WO2009129708A1 - 直接驱动复合型永磁电机 - Google Patents

直接驱动复合型永磁电机 Download PDF

Info

Publication number
WO2009129708A1
WO2009129708A1 PCT/CN2009/070789 CN2009070789W WO2009129708A1 WO 2009129708 A1 WO2009129708 A1 WO 2009129708A1 CN 2009070789 W CN2009070789 W CN 2009070789W WO 2009129708 A1 WO2009129708 A1 WO 2009129708A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet motor
stator
rotor
direct drive
Prior art date
Application number
PCT/CN2009/070789
Other languages
English (en)
French (fr)
Inventor
章跃进
江建中
崔巍
杜世勤
刘新华
龚宇
汪信尧
Original Assignee
许晓华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许晓华 filed Critical 许晓华
Publication of WO2009129708A1 publication Critical patent/WO2009129708A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts

Definitions

  • the present invention relates to a motor, and more particularly to a direct drive composite permanent magnet motor suitable for low speed and high torque.
  • a conventional motor drive system is a combination of a motor and a mechanical shifting mechanism.
  • mechanical transmission components such as gearboxes
  • wear parts require additional cost
  • cost of regular maintenance for long-distance operating systems such as wind power, tidal power
  • the gap and friction loss between mechanical transmission components make high-precision control difficult to achieve, reducing system reliability and efficiency, and generating noise; motor and mechanical shifting devices also require a large installation space.
  • An object of the present invention is to provide a direct drive composite permanent magnet motor which is compact in structure and high in torque density and can be used for low speed and high torque. It discards mechanical transmission components, improves system transmission efficiency, reduces volume, and greatly reduces maintenance costs and noise.
  • the concept of the present invention is: a high-performance magnetic gear and a self-controlled permanent magnet motor are assembled by a sleeve structure or an axial series structure to form a composite high torque density suitable for direct drive.
  • the permanent magnet motor has a double stator and double rotor structure, that is, a multi-pole rotor and a low-pole rotor structure, a reluctance stator and an armature stator structure.
  • a direct drive composite permanent magnet motor comprising a self-controlled permanent magnet motor and a concentric magnetic gear, characterized in that the self-controlled permanent magnet motor and the concentric magnetic gear are concentrically assembled into a double stator double rotor structure, that is, The outer rotor and the outer stator of the magnetic gear and the inner rotor and the inner stator of the permanent magnet motor are assembled in a concentric structure by a sleeve structure.
  • the outer rotor is a cup rotor, and the cup bottom is fixedly connected with the central rotating shaft;
  • the outer stator is a cylindrical body, one end of which is directly fixedly connected with one end cover of the base, and the other end passes through a radial disk and an inner stator.
  • the inner end is fixedly connected; the inner rotor is also a cup-type rotor, and the two ends are supported by the inner and outer ends of the inner stator through two bearings; the outer end of the inner stator is fixedly connected with an end cover of the base, and the inner end of the inner stator is
  • the central shaft is disposed; one end of the central shaft is supported by the outer end of the inner stator through the bearing, and the other end is supported by the inner hole of the other end cover of the base through the bearing.
  • the cup body of the inner rotor is circumferentially distributed with a pair of permanent magnets of Pi pair, and the inner wall of the outer rotor cup body is circumferentially uniformly embedded.
  • the above-mentioned outer rotor permanent magnet magnetic steel adopts high-performance rare earth permanent magnet material, the outer rotor is surface-mounted structure, and the inner rotor is surface-mounted, or built-in radial type, or built-in tangential type.
  • the iron core of the outer stator described above is evenly grooved, and the groove is filled with a non-magnetic material.
  • the inner stator armature winding described above adopts a fractional slot winding structure.
  • a direct drive composite permanent magnet motor comprising a self-controlled permanent magnet motor and a concentric magnetic gear, characterized in that the permanent magnet motor and the magnetic gear adopt an axial series structure assembly, that is, a permanent magnet double rotor and a reluctance stator
  • the high-performance magnetic gear is coaxially connected to the self-controlled permanent magnet motor.
  • the permanent magnet motor and the magnetic gear are integrated into one body, which eliminates the noise, vibration and corresponding loss of mechanical contact;
  • Figure 1 is a schematic view showing the structure of an embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Figure 3 is a schematic view of the internal rotor structure of the built-in magnetic steel.
  • Figure 4 is a schematic view showing the structure of a tangential magnetic steel inner rotor.
  • Figure 5 is a schematic view showing the structure of another embodiment of the present invention.
  • Embodiment 1 Referring to FIG. 1 and FIG. 2, the direct drive composite permanent magnet motor comprises a self-controlled permanent magnet motor and a concentric magnetic gear, and the self-controlled permanent magnet motor and the concentric magnetic gear are assembled into a double rotor structure, that is, The outer rotor 3 and the outer stator 7 of the magnetic gear and the inner rotor 8 and the inner stator 12 of the permanent magnet motor are constructed in a concentric structure by a sleeve-like structure assembly.
  • the outer rotor 3 is a cup-type rotor, and the cup-shaped bottom is fixedly connected with the central rotating shaft 11;
  • the outer stator ⁇ is a cylindrical body, one end of which is directly fixedly connected with one end cover 2b of the machine base 1, and the other end passes through a diameter
  • the disk 6 is fixedly connected to the inner end of the inner stator 12;
  • the inner rotor 8 is also a cup-type rotor, and the two ends thereof are supported by the inner and outer parts of the inner stator through two bearings.
  • the outer end of the inner stator 12 is fixedly connected with an end cover 2b of the base 1, and the central rotating shaft 11 is disposed in the central hole of the inner stator 12.
  • One end of the central rotating shaft 11 is supported by the outer end of the inner stator 12 through a bearing, and One end is supported by a bearing in the inner hole of the other end cover 2a of the base 1.
  • the stator 10 of the permanent magnet motor is a slotted armature core, and a plurality of symmetrical armature windings 9 are embedded in the slot.
  • the multi-phase armature winding is symmetrical current, generates a rotating magnetic field in the inner air gap, and interacts with the magnetic field of the permanent magnet inner rotor 8 to generate electromagnetic torque to realize energy transmission.
  • the inner rotor permanent magnet has the number of pole pairs.
  • the inner surface of the outer rotor 3 is provided with a permanent magnet steel 4 having a pole pair number P 2 and ⁇ 2 . Therefore, the inner rotor 8 is a high speed rotor and the outer rotor 3 is a low speed rotor.
  • a reluctance outer stator 7 Between the inner rotor 8 and the outer rotor 3 is a reluctance outer stator 7, and the reluctance stator has 1 ⁇ uniformly distributed iron core teeth 5, that is, a circumferential uniform groove, and no conductor in the groove, in order to increase The strength of the stator 7 is filled with a non-magnetic material.
  • the two rotors and the outer stator 7 form a high performance magnetic gear.
  • the distribution of the cogging of the outer stator 7 causes a cyclical change in the air gap flux around the circumference, thereby modulating the permanent magnetic air gap magnetic field on the inner and outer sides of the outer stator 7.
  • the inner rotor 8 is not only a part of the magnetic gear but also constitutes a self-controlled permanent magnet motor with the inner stator 10.
  • the inner rotor 8 can take many forms, such as a surface type, a built-in radial type, and a built-in tangential type (see Figures 3 and 4).
  • the permanent magnet motor can be operated as a motor or generator.
  • the inner stator armature winding 9 is powered by the inverter and is determined to be turned on and off based on the position signal of the inner rotor 8. If the Hall position signal is used, the motor operates as a permanent magnet brushless DC motor; if a high-precision position encoder is used, the motor can operate as a permanent magnet synchronous servo motor.
  • the high rotational speed of the inner rotor 8 is advantageous for increasing the power density of the motor. Through the magnetic field coupling effect of the inner rotor 8 and the outer rotor 3, the torque and the rotational speed are transmitted, and the outer rotor 3 is output at a low rotational speed and a large torque.
  • the outer rotor 3 When operating as a generator, the outer rotor 3 is driven by the prime mover, and the inner rotor 8 is rotated by the magnetic field coupling effect, and the permanent magnet magnetic field of the inner rotor 8 induces an electromotive force in the armature winding 9 of the stator 10 to generate an alternating current.
  • Embodiment 2 Referring to FIG. 5, the direct drive of the composite permanent magnet motor is formed in an axial series, which is equivalent to a self-controlled permanent magnet motor coaxially connected with a magnetic gear.
  • the self-controlled permanent magnet motor is in the form of an inner rotor, that is, the inner rotor 8 of the above example is divided into two rotors: a self-controlled permanent magnet motor rotor 8a and a magnetic gear inner rotor 8b, and the self-controlled permanent magnet motor rotor 8a has a large space.
  • the form is more flexible and easy to make a wide-speed permanent magnet motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

直接驱动复合型永磁电机
技术领域
本发明涉及一种电机, 具体涉及一种适用于低转速、 大转矩的直接驱动复合型永磁 电机。
背景技术
传统的电机驱动***是电机与机械变速机构的组合。 但是, 机械传动部件 (如齿轮 变速箱) 的日常维护以及易磨损件的更换需要付出额外的代价, 而且对于远距离运行系 统 (如风力发电、 潮汐能发电) 其经常性维护的成本将异常昂贵; 机械传动部件之间的 间隙和摩擦损耗, 使高精度控制难以实现, 降低了***的可靠性和效率、 且产生噪声; 电机和机械变速装置还需要较大的安装空间。
发明内容
本发明的目的是提供一种结构紧凑、 转矩密度高, 可用于低转速、 大转矩的直接驱 动复合型永磁电机。 它舍弃机械传动部件, 提高了***的传动效率, 减小体积, 大大降 低维护成本和噪声。
为了实现上述目的, 本发明的构思是: 将高性能磁性齿轮与自控式永磁电机采用套 筒式结构集合或采用轴向串联结构集合, 构成一台适合于直接驱动的复合型高转矩密度 永磁电机, 具有双定子双转子结构, 即多极转子与少极转子结构、 磁阻式定子与电枢定 子结构。
根据上述的发明构思, 本发明采用下述技术方案:
一种直接驱动复合型永磁电机, 包括一个自控式永磁电机和一个同心式磁性齿轮, 其特征在于所述的自控式永磁电机与同心式磁性齿轮同心集合成双定子双转子结构, 即 由磁性齿轮的外转子和外定子以及永磁电机的内转子和内定子采用套筒式结构集合构成 同心式结构。
上述的外转子为杯型转子, 其杯型底与中心转轴固定连接; 外定子为筒形体, 其一 端直接与机座的一个端盖固定连接,而另一端通过一个径向盘与内定子的内端固定连接; 内转子亦为杯型转子, 其两端通过两个轴承支承于内定子的内外两端; 内定子的外端与 机座的一个端盖固定连接, 内定子的中心孔内安置中心转轴; 中心转轴的一端通过轴承 支承于内定子的外端, 而另一端通过轴承支承于机座的另一端盖的内孔内。
上述的内转子的杯型体上周向均布 Pi对的永磁体,外转子杯型体的内壁周向均布嵌 装 P2对永磁磁钢, 且!^ (P2; 外定子为磁阻式定子, 其上有 Ns个周向均布的铁芯齿极, 即杯型铁芯周向均布开槽, 槽内填充非导磁材料, 应满足 1^=?1+?2或1^=?2-?1 ; 这子由 内定子铁芯上绕制电枢绕组构成。
上述的外转子永磁磁钢采用高性能稀土永磁材料, 外转子为表面装贴式结构, 内转 子为表面装贴式、 或内置径向式、 或内置切向式。
上述的外定子的铁芯均匀开槽, 槽内填充非导磁材料。
上述的内定子电枢绕组采用分数槽绕组结构。
一种直接驱动复合型永磁电机, 包括一个自控式永磁电机和一个同心式磁性齿轮, 其特征在于永磁电机与磁性齿轮采用轴向串联结构集合, 即永磁双转子与磁阻式定子构 成的高性能磁性齿轮与自控式永磁电机同轴相连。
本发明与现有技术相比较, 具有如下显而易见的突出实质性特点和显著优点:
1. 采用永磁电机与磁性齿轮集合成一体, 消除了机械接触的噪声、振动及相应的损 耗;
2. 极大减少了维护工作量和费用、 提高了可靠性;
3. 固有的过载保护特性;
4. 结构紧凑, 具有高转矩密度与高功率因数。
附图说明
图 1是本发明一个实施例的结构示意图。
图 2是图 1中 A-A处剖视图。
图 3是内置式磁钢内转子结构示意图。
图 4是切向式磁钢内转子结构示意图。
图 5是本发明另一个实施例的结构示意图。
具体实施方式
实施例一: 参见图 1和图 2, 本直接驱动复合型永磁电机包括一个自控式永磁电机 和一个同心式磁性齿轮, 自控式永磁电机与同心式磁性齿轮集合成双转子结构, 即由磁 性齿轮的外转子 3和外定子 7以及永磁电机的内转子 8和内定子 12,采用套筒式结构集 合构成同心式结构。
所述的外转子 3为杯型转子,其杯型底与中心转轴 11固定连接;外定子 Ί为筒形体, 其一端直接与机座 1的一个端盖 2b固定连接, 而另一端通过一个径向盘 6与内定子 12 的内端固定连接; 内转子 8亦为杯型转子, 其两端通过两个轴承支承于内定子的内外两 端; 内定子 12的外端与机座 1的一个端盖 2b固定连接, 内定子 12的中心孔内安置中心 转轴 11 ; 中心转轴 11的一端通过轴承支承于内定子 12的外端, 而另一端通过轴承支承 于机座 1的另一端盖 2a的内孔内。
永磁电机内定子 10为开槽电枢铁心, 槽内嵌放多相对称电枢绕组 9。 多相电枢绕组 通以对称电流,在内气隙产生旋转磁场,与永磁内转子 8的磁场相互作用产生电磁转矩, 实现能量传递。 内转子永磁体极对数为 外转子 3的内表面放置有永磁磁钢 4, 极对 数为 P2, 且 Ρ Ρ2。 因此, 内转子 8为高速转子, 外转子 3为低速转子。 在内转子 8和 外转子 3之间是磁阻式外定子 7, 磁阻式定子上有 1^个均匀分布的铁芯齿极 5, 即周向 均布开槽, 槽内无导体, 为了增加外定子 7的强度, 槽内填充非导磁材料。 两个转子与 外定子 7组成了一个高性能磁性齿轮。 外定子 7的齿槽间隔分布引起气隙磁导沿圆周产 生周期性变化, 从而对外定子 7内外两边的永磁气隙磁场起到调制作用。 内转子 8的极 对数 Pi与外转子 3的极对数 P2以及外定子 7的齿极数 Ns需满足一定关系: NS=P1+P2 (或 Ns= P2-Pi ), 从而使两个转子空间气隙磁场调制基波相同, 通过内外转子永磁磁场的耦合 效应实现转矩和转速的传递。 磁性齿轮传动比为 G=P2/P1 (>
永磁电机中, 内转子 8不仅是磁性齿轮的一部分, 同时与内定子 10构成自控式永磁 电机。 内转子 8可以有多种形式, 如表面式、 内置径向式、 内置切向式 (参见图 3和图 4)。
永磁电机可以作电动机或发电机运行。 当作电动机运行时, 内定子电枢绕组 9由逆 变器供电, 根据内转子 8的位置信号确定开通与关断。 若采用霍尔位置信号, 电机作为 永磁无刷直流电动机运行; 若采用高精度位置编码器, 电机可作为永磁同步伺服电动机 运行。 内转子 8的转速高, 有利于提高电机的功率密度。 通过内转子 8和外转子 3的磁 场耦合效应, 实现转矩和转速的传递, 外转子 3以低转速、 大转矩输出。 当作为发电机 运行时, 外转子 3由原动机驱动, 利用磁场耦合效应, 带动内转子 8旋转, 内转子 8的 永磁磁场在内定子 10的电枢绕组 9内感应电动势, 发出交流电。
实施例二: 参见图 5, 直接驱动本复合型永磁电机是做成轴向串联形式, 相当于一 台自控式永磁电机与一台磁性齿轮同轴相联。 自控式永磁电机为内转子形式, 即上例的 内转子 8分为两个转子: 自控式永磁电机转子 8a和磁性齿轮内转子 8b, 自控式永磁电 机转子 8a所拥有的空间大, 形式更为灵活, 易于做成宽调速永磁电机。

Claims

权利 要 求 书
1. 一种直接驱动复合型永磁电机, 包括一个自控式永磁电机和一个同心式磁性齿 轮,其特征在于所述的自控式永磁电机与同心式磁性齿轮同心集合成双定子双转子结构, 即由磁性齿轮的外转子 (3) 和外定子 (2) 以及永磁电机的内转子 (8) 和内定子 (12) 采用套筒式结构集合构成同心式结构。
2. 根据权利要求 1所述的直接驱动复合型永磁电机,其特征在于所述的外转子(3) 为杯型转子, 其杯型底与中心转轴 (11 ) 固定连接; 外定子 (7) 为筒形体, 其一端直接 与机座 (1 ) 的一个端盖 (2b) 固定连接, 而另一端通过一个径向盘 (6)与内定子 (12) 的内端固定连接; 内转子(8)亦为杯型转子, 其两端通过两个轴承支承于内定子的内外 两端; 内定子 (12) 的外端与机座 (1 ) 的一个端盖 (2b) 固定连接, 内定子 (12) 的中 心孔内安置中心转轴(11 ); 中心转轴(11 )的一端通过轴承支承于内定子(12)的外端, 而另一端通过轴承支承于机座 (1 ) 的另一端盖 (2a) 的内孔内。
3. 根据权利要求 2所述的直接驱动复合型永磁电机,其特征在于所述的内转子(8) 的杯型体上周向均布 Pl对的永磁体, 外转子 (3)杯型体的内壁周向均布嵌装 P2对永磁 磁钢 (4), 且!^ (P2; 外定子 (7) 为磁阻式定子, 其上有 Ns个周向均布的铁芯齿极, 即杯型铁芯周向均布开槽, 槽内填充非导磁材料, 应满足 1^=?1+?2或1^=?2-?1 ; 内定子
( 12) 由内定子铁芯 (10) 上绕制电枢绕组 (9) 构成。
4. 如权利要求 3所说的直接驱动复合型永磁电机, 其特征在于外转子 (3) 永磁磁 钢 (4)采用高性能稀土永磁材料, 外转子 (3) 为表面装贴式结构, 内转子 (8) 为表面 装贴式、 或内置径向式、 或内置切向式。
5. 如权利要求 3所说的直接驱动复合型永磁电机, 其特征在于外定子 (7) 的铁芯 均匀开槽, 槽内填充非导磁材料。
6. 如权利要求 3所说的直接驱动复合型永磁电机,其特征在于内定子电枢绕组(9) 采用分数槽绕组结构。
7. 一种直接驱动复合型永磁电机, 包括一个自控式永磁电机和一个同心式磁性齿 轮, 其特征在于永磁电机与磁性齿轮采用轴向串联结构集合, 即永磁双转子与磁阻式定 子构成的高性能磁性齿轮与自控式永磁电机同轴相连。
PCT/CN2009/070789 2008-04-21 2009-03-13 直接驱动复合型永磁电机 WO2009129708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810036366.9 2008-04-21
CNA2008100363669A CN101330234A (zh) 2008-04-21 2008-04-21 直接驱动复合型永磁电机

Publications (1)

Publication Number Publication Date
WO2009129708A1 true WO2009129708A1 (zh) 2009-10-29

Family

ID=40205885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070789 WO2009129708A1 (zh) 2008-04-21 2009-03-13 直接驱动复合型永磁电机

Country Status (2)

Country Link
CN (1) CN101330234A (zh)
WO (1) WO2009129708A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771309A (zh) * 2010-03-05 2010-07-07 东南大学 基于磁齿轮的低速大转矩直驱复合电机
CN106972716A (zh) * 2017-05-11 2017-07-21 北京明正维元电机技术有限公司 一种特型永磁同步电机
CN108322001A (zh) * 2018-04-08 2018-07-24 甘肃永动电子科技发展有限公司 一种变流变速无换向永磁直流电动机
CN109888959A (zh) * 2019-03-19 2019-06-14 苏州欧比特机械有限公司 一种外转子永磁电机的外转子结构

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330234A (zh) * 2008-04-21 2008-12-24 上海大学 直接驱动复合型永磁电机
CN101951048B (zh) * 2010-08-31 2012-06-13 东南大学 基于空间磁场调制的直驱式电机
CN102035320B (zh) * 2010-12-28 2013-03-06 上海大学 直驱式正弦磁场复合型永磁电机
CN102013775A (zh) * 2011-01-07 2011-04-13 沈阳工业大学 数控转台双转子不等极永磁力矩电机
CN102141008A (zh) * 2011-02-24 2011-08-03 中科盛创(青岛)电气有限公司 同心式双定子结构的直驱实心转子异步风力发电机***
CN102122869A (zh) * 2011-02-24 2011-07-13 中科盛创(青岛)电气有限公司 同心式双定子结构的直驱笼型异步风力发电机***
CN102738984B (zh) * 2012-06-21 2013-10-16 哈尔滨工业大学 无刷双馈多气隙电机
CN102969852B (zh) * 2012-11-09 2017-05-24 沈阳工业大学 双支撑式双转子永磁同步风力发电机
CN103213580B (zh) * 2013-05-14 2015-08-26 上海中科深江电动车辆有限公司 电动汽车用双转子电机的控制方法和相关行星齿轮无级变速***的控制方法
CN104348334A (zh) * 2013-07-23 2015-02-11 杨玉岗 集成盘式开关磁阻型电磁调速电动机
CN103986278B (zh) * 2013-08-01 2017-12-22 威海戥同测试设备有限公司 异联电机
CN104113173A (zh) * 2014-07-11 2014-10-22 华中科技大学 双定子单绕组游标永磁电机
CN105863566A (zh) * 2015-01-23 2016-08-17 宁波天安磁性传动科技有限公司 永磁复合电机直驱游梁式抽油机
CN105429404B (zh) * 2015-12-24 2017-02-22 韩汶冀 一种发电装置
CN106300842B (zh) * 2016-08-15 2018-11-30 嘉兴学院 一种双转子永磁式直流伺服测速机组
CN111071903B (zh) * 2020-01-06 2024-02-09 菱王电梯有限公司 磁齿轮调速永磁同步曳引机
JP7493340B2 (ja) * 2020-01-17 2024-05-31 三菱重工業株式会社 電動車両
CN111682674A (zh) * 2020-06-17 2020-09-18 张俊华 一种三合一多功能电机
CN111740516A (zh) * 2020-07-28 2020-10-02 安徽江淮汽车集团股份有限公司 径向磁通永磁式直流电机
CN113978669A (zh) * 2021-11-07 2022-01-28 天津大学 一种基于磁齿轮复合电机的自主水下航行器推进装置
CN114619508A (zh) * 2022-03-25 2022-06-14 浙江晶盛机电股份有限公司 动能回收***、切割设备和动能回收方法
WO2024113284A1 (zh) * 2022-11-30 2024-06-06 深圳市大疆创新科技有限公司 电机、云台及可移动平台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201044404Y (zh) * 2007-05-31 2008-04-02 鲁伟 共轴双定子、双转子高速电动机
CN101267152A (zh) * 2008-04-21 2008-09-17 上海大学 磁场调制式磁性齿轮
CN101330234A (zh) * 2008-04-21 2008-12-24 上海大学 直接驱动复合型永磁电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201044404Y (zh) * 2007-05-31 2008-04-02 鲁伟 共轴双定子、双转子高速电动机
CN101267152A (zh) * 2008-04-21 2008-09-17 上海大学 磁场调制式磁性齿轮
CN101330234A (zh) * 2008-04-21 2008-12-24 上海大学 直接驱动复合型永磁电机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. T. CHAU ET AL.: "Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles", IEEE TRANSACTIONS ON MAGNETICS, vol. 43, no. 6, June 2007 (2007-06-01), pages 2504 - 2506 *
ZHANG DONG ET AL.: "Design and Research of a Novel Magnetic-geared Outer-rotor Compact Machine", PROCEEDINGS OF THE CSEE, vol. 28, no. 30, 25 October 2008 (2008-10-25), pages 67 - 72 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771309A (zh) * 2010-03-05 2010-07-07 东南大学 基于磁齿轮的低速大转矩直驱复合电机
CN106972716A (zh) * 2017-05-11 2017-07-21 北京明正维元电机技术有限公司 一种特型永磁同步电机
CN108322001A (zh) * 2018-04-08 2018-07-24 甘肃永动电子科技发展有限公司 一种变流变速无换向永磁直流电动机
CN109888959A (zh) * 2019-03-19 2019-06-14 苏州欧比特机械有限公司 一种外转子永磁电机的外转子结构
CN109888959B (zh) * 2019-03-19 2024-05-28 苏州欧比特机械有限公司 一种外转子永磁电机的外转子结构

Also Published As

Publication number Publication date
CN101330234A (zh) 2008-12-24

Similar Documents

Publication Publication Date Title
WO2009129708A1 (zh) 直接驱动复合型永磁电机
US9537362B2 (en) Electrical machine with improved stator flux pattern across a rotor for providing high torque density
CN102035320B (zh) 直驱式正弦磁场复合型永磁电机
CN101345440B (zh) 具有轴径向折叠绕组的永磁电机
EP2133982A2 (en) An electrical machine with integrated magnetic gears
CN105071562A (zh) 一种定子永磁型场调制电机
TWI554007B (zh) With inside and outside of the hollow rotor of motor delineated DC sub-structure
JP2016063572A (ja) 回転電機
CN103997174A (zh) 基于磁齿轮的转子凸极式混合励磁电机
US20080197740A1 (en) Modular motor or alternator assembly
CN101976905B (zh) 直接驱动复合型永磁电机
DE60235685D1 (de) Innen- und Aussenläufer elektrischer Motor mit Luftspaltringwicklung
EP3017529B1 (en) Reducing bearing forces in an electrical machine
JP6044077B2 (ja) 電動回転機および電動回転システム
CN102545510A (zh) 新型集中绕组外定子的磁性齿轮复合电机
CN112152410B (zh) 一种永磁双转子游标电机
WO2009072623A1 (ja) 発電機
CN102299599B (zh) 一种定子永磁体高速电机
CN210608875U (zh) 一种径向磁场复合型磁通切换电机
CN104811002A (zh) 一种新型结构的高功率密度永磁无刷双馈电动机
KR102568068B1 (ko) 자기 기어 효과를 이용한 마그네틱 기어드 직입기동형 영구자석 전동기
JP6572421B2 (ja) アキシャル型磁気ギヤード電機
KR200230732Y1 (ko) 전동 차량용 축방향 자속 브러시리스 직류전동기
CN210629312U (zh) 径向磁场复合型双定子电机
KR100944897B1 (ko) 자속역전식 평판형 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09734380

Country of ref document: EP

Kind code of ref document: A1