten Verzahnung des Doppelplanetenrads kämmt.
Die beiden Teilgetriebe sind bekannte Ausführungsformen von Klauenschaltgetrieben mit zwei koaxialen Getriebeeingangswellen. Ähnliche Ausführungsformen werden auch als Doppelkupplungsgetriebe bezeichnet.
In der gegebenen Ausführung mit zwei derartigen Teilgetrieben sind keine eingangsseitige Kupplungen und keine Synchronisationseinrichtungen an den Schaltmuffen der Zahnpaarungen notwendig und können eingespart werden.
Diese Einsparung wird ermöglicht, da der Hybridantrieb gesteuert durch das Betriebssteuergerät, die Funktion der Kupplungen, bzw. die Synchronisation für einen Schaltvorgang zwischen den entsprechenden Zahnpaarungen beider Teilgetriebe übernimmt.
Die Konfiguration aus der Hybrideinheit, ausgangsseitigem Planetengetriebe und zwei angeschlossenen Teilgetrieben stellt ein elektromechanisch steuerbares Getriebe dar, das so- wohl die Funktion eines bekannten Stufenautomatikgetriebes, als auch die Funktion eines Getriebes mit kontinuierlich variabler Übersetzung kombiniert.
Die Anzahl der nutzbaren Festgänge beträgt bei n Zahnradpaarungen in beiden Teilgetrieben 2*n -1. Dabei sind n Gänge mit einem Getriebepfad und der Getriebeübersetzung über nur ein Teilgetriebe möglich, die mit Hilfe einer nicht dargestellten Schaltvorrichtung, z.B. einer Kupplung oder einer Sperrklaue, die die Hauptwelle und die Überlagerungswelle des Hybridantriebs, oder die beiden Getriebeeingangswellen bei synchroner Drehzahl mechanisch koppelt. Weiter sind n -1 Gänge mit fester Getriebeübersetzung, so genannte kombinierte Gänge vorhanden, bei denen je eine Zahnpaarung in beiden Teilgetrieben im Eingriff ist und eine entsprechende Mischübersetzung resultiert.
Durch eine Bremse am Hohlrad des eingangsseitigen Planetengetriebes können zwei unterschiedliche Betriebsmodi des Getriebes eingestellt werden.
In dem ersten Getriebebetriebsmodus identisch dem eines konventionellen Stufenautomatikgetriebes ist die Bremse am Hohlrad des eingangsseitigen Planetengetriebes geöffnet. Der Hybridantrieb der Hybrideinheit und das ausgangsseitige Planetengetriebe ersetzen die Funktion des hydrodynamischen Wandlers bzw. der Kupplungen eines Doppelkupplungsgetriebes und es können beliebig applizierbare Schaltvorgänge gesteuert werden.
Ein energetischer Vorteil ist, dass bei diesem Schaltvorgang außer den elektrischen Verlusten keinerlei Reibungs- oder Wärmeverluste auftreten, da freiwerdende Energie beim Schalten über die Hybrideinheit im Speicher gespeichert werden kann.
Der Hybridantrieb ist primär nur während des Schaltvorgangs aktiv, indem er ein Stützmoment entsprechend dem Antriebsmoment zur Entlastung der Schaltklaue der aktuell genutzten Zahnpaarung aufbaut, um so ein reibungsfreies Öffnen der Schaltklaue zu ermöglichen. Nach dem Öffnen der Schaltklaue stellt der Hybridantrieb durch Variation des Drehzahlverhältnisses von Hauptwelle und Ausgangshohlwelle die erforderliche Synchrondrehzahl an der Getriebewelle des Zielgangs her, um wiederum ein reibungsfreies Schließen der Schaltklaue am Zielgang zu ermöglichen.
Der Betriebszustand einer Variation des Drehzahlverhältnisses von Hauptwelle und Ausgangshohlwelle während des Schaltvorgangs kann aber auch dauerhaft beibehalten werden. Dieser bildet somit eine elektrisch variable Getriebeübersetzung ab, die auch als EVT-Mode bezeichnet (Electric- Variable-Transmission-Mode).
Die Anzahl der nutzbaren, durchgängig synchronisierbaren EVT-Gänge entspricht der Gesamtanzahl (n) der Zahnpaarungen in beiden Teilgetrieben.
Ein zweiter Getriebebetriebsmodus, ein verbrauchsorientierter Modus, wird durch ein Schließen der Bremse am Hohlrad des eingangsseitigen Planetengetriebes erreicht. Das Schließen der Bremsvorrichtung erfolgt bei Synchrondrehzahl der Hohlraddrehzahl durch den Versorgungsantrieb ohne Reibungsverluste in der Bremsvorrichtung. Bei geschlossener Bremsvorrichtung ist der Überlagerungsrotor des Versorgungsantriebs über das Hohlrad gegen das Gehäuse fest gebremst. Gleichzeitig ist entsprechend der Auslegung des Planetengetriebes der Drehzahlbereich des Schwungrades mit dem optimalen Betriebsdrehzahlbereich des Primärantriebs, zum Beispiel eines Verbrennungsmotors gekoppelt.
In diesem Betriebsmodus ist der Verbrennungsmotor in seinem verbrauchsoptimalen Drehzahlbereich, bei quasistationärer Drehzahl an den Schwungradspeicher gekoppelt und kann stetig im verbrauchsoptimalen Lastpunkt betrieben werden.
Der Verbrennungsmotor führt hierbei seine Antriebsleistung dem Gesamtantrieb zu, wobei die Überschussleistung in den gekoppelten Speicher fließt. Die erforderliche Drehzahlvarianz des Fahrzeugabtriebs wird währenddessen durch die Hybrideinheit gesteuert. Ist die abgerufene Gesamtabtriebsleistung des Fahrzeugs kleiner als die Leistungszufuhr, entspricht dies einem Fahren im EVT-Mode bei gleichzeitigem Laden des Speichers. Ist die Gesamtabtriebsleistung des Fahrzeugs größer als die Leistungszufuhr, wird der Speicher entladen.
Ist die Speichereinrichtung ausreichend geladen, kann der Verbrennungsmotor durch Öffnen der Kupplung an der Hauptwelle ohne Beeinträchtigung der Fahrleistungen abgelegt werden. Je nach Energieumsetzung und Speicherladegrad kann ein derartiges verbrennerfreies EVT-Fahren auch bei hohen Lasten und hohen Geschwindigkeiten über längere Zeit beibehalten werden.
Die Energie für den Gesamtantrieb wird während des EVT-Fahrens über den mechanischen Pfad des eingangsseitigen Planetengetriebes aus dem gekoppelten Speicher bezogen. Die Drehzahlvarianz des Abtriebs wird durch den Hybridantrieb der Hybrideinheit gesteuert. Ein spontaner Übergang zwischen den oben beschriebenen Betriebsmodi ist ohne Fahr- leistungs- und Komfortbeeinträchtigungen gewährleistet.
In einer zweiten aufwände- und funktionsreduzierten Ausführungsform, entfällt im Vergleich zum oben beschriebenen hybriden Fahrzeug-Gesamtantrieb der Speicher und das ein- gangsseitige Planetengetriebe.
Wesentliches Kennzeichen ist, dass der Überlagerungsrotor des Versorgungsantriebs ggf. über die Versorgungshohlwelle fest mit dem Gehäuse verbunden ist und eine Trennkupplung zwischen Primärantrieb und der Hauptwelle entfallen kann.
Ähnlich wie bei bekannten leistungsverzweigten Hybridgetrieben entnimmt in diesem Fall der Versorgungsantrieb die Arbeitsleistung nicht dem Speicher sondern der Hauptwelle und führt sie dem Hybridantrieb zu.
Diese Ausführungsform stellt einen Gesamtantrieb mit elektrifiziertem Getriebe dar, das die Funktionsmodi eines volllastfähigen EVT- und Automatikgetriebes besitzt, jedoch ohne die verbrauchseffiziente, oben genannte Funktion des verbrennerfreien EVT-Fahrens.
Eine weitere Ausführungsform hat einen Fahrzeug-Parallelhybrid-Gesamtantrieb mit einer Hybrideinheit und einer Schwungradeinrichtung in Verbindung mit einem konventionellen Automatik- oder Schaltgetriebe.
Wesentliches Kennzeichen ist, dass der Überlagerungsrotor des Hybridantriebs, ggf. über die zweite Ausgangswelle, fest mit dem Gehäuse verbunden ist.
Diese Ausführungsform ermöglicht die bekannten Funktionen auf dem Niveau eines Paral- lelhybrids nach dem Stand der Technik, wie z.B. Boosten, Motor-Start-Stopp-Automatik oder Rekuperation von Bremsleistung. Bei ausgekuppeltem Primärantrieb ist ein kurzzeitiges, durch den Hybridantrieb angetriebenes Fahren mit Energie aus der Schwungradvorrichtung möglich. Die Verbrauchsvorteile entsprechen dem eines Parallelhybrids nach dem Stand der Technik.
Wesentlicher Vorteil ist der bessere Wirkungsgrad beim Speichern und bei der Nutzung re- kuperierter Bremsenergie, sowie ein deutlich besseres Drehmomentverhalten des Hybridbetriebs bei hohen Drehzahlen des Primärantriebs. Ausführungsbeispiele der Erfindung werden nachstehend anhand von Zeichnungen näher erläutert. Es zeigen:
Fig. 1 die Grundform einer erfindungsgemäßen Hybrideinheit
Fig. 2 eine Ausführungsaltemative einer Grundform einer erfindungsgemäßen Hybrideinheit
Fig. 3 die Hybrideinheit nach Fig. 1 , kombiniert mit einer ersten Variante einer
Schwungradeinrichtung
Fig. 4 die Hybrideinheit nach Fig. 1 , kombiniert mit einer zweiten Variante einer
Schwungradeinrichtung
Fig. 5 die Hybrideinheit nach Fig. 1 , kombiniert mit einer dritten Variante einer
Schwungradeinrichtung
Fig. 6 einen Fahrzeugantriebsstrang mit Primärantrieb, einer erweiterten Variante der Hybrideinheit nach Fig. 4 und Getriebe
Fig. 7 eine erste Variante eines Fahrzeugantriebsstrangs mit Primärantrieb der Hybrideinheit nach Fig. 1 und einem Getriebe nach Fig.6
Fig. 8 eine zweite Variante eines Fahrzeugantriebsstrangs mit Primärantrieb, der
Hybrideinheit nach Fig. 4 und einem konventionellen Schalt- oder Automatikgetriebe
Fig. 1 zeigt die Grundform einer Hybrideinheit 100, die einen Versorgungselektroantrieb 103 und einen Hybridelektroantrieb 105 aufweist, die auf einer zentralen Hauptwelle gelagert sind. Der Versorgungselektroantrieb 103 umfasst einen ersten Hauptrotor 120 und einen diesen radial umgebenden Überlagerungsrotor 124. Der erste Hauptrotor 120 ist mit Feldwicklungen versehen und auf der Außenseite einer Trägertrommel 108 angebracht. Beide sind drehfest mit der Hauptwelle 106 verbunden.
Der Überlagerungsrotor 124 ist an einem Träger 126 angebracht, der drehfest mit einer als Hohlwelle ausgeführten Versorgungswelle 130 verbunden ist, die auf einer Eingangsseite zur Hauptwelle 106 drehbar gelagert ist. Der Überlagerungsrotor 124 kann je nach Bauart Permanentmagneten oder Kurzschlusswicklungen aufweisen.
Der Hybridelektroantrieb 105 umfasst ebenfalls einen auf der Außenseite der Trommel 108 angebrachten zweiten Hauptrotor 116 mit Feldwicklungen, der von einem Überlagerungsrotor 121 umgeben wird. Der Überlagerungsrotor 121 , ist an einen Träger 128 angebracht, der drehfest mit einer als Hohlwelle ausgeführten Ausgangswelle 132 verbunden ist, die auf der Ausgangsseite zur Hauptwelle 106 drehbar gelagert ist. Der Überlagerungsrotor 121 kann je nach Bauart Permanentmagneten oder Kurzschlusswicklungen aufweisen.
Innerhalb der Trommel 108 ist eine Leistungssteuereinrichtung 110 vorgesehen, die eine Vier-Quadranten-Steuerungseinheit 1 12 und eine Vier-Quadranten-Steuerungseinheit 114 umfasst, die dem ersten Hauptrotor 120 bzw. dem zweiten Hauptrotor 1 16 zugeordnet sind. Die Steuereinheiten 1 12 , 1 14 sind jeweils über Phasenleitungen 122 bzw. 1 18 (U-V-W- Leitungen) mit den Feldwicklungen der Hauptrotoren 120 bzw. 1 16 verbunden.
Zur Kühlung der Bauelemente wird die Trommel 108 von einem Kühlmittel (vorzugsweise Getriebeöl) durchströmt. Hierzu kann der Innenraum der Trommel 108 mit einer axialen Zentralbohrung in der Hauptwelle 106 verbunden sein, wobei eine Kühlmittelquelle mit der Bohrung in Verbindung steht (nicht gezeigt).
Zur Funktionsansteuerung der Hybrideinheit 100 ist eine bidirektionale Datenkommunikation bzw. Datenübertragung von einem Betriebssteuergerät 134 zur Steuerungseinheit 1 10, bzw. zu den Steuerungseinheiten 112 bzw. 114 erforderlich. Um diese Datenübertragung vom gehäusefesten Betriebssteuergerät 134 zur drehbar gelagerten Steuerungseinheit 1 10 zu ermöglichen, ist an der Trommel 108 zwischen den beiden Elektroantrieben 103, 105 mindestens ein mit der Trommel 108 rotierender Datenübertragungsteil 138 mit einem integrierten Sende- und Empfangsteil vorgesehen. Mindestens ein weiterer Datenübertragungsteil 136 mit einem integrierten Sende- und Empfangsteil ist an dem Gehäuse 107 mit dem ersten Datenübertragungsteil 138 in geeigneter Flucht zueinander befestigt. Die Datenübertragung an das Betriebssteuergerät 134 umfasst unter anderem die Ist-Drehzahl der Hauptwelle 106, des ersten Überlagerungsrotors 124 und des zweiten Überlagerungsrotors 121 , während vom Betriebssteuergerät an die Leistungssteuereinheit 110 im Wesentlichen die Soll- Ansteuerdaten für die Drehzahl- und Momentenregelung der beiden Überlagerungselektro- maschinen 103 und 105 übertragen werden. Die Übertragung zwischen beiden Datenübertragungsteilen 136, 138 erfolgt beispielsweise induktiv. Es sind jedoch auch andere Formen einer Datenübertragung möglich. Die Elektronikbauteile in der Steuerungseinheit 110 werden durch eine interne, in der Trommel 108 vorgesehene geeignete Stromversorgung versorgt.
Fig.2 zeigt eine Ausführungsalternative einer erfindungsgemäßen Hybrideinheit 100a, die ebenfalls einen Versorgungselektroantrieb 103a und einen Hybridelektroantrieb 105a ent- sprechend Ausführung Fig. 1 aufweist und funktionsgleiche Eigenschaften der Hybrideinheit 100 in Fig.1 besitzt.
Kennzeichnend für diese Ausführungsalternative ist, dass die Hauptwelle 106a als Hohlwelle ausgeführt ist, der erste Überlagerungsrotor 124a des Versorgungsantriebs 103a drehfest mit einer als Zentralwelle ausgebildeten eingangsseitigen Versorgungswelle 130a verbunden ist und der zweite Überlagerungsrotor 124a des Hybridantriebs 105a ausgangsseitig drehfest mit einer als Zentralwelle ausgebildeten Ausgangswelle 132a verbunden ist. Die Leistungssteuerung 110a und die beiden Hauptrotoren 120a und 1 16a des Versorgungsantriebs 103a und des Hybridantriebs 105a sind an oder in der Trägereinheit 108a drehfest mit der Hauptwelle 106a verbunden. Die radial außen an der Trägereinheit 108a umlaufend befestigte Leistungssteuereinrichtung 110a enthält wie in der Hybrideinheit 100 in Fig.1 zwei Vier- Quadranten-Steuerungseinheiten 112a und 1 14a, die über die Phasenleitungen 122a und 1 18a mit den auf den Überlagerungsrotoren 116a und 120a befestigten Feldwicklungen in elektrischer Funktionsverbindung stehen und den elektrischen Leistungsaustausch zwischen Versorgungsantrieb 103a und Hybridantrieb 105a ermöglichen.
Wie in Fig.1 steht eine bidirektionale Datenübertragung von dem Betriebssteuergerät 134 zur Steuerungseinheit 1 10a zur Verfügung, wobei der rotierende Datenübertragungsteil 138 mit der Leistungssteuereinheit 110a und der gehäusefeste Datenübertragungsteil 136 mit dem Betriebssteuergerät 134 in Datenverbindung steht.
Fig. 3 zeigt die Grundform einer Hybrideinheit 100 nach Fig. 1 mit einer Versorgungswelle 130, auf der in radialem Abstand eine Schwungradeinrichtung 149 in Form einer ringförmigen, gleichförmig verteilten Masse drehfest angebracht ist.
In Fig. 4 ist die Grundform der Hybrideinheit 100 nach Fig. 1 mit einer am ersten Überlagerungsrotor 124 des Versorgungsantriebs 103 angebrachten radial gleichförmig verteilen Massenträgheit versehen, die die gleiche Funktion hat wie die Schwungradeinrichtung 149 nach Fig.3.
In Fig. 5 sind die drei Planetenwellen eines Planetengetriebes P1 mit der Schwungradvorrichtung 149, sowie mit der Versorgungswelle 130 und der Hauptwelle 106 der Hybrideinheit 100 nach Fig. 1 verbunden. Das Planetengetriebe P1 ermöglicht es, einen mechanischen Energiefluss zwischen Schwungradvorrichtung und Hauptwelle durch die Hybrideinheit 100 zu steuern. In dieser Ausführungsform ist die Versorgungshohlwelle 130 mit dem Hohlrad 164 und die Hauptwelle 106 mit dem Planetenträger 162 des Planetengetriebes P1 drehfest gekoppelt. Die Schwungradeinrichtung 149 ist mit einer auf der Hauptwelle 106 drehbar gelagerten Verbindungshohlwelle 131 mit dem Sonnenrad 168 des Planetengetriebes P1 drehfest gekoppelt. Auf dem Planetenträger 162 ist mindestens ein Planetenrad 166 gelagert, das mit dem Sonnenrad 168 und dem Hohlrad 164 des Planetengetriebes P1 kämmt.
Fig. 6 zeigt einen Fahrzeug-Antrieb mit einem Primärantrieb 158 einer in Fig. 5 dargestellten Hybrideinheit mit der Schwungradeinrichtung 149 und einem ausgangsseitig angeschlossenen Getriebe 144. Analog zu diesem ist natürlich auch ein Fahrzeug-Antrieb mit einem Primärantrieb 158 und einem Getriebe 144, mit einer der Hybrideinheiten mit Schwungradvorrichtung 149 nach Fig. 3 oder Fig. 4 möglich.
Vorzugsweise ist hier das Planetengetriebe P1 durch eine Bremsvorrichtung B erweitert und der drehbare Teil 172 der Bremsvorrichtung B ist mit dem Hohlrad 164 des Planetengetriebes P1 verbunden. Der gehäusefeste Teil 170 ist durch das Betriebssteuergerät 134 nach Bedarf so steuerbar, dass ein Festbremsen oder ein Lösen des drehbaren Teils 172 der Bremsvorrichtung B gegen das Gehäuse ermöglicht wird und dadurch zwei unterschiedliche Betriebsmodi des Gesamtantriebs erzeugt werden können.
Der Primärantrieb 158 ist durch eine Kupplung K an die Hauptwelle 106 ankoppelbar oder auch von ihr zu trennen.
Die beiden Ausgangswellen der Hybrideinheit 100, die Hauptwelle 106 und die Ausgangshohlwelle 132, sind mit einem ausgangsseitigen Planetengetriebe P2 gekoppelt. Die Hauptwelle 106 der Hybrideinheit 100 ist mit einem ersten Sonnenrad 181 und die Ausgangshohlwelle 132 ist mit dem Planetenradträger 182 des ausgangsseitigen Planetengetriebes P2 drehfest verbunden. Ein zweites Sonnenrad 183 des ausgangsseitigen Planetengetriebes P2 ist mit der Eingangswelle 147 eines ersten Teilgethebes148 drehfest verbunden, während der Planetenradträger 182 des ausgangsseitigen Planetengetriebes P2 mit der Eingangshohlwelle 145 eines zweiten Teilgetriebes 146 drehfest verbunden ist.
Auf dem Planetenradträger ist wenigstens ein Doppelplanetenrad 184 mit einer ersten Verzahnung 185 und einer mit der ersten drehfest gekoppelten zweiten Verzahnung 186 drehbar gelagert, wobei das mit der Hauptwelle 106 verbundene erste Sonnenrad 181 mit der ersten Verzahnung 185 des Doppelplanetenrads 184 kämmt, und das mit dem ersten Teilgetriebe 148 verbundene zweite Sonnenrad 183 mit der zweiten Verzahnung 186 des Doppel- planetenrads 184 kämmt. Die Abtriebswellen der beiden Teilgetriebe 146, 148 werden durch eine Verzahnpaarung am Ausgang des Getriebes 144 zu einem gemeinsamen Abtrieb A gekoppelt. Das Planetengetriebe P2 und die beiden Teilgetriebe146 und 148 sind Bestandteil des Getriebes 144.
Über nicht dargestellte Drehzahlsensoren an der Hauptwelle 106, dem ersten Überlagerungsrotor 124 des Versorgungsantriebs 103 und dem zweiten Überlagerungsrotor 121 des Hybridantriebs 105 werden über die Übertragungseinrichtung 136, 138 die IST- Drehzahlinformationen an das Betriebssteuergerät 134 übertragen.
Mit Hilfe dieser Drehzahlinformationen erfolgt vom Betriebssteuergerät 134 die Solldatenan- steuerung für die Leistungssteuerung 110, die zur Regelung des Versorgungsantriebs 103 und des Hybridantriebs 105 erforderlich sind, um gewünschte Betriebszustände einzustellen. Des Weiteren werden vom Betriebssteuergerät 134 die Kupplung K, die Bremsvorrichtung B und die Schalteinheiten S für die Ansteuerung der Schaltklauen im Getriebe 144 gesteuert. Gegebenenfalls ist eine Ankopplung der Schwungradvorrichtung 149 möglich, wie sie in Fig. 3 oder Fig. 4 dargestellt ist.
Funktional stellt diese Ausführungsform einen rekuperationsfähigen Fahrzeughybridantrieb dar, mit einem Primärantrieb 158, einer Speichereinrichtung 149 und einem durch die Hybrideinheit 100 elektromechanisch steuerbaren, volllastfähigen EVT-Getriebe 144, das eine unendliche Getriebegesamtübersetzung besitzt.
Die beschriebene Ausführungsform kann in einem ersten klassischen Fahrmodus als Antrieb mit Stufenautomatikgetriebe, oder optional mit EVT-Getriebe betrieben werden.
In einem zweiten verbrauchsorientierten Fahrmodus kann der Verbrennungsmotor intermittierend arbeiten, d.h. längerfristig abgelegt werden, während der Fahrzeugantrieb gesteuert durch die Hybrideinheit 100 verbrennerfrei, ausschließlich mit Energie aus der Speichereinrichtung 149 betrieben wird.
Fig. 7 zeigt eine aufwandsreduzierte Variante eines Fahrzeug-Antriebs nach Fig.6 mit einem Primärantrieb 158, der Hybrideinheit 100 und einem Getriebe 144, der jedoch keine Speichereinrichtung besitzt. Wesentliches Kennzeichen ist, dass die Versorgungshohlwelle 130 fest mit dem Gehäuse 107 verbunden ist, oder auch (nicht dargestellt) der Überlagerungsrotor 124 des Versorgungsantriebs 103 fest mit dem Gehäuse 107 verbunden ist. Zwischen dem Primärantrieb 158 und der Hauptwelle 106 ist keine Kupplung K erforderlich.
Funktional stellt diese Ausführungsform wie oben ein elektromechanisch gesteuertes EVT- Getriebe dar, das optional EVT- oder als Stufenautomatikgetriebe betrieben werden kann. Der Hybridantrieb 105 bezieht in dieser Ausführungsform seine Arbeitsleistung zur Steuerung der Ausgangshohlwelle 132 über den Versorgungsantrieb 103 aus der Hauptwelle 106.
Fig. 8 zeigt eine zweite Variante eines rekuperationsfähigen Fahrzeughybridantriebs mit einem Primärantrieb 158, der Hybrideinheit 100 mit einer Schwungradeinrichtung 149, wie in Fig. 5 beschrieben, und einem konventionellen Schalt- oder Automatikgetriebe 152.
Wesentliches Kennzeichen ist, dass die zweite Ausgangswelle 132 des Hybridantriebs 105 fest mit dem Gehäuse 107 verbunden ist, oder ggf. auch (nicht dargestellt) der Überlagerungsrotor 121 des Hybridantriebs 105 fest mit dem Gehäuse 107 verbunden ist. Die aus- gangsseitige Hauptwelle 106 der Hybrideinheit 100 ist hierbei mit der Getriebeeingangswelle 155 des Getriebes152 gekoppelt.
Der Primärantrieb 158 ist über eine von dem Betriebssteuergerät 134 steuerbare Kupplung K mit der Hauptwelle an- bzw. abkoppelbar.
Gegebenenfalls ist eine Ankopplung der Schwungradvorrichtung 149 möglich, wie sie in Fig. 3 oder Fig. 4 dargestellt ist.
Diese Ausführungsform erfüllt die vergleichbaren Funktionen eines Mildhybridantriebs mit Stufenautomatikgetriebe.

Claims

Patentansprüche
1. Hybrideinheit für ein Kraftfahrzeug mit einer drehbar gelagerten Hauptwelle (106, 106a), die eingangseitig mit einem Primärantrieb (158) und ausgangsseitig mit einem Getriebe (144, 152) verbindbar ist, einem Versorgungs-Elektroantrieb (103, 103a), der einen drehfest mit der Hauptwelle (106, 106a) verbundenen ersten Hauptrotor (120, 120a) mit einer Feldwicklung und einen zum ersten Hauptrotor (120, 120a) koaxial angeordneten ersten Überlagerungsrotor (124, 124a) mit einem Permanentmagnet oder einer Kurzschlusswicklung umfasst, der zur Hauptwelle (106, 106a) drehbar gelagert ist, einem Hybrid-Elektroantrieb (105, 105a), der einen drehfest mit der Hauptwelle (106, 106a) verbundenen zweiten Hauptrotor (1 16, 1 16a) mit einer Feldwicklung und einen zum zweiten Hauptrotor (1 16, 1 16a) koaxial angeordneten zweiten Überlagerungsrotor (121 , 121 a) mit einem Permanentmagnet oder einer Kurzschlusswicklung umfasst, der zur Hauptwelle (106, 106a) drehbar gelagert ist, und
- einer dem Versorgungs-Elektroantrieb (103, 103a) und dem Hybrid-Elektroantrieb (105, 105a) zugeordneten Leistungssteuereinrichtung (1 10, 1 10a), die mit der Hauptwelle (106, 106a) drehfest verbunden und mit den Feldwicklungen des ersten Hauptrotors (120, 120a) und des zweiten Hauptrotors (116, 1 16a) elektrisch gekoppelt ist.
2. Hybrideinheit nach Anspruch 1 , dadurch gekennzeichnet, dass der erste Überlagerungsrotor (124, 124a) drehfest mit einer zur Hauptwelle (106, 106a) drehbar gelagerten Versorgungswelle (130, 130a) verbunden ist.
3. Hybrideinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zweite Überlagerungsrotor (121 , 121a) drehfest mit einer zur Hauptwelle (106, 106a) drehbar gelagerten Ausgangswelle (132, 132a) verbunden ist
4. Hybrideinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leistungssteuereinrichtung (110, 110a) eine dem Versorgungs-Elektroantrieb (103, 103a) zugeordnete Vier-Quadranten-Leistungssteuereinheit (112, 1 12a) umfasst, die über Phasenleitungen (122, 122a) mit der Feldwicklung des ersten Hauptrotors (120, 120a) elektrisch gekoppelt ist und eine dem Hybrid-Elektroantrieb (105, 105a) zugeordnete Vier- Quadranten-Leistungssteuereinheit (1 14, 114a) umfasst, die über Phasenleitungen (1 18, 118a) mit der Feldwicklung des zweiten Hauptrotors (116, 116a) elektrisch gekoppelt ist, die beiden Vier-Quadranten-Leistungssteuereinheiten (1 12,112a, 114,114a) zum Leistungsaustausch zwischen dem Versorgungs-Elektroantrieb (103, 103a) und dem Hybrid- Elektroantrieb (105, 105a) elektrisch gekoppelt sind, die Leistungssteuereinrichtung (110, 1 10a) an oder in einer drehfest mit der Hauptwelle (106, 106a) verbundenen Trägereinheit (108, 108a) untergebracht ist, an der die beiden Feldwicklungen vorgesehen sind, und wenigstens alle hochspannungsführenden Bauteile des Versorgungs-Elektroantriebs (103, 103a), des Hybrid-Elektroantriebs (105, 105a) und der Leistungssteuereinrichtung (1 10, 110a) an und/oder in der Trägereinheit (108, 108a) angeordnet sind.
5. Hybrideinheit nach Anspruch 4, dadurch gekennzeichnet, dass die Hauptwelle (106) oder die Versorgungswelle (130a) eine Zentralbohrung aufweist, die mit einer Kühlmittelzu- fuhreinrichtung in Fluidverbindung steht, und die Trägereinheit (108, 108a) für eine Zufuhr von Kühlmittel über die Kühleinrichtung zur Kühlung der Feldwicklungen und der Leistungssteuereinrichtung (110, 110a) mit der Zentralbohrung in Fluidverbindung steht.
6. Hybrideinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, - dass zur Ansteuerung des Versorgungs-Elektroantriebs (103, 103a) und des Hybrid- Elektroantriebs (105, 105a) eine Datenübertragungseinrichtung für eine bidirektionale Datenübertragung zwischen einem Betriebssteuergerät (134) und der Leistungssteuereinrichtung (1 10, 110a) vorgesehen ist, die einen gehäusefesten ersten Übertragerteil (136) und einen drehfest mit der Hauptwelle (106, 106a) verbundenen zweiten Übertragerteil (138) umfasst,
- dass Drehzahlinformationen von Drehzahlsensoren der Hauptwelle (106, 106a), des ersten Überlagerungsrotors (124, 124a) und des zweiten Überlagerungsrotors (121 , 121 a) an das Betriebssteuergerät (134) übermittelt werden können.
7. Hybrideinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Schwungradeinrichtung (149) über eine Trägervorrichtung drehfest mit der Versorgungswelle (130, 130a) verbunden ist, oder die Schwungradeinrichtung (149) direkt mit dem Überlagerungsrotor (124, 124a) verbunden ist, bzw. auf diesem fest angeordnet ist, oder die Schwungradeinrichtung (149) über eine Trägervorrichtung und eine auf der Hauptwelle (106) drehbar gelagerte Verbindungshohlwelle (131 ) mit dem Sonnenrad (168) eines eingangsseitigen Planetengetriebes (P1 ) drehfest verbunden ist, und
- dass die Hauptwelle (106) mit dem Planetenträger (162) des Planetengetriebes (P1 ) drehfest verbunden ist und
- dass die Versorgungswelle (130) durch ein Verbindungselement (160) mit dem Hohlrad (164) des Planetengetriebes (P1 ) drehfest verbunden ist und
- dass mindestens ein auf dem Planetenträger (162) des Planetengetriebes (P1) drehbar gelagertes Planetenrad (166) mit dem Hohlrad (164) und dem Sonnenrad (168) kämmt.
8. Hybrideinheit nach Anspruch 7, dadurch gekennzeichnet, dass die Schwungradeinrichtung (149), gegebenenfalls mit der Trägervorrichtung von einem Unterdruckgehäuse umschlossen ist und dass zur Herstellung eines Unterdrucks der Innenraum des Unterdruckgehäuses an eine Vakuumpumpe angeschlossen ist.
9. Hybridantrieb nach Anspruch 6 und 7, dadurch gekennzeichnet, dass das Hohlrad (164) des eingangsseitigen Planetengetriebes (P1 ) mit einem ersten Teil (172) einer Bremseinrichtung (B) drehfest verbunden ist und dass ein vom Betriebssteuergerät (134) steuerbarer zweier Teil (170) der Bremseinrichtung (B) den ersten Teil (172) der Bremseinrichtung (B) und das Hohlrad (164) gegen das Gehäuse (107) arretieren kann.
10. Hybrideinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hauptwelle (106) mit einem ersten Sonnenrad (181 ) und die Ausgangswelle (132) mit dem Planetenradträger (182) eines ausgangsseitigen Planetengetriebes (P2) drehfest verbunden ist, ein zweites Sonnenrad (183) des ausgangsseitigen Planetengetriebes (P2) mit der Eingangswelle (147) eines ersten Teilgetriebes (148) drehfest verbunden ist, der Planetenradträger (182) des ausgangsseitigen Planetengetriebes (P2) mit einer auf der Eingangswelle (147) des ersten Teilgetriebes (148) drehbar gelagerten Eingangshohlwelle (145) eines zweiten Teilgetriebes (146) drehfest verbunden ist, auf dem Planetenradträger (182) wenigstens ein Doppelplanetenrad (184) drehbar gelagert ist, dessen erste Verzahnung (185) drehfest mit einer zweiten Verzahnung (186) gekoppelt ist, das erste Sonnenrad (181 ) mit der ersten Verzahnung (185) des Doppelplanetenrads (184) kämmt, das zweite Sonnenrad (183) mit der zweiten Verzahnung (186) des Doppelplanetenrads (184) kämmt und die beiden Teilgetriebe (146, 148) durch eine Zahnpaarung am Ausgang des Getriebes (144) zu einem gemeinsamen Abtrieb (A) gekoppelt sind.
1 1. Hybrideinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hauptwelle (106a) mit dem Planetenradträger (182) und die Ausgangswelle (132a) mit einem ersten Sonnenrad (181 ) eines ausgangsseitigen Planetengetriebes (P2) drehfest verbunden ist, ein zweites Sonnenrad (183) des ausgangsseitigen Planetengetriebes (P2) mit der Eingangswelle (147) eines ersten Teilgetriebes (148) drehfest verbunden ist, der Planetenradträger (182) des ausgangsseitigen Planetengetriebes (P2) mit einer auf der Eingangswelle (147) des ersten Teilgetriebes (148) drehbar gelagerten Eingangshohlwelle (145) eines zweiten Teilgetriebes (146) drehfest verbunden ist, auf dem Planetenradträger (182) wenigstens ein Doppelplanetenrad (184) drehbar gelagert ist, dessen erste Verzahnung (185) drehfest mit einer zweiten Verzahnung (186) gekoppelt ist, das erste Sonnenrad (181 ) mit der ersten Verzahnung (185) des Doppelplanetenrads (184) kämmt, das zweite Sonnenrad (183) mit der zweiten Verzahnung (186) des Doppelplanetenrads (184) kämmt und die beiden Teilgetriebe (146, 148) durch eine Zahnpaarung am Ausgang des Getriebes (144) zu einem gemeinsamen Abtrieb (A) gekoppelt sind.
12. Hybrideinheit nach Anspruch 9 und 10 oder 9 und 1 1 , dadurch gekennzeichnet, dass das Betriebssteuergerät (134) so ausgelegt und konfiguriert ist, dass der Versorgungs-Elektroantrieb (103, 103a) so angesteuert wird, dass ein gewünschtes Drehzahlverhältnis von Hauptwelle (106, 106a) und Überlagerungswelle (130, 130a) eingestellt werden kann, dass die steuerbare Bremseinrichtung (B), das Hohlrad (164) gegen das Gehäuse (107) festbremsen kann, oder dieses wieder lösen kann, dass der Hybrid-Elektroantrieb (105, 105a) so angesteuert wird, dass ein gewünschtes Drehzahlverhältnis von Hauptwelle (106, 106a) und Ausgangswelle (132, 132a) eingestellt werden kann und das Drehzahlverhältnis zwischen den Zahnrädern der Zahnradpaarungen in den Teilgetrieben (146, 148) so eingestellt werden kann, dass bei Erreichen einer Synchrondrehzahl ein Einrücken oder ein Ausrücken einer bestimmten Schaltklaue einen Schaltvorgang ermöglicht, dass wenigstens eine Antriebseinheit (S) für Schaltklauen die verschiedenen Zahnradpaarungen in den Teilgetrieben (146, 148) ansteuern kann dass eine steuerbare Kupplung (K), den Primärantrieb (158) mit der Hauptwelle (106, 106a) verbinden, oder von dieser wieder trennen kann.
13. Hybrideinheit nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass der Überlagerungsrotor (124, 124a) , direkt mit dem Gehäuse (107), oder die Versorgungswelle (130, 130a) drehfest mit dem Gehäuse (107) verbunden ist,
- der Primärantrieb (158) direkt mit der Hauptwelle (106, 106a) drehfest verbunden ist
14. Hybrideinheit nach Anspruch 1 bis 6 und 9, dadurch gekennzeichnet, dass
- der Überlagerungsmotor (121 , 121 a) oder die Ausgangswelle (132, 132a) fest mit dem Gehäuse (107) verbunden ist,
- die Hauptwelle (106, 106a) drehfest mit der Eingangswelle (155) eines automatisierten Stufenschaltgetriebes (152) verbindbar ist.
PCT/EP2009/003413 2008-05-15 2009-05-13 Hybrideinheit mit schwungradeinrichtung für ein kraftfahrzeug WO2009138227A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009000841T DE112009000841A5 (de) 2008-05-15 2009-05-13 Hybrideinheit mit Schwungradeinrichtung für ein Kraftfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008023789.2 2008-05-15
DE102008023789A DE102008023789A1 (de) 2008-05-15 2008-05-15 Hybrideinheit mit Schwungradeinrichtung für ein Kraftfahrzeug

Publications (2)

Publication Number Publication Date
WO2009138227A2 true WO2009138227A2 (de) 2009-11-19
WO2009138227A3 WO2009138227A3 (de) 2010-02-25

Family

ID=41009919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/003413 WO2009138227A2 (de) 2008-05-15 2009-05-13 Hybrideinheit mit schwungradeinrichtung für ein kraftfahrzeug

Country Status (2)

Country Link
DE (2) DE102008023789A1 (de)
WO (1) WO2009138227A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010033234A1 (de) * 2010-08-03 2012-02-09 Siemens Aktiengesellschaft Energiespeichervorrichtung und Betriebsverfahren
DE102011085495A1 (de) * 2011-10-31 2013-05-02 Deere & Company Lastschaltgetriebe
US8622860B2 (en) 2011-08-01 2014-01-07 Spicer Off-Highway Belgium N.V. Method and apparatus for transferring power between a flywheel and a vehicle
DE102012216680A1 (de) * 2012-09-18 2014-06-12 Magna Powertrain Ag & Co. Kg Schwungradtrieb

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0905343D0 (en) 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
GB0905344D0 (en) 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
GB0905345D0 (en) 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
GB201019473D0 (en) 2010-11-17 2010-12-29 Ricardo Uk Ltd An improved coupler
GB201106768D0 (en) * 2011-04-20 2011-06-01 Ricardo Uk Ltd An energy storage system
DE102014108218B4 (de) 2014-06-12 2022-08-25 Leoni Bordnetz-Systeme Gmbh Stromverteilerbox

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2712456A1 (de) * 1977-03-22 1978-09-28 Manfred Beyer Antriebssystem mit elektromotor
DE2823225A1 (de) * 1978-05-27 1979-11-29 Erhard Lauster Entwicklungen G Hybridantriebsvorrichtung fuer kraftfahrzeuge
WO1989004081A1 (en) * 1987-10-30 1989-05-05 Johannes Karel Schuursma Drives with double-rotating electric machines
WO2003016750A1 (en) * 2001-08-13 2003-02-27 Interbak, Ltd Stepless electro-mechanical transmission equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2712456A1 (de) * 1977-03-22 1978-09-28 Manfred Beyer Antriebssystem mit elektromotor
DE2823225A1 (de) * 1978-05-27 1979-11-29 Erhard Lauster Entwicklungen G Hybridantriebsvorrichtung fuer kraftfahrzeuge
WO1989004081A1 (en) * 1987-10-30 1989-05-05 Johannes Karel Schuursma Drives with double-rotating electric machines
WO2003016750A1 (en) * 2001-08-13 2003-02-27 Interbak, Ltd Stepless electro-mechanical transmission equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010033234A1 (de) * 2010-08-03 2012-02-09 Siemens Aktiengesellschaft Energiespeichervorrichtung und Betriebsverfahren
US8622860B2 (en) 2011-08-01 2014-01-07 Spicer Off-Highway Belgium N.V. Method and apparatus for transferring power between a flywheel and a vehicle
DE102011085495A1 (de) * 2011-10-31 2013-05-02 Deere & Company Lastschaltgetriebe
DE102012216680A1 (de) * 2012-09-18 2014-06-12 Magna Powertrain Ag & Co. Kg Schwungradtrieb

Also Published As

Publication number Publication date
DE102008023789A1 (de) 2009-11-19
DE112009000841A5 (de) 2011-07-14
WO2009138227A3 (de) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2009138227A2 (de) Hybrideinheit mit schwungradeinrichtung für ein kraftfahrzeug
DE102009020408B4 (de) Elektrischer Drehmomentwandler für einen Antriebsstrang und Verfahren zum Betreiben eines Fahrzeugs
EP2370285B1 (de) Hybrid-antriebseinheit und verfahren zu deren betrieb
DE102012010171B4 (de) Antriebssystem für Kraftfahrzeuge
WO2006119919A1 (de) Antriebsstrang für ein kraftfahrzeug mit einer brennkraftmaschine und einem elektrischen antriebsaggregat
DE102007043173A1 (de) Elektrisch verstellbares Hybridgetriebe mit einem über Zahnräder hergestellten Rückwärtsmodus, das einen einzigen Motor/Generator verwendet
EP2398663B1 (de) Hybridantriebsvorrichtung
DE112013005384T5 (de) Direktantriebsgetriebeentkoppler
EP1280677A2 (de) Hybridgetriebe, insbesondere für kraftfahrzeuge
DE102012218367A1 (de) Gruppengetriebevorrichtung mit einer elektrischen Maschine
DE102006044885A1 (de) Kraftübertragungsstrang mit seriellem elektrischem Anfahrvermögen und mit durch elektrische Energie unterstütztem Leistungsvermögen
DE112011102566T5 (de) Elektrofahrzeugantriebssystem
WO2013020759A1 (de) Getriebevorrichtung mit mehreren schaltelementen
DE112013000967T5 (de) Antriebseinheit für Fahrzeuge
WO2014006016A1 (de) Hybridantriebsstrang für ein kraftfahrzeug, hybridfahrzeug und verwendung desselben
DE102017103449A1 (de) Achsanordnung für ein Hybridelektrofahrzeug
DE102012001846A1 (de) Schaltgetriebe
DE102015116403A1 (de) Hybridgetriebe mit elektromagnetisch betätigter klinkenkupplung
DE102013112388A1 (de) Alternatives Antriebskonzept für Kraftfahrzeuge mit Verbrennungskraftmaschine und elektrischer Maschine
DE102013212243B4 (de) Elektrisch veränderliches Multimodusgetriebe mit einem Ferritmagnetmotor und Verfahren für seinen Betrieb
DE102011085110A1 (de) Hybridantrieb für ein Kraftfahrzeug
DE102017220071A1 (de) Getriebe für ein Kraftfahrzeug
DE102011004191A1 (de) Elektromechanische Fahrzeugantriebseinrichtung
DE102022212180A1 (de) Elektrisches antriebsstrangsystem mit nebenabtrieb und verfahren zum betreiben des elektrischen antriebsstrangsystems
DE102022123891A1 (de) Elektrisches antriebsstrangsystem und elektrisches-antriebsstrangsystem-betriebsverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09745561

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009000841

Country of ref document: DE

Effective date: 20110714

122 Ep: pct application non-entry in european phase

Ref document number: 09745561

Country of ref document: EP

Kind code of ref document: A2