WO2009128310A1 - Functional substrate - Google Patents

Functional substrate Download PDF

Info

Publication number
WO2009128310A1
WO2009128310A1 PCT/JP2009/054862 JP2009054862W WO2009128310A1 WO 2009128310 A1 WO2009128310 A1 WO 2009128310A1 JP 2009054862 W JP2009054862 W JP 2009054862W WO 2009128310 A1 WO2009128310 A1 WO 2009128310A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resonator
resonators
electrodes
internal
Prior art date
Application number
PCT/JP2009/054862
Other languages
French (fr)
Japanese (ja)
Inventor
淳 東條
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2010508151A priority Critical patent/JP5218551B2/en
Publication of WO2009128310A1 publication Critical patent/WO2009128310A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters

Definitions

  • the present invention relates to a functional circuit board having functions such as a filter and a duplexer, and more particularly to a board using a material that exhibits a negative magnetic permeability.
  • a filter such as a SAW (Surface Acoustic Wave) filter or a dielectric filter, a coil, a capacitor, etc. It is common to mount a combination of a plurality of electronic components having specific functions.
  • SAW Surface Acoustic Wave
  • the present invention has been made to solve such a problem, and an object thereof is to provide a functional substrate capable of miniaturizing a circuit for realizing a function such as a filter.
  • a functional substrate that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction, and receives a plurality of electromagnetic waves generated when the current flows.
  • a resonator is provided, and the sensitivity of the resonator to electromagnetic waves is directional, and the plurality of resonators are arranged in a direction that prevents current from being transmitted in a predetermined direction.
  • a functional board that prevents a current including a predetermined frequency component from passing in a predetermined direction.
  • the resonator includes a first resonator group including a plurality of resonators arranged in a first direction, and a plurality of resonators arranged in a second direction orthogonal to the first direction. And a second resonator group including resonators.
  • a functional substrate that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction, and generates a resonance by receiving an electromagnetic wave generated when the current flows.
  • the plurality of resonators are arranged in a first direction, and each of the plurality of resonators is composed of a plurality of resonators each having a first resonance frequency, and is orthogonal to the first direction.
  • a second resonator group including a plurality of resonators arranged in the second direction and each having a second resonance frequency different from the first resonance frequency.
  • the functional substrate includes a plurality of substrate layers each including a plurality of resonators.
  • each resonator includes a plurality of electrode pairs each including a first electrode and a second electrode facing each other via an insulator, a third electrode electrically connected to each of the first electrodes, 4th electrode electrically connected with each of 2 electrodes, and each electrode surface of the 1st and 2nd electrode can be arranged to be substantially parallel to the magnetic field lines generated when a current flows
  • the electrode surfaces of the third and fourth electrodes are configured to be substantially parallel to the magnetic field lines on a surface different from the electrode surfaces of the first and second electrodes.
  • each resonator includes an external electrode pair composed of two external electrodes formed to face each other in parallel, a plurality of first internal electrodes electrically connected to one of the external electrode pairs, and an external electrode pair
  • Each electrode surface of the internal electrode group is formed perpendicular to the electrode surface of the external electrode, and is connected to the external electrode pair.
  • Each of the electrode surfaces is formed in parallel with a plane perpendicular to the current propagation direction, and is formed between one first internal electrode and a second internal electrode adjacent to the first internal electrode.
  • an electrical circulation path including a second capacitance formed between another first internal electrode and another second internal electrode adjacent to the first internal electrode, and an external electrode pair. Is done.
  • each resonator includes a plurality of plate electrodes arranged in parallel with each other through an insulator, a first connection electrode electrically connected to an even-numbered plate electrode of the plurality of plate electrodes, and a plurality of plate electrodes
  • a second connection electrode electrically connected to the odd-numbered plate electrode of the plate electrode, each electrode surface of the first and second connection electrodes is formed perpendicular to the electrode surface of the plurality of plate electrodes
  • the electrode surfaces of the plurality of flat plate electrodes are configured to be arranged substantially parallel to the magnetic field lines generated when a current flows.
  • each resonator includes first and second comb electrodes each having a plurality of electrode surfaces parallel to each other, the uppermost electrode surface of the first comb electrode and the uppermost layer of the second comb electrode. And the lowermost electrode surface of the first comb electrode and the lowermost electrode surface of the second comb electrode are parallel to each other with a predetermined interval.
  • the electrode surfaces of the first and second comb electrodes are formed so as to be opposed to each other, and can be arranged to be substantially parallel to the magnetic field lines generated when a current flows.
  • each resonator is a multilayer capacitor.
  • the substrate since the resonator is arranged in the substrate, the substrate has a function such as a filter. Therefore, a circuit that realizes a function such as a filter can be downsized.
  • 1 is a schematic external view of a resonator according to an embodiment of the present invention. It is the II-II sectional view taken on the line shown in FIG. It is a figure for demonstrating the resonant circuit formed with a resonator in a resonant frequency. It is a figure which shows an example of the frequency characteristic of the relative magnetic permeability produced with the resonator according to embodiment of this invention. It is a figure which shows the result of having simulated the frequency characteristic of the relative magnetic permeability produced with the resonator according to embodiment of this invention according to the orientation of a multilayer capacitor.
  • 1 is a schematic external view of a resonance device according to an embodiment of the present invention.
  • the resonance apparatus it is a diagram showing an example of the frequency characteristic of the attenuation amount of the current flowing through the conductor.
  • It is a general
  • FIG. 4 is a four-quadrant diagram showing characteristics appearing with respect to an incident wave to a medium for each sign of magnetic permeability ⁇ and dielectric constant ⁇ .
  • the present invention uses a metamaterial for a substrate.
  • This metamaterial is an artificial material having electromagnetic or optical characteristics that a substance existing in nature does not have.
  • Typical properties of such metamaterials include negative permeability ( ⁇ ⁇ 0), negative dielectric constant ( ⁇ ⁇ 0), or negative refractive index (when both permeability and dielectric constant are negative) Is mentioned.
  • the region of ⁇ ⁇ 0 and ⁇ > 0, or the region of ⁇ > 0 and ⁇ ⁇ 0 is also referred to as “evanescent solution region”, and the region of ⁇ ⁇ 0 and ⁇ ⁇ 0 is also referred to as “left-handed region”.
  • FIG. 15 is a four-quadrant diagram showing the characteristics that appear with respect to the incident wave to the medium for each sign of magnetic permeability ⁇ and dielectric constant ⁇ .
  • Most of the substances existing in the natural world correspond to the right-handed medium located in the first quadrant shown in FIG. 15, and the wave incident on the medium is refracted by the refractive index determined by the magnetic permeability and the dielectric constant, Propagate in the incident direction.
  • the incident wave cannot propagate in the second quadrant and the fourth quadrant (evanescent solution region) shown in FIG.
  • the third region left-handed region shown in FIG. 15 since the refractive index is negative, the wave incident on the medium propagates in the direction opposite to the incident direction.
  • Reference 1 (“Left-handed metamaterial", Nikkei Electronics January 2 issue, Nikkei BP, January 2, 2006, p. 75-81) includes a microwave.
  • a split ring resonator (SRR) is disclosed.
  • SRR split ring resonator
  • unit cells composed of two large and small ring patterns in which a part of the circumference is cut out are periodically arranged.
  • resonance (resonance) occurs in a specific frequency region, and ⁇ ⁇ 0 is expressed.
  • ⁇ ⁇ 0 By arranging the split ring resonator and the metal rod ( ⁇ ⁇ 0) close to each other, ⁇ ⁇ 0 and ⁇ ⁇ 0 are realized, and a left-handed medium is obtained.
  • a substrate embedded with such a metamaterial has a filter function for a signal having a frequency near the resonance frequency transmitted on the substrate. This is because at the resonance frequency, the magnetic permeability greatly changes across the zero point, so that the impedance changes and reflection due to impedance mismatching occurs.
  • a resonator including a plurality of electrodes is used as a metamaterial.
  • a resonance circuit mainly composed of electrostatic capacitance (capacitance) generated between the electrodes is formed.
  • This resonance circuit is sensitive to a specific frequency component of an electromagnetic wave generated by an alternating current flowing through the conductor, and can generate an electrical resonance phenomenon by receiving the electromagnetic wave of this frequency component. Due to this resonance phenomenon, the magnetic permeability largely fluctuates, and the current flowing through the conductor can be reflected or suppressed.
  • the length of each resonator in the propagation direction of the current is at least ⁇ with respect to the wavelength ⁇ of the electromagnetic wave at the frequency to be targeted. Must be shorter than / 4. Furthermore, the length of each resonator in the current propagation direction is preferably ⁇ / 20 or less.
  • a multilayer capacitor formed by laminating a plurality of plate electrodes with an insulator (dielectric) can be used.
  • achieves a resonator using a multilayer capacitor is illustrated.
  • the resonator can be easily configured using a multilayer capacitor such as a commercially available multilayer ceramic capacitor.
  • FIG. 1 is a schematic external view of resonator built-in substrate 110 according to an embodiment of the present invention.
  • resonator built-in substrate 110 includes a resonator 100 and an exterior portion 12 that is a nonmagnetic material that covers the periphery of resonator 100.
  • a resin material such as Teflon (registered trademark) is suitable.
  • the resonator 100 is disposed in the vicinity of a strip-like conductor 14 (hereinafter also simply referred to as “conductor 14”) through which a current including a predetermined frequency component flows, so that a specific frequency of an electromagnetic wave generated by the current is generated. Resonance is generated in response to the component (resonance frequency).
  • a ground electrode 16 (not shown) is disposed on the surface of the resonator 100 opposite to the surface in contact with the conductor 14.
  • Resonance in the resonator 100 generates a magnetic flux from the inside of the resonator 100 to the outside, and an electric field induced by the generated magnetic flux prevents an electromagnetic wave generated by the current.
  • the conductor 14 the flow of the alternating current of the resonance frequency component in the resonator 100 is hindered, and the resonator-embedded substrate 110 functions as a kind of band cutoff filter.
  • the resonator 100 is a passive device that does not require electrical energy from an external power source or the like and that resonates only with an electromagnetic wave (particularly magnetic flux) radiated from the conductor 14. And the resonator 100 expresses a negative magnetic permeability by producing such a resonance.
  • the length l in the current propagation direction of the conductor 14 of the resonator 100 is the wavelength of the electromagnetic wave at the resonance frequency. For ⁇ , it must be at least shorter than ⁇ / 4. Furthermore, the length l of the resonator 100 is preferably ⁇ / 20 or less.
  • the distance h between the conductor 14 and the multilayer capacitor 10 is 0.2 mm, and the distance between the multilayer capacitor and the ground h ′ is 0.2 mm.
  • FIGS. 2 is a cross-sectional view taken along line II-II shown in FIG.
  • multilayer capacitor 10 includes a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 that are opposed to each other with spacers 6 each being an insulator having a high relative dielectric constant.
  • the plurality of first internal electrodes 4 are electrically connected to the first external electrode 2, and the plurality of second internal electrodes 5 are electrically connected to the second external electrode 3.
  • a plurality of plate-like internal electrodes 4 and 5 are laminated, and the area of the electrode, the electrode between the adjacent first internal electrode 4 and the second internal electrode 5 are stacked.
  • An electrostatic capacitance (capacitance) whose value is determined by the distance between them and the relative dielectric constant of the spacer 6 is generated.
  • the electrode surfaces of the first internal electrode 4 and the second internal electrode 5 constituting the multilayer capacitor 10 are arranged so as to be substantially parallel to the magnetic field lines of the magnetic field.
  • the electrode surfaces of the first external electrode 2 and the second external electrode 3 are substantially different from the magnetic field lines on the surfaces different from the electrode surfaces of the first external electrode 2 and the second external electrode 3. It arrange
  • a resonance circuit as shown in FIG. 3 is formed for a predetermined frequency component, and this resonance circuit causes a negative permeability.
  • FIG. 3 is a diagram for explaining a resonance circuit formed by the resonator 100 at the resonance frequency.
  • the electrode 3 acts as a coil (inductor) according to the path length.
  • the uppermost electrode 4 a, the first external electrode 2, and the lowermost electrode 4 b of the first internal electrodes are electrically connected to each other and include these.
  • a current path is formed.
  • the uppermost electrode 5a, the second outer electrode 3, and the lowermost electrode 5b of the second internal electrodes are electrically connected to each other, and a current path including these is connected. It is formed.
  • both current paths are electrically connected to each other via the electrostatic capacitance (capacitance C1) between the electrode 4a and the electrode 5a and the electrostatic capacitance (capacitance C2) between the electrode 4b and the electrode 5b.
  • a resonant circuit is formed which is connected and includes capacitances C1 and C2 and inductances L1 to L6 generated by the respective electrodes. Therefore, the resonator 100 according to the present embodiment has a resonance frequency determined by the capacitance (C1 + C2) and the inductance (L1 + L2 + L3 + L4 + L5 + L6), and permeability resonance occurs when an electromagnetic wave having this resonance frequency is incident.
  • FIG. 4 is a diagram showing an example of frequency characteristics of relative permeability generated in the resonator-embedded substrate 110 according to the present embodiment.
  • the change characteristics shown in FIG. 4 are calculated by simulation.
  • the relative magnetic permeability represents a ratio of magnetic permeability to vacuum magnetic permeability.
  • resonator built-in substrate 110 has about 4.9 GHz as one resonance frequency, and the relative permeability greatly fluctuates before and after that.
  • the impedance also fluctuates greatly and mismatch occurs, and functions as a band cutoff filter for the current flowing through the conductor 14 in this frequency region.
  • the electrode surfaces of the first internal electrode 4 and the second internal electrode 5, and the first external electrode 2 and the second external electrode 3 are arranged so as to be substantially parallel to the magnetic field lines of the magnetic field.
  • negative permeability which is a function as a metamaterial
  • substantially parallel means to exclude the state in which each electrode surface is orthogonal to the magnetic field lines of magnetic force, and in addition to the state in which each electrode surface is completely parallel to the magnetic field lines of magnetic field, Including a state having a predetermined angle.
  • the magnitude of the negative magnetic permeability developed in the resonator 100 is a value that can satisfy the requirements of the application, etc., it can be regarded as “substantially parallel”.
  • FIG. 5 is a diagram showing a result of simulating the frequency characteristics of the relative permeability generated in the resonator 100 according to the present embodiment for each orientation of the multilayer capacitor 10.
  • arrangement (a) and arrangement (b) are as follows: the first internal electrode 4 and the second internal electrode 5, and the electrode surfaces of the first external electrode 2 and the second external electrode 3 are magnetic field lines. The case where it arrange
  • the arrangement (c) shows a case where the electrode surfaces of the first internal electrode 4 and the second internal electrode 5 are arranged at an angle of 45 ° with respect to the magnetic field lines.
  • Arrangement (d) shows a case where the electrode surfaces of the first external electrode 2 and the second external electrode 3 are arranged so as to be orthogonal to the magnetic field lines of the magnetic field, and arrangement (e) shows the first internal electrode 4. And the case where each electrode surface of the 2nd internal electrode 5 is arrange
  • any one of the first internal electrode 4 and the second internal electrode 5, and the first external electrode 2 and the second external electrode 3 is disposed orthogonal to the magnetic field lines of the magnetic field.
  • the negative magnetic permeability does not appear.
  • the configuration of resonator 100 according to the present embodiment can also be expressed as follows.
  • the resonator 100 is electrically connected to an external electrode pair including a first external electrode 2 and a second external electrode 3 that are formed to face each other in parallel and the first external electrode 2 that is one of the external electrode pairs.
  • a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 electrically connected to the second external electrode 3 which is the other of the pair of external electrodes.
  • Each electrode surface of the internal electrode group including the first internal electrode 4 and the second internal electrode 5 is formed to be perpendicular to the electrode surfaces of the first external electrode 2 and the second external electrode 3. .
  • each electrode surface of the first external electrode 2 and the second external electrode 3 is formed so as to coincide with a vertical surface with respect to the propagation direction of the current flowing through the conductor 14.
  • the capacitance (capacitance C2) formed between the lowermost electrode 4b among the electrodes and the lowermost electrode 5b among the second internal electrodes adjacent to the electrode 4b, the first external electrode 2 and the second An electrical circulation path including the external electrode 3 is formed.
  • the resonator 100 includes a first internal electrode 4 and a second internal electrode 5 which are a plurality of plate electrodes arranged in parallel to each other via a spacer 6 which is an insulator, and even-numbered first electrodes of the plurality of plate electrodes.
  • 1 is a first external electrode 2 that is a first connection electrode electrically connected to the internal electrode 4, and a second connection electrode that is electrically connected to odd-numbered second internal electrodes 5 of a plurality of plate electrodes.
  • the electrode surfaces of the first external electrode 2 and the second external electrode 3 are formed perpendicular to the electrode surfaces of the plurality of plate electrodes. Further, the electrode surfaces of the plurality of flat plate electrodes are arranged so as to be substantially parallel to the magnetic field lines generated when a current flows through the conductor 14.
  • the resonator 100 includes a first comb electrode composed of a plurality of first internal electrodes 4 and a first external electrode 2 parallel to each other, a plurality of second internal electrodes 5 and a second external electrode 3 parallel to each other. And a second comb-type electrode.
  • the electrode surface of the uppermost layer electrode 4a of the first comb-shaped electrode and the electrode surface of the uppermost layer electrode 5a of the second comb-shaped electrode are formed so as to face each other in parallel at a predetermined interval. Thereby, an electrostatic capacitance (capacitance C1) is formed between the two.
  • the electrode surface of the lowermost electrode 4b of the first comb-shaped electrode and the electrode surface of the lowermost electrode 5b of the second comb-shaped electrode are formed so as to face each other in parallel with a predetermined interval. Thereby, electrostatic capacitance (capacitance C2) is formed between both.
  • the electrode surfaces of the first comb-type electrode and the second comb-type electrode are arranged so as to be substantially parallel to the lines of magnetic force generated when a current flows through the conductor 14.
  • the resonance circuit mainly composed of the capacitance (capacitance) generated between the stacked electrodes since the resonance circuit mainly composed of the capacitance (capacitance) generated between the stacked electrodes is used, the capacitance included in the resonance circuit can be made relatively large. Therefore, the device size for obtaining the necessary resonance characteristics can be reduced as compared with the configuration in which the ring pattern is periodically arranged as in the split ring resonator. As a result, a negative dielectric constant can be realized with a smaller device.
  • FIG. 6 is a schematic external view of a resonance device 200 including a plurality of resonators 100.
  • a resonance apparatus 200 is configured by periodically arranging a plurality of the resonators 100 described above (five in FIG. 6) along the conductor 14.
  • the electrode surfaces of the first internal electrode 4 (FIG. 2) and the second internal electrode 5 (FIG. 2) constituting each resonator 100 are substantially parallel to the magnetic field lines of the magnetic field. Placed in.
  • the electrode surfaces of the first external electrode 2 (FIG. 2) and the second external electrode 3 (FIG. 2) are also arranged so as to be substantially parallel to the magnetic field lines of the magnetic field.
  • each resonator 100 Since the configuration of each resonator 100 is the same as the configuration described above, detailed description will not be repeated.
  • FIG. 7 is a diagram showing an example of frequency characteristics of the attenuation amount of the current flowing through the conductor 14 in the resonance device 200 shown in FIG. Note that the change characteristics shown in FIG. 7 are calculated by simulation.
  • resonant apparatus 200 has a resonance point in the vicinity of 6.5 GHz to 7.0 GHz, and the passing wave is greatly attenuated in this frequency region.
  • the characteristics (typically necessary attenuation) of the substrate can be changed depending on the number of resonators arranged on the substrate. Therefore, it is possible to easily configure a substrate that realizes an optimal negative dielectric constant according to the application to which it is applied.
  • the configuration of the multilayer capacitor having the same width at the connection surface between the internal electrode and the external electrode is illustrated.
  • the width of the external electrode may be reduced. Good.
  • FIG. 8 is a schematic external view of the multilayer capacitor 20 used in the resonator according to the modification.
  • multilayer capacitor 20 includes a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 that are alternately arranged to face each other via spacers, and each of first internal electrodes 4.
  • a first external electrode 2 # that is electrically connected and a second external electrode 3 # that is electrically connected to each of the second internal electrodes 5 are included.
  • the width of the first external electrode 2 # is narrower than the width of the first internal electrode 4, and the second internal electrode 5 and the first external electrode 2 #
  • the width of the second external electrode 3 # is narrower than the width of the second internal electrode 5 at the connection surface with the 2 external electrode 3 #.
  • the inductance generated in the first external electrode 2 # and the second external electrode 3 # can be increased by narrowing the line width of the first external electrode 2 # and the second external electrode 3 #. Therefore, in the resonance circuit as shown in FIG. 3, since the capacitance (C1 + C2) necessary for generating the same resonance frequency is small, the internal electrode can be made smaller, and as a result, the entire multilayer capacitor can be reduced in size. Can be
  • the functional substrate according to the present invention is such that the above-described resonator is disposed on the substrate or is formed in the substrate. Depending on how the resonators are arranged, the substrate can have various types of functions.
  • FIG. 9A and 9B are diagrams illustrating a first arrangement example of the resonators.
  • FIG. 9A is a top view of the arranged resonators.
  • FIG. 9B is a horizontal sectional view of the resonator 100.
  • all the resonators 100 are arranged in the same direction. That is, all the resonators 100 are arranged so that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the same direction (the vertical direction in FIG. 9A).
  • the resonance frequency of the resonator 100 is 3 GHz.
  • the substrate on which the resonator is arranged in this way passes all the current flowing in the left-right direction in FIG. 9A.
  • the 3 GHz component of the current flowing in the vertical direction in FIG. 9A is not passed. That is, this substrate functions as a directional filter. Since each resonator uses a multilayer capacitor that has directionality to current, directionality also appears in the filter function of the substrate.
  • the substrate having the first arrangement example has a directional filter function. However, depending on the application, there is a case where it is not desired to give directionality to the filter function of the substrate.
  • Such a substrate can be realized by the arrangement of the resonators.
  • FIG. 10 is a diagram illustrating a second arrangement example of the resonators.
  • half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the left-right direction in FIG.
  • the remaining half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the vertical direction of FIG.
  • the resonance frequency of the resonator 100 is 3 GHz.
  • the substrate on which the resonator is arranged as shown in FIG. 10 does not pass the 3 GHz component with respect to the current flowing in either the horizontal direction or the vertical direction in FIG.
  • the resonators are divided into two groups having different directions of the resonators included by 90 degrees, and both groups are mixed and arranged at an appropriate interval, thereby eliminating the directionality of the filter characteristics of the substrate. Can do.
  • complex filter characteristics can be realized by using a plurality of types of resonators each having a different resonance frequency.
  • FIG. 11 is a diagram illustrating a third arrangement example of the resonators.
  • the resonators 100 and the resonators 100 # having frequency characteristics different from those of the resonators 100 are alternately arranged.
  • the resonator 100 is arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the vertical direction of FIG.
  • Resonator 100 # is arranged such that the longitudinal directions of first internal electrode 4 and second internal electrode 5 are in the horizontal direction of FIG.
  • the resonance frequencies of the resonator 100 and the resonator 100 # are 3 GHz and 5 GHz, respectively.
  • the substrate on which the resonator is arranged does not pass the 3 GHz component of the current in the left-right direction. Further, the 5 GHz component of the current in the vertical direction is not passed.
  • the substrate can be provided with a filter for removing a specific frequency component of the current. Since the substrate itself has a filter function, it is not necessary to mount a filter on the substrate, and the entire circuit can be downsized.
  • multilayer capacitors such as multilayer ceramic capacitors are generally less expensive than filters. Even if the multilayer capacitor is disposed on the entire substrate, the entire circuit may be cheaper than the conventional configuration.
  • Multilayer capacitors can be selected from a huge variety of commonly distributed types, so if you use the board according to this embodiment, you do not need to make custom products that match the characteristics of each model. The period can be shortened and the cost can be reduced.
  • the arrangement of the resonators can be devised to give the substrate a function as a duplexer.
  • FIG. 12 is a diagram illustrating a fourth arrangement example of the resonators.
  • Resonator 100 is arranged in the left half of FIG. 12, and resonator 100 # is arranged in the right half.
  • the resonator 100 and the resonator 100 # are both arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the left-right direction in FIG.
  • a signal line branched into two branch lines passes.
  • the main line of the signal line passes on the boundary between the area where the resonator 100 is disposed and the area where the resonator 100 # is disposed. Therefore, the signal flowing through this signal line does not resonate with the resonator.
  • Each of the two branch lines is along the horizontal direction of FIG. 12, that is, the direction parallel to the longitudinal direction of the internal electrode.
  • the resonance frequency of the resonator 100 is 3 GHz and the resonance frequency of the resonator 100 # is 5 GHz.
  • the resonance frequency of the resonator 100 # is 5 GHz.
  • FIG. 13 shows another arrangement example of the substrate functioning as a duplexer.
  • FIG. 13 is a diagram illustrating a fifth arrangement example of the resonators.
  • the resonator 100 is arranged in the upper half of FIG. 13, and the resonator 100 # is arranged in the lower half.
  • the resonator 100 and the resonator 100 # are both arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are the left-right direction in FIG.
  • a signal line having two branch lines passes through the substrate shown in FIG.
  • the main lines of the signal lines are arranged along the vertical direction in FIG. 13, that is, the direction in which resonance does not occur.
  • One branch line (referred to as a first branch line) passes over an area where the resonator 100 is disposed.
  • the direction of the first branch line is the left-right direction of FIG.
  • Another branch line (referred to as a second branch line) passes over the area where resonator 100 # is disposed.
  • the direction of the second branch line is the left-right direction of FIG.
  • the resonance frequency of the resonator 100 is 3 GHz and the resonance frequency of the resonator 100 # is 5 GHz.
  • this board also functions as a duplexer, like the board shown in FIG.
  • FIGS. 14A and 14B are perspective views of the substrate.
  • FIG. 14A is a perspective view of a substrate 310 in which the resonator 100 is periodically and two-dimensionally incorporated.
  • the arrangement of the resonator 100 shows the same arrangement method as in FIG. A conductor 14 is disposed on the layer where the resonator 100 is disposed.
  • Half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the x direction of FIG. 14A.
  • the remaining half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the y direction of FIG. 14A.
  • FIG. 14B shows a perspective view of a substrate 410 in which the resonator 100 is periodically and three-dimensionally incorporated.
  • the resonators in any layer show the same arrangement method as in FIG.
  • the arrangement of the resonators may be changed depending on the layer. For example, by making the arrangement of the resonators near the front surface of the substrate different from the arrangement of the resonators near the back surface, the filter characteristics on the front surface and the filter characteristics on the back surface are different (for example, the resonance frequency is different, The substrate can be manufactured (for example, the directionality of the filter is different).
  • the resonator 100 is intentionally drawn so that it can be easily understood. Actually, a substrate material such as a resin exists between the resonators 100. The internal electrodes of the resonator 100 are also drawn so as to be intentionally visible.
  • the configuration in which the resonator using the multilayer capacitor is used as the metamaterial has been described.
  • the configuration of the metamaterial is not limited to this.
  • a split ring resonator as disclosed in Document 1 may be used as a metamaterial.
  • Two-dimensional split ring resonators generally have a direction for current sensitivity that does not cause resonance if the magnetic field lines come from the plane containing the resonator. Therefore, if the configuration described above is used, a substrate circuit having a filter function and a duplexer function can be realized using a split ring resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A plurality of resonators (100) are arranged on a substrate. Each of the resonators (100) resonates upon reception of an electromagnetic wave generated when a predetermined current flows around the resonator. Moreover, each of the resonators (100) has a different direction of current sensitivity. Each of the resonators (100) is arranged in the direction to cause resonance for an electromagnetic wave caused by a current flowing on the substrate.

Description

機能基板Functional board
 この発明は、フィルタ、デュプレクサなどの機能を持つ機能回路基板に関し、特に負の透磁率を発現する材料を用いた基板に関する。 The present invention relates to a functional circuit board having functions such as a filter and a duplexer, and more particularly to a board using a material that exhibits a negative magnetic permeability.
 電気回路には、フィルタなどの機能を付加することが求められることがしばしばある。
 フィルタ機能を実現する方法としては、例えばプリント基板上に構成された電気回路の必要な部分に、SAW(Surface Acoustic Wave;表面弾性波)フィルタや誘電体フィルタなどのフィルタや、コイルやコンデンサなどの特定の機能をもつ電子部品を複数組み合わせたものを搭載することが一般的である。
It is often required to add functions such as a filter to an electric circuit.
As a method for realizing the filter function, a filter such as a SAW (Surface Acoustic Wave) filter or a dielectric filter, a coil, a capacitor, etc. It is common to mount a combination of a plurality of electronic components having specific functions.
 従来の方法で電気回路に機能を追加するためには、電気回路上に部品を搭載するエリアが必要である。これは、回路ならびに回路を組み込む機器の小型化のネックになっている。 In order to add functions to an electric circuit using a conventional method, an area for mounting components on the electric circuit is required. This has become a bottleneck in miniaturization of circuits and devices incorporating the circuits.
 この発明は、かかる課題を解決するためになされたものであり、その目的は、フィルタなどの機能を実現する回路を小型化できる機能基板を提供することである。 The present invention has been made to solve such a problem, and an object thereof is to provide a functional substrate capable of miniaturizing a circuit for realizing a function such as a filter.
 本発明の1つの局面に従うと、所定の周波数成分を含む電流が所定の方向に透過することを妨げる機能基板であって、電流が流れた場合に発生する電磁波を受けて共振を生じる、複数の共振器を備え、共振器の電磁波への感受性には各々に方向性があり、複数の共振器は、電流が所定の方向に透過することを妨げる向きに配置されている。 According to one aspect of the present invention, there is provided a functional substrate that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction, and receives a plurality of electromagnetic waves generated when the current flows. A resonator is provided, and the sensitivity of the resonator to electromagnetic waves is directional, and the plurality of resonators are arranged in a direction that prevents current from being transmitted in a predetermined direction.
 本発明の他の局面に従うと、所定の周波数成分を含む電流が所定の方向に透過することを妨げる機能基板であって、電流が流れた場合に発生する電磁波を受けて共振を生じる、複数の共振器を備え、複数の共振器は、第1の向きに配置された複数の共振器からなる第1の共振器群と、第1の向きに直交する第2の向きに配置された複数の共振器からなる第2の共振器群とを含む。 According to another aspect of the present invention, there is provided a functional board that prevents a current including a predetermined frequency component from passing in a predetermined direction. The resonator includes a first resonator group including a plurality of resonators arranged in a first direction, and a plurality of resonators arranged in a second direction orthogonal to the first direction. And a second resonator group including resonators.
 本発明のさらに他の局面に従うと、所定の周波数成分を含む電流が所定の方向に透過することを妨げる機能基板であって、電流が流れた場合に発生する電磁波を受けて共振を生じる、複数の共振器を備え、複数の共振器は、第1の向きに配置され、各々が第1の共振周波数をもつ複数の共振器からなる第1の共振器群と、第1の向きに直交する第2の向きに配置され、各々が第1の共振周波数と異なる第2の共振周波数をもつ複数の共振器からなる第2の共振器群とを含む。 According to still another aspect of the present invention, there is provided a functional substrate that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction, and generates a resonance by receiving an electromagnetic wave generated when the current flows. The plurality of resonators are arranged in a first direction, and each of the plurality of resonators is composed of a plurality of resonators each having a first resonance frequency, and is orthogonal to the first direction. A second resonator group including a plurality of resonators arranged in the second direction and each having a second resonance frequency different from the first resonance frequency.
 好ましくは、機能基板は、それぞれが共振器を複数含む基板層を複数備える。
 好ましくは、各共振器は、各々が絶縁物を介して互いに対向する第1および第2電極からなる複数の電極対と、第1電極の各々と電気的に接続される第3電極と、第2電極の各々と電気的に接続される第4電極とを含み、第1および第2電極の各電極面が、電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成されるとともに、第3および第4電極の各電極面が、第1および第2電極の各電極面とは異なる面において磁力線に対して実質的に平行となる配置を可能に構成される。
Preferably, the functional substrate includes a plurality of substrate layers each including a plurality of resonators.
Preferably, each resonator includes a plurality of electrode pairs each including a first electrode and a second electrode facing each other via an insulator, a third electrode electrically connected to each of the first electrodes, 4th electrode electrically connected with each of 2 electrodes, and each electrode surface of the 1st and 2nd electrode can be arranged to be substantially parallel to the magnetic field lines generated when a current flows The electrode surfaces of the third and fourth electrodes are configured to be substantially parallel to the magnetic field lines on a surface different from the electrode surfaces of the first and second electrodes. .
 好ましくは、各共振器は、平行に対向して形成された2つの外部電極からなる外部電極対と、外部電極対の一方と電気的に接続された複数の第1内部電極と、外部電極対の他方と電気的に接続された複数の第2内部電極とからなる内部電極群とを含み、内部電極群の各電極面は、外部電極の電極面に対して垂直に形成され、外部電極対の各電極面は、電流の伝搬方向に対する垂直面と平行に形成され、1つの第1内部電極と当該第1内部電極に隣接する第2内部電極との間で形成される第1静電容量と、別の第1内部電極と当該第1内部電極に隣接する別の第2内部電極との間で形成される第2静電容量と、外部電極対とを含む電気的な循環経路が形成される。 Preferably, each resonator includes an external electrode pair composed of two external electrodes formed to face each other in parallel, a plurality of first internal electrodes electrically connected to one of the external electrode pairs, and an external electrode pair Each electrode surface of the internal electrode group is formed perpendicular to the electrode surface of the external electrode, and is connected to the external electrode pair. Each of the electrode surfaces is formed in parallel with a plane perpendicular to the current propagation direction, and is formed between one first internal electrode and a second internal electrode adjacent to the first internal electrode. And an electrical circulation path including a second capacitance formed between another first internal electrode and another second internal electrode adjacent to the first internal electrode, and an external electrode pair. Is done.
 好ましくは、各共振器は、絶縁物を介して互いに平行に配列された複数の平板電極と、複数の平板電極の偶数番目の平板電極と電気的に接続された第1接続電極と、複数の平板電極の奇数番目の平板電極と電気的に接続された第2接続電極とを含み、第1および第2接続電極の各電極面は、複数の平板電極の電極面に対して垂直に形成され、複数の平板電極の各電極面は、電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成される。 Preferably, each resonator includes a plurality of plate electrodes arranged in parallel with each other through an insulator, a first connection electrode electrically connected to an even-numbered plate electrode of the plurality of plate electrodes, and a plurality of plate electrodes A second connection electrode electrically connected to the odd-numbered plate electrode of the plate electrode, each electrode surface of the first and second connection electrodes is formed perpendicular to the electrode surface of the plurality of plate electrodes The electrode surfaces of the plurality of flat plate electrodes are configured to be arranged substantially parallel to the magnetic field lines generated when a current flows.
 好ましくは、各共振器は、各々が互いに平行する複数の電極面を有する第1および第2くし型電極を含み、第1くし型電極の最上層の電極面と第2くし型電極の最上層の電極面とが所定の間隔をもって平行に対向するように形成され、かつ第1くし型電極の最下層の電極面と第2くし型電極の最下層の電極面とが所定の間隔をもって平行に対向するように形成され、第1および第2くし型電極の各電極面は、電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成される。 Preferably, each resonator includes first and second comb electrodes each having a plurality of electrode surfaces parallel to each other, the uppermost electrode surface of the first comb electrode and the uppermost layer of the second comb electrode. And the lowermost electrode surface of the first comb electrode and the lowermost electrode surface of the second comb electrode are parallel to each other with a predetermined interval. The electrode surfaces of the first and second comb electrodes are formed so as to be opposed to each other, and can be arranged to be substantially parallel to the magnetic field lines generated when a current flows.
 好ましくは、各共振器は、積層コンデンサである。 Preferably, each resonator is a multilayer capacitor.
 この発明によれば、基板内に共振器が配置されるため、基板がフィルタなどの機能を持つ。したがって、フィルタなどの機能を実現する回路を小型化できる。 According to the present invention, since the resonator is arranged in the substrate, the substrate has a function such as a filter. Therefore, a circuit that realizes a function such as a filter can be downsized.
この発明の実施の形態に従う共振器の概略の外観図である。1 is a schematic external view of a resonator according to an embodiment of the present invention. 図1に示すII-II線断面図である。It is the II-II sectional view taken on the line shown in FIG. 共振周波数において共振器で形成される共振回路を説明するための図である。It is a figure for demonstrating the resonant circuit formed with a resonator in a resonant frequency. この発明の実施の形態に従う共振器で生じる比透磁率の周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of the relative magnetic permeability produced with the resonator according to embodiment of this invention. この発明の実施の形態に従う共振器で生じる比透磁率の周波数特性を積層コンデンサの配向別にシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the frequency characteristic of the relative magnetic permeability produced with the resonator according to embodiment of this invention according to the orientation of a multilayer capacitor. この発明の実施の形態に従う共振装置の概略の外観図である。1 is a schematic external view of a resonance device according to an embodiment of the present invention. この発明の実施の形態に従う共振装置において、導体を流れる電流の減衰量の周波数特性の一例を示す図である。In the resonance apparatus according to the embodiment of the present invention, it is a diagram showing an example of the frequency characteristic of the attenuation amount of the current flowing through the conductor. 変形例に従う共振器に用いられる積層コンデンサの概略の外観図である。It is a general | schematic external view of the multilayer capacitor used for the resonator according to a modification. 共振器の第1の配置例において配列された共振器を上から見た図である。It is the figure which looked at the resonator arranged in the 1st example of arrangement | positioning of a resonator from the top. 共振器の水平断面図である。It is a horizontal sectional view of a resonator. 共振器の第2の配置例を示す図である。It is a figure which shows the 2nd example of arrangement | positioning of a resonator. 共振器の第3の配置例を示す図である。It is a figure which shows the 3rd example of arrangement | positioning of a resonator. 共振器の第4の配置例を示す図である。It is a figure which shows the 4th example of arrangement | positioning of a resonator. 共振器の第5の配置例を示す図である。It is a figure which shows the 5th example of arrangement | positioning of a resonator. 周期的に2次元的に共振器を組み込んだ基板の斜視図である。It is a perspective view of the board | substrate which incorporated the resonator two-dimensionally periodically. 周期的に3次元的に共振器を組み込んだ基板の斜視図である。It is a perspective view of the board | substrate which incorporated the resonator periodically three-dimensionally. 透磁率μおよび誘電率εの符号別に媒質への入射波に対して表れる特性を示す4象限図である。FIG. 4 is a four-quadrant diagram showing characteristics appearing with respect to an incident wave to a medium for each sign of magnetic permeability μ and dielectric constant ε.
符号の説明Explanation of symbols
 2,2# 第1外部電極、3,3# 第2外部電極、4 第1内部電極、4a,4b,5a,5b 電極、5 第2内部電極、6 スペーサ、10,20 積層コンデンサ、12 外装部、14 ストリップ状導体(導体)、16 グランド電極、100,100# 共振器、110 共振器内蔵基板、200 共振装置、310,410 基板、C1,C2 キャパシタンス、L1~L6 インダクタンス。 2, 2 # first external electrode, 3, 3 # second external electrode, 4 first internal electrode, 4a, 4b, 5a, 5b electrode, 5 second internal electrode, 6 spacer, 10, 20 multilayer capacitor, 12 exterior Part, 14 strip conductor (conductor), 16 ground electrode, 100, 100 # resonator, 110 resonator built-in substrate, 200 resonator device, 310, 410 substrate, C1, C2 capacitance, L1 to L6 inductance.
 この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.
 [概要]
 本発明は、メタマテリアル(metamaterial)を基板に用いるものである。このメタマテリアルとは、自然界に存在する物質が有さないような電磁気的あるいは光学的な特性をもつ人工物質である。このようなメタマテリアルの代表的な特性として、負の透磁率(μ<0)、負の誘電率(ε<0)、あるいは負の屈折率(透磁率および誘電率がいずれも負の場合)が挙げられる。なお、μ<0かつε>0の領域、またはμ>0かつε<0の領域は「エバネッセント解領域」とも称され、μ<0かつε<0の領域は「左手系領域」とも称される。
[Overview]
The present invention uses a metamaterial for a substrate. This metamaterial is an artificial material having electromagnetic or optical characteristics that a substance existing in nature does not have. Typical properties of such metamaterials include negative permeability (μ <0), negative dielectric constant (ε <0), or negative refractive index (when both permeability and dielectric constant are negative) Is mentioned. The region of μ <0 and ε> 0, or the region of μ> 0 and ε <0 is also referred to as “evanescent solution region”, and the region of μ <0 and ε <0 is also referred to as “left-handed region”. The
 図15は、透磁率μおよび誘電率εの符号別に媒質への入射波に対して表れる特性を示す4象限図である。自然界に存在する物質の大部分は、図15に示す第1象限に位置する右手系媒質に相当し、当該媒質に入射する波は、透磁率および誘電率によって定まる屈折率だけ屈折された後、入射方向に伝搬する。これに対して、図15に示す第2象限および第4象限(エバネッセント解領域)では、入射波は伝播することができない。また、図15に示す第3領域(左手系領域)では、屈折率が負となるため、当該媒質に入射した波は入射方向と逆方向に伝搬する。 FIG. 15 is a four-quadrant diagram showing the characteristics that appear with respect to the incident wave to the medium for each sign of magnetic permeability μ and dielectric constant ε. Most of the substances existing in the natural world correspond to the right-handed medium located in the first quadrant shown in FIG. 15, and the wave incident on the medium is refracted by the refractive index determined by the magnetic permeability and the dielectric constant, Propagate in the incident direction. On the other hand, the incident wave cannot propagate in the second quadrant and the fourth quadrant (evanescent solution region) shown in FIG. In the third region (left-handed region) shown in FIG. 15, since the refractive index is negative, the wave incident on the medium propagates in the direction opposite to the incident direction.
 このようなメタマテリアルの実現例として、文献1(「左手系メタマテリアル」、日経エレクトロニクス1月2日号、日経BP社、2006年1月2日、p.75-81)には、マイクロ波向けのスプリット・リング共振器(SRR:Split Ring Resonator)が開示されている。このスプリット・リング共振器は、円周の一部を切り欠いた大小2つのリングパターンからなる単位セルを周期的に配置したものである。このスプリット・リング共振器では、特定の周波数領域において共振(共鳴)が生じて、μ<0が発現する。このスプリット・リング共振器と金属棒(ε<0)を近接配置することでμ<0かつε<0を実現し、左手系媒質とする。 As an implementation example of such a metamaterial, Reference 1 ("Left-handed metamaterial", Nikkei Electronics January 2 issue, Nikkei BP, January 2, 2006, p. 75-81) includes a microwave. A split ring resonator (SRR) is disclosed. In this split ring resonator, unit cells composed of two large and small ring patterns in which a part of the circumference is cut out are periodically arranged. In this split ring resonator, resonance (resonance) occurs in a specific frequency region, and μ <0 is expressed. By arranging the split ring resonator and the metal rod (ε <0) close to each other, μ <0 and ε <0 are realized, and a left-handed medium is obtained.
 このようなメタマテリアルを埋め込んだ基板は、基板上を伝送する、共振周波数付近の周波数を持つ信号に対しフィルタ機能を奏する。これは、共振周波数では、透磁率が0点をまたいで大きく変化するため、インピーダンスの変化が起こり、インピーダンス不整合による反射を起こすためである。 A substrate embedded with such a metamaterial has a filter function for a signal having a frequency near the resonance frequency transmitted on the substrate. This is because at the resonance frequency, the magnetic permeability greatly changes across the zero point, so that the impedance changes and reflection due to impedance mismatching occurs.
 [共振器の構成について]
 本実施の形態においては、メタマテリアルとして、複数の電極を含む共振器を用いる。この共振器には、当該電極間に生じる静電容量(キャパシタンス)を主体とした共振回路が形成される。この共振回路は、導体に交流電流が流れることで発生する電磁波の特定の周波数成分に感受性をもち、この周波数成分の電磁波を受けて電気的な共振現象を生じ得る。この共振現象によって、透磁率が大きく変動し、導体に流れる電流を反射あるいは抑制することができる。
[Configuration of resonator]
In the present embodiment, a resonator including a plurality of electrodes is used as a metamaterial. In this resonator, a resonance circuit mainly composed of electrostatic capacitance (capacitance) generated between the electrodes is formed. This resonance circuit is sensitive to a specific frequency component of an electromagnetic wave generated by an alternating current flowing through the conductor, and can generate an electrical resonance phenomenon by receiving the electromagnetic wave of this frequency component. Due to this resonance phenomenon, the magnetic permeability largely fluctuates, and the current flowing through the conductor can be reflected or suppressed.
 ここで、メタマテリアルとしての機能である透磁率の共振を生じさせるためには、各共振器の電流の伝搬方向における長さが、対象とすべき周波数における電磁波の波長λに対して、少なくともλ/4より短い必要がある。さらに、各共振器の電流の伝搬方向における長さは、λ/20以下であることが好ましい。 Here, in order to generate the resonance of the magnetic permeability, which is a function as a metamaterial, the length of each resonator in the propagation direction of the current is at least λ with respect to the wavelength λ of the electromagnetic wave at the frequency to be targeted. Must be shorter than / 4. Furthermore, the length of each resonator in the current propagation direction is preferably λ / 20 or less.
 共振器としては、複数の平板電極を絶縁物(誘電体)を積層して形成された積層コンデンサなどを用いることができる。以下では、積層コンデンサを用いて共振器を実現する構成について例示する。この構成によれば、市販されている積層セラミックコンデンサなどの積層コンデンサを用いて、容易に共振器を構成できる。ただし、本発明に係る共振器を構成するための専用に設計された電極部材を用いてもよい。 As the resonator, a multilayer capacitor formed by laminating a plurality of plate electrodes with an insulator (dielectric) can be used. Below, the structure which implement | achieves a resonator using a multilayer capacitor is illustrated. According to this configuration, the resonator can be easily configured using a multilayer capacitor such as a commercially available multilayer ceramic capacitor. However, you may use the electrode member designed exclusively for comprising the resonator which concerns on this invention.
 図1は、この発明の実施の形態に従う共振器内蔵基板110の概略の外観図である。図1を参照して、共振器内蔵基板110は、共振器100と、共振器100の周辺を覆う非磁性体である外装部12とを含む。なお、外装部12としては、テフロン(登録商標)などの樹脂材料が適している。この共振器100は、所定の周波数成分を含む電流が流れるストリップ状導体14(以下単に「導体14」とも記す。)に近接して配置されることで、当該電流が発生する電磁波の特定の周波数成分(共振周波数)を受けて共振を生じる。また、共振器100の導体14に接する面とは反対側の面には、グランド電極16(図示せず)が配置される。 FIG. 1 is a schematic external view of resonator built-in substrate 110 according to an embodiment of the present invention. Referring to FIG. 1, resonator built-in substrate 110 includes a resonator 100 and an exterior portion 12 that is a nonmagnetic material that covers the periphery of resonator 100. As the exterior portion 12, a resin material such as Teflon (registered trademark) is suitable. The resonator 100 is disposed in the vicinity of a strip-like conductor 14 (hereinafter also simply referred to as “conductor 14”) through which a current including a predetermined frequency component flows, so that a specific frequency of an electromagnetic wave generated by the current is generated. Resonance is generated in response to the component (resonance frequency). A ground electrode 16 (not shown) is disposed on the surface of the resonator 100 opposite to the surface in contact with the conductor 14.
 共振器100内での共振によって、共振器100の内部から外部に向けて磁束が発生し、この発生する磁束によって誘導される電界によって、当該電流が発生する電磁波が妨げられる。この結果、導体14では、共振器100における共振周波数成分の交流電流の流れが妨げられ、共振器内蔵基板110は一種の帯域遮断フィルタのように機能する。 Resonance in the resonator 100 generates a magnetic flux from the inside of the resonator 100 to the outside, and an electric field induced by the generated magnetic flux prevents an electromagnetic wave generated by the current. As a result, in the conductor 14, the flow of the alternating current of the resonance frequency component in the resonator 100 is hindered, and the resonator-embedded substrate 110 functions as a kind of band cutoff filter.
 なお、本実施の形態に従う共振器100は、外部電源などからの電気エネルギーを必要とせず、導体14から放射される電磁波(特に磁束)だけで共振を生じる、パッシブなデバイスである。そして、共振器100は、このような共振を生じさせることによって、負の透磁率を発現させる。 Note that the resonator 100 according to the present embodiment is a passive device that does not require electrical energy from an external power source or the like and that resonates only with an electromagnetic wave (particularly magnetic flux) radiated from the conductor 14. And the resonator 100 expresses a negative magnetic permeability by producing such a resonance.
 なお、共振器100が負の透磁率を発現する、すなわちメタマテリアルとしての機能を発揮するためには、共振器100の導体14における電流の伝搬方向における長さlが、共振周波数における電磁波の波長λに対して、少なくともλ/4より短い必要がある。さらに、共振器100の長さlは、λ/20以下であることが好ましい。 In order for the resonator 100 to exhibit a negative magnetic permeability, that is, to exhibit a function as a metamaterial, the length l in the current propagation direction of the conductor 14 of the resonator 100 is the wavelength of the electromagnetic wave at the resonance frequency. For λ, it must be at least shorter than λ / 4. Furthermore, the length l of the resonator 100 is preferably λ / 20 or less.
 以下では、共振器100の一例として、長さl’=1.6mm、幅W=0.8mm、高さH=0.8mmの8層の内部電極を有する積層コンデンサ10を用いる場合について例示する。なお、導体14と積層コンデンサ10との距離h=0.2mm、積層コンデンサとグランドの距離h’=0.2mmとする。 Hereinafter, as an example of the resonator 100, a case where the multilayer capacitor 10 having eight layers of internal electrodes having a length l ′ = 1.6 mm, a width W = 0.8 mm, and a height H = 0.8 mm is used will be described. . The distance h between the conductor 14 and the multilayer capacitor 10 is 0.2 mm, and the distance between the multilayer capacitor and the ground h ′ is 0.2 mm.
 ここで、λ/4=長さl’=1.6mmとすると、λ=6.4mmとなり、これは、空気中では周波数fmax=46.875GHzに相当する。従って、この共振器100をλ/4以下のピッチで並べると、ギガヘルツ帯においてメタマテリアルとして用いることができる。当然のことながら、適用すべき周波数領域に応じて、共振器の長さl’を適宜設計することができる。 Here, if λ / 4 = length l ′ = 1.6 mm, λ = 6.4 mm, which corresponds to a frequency fmax = 46.875 GHz in the air. Therefore, when the resonators 100 are arranged at a pitch of λ / 4 or less, they can be used as metamaterials in the gigahertz band. Naturally, the length l 'of the resonator can be appropriately designed according to the frequency region to be applied.
 次に、図1および図2を参照して、共振器100の構造について説明する。図2は、図1に示すII-II線断面図である。 Next, the structure of the resonator 100 will be described with reference to FIGS. 2 is a cross-sectional view taken along line II-II shown in FIG.
 図1を参照して、導体14に電流が流れることによって、導体14を中心とした円周方向に交流の磁界が発生する。すなわち、磁界の磁力線は、導体14を中心とする同心円となる。また、導体14には電流が流れる際に電位が発生するので、導体14とグランド電極16との間には交流の電界が発生する。 Referring to FIG. 1, when a current flows through conductor 14, an alternating magnetic field is generated in the circumferential direction around conductor 14. That is, the magnetic field lines of the magnetic field are concentric circles with the conductor 14 as the center. Further, since an electric potential is generated in the conductor 14 when a current flows, an AC electric field is generated between the conductor 14 and the ground electrode 16.
 図2を参照して、積層コンデンサ10は、各々が比誘電率の高い絶縁物であるスペーサ6を介して互いに対向する第1内部電極4および第2内部電極5をそれぞれ複数含む。複数の第1内部電極4は、第1外部電極2と電気的に接続されており、複数の第2内部電極5は、第2外部電極3と電気的に接続されている。このように、積層コンデンサ10では、平板状の複数の内部電極4,5が積層されており、隣接する第1内部電極4と第2内部電極5との間には、その電極の面積、電極間の距離、スペーサ6の比誘電率などによってその値が定まる静電容量(キャパシタンス)が生じる。 Referring to FIG. 2, multilayer capacitor 10 includes a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 that are opposed to each other with spacers 6 each being an insulator having a high relative dielectric constant. The plurality of first internal electrodes 4 are electrically connected to the first external electrode 2, and the plurality of second internal electrodes 5 are electrically connected to the second external electrode 3. As described above, in the multilayer capacitor 10, a plurality of plate-like internal electrodes 4 and 5 are laminated, and the area of the electrode, the electrode between the adjacent first internal electrode 4 and the second internal electrode 5 are stacked. An electrostatic capacitance (capacitance) whose value is determined by the distance between them and the relative dielectric constant of the spacer 6 is generated.
 特に、共振器内蔵基板110では、積層コンデンサ10を構成する第1内部電極4および第2内部電極5の各電極面が磁界の磁力線に対して実質的に平行となるように配置される。それとともに、第1外部電極2および第2外部電極3の各電極面が、第1外部電極2および第2外部電極3の各電極面とは異なる面において、磁界の磁力線に対して実質的に平行となるように配置される。すなわち、図2に示すように、導体14を流れる電流によって生じる磁界の磁力線が紙面前後方向に発生している場合において、共振器100は、第1内部電極4および第2内部電極5の電極断面長手方向が紙面左右方向と一致し、かつ第1外部電極2および第2外部電極3の電極断面長手方向が紙面上下方向と一致するように配置される。 Particularly, in the resonator-embedded substrate 110, the electrode surfaces of the first internal electrode 4 and the second internal electrode 5 constituting the multilayer capacitor 10 are arranged so as to be substantially parallel to the magnetic field lines of the magnetic field. At the same time, the electrode surfaces of the first external electrode 2 and the second external electrode 3 are substantially different from the magnetic field lines on the surfaces different from the electrode surfaces of the first external electrode 2 and the second external electrode 3. It arrange | positions so that it may become parallel. That is, as shown in FIG. 2, when the magnetic field lines of the magnetic field generated by the current flowing through the conductor 14 are generated in the front-rear direction of the paper, the resonator 100 includes the electrode cross sections of the first internal electrode 4 and the second internal electrode 5. The longitudinal direction is aligned with the horizontal direction of the paper surface, and the electrode cross-sectional longitudinal directions of the first external electrode 2 and the second external electrode 3 are aligned with the vertical direction of the paper surface.
 共振器100が図2に示すような位置関係を保って配置されることで、所定の周波数成分に対して図3に示すような共振回路が形成され、この共振回路によって、負の透磁率が発現する。 By arranging the resonator 100 so as to maintain the positional relationship as shown in FIG. 2, a resonance circuit as shown in FIG. 3 is formed for a predetermined frequency component, and this resonance circuit causes a negative permeability. To express.
 図3は、共振周波数において共振器100で形成される共振回路を説明するための図である。 FIG. 3 is a diagram for explaining a resonance circuit formed by the resonator 100 at the resonance frequency.
 図3を参照して、その電極面が磁界の磁力線に対して実質的に平行となるように配置される第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3は、その経路長さに応じたコイル(インダクタ)として作用する。 Referring to FIG. 3, the first internal electrode 4 and the second internal electrode 5, and the first external electrode 2 and the second external electrode, which are arranged so that the electrode surfaces thereof are substantially parallel to the magnetic field lines of the magnetic field. The electrode 3 acts as a coil (inductor) according to the path length.
 積層コンデンサ10では、第1内部電極のうち最上層の電極4aと、第1外部電極2と、第1内部電極のうち最下層の電極4bとは互いに電気的に接続されており、これらを含む電流経路が形成される。同様に、第2内部電極のうち最上層の電極5aと、第2外部電極3と、第2内部電極のうち最下層の電極5bとも互いに電気的に接続されており、これらを含む電流経路が形成される。ここで、電極4aと電極5aとの間の静電容量(キャパシタンスC1)と、電極4bと電極5bとの間の静電容量(キャパシタンスC2)とを介して、両電流経路は互いに電気的に接続され、キャパシタンスC1,C2と各電極によって生じるインダクタンスL1~L6とを含む共振回路が形成される。したがって、本実施の形態に従う共振器100は、キャパシタンス(C1+C2)と、インダクタンス(L1+L2+L3+L4+L5+L6)とによって定まる共振周波数をもち、この共振周波数の電磁波が入射することで、透磁率共振が発現する。 In the multilayer capacitor 10, the uppermost electrode 4 a, the first external electrode 2, and the lowermost electrode 4 b of the first internal electrodes are electrically connected to each other and include these. A current path is formed. Similarly, the uppermost electrode 5a, the second outer electrode 3, and the lowermost electrode 5b of the second internal electrodes are electrically connected to each other, and a current path including these is connected. It is formed. Here, both current paths are electrically connected to each other via the electrostatic capacitance (capacitance C1) between the electrode 4a and the electrode 5a and the electrostatic capacitance (capacitance C2) between the electrode 4b and the electrode 5b. A resonant circuit is formed which is connected and includes capacitances C1 and C2 and inductances L1 to L6 generated by the respective electrodes. Therefore, the resonator 100 according to the present embodiment has a resonance frequency determined by the capacitance (C1 + C2) and the inductance (L1 + L2 + L3 + L4 + L5 + L6), and permeability resonance occurs when an electromagnetic wave having this resonance frequency is incident.
 なお、積層コンデンサ10では、隣接する内部電極の間の各々で静電容量が発生するが、最上位の静電容量および最下位の静電容量を除いた他の静電容量は、この共振回路の形成への影響は小さい。これは、共振を起こす循環経路の最外層に電流が集中するためである。 In the multilayer capacitor 10, capacitance is generated between adjacent internal electrodes, but other capacitances excluding the uppermost capacitance and the lowest capacitance are the resonance circuit. The impact on the formation of is small. This is because current concentrates on the outermost layer of the circulation path causing resonance.
 図4は、本実施の形態に従う共振器内蔵基板110で生じる比透磁率の周波数特性の一例を示す図である。なお、図4に示す変化特性は、シミュレーションによって算出されたものである。ここで、比透磁率とは、真空の透磁率に対する透磁率の比を表す。 FIG. 4 is a diagram showing an example of frequency characteristics of relative permeability generated in the resonator-embedded substrate 110 according to the present embodiment. The change characteristics shown in FIG. 4 are calculated by simulation. Here, the relative magnetic permeability represents a ratio of magnetic permeability to vacuum magnetic permeability.
 図4を参照して、本実施の形態に従う共振器内蔵基板110は、その1つの共振周波数として約4.9GHzをもち、その前後で比透磁率が大きく変動していることが分かる。これによりインピーダンスも大きく変動して不整合がおこり、この周波数領域において導体14を流れる電流に対して、帯域遮断フィルタとして機能する。 Referring to FIG. 4, it can be seen that resonator built-in substrate 110 according to the present embodiment has about 4.9 GHz as one resonance frequency, and the relative permeability greatly fluctuates before and after that. As a result, the impedance also fluctuates greatly and mismatch occurs, and functions as a band cutoff filter for the current flowing through the conductor 14 in this frequency region.
 上述の説明では、第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3の各電極面が磁界の磁力線に対して実質的に平行となるように配置されることで、メタマテリアルとしての機能である負の透磁率を発現させることができるとことについて述べた。ここで、「実質的に平行」とは、各電極面が磁界の磁力線と直交する状態を除外する意味であり、各電極面が磁界の磁力線とまったく平行である状態以外にも、磁力線に対して所定角度をもつ状態をも含む。実用上は、共振器100で発現する負の透磁率の大きさが適用アプリケーションなどの要求を満足できる値であれば、「実質的に平行」とみなすことができる。 In the above description, the electrode surfaces of the first internal electrode 4 and the second internal electrode 5, and the first external electrode 2 and the second external electrode 3 are arranged so as to be substantially parallel to the magnetic field lines of the magnetic field. It was stated that negative permeability, which is a function as a metamaterial, can be expressed. Here, “substantially parallel” means to exclude the state in which each electrode surface is orthogonal to the magnetic field lines of magnetic force, and in addition to the state in which each electrode surface is completely parallel to the magnetic field lines of magnetic field, Including a state having a predetermined angle. Practically, if the magnitude of the negative magnetic permeability developed in the resonator 100 is a value that can satisfy the requirements of the application, etc., it can be regarded as “substantially parallel”.
 図5は、本実施の形態に従う共振器100で生じる比透磁率の周波数特性を積層コンデンサ10の配向別にシミュレーションした結果を示す図である。 FIG. 5 is a diagram showing a result of simulating the frequency characteristics of the relative permeability generated in the resonator 100 according to the present embodiment for each orientation of the multilayer capacitor 10.
 図5を参照して、配置(a)および配置(b)は、第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3の各電極面が磁界の磁力線に対して平行に配置された場合を示す。また、配置(c)は、第1内部電極4および第2内部電極5の各電極面が磁界の磁力線に対して45°の角度をもって配置された場合を示す。配置(d)は、第1外部電極2および第2外部電極3の各電極面が磁界の磁力線に対して直交するように配置された場合を示し、配置(e)は、第1内部電極4および第2内部電極5の各電極面が磁界の磁力線に対して直交するように配置された場合を示す。 Referring to FIG. 5, arrangement (a) and arrangement (b) are as follows: the first internal electrode 4 and the second internal electrode 5, and the electrode surfaces of the first external electrode 2 and the second external electrode 3 are magnetic field lines. The case where it arrange | positions in parallel with respect to is shown. The arrangement (c) shows a case where the electrode surfaces of the first internal electrode 4 and the second internal electrode 5 are arranged at an angle of 45 ° with respect to the magnetic field lines. Arrangement (d) shows a case where the electrode surfaces of the first external electrode 2 and the second external electrode 3 are arranged so as to be orthogonal to the magnetic field lines of the magnetic field, and arrangement (e) shows the first internal electrode 4. And the case where each electrode surface of the 2nd internal electrode 5 is arrange | positioned so that it may orthogonally cross with respect to the magnetic force line of a magnetic field is shown.
 配置(a)および配置(b)では、共振周波数に僅かな違いがあるものの、比透磁率の周波数特性が示すように、十分に大きな負の透磁率が発現していることがわかる。また、配置(c)では、負の透磁率が発現しているものの、その大きさは配置(a)や配置(b)において発現する負の透磁率の大きさに比較して小さくなっていることがわかる。 In the arrangement (a) and the arrangement (b), although there is a slight difference in the resonance frequency, it can be seen that a sufficiently large negative permeability is exhibited as shown by the frequency characteristics of the relative permeability. Moreover, although the negative magnetic permeability is expressed in the arrangement (c), the magnitude thereof is smaller than the magnitude of the negative magnetic permeability expressed in the arrangement (a) and the arrangement (b). I understand that.
 一方、配置(d)および配置(e)では、比透磁率の周波数特性が示すように、共振も生じておらず、負の透磁率も発現していない。 On the other hand, in the arrangement (d) and the arrangement (e), as shown by the frequency characteristics of the relative magnetic permeability, no resonance occurs and no negative magnetic permeability is developed.
 以上のように、第1内部電極4および第2内部電極5、ならびに第1外部電極2および第2外部電極3のうち、いずれかの電極面が磁界の磁力線に対して直交して配置される場合には、負の透磁率が発現しないが、それ以外の配置であれば、各電極面が磁界の磁力線に対してまったくの平行でなくとも、負の透磁率が発現することがわかる。 As described above, any one of the first internal electrode 4 and the second internal electrode 5, and the first external electrode 2 and the second external electrode 3 is disposed orthogonal to the magnetic field lines of the magnetic field. In this case, the negative magnetic permeability does not appear. However, in other arrangements, it can be seen that the negative magnetic permeability appears even if each electrode surface is not at all parallel to the magnetic field lines of the magnetic field.
 再度、図1~図3を参照して、本実施の形態に従う共振器100の構成については、以下のように表現することもできる。 Again referring to FIGS. 1 to 3, the configuration of resonator 100 according to the present embodiment can also be expressed as follows.
 共振器100は、平行に対向して形成された第1外部電極2および第2外部電極3からなる外部電極対と、この外部電極対の一方である第1外部電極2と電気的に接続された複数の第1内部電極4と、この外部電極対の他方である第2外部電極3と電気的に接続された複数の第2内部電極5とを含む。そして、第1内部電極4および第2内部電極5からなる内部電極群の各電極面は、第1外部電極2および第2外部電極3の電極面に対して垂直となるように形成されている。また、第1外部電極2および第2外部電極3の各電極面は、導体14を流れる電流の伝搬方向に対する垂直面と一致するように形成される。さらに、第1内部電極のうち最上層の電極4aと、電極4aに隣接する第2内部電極のうち最上層の電極5aとの間で形成される静電容量(キャパシタンスC1)と、第1内部電極のうち最下層の電極4bと、電極4bに隣接する第2内部電極のうち最下層の電極5bとの間で形成される静電容量(キャパシタンスC2)と、第1外部電極2および第2外部電極3とを含む電気的な循環経路が形成される。 The resonator 100 is electrically connected to an external electrode pair including a first external electrode 2 and a second external electrode 3 that are formed to face each other in parallel and the first external electrode 2 that is one of the external electrode pairs. A plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 electrically connected to the second external electrode 3 which is the other of the pair of external electrodes. Each electrode surface of the internal electrode group including the first internal electrode 4 and the second internal electrode 5 is formed to be perpendicular to the electrode surfaces of the first external electrode 2 and the second external electrode 3. . In addition, each electrode surface of the first external electrode 2 and the second external electrode 3 is formed so as to coincide with a vertical surface with respect to the propagation direction of the current flowing through the conductor 14. Furthermore, a capacitance (capacitance C1) formed between the uppermost electrode 4a of the first internal electrodes and the uppermost electrode 5a of the second internal electrodes adjacent to the electrode 4a, and the first internal electrode The capacitance (capacitance C2) formed between the lowermost electrode 4b among the electrodes and the lowermost electrode 5b among the second internal electrodes adjacent to the electrode 4b, the first external electrode 2 and the second An electrical circulation path including the external electrode 3 is formed.
 また、共振器100は、絶縁物であるスペーサ6を介して互いに平行に配列された複数の平板電極である第1内部電極4および第2内部電極5と、複数の平板電極の偶数番目の第1内部電極4と電気的に接続された第1接続電極である第1外部電極2と、複数の平板電極の奇数番目の第2内部電極5と電気的に接続された第2接続電極である第2外部電極3とを含む。第1外部電極2および第2外部電極3の各電極面は、複数の平板電極の電極面に対して垂直に形成されている。また、複数の平板電極の電極面は、導体14に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置されている。 The resonator 100 includes a first internal electrode 4 and a second internal electrode 5 which are a plurality of plate electrodes arranged in parallel to each other via a spacer 6 which is an insulator, and even-numbered first electrodes of the plurality of plate electrodes. 1 is a first external electrode 2 that is a first connection electrode electrically connected to the internal electrode 4, and a second connection electrode that is electrically connected to odd-numbered second internal electrodes 5 of a plurality of plate electrodes. Second external electrode 3. The electrode surfaces of the first external electrode 2 and the second external electrode 3 are formed perpendicular to the electrode surfaces of the plurality of plate electrodes. Further, the electrode surfaces of the plurality of flat plate electrodes are arranged so as to be substantially parallel to the magnetic field lines generated when a current flows through the conductor 14.
 また、共振器100は、互いに平行する複数の第1内部電極4と第1外部電極2とからなる第1くし型電極と、互いに平行する複数の第2内部電極5と第2外部電極3とからなる第2くし型電極とを含む。第1くし型電極の最上層の電極4aの電極面と、第2くし型電極の最上層の電極5aの電極面とが所定の間隔をもって平行に対向するように形成される。これにより、両者の間には静電容量(キャパシタンスC1)が形成される。また、第1くし型電極の最下層の電極4bの電極面と、第2くし型電極の最下層の電極5bの電極面とが所定の間隔をもって平行に対向するように形成される。これにより、両者の間には静電容量(キャパシタンスC2)が形成される。そして、第1くし型電極および第2くし型電極の各電極面は、導体14に電流が流れた場合に生じる磁力線に対して実質的に平行となるように配置されている。 The resonator 100 includes a first comb electrode composed of a plurality of first internal electrodes 4 and a first external electrode 2 parallel to each other, a plurality of second internal electrodes 5 and a second external electrode 3 parallel to each other. And a second comb-type electrode. The electrode surface of the uppermost layer electrode 4a of the first comb-shaped electrode and the electrode surface of the uppermost layer electrode 5a of the second comb-shaped electrode are formed so as to face each other in parallel at a predetermined interval. Thereby, an electrostatic capacitance (capacitance C1) is formed between the two. Further, the electrode surface of the lowermost electrode 4b of the first comb-shaped electrode and the electrode surface of the lowermost electrode 5b of the second comb-shaped electrode are formed so as to face each other in parallel with a predetermined interval. Thereby, electrostatic capacitance (capacitance C2) is formed between both. The electrode surfaces of the first comb-type electrode and the second comb-type electrode are arranged so as to be substantially parallel to the lines of magnetic force generated when a current flows through the conductor 14.
 上述の構成によれば、積層された電極間に生じる静電容量(キャパシタンス)を主体とした共振回路を用いるので、共振回路に含まれるキャパシタンスを比較的大きくすることができる。そのため、スプリット・リング共振器のようにリングパターンを周期的に配置する構成に比較して、必要な共振特性を得るためのデバイスサイズを小さくできる。これによって、より小型化したデバイスで、負の誘電率を実現できる。 According to the above-described configuration, since the resonance circuit mainly composed of the capacitance (capacitance) generated between the stacked electrodes is used, the capacitance included in the resonance circuit can be made relatively large. Therefore, the device size for obtaining the necessary resonance characteristics can be reduced as compared with the configuration in which the ring pattern is periodically arranged as in the split ring resonator. As a result, a negative dielectric constant can be realized with a smaller device.
 また、複数の共振器を用いることで、より大きなフィルタ効果を得ることができる。このことを図6および図7を参照して説明する。 Also, a larger filter effect can be obtained by using a plurality of resonators. This will be described with reference to FIGS.
 図6は、複数の共振器100を備える共振装置200の概略の外観図である。図6を参照して、共振装置200は、上述した共振器100を導体14に沿って周期的に複数個(図6では5個)配置したものである。このとき、各共振器100を構成する第1内部電極4(図2)および第2内部電極5(図2)の各電極面は、いずれも磁界の磁力線に対して実質的に平行となるように配置される。また、第1外部電極2(図2)および第2外部電極3(図2)の各電極面についても、磁界の磁力線に対して実質的に平行となるように配置される。 FIG. 6 is a schematic external view of a resonance device 200 including a plurality of resonators 100. Referring to FIG. 6, a resonance apparatus 200 is configured by periodically arranging a plurality of the resonators 100 described above (five in FIG. 6) along the conductor 14. At this time, the electrode surfaces of the first internal electrode 4 (FIG. 2) and the second internal electrode 5 (FIG. 2) constituting each resonator 100 are substantially parallel to the magnetic field lines of the magnetic field. Placed in. The electrode surfaces of the first external electrode 2 (FIG. 2) and the second external electrode 3 (FIG. 2) are also arranged so as to be substantially parallel to the magnetic field lines of the magnetic field.
 なお、各共振器100の構成については上述した構成と同様であるので、詳細な説明は繰返さない。 Since the configuration of each resonator 100 is the same as the configuration described above, detailed description will not be repeated.
 図7は、図6に示す共振装置200において、導体14を流れる電流の減衰量の周波数特性の一例を示す図である。なお、図7に示す変化特性は、シミュレーションによって算出されたものである。 FIG. 7 is a diagram showing an example of frequency characteristics of the attenuation amount of the current flowing through the conductor 14 in the resonance device 200 shown in FIG. Note that the change characteristics shown in FIG. 7 are calculated by simulation.
 図7を参照して、本実施の形態に従う共振装置200は、6.5GHz~7.0GHz付近に共振点を有し、この周波数領域において通過波が大きく減衰されることがわかる。 Referring to FIG. 7, it can be seen that resonant apparatus 200 according to the present embodiment has a resonance point in the vicinity of 6.5 GHz to 7.0 GHz, and the passing wave is greatly attenuated in this frequency region.
 基板に配置する共振器の個数により、基板の特性(代表的に、必要な減衰量)を変更できる。したがって、適用先のアプリケーションに応じて、最適な負の誘電率を実現する基板を容易に構成できる。 The characteristics (typically necessary attenuation) of the substrate can be changed depending on the number of resonators arranged on the substrate. Therefore, it is possible to easily configure a substrate that realizes an optimal negative dielectric constant according to the application to which it is applied.
 また、上では、内部電極と外部電極との接続面における両者の幅が等しい積層コンデンサの構成について例示したが、外部電極で生じるインダクタンスを大きくするために、外部電極の幅をより狭くしてもよい。 In the above, the configuration of the multilayer capacitor having the same width at the connection surface between the internal electrode and the external electrode is illustrated. However, in order to increase the inductance generated in the external electrode, the width of the external electrode may be reduced. Good.
 このような変形例について図8を参照して説明する。図8は、変形例に従う共振器に用いられる積層コンデンサ20の概略の外観図である。 Such a modification will be described with reference to FIG. FIG. 8 is a schematic external view of the multilayer capacitor 20 used in the resonator according to the modification.
 図8を参照して、変形例に従う積層コンデンサ20は、スペーサを介して交互に対向配置された複数の第1内部電極4および複数の第2内部電極5と、第1内部電極4の各々と電気的に接続される第1外部電極2#と、第2内部電極5の各々と電気的に接続される第2外部電極3#とを含む。 Referring to FIG. 8, multilayer capacitor 20 according to the modification includes a plurality of first internal electrodes 4 and a plurality of second internal electrodes 5 that are alternately arranged to face each other via spacers, and each of first internal electrodes 4. A first external electrode 2 # that is electrically connected and a second external electrode 3 # that is electrically connected to each of the second internal electrodes 5 are included.
 ここで、第1内部電極4と第1外部電極2#との接続面において、第1外部電極2#の幅は第1内部電極4の幅より狭くなっており、第2内部電極5と第2外部電極3#との接続面において、第2外部電極3#の幅は第2内部電極5の幅より狭くなっている。 Here, in the connection surface between the first internal electrode 4 and the first external electrode 2 #, the width of the first external electrode 2 # is narrower than the width of the first internal electrode 4, and the second internal electrode 5 and the first external electrode 2 # The width of the second external electrode 3 # is narrower than the width of the second internal electrode 5 at the connection surface with the 2 external electrode 3 #.
 第1外部電極2#および第2外部電極3#の線幅を狭くすることで、第1外部電極2#および第2外部電極3#で生じるインダクタンスを大きくできる。そのため、図3に示すような共振回路において、同一の共振周波数を生じるために必要なキャパシタンス(C1+C2)が小さくて済むので、内部電極をより小さくすることができ、その結果、積層コンデンサ全体を小型化できる。 The inductance generated in the first external electrode 2 # and the second external electrode 3 # can be increased by narrowing the line width of the first external electrode 2 # and the second external electrode 3 #. Therefore, in the resonance circuit as shown in FIG. 3, since the capacitance (C1 + C2) necessary for generating the same resonance frequency is small, the internal electrode can be made smaller, and as a result, the entire multilayer capacitor can be reduced in size. Can be
 その他の構成については、上述の構成と同様であるので、詳細な説明は繰返さない。
 この変形例によれば、コンデンサ10を用いる構成と同様の効果を得られるとともに、コンデンサ10を用いる共振器に比較して、より小型化を図ることができる。
Since other configurations are similar to the above-described configurations, detailed description thereof will not be repeated.
According to this modification, the same effect as the configuration using the capacitor 10 can be obtained, and the size can be further reduced as compared with the resonator using the capacitor 10.
 [機能基板の構成]
 本発明に係る機能基板は、上述の共振器を基板上に配置、あるいは、基板内に作りこんだものである。共振器の配置の仕方によって、基板に様々な種類の機能を持たせることができる。
[Configuration of functional board]
The functional substrate according to the present invention is such that the above-described resonator is disposed on the substrate or is formed in the substrate. Depending on how the resonators are arranged, the substrate can have various types of functions.
 以下、図9から図13を参照して、機能基板における共振器の配置の例について説明する。 Hereinafter, an example of the arrangement of the resonators on the functional substrate will be described with reference to FIGS.
 図9Aおよび図9Bは、共振器の第1の配置例を示す図である。図9Aは、配列された共振器を上から見た図である。図9Bは、共振器100の水平断面図である。この配置例においては、すべての共振器100が同じ向きに配置されている。つまり、すべての共振器100は、第1内部電極4および第2内部電極5の長手方向が同じ向き(図9Aの上下方向)になるように、配置されている。なお、共振器100の共振周波数は、3GHzであるとする。 9A and 9B are diagrams illustrating a first arrangement example of the resonators. FIG. 9A is a top view of the arranged resonators. FIG. 9B is a horizontal sectional view of the resonator 100. In this arrangement example, all the resonators 100 are arranged in the same direction. That is, all the resonators 100 are arranged so that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the same direction (the vertical direction in FIG. 9A). Note that the resonance frequency of the resonator 100 is 3 GHz.
 このように共振器が配置された基板は、図9Aの左右方向に流れる電流についてはすべて通す。一方、図9Aの上下方向に流れる電流の3GHz成分は通さない。つまり、この基板は、方向性を持つフィルタとして機能する。各共振器に、電流に対する感受性に方向性がある積層コンデンサを利用しているため、基板のフィルタ機能にも方向性が現れる。 The substrate on which the resonator is arranged in this way passes all the current flowing in the left-right direction in FIG. 9A. On the other hand, the 3 GHz component of the current flowing in the vertical direction in FIG. 9A is not passed. That is, this substrate functions as a directional filter. Since each resonator uses a multilayer capacitor that has directionality to current, directionality also appears in the filter function of the substrate.
 第1の配置例をもつ基板は、方向性があるフィルタ機能を持つ。しかしながら、用途によっては、基板のフィルタ機能に方向性を持たせたくない場合がある。共振器の配置により、このような基板を実現することができる。 The substrate having the first arrangement example has a directional filter function. However, depending on the application, there is a case where it is not desired to give directionality to the filter function of the substrate. Such a substrate can be realized by the arrangement of the resonators.
 方向性のないフィルタ機能をもつ基板を実現するためには、例えば、図10のように共振器を配置すればよい。図10は、共振器の第2の配置例を示す図である。この配置例においては、半分の共振器100は、第1内部電極4および第2内部電極5の長手方向が図10の左右方向になるように配置されている。そして、残りの半分の共振器100は、第1内部電極4および第2内部電極5の長手方向が図10の上下方向になるように配置されている。なお、共振器100の共振周波数は、3GHzであるとする。 In order to realize a substrate having a non-directional filter function, for example, a resonator may be arranged as shown in FIG. FIG. 10 is a diagram illustrating a second arrangement example of the resonators. In this arrangement example, half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the left-right direction in FIG. The remaining half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the vertical direction of FIG. Note that the resonance frequency of the resonator 100 is 3 GHz.
 図10のように共振器が配置された基板は、図10の左右方向、上下方向のいずれの方向に流れる電流についても、3GHz成分を通さない。 The substrate on which the resonator is arranged as shown in FIG. 10 does not pass the 3 GHz component with respect to the current flowing in either the horizontal direction or the vertical direction in FIG.
 このように、共振器を、それぞれに含まれる共振器の向きが90度異なる2つのグループに分け、両グループを適当な間隔で混ぜて配置することで、基板のフィルタ特性の方向性をなくすことができる。 In this way, the resonators are divided into two groups having different directions of the resonators included by 90 degrees, and both groups are mixed and arranged at an appropriate interval, thereby eliminating the directionality of the filter characteristics of the substrate. Can do.
 さらに、それぞれが異なる共振周波数を持つ複数種類の共振器を用いることで、複雑なフィルタ特性を実現することもできる。 Furthermore, complex filter characteristics can be realized by using a plurality of types of resonators each having a different resonance frequency.
 例えば、図11のように2種類の共振器を配置することを考える。図11は、共振器の第3の配置例を示す図である。図11に示す配置例では、共振器100と、共振器100とは異なる周波数特性をもつ共振器100#とが、交互に配置されている。共振器100は、その第1内部電極4および第2内部電極5の長手方向が図11の上下方向になるように配置されている。共振器100#は、その第1内部電極4および第2内部電極5の長手方向が図11の左右方向になるように配置されている。ここでは、共振器100、共振器100#の共振周波数は、それぞれ、3GHz、5GHzであるとする。 For example, consider arranging two types of resonators as shown in FIG. FIG. 11 is a diagram illustrating a third arrangement example of the resonators. In the arrangement example shown in FIG. 11, the resonators 100 and the resonators 100 # having frequency characteristics different from those of the resonators 100 are alternately arranged. The resonator 100 is arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the vertical direction of FIG. Resonator 100 # is arranged such that the longitudinal directions of first internal electrode 4 and second internal electrode 5 are in the horizontal direction of FIG. Here, it is assumed that the resonance frequencies of the resonator 100 and the resonator 100 # are 3 GHz and 5 GHz, respectively.
 図11のように共振器が配置された基板は、左右方向の電流の3GHz成分を通さない。また、上下方向の電流の5GHz成分を通さない。 As shown in FIG. 11, the substrate on which the resonator is arranged does not pass the 3 GHz component of the current in the left-right direction. Further, the 5 GHz component of the current in the vertical direction is not passed.
 このように、それぞれ異なる共振周波数をもつ複数種類の共振器を用いることで、方向によりフィルタ特性の異なる基板を実現することができる。 As described above, by using a plurality of types of resonators having different resonance frequencies, substrates having different filter characteristics depending on directions can be realized.
 これまで説明したように、基板に共振器を配置することで、基板に電流の特定の周波数成分を除去するフィルタを持たせることができる。基板自体がフィルタ機能を持つので、基板にフィルタを搭載することが必要なく、回路全体の小型化が可能になる。 As described above, by arranging the resonator on the substrate, the substrate can be provided with a filter for removing a specific frequency component of the current. Since the substrate itself has a filter function, it is not necessary to mount a filter on the substrate, and the entire circuit can be downsized.
 また、積層セラミックコンデンサなどの積層コンデンサは、一般に、フィルタより安価である。基板全体に積層コンデンサを配置したとしても、回路全体で、従来の構成より安価にできる場合がある。 Also, multilayer capacitors such as multilayer ceramic capacitors are generally less expensive than filters. Even if the multilayer capacitor is disposed on the entire substrate, the entire circuit may be cheaper than the conventional configuration.
 特に、携帯電話向けなどでは、減衰特性などの部品は、特別仕様である場合が多い。これは、部品の開発期間の長期化、ひいては、コスト高の要因となっている。積層コンデンサは、一般に流通している膨大な種類のものの中から選ぶことができるので、本実施の形態に係る基板を用いれば、機種ごとに特性を合わせこんだカスタム品を作る必要がなく、開発期間の短縮、コストの削減を図ることができる。 Especially for mobile phones, parts such as attenuation characteristics are often special specifications. This is a factor in prolonging the development period of parts and, in turn, increasing costs. Multilayer capacitors can be selected from a huge variety of commonly distributed types, so if you use the board according to this embodiment, you do not need to make custom products that match the characteristics of each model. The period can be shortened and the cost can be reduced.
 さらに、共振器の配置を工夫して、基板にデュプレクサとしての機能を持たせることもできる。 Furthermore, the arrangement of the resonators can be devised to give the substrate a function as a duplexer.
 図12は、共振器の第4の配置例を示す図である。図12の左半分には、共振器100が、右半分には共振器100#がそれぞれ配置されている。共振器100および共振器100#は、いずれも、その第1内部電極4および第2内部電極5の長手方向が図12の左右方向になるように配置されている。 FIG. 12 is a diagram illustrating a fourth arrangement example of the resonators. Resonator 100 is arranged in the left half of FIG. 12, and resonator 100 # is arranged in the right half. The resonator 100 and the resonator 100 # are both arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the left-right direction in FIG.
 また、図12に示す基板上には、2つの支線に枝分かれした信号ラインが通っている。この信号ラインの主線は、共振器100が配置されているエリアと、共振器100#が配置されているエリアの境界上を通っている。したがって、この信号ラインを流れる信号は、共振器と共振しない。2つの支線は、いずれも、図12の左右方向、つまり、内部電極の長手方向と平行する方向に沿っている。 Further, on the substrate shown in FIG. 12, a signal line branched into two branch lines passes. The main line of the signal line passes on the boundary between the area where the resonator 100 is disposed and the area where the resonator 100 # is disposed. Therefore, the signal flowing through this signal line does not resonate with the resonator. Each of the two branch lines is along the horizontal direction of FIG. 12, that is, the direction parallel to the longitudinal direction of the internal electrode.
 ここで、共振器100の共振周波数は3GHz、共振器100#の共振周波数は、5GHzであるとする。このとき、信号ラインに3GHzの信号と5GHzの信号が入射すると、左の支線には、5GHzの信号のみが流れる。また、右の支線には、3GHzの信号のみが流れる。つまり、この基板はデュプレクサとして機能する。 Here, it is assumed that the resonance frequency of the resonator 100 is 3 GHz and the resonance frequency of the resonator 100 # is 5 GHz. At this time, when a 3 GHz signal and a 5 GHz signal enter the signal line, only the 5 GHz signal flows through the left branch line. Further, only a 3 GHz signal flows through the right branch line. That is, this substrate functions as a duplexer.
 図13に、デュプレクサとして機能する基板の他の配置例を示す。図13は、共振器の第5の配置例を示す図である。図13の上半分には、共振器100が、下半分には共振器100#がそれぞれ配置されている。共振器100および共振器100#は、いずれも、その第1内部電極4および第2内部電極5の長手方向が図13の左右方向になるように配置されている。 FIG. 13 shows another arrangement example of the substrate functioning as a duplexer. FIG. 13 is a diagram illustrating a fifth arrangement example of the resonators. The resonator 100 is arranged in the upper half of FIG. 13, and the resonator 100 # is arranged in the lower half. The resonator 100 and the resonator 100 # are both arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are the left-right direction in FIG.
 また、図13に示す基板上には、2つの支線をもつ信号ラインが通っている。この信号ラインの主線は、図13の上下方向、すなわち、共振の起こらない方向に沿って配置されている。1つの支線(第1の支線とよぶ)は、共振器100が配置されているエリア上を通っている。第1の支線の方向は、図13の左右方向である。もう1つの支線(第2の支線とよぶ)は、共振器100#が配置されているエリア上を通っている。第2の支線の方向は、図13の左右方向である。 Further, a signal line having two branch lines passes through the substrate shown in FIG. The main lines of the signal lines are arranged along the vertical direction in FIG. 13, that is, the direction in which resonance does not occur. One branch line (referred to as a first branch line) passes over an area where the resonator 100 is disposed. The direction of the first branch line is the left-right direction of FIG. Another branch line (referred to as a second branch line) passes over the area where resonator 100 # is disposed. The direction of the second branch line is the left-right direction of FIG.
 ここで、共振器100の共振周波数は3GHz、共振器100#の共振周波数は、5GHzであるとする。このとき、信号ラインに3GHzの信号と5GHzの信号が入射すると、第1の支線には、5GHzの信号のみが流れる。また、第2の支線には、3GHzの信号のみが流れる。つまり、この基板も、図12に示す基板と同様、デュプレクサとして機能することが分かる。 Here, it is assumed that the resonance frequency of the resonator 100 is 3 GHz and the resonance frequency of the resonator 100 # is 5 GHz. At this time, when a 3 GHz signal and a 5 GHz signal enter the signal line, only the 5 GHz signal flows through the first branch line. Further, only a 3 GHz signal flows through the second branch line. That is, it can be seen that this board also functions as a duplexer, like the board shown in FIG.
 図14Aおよび図14Bを参照して、基板の構成について説明する。図14Aおよび図14Bは、基板の斜視図である。 The configuration of the substrate will be described with reference to FIGS. 14A and 14B. 14A and 14B are perspective views of the substrate.
 図14Aは、周期的に2次元的に共振器100を組み込んだ基板310の斜視図である。ここでは、共振器100の配置は、図10と同様の配置方法を示したものである。共振器100が配置されている層の上に、導体14が配置される。半分の共振器100は、第1内部電極4および第2内部電極5の長手方向が図14Aのx方向となるように配置されている。そして、残りの半分の共振器100は、第1内部電極4および第2内部電極5の長手方向が図14Aのy方向になるように配置されている。 FIG. 14A is a perspective view of a substrate 310 in which the resonator 100 is periodically and two-dimensionally incorporated. Here, the arrangement of the resonator 100 shows the same arrangement method as in FIG. A conductor 14 is disposed on the layer where the resonator 100 is disposed. Half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the x direction of FIG. 14A. The remaining half of the resonators 100 are arranged such that the longitudinal directions of the first internal electrode 4 and the second internal electrode 5 are in the y direction of FIG. 14A.
 また、共振器を3次元的に基板に組み込むこともできる。図14Bに、周期的に3次元的に共振器100を組み込んだ基板410の斜視図を示す。 Also, the resonator can be incorporated into the substrate three-dimensionally. FIG. 14B shows a perspective view of a substrate 410 in which the resonator 100 is periodically and three-dimensionally incorporated.
 ここでは、いずれの層の共振器も、図10と同様の配置方法を示したものである。ただし、層によって、共振器の配置を変えてもよい。例えば、基板の表面付近の共振器の配置と、裏面付近の共振器の配置とを異なるものとすることにより、表面のフィルタ特性と、裏面のフィルタ特性とが異なる(例えば、共振周波数が異なる、フィルタの方向性が異なるなど)基板を作製することができる。 Here, the resonators in any layer show the same arrangement method as in FIG. However, the arrangement of the resonators may be changed depending on the layer. For example, by making the arrangement of the resonators near the front surface of the substrate different from the arrangement of the resonators near the back surface, the filter characteristics on the front surface and the filter characteristics on the back surface are different (for example, the resonance frequency is different, The substrate can be manufactured (for example, the directionality of the filter is different).
 なお、図14Aおよび図14Bにおいては、理解を容易にするために、意図的に、共振器100が見えるように描いている。実際には、共振器100の間には、樹脂などの基板材料が存在する。また、共振器100の内部電極も、意図的に、見えるように描いている。 In FIG. 14A and FIG. 14B, the resonator 100 is intentionally drawn so that it can be easily understood. Actually, a substrate material such as a resin exists between the resonators 100. The internal electrodes of the resonator 100 are also drawn so as to be intentionally visible.
 [その他]
 上述の実施の形態では、積層コンデンサを用いた共振器をメタマテリアルとして用いる構成について説明したが、メタマテリアルの構成は、これに限られるものではない。例えば、メタマテリアルとして、文献1に開示されるようなスプリット・リング共振器を用いてもよい。2次元状のスプリット・リング共振器は、一般に、磁力線が共振器を含む平面内から来る場合には共振を起こさないという電流の感受性についての方向性をもつ。よって、上で説明した構成と同様にすれば、スプリット・リング共振器を用いて、フィルタ機能やデュプレクサ機能をもつ基板回路を実現できる。
[Others]
In the above-described embodiment, the configuration in which the resonator using the multilayer capacitor is used as the metamaterial has been described. However, the configuration of the metamaterial is not limited to this. For example, a split ring resonator as disclosed in Document 1 may be used as a metamaterial. Two-dimensional split ring resonators generally have a direction for current sensitivity that does not cause resonance if the magnetic field lines come from the plane containing the resonator. Therefore, if the configuration described above is used, a substrate circuit having a filter function and a duplexer function can be realized using a split ring resonator.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (10)

  1.  所定の周波数成分を含む電流が所定の方向に透過することを妨げる機能基板(110)であって、
     前記電流が流れた場合に発生する電磁波を受けて共振を生じる、複数の共振器(100)を備え、
     前記共振器(100)の前記電磁波への感受性には各々に方向性があり、
     前記共振器(100)は、前記電流が前記所定の方向に透過することを妨げる向きに配置されている、機能基板。
    A functional substrate (110) that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction,
    Comprising a plurality of resonators (100) that resonate in response to electromagnetic waves generated when the current flows;
    The susceptibility of the resonator (100) to the electromagnetic wave is directional,
    The resonator (100) is a functional substrate disposed in a direction that prevents the current from being transmitted in the predetermined direction.
  2.  所定の周波数成分を含む電流が所定の方向に透過することを妨げる機能基板(110)であって、
     前記電流が流れた場合に発生する電磁波を受けて共振を生じる、複数の共振器(100)を備え、
     前記複数の共振器(100)は、
     第1の向きに配置された複数の前記共振器からなる第1の共振器群と、
     前記第1の向きに直交する第2の向きに配置された複数の前記共振器からなる第2の共振器群とを含む、機能基板。
    A functional substrate (110) that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction,
    Comprising a plurality of resonators (100) that resonate in response to electromagnetic waves generated when the current flows;
    The plurality of resonators (100) includes:
    A first group of resonators comprising a plurality of the resonators arranged in a first orientation;
    And a second resonator group including a plurality of the resonators arranged in a second direction orthogonal to the first direction.
  3.  所定の周波数成分を含む電流が所定の方向に透過することを妨げる機能基板(110)であって、
     前記電流が流れた場合に発生する電磁波を受けて共振を生じる、複数の共振器(100)を備え、
     前記複数の共振器(100)は、
     第1の向きに配置され、各々が第1の共振周波数をもつ複数の前記共振器からなる第1の共振器群と、
     前記第1の向きに直交する第2の向きに配置され、各々が前記第1の共振周波数と異なる第2の共振周波数をもつ複数の前記共振器からなる第2の共振器群とを含む、機能基板。
    A functional substrate (110) that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction,
    Comprising a plurality of resonators (100) that resonate in response to electromagnetic waves generated when the current flows;
    The plurality of resonators (100) includes:
    A first group of resonators arranged in a first orientation, each comprising a plurality of said resonators each having a first resonant frequency;
    A second group of resonators that are arranged in a second direction orthogonal to the first direction, each consisting of a plurality of the resonators each having a second resonance frequency different from the first resonance frequency, Functional board.
  4.  所定の周波数成分を含む電流が所定の方向に透過することを妨げる機能基板(110)であって、
     前記電流が流れた場合に発生する電磁波を受けて共振を生じる、複数の共振器(100)を備え、
     主線および複数の支線を有する電流ラインの各前記支線が通過するエリアに、前記支線ごとに異なる共振周波数をもつ前記共振器(100)が配置される、機能基板。
    A functional substrate (110) that prevents a current including a predetermined frequency component from being transmitted in a predetermined direction,
    Comprising a plurality of resonators (100) that resonate in response to electromagnetic waves generated when the current flows;
    A functional substrate in which the resonator (100) having a resonance frequency different for each branch line is disposed in an area through which each branch line of a main line and a current line having a plurality of branch lines passes.
  5.  前記機能基板(110)は、それぞれが前記共振器(100)を複数含む基板層を複数備える、請求の範囲第1項に記載の機能基板。 The functional substrate according to claim 1, wherein the functional substrate (110) includes a plurality of substrate layers each including a plurality of the resonators (100).
  6.  各前記共振器(100)は、
     各々が絶縁物を介して互いに対向する第1および第2電極(4,5)からなる複数の電極対と、
     前記第1電極(4)の各々と電気的に接続される第3電極(2)と、
     前記第2電極(5)の各々と電気的に接続される第4電極(3)とを含み、
     前記第1および第2電極(4,5)の各電極面が、前記電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成されるとともに、前記第3および第4電極(2,3)の各電極面が、前記第1および第2電極(4,5)の各電極面とは異なる面において前記磁力線に対して実質的に平行となる配置を可能に構成される、請求の範囲第1項に記載の機能基板。
    Each said resonator (100)
    A plurality of electrode pairs each consisting of first and second electrodes (4, 5) facing each other via an insulator;
    A third electrode (2) electrically connected to each of the first electrodes (4);
    A fourth electrode (3) electrically connected to each of the second electrodes (5),
    Each of the electrode surfaces of the first and second electrodes (4, 5) is configured to be arranged to be substantially parallel to the lines of magnetic force generated when the current flows. A configuration is possible in which each electrode surface of the four electrodes (2, 3) is substantially parallel to the magnetic field lines on a surface different from each electrode surface of the first and second electrodes (4, 5). The functional substrate according to claim 1, wherein
  7.  各前記共振器(100)は、
     平行に対向して形成された2つの外部電極(2,3)からなる外部電極対と、
     前記外部電極対の一方(2)と電気的に接続された複数の第1内部電極(4)と、前記外部電極対の他方(3)と電気的に接続された複数の第2内部電極(5)とからなる内部電極群とを含み、
     前記内部電極群(4,5)の各電極面は、前記外部電極(2,3)の電極面に対して垂直に形成され、
     前記外部電極対(2,3)の各電極面は、前記電流の伝搬方向に対する垂直面と平行に形成され、
     1つの前記第1内部電極(4a)と当該第1内部電極(4a)に隣接する第2内部電極(5a)との間で形成される第1静電容量と、別の前記第1内部電極(4b)と当該第1内部電極(4b)に隣接する別の第2内部電極(5b)との間で形成される第2静電容量と、前記外部電極対(2,3)とを含む電気的な循環経路が形成される、請求の範囲第1項に記載の機能基板。
    Each said resonator (100)
    An external electrode pair composed of two external electrodes (2, 3) formed to face each other in parallel;
    A plurality of first internal electrodes (4) electrically connected to one of the external electrode pairs (2) and a plurality of second internal electrodes (4) electrically connected to the other (3) of the external electrode pairs 5) and an internal electrode group consisting of
    Each electrode surface of the internal electrode group (4, 5) is formed perpendicular to the electrode surface of the external electrode (2, 3),
    Each electrode surface of the external electrode pair (2, 3) is formed in parallel with a plane perpendicular to the current propagation direction,
    A first capacitance formed between one first internal electrode (4a) and a second internal electrode (5a) adjacent to the first internal electrode (4a), and another first internal electrode A second capacitance formed between (4b) and another second internal electrode (5b) adjacent to the first internal electrode (4b), and the external electrode pair (2, 3). The functional substrate according to claim 1, wherein an electrical circulation path is formed.
  8.  各前記共振器(100)は、
     絶縁物を介して互いに平行に配列された複数の平板電極(4,5)と、
     前記複数の平板電極(4,5)の偶数番目の平板電極と電気的に接続された第1接続電極(2)と、
     前記複数の平板電極(4,5)の奇数番目の平板電極と電気的に接続された第2接続電極(3)とを含み、
     前記第1および第2接続電極(2,3)の各電極面は、前記複数の平板電極(4,5)の電極面に対して垂直に形成され、
     前記複数の平板電極(4,5)の各電極面は、前記電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成される、請求の範囲第1項に記載の機能基板。
    Each said resonator (100)
    A plurality of plate electrodes (4, 5) arranged in parallel with each other through an insulator;
    A first connection electrode (2) electrically connected to even-numbered plate electrodes of the plurality of plate electrodes (4, 5);
    A second connection electrode (3) electrically connected to odd-numbered plate electrodes of the plurality of plate electrodes (4, 5);
    The electrode surfaces of the first and second connection electrodes (2, 3) are formed perpendicular to the electrode surfaces of the plurality of plate electrodes (4, 5),
    The electrode surfaces of the plurality of flat plate electrodes (4, 5) are configured to be capable of being arranged to be substantially parallel to the magnetic field lines generated when the current flows. Functional board.
  9.  各前記共振器(100)は、
     各々が互いに平行する複数の電極面を有する第1くし型電極(2,4)および第2くし型電極(3,5)を含み、
     前記第1くし型電極(2,4)の最上層の電極面(4a)と前記第2くし型電極(3,5)の最上層の電極面(5a)とが所定の間隔をもって平行に対向するように形成され、かつ前記第1くし型電極(2,4)の最下層の電極面(4b)と前記第2くし型電極(3,5)の最下層の電極面(5b)とが所定の間隔をもって平行に対向するように形成され、
     前記第1および第2くし型電極の各電極面(4,5)は、前記電流が流れた場合に生じる磁力線に対して実質的に平行となる配置を可能に構成される、請求の範囲第1項に記載の機能基板。
    Each said resonator (100)
    A first comb electrode (2, 4) and a second comb electrode (3, 5) each having a plurality of parallel electrode surfaces;
    The uppermost electrode surface (4a) of the first comb-shaped electrode (2, 4) and the uppermost electrode surface (5a) of the second comb-shaped electrode (3, 5) face each other in parallel at a predetermined interval. The lowermost electrode surface (4b) of the first comb electrode (2, 4) and the lowermost electrode surface (5b) of the second comb electrode (3, 5) Formed so as to face each other in parallel with a predetermined interval,
    The electrode surfaces (4, 5) of the first and second comb-shaped electrodes are configured to be arranged so as to be substantially parallel to the lines of magnetic force generated when the current flows. Item 1. The functional substrate according to item 1.
  10.  各前記共振器(100)は、積層コンデンサ(10)である、請求の範囲第1項に記載の機能基板。 The functional substrate according to claim 1, wherein each of the resonators (100) is a multilayer capacitor (10).
PCT/JP2009/054862 2008-04-18 2009-03-13 Functional substrate WO2009128310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508151A JP5218551B2 (en) 2008-04-18 2009-03-13 Functional board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-109368 2008-04-18
JP2008109368 2008-04-18

Publications (1)

Publication Number Publication Date
WO2009128310A1 true WO2009128310A1 (en) 2009-10-22

Family

ID=41199010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054862 WO2009128310A1 (en) 2008-04-18 2009-03-13 Functional substrate

Country Status (2)

Country Link
JP (1) JP5218551B2 (en)
WO (1) WO2009128310A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108351A1 (en) * 2011-02-10 2012-08-16 株式会社村田製作所 Metamaterial, electric apparatus, and electric apparatus equipped with metamaterial
JP2013197328A (en) * 2012-03-21 2013-09-30 Tohoku Univ Noise suppression member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424551A (en) * 1982-01-25 1984-01-03 U.S. Capacitor Corporation Highly-reliable feed through/filter capacitor and method for making same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218428B2 (en) * 2007-12-21 2013-06-26 株式会社村田製作所 Band elimination filter and connector with band elimination filter
WO2009081662A1 (en) * 2007-12-21 2009-07-02 Murata Manufacturing Co., Ltd. Resonator, substrate equipped with the same, and method of producing resonance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424551A (en) * 1982-01-25 1984-01-03 U.S. Capacitor Corporation Highly-reliable feed through/filter capacitor and method for making same
US4424551B1 (en) * 1982-01-25 1991-06-11 Highly-reliable feed through/filter capacitor and method for making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.N.BUROKUR ET AL.: "Influence of split ring resonators on the properties of propagating structures", IET MICROWAVES, ANTENNAS & PROPAGATION, vol. 1, no. 1, February 2007 (2007-02-01), pages 94 - 99 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108351A1 (en) * 2011-02-10 2012-08-16 株式会社村田製作所 Metamaterial, electric apparatus, and electric apparatus equipped with metamaterial
JP5482915B2 (en) * 2011-02-10 2014-05-07 株式会社村田製作所 Metamaterial, electrical device, and electrical device with metamaterial
JPWO2012108351A1 (en) * 2011-02-10 2014-07-03 株式会社村田製作所 Metamaterial, electrical device, and electrical device with metamaterial
JP2013197328A (en) * 2012-03-21 2013-09-30 Tohoku Univ Noise suppression member

Also Published As

Publication number Publication date
JP5218551B2 (en) 2013-06-26
JPWO2009128310A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP3928055B2 (en) Negative permeability or negative permittivity metamaterial and surface wave waveguide
JP5440504B2 (en) Metamaterial
US8054146B2 (en) Structures with negative index of refraction
US8222975B2 (en) Transmission line resonator, high-frequency filter using the same, high-frequency module, and radio device
JP5287862B2 (en) Metamaterial
EP2688139B1 (en) Impedance matching component
JP5104879B2 (en) RESONATOR AND SUBSTRATE EQUIPPED WITH THE SAME, AND METHOD FOR GENERATING RESONANCE
JP5218428B2 (en) Band elimination filter and connector with band elimination filter
JP5218551B2 (en) Functional board
US8576027B2 (en) Differential-common mode resonant filters
JP2005210016A (en) Frequency selecting device
JP6082938B2 (en) 3D metamaterial
JP2017152959A (en) Metamaterial device
JP6911932B2 (en) Polarization control board
Shao et al. Lamb waves manipulation by piezoelectric metasurface with tunable diffraction orders
JP6013280B2 (en) High frequency transmission line
JPWO2019082230A1 (en) Phase control plate
JP2012010150A (en) Electric component, electric circuit board, impedance matching method, and partial structure of electric circuit
JP2017152961A (en) Metamaterial device
JP2009273082A (en) Left-handed system filter
JP2016111418A (en) Common mode filter
JP2009273083A (en) Left-handed system filter
JP2009273080A (en) Left-handed system filter
JP2009273081A (en) Left-handed system filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508151

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732927

Country of ref document: EP

Kind code of ref document: A1