WO2009132520A1 - 三维超声波成像*** - Google Patents

三维超声波成像*** Download PDF

Info

Publication number
WO2009132520A1
WO2009132520A1 PCT/CN2009/000469 CN2009000469W WO2009132520A1 WO 2009132520 A1 WO2009132520 A1 WO 2009132520A1 CN 2009000469 W CN2009000469 W CN 2009000469W WO 2009132520 A1 WO2009132520 A1 WO 2009132520A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
positioning
imaging system
dimensional
ultrasonic imaging
Prior art date
Application number
PCT/CN2009/000469
Other languages
English (en)
French (fr)
Inventor
郑永平
张忠伟
何俊峰
陈昕
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Publication of WO2009132520A1 publication Critical patent/WO2009132520A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data

Definitions

  • the present invention relates to a three-dimensional ultrasound imaging system. Background technique
  • 3D ultrasound is a low-cost solution for acquiring stereoscopic imaging.
  • its operation does not require centralized training and radiation protection.
  • its hardware is detachable and potentially portable.
  • Three-dimensional ultrasound imaging has been widely used for the examination or diagnosis of abnormal fetal, lymph node and heart diseases.
  • the ultrasonic transducer is rotated or mobilized to acquire position data by a stepping motor located at the scanning head.
  • the obtained B ultrasonic waves can be arranged into a series of parallel segments by linear movement, and the obtained B ultrasonic waves are arranged in a wedge shape by tilting movement, and the obtained B ultrasonic waves are arranged into a cone shape by rotational movement or Cylindrical, thus providing high accuracy for position measurement, but the range of motion of the mechanical scanning method is limited by the scanning device.
  • orientation sensing device Compared to mechanical scanning methods, clinicians are less restricted in their ability to manipulate ultrasound probes on their body surfaces.
  • the position and orientation of the probe can be recorded using an orientation sensing device and used to reconstruct a 3D data set.
  • Many different orientation sensors are available, including electromagnetic inductive devices, pulsed ultrasonic positioning, articulated arms, and optical sensors. These devices are expensive, bulky or inaccurate.
  • the present invention is directed to a three-dimensional ultrasound imaging system that has measurement accuracy, simple steps, and low cost.
  • the present invention provides a three-dimensional ultrasonic imaging system including an ultrasonic probe, at least one first camera, a positioning module, an ultrasonic scanner, and a calculation module, wherein the camera is attached to the ultrasonic probe, and the positioning module is placed in the Within the framing range of the camera, the ultrasound scanner provides corresponding ultrasound images of various parts of the body, while the camera provides real-time video.
  • the calculation module simultaneously collects the scanned images and video and performs corresponding calculations to generate three-dimensional images.
  • the camera is a black and white camera, a color camera or an infrared camera.
  • a three-dimensional ultrasonic imaging system according to a preferred embodiment of the present invention, wherein a lighting unit is added to the camera or the positioning module.
  • the camera is integrated with an ultrasonic probe.
  • the ultrasonic probe has a button for setting an initial frame of the live video.
  • a three-dimensional ultrasonic imaging system according to a preferred embodiment of the present invention, further comprising a second camera for observing the various parts of the body to determine the movement of the respective parts of the body and correcting the movement of the obtained ultrasonic probe.
  • the positioning module includes a set of positioning identifiers
  • the group positioning identifier includes two line segments that are vertically halved and four identification blocks at the line ends, and the four The identification blocks have a known area and a center
  • the calculation module calculates and generates a three-dimensional image according to the relative relationship between the current positioning identifier and the initial positioning identifier.
  • the line segment and the identification block in the positioning identifier have their specific codes.
  • the calculation module determines the displacement of the scan in the plane according to the distance between the intersection of the current line segment and the intersection of the initial line segments in a plane.
  • the calculation module determines a rotation angle of scanning within the plane based on an angle between a current line segment and an initial line segment in a plane.
  • the calculation module determines a displacement scanned in the direction based on a ratio of a length of a current line segment and an initial line segment perpendicular to the direction in one direction.
  • the calculation module determines, according to a ratio of a current area of the identification blocks on both sides of the shaft when the axis is rotated in a direction, the direction is the axis The angle of rotation.
  • the calculation module determines that the current intersection of the line segment is on a line segment perpendicular to the axis when the axis is rotated in a direction, and the direction is the axis. The angle of rotation.
  • the positioning module includes a plurality of sets of positioning identifiers continuously arranged in one direction, and the tracking for the positioning identifiers is transferred from using the current group positioning identifier to the movement of the camera. The next set of positioning identifiers.
  • the positioning module includes a plurality of sets of positioning identifiers arranged along a matrix of two mutually perpendicular directions, and the tracking for the positioning identifiers is transferred from the use of the current group positioning identifiers with the movement of the camera. Go to the next set of positioning identifiers.
  • a three-dimensional ultrasonic imaging method includes the following steps: 1) acquiring a real-time video image of the positioning module by using a camera located on the ultrasonic probe; 2) simultaneously obtaining an ultrasonic image corresponding to each part of the body through the ultrasonic probe by using the ultrasonic scanner; Using the calculation module to obtain the movement and rotation amount of the ultrasonic probe by comparing the positions, angles, and areas of the units of the positioning module in the continuous real-time video image; 4) repeating the above operation to obtain a series of ultrasonic images And obtaining the ultrasonic probe and the direction when the corresponding ultrasound image is obtained; 5) calculating the module using the obtained data to perform corresponding Calculate and generate a three-dimensional image.
  • the invention has the advantages of low cost and improved accuracy of three-dimensional ultrasonic imaging space tracking.
  • Figure 1 is a schematic illustration of a three-dimensional ultrasound imaging system in accordance with the present invention.
  • Figure 2 shows a typical set of initial positioning marks
  • Figure 3 shows the positioning identification and initial identification of the camera after transformation in the xy plane
  • Figure 4 shows the positioning identification and initial identification of the camera after transformation in the z direction
  • Figure 5 shows the positioning identification and initial identification of the camera after rotation in the xy plane
  • Figure 6 shows the positioning mark and initial identification of the camera after rotating in the xz plane
  • Figure 7 shows the positioning mark and initial identification of the camera after rotating in the yz plane
  • Figure 8 shows the complex moving position identification and initial identification of the camera ;
  • Figure 9 shows a plurality of sets of positioning marks continuously arranged in one direction
  • Figure 10 shows a plurality of sets of positioning marks continuously arranged in two mutually perpendicular directions.
  • the present invention is a three-dimensional ultrasonic imaging system.
  • the principle of the system is to construct a three-dimensional ultrasonic imaging by attaching a video camera to the ultrasonic probe as an orientation sensing device and a positioning identification map.
  • the system includes an ultrasonic probe, a video generating module, an ultrasonic scanner, and a computer, wherein the ultrasonic scanner can provide corresponding ultrasonic images of various parts of the body, and the video generating module includes a camera. And a positioning module, the camera is attached to the ultrasonic probe, and the positioning module is placed in a framing range of the camera, so the video generating module can provide a real-time video stream, and the computing module simultaneously collects the scanned image and the video stream and executes Corresponding calculations generate a three-dimensional image.
  • the camera has one or more, the positioning module can actively emit light, and the camera is integrated with an ultrasonic probe, and the ultrasonic probe is used for two-dimensional or three-dimensional imaging.
  • the ultrasound scanner When the ultrasound probe moves along various parts of the body, the ultrasound scanner provides a corresponding ultrasound image of each part of the body.
  • the camera can provide real-time based on the positioning identification chart. Video stream.
  • the computer can simultaneously collect B ultrasound scan images and video streams and perform corresponding calculations.
  • the position and orientation of the video camera can be calculated based on the content of the video image. Since the camera is fixed to the ultrasonic probe, the position and orientation of the probe can also be obtained. Therefore, the position and direction of each B ultrasonic image can be correspondingly generated simultaneously to generate a three-dimensional image, and at the same time, each part of the body is observed by the second camera to determine the movement of each part of the corresponding body and the obtained result is obtained for the obtained object. The movement of the ultrasonic probe is corrected.
  • Figure 2 shows a typical set of positioning markers.
  • A, B, C, and D are four positioning identification blocks, each having a known area and center.
  • Line segment a is a known line segment with the center point of the positioning identification block A and the positioning identification block C as the end point.
  • Line segment b is a known line segment with the center point of the positioning identification block B and the positioning identification block D as the end point.
  • O is the intersection of line segments a and b.
  • the image of the positioning marker can be acquired in real time through the video camera.
  • the ultrasonic probe has a button for setting an initial frame of the real-time video, and by pressing the button, the computer records the identifier blocks A, B, C, D and their positions in the first frame image, thereby Calculating an initial area of each of the identification blocks and a distance therebetween, each of the positioning identification blocks and the line segments of the positioning module has a specific code so that the image recognition can identify which cells exist in the current image and their specific positions .
  • the camera changes in multiple directions or rotates in multiple planes.
  • Figure 3-7 shows the different situations and describes how to calculate the transformation and rotation.
  • Figure 3 shows the location identification and initial identification of the camera after it has been transformed in the x-y plane.
  • the exact displacement in the X and y directions can be calculated from the position of the initial line intersection "0" and the current line intersection "Ol".
  • Figure 4 shows the location identification and initial identification of the camera after it has been transformed in the z direction.
  • the displacement in the z direction can be calculated from the distance between the blocks and the change in the dimensions of the block.
  • the ratio of line segment a2/a to line segment b2/b can be used to calculate the displacement by scaling, where a2, b2 are the current line segments and a, b are the initial line segments which can be determined prior to measurement.
  • Figure 5 shows the positioning identification and initial identification of the camera after it has been rotated in the xy plane.
  • the exact angle of the rotation can be calculated based on the change in the direction of the line a or b, also That is, the angle from the initial line segment a to the current line segment a3 or the angle from the initial line segment b to the current line segment b3.
  • Figure 6 shows the positioning mark and initial identification of the camera after it has been rotated in the x-z plane.
  • the amount of rotation can be calculated by the area ratio of the current identification block B4 and the current identification block D4 or the repositioning of the current intersection 04 on the current line segment a4. In this case, there is no rotation in the y-z direction. Therefore, the areas of the current identification blocks A4 and C4 are the same.
  • Figure 7 shows the location identification and initial identification of the camera after it has been rotated in the y-z plane.
  • the amount of rotation can be calculated by the area ratio of the current identification block A5 and the current identification block C5 or the repositioning of the current point 05 on the current line segment b5. In this case, there is no rotation in the X-Z direction. Therefore, the areas of the current identification blocks B5 and D5 are the same.
  • Figure 8 shows the complex moving position identification and initial identification of the camera.
  • the movement combines all of the transformations and rotations of Figures 3-7. It has transformations in the x, y, and z directions, in the xy, xz, and yz planes.
  • the transformation and rotation can be calculated based on the method described in Figures 3-7.
  • the method detailed in Figure 3-8 also works for relatively small movements. In order to be suitable for a large amount of movement, a plurality of sets of positioning marks can be employed.
  • Figure 9 shows multiple sets of positioning marks extending in one direction and a larger range of movement in this direction.
  • a set of positioning marks begins to disappear from the viewing range of the camera, another set of positioning marks appears within the viewing range.
  • the tracking of the location identifier will be transferred from the first set of location identifiers to the second set of location identifiers. The process can be continued to achieve a larger viewing range in one direction.
  • multiple sets of positioning marks arranged in two mutually perpendicular directions may be used, as shown in FIG. Similar to the case of one direction extension, when a set of positioning indicators begins to disappear from the camera's viewing range, the tracking of the positioning indicators can be transmitted from one set of positioning indicators to another.
  • the positioning indicator can be printed on paper or on a plastic sheet. As long as you can use the camera to take It can be attached to a table, roof, human body or other surface. At the same time, the position identification of different shapes and shapes can be used. Moreover, different colors can be used for different positioning marks for identification.
  • the positioning identifier may be passive or active illumination, that is, relying on reflective illumination or autoluminescence. In addition, to improve accuracy, multiple cameras can be used to calculate the movement and combine the results.
  • the present invention provides another three-dimensional ultrasonic imaging method, comprising the following steps: 1) acquiring a real-time video image of the positioning module by using a camera located on the ultrasonic probe; 2) simultaneously using an ultrasonic scanner The ultrasonic probe obtains corresponding ultrasonic images of various parts of the body; 3) using the calculation module to obtain the movement and rotation of the ultrasonic probe by comparing the positions, angles and areas of the units of the positioning module in the continuous real-time video image 4)
  • the ultrasonic probe and direction are obtained by repeating the above operations to obtain a series of ultrasonic images and obtaining corresponding ultrasonic images; the calculation module performs corresponding calculations using the obtained data to generate a three-dimensional image.
  • the three-dimensional ultrasonic imaging system proposed by the invention is low in cost and can improve the accuracy of spatial tracking of three-dimensional ultrasonic imaging.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

三维超声波成像*** 技术领域
本发明涉及三维超声波成像***。 背景技术
最近, 对三维诊断实践重视使三维超声波设备得到快速发展。 较之 CT和 MRI成像, 三维超声波是获取立体成像的低成本解决方 案。 此外, 其操作无须集中培训和辐射保护。 而且其硬件可以拆卸 且有可能具有便携性。 三维超声波成像已广泛用于异常胎儿、 淋巴 结和心脏等疾病的检查或诊断。
最近有针对三维超声波成像开发了很多不同技术。 鉴于获取方 法, 其可分为四类: 二维转换器阵列、 机械扫描仪以及具有和不具 有位置信息的徒手扫描方法。
二维转换器阵列的***可实时提供大量重要三维图像, 但是较 为昂贵且不易购买。
机械扫描方法中, 超声波转换器被转动或调动从而通过从位于 扫描头的步进电机获取位置数据。 根据机械移动的类型, 可采用线 性移动将得到的 B超声波扫描排列成一系列平行的片段, 采用倾斜 移动将得到的 B超声波扫描排列成楔形, 采用旋转移动将得到的 B 超声波扫描排列成锥形或圆柱形, 因此为位置测量提供高准确性, 但是机械扫描方法的移动范围受扫描设备限制。
相对于机械扫描方法, 临床医生通过徒手扫描方法在体表操作 超声波探头所受限制更小。 探头的位置和方向可使用方位感应设备 记录下来, 并用于重建三维数据集。 现有许多不同的方位传感器可 供使用, 包括电磁感性设备、 脉冲超声定位、 铰接臂和光学传感器。 上述设备都较为昂贵、 庞大或不准确。 也有很多设备不使用任何方 位感应设备但通过获取自图像的信息估测 B超声波扫描之间的相对 位置和方向。 但是, 此类设备要求探头可在一个方向上稳定移动但 不能在 B超声波扫描时进行大规模转动和变换。 此外, 由于在数据 获取期间移动测量产生的错误, 此类设备不能提供准确的距离或体
发明内容
本发明目的在于一种三维超声波成像***,其具有测量准确性, 简单的步骤以及低廉的成本。
本发明提供一种三维超声波成像***, 包括超声波探头、 至少 一个第一摄像头、 定位模块、 超声波扫描仪以及计算模块, 其中所 述摄像头附着于所述超声波探头上, 所述定位模块放置在所述摄像 头的取景范围内,超声波扫描仪提供身体各部位相应的超声波图像, 同时摄像头提供实时视频, 计算模块同时收集扫描图像和视频并执 行相应计算生成三维图像。
如本发明的优选实施例所述的三维超声波成像***, 所述摄像 头为黑白摄像头、 彩色摄像头或红外摄像头。
如本发明的优选实施例所述的三维超声波成像***, 在所述摄 像头或所述定位模块中附加照明单元。
如本发明的优选实施例所述的三维超声波成像***, 所述摄像 头与超声波探头成一体化。
如本发明的优选实施例所述的三维超声波成像***, 所述超声 波探头上有一按键用来设定实时视频的初始帧。
如本发明的优选实施例所述的三维超声波成像***, 还包括第 二摄像头, 用于观测所述身体各部位以确定相应身体各部位的移动 并修正所获得的所述超声波探头的移动。
如本发明的优选实施例所述的三维超声波成像***, 所述定位 模块包括一组定位标识, 所述组定位标识包括两条相互垂直平分的 线段以及四个位于线端的标识块, 所述四个标识块具有已知面积和 中心, 所述计算模块根据当前定位标识和初始定位标识之间的相对 关系计算生成三维图像。
如本发明的优选实施例所述的三维超声波成像***, 所述定位 标识中的所述线段和标识块都有其特定的编码。 如本发明的优选实施例所述的三维超声波成像***, 所述计算 模块根据在一平面内当前线段交点和初始线段交点之间的距离确定 在所述平面内扫描的位移。
如本发明的优选实施例所述的三维超声波成像***, 所述计算 模块根据在一平面内当前线段和初始线段之间的角度确定在所述平 面内扫描的转动角度。
如本发明的优选实施例所述的三维超声波成像***, 所述计算 模块根据在一方向上垂直于所述方向的当前线段和初始线段的长度 比率确定在所述方向上扫描的位移。
如本发明的优选实施例所述的三维超声波成像***, 所述计算 模块根据在以一方向为轴转动时, 所述轴两侧的标识块的当前面积 的比率确定以所述方向为轴的转动的角度。
如本发明的优选实施例所述的三维超声波成像***, 所述计算 模块根据在以一方向为轴转动时, 线段当前交点在与所述轴垂直的 线段上的位置确定以所述方向为轴的转动的角度。
如本发明的优选实施例所述的三维超声波成像***, 所述定位 模块包括在沿一个方向连续排列的多组定位标识, 针对定位标识的 跟踪将随摄像头的移动从采用当前组定位标识转移到下一组定位标 识。
如本发明的优选实施例所述的三维超声波成像***, 所述定位 模块包括沿两相互垂直方向矩阵排列的多组定位标识, 针对定位标 识的跟踪将随摄像头的移动从采用当前组定位标识转移到下一组定 位标识。
一种三维超声波成像方法, 包括以下步骤: 1 )利用位于超声波 探头上的摄像头获取定位模块的实时视频图像; 2 ) 同时利用超声波 扫描仪通过所述超声波探头获得身体各部位相应的超声波图像; 3 ) 利用计算模块通过比较连续的实时视频图像中的所述定位模块的各 单元的位置、角度及面积从而得到所述超声波探头的移动及旋转量; 4 )通过重复上述操作以获得一系列超声波图像以及获得相应超声图 像时所述超声波探头和方向; 5 )计算模块利用获得的数据执行相应 计算生成三维图像。
本发明优点在于其成本低廉, 并能够提高三维超声波成像空间 跟踪的准确性。 附图说明
图 1为根据本发明的三维超声波成像***的示意图;
图 2显示一组典型的初始定位标识;
图 3显示摄像头在 x-y平面进行变换后的定位标识以及初始标识; 图 4显示摄像头在 z方向进行变换后的定位标识以及初始标识; 图 5显示摄像头在 x-y平面进行转动后的定位标识以及初始标识; 图 6显示摄像头在 x-z平面进行转动后的定位标识以及初始标识; 图 7显示摄像头在 y-z平面进行转动后的定位标识以及初始标识; 图 8显示摄像头的复杂的移动后的定位标识以及初始标识;
图 9显示在一个方向连续排列的多组定位标识; 以及
图 10显示在两个相互垂直方向连续排列的多组定位标识。 具体实施方式
本发明为一个三维超声波成像***, 所述***的原理在于采用 视频摄像头附着于超声波探头上作为方位感应装置以及定位标识图 表来构建三维超声波成像。
如图 1 所示, 根据本发明的三维超声波成像***, 所述***包 括超声波探头、 视频生成模块、 超声波扫描仪以及计算机, 其中超 声波扫描仪可提供身体各部相应的超声波图像, 视频生成模块包括 摄像头和定位模块, 所述摄像头附着于所述超声波探头上, 所述定 位模块放置在所述摄像头的取景范围内, 因此视频生成模块可提供 实时视频流, 计算模块同时收集扫描图像和视频流并执行相应计算 生成三维图像。 所述摄像头有一个或一个以上, 所述定位模块可以 主动发光, 所述摄像头与超声波探头集成一体, 所述超声波探头用 于二维或三维成像。
当在超声波探头沿身体各部移动时, 超声波扫描仪可提供身体 各部相应的超声波图像。 同时摄像头可基于定位标识图表提供实时 视频流。 计算机可同时收集 B超声波扫描图像和视频流并执行相应 计算。 根据视频图像的内容变化, 可计算视频摄像头的位置和方向。 由于摄像头固定于超声波探头, 所以也可获得所述探头的位置和方 向。 因此, 可相应得到每个 B超声波图像的位置和方向同时可生成 三维图像, 同时.所述身体各部位受到第二摄像头的观测以确定相应 身体各部位的移动并用得到的结果对所获得的所述超声波探头的移 动进行修正。
图 2显示了一组典型的定位标识。 A、 B、 C, D为四个定位标 识块, 其分别具有已知面积和中心。 线段 a为以定位标识块 A和定 位标识块 C的中心点为端点的已知线段。 线段 b为以定位标识块 B 和定位标识块 D的中心点为端点的已知线段。 O为线段 a和 b的交 点。
存在多种通过摄像头获取的视频计算所述摄像头的位置和方向 的方法, 如图 3-7所示, 定位标识的图像可通过视频摄像头实时获 取。 首先, 所述超声波探头上有一按键用来设定实时视频的初始帧, 通过按下所述按键,计算机记录在第一帧图像中可识别标识块 A、B、 C、 D及其位置, 从而计算各个标识块的初始面积及其间距离, 所述 定位模块中的每一定位标识块和线段都有其特定的编码从而可以图 像识别得知在当前的图像中有哪些单元存在及它们的具***置。 在 接下来的帧中,摄像头在多个方向发生变换或在多个平面发生转动。 图 3-7显示不同的情况并描述了如何计算变换和转动。
图 3显示摄像头在 x-y平面进行变换后的定位标识以及初始标 识。 在 X和 y方向的准确位移可从初始线段交点 " 0 " 和当前线段 交点 " Ol " 的位置计算得出。
图 4显示摄像头在 z方向进行变换后的定位标识以及初始标识。 在 z 方向上的位移可从块之间的距离以及块的维度的变化计算得 出。 线段 a2/a和线段 b2/b的比率可用于通过标度计算位移, 其中, a2、 b2为当前线段, a、 b为初始线段其可在测量之前确定。
图 5显示摄像头在 x-y平面进行转动后的定位标识以及初始标 识。 所述转动的确切角度可基于线 a或 b的方向变化进行计算, 也 就是, 从初始线段 a到当前线段 a3的角度或从初始线段 b到当前线 段 b3的角度。
图 6显示摄像头在 x-z平面进行转动后的定位标识以及初始标 识。所述转动量可通过当前标识块 B4和当前标识块 D4的面积比率 或当前交点 04在当前线段 a4上的重新定位计算得出。在此情况下, 在 y-z方向不存在转动。 因此, 当前标识块 A4和 C4的面积是相同 的。
图 7显示摄像头在 y-z平面进行转动后的定位标识以及初始标 识。所述转动量可通过当前标识块 A5和当前标识块 C5的面积比率 或当前点 05在当前线段 b5上的重新定位计算得出。 在此情况下, 在 X-Z方向不存在转动。 因此, 当前标识块 B5和 D5的面积是相同 的。
图 8显示摄像头的复杂的移动后的定位标识以及初始标识。 所 述移动综合了图 3-7所有的变换和转动。 其在 x、 y和 Z方向上都有 变换, 在 x-y、 x-z和 y-z平面上。 基于图 3-7所述的方法可计算变 换和转动。
在上述举例中, 基本的要求是定位标识必须在摄像头的取景范 围内。 否则, 变换和转动不可能准确计算。 因此, 图 3-8 中详述的 方法对于相对小的移动也适用。 为了适用于大的移动量, 可采用多 组定位标识。
图 9显示在一个方向延伸的多组定位标识, 以及在此方向上更 大的移动范围。 当一组定位标识开始从摄像头的取景范围内消失, 则另一组定位标识出现在取景范围内。 当此现象发生, 定位标识的 跟踪将从采用第一组定位标识转移到第二组定位标识。 所述过程可 持续进行, 从而实现在一个方向上延伸一个较大取景范围。
同理, 如果有必要在两个方向上有更大取景范围, 可采用在两 个相互垂直方向连续排列的多组定位标识, 如图 10所示。类似于一 个方向延伸的情况, 当一组定位标识开始从摄像头的取景范围内消 失, 定位标识的跟踪可从一组定位标识传输到另一组。
所述定位标识可打印在纸上或塑料片上。 只要可以用摄像头取 景, 其可附着于桌子、 屋顶、 人体或其他表面。 同时可使用不同形 态和形状的 ^位标识。 而且, 可为不同定位标识釆用不同颜色以便 识别。 所述定位标识可以是被动或主动发光, 即依靠反射发光或自 体发光。 此外, 为了提高准确性, 可采用多个摄像头来计算移动并 合并其结果。
根据本发明的原理,本发明提供另外一种三维超声波成像方法, 其特征在于包括以下步骤': 1 )利用位于超声波探头上的摄像头获取 定位模块的实时视频图像; 2 )同时利用超声波扫描仪通过所述超声 波探头获得身体各部位相应的超声波图像; 3 )利用计算模块通过比 较连续的实时视频图像中的所述定位模块的各单元的位置、 角度及 面积从而得到所述超声波探头的移动及旋转量; 4 )通过重复上述操 作以获得一系列超声波图像以及获得相应超声图像时所述超声波探 头和方向; 计算模块利用获得的数据执行相应计算生成三维图像。
以上, 是为了本领域技术人员理解本发明, 而对本发明所进行 的详细描述, 但可以想到, 在不脱离本发明的权利要求所涵盖的范 围内还可以做出其它的变化和修改, 这些变化和修改均在本发明的 保护范围内。 工业实用性
本发明提出的三维超声波成像***成本低廉, 并能够提高三维超 声波成像空间跟踪的准确性。

Claims

E 权利要求
1.一种三维超声波成像***, 其特征在于, 包括超声波探头、 至少 一个第一摄像头、 定位模块、 超声波扫描仪以及计算模块, 其中所述摄 像头附着于所述超声波探头上, 所述定位模块放置在所述摄像头的取景 范围内, 超声波扫描仪提供身体各部位相应的超声波图像, 同时摄像头 提供实时视频, 计算模块同时收集扫描图像和视频并执行相应计算生成 三维图像。
2.如权利要求 1所述的三维超声波成像***, 其特征在于, 所述摄 像头为黑白摄像头、 彩色摄像头或红外摄像头。
3.如权利要求 1所述的三维超声波成像***, 其特征在于, 在所述 摄像头或所述定位模块中附加照明单元。
4.如权利要求 1所述的三维超声波成像***, 其特征在于, 所述摄 像头与超声波探头成一体化。
5.如权利要求 1所述的三维超声波成像***, 其特征在于, 所述超 声波探头上有一按键用来设定实时视频的初始帧。
6.如权利要求 1所述的三维超声波成像***, 其特征在于, 还包括 第二摄像头, 用于观测所述身体各部位以确定相应身体各部位的移动并 修正所获得的所述超声波探头的移动。
7.如权利要求 1所述的三维超声波成像***, 其特征在于, 所述定 位模块包括一组定位标识, 所述组定位标识包括两条相互垂直平分的线 段以及四个位于线端的标识块, 所述四个标识块具有已知面积和中心, 所述计算模块根据当前定位标识和初始定位标识之间的相对关系计算生 成三维图像。
8.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述定 位标识中的所述线段和标识块都有其特定的编码。
9.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述计 算模块根据在一平面内当前线段交点和初始线段交点之间的距离确定在 所述平面内扫描的位移。
10.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述计 算模块根据在一平面内当前线段和初始线段之间的角度确定在所述平面 内扫描的转动角度。
11.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述计 算模块根据在一方向上垂直于所述方向的当前线段和初始线段的长度比 率确定在所述方向上扫描的位移。
12.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述计 算模块根据在以一方向为轴转动时, 所述轴两侧的标识块的当前面积的 比率确定以所述方向为轴的转动的角度。
13.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述计 算模块根据在以一方向为轴转动时, 线段当前交点在与所述轴垂直的线 段上的位置确定以所述方向为轴的转动的角度。
14.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述定 位模块包括在沿一个方向连续排列的多组定位标识, 针对定位标识的跟 踪将随摄像头的移动从采用当前组定位标识转移到下一组定位标识。
15.如权利要求 7所述的三维超声波成像***, 其特征在于, 所述定 位模块包括沿两相互垂直方向矩阵排列的多组定位标识, 针对定位标识 的跟踪将随摄像头的移动从采用当前组定位标识转移到下一组定位标 识。
16.一种三维超声波成像方法, 其特征在于包括以下步骤- 1 ) 利用位于超声波探头上的摄像头获取定位模块的实时视频图像;
2)同时利用超声波扫描仪通过所述超声波探头获得身体各部位相应 的超声波图像;
3 )利用计算模块通过比较连续的实时视频图像中的所述定位模块的 各单元的位置、 角度及面积从而得到所述超声波探头的移动及旋转量; 4)通过重复上述操作以获得一系列超声波图像以及获得相应超声图 像时所述超声波探头和方向;
5)计算模块利用获得的数据执行相应计算生成三维图像。
PCT/CN2009/000469 2008-04-29 2009-04-29 三维超声波成像*** WO2009132520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810094381.9 2008-04-29
CN2008100943819A CN101569541B (zh) 2008-04-29 2008-04-29 三维超声波成像***

Publications (1)

Publication Number Publication Date
WO2009132520A1 true WO2009132520A1 (zh) 2009-11-05

Family

ID=41229125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000469 WO2009132520A1 (zh) 2008-04-29 2009-04-29 三维超声波成像***

Country Status (2)

Country Link
CN (1) CN101569541B (zh)
WO (1) WO2009132520A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104257399A (zh) * 2014-09-29 2015-01-07 苏州佳世达电通有限公司 超音波扫描***、超音波扫描方法及超音波探头
WO2015044255A1 (de) * 2013-09-30 2015-04-02 Siemens Aktiengesellschaft Ultraschallsystem mit dreidimensionaler volumendarstellung
CN111789630A (zh) * 2019-04-08 2020-10-20 中慧医学成像有限公司 超声探头三维空间信息测量装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102499762B (zh) * 2011-11-23 2014-06-04 东南大学 医用超声探头相对于***位的三维空间定位***及方法
CN104224229A (zh) * 2013-06-21 2014-12-24 Ge医疗***环球技术有限公司 一种记录超声探头的体表位置的设备和方法及超声机
CN104434217A (zh) * 2014-11-19 2015-03-25 成都迅德科技有限公司 超声探头
CN104915924B (zh) * 2015-05-14 2018-01-26 常州迪正雅合电子科技有限公司 一种自动实现三维超声图像定标的方法
CN104902232B (zh) * 2015-05-22 2018-07-06 广州杰赛科技股份有限公司 环境侦测装置以及环境侦测***
CN106913357A (zh) * 2015-12-25 2017-07-04 通用电气公司 关节超声成像***及其方法
WO2017182397A1 (en) * 2016-04-18 2017-10-26 Koninklijke Philips N.V. Ultrasound system and method for breast tissue imaging
CN106139423B (zh) * 2016-08-04 2020-03-27 梁月强 一种基于摄像头的图像引导粒子植入***
CN106580367A (zh) * 2016-11-14 2017-04-26 吉林大学 一种超声组合式检查诊断装置
US20200114174A1 (en) * 2017-06-21 2020-04-16 The Hong Kong Polytechnic University Apparatus and method for ultrasound spinal cord stimulation
CN109223030B (zh) * 2017-07-11 2022-02-18 中慧医学成像有限公司 一种掌上式三维超声成像***和方法
EP3528210A1 (en) * 2018-02-14 2019-08-21 Koninklijke Philips N.V. An imaging system and method with stitching of multiple images
CN110368027B (zh) * 2018-04-13 2022-02-18 北京柏惠维康科技有限公司 一种图像融合方法和装置
CN111487320B (zh) * 2019-01-29 2023-07-21 中慧医学成像有限公司 基于三维光学成像传感器的三维超声成像方法和***
CN110432928B (zh) * 2019-08-22 2021-11-26 深圳瀚维智能医疗科技有限公司 超声图像扫查方法、装置及设备
JP7375180B2 (ja) * 2019-09-29 2023-11-07 中慧医学成像有限公司 3次元トラッキングカメラをベースとする3次元超音波イメージング方法及びシステム
CN112704514B (zh) * 2020-12-24 2021-11-02 重庆海扶医疗科技股份有限公司 病灶定位方法及病灶定位***
CN112617902A (zh) * 2020-12-31 2021-04-09 上海联影医疗科技股份有限公司 一种三维成像***及成像方法
WO2024090190A1 (ja) * 2022-10-26 2024-05-02 ソニーグループ株式会社 超音波検査装置、検査方法、およびプログラム
CN117918795B (zh) * 2024-03-21 2024-05-31 汕头市超声仪器研究所股份有限公司 一种优化的实时三维结构剪切波成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197476A (en) * 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US20020198452A1 (en) * 2001-06-26 2002-12-26 Taylor Geoffrey L. Method and apparatus for photogrammetric orientation of ultrasound images
US6554771B1 (en) * 2001-12-18 2003-04-29 Koninklijke Philips Electronics N.V. Position sensor in ultrasound transducer probe
US20040034301A1 (en) * 2000-08-01 2004-02-19 Tony Falco Method and apparatus for lesion localization, definition and verification
CN1973776A (zh) * 2005-11-28 2007-06-06 香港理工大学 三维超声波检测方法
WO2007133296A2 (en) * 2006-05-01 2007-11-22 Siemens Medical Solutions Usa, Inc. Extended volume ultrasound data display and measurement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450445C (zh) * 2006-01-11 2009-01-14 中国科学院自动化研究所 一种实时自由臂三维超声成像***及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197476A (en) * 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US20040034301A1 (en) * 2000-08-01 2004-02-19 Tony Falco Method and apparatus for lesion localization, definition and verification
US20020198452A1 (en) * 2001-06-26 2002-12-26 Taylor Geoffrey L. Method and apparatus for photogrammetric orientation of ultrasound images
US6554771B1 (en) * 2001-12-18 2003-04-29 Koninklijke Philips Electronics N.V. Position sensor in ultrasound transducer probe
CN1973776A (zh) * 2005-11-28 2007-06-06 香港理工大学 三维超声波检测方法
WO2007133296A2 (en) * 2006-05-01 2007-11-22 Siemens Medical Solutions Usa, Inc. Extended volume ultrasound data display and measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044255A1 (de) * 2013-09-30 2015-04-02 Siemens Aktiengesellschaft Ultraschallsystem mit dreidimensionaler volumendarstellung
CN104257399A (zh) * 2014-09-29 2015-01-07 苏州佳世达电通有限公司 超音波扫描***、超音波扫描方法及超音波探头
CN111789630A (zh) * 2019-04-08 2020-10-20 中慧医学成像有限公司 超声探头三维空间信息测量装置
CN111789630B (zh) * 2019-04-08 2023-06-20 中慧医学成像有限公司 超声探头三维空间信息测量装置

Also Published As

Publication number Publication date
CN101569541A (zh) 2009-11-04
CN101569541B (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2009132520A1 (zh) 三维超声波成像***
EP1744676B1 (en) Ultrasound calibration and real-time quality assurance based on closed form formulation
EP2132523B1 (en) Method and device for exact measurement of objects
US9173715B2 (en) Ultrasound CT registration for positioning
US9019262B2 (en) Systems and methods for tracking positions between imaging modalities and transforming a displayed three-dimensional image corresponding to a position and orientation of a probe
Hsu et al. Freehand 3D ultrasound calibration: a review
US20090306509A1 (en) Free-hand three-dimensional ultrasound diagnostic imaging with position and angle determination sensors
JP2016516196A (ja) 6自由度において追跡される構造化光スキャナの補正
Huang et al. Linear tracking for 3-D medical ultrasound imaging
WO2004044522A1 (ja) 3次元形状計測方法およびその装置
US20130188851A1 (en) Information processing apparatus and control method thereof
CN109171808A (zh) 基于三维轮廓测量的三维超声成像***
EP2706372A1 (en) Method and apparatus for ultrasound image acquisition
CN203328720U (zh) 一种基于计算机视觉技术的三维超声成像***
US20220327735A1 (en) Ultrasound probe position registration method, ultrasound imaging system, ultrasound probe position registration system, ultrasound probe position registration phantom, and ultrasound probe position registration program
Pornpipatsakul et al. Ultrasound probe movement analysis using depth camera with compact handle design for probe contact force measurement
CN112472132A (zh) 一种定位成像区域的装置、方法及医学成像装置
CN111184535A (zh) 手持式无约束扫描无线三维超声实时体素成像***
JP2008292414A (ja) X線ct装置
US10853957B2 (en) Real-time key view extraction for continuous 3D reconstruction
KR102615722B1 (ko) 초음파 스캐너 및 초음파 스캐너에서의 조준 가이드 방법
CN114061738B (zh) 一种基于标定板位姿计算的风机塔筒基础环振动监测方法
US20210068781A1 (en) Ultrasonic imaging system
Bogush et al. 3D object volume measurement using freehand ultrasound
TW202322766A (zh) 超音波影像系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09737631

Country of ref document: EP

Kind code of ref document: A1