WO2009136653A1 - Catalyst precursor, catalyst material, and catalyst manufacturing method - Google Patents

Catalyst precursor, catalyst material, and catalyst manufacturing method Download PDF

Info

Publication number
WO2009136653A1
WO2009136653A1 PCT/JP2009/058799 JP2009058799W WO2009136653A1 WO 2009136653 A1 WO2009136653 A1 WO 2009136653A1 JP 2009058799 W JP2009058799 W JP 2009058799W WO 2009136653 A1 WO2009136653 A1 WO 2009136653A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
group
catalyst precursor
acid
Prior art date
Application number
PCT/JP2009/058799
Other languages
French (fr)
Japanese (ja)
Inventor
嵯峨庄太
下俊久
村崎孝則
原亨和
中島清隆
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2009136653A1 publication Critical patent/WO2009136653A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated

Definitions

  • the present invention relates to a catalyst material that can be used for purification of exhaust gas, organic matter synthesis, hydrogen generation, etc., a precursor thereof, and a method for producing a catalyst.
  • Catalyst materials are widely used in fields such as deodorization, antibacterial, exhaust gas purification, fuel cells, and hydrogen generation. Although there are a wide range of catalyst materials, transition metals and their compounds are the most common. For example, complex catalysts that are metal coordination compounds, organic catalysts that catalyze actions with relatively simple organic compounds, etc. are known. ing.
  • the solid acid has an anion site that fixes hydrogen ions in its structure.
  • Metal ions ⁇ Metal ions (metal ions) can be immobilized on the anion site by exchanging ions in an aqueous solution containing metal cations such as old ions.
  • Solid acids are roughly divided into organic and inorganic types.
  • organic solid acid for example, a ionic exchange resin having an acid group such as a sulphonic acid group or a canolepoxinole group in the molecule can be cited, and this acid group becomes an anion site for fixing a metal species.
  • Organic solid acids have the advantage that the amount of fixed metal species can be easily quantified because the amount of acid introduced into the resin is controlled. However, it has low heat resistance and is vulnerable to chemicals, so there are problems with durability depending on the application.
  • inorganic solid acids such as aluminum oxide, vanadium oxide, silica alumina, and zeolite have high heat resistance and are not easily affected by solvents. However, since there are few anion sites and the anion sites are not as clear as organic solid acids, it is difficult to quantify the amount of fixed metal species. Also, since the anion site is susceptible to poisoning by water, it has poor durability.
  • amorphous carbon obtained through hydration, snorephonization, and ring condensation acts as a solid acid and has high thermal and chemical stability
  • Japanese Patent Laid-Open No. 2 0 0 4-2 3 8 3 1 1 publication and international publication 2 0 0 5/0 2 9 5 0 8 Japanese Patent Laid-Open No. 2 0 0 4-2 3 8 3 1 1 publication and international publication 2 0 0 5/0 2 9 5 0 8 (see pamphlet).
  • the outline of this solid acid is shown in FIG.
  • This solid acid is an amorphous carbon with a sulfonic acid group introduced, and can introduce an anion site in an amount comparable to that of an organic solid acid, and like an inorganic solid acid. Excellent durability. Disclosure of the invention
  • the conventional solid acid can fix the metal species at the anion site, but the amount of the metal species cannot be controlled, the heat resistance is low, the chemical resistance is low, Due to these disadvantages, it was not practical as a catalyst material.
  • the present inventors have newly found that a solid acid disclosed in the above-mentioned patent document can support a metal species quantitatively and obtain a catalyst material that is stable against heat and chemicals. I found it.
  • the present invention is derived from a novel catalyst precursor, a catalyst precursor obtained by immobilizing a metal species to a specific solid acid and having a function different from the function as an acid catalyst possessed by the solid acid.
  • the purpose is to share the catalyst material and the catalytic method.
  • the catalyst precursor of the present invention is characterized by comprising amorphous carbon into which a metal salt of an acidic group is introduced.
  • the catalyst precursor of the present invention is an existing solid acid made of amorphous carbon into which an acidic group is introduced, wherein the acidic group is converted into a metal salt by ion exchange.
  • a solid acid composed of amorphous carbon with an acid ft group introduced has more sites (acidic groups) for fixing metal ions than a general inorganic solid acid. Therefore, the catalyst precursor of the present invention contains a desired amount of metal species according to the amount of acidic groups.
  • acidic groups are bonded to amorphous carbon, they are more stable against heat and chemicals than organic solid acids.
  • the catalyst material of the present invention comprises the above-mentioned book comprising amorphous carbon into which an acid group metal salt is introduced.
  • the catalyst precursor of the invention is reduced.
  • the catalyst material of the present invention obtained by reducing the catalyst precursor of the present invention comprises a microcarrier made of a graph ensheet possessed by the amorphous carbon and a metal salt of the acidic group reduced and supported on the microcarrier.
  • the catalyst metal is preferably composed of a force.
  • the catalyst material of the present invention obtained by reducing the catalyst precursor of the present invention also supports a desired amount of a square metal and is excellent in stability.
  • the horn medium metal is originally present in atomic units in the catalyst precursor, and therefore uniformly dispersed in the catalyst material.
  • the catalytic metal is supported by a small graph ensheet (microcarrier). Since many graphene sheets have a discrete crystal structure, grain growth and alloying due to sintering that occurs on the surface of the graphene sheet ⁇ is suppressed.
  • the fact that the metal species forms an ionic bond with the graph ensheet in the catalyst precursor before the reduction is one of the causes for suppressing the grain growth of the catalyst metal.
  • a general platinum / ceria-based catalyst as a three-way catalyst for automobiles causes deterioration of platinum sintering catalyst when used at high temperatures.
  • the catalyst fabrication method of the present invention includes amorphous carbon and metal ion into which an acidic group is introduced.
  • It is characterized by comprising an ion exchange step of synthesizing a catalyst precursor composed of amorphous carbon into which a metal salt of an acid ffi group is introduced by ion exchange by mixing with 7_k solution.
  • the touch-making method of the present invention may further include, after the ion exchange step, a reduction treatment step in which the metal ions are reduced to form metal fine particles by reducing the metal ions.
  • the catalyst precursor of the present invention can be easily produced by simply mixing amorphous carbon (existing solid acid) into which an acid I biogroup is introduced and a solution containing a metal ion.
  • the amorphous carbon introduced with the Keisei group can easily control the amount of acidified acid introduced during the production process. Therefore, a catalyst precursor containing a desired amount of metal ions within the range of the amount of acid groups introduced can be obtained.
  • the metal ions become metal fine particles exhibiting catalytic activity.
  • amorphous carbon Because of its excellent heat resistance, the catalyst material will not deteriorate even if it is reduced by heating.
  • FIG. 1 is a schematic diagram showing a process for producing amorphous carbon (carbon solid acid) having an acid group introduced from an organic compound.
  • Figure 2 shows the results of analysis of catalyst precursor # 1 1 described later by X-ray photoelectron spectroscopy (XPS).
  • Fig. 3 shows the analysis result of the catalyst precursor # 1 1 analyzed by XPS, and shows the result of detailed analysis of a part of Fig. 2.
  • FIG. 4 is a drawing-substituting photograph in which the catalyst material obtained by reducing the catalyst precursor # 11 is observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 5 is a drawing-substituting photograph observed by TEM after further heat-treating the catalyst material obtained by reducing the catalyst precursor # 11.
  • the catalyst precursor of the present invention comprises amorphous carbon into which an acid group metal salt is introduced.
  • the catalyst precursor of the present invention will be described in detail later.
  • Amorphous carbon into which an acidic group is introduced is used, and the acidic group is converted into a metal salt by ion exchange. Therefore, in the following, amorphous carbon having an acidic group introduced (hereinafter abbreviated as “carbon solid acid”) will be described.
  • the carbon solid acid may be any substance that has an acidic group and exhibits properties as an amorphous carbon.
  • amorphous carbon is a substance composed of carbon, and is a substance that does not have a clear crystal structure, such as diamond.
  • amorphous carbon has a graph ensheet (a layer in which carbon atoms are connected in a plane) with many aromatic rings condensed, and each of the many graph ensheets has a fixed interval. It is composed in a disjointed state.
  • a clear peak is not detected or a broad peak is detected in powder X-ray diffraction.
  • the full width at half maximum (2 ⁇ ) is 5. It is better that at least a diffraction peak of the carbon (00 2) plane that is -30 ° is detected.
  • diffraction peaks other than the diffraction peak from the (00 2) plane may be detected, it is preferable that only the diffraction peak from the (002) plane is detected.
  • the carbon solid acid it is preferable to detect a chemical shift of the condensed aromatic carbon 6-membered ring and the condensed aromatic carbon 6-membered ring to which an acidic group is bonded in a 13 C nuclear magnetic resonance spectrum.
  • the carbon solid acid preferably has an acid group density of 0.5 mmo 1 / g or more. More preferably, it is 1.6 mm o 1 g or more, further 3 mm o 1 / g or more.
  • the size of the graph encasement contained in the carbon solid acid having an acid group density of 0.5 m: mo 1 Zg or more is limited to some extent. Specifically, the maximum length of the graph sheet in the surface direction is 5 nm or less, or 2 nm or less.
  • the maximum length in the surface direction of the graph ensheet is 0.5 nm or more, or 1 nm or more, it has excellent heat resistance.
  • the upper limit of the density of the acid I "biogroup is not particularly limited, but is preferably 1 Ommo lZg or less, and 5 mmo 1 / g.
  • the carbon atom to which the acidic group is bonded is the carbon atom of the carbon solid acid. 1-20% or even 3-20%.
  • the striking Bonn solid acid described above has properties such as being insoluble in polar solvents such as water and alcohol, functioning as an acid catalyst, and exhibiting proton conductivity.
  • the carbon solid acid can be produced, for example, by heat treating an organic compound in concentrated sulfuric acid or fuming sulfuric acid.
  • An outline of this manufacturing method is shown in Fig. 1.
  • an organic compound is heat-treated in concentrated sulfuric acid or fuming sulfuric acid, carbonization, sulfonation, and condensation between rings occur.
  • amorphous carbon having sulfonic acid groups introduced as acidic groups is produced.
  • Carothermal treatment of organic compounds in concentrated sulfuric acid or fuming sulfuric acid is preferably performed in an inert gas stream such as nitrogen or argon, or in a dry air stream. In the heat treatment, partial carbonization of organic compounds, cyclization, and so on progress, and sulfonation occurs.
  • the temperature of the calo-heat treatment is not particularly limited as long as the reaction proceeds, but it is desirable from the industrial viewpoint to be 100 to 35 ° C., and more preferably 150 to 250 ° C.
  • the treatment temperature is less than 100 ° C, the condensation and carbonization of the organic compound is not sufficient, and the formation of the graph end sheet may be insufficient, and when the treatment temperature exceeds 3500 ° C
  • the heat of the sulfonic acid group; ⁇ occurs.
  • the heat treatment time is a force that can be appropriately selected depending on the organic compound to be used, the treatment temperature, and the like. Usually, 5 to 50 hours, more preferably 10 to 20 hours are desired.
  • the amount of concentrated sulfuric acid or fuming sulfuric acid to be used is not particularly limited, but is usually 2.6 to 50.0 mol, more preferably 6.0 to 36.0 mol with respect to 1 mol of the organic compound. .
  • Aromatic hydrocarbons can be used as organic compounds, but other organic compounds, for example, natural products such as gnolecose, sugar (sucrose), and senorelose, synthetic polymers such as polyethylene and polyacrylamide A compound may be used.
  • the aromatic hydrocarbons may be polycyclic aromatic hydrocarbons or monocyclic aromatic hydrocarbons, and for example, benzene, naphthalene, anthracene, perylene, coronene, etc. can be used, preferably Naphthalene can be used. Only one type of organic compound may be used, or two or more types may be used in combination. In addition, it is not always necessary to use purified organic compounds. For example, heavy oil containing aromatic hydrocarbons, pitch, tar, asphalt, etc. may be used.
  • the obtained carbon solid acid contains, as an acidic group, a sulfonic acid group introduced by sulfonation in the above heat treatment, a carboxyl group, a 7-acid group, and the like depending on the kind of the organic compound as a raw material.
  • the catalyst precursor of the present invention is different only in that the acidic group of the carbon solid acid detailed above is a metal salt. In other respects, the catalyst precursor has the same structure and properties as the carbon solid acid described above. It has quality.
  • the acidic group introduced into the carbon solid acid may be a metal salt. Therefore, it is preferable that the acid forming the metal salt introduced into the amorphous carbon (the total density of the biogroup and the acidic group introduced into the amorphous carbon is 0.5 ⁇ 5 mmo 1 / g or more.
  • the density of acidic groups that are not metal salts may be 0, but it is not necessary that all acids are metal salts, in which case the density of acid groups that form metal salts is 0.5 nmio iZg or more.
  • the upper limit of the density of the acid salt metal group is not particularly limited, and may be appropriately determined depending on the application.
  • the metal salt of an acidic group is one or more of a metal salt of a sulfonic acid group (one S0 3 A), a metal salt of a carboxyl group (-COOA), and a metal salt of a phenolic I 1 raw hydroxyl group (one OA).
  • A is a metal atom.
  • the type of metal atom A is not particularly limited as long as it generally exhibits tactile properties or support ⁇ S ability in the state of metal fine particles or metal compounds, and it is one or more selected from the group consisting of transition elements. Preferably there is.
  • Transition metal elements are platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium ( ⁇ s), iridium (Ir), gold (Au), silver (Ag), rhenium (Re), tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), dinoleconium (Zr), yttrium (Y), copper (Cu), nickel (Ni), cobalt (Co) ), Iron
  • the metal salt of an acidic group may further contain one or more selected from the group consisting of typical metal elements. Typical metal elements correspond to group 1 (alkali metal), group 2 (alkaline earth metal), group 12 and group 13 of the periodic table.
  • the catalyst precursor of the present invention has at least a chemical shift of a condensed aromatic carbon 6-membered ring and a condensed aromatic carbon 6-membered ring to which a metal salt of an acidic group is bonded in a 13 C nuclear magnetic resonance spectrum. Preferably it is detected. In addition, half-width in powder X-ray diffraction It is preferable that at least a diffraction peak on the carbon (0 0 2) plane with a (2 ⁇ ) force of 5 ° to 30 ° is detected.
  • the catalyst material of the present invention is obtained by reducing a catalyst composed of amorphous carbon into which an acid group metal salt is introduced.
  • the metal ions fixed to the carbon solid acid are converted into metal fine particles and exhibit catalytic activity.
  • the catalyst material of the present invention comprises a microcarrier made of graphene sheet of amorphous carbon and a catalytic metal supported on the microcarrier by reduction of a metal salt of an acidic group, that is, a metal ion.
  • the graph ensheet which plays the role of a carrier (a microcarrier) that supports the catalyst metal in the catalyst material, has no change in the structure before and after the reduction of the catalyst precursor. However, as will be described in detail later, depending on the reduction treatment, acidic groups may disappear. Therefore, as a form of support, there is a form in which the microcarrier force is indirectly bonded to a part of the catalyst metal, and a form in which the catalyst metal is simply adsorbed on the microcarrier.
  • the catalyst metal is preferably metal fine particles having a particle size of 1 O nm or less.
  • the particle size of the metal fine particles should be 5 nm or less, or 2 nm or less.
  • the catalyst material of the present invention suppresses the grain growth because the metal ions supported on the microcarrier (graph ensheet) and bonded to the carbon solid acid have a bond with the graph ensheet. The Therefore, even when exposed to high temperatures, the particle size of the catalytic metal is kept at 10 nm or less, and high catalytic performance is demonstrated over a long period of time. Further, when the entire catalyst material 1 0 0 wt%, the catalytic metal 1-3 0 wt% and even more if the catalyst material containing 3-2 0 weight 0/0, exhibits good catalytic activity.
  • the catalytic ⁇ -forming method of the present invention includes an ion exchange step in which a carbon solid acid and an aqueous solution containing metal ions are mixed and the above catalyst precursor is synthesized by ion exchange.
  • a cation exchanger such as a carbon solid acid
  • an oxonium ion ⁇ 30 + is generated from the acidic group of the carbon solid acid, which is water.
  • a suitable aqueous solution may be an aqueous solution containing a metal catalyst. In other words, it is sufficient to use the desired metal free or complex as an aqueous solution.
  • the method for producing the carbon solid acid is as described above.
  • the amount and type of the metal species contained in the catalyst precursor can be adjusted.
  • the amount of metal species contained in the catalyst precursor can be adjusted by adjusting the metal ion concentration of the aqueous solution.
  • two or more kinds of metal ions may be allowed to coexist in the aqueous solution, and a carbon solid acid containing a metal salt of two or more kinds of hydroxyl groups can be easily obtained. That is, the amount of the metal species should be quantitatively adjusted according to these values after measuring the amount of the acidic group of the carbon solid acid and the metal ion concentration in the aqueous solution by a known analytical method. Can do.
  • the catalyst method of the present invention preferably further includes a removal step of removing the aqueous solution from the mixture of the catalyst precursor and the aqueous solution to obtain the catalyst precursor after the ion exchange step.
  • a removal step of removing the aqueous solution from the mixture of the catalyst precursor and the aqueous solution to obtain the catalyst precursor after the ion exchange step.
  • carbon solid acid is insoluble in water, so you can recover the catalyst precursor by filtration.
  • a reduction treatment step in which the metal ion is reduced to metal fine particles by reducing the metal ion.
  • reduction by means of hot heat in vacuum reduction by heating in a reducing gas such as hydrogen gas or ammonia gas, reduction with a reducing agent such as Na BH 4 or ammonia water, etc. are adopted. can do.
  • heat and heat generated by microwaves in a reducing atmosphere is also effective.
  • the conditions for the reduction treatment such as S3 ⁇ 4 and the time, may be appropriately selected so that the reaction force of metal ions to form metal fine particles is performed according to the reduction treatment method and the type of metal species.
  • the reduction treatment step is a step in which heating is performed as described above. Most of the acid groups Since it disappears from the catalyst precursor, the fine metal particles produced by the reduction process are adsorbed and supported on the graph sheet.
  • the reduction treatment step is desirably a step of heating with less than 3 ⁇ 4 g of an acidic group. This fine metal insulator is adsorbed or bonded to the acid 1 ⁇ biogroup. The ability to leave an acidic group in the catalyst material may be appropriately selected according to the use of the catalyst material.
  • microcrystalline cellulose 15 g was kept at 45 ° C. for 5 hours under nitrogen gas flow. Thereafter, it was naturally cooled to obtain 3 to 4 g of carbonized microcrystalline cellulose.
  • the solid acid obtained was calculated from the results of TPD (Rigaku Corporation, Thermal Desorption Gas Analyzer) and TG-DTA (Seiko Instruments Co., Ltd., Thermogravimetric Differential Thermal Analyzer). did.
  • the ⁇ of the sulfonic acid group was 2500 ° (:, the ⁇ ⁇ temperature of the force lpoxyl group was 3700 ° C, and the combustion temperature of the carbon was 465 ° C.
  • the metal species could be supported on the solid acid by ion exchange.
  • Catalyst precursor # 11 was analyzed by X-ray photoelectron spectroscopy (XPS). Analysis The results are shown in Figs. In Fig. 2, the peak position of Pt is indicated by ⁇ . In Figure 2, the peak of the P t was detected, a peak from C 1 contained [in P t (NH 3) JC 1 2 aqueous solution with P t is never to have been detected. Therefore, it was clear that Pt was introduced from the aqueous solution into the solid acid by ion exchange.
  • XPS X-ray photoelectron spectroscopy
  • Figure 3 shows the result of detailed analysis of the vicinity of the spectrum of P t 4 f in Fig. 2.
  • the peak from Pt of metal is seen at 71.2 eV.
  • a peak is observed on the higher bound energy side (73.4 eV) than 71.2 eV, and 73.4 eV corresponds to the position of P t (I I). That is, it was confirmed that Pt formed a bond with the catalyst precursor.
  • [ ⁇ ,] is the measured value by ICP spectroscopic analysis, and the loading amount X is the calculated value calculated in the same way as above.
  • Catalyst precursor # 21 was found to carry two types of metals. In other words, two or more metals can be supported at one time depending on the type of metal ions contained in the aqueous solution mixed with the solid acid.
  • the catalyst precursor # 11 was subjected to a reduction treatment to obtain a catalyst material.
  • the reduction treatment was performed at 200 ° C for 3 hours in a hydrogen atmosphere.
  • the catalyst material was heat-treated at 450 ° C for 3 hours under the flow of helium gas.
  • This heat treatment condition is a condition under which noble metal particle growth is observed on a general catalyst material in which noble metal fine particles are supported on an oxide carrier.
  • the catalyst material before and after the heat treatment was observed with a transmission electron microscope (TEM). The results are shown in FIG. 4 and FIG.
  • Figure 4 shows a TEM image of the catalyst material before heat treatment. 1: Fine particles (parts that look black) were uniformly dispersed. Even in the TEM image after heat treatment (Fig. 5), there was no change in the state of the Pt fine particles and no thermal grain growth was observed.

Abstract

The catalyst precursor is composed of an amorphous carbon into which a metal salt of an acidic group has been introduced. The catalyst precursor is synthesized by mixing amorphous carbon, into which an acidic group has been introduced, and metal ions, and carrying out ion exchange. The catalyst material is obtained by reducing the catalyst precursor. The catalyst material is composed of a microcarrier, composed of the graphene sheets in the amorphous carbon, and a metallic catalyst which is made by metal ions that have been reduced and is loaded onto said microcarrier. The catalyst material has a different catalyst function from the function as an acid catalyst possessed by a solid acid. The catalyst material is loaded onto the microcarrier (graphene sheets) while the metal ions fixed on the carbon solid acid also have bonds with the microcarrier, so that grain growth by the catalyst metal is restricted.

Description

明細書 触媒前駆体、 触媒材料および触醫造方法 技術分野  Description Catalyst precursor, catalyst material and catalytic method Technical Field
本発明は、 排ガスの浄化、 有機物合成、 水素生成などに使用可能な触媒材料、 その前駆体および触媒製造方法に関するものである。 技髓景  The present invention relates to a catalyst material that can be used for purification of exhaust gas, organic matter synthesis, hydrogen generation, etc., a precursor thereof, and a method for producing a catalyst. Technical scene
触媒材料は、 消臭、 抗菌、 排ガス浄化、 燃料電池、 水素生成などの分野で多用 されている。 触媒材料は広範囲にわたるが、 遷移金属の単体とそれらの化合物が もっとも多く、 たとえば、 金属配位化合物である錯体触媒、 構造の比較的単純な 有機化合物で触媒作用を示す有機触媒、 などが知られている。  Catalyst materials are widely used in fields such as deodorization, antibacterial, exhaust gas purification, fuel cells, and hydrogen generation. Although there are a wide range of catalyst materials, transition metals and their compounds are the most common. For example, complex catalysts that are metal coordination compounds, organic catalysts that catalyze actions with relatively simple organic compounds, etc. are known. ing.
ところで、 固体酸は、 その構造中に水素イオンを固定するァニオンサイトをも つ。 金属ィオン^昔ィオンなど金属カチオンを含む水溶液中でィオン交換するこ とにより、 ァニオンサイトに金属種 (金属イオン) を固定化することができる。 固体酸は、 大きく有機系と無機系とに分けられる。  By the way, the solid acid has an anion site that fixes hydrogen ions in its structure. Metal ions ^ Metal ions (metal ions) can be immobilized on the anion site by exchanging ions in an aqueous solution containing metal cations such as old ions. Solid acids are roughly divided into organic and inorganic types.
有機系の固体酸としては、 たとえば、 分子内にスノレホン酸基やカノレポキシノレ基 などの酸^ ¾をもつィオン交換樹脂が挙げられ、 この酸生基が金属種を固定する ァニオンサイトとなる。 有機系の固体酸は、 樹脂に導入される酸'隨の量を制御 しゃすいため、 金属種の固定量を定量化しやすいという利点がある。 しかしなが ら、 耐熱性が低く、 薬品に弱いため、 用途によっては耐久性に問題がある。 一方、 酸化アルミニウム、 酸化バナジウム、 シリカアルミナ、 ゼォライトなど に代表される無機系の固体酸は、 高い耐熱性をもち、 溶媒に侵されにくい。 しか し、 ァニオンサイトが少なく、 ァニオンサイトが有機系の固体酸ほど明確でない ため、 金属種の固定量を定量化するの力 s難しい。 また、 ァニオンサイトが水によ り被毒を受けやすいため、 耐久性に乏しい。  As an organic solid acid, for example, a ionic exchange resin having an acid group such as a sulphonic acid group or a canolepoxinole group in the molecule can be cited, and this acid group becomes an anion site for fixing a metal species. Organic solid acids have the advantage that the amount of fixed metal species can be easily quantified because the amount of acid introduced into the resin is controlled. However, it has low heat resistance and is vulnerable to chemicals, so there are problems with durability depending on the application. On the other hand, inorganic solid acids such as aluminum oxide, vanadium oxide, silica alumina, and zeolite have high heat resistance and are not easily affected by solvents. However, since there are few anion sites and the anion sites are not as clear as organic solid acids, it is difficult to quantify the amount of fixed metal species. Also, since the anion site is susceptible to poisoning by water, it has poor durability.
そこで、 本発明者は、 有機化合物を濃硫酸または発煙硫酸中で加熱処理し、 炭 化、 スノレホン化、 環同士の縮合を経て得られる無定形炭素が、 固体酸として作用 するとともに熱的 ·ィ匕学的に安定性が高いことを見出した (特開 2 0 0 4 - 2 3 8 3 1 1号公報および国際公開 2 0 0 5 / 0 2 9 5 0 8号パンフレツト参照) 。 この固体酸の概略を図 1に示す。 この固体酸は、 スルホン酸基が導入された無定 形炭素であって、 有機系の固体酸に匹敵する量のァニオンサイトを導入すること ができ、 また、 無機系の固体酸のように優れた耐久性をもつ。 発明の開示 Therefore, the present inventor heat-treated the organic compound in concentrated sulfuric acid or fuming sulfuric acid, It has been found that amorphous carbon obtained through hydration, snorephonization, and ring condensation acts as a solid acid and has high thermal and chemical stability (Japanese Patent Laid-Open No. 2 0 0 4-2 3 8 3 1 1 publication and international publication 2 0 0 5/0 2 9 5 0 8 (see pamphlet). The outline of this solid acid is shown in FIG. This solid acid is an amorphous carbon with a sulfonic acid group introduced, and can introduce an anion site in an amount comparable to that of an organic solid acid, and like an inorganic solid acid. Excellent durability. Disclosure of the invention
前述のように、 従来の固体酸は、 ァニオンサイトに金属種を固定することはで きるものの、 金属種の固定量を制御できなかったり、 耐熱性が低かったり、 耐薬 品性が低かったり、 といった欠点から触媒材料として実用的ではなかった。 しか し、 本発明者等は、 上記特許文献に開示されている固体酸であれば、 定量的に金 属種を担持させられるとともに熱や薬品に対して安定な触媒材料が得られること を新たに見出した。  As described above, the conventional solid acid can fix the metal species at the anion site, but the amount of the metal species cannot be controlled, the heat resistance is low, the chemical resistance is low, Due to these disadvantages, it was not practical as a catalyst material. However, the present inventors have newly found that a solid acid disclosed in the above-mentioned patent document can support a metal species quantitatively and obtain a catalyst material that is stable against heat and chemicals. I found it.
すなわち、 本発明は、 特定の固体酸に金属種を固定して得られ、 固体酸が有す る酸触媒としての機能とは異なる触 能をもつ新規な触媒前駆体、 触媒前駆体 から誘導される触媒材料および触 造方法を樹共することを目的とする。 <触媒前駆体 >  That is, the present invention is derived from a novel catalyst precursor, a catalyst precursor obtained by immobilizing a metal species to a specific solid acid and having a function different from the function as an acid catalyst possessed by the solid acid. The purpose is to share the catalyst material and the catalytic method. <Catalyst precursor>
本発明の触媒前駆体は、 酸性基の金属塩が導入された無定形炭素からなること を特徴とする。  The catalyst precursor of the present invention is characterized by comprising amorphous carbon into which a metal salt of an acidic group is introduced.
本発明の触媒前駆体は、 酸性基が導入された無定形炭素からなる既存の固体酸 において、 酸性基をイオン交換により金属塩としたものである。 酸 ft基が導入さ れた無定形炭素からなる固体酸は、 一般的な無機系の固体酸に比べて金属ィオン を固定するサイト (酸性基) を多くもつ。 そのため、 本発明の触媒前駆体は、 酸 性基の量に応じた所望の量の金属種を含有する。 また、 酸性基は無定形炭素に結 合しているため、 有機系の固体酸に比べて熱や薬品に対する安定性に優れる。 く触媒材料〉'  The catalyst precursor of the present invention is an existing solid acid made of amorphous carbon into which an acidic group is introduced, wherein the acidic group is converted into a metal salt by ion exchange. A solid acid composed of amorphous carbon with an acid ft group introduced has more sites (acidic groups) for fixing metal ions than a general inorganic solid acid. Therefore, the catalyst precursor of the present invention contains a desired amount of metal species according to the amount of acidic groups. In addition, since acidic groups are bonded to amorphous carbon, they are more stable against heat and chemicals than organic solid acids. <Catalyst material> '
本発明の触媒材料は、 酸性基の金属塩が導入された無定形炭素からなる上記本 発明の触媒前駆体を還元してなることを特徴とする。 上記本発明の触媒前駆体を 還元してなる本発明の触媒材料は、 前記無定形炭素がもつグラフエンシートから なる微小担体と、 前記酸性基の金属塩が還元されてなり該微小担体に担持される 触媒金属と、 力 らなるのが好ましい。 The catalyst material of the present invention comprises the above-mentioned book comprising amorphous carbon into which an acid group metal salt is introduced. The catalyst precursor of the invention is reduced. The catalyst material of the present invention obtained by reducing the catalyst precursor of the present invention comprises a microcarrier made of a graph ensheet possessed by the amorphous carbon and a metal salt of the acidic group reduced and supported on the microcarrier. The catalyst metal is preferably composed of a force.
上記本発明の触媒前駆体を還元して得られる本発明の触媒材料も、 所望の量の 角媒金属を担持するとともに、 安定性に優れる。 また、 角媒金属は、 もともとは 触媒前駆体にぉ 、て原子単位で存在してレ、たため、 触媒材料にぉレ、て均一に分散 する。 さらに、 触媒金属は微小なグラフエンシート (微小担体) に担持される力 多数のグラフヱンシートが結晶構造をもたずばらばらで するため、 グラフェ ンシート表面で発生するシンタリングによる粒成長や合金ィ匕が抑制される。 また、 還元前の触媒前駆体において金属種がグラフエンシートとイオン結合を形成して いることも、 触媒金属の粒成長の抑制効果の一因である。 たとえば、 自動車の三 元触媒として一般的な白金/セリア系触媒では、 高温下で使用する際の白金のシ ンタリングカ触媒劣ィ匕の要因となるが、 本発明の触媒材料を用いれば、 このよう な問題を回避できる。  The catalyst material of the present invention obtained by reducing the catalyst precursor of the present invention also supports a desired amount of a square metal and is excellent in stability. In addition, the horn medium metal is originally present in atomic units in the catalyst precursor, and therefore uniformly dispersed in the catalyst material. In addition, the catalytic metal is supported by a small graph ensheet (microcarrier). Since many graphene sheets have a discrete crystal structure, grain growth and alloying due to sintering that occurs on the surface of the graphene sheet匕 is suppressed. In addition, the fact that the metal species forms an ionic bond with the graph ensheet in the catalyst precursor before the reduction is one of the causes for suppressing the grain growth of the catalyst metal. For example, a general platinum / ceria-based catalyst as a three-way catalyst for automobiles causes deterioration of platinum sintering catalyst when used at high temperatures. However, if the catalyst material of the present invention is used, Can avoid problems.
<触媒 造方法 > <Catalyst production method>
本発明の触■造方法は、 酸性基が導入された無定形炭素と金属ィオンを含む The catalyst fabrication method of the present invention includes amorphous carbon and metal ion into which an acidic group is introduced.
7_k溶液とを混合して、 イオン交換により酸 ffi基の金属塩が導入された無定形炭素 からなる触媒前駆体を合成するイオン交換工程を含むことを特徴とする。 It is characterized by comprising an ion exchange step of synthesizing a catalyst precursor composed of amorphous carbon into which a metal salt of an acid ffi group is introduced by ion exchange by mixing with 7_k solution.
本発明の触觀造方法は、 さらに、 前記イオン交換工程の後に、 前記金属ィォ ンを還元することで該金属ィオンを金属微粒子とする還元処理工程を含んでもよ レ、。  The touch-making method of the present invention may further include, after the ion exchange step, a reduction treatment step in which the metal ions are reduced to form metal fine particles by reducing the metal ions.
本発明の触媒前駆体は、 酸 I生基が導入された無定形炭素 (既存の固体酸) と金 属ィオンを含む溶液とを混合するだけで、 容易に製造することができる。 このと き、 謝生基が導入された無定形炭素は、 その製^ 程において酸隨の導入量を 容易に制御できる。 そのため、 酸 基の導入量の範囲内で所望の量の金属イオン を含有する触媒前駆体が得られる。 さらに、 触 前駆体の金属イオンを還元する ことで、 金属イオンは触媒活性を示す金属微粒子となる。 このとき、 無定形炭素 は耐熱性に優れるため、 仮に加熱により還元を行つても触媒材料が劣化すること がなレ、。 図面の簡単な説明 The catalyst precursor of the present invention can be easily produced by simply mixing amorphous carbon (existing solid acid) into which an acid I biogroup is introduced and a solution containing a metal ion. At this time, the amorphous carbon introduced with the Keisei group can easily control the amount of acidified acid introduced during the production process. Therefore, a catalyst precursor containing a desired amount of metal ions within the range of the amount of acid groups introduced can be obtained. Furthermore, by reducing the metal ions of the catalytic precursor, the metal ions become metal fine particles exhibiting catalytic activity. At this time, amorphous carbon Because of its excellent heat resistance, the catalyst material will not deteriorate even if it is reduced by heating. Brief Description of Drawings
図 1は、 有機化合物から酸 基が導入された無定形炭素 (カーボン固体酸) を 製造する工程を示す 略図である。  FIG. 1 is a schematic diagram showing a process for producing amorphous carbon (carbon solid acid) having an acid group introduced from an organic compound.
図 2は、 後述の触媒前駆体 # 1 1を X線光電子分光法 (X P S) で分析した分 析結果である。  Figure 2 shows the results of analysis of catalyst precursor # 1 1 described later by X-ray photoelectron spectroscopy (XPS).
図 3は、 触媒前駆体 # 1 1を X P Sで分析した分析結果であって、 図 2の一部 分を詳細に分析した結果である。  Fig. 3 shows the analysis result of the catalyst precursor # 1 1 analyzed by XPS, and shows the result of detailed analysis of a part of Fig. 2.
図 4は、 触媒前駆体 # 1 1を還元処理して得られた触媒材料を透過電子顕微鏡 (T EM) で観察した図面代用写真である。  FIG. 4 is a drawing-substituting photograph in which the catalyst material obtained by reducing the catalyst precursor # 11 is observed with a transmission electron microscope (TEM).
図 5は、 触媒前駆体 # 1 1を還元処理して得られた触媒材料を、 さらに熱処理 した後、 T EMで観察した図面代用写真である。 発明を実施するための最良の形態  FIG. 5 is a drawing-substituting photograph observed by TEM after further heat-treating the catalyst material obtained by reducing the catalyst precursor # 11. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の触媒前駆体、 触媒材料および触媒製造方法を実施するための 最良の形態を説明する。  The best mode for carrying out the catalyst precursor, catalyst material and catalyst production method of the present invention will be described below.
く触媒前駆体〉 <Catalyst precursor>
本発明の触媒前駆体は、 酸性基の金属塩が導入された無定形炭素からなる。 本 発明の触媒前駆体は、 後に詳説するが、 酸性基が導入された無定形炭素を用い、 イオン交換により酸性基を金属塩とする。 そのため、 以下に、 酸性基が導入され た無定形炭素 (以下 「カーボン固体酸」 と略記) について説明する。  The catalyst precursor of the present invention comprises amorphous carbon into which an acid group metal salt is introduced. The catalyst precursor of the present invention will be described in detail later. Amorphous carbon into which an acidic group is introduced is used, and the acidic group is converted into a metal salt by ion exchange. Therefore, in the following, amorphous carbon having an acidic group introduced (hereinafter abbreviated as “carbon solid acid”) will be described.
カーボン固体酸は、 酸性基をもち、 力 、 無定形炭素としての性質を示す物質 であればよい。 ここで 「無定形炭素」 とは、 炭素からなる物質であって、 ダイヤ モンドゃグラフアイトのような明確な結晶構造を持たない物質である。 たとえば、 無定形炭素は、 多数の芳香環が縮合してなるグラフエンシート (炭素原子が平面 的に連なった層) をもち、 多数のグラフエンシートのそれぞれが決まった間隔を もたずにばらばらの状態で ¾して構成される。 The carbon solid acid may be any substance that has an acidic group and exhibits properties as an amorphous carbon. Here, “amorphous carbon” is a substance composed of carbon, and is a substance that does not have a clear crystal structure, such as diamond. For example, amorphous carbon has a graph ensheet (a layer in which carbon atoms are connected in a plane) with many aromatic rings condensed, and each of the many graph ensheets has a fixed interval. It is composed in a disjointed state.
すなわち、 カーボン固体酸は、 粉末 X線回折において、 明確なピークが検出さ れないか、 あるいは幅の広いピークが検出される。 特に、 半値幅 (2 Θ ) が 5 。 〜30° である炭素 (00 2) 面の回折ピークが少なくとも検出されるとよ い。 (00 2) 面からの回折ピーク以外の回折ピークが検出されてもよいが、 (002) 面からの回折ピークのみが検出されるのが好ましい。  In other words, in the solid carbon acid, a clear peak is not detected or a broad peak is detected in powder X-ray diffraction. In particular, the full width at half maximum (2 Θ) is 5. It is better that at least a diffraction peak of the carbon (00 2) plane that is -30 ° is detected. Although diffraction peaks other than the diffraction peak from the (00 2) plane may be detected, it is preferable that only the diffraction peak from the (002) plane is detected.
また、 カーボン固体酸としては、 13 C核磁気共鳴スペク トルにおいて、 縮合 芳香族炭素 6員環および酸性基が結合した縮合芳香族炭素 6員環の化学シフトが 検出されるのが好ましい。 In addition, as the carbon solid acid, it is preferable to detect a chemical shift of the condensed aromatic carbon 6-membered ring and the condensed aromatic carbon 6-membered ring to which an acidic group is bonded in a 13 C nuclear magnetic resonance spectrum.
カーボン固体酸は、 酸性基の密度が 0. 5mmo 1 /g以上であるのが好まし レ、。 さらに好ましくは 1. 6 mm o 1 g以上、 さらには 3 mm o 1 /g以上で ある。 ところで、 1つのグラフエンシートが大きいと、 無定形炭素はグラフアイ トの構造に近くなるため安定化し、 スルホン酸基等の酸 が導入されにくくな る。 つまり、 酸性基の密度が 0. 5m:mo 1 Z g以上であるカーボン固体酸に含 まれるグラフエンシートの大きさは、 ある程度限定される。 具体的には、 グラフ エンシートの面方向の最大長さが 5 nm以下さらには 2 n m以下であるとよレ、。 また、 グラフエンシートの面方向の最大長さが 0. 5 nm以上さらには 1 nm以 上であれば、 優れた耐熱 I生をもつ。 酸 I"生基の密度の上限に特に限定はないが、 1 Ommo lZg以下さらには 5mmo 1/gであるとよい。 なお、 酸性基が結合 した炭素原子は、 カーボン固体酸の^素原子の 1〜20%さらには 3〜20% であるとよレ、。  The carbon solid acid preferably has an acid group density of 0.5 mmo 1 / g or more. More preferably, it is 1.6 mm o 1 g or more, further 3 mm o 1 / g or more. By the way, if one graph entry is large, the amorphous carbon is close to the structure of the graphite, so it is stabilized and it is difficult to introduce an acid such as a sulfonic acid group. In other words, the size of the graph encasement contained in the carbon solid acid having an acid group density of 0.5 m: mo 1 Zg or more is limited to some extent. Specifically, the maximum length of the graph sheet in the surface direction is 5 nm or less, or 2 nm or less. In addition, if the maximum length in the surface direction of the graph ensheet is 0.5 nm or more, or 1 nm or more, it has excellent heat resistance. The upper limit of the density of the acid I "biogroup is not particularly limited, but is preferably 1 Ommo lZg or less, and 5 mmo 1 / g. The carbon atom to which the acidic group is bonded is the carbon atom of the carbon solid acid. 1-20% or even 3-20%.
以上説明した力一ボン固体酸は、 水やアルコールなどの極性溶媒に不溶である、 酸触媒として機能する、 プロトン伝導性を示す、 などの性質をもつ。  The striking Bonn solid acid described above has properties such as being insoluble in polar solvents such as water and alcohol, functioning as an acid catalyst, and exhibiting proton conductivity.
カーボン固体酸は、 たとえば、 有機化合物を濃硫酸または発煙硫酸中で加熱処 理することによって製造することができる。 この製造方法の概略を図 1に示す。 有機化合物を濃硫酸または発煙硫酸中で加熱処理すると、 炭化、 スルホン化、 環 同士の縮合が起きる。 この結果、 酸性基としてスルホン酸基が導入された無定形 炭素が生成する。 濃硫酸または発煙硫酸中の有機化合物のカロ熱処理は、 窒素、 アルゴン等の不活 性ガス気流中、 あるいは乾燥空気気流中で行うとよい。 加熱処理においては、 有 機化合物の部分炭化、 環化おょひ葡合などを進行させると共に、 スルホン化を起 こさせる。 したがって、 カロ熱処理温度は、 反応が進行する であれば特に限定 されないが、 工業的には、 1 0 0〜3 5 0°C、 さらには 1 5 0〜2 5 0°Cが望ま しい。 処理温度が 1 0 0°C未満の 、 有機化合物の縮合、 炭化が十分でなく、 グラフエンシートの形成が不十分であることがあり、 また、 処理? ¾ が 3 5 0°C を超えると、 スルホン酸基の熱;^ が起きる がある。 加熱処理時間は、 使用 する有機化合物や処理温度などによって適宜選択できる力 通常、 5〜5 0時間、 さらには 1 0〜 2 0時間が望ましレ、。 The carbon solid acid can be produced, for example, by heat treating an organic compound in concentrated sulfuric acid or fuming sulfuric acid. An outline of this manufacturing method is shown in Fig. 1. When an organic compound is heat-treated in concentrated sulfuric acid or fuming sulfuric acid, carbonization, sulfonation, and condensation between rings occur. As a result, amorphous carbon having sulfonic acid groups introduced as acidic groups is produced. Carothermal treatment of organic compounds in concentrated sulfuric acid or fuming sulfuric acid is preferably performed in an inert gas stream such as nitrogen or argon, or in a dry air stream. In the heat treatment, partial carbonization of organic compounds, cyclization, and so on progress, and sulfonation occurs. Accordingly, the temperature of the calo-heat treatment is not particularly limited as long as the reaction proceeds, but it is desirable from the industrial viewpoint to be 100 to 35 ° C., and more preferably 150 to 250 ° C. When the treatment temperature is less than 100 ° C, the condensation and carbonization of the organic compound is not sufficient, and the formation of the graph end sheet may be insufficient, and when the treatment temperature exceeds 3500 ° C The heat of the sulfonic acid group; ^ occurs. The heat treatment time is a force that can be appropriately selected depending on the organic compound to be used, the treatment temperature, and the like. Usually, 5 to 50 hours, more preferably 10 to 20 hours are desired.
使用する濃硫酸または発煙硫酸の量は特に限定されないが、 有機化合物 1モル に対し、 通常、 2. 6— 5 0. 0モル、 さらには 6 . 0〜3 6. 0モルであるの が望ましい。  The amount of concentrated sulfuric acid or fuming sulfuric acid to be used is not particularly limited, but is usually 2.6 to 50.0 mol, more preferably 6.0 to 36.0 mol with respect to 1 mol of the organic compound. .
有機化合物としては、 芳香族炭化水素類を使用することができるが、 それ以外 の有機化合物、 たとえば、 グノレコース、 砂糖 (スクロース) 、 セノレロースのよう な天然物、 ポリエチレン、 ポリアクリルアミドのような合成高分子化合物を使用 してもよい。 芳香族炭化水素類は、 多環式芳香族炭化水素類でも単環式芳香族炭 化水素類でもよく、 たとえば、 ベンゼン、 ナフタレン、 アントラセン、 ペリレン、 コロネンなどを使用することができ、 好適には、 ナフタレンなどを使用すること ができる。 有機化合物は、 一種類だけを使用してもよいが、 二種類以上を組み合 わせて使用してもよい。 また、 必ずしも精製された有機化合物を使用する必要は なく、 たとえば、 芳香族炭化水素類を含む重油、 ピッチ、 タール、 アスファルト などを使用してもよレ、。  Aromatic hydrocarbons can be used as organic compounds, but other organic compounds, for example, natural products such as gnolecose, sugar (sucrose), and senorelose, synthetic polymers such as polyethylene and polyacrylamide A compound may be used. The aromatic hydrocarbons may be polycyclic aromatic hydrocarbons or monocyclic aromatic hydrocarbons, and for example, benzene, naphthalene, anthracene, perylene, coronene, etc. can be used, preferably Naphthalene can be used. Only one type of organic compound may be used, or two or more types may be used in combination. In addition, it is not always necessary to use purified organic compounds. For example, heavy oil containing aromatic hydrocarbons, pitch, tar, asphalt, etc. may be used.
得られるカーボン固体酸は、 酸性基として上記の加熱処理におけるスルホン化 により導入されるスルホン酸基の他、 原料の有機化合物の種類に応じてカルボキ シル基、 7酸基などを含む。  The obtained carbon solid acid contains, as an acidic group, a sulfonic acid group introduced by sulfonation in the above heat treatment, a carboxyl group, a 7-acid group, and the like depending on the kind of the organic compound as a raw material.
本発明の触媒前駆体は、 以上詳説したカーボン固体酸の酸性基が金属塩である 点のみが異なり、 その他の点では、 上記のカーボン固体酸と同様の構造および性 質をもつ。 The catalyst precursor of the present invention is different only in that the acidic group of the carbon solid acid detailed above is a metal salt. In other respects, the catalyst precursor has the same structure and properties as the carbon solid acid described above. It has quality.
すなわち、 本発明の触媒前駆体は、 上記のカーボン固体酸に導入された酸性基 の少なくとも一部が金属塩であればよい。 そのため、 無定形炭素に導入された金 属塩を形成する酸 (·生基と該無定形炭素に導入された酸性基との合計の密度が、 0 · 5mmo 1/g以上であるのが好ましい。 金属塩でない酸性基の密度は 0であつ てもよいが、 すべての酸 が金属塩である必要はない。 このとき、 金属塩を形 成する酸 ¾基の密度は、 0. 5nmio iZg以上が好ましく、 さらに好ましくは 1. Ommo lZg以上である。 なお、 酸†生基の金属塩の密度の上限に特に限定 はなく、 用途に応じて適宜決定すればよい。 '  That is, in the catalyst precursor of the present invention, at least a part of the acidic group introduced into the carbon solid acid may be a metal salt. Therefore, it is preferable that the acid forming the metal salt introduced into the amorphous carbon (the total density of the biogroup and the acidic group introduced into the amorphous carbon is 0.5 · 5 mmo 1 / g or more. The density of acidic groups that are not metal salts may be 0, but it is not necessary that all acids are metal salts, in which case the density of acid groups that form metal salts is 0.5 nmio iZg or more. The upper limit of the density of the acid salt metal group is not particularly limited, and may be appropriately determined depending on the application.
酸性基の金属塩は、 スルホン酸基の金属塩 (一S03A) 、 カルボキシル基の 金属塩 (-COOA) およびフエノーノレ I1生水酸基の金属塩 (一OA) のうちの一 種以上であるのが好ましい。 なお、 "A" は金属原子である。 金属原子 Aの種類 としては、 一般に金属微粒子や金属化合物の状態で触 »性または助触^ S能を 示すものであれば特に限定はなく、 遷 属元素からなる群から選ばれる一種以 上であるのが好ましい。 遷移金属元素は、 白金 (P t) 、 パラジウム (P d) 、 ロジウム (Rh) 、 ルテニウム (Ru) 、 オスミウム (〇 s) 、 イリジウム (I r) 、 金 (Au) 、 銀 (Ag) 、 レニウム (Re) 、 タングステン (W) 、 タン タル (Ta) 、 モリブデン (Mo) 、 ニオブ (Nb) 、 ジノレコニゥム (Z r) 、 イットリウム (Y) 、 銅 (Cu) 、 ニッケル (N i ) 、 コバルト (Co) 、 鉄The metal salt of an acidic group is one or more of a metal salt of a sulfonic acid group (one S0 3 A), a metal salt of a carboxyl group (-COOA), and a metal salt of a phenolic I 1 raw hydroxyl group (one OA). Is preferred. "A" is a metal atom. The type of metal atom A is not particularly limited as long as it generally exhibits tactile properties or support ^ S ability in the state of metal fine particles or metal compounds, and it is one or more selected from the group consisting of transition elements. Preferably there is. Transition metal elements are platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (〇s), iridium (Ir), gold (Au), silver (Ag), rhenium (Re), tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), dinoleconium (Zr), yttrium (Y), copper (Cu), nickel (Ni), cobalt (Co) ), Iron
(F e) 、 マンガン (Mn) 、 クロム (C r ) 、 バナジウム (V) 、 チタン (T i) 、 ランタン (し a) 、 セリウム (Ce) 、 プラセオジム (P r) である。 特 に、 白金 (P t) 、 鉄 (F e) 、 ニッケル (N i) および銅 (Cu) のうちの一 種以上であるとよい。 酸性基の金属塩は、 さらに、 典型金属元素からなる群から 選ばれる一種以上を含んでもよい。 典型金属元素は、 周期表の 1族 (アルカリ金 属) 、 2族 (アルカリ土類金属) 、 12族および 13族に相当する。 (F e), Manganese (Mn), Chromium (C r), Vanadium (V), Titanium (T i), Lanthanum (C), Cerium (Ce), Praseodymium (P r). In particular, one or more of platinum (Pt), iron (Fe), nickel (Ni), and copper (Cu) may be used. The metal salt of an acidic group may further contain one or more selected from the group consisting of typical metal elements. Typical metal elements correspond to group 1 (alkali metal), group 2 (alkaline earth metal), group 12 and group 13 of the periodic table.
また、 本発明の触媒前駆体は、 13 C核磁気共鳴スぺクトルにおいて、 縮合芳 香族炭素 6員環および酸性基の金属塩が結合した縮合芳香族炭素 6員環の化学シ フトが少なくとも検出されるのが好ましい。 また、 粉末 X線回折において半値幅 ( 2 Θ ) 力 5 ° 〜3 0 ° である炭素 (0 0 2 ) 面の回折ピークが少なくとも検 出されるのが好ましレ、。 The catalyst precursor of the present invention has at least a chemical shift of a condensed aromatic carbon 6-membered ring and a condensed aromatic carbon 6-membered ring to which a metal salt of an acidic group is bonded in a 13 C nuclear magnetic resonance spectrum. Preferably it is detected. In addition, half-width in powder X-ray diffraction It is preferable that at least a diffraction peak on the carbon (0 0 2) plane with a (2 Θ) force of 5 ° to 30 ° is detected.
<触媒材料 > ·  <Catalyst material>
本発明の触媒材料は、 酸性基の金属塩が導入された無定形炭素からなる触 « 駆体を還元してなる。 上記の触媒前駆体を還元することで、 カーボン固体酸に固 定された金属イオンが金属微粒子となり、 触媒活性を示す。 すなわち、 本発明の 触媒材料は、 無定形炭素がもつグラフエンシートからなる微小担体と、 酸性基の 金属塩、 すなわち金属ィオンが還元されてなり微小担体に担持される触媒金属と、 からなる。  The catalyst material of the present invention is obtained by reducing a catalyst composed of amorphous carbon into which an acid group metal salt is introduced. By reducing the above catalyst precursor, the metal ions fixed to the carbon solid acid are converted into metal fine particles and exhibit catalytic activity. That is, the catalyst material of the present invention comprises a microcarrier made of graphene sheet of amorphous carbon and a catalytic metal supported on the microcarrier by reduction of a metal salt of an acidic group, that is, a metal ion.
触媒材料において触媒金属を担持する担体 (微小担体) の役割を果たすグラフ エンシートは、 触媒前駆体の還元の前後でその構造に変ィ匕はない。 ただし、 後に 詳説するように、 還元処理 によっては、 酸性基が 军することもある。 した がって、 担持の形態としては、 微小担体力 S触媒金属の一部と間接的に結合した形 態もあれば、 微小担体に触媒金属が単に吸着してレ、る形態もある。  The graph ensheet, which plays the role of a carrier (a microcarrier) that supports the catalyst metal in the catalyst material, has no change in the structure before and after the reduction of the catalyst precursor. However, as will be described in detail later, depending on the reduction treatment, acidic groups may disappear. Therefore, as a form of support, there is a form in which the microcarrier force is indirectly bonded to a part of the catalyst metal, and a form in which the catalyst metal is simply adsorbed on the microcarrier.
触媒金属は、 粒径が 1 O n m以下の金属微粒子であるのが好ましい。 特に、 触 媒材料の使用前 (シンタリングが発生するような高温に曝される前) において、 金属微粒子の粒径は 5 n m以下さらには 2 n m以下であるとよい。 前述のように、 本発明の触媒材料は、 微小担体 (グラフエンシート) に担持されるとともにカー ボン固体酸に固定された金属イオンがグラフエンシートと結合をもっため、 粒成 長が抑制される。 そのため、 高温にさらされても、 触媒金属の粒径は、 1 0 n m 以下に保たれ、 長期にわたって高レ、触媒性能を発揮する。 また、 触媒材料全体を 1 0 0質量%としたときに、 触媒金属を 1〜3 0質量%さらには 3〜2 0質量0 /0 含む触媒材料であれば、 良好な触媒活性を示す。 The catalyst metal is preferably metal fine particles having a particle size of 1 O nm or less. In particular, before using the catalyst material (before exposure to a high temperature at which sintering occurs), the particle size of the metal fine particles should be 5 nm or less, or 2 nm or less. As described above, the catalyst material of the present invention suppresses the grain growth because the metal ions supported on the microcarrier (graph ensheet) and bonded to the carbon solid acid have a bond with the graph ensheet. The Therefore, even when exposed to high temperatures, the particle size of the catalytic metal is kept at 10 nm or less, and high catalytic performance is demonstrated over a long period of time. Further, when the entire catalyst material 1 0 0 wt%, the catalytic metal 1-3 0 wt% and even more if the catalyst material containing 3-2 0 weight 0/0, exhibits good catalytic activity.
<触觀造方法 > <How to make a touch>
本発明の触 β造方法は、 カーボン固体酸と金属イオンを含む水溶液とを混合 して、 イオン交換により上記の触媒前駆体を合成するイオン交換工程を含む。 一 般に、 カーボン固体酸のような陽イオン交換体と、 塩類の水溶液と、 を混合する と、 カーボン固体酸の酸性基からォキソニゥムイオン Η 30+が生じ、 それが水 溶液中の金属イオンと交換する。 そのため、 好適な水溶液としては、 金属カチォ ンを含む水溶液であればよレ、。 すなわち、 所望の金属の無 または錯体を水溶 液として用いればよレ、。 具体的には、 各種金属の硝酸塩、 亜硝酸塩、 硫酸塩、 亜 硫酸塩、 炭酸塩、 リン酸塩、 過塩素酸塩、 ハロゲン化物、 水酸化物、 アルキル力 ルボン酸塩、 ァリールカルボン酸塩、 アルキルスルホン酸塩、 ァリールスルホン 酸塩、 アンミン錯体、 シァノ錯体、 ハロゲノ錯体、 ヒドロキシ錯体、 ァセチルァ セトナート錯体、 カルボニノ 1 昔体などが挙げられる。 The catalytic β-forming method of the present invention includes an ion exchange step in which a carbon solid acid and an aqueous solution containing metal ions are mixed and the above catalyst precursor is synthesized by ion exchange. In general, when a cation exchanger such as a carbon solid acid is mixed with an aqueous salt solution, an oxonium ion Η 30 + is generated from the acidic group of the carbon solid acid, which is water. Exchange with metal ions in solution. Therefore, a suitable aqueous solution may be an aqueous solution containing a metal catalyst. In other words, it is sufficient to use the desired metal free or complex as an aqueous solution. Specifically, various metal nitrates, nitrites, sulfates, sulfites, carbonates, phosphates, perchlorates, halides, hydroxides, alkyl strength rubnates, aryl carboxylates Alkyl sulfonates, aryl sulfonates, ammine complexes, cyanos complexes, halogeno complexes, hydroxy complexes, acetyl cetenate complexes, carbonino 1 old bodies and the like.
カーボン固体酸の製造方法は、 既に説明した通りである。 カーボン固体酸の製 造時に導入する酸生基の量または種類を調整することで、 触媒前駆体に含まれる 金属種の量や種類を調整できる。 あるいは、 水溶液の金属イオン濃度を調整して も、 触媒前駆体に含まれる金属種の量を調整可能である。 また、 水溶液中に 2種 以上の金属イオンを共存させてもよく、 2種以上の水酸基の金属塩を含むカーボ ン固体酸が容易に得られる。 すなわち、 金属種の量は、 カーボン固体酸がもつ酸 性基の量や水溶液中の金属イオン濃度を公知の分析方法により測定した上で、 そ れらの値に応じて定量的に調整することができる。  The method for producing the carbon solid acid is as described above. By adjusting the amount or type of the acid biogroup introduced during the production of the carbon solid acid, the amount and type of the metal species contained in the catalyst precursor can be adjusted. Alternatively, the amount of metal species contained in the catalyst precursor can be adjusted by adjusting the metal ion concentration of the aqueous solution. Further, two or more kinds of metal ions may be allowed to coexist in the aqueous solution, and a carbon solid acid containing a metal salt of two or more kinds of hydroxyl groups can be easily obtained. That is, the amount of the metal species should be quantitatively adjusted according to these values after measuring the amount of the acidic group of the carbon solid acid and the metal ion concentration in the aqueous solution by a known analytical method. Can do.
本発明の触 造方法は、 さらに、 イオン交換工程の後に、 触媒前駆体および 水溶液の混合物から水溶液を除去して、 触媒前駆体を得る除去工程を含むのが好 ましレ、。 前述の通り、 カーボン固体酸は水に不溶であるため、 據過により触媒前 駆体を回収するとよレ、。  The catalyst method of the present invention preferably further includes a removal step of removing the aqueous solution from the mixture of the catalyst precursor and the aqueous solution to obtain the catalyst precursor after the ion exchange step. As mentioned above, carbon solid acid is insoluble in water, so you can recover the catalyst precursor by filtration.
さらに、 イオン交換工程の後に、 金属ィオンを還元することで金属ィオンを金 属微粒子とする還元処理工程を含むとよい。 金属イオンの還元には、 真空中での カロ熱による還元、 水素ガス、 アンモニアガスなど還元性ガス中での加熱による還 元、 N a B H4、 アンモニア水などの還元剤による還元、 などを採用することが できる。 また、 還元雰囲気中でのマイクロ波による力 Π熱も有効である。 還元処理 の条件、 たとえば S¾や時間については、 還元処理の方法と金属種の種類に応じ て、 金属ィオンが金属微粒子化する反応力 ¾1行するように適宜選択すればよい。 還元処理工程において触媒前駆体を加熱する には、 還元処理工程は、 謝生 基が分解する 以上で加熱を行う工程であるのが望ましい。 酸性基の大部分が ^军して触媒前駆体から消滅するため、 還元処理により生成する金属微粒子は、 グラフエンシートに吸着担持される。 あるいは、 還元処理工程は、 酸性基が する ¾g未満で加熱を行う工程であるのが望ましい。 この 、 金属微丰立子は、 酸 1·生基に吸着あるいは結合して する。 触媒材料に酸性基を残す力否かは、 触 媒材料の用途に応じて適宜選択すればよい。 Furthermore, after the ion exchange step, it is preferable to include a reduction treatment step in which the metal ion is reduced to metal fine particles by reducing the metal ion. For reduction of metal ions, reduction by means of hot heat in vacuum, reduction by heating in a reducing gas such as hydrogen gas or ammonia gas, reduction with a reducing agent such as Na BH 4 or ammonia water, etc. are adopted. can do. In addition, heat and heat generated by microwaves in a reducing atmosphere is also effective. The conditions for the reduction treatment, such as S¾ and the time, may be appropriately selected so that the reaction force of metal ions to form metal fine particles is performed according to the reduction treatment method and the type of metal species. In order to heat the catalyst precursor in the reduction treatment step, it is desirable that the reduction treatment step is a step in which heating is performed as described above. Most of the acid groups Since it disappears from the catalyst precursor, the fine metal particles produced by the reduction process are adsorbed and supported on the graph sheet. Alternatively, the reduction treatment step is desirably a step of heating with less than ¾ g of an acidic group. This fine metal insulator is adsorbed or bonded to the acid 1 · biogroup. The ability to leave an acidic group in the catalyst material may be appropriately selected according to the use of the catalyst material.
以上、 本発明の触媒前駆体、 触媒材料および触 造方法の実施形態を説明し たが、 本発明は、 上記実施形態に限定されるものではない。 本発明の要旨を逸脱 しなレ、範囲において、 当業者が行い得る変更、 改良等を施した種々の形態にて実 施することができる。  The embodiments of the catalyst precursor, the catalyst material, and the catalytic method of the present invention have been described above, but the present invention is not limited to the above-described embodiments. The present invention can be implemented in various forms that have been changed or improved by those skilled in the art without departing from the scope of the present invention.
以下に、 本発明の触媒前駆体、 触媒材料および触媒製造方法の実施例を挙げて、 本発明を具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to examples of the catalyst precursor, the catalyst material, and the catalyst production method of the present invention.
<カーボン固体酸の合成 >  <Synthesis of carbon solid acid>
微結晶セルロース 1 5 gを、 窒素ガス流通下において 4 5 0°Cで 5時間保持し た。 その後、 自然冷却して 3〜 4 g禾 の炭化微結晶セルロースを得た。  15 g of microcrystalline cellulose was kept at 45 ° C. for 5 hours under nitrogen gas flow. Thereafter, it was naturally cooled to obtain 3 to 4 g of carbonized microcrystalline cellulose.
次に、 上記の手順で得られた炭化微結晶セルロース 1 0 gを、 硫酸 7 5 m lと 発煙硫酸 7 5 m lの混合液に投入し、 窒素ガス流通下において 8 0°Cで 1 0時間 攪拌した。 自然冷却の後、 蒸気で十分に洗浄した。 その後、 8 0°Cの乾燥機內 で乾燥させ、 8〜 9 g程度のカーボン固体酸 (以下 「固体酸」 と略記) を得た。 ' 得られた固体酸がもつ酸性基の密度を中和滴定および元素分析の結果より算出 した。 酸 基の密度は 2. 8 mm o 1 / g (スルホン酸基: 2 mm o 1 Z g、 力 ルボキシル基 0. 8 mm 0 1ノ g ) であった。  Next, 10 g of carbonized microcrystalline cellulose obtained by the above procedure is put into a mixture of 75 ml of sulfuric acid and 75 ml of fuming sulfuric acid, and stirred at 80 ° C for 10 hours under a nitrogen gas flow. did. After natural cooling, it was thoroughly washed with steam. Thereafter, it was dried in a dryer at 80 ° C. to obtain about 8 to 9 g of carbon solid acid (hereinafter abbreviated as “solid acid”). 'The density of acidic groups of the obtained solid acid was calculated from the results of neutralization titration and elemental analysis. The density of the acid group was 2.8 mm o 1 / g (sulfonic acid group: 2 mm o 1 Z g, force ruboxyl group 0.8 mm 0 1 g).
また、 得られた固体酸の を T P D (株式会社リガク製、 昇温脱離ガス 分析装置) および T G— DTA (セイコーインスツルメンッ株式会ネ環、 熱重量 示差熱分析装置) の結果から算出した。 スルホン酸基の ^军 は 2 5 0° (:、 力 ルポキシル基の ^军温度は 3 7 0°C、 カーボンの燃焼温度は 4 6 5°Cであった。 く触媒前駆体の合成 I >  In addition, the solid acid obtained was calculated from the results of TPD (Rigaku Corporation, Thermal Desorption Gas Analyzer) and TG-DTA (Seiko Instruments Co., Ltd., Thermogravimetric Differential Thermal Analyzer). did. The ^^ of the sulfonic acid group was 2500 ° (:, the ^ ル temperature of the force lpoxyl group was 3700 ° C, and the combustion temperature of the carbon was 465 ° C. Synthesis of the catalyst precursor I>
《触媒前駆体 # 1 1》  《Catalyst precursor # 1 1》
上記の固体酸 4 0 O m gと、 固体酸中の水素イオンに対して P tイオンが 2当 量となるように調製した [P t (NH3) 4] C 12水溶液 20 Om 1のうちの 1 9 Omlと、 を混合し、 室温で 12時間攪姅してイオン交換を行った。 得られた 溶液を 「溶液 11」 とする。 その後、 溶液 11を濾過して水洗'乾燥を経て、 触 媒前駆体 # 11を得た。 2 Pt ions are equivalent to 40 O mg of the above solid acid and hydrogen ions in the solid acid. [Pt (NH 3 ) 4] C 12 aqueous solution 20 Om 1 prepared in an amount of 19 Oml was mixed, and the mixture was stirred at room temperature for 12 hours for ion exchange. The resulting solution is referred to as “Solution 11”. Thereafter, the solution 11 was filtered, washed with water and dried to obtain a catalyst precursor # 11.
なお、 調製された 200mlの [P t (NH3) 4] 〇 12水溶液のうちの残り の 10 m 1は、 後に説明する誘導結合高周波プラズマ分光分析 ( I C P分光分 析) に用いた。 この溶液を 「溶液 01」 とする。 Incidentally, [P t (NH 3) 4] of the prepared 200ml remaining 10 m 1 of 〇 1 2 aqueous solution was used after the induction coupled plasma spectroscopy to be described (ICP spectral analysis). This solution is referred to as “Solution 01”.
《触媒前駆体 # 12》  <Catalyst precursor # 12>
上記の固体酸 399 m gと、 固体酸中の水素ィオンに対して F eィオンが 1当 量となるように調製した F e C 13 ' 9H20水溶液 20 Om 1のうちの 190 mlと、 を混合し、 室温で 12時間攪拌してイオン交換を行った。 得られた溶液 を 「溶液 12」 とする。 その後、 溶液 12を濾過して水洗'乾燥を経て、 触媒前 駆体 # 12を得た。 399 mg of the above solid acid and 190 ml of Fe C 13 '9H 2 0 aqueous solution 20 Om 1 prepared so that Fe ion is equivalent to 1 hydrogen ion in the solid acid. The mixture was mixed and stirred at room temperature for 12 hours for ion exchange. The resulting solution is referred to as “Solution 12”. Thereafter, the solution 12 was filtered, washed with water and dried to obtain catalyst precursor # 12.
なお、 調製された 200 m 1の F e C 13 · 9 H20水溶液のうちの残りの 1 Omlは、 後に説明する I CP分光分析に用いた。 この溶液を 「溶液 02」 とす る。 The remaining 1 Oml of the prepared 200 m 1 Fe C 1 3 · 9 H 2 0 aqueous solution was used for ICP spectroscopic analysis described later. This solution is called “Solution 02”.
《触媒前駆体 # 13》  <Catalyst precursor # 13>
上記の固体酸 386 m gと、 固体酸中の水素ィオンに対して N iィオンが 1当 量となるように調製した N i S04 · 6H20水溶液 200mlのうちの 190 mlと、 を混合し、 室温で 12時間攪拌してイオン交換を行った。 得られた溶液 を 「溶液 13」 とする。 その後、 溶液 13を濾過して水洗'乾燥を経て、 触媒前 駆体 # 13を得た。 386 mg of the above solid acid and 190 ml of 200 ml of Ni S0 4 6H 20 aqueous solution prepared so that the amount of Ni ion is equivalent to 1 of hydrogen ion in the solid acid are mixed. Ion exchange was performed by stirring at room temperature for 12 hours. The resulting solution is referred to as “Solution 13”. Thereafter, the solution 13 was filtered, washed with water and dried to obtain catalyst precursor # 13.
なお、 調製された 200mlの N i S04 ' 6H2 O7溶液のうちの残りの 1 Omlは、 後に説明する I CP分光分析に用いた。 この溶液を 「溶液 03」 とす る。 Incidentally, the remaining 1 OML of the N i S0 4 '6H 2 O7 solution prepared 200ml was used for I CP spectroscopic analysis to be described later. This solution is called “Solution 03”.
《触媒前駆体 # 14》  《Catalyst precursor # 14》
上記の固体酸 396mgと、 固体酸中の水素イオンに対して Cuイオンが 1当 量となるように調製した Cu S04 · 5H2〇水溶液 20 Om 1のうちの 190 mlと、 を混合し、 室温で 12時間攪拌してイオン交換を行った。 得られた溶液 を 「溶液 14」 とする。 その後、 溶液 14を濾過して水洗 ·乾燥を経て、 触媒前 屠区体 # 14を得た。 396 mg of the above-mentioned solid acid and 190 of Cu S0 4 · 5H 2 O aqueous solution 20 Om 1 prepared so that the equivalent amount of Cu ion is 1 equivalent to the hydrogen ion in the solid acid. ml and were mixed and stirred at room temperature for 12 hours for ion exchange. The resulting solution is referred to as “Solution 14”. Thereafter, the solution 14 was filtered, washed with water and dried to obtain a pre-catalyst slaughter body # 14.
なお、 調製された 200m Iの Cu S04 · 5 H20水溶液のうちの残りの 1 Omlは、 後に説明する I CP分光分析に用いた。 この溶液を 「溶液 04」 とす る。 The remaining 1 Oml of the prepared 200 mI Cu S0 4 · 5 H 20 aqueous solution was used for ICP spectroscopic analysis described later. This solution is called “Solution 04”.
<担持量の測定 >  <Measurement of loading amount>
溶液 01〜04 (イオン交換前) および溶液 11〜14 (イオン交換後) の金 属イオン濃度を I CP分光分析により測定し、 その結果から、 触媒前駆体 # 11 〜# 14における各金属種の担持量 X (mmo 1/g) を算出した。 担持量 Xの 算出には、 以下の式を用いた。  The metal ion concentrations of solutions 01 to 04 (before ion exchange) and solutions 11 to 14 (after ion exchange) were measured by ICP spectroscopy, and the results showed that each metal species in catalyst precursor # 11 to # 14 The supported amount X (mmo 1 / g) was calculated. The following formula was used to calculate the loading amount X.
[数 1]  [Number 1]
X = ([Mo] - [Mi]) X 190 X 10- 3 / M / {H + ([Mo] - [Mi]) x 190 x 10 - 6 xMc/ } ここで、 [M0] (p pm) はイオン交換前の溶液の金属イオン濃度、 [M (p pm) はイオン交換後の溶液の金属イオン濃度、 H (g) は固体酸量、 Mは金属の原子量、 Mcは錯イオンの分子量 (なお P t以外では M=MC) であ る。 結果を表 1に示す。 X = ([Mo] - [ Mi]) X 190 X 10- 3 / M / {H + ([Mo] - [Mi]) x 190 x 10 - 6 xMc /} where, [M 0] (p pm) is the metal ion concentration of the solution before ion exchange, [M (p pm) is the metal ion concentration of the solution after ion exchange, H (g) is the solid acid amount, M is the metal atomic weight, and M c is the complex ion Is the molecular weight (M = M C except Pt). The results are shown in Table 1.
[表 1]  [table 1]
Figure imgf000014_0001
Figure imgf000014_0001
いずれの金属イオンを含む水溶液を用いても、 イオン交換により固体酸に金属 種を担持させることができた。 Regardless of the aqueous solution containing any metal ion, the metal species could be supported on the solid acid by ion exchange.
また、 触媒前駆体 # 11を、 X線光電子分光法 (XPS) で分析した。 分析結 果を図 2および図 3に示す。 なお、 図 2において、 P tのピーク位置を△で示す。 図 2では、 P tからのピークは検出されたが、 P tとともに [P t (NH3) J C 12水溶液に含まれる C 1からのピークは検出されなかつた。 したがって、 イオン交換により水溶液から固体酸に P tが導入されたことがわ力つた。 Catalyst precursor # 11 was analyzed by X-ray photoelectron spectroscopy (XPS). Analysis The results are shown in Figs. In Fig. 2, the peak position of Pt is indicated by Δ. In Figure 2, the peak of the P t was detected, a peak from C 1 contained [in P t (NH 3) JC 1 2 aqueous solution with P t is never to have been detected. Therefore, it was clear that Pt was introduced from the aqueous solution into the solid acid by ion exchange.
また、 図 3は、 図 2の P t 4 f のスぺクトルの付近を詳細に分析した結果であ る。 金属の P tからのピークは、 71. 2 eVに見られる。 し力 し、 図 3では、 71. 2 e Vよりも高束縛エネルギー側 (73. 4 e V) にピークが見られ、 7 3. 4 eVは、 P t (I I) の位置に対応する。 すなわち、 P tは、 触媒前駆体 におレヽて結合を形成してレ、ることが確認できた。  Figure 3 shows the result of detailed analysis of the vicinity of the spectrum of P t 4 f in Fig. 2. The peak from Pt of metal is seen at 71.2 eV. In Fig. 3, a peak is observed on the higher bound energy side (73.4 eV) than 71.2 eV, and 73.4 eV corresponds to the position of P t (I I). That is, it was confirmed that Pt formed a bond with the catalyst precursor.
<触媒前駆体の合成 I I >  <Synthesis of catalyst precursors I I>
《触媒前駆体 # 15〜# 17》  <Catalyst precursor # 15 to # 17>
使用する固体酸の量および [P t (NH3) 4] C 12水溶液濃度を変更した他 は、 角媒前駆体 # 11と同様にして触媒前駆体 # 15〜# 17を得た。 固体酸の 使用量および使用した [P t (NH3) J C 12水溶液に含まれる金属イオンの 濃度を表 2に示す。 なお、 表 2において、 イオン交換前後の金属イオン濃度 [M 0] および [MJ は I CP分光分析による測定値、 担持量 Xは上記と同様にし て算出した計算値である。 The exception that the amount and [P t (NH 3) 4 ] C 1 2 concentration of the aqueous solution of the solid acid used, to obtain a catalyst precursor # 15 # 17 in the same manner as Suminakadachi precursor # 11. The concentration of the metal ions contained in [P t (NH 3) JC 1 2 solution usage and using the solid acid shown in Table 2. In Table 2, metal ion concentrations before and after ion exchange [M 0] and [MJ are measured values by ICP spectroscopic analysis, and supported amount X is a calculated value calculated in the same manner as described above.
[表 2]  [Table 2]
Figure imgf000015_0001
固体酸がもつ酸性基が十分な量であれば、 ィオン交換前の溶液に含まれる金属 イオンの濃度が多くなるほど、 多くの金属が触媒前駆体に担持されることがわか つた。
Figure imgf000015_0001
It was found that if the amount of acidic groups in the solid acid is sufficient, the metal precursor contained in the solution before ion exchange increases the amount of metal supported on the catalyst precursor.
ぐ触媒前駆体の合成 I I I〉 《触媒前駆体 # 21》 Synthesis of Gu catalyst precursors III> 《Catalyst precursor # 21》
上記の固体酸 395mg、 および上記の [P t (NH3) 4] ( 12と上記の e C 13 * 9 H20の混合水溶液 200m lのうちの 190mlとを混合し、 室 温で 12時間攪拌してイオン交換を行った。 その後、 濾過して水洗'乾燥を経て、 触媒前駆体 # 21を得た。 使用した水溶液に含まれる金属ィオンの濃度を表 3に 示す。 なお、 表 3において、 イオン交換前後の金属イオン濃度 [Μ。] および 395 mg of the above solid acid, and [P t (NH 3 ) 4 ] (1 2 above and 190 ml of 200 ml of a mixed aqueous solution of the above e C 13 * 9 H 2 0 are mixed at a room temperature of 12 After stirring for a period of time, ion exchange was performed, followed by filtration and washing with water and drying to obtain catalyst precursor # 21. The concentrations of metal ions contained in the aqueous solution used are shown in Table 3. Table 3 In metal ion concentration before and after ion exchange [Μ.] And
[Μ,] は I CP分光分析による測定値、 担持量 Xは上記と同様にして算出した 計算値である。  [Μ,] is the measured value by ICP spectroscopic analysis, and the loading amount X is the calculated value calculated in the same way as above.
[表 3]  [Table 3]
Figure imgf000016_0001
Figure imgf000016_0001
触媒前駆体 # 21には、 二種類の金属が担持されていることがわかった。 すな わち、 固体酸と混合する水溶液に含まれる金属イオンの種類に応じて、 二種以上 の金属を一度に担持させられることがわ力 た。  Catalyst precursor # 21 was found to carry two types of metals. In other words, two or more metals can be supported at one time depending on the type of metal ions contained in the aqueous solution mixed with the solid acid.
<粒成長抑制効果の確認〉  <Confirmation of grain growth suppression effect>
触媒前駆体 # 11に対して還元処理を行い、 触媒材料を得た。 還元処理は、 水 素雰囲気下において 200°Cで 3時間とした。 次に、 触媒材料を、 ヘリウムガス 流通下において 450°Cで 3時間熱処理した。 なお、 この熱処理条件は、 酸化物 の担体に貴金属微粒子を担持した一般的な触媒材料にぉレ、て貴金属粒子の粒成長 が見られる条件である。 熱処理前後の触媒材料を透過電子顕微鏡 (TEM) で観 察した。 結果を図 4および図 5に示す。  The catalyst precursor # 11 was subjected to a reduction treatment to obtain a catalyst material. The reduction treatment was performed at 200 ° C for 3 hours in a hydrogen atmosphere. Next, the catalyst material was heat-treated at 450 ° C for 3 hours under the flow of helium gas. This heat treatment condition is a condition under which noble metal particle growth is observed on a general catalyst material in which noble metal fine particles are supported on an oxide carrier. The catalyst material before and after the heat treatment was observed with a transmission electron microscope (TEM). The results are shown in FIG. 4 and FIG.
図 4は、 熱処理前の触媒材料の TEM像であり、 31 111程度の?1:微粒子 (黒 く見える部分) が均一に分散していた。 熱処理後の TEM像 (図 5) でも、 P t 微粒子の状態に変化はなく、 熱による粒成長も見られなかった。  Figure 4 shows a TEM image of the catalyst material before heat treatment. 1: Fine particles (parts that look black) were uniformly dispersed. Even in the TEM image after heat treatment (Fig. 5), there was no change in the state of the Pt fine particles and no thermal grain growth was observed.

Claims

1 . 酸性基の金属塩が導入された無定形炭素からなることを特徴とする触媒前 駆体。 1. A catalyst precursor characterized by comprising amorphous carbon introduced with a metal salt of an acidic group.
2 . 前記金属塩を形成する酸性基の密度が 0 . 5 mm o 1 / g以上である請求 項 1記載の触媒前駆体。  2. The catalyst precursor according to claim 1, wherein the density of acidic groups forming the metal salt is 0.5 mm o 1 / g or more.
3 . 前記酸性基の金属塩は、 スルホン酸基の金属塩、 カルボキシル基の金属塩 およびフエノール性水酸基の金属塩のうちの一種以上である請求項 1記載の触媒 前駆体。  3. The catalyst precursor according to claim 1, wherein the metal salt of the acidic group is one or more of a metal salt of a sulfonic acid group, a metal salt of a carboxyl group, and a metal salt of a phenolic hydroxyl group.
4. 前記酸 ¾基の金属塩は、 遷移金属元素からなる群から選ばれる一種以上を 含む請求項 1記載の触媒前駆体。  4. The catalyst precursor according to claim 1, wherein the metal salt of the acid group includes at least one selected from the group consisting of transition metal elements.
5. 嫌己酸性基の金属塩は、 さらに、 典型金属元素からなる群から選ばれる一 種以上を含む請求項 4記載の触媒前駆体。  5. The catalyst precursor according to claim 4, wherein the anionic acid group metal salt further contains at least one selected from the group consisting of typical metal elements.
6 . 前記酸性基の金属塩は、 白金 (P t ) 、 鉄 (F e ) 、 ニッケル (N i ) お よび銅 (C u) のうちの一種以上を含む請求項 4記載の触媒前駆体。  6. The catalyst precursor according to claim 4, wherein the metal salt of the acidic group contains one or more of platinum (P t), iron (F e), nickel (N i), and copper (C u).
7 . 核磁気共鳴スぺクトルにおいて縮合芳香族炭素 6員環および前記酸 性基の金属塩が結合した縮合芳香族炭素 6員環の化学シフトが少なくとも検出さ れ、 粉末 X線回折において半値幅 (2 Θ ) が 5 ° 〜3 0 ° である炭素 (0 0 7. At least a chemical shift of the condensed aromatic carbon 6-membered ring and the condensed aromatic carbon 6-membered ring to which the metal salt of the acid group is bonded was detected in the nuclear magnetic resonance spectrum, and the half-width in powder X-ray diffraction was detected. (2 Θ) is between 5 ° and 30 ° carbon (0 0
2 ) 面の回折ピークが少なくとも検出される請求項 1記載の触媒前駆体。 2. The catalyst precursor according to claim 1, wherein at least a diffraction peak on the surface is detected.
8 . 酸性基の金属塩が導入された無定形炭素からなる触媒前駆体を還元してな ることを特 ί敷とする角虫媒材斗。  8. A hornworm medium dough characterized by reducing a catalyst precursor made of amorphous carbon into which a metal salt of an acidic group has been introduced.
9 . 前記無定形炭素がもつグラフエンシートからなる微小担体と、 前記酸性基 の金属塩が還元されてなり該微小担体に担持される触媒金属と、 からなる請求項 8記載の触媒材料。  9. The catalyst material according to claim 8, comprising: a microcarrier composed of a graph ensheet possessed by the amorphous carbon; and a catalytic metal supported on the microcarrier by reduction of the metal salt of the acidic group.
1 0 . 前記触媒金属は、 粒径が 1 0 n m以下の金属微粒子である請求項 9記載 の触媒材料。  10. The catalyst material according to claim 9, wherein the catalyst metal is a metal fine particle having a particle size of 10 nm or less.
1 1 . 全体を 1 0 0質量%としたときに、 前記触媒金属を 1〜 3 0質量%含む 請求項 9記載の触媒材料。 11. The catalyst material according to claim 9, wherein the catalyst metal is contained in an amount of 1 to 30% by mass when the total content is 100% by mass.
12. 前記触媒金属は、 遷移金属元素からなる群から選ばれる一種以上を含む 請求項 9記載の触媒材料。 12. The catalyst material according to claim 9, wherein the catalyst metal includes one or more selected from the group consisting of transition metal elements.
13. 前記触媒金属は、 さらに、 典型金属元素からなる群から選ばれる一種以 上を含む請求項 12記載の触媒材料。  13. The catalyst material according to claim 12, wherein the catalyst metal further contains one or more selected from the group consisting of typical metal elements.
14. 前記触媒金属は、 白金 (P t) 、 鉄 (F e) 、 ニッケノレ (N i) および 銅 (Cu) のうちの一種以上を含む請求項 12記載の触媒材料。  14. The catalyst material according to claim 12, wherein the catalyst metal includes one or more of platinum (Pt), iron (Fe), nickelo (N i) and copper (Cu).
15. 酸性基が導入された無定形炭素と金属イオンを含む水溶液とを混合して、 ィオン交換により酸 14¾の金属塩が導入された無定形炭素からなる触媒前駆体を 合成するイオン交換工程を含むことを特徴とする触 造方法。  15. An ion exchange step of synthesizing a catalyst precursor composed of amorphous carbon into which an acid 14¾ metal salt has been introduced by ion exchange by mixing amorphous carbon into which acid groups have been introduced and an aqueous solution containing metal ions. A tactile method characterized by comprising.
16. さらに、 前記イオン交換工程の後に、 前記触媒前駆体および水溶液の混 合物から該水溶液を除去して該触媒前駆体を得る除去工程を含む請求項 15記載 の触觀造方法。  16. The method according to claim 15, further comprising a removal step of obtaining the catalyst precursor by removing the aqueous solution from the mixture of the catalyst precursor and the aqueous solution after the ion exchange step.
17. さらに、 前記イオン交換工程の後に、 前記金属イオンを還元することで 該金属ィオンを金属 '微粒子とする還元処理工程を含む請求項 15記載の触 »造 方法。  17. The catalyst manufacturing method according to claim 15, further comprising a reduction treatment step of reducing the metal ions into metal 'fine particles by reducing the metal ions after the ion exchange step.
18. 前記還元処理工程は、 前記酸性基が^军する 以上で加熱を行う工程 である請求項 17記載の触 造方法。  18. The catalyzing method according to claim 17, wherein the reduction treatment step is a step of heating the acidic group as described above.
19. 前記還元処理工程は、 前記酸 基が する 未満で加熱を行う工程 である請求項 17記載の触 ¾造方法。  19. The catalyst preparation method according to claim 17, wherein the reduction treatment step is a step of heating with less than the acid group.
20. 前記酸 I1生基は、 スルホン酸基、 カルボキシル基およびフエノール性水酸 基のうちの一種以上である請求項 15記載の触媒製造方法。 20. The method for producing a catalyst according to claim 15, wherein the acid I 1 biogroup is at least one of a sulfonic acid group, a carboxyl group, and a phenolic hydroxyl group.
21. 前記無定形炭素は、 13 C核磁気共鳴スぺク トルにおいて縮合芳香族炭 素 6員環および前記酸 ft基が結合した縮合芳香族炭素 6員環の化学シフトが検出 され、 粉末 X線回折において半値幅 (2 Θ) が 5° 〜30° である炭素 (〇 0 2) 面の回折ピークが少なくとも検出される請求項 15記載の触 造方法。 21. In the amorphous carbon, the chemical shift of the condensed aromatic carbon 6-membered ring and the condensed aromatic carbon 6-membered ring to which the acid ft group is bonded was detected in the 13 C nuclear magnetic resonance spectrum, and the powder X 16. The method according to claim 15, wherein a diffraction peak of a carbon (0 0 2) plane having a half-value width (2Θ) of 5 ° to 30 ° in line diffraction is detected at least.
22. 前記無定形炭素の前記酸 i、生基の密度は、 0. 5 mm o 1 Z g以上である 請求項 15記載の触 造方法。 22. The method according to claim 15, wherein the density of the acid i and biogroup of the amorphous carbon is 0.5 mm o 1 Z g or more.
PCT/JP2009/058799 2008-05-06 2009-04-30 Catalyst precursor, catalyst material, and catalyst manufacturing method WO2009136653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-120817 2008-05-06
JP2008120817A JP5182987B2 (en) 2008-05-06 2008-05-06 Catalyst precursor, catalyst material, and catalyst production method

Publications (1)

Publication Number Publication Date
WO2009136653A1 true WO2009136653A1 (en) 2009-11-12

Family

ID=41264704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058799 WO2009136653A1 (en) 2008-05-06 2009-04-30 Catalyst precursor, catalyst material, and catalyst manufacturing method

Country Status (2)

Country Link
JP (1) JP5182987B2 (en)
WO (1) WO2009136653A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036389A (en) * 2013-08-12 2015-02-23 株式会社Kri Production method of graphene quantum dot emitter
CN104874404A (en) * 2015-04-30 2015-09-02 天津大学 Magnetic graphene-based platinum-nickel bimetallic catalyst and preparation method of magnetic graphene-based platinum-nickel bimetallic catalyst

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453732B2 (en) * 2008-05-06 2014-03-26 株式会社豊田自動織機 Catalyst precursor, catalyst material, and production method thereof
JP5392638B2 (en) * 2011-07-12 2014-01-22 独立行政法人国立高等専門学校機構 Carbonaceous composite and method for producing the same
JP6315831B2 (en) * 2013-02-13 2018-04-25 独立行政法人国立高等専門学校機構 Method for hydrolysis of cellulose
CN103657653B (en) * 2013-12-10 2016-06-01 华北电力大学 A kind of solid acid catalyst C/Fe3O4The method of MWCNTs and catalyzing cellulose hydrolysis thereof
WO2021107078A1 (en) * 2019-11-27 2021-06-03 日産化学株式会社 Carbon-based conjugate and polymer electrolyte fuel cell in which carbon-based conjugate is used
WO2023199935A1 (en) * 2022-04-13 2023-10-19 日本製紙株式会社 Graphite crystal-containing carbon material manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128409A (en) * 2001-10-22 2003-05-08 Ube Ind Ltd Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery
WO2007029496A1 (en) * 2005-09-07 2007-03-15 Tokyo Institute Of Technology Amorphous carbon with fluoro-type sulfonic acid group introduced thereinto, process for producing the same, and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041409B2 (en) * 2003-02-05 2008-01-30 独立行政法人科学技術振興機構 Polycyclic aromatic carbon-based solid strong acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128409A (en) * 2001-10-22 2003-05-08 Ube Ind Ltd Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery
WO2007029496A1 (en) * 2005-09-07 2007-03-15 Tokyo Institute Of Technology Amorphous carbon with fluoro-type sulfonic acid group introduced thereinto, process for producing the same, and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036389A (en) * 2013-08-12 2015-02-23 株式会社Kri Production method of graphene quantum dot emitter
CN104874404A (en) * 2015-04-30 2015-09-02 天津大学 Magnetic graphene-based platinum-nickel bimetallic catalyst and preparation method of magnetic graphene-based platinum-nickel bimetallic catalyst

Also Published As

Publication number Publication date
JP5182987B2 (en) 2013-04-17
JP2009268960A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
WO2009136653A1 (en) Catalyst precursor, catalyst material, and catalyst manufacturing method
Hu et al. Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods
CN108856706B (en) Carbon-coated nickel-aluminum composite material and preparation method and application thereof
Zhang et al. Ni/Ln 2 Zr 2 O 7 (Ln= La, Pr, Sm and Y) catalysts for methane steam reforming: the effects of A site replacement
Xia Interactions between metal species and nitrogen-functionalized carbon nanotubes
Leong et al. Shape‐directed platinum nanoparticle synthesis: nanoscale design of novel catalysts
Fang et al. Methane dry reforming over coke‐resistant mesoporous Ni‐Al2O3 catalysts prepared by evaporation‐induced self‐assembly method
Yu et al. Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction
JP5110249B2 (en) Hydrocarbon decomposition catalyst, hydrocarbon decomposition method and hydrogen production method using the catalyst, and power generation system
Rao et al. Novel CeO2 promoted TiO2–ZrO2 nano-oxide catalysts for oxidative dehydrogenation of p-diethylbenzene utilizing CO2 as soft oxidant
WO2014046471A1 (en) Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
Zhang et al. Synergistic catalysis by a hybrid nanostructure Pt catalyst for high-efficiency selective hydrogenation of nitroarenes
Leng et al. N-doped carbon encapsulated molybdenum carbide as an efficient catalyst for oxidant-free dehydrogenation of alcohols
KR102123148B1 (en) Synthesis method of metal catalyst having carbon shell using metal complex
EP2749352B1 (en) Exhaust gas purification catalyst, and method for producing same
CN111437870A (en) Metal @ MFI multi-level pore structure encapsulated catalyst and encapsulation method and application thereof
JP5453732B2 (en) Catalyst precursor, catalyst material, and production method thereof
US20140113810A1 (en) Metal particles, exhaust gas purifying catalyst comprising metal particles, and methods for producing them
WO2013021506A1 (en) Redox material for thermochemical water decomposition and method for producing hydrogen
Arundhathi et al. Chromium-free Cu@ Mg/γ-Al 2 O 3–an active catalyst for selective hydrogenation of furfural to furfuryl alcohol
Said et al. Synthesis, characterization and catalytic activity of nanocrystalline Ce 2 (MoO 4) 3/SiO 2 as a novel catalyst for the selective production of anhydrous formaldehyde from methanol
Soltan et al. Bimetallic Fe-Mn loaded H-ZSM-5 zeolites for excellent VOCs catalytic oxidation at low-temperatures: Synergistic effects and catalytic mechanisms
Yang et al. Doping effects of Ni–MgO on the structure and performance of carbon nanotube-supported Pt catalysts for preferential oxidation of CO in a H2 stream
El-Bahy et al. CO oxidation and 4-nitrophenol reduction over ceria-promoted platinum nanoparticles impregnated with ZSM-5 zeolite
You et al. Pd/CNT with controllable Pd particle size and hydrophilicity for improved direct synthesis efficiency of H 2 O 2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742777

Country of ref document: EP

Kind code of ref document: A1