WO2009125529A1 - Method of generating mask pattern and method of forming pattern - Google Patents

Method of generating mask pattern and method of forming pattern Download PDF

Info

Publication number
WO2009125529A1
WO2009125529A1 PCT/JP2009/000328 JP2009000328W WO2009125529A1 WO 2009125529 A1 WO2009125529 A1 WO 2009125529A1 JP 2009000328 W JP2009000328 W JP 2009000328W WO 2009125529 A1 WO2009125529 A1 WO 2009125529A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
mask
hole
layer
long side
Prior art date
Application number
PCT/JP2009/000328
Other languages
French (fr)
Japanese (ja)
Inventor
松田孝司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2009125529A1 publication Critical patent/WO2009125529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging

Definitions

  • the technique described in the present specification relates to a method for generating a mask pattern for forming a contact hole and the like, and a pattern forming method using the mask pattern.
  • the minimum pitch cannot be reduced.
  • the minimum pitch that can be resolved is limited by optical theory.
  • R resolution size
  • light source wavelength
  • NA lens numerical aperture
  • k1 process factor
  • the process factor (k1) is 0.388.
  • the latent image contrast is 0.162. This value is insufficient for pattern resolution.
  • k1 is 0.333.
  • FIGS. 9A to 9E are plan views showing a method for forming a fine contact hole pattern.
  • a first photomask 51 used for the first exposure is prepared.
  • a first rectangular light shielding film 52 is formed on the first photomask 51. While the exposure light is blocked or attenuated by the first rectangular light shielding film 52, the light is completely transmitted through the portion where the first rectangular light shielding film 52 is not formed.
  • the first rectangular light shielding film 52 is composed of a short side formed with a predetermined dimension for transferring a contact hole pattern to a resist substrate with a desired dimension, and a long side extending in a direction perpendicular to the short side. Yes.
  • the first rectangular light shielding film 52 is made of, for example, a chromium film that can completely shield light, or a molybdenum silicide film that attenuates light.
  • the first exposure is performed on the resist substrate 53 using the first photomask 51.
  • a first latent image 54 to which the rectangular pattern is transferred is formed on the resist substrate 53.
  • a second photomask 56 used for the second exposure is prepared.
  • a second rectangular light shielding film 55 is formed on the second photomask 56.
  • the second rectangular light shielding film 55 is arranged such that the long side is perpendicular to the long side of the first rectangular light shielding film 52.
  • a second exposure is performed on the resist substrate 53 using the second photomask 56.
  • overlay exposure is performed using the second photomask 56 so that the position does not shift with respect to the first latent image 54 formed on the resist substrate 53.
  • the second latent image 57 to which the rectangular pattern is transferred is further formed on the resist substrate 53, and an intersection 58 where the first latent image 54 and the second latent image 57 intersect is formed.
  • the resist substrate 53 is developed.
  • a portion exposed to light becomes a development insoluble portion, and only a crossing portion 58 that has never been exposed to light becomes a development soluble portion.
  • the contact hole 59 is formed in the resist substrate 53 by melting the intersecting portion 58 with the developer. According to the above method, conventionally, a contact hole can be formed by performing exposure twice using two masks. JP-A-5-326358
  • the contact hole size is adjusted only by the short side dimension of the rectangular light-shielding film, so that a contact hole pattern having a size near the resolution limit or a contact hole pattern can be obtained.
  • a contact hole pattern having a size near the resolution limit or a contact hole pattern can be obtained.
  • a dense region there is a fear that the dimensional variation of the contact hole becomes large. This problem will be specifically described below.
  • FIG. 10 is a diagram showing the relationship between the pitch of the contact hole pattern and MEEF (Mask Error Factor) when a contact hole is formed using one mask.
  • MEEF is a parameter indicating how much the resist pattern changes when the dimension on the mask changes by 1 nm. The smaller the MEEF, the better the pattern transferability.
  • the MEEF when the line and space is 1: 1 and the pitch is 150 nm is 2.7, whereas the MEEF when the pitch is 110 nm is 8.4. is there. This indicates that MEEF increases as the pitch becomes smaller, and the pattern transferability deteriorates.
  • FIG. 11 shows the relationship between the contact hole pitch and MEEF when the contact hole is formed using two masks as in the method shown in FIG. 9, and the contact hole pitch and the latent image. It is a figure which shows the relationship with contrast, respectively.
  • the MEEF is 1 and 2.3, respectively, and the MEEF is improved from the result shown in FIG. I understand that.
  • the pitch is formed at 100 nm (hole size is 50 nm)
  • MEEF is 50, which is greatly deteriorated compared to the case where the pitch is 110 nm.
  • the latent image contrast when the pitch is 100 nm is 0.284, which is much worse than that when the pitch is 110 nm (0.684).
  • FIG. 12 is a diagram showing the relationship between the dimension of the isolated contact hole and MEEF when the contact hole is formed using two masks.
  • the MEEF when the dimension of the isolated contact hole is 50 nm is 2.3, whereas the MEEF when the dimension of the contact hole is 40 nm is 10. As a result, it can be seen that even in an isolated contact hole pattern, MEEF increases as the dimensions are reduced.
  • the sizes of both ends of the long side and the short side of the mask are set.
  • the size of the mask is controlled by adjusting the size of the end of the short side of the mask. Therefore, the transferability of the pattern is directly connected and deteriorated due to the deterioration of MEEF.
  • MEEF deteriorates, more accurate mask processing and mask dimension correction are required.
  • it is technically difficult to create a high-accuracy mask which increases the time required for mask creation and the associated increase in cost. It becomes a problem. As described above, there is a limit in correcting the pattern dimension on the mask side, and it is difficult to improve the accuracy of the mask dimension.
  • the pattern layout is a regular and uniform pattern pitch, such as a cell layout used in a DRAM (Dynamic Random Access Memory), for example, exposure amount adjustment and simple mask dimension correction As a result, the hole dimensions could be formed uniformly.
  • a random pattern pitch such as SRAM (Static Random Access Memory) used in a logic LSI (Large Scale Integration)
  • the pattern layout is a dense part, a sparse part, and an intermediate part thereof. Are mixed. In such a case, it is necessary to adjust the exposure amount according to any one of the densities and to perform dimension control of the other density portions by mask correction.
  • the exposure amount is adjusted in accordance with a dense portion, and mask correction is performed from an intermediate portion to a sparse portion (isolated portion). For this reason, a pattern with good dimensional accuracy can be formed in a dense portion, but there has been a problem that the dimensional accuracy is deteriorated when MEEF deteriorates in an intermediate density portion or an isolated portion.
  • the mask correction is performed only on the short side of the rectangular pattern made of the light-shielding film. There is a risk that the mask cannot be corrected.
  • a regular pattern such as a DRAM can be designed manually, but in the case of a random pattern such as an SRAM, pattern design is difficult due to the relationship between man-hours and time. It is not easy to form a contact hole using a sheet mask.
  • an object of the present invention is to provide a mask pattern generation method and a pattern formation method that have good pattern transferability and allow high-precision dimension control even when the hole size is reduced. .
  • a mask pattern generation method for forming a hole, and includes a first rectangle comprising a hole pattern and having a Y axis as a major axis direction.
  • A generating a pattern of the first layer on the first layer, and
  • B generating a second pattern made of a rectangle including the hole pattern and having the X axis as the major axis direction on the second layer;
  • the first layer and the second layer are overlapped so that the hole pattern provided in the first layer and the hole pattern provided in the second layer coincide with each other,
  • step (D) a step of extracting at least one of the long side of the first pattern and the long side of the second pattern and extracting the overlapping part to match the hole pattern after extracting the overlapping part;
  • step (e) of calculating the dimensions of the holes formed using the first layer and the second layer, and after the step (e), the first And a step (f) of correcting at least one of the long side of the pattern and the long side of the second pattern.
  • the length of the short sides of the first pattern and the second pattern is corrected by correcting the length of at least one of the long sides of the first pattern and the second pattern in the step (f).
  • the transferability of the hole pattern formed using the first pattern and the second pattern can be controlled with high accuracy. Therefore, if the mask pattern generation method of the present invention is used, a hole pattern can be formed with high dimensional accuracy without increasing the MEEF of the hole pattern even if the mask pattern is miniaturized. It is possible to form a hole having the dimensions of the resist substrate.
  • the pattern forming method of the present invention is a pattern forming method for forming a hole pattern in a resist film, wherein the first pattern including the hole pattern and having a rectangle with the Y axis as the major axis direction is a first pattern.
  • a step (a) for generating in the first layer a step (b) for generating in the second layer a second pattern comprising a rectangle including the hole pattern and having the X axis as the major axis direction, and the first The first layer and the second layer are overlapped so that the hole pattern provided in the layer and the hole pattern provided in the second layer coincide with each other,
  • the substrate on which the negative resist film is provided is the first After the step (i) of transferring the first pattern to the negative resist film by exposing using a mask, and after the step (g) and the step (h), the substrate is moved to the second resist film. Step (j) of transferring the second pattern to the negative resist film by exposure using a mask, and developing the negative resist film after the steps (i) and (j) Thus, the method includes the step (k) of forming the hole pattern in the negative resist film.
  • the mask pattern can be formed with high dimensional accuracy. As a result, it is possible to form fine holes having desired dimensions on the resist substrate with good control using the mask pattern.
  • the mask pattern dimension can be controlled with high precision even if the mask pattern is miniaturized, so that a mask pattern capable of forming a hole having a desired dimension can be generated relatively easily. Can do. Further, according to the pattern forming method of the present invention, fine holes can be formed on the resist substrate with good control using the mask pattern.
  • FIGS. 1A and 1B are diagrams showing a first pattern and a second pattern, respectively, in the first embodiment of the present invention
  • FIG. 1C is related to the first embodiment. It is a figure which shows the variation
  • FIG. 2 is a simulation result showing the pitch dependence of the hole size when the long side dimension of the conventional mask pattern is made constant.
  • FIG. 3 is a simulation result showing the pitch dependence of the hole size when the dimension of the long side of the mask pattern according to the present invention is changed.
  • FIG. 4 is a simulation result showing the pitch dependence of the mask dimension according to the present invention.
  • FIG. 5 is a flowchart illustrating a mask pattern generation method according to the first embodiment.
  • FIGS. 1A and 1B are diagrams showing a first pattern and a second pattern, respectively, in the first embodiment of the present invention
  • FIG. 1C is related to the first embodiment. It is a figure which shows the variation
  • FIGS. 6A to 6J are plan views showing a mask pattern generation method according to the first embodiment.
  • FIGS. 7A to 7G are plan views showing the pattern forming method according to the first embodiment.
  • FIGS. 8A to 8G are plan views showing a modification of the mask pattern generation method according to the first embodiment.
  • FIGS. 9A to 9E are plan views showing a conventional method for forming a fine contact hole pattern.
  • FIG. 10 is a diagram showing the relationship between the pitch of the contact hole pattern and MEEF when one conventional mask is used.
  • FIG. 11 is a diagram showing the relationship between the pitch of the contact hole pattern and MEEF when two conventional masks are used.
  • FIG. 12 is a diagram showing the relationship between the size of an isolated contact hole and MEEF when two conventional masks are used.
  • FIG. 1A is a diagram illustrating a first pattern according to the present embodiment
  • FIG. 1B is a diagram illustrating a second pattern according to the present embodiment
  • FIG. 1C is a diagram showing the amount of change in hole size with respect to the long side dimension of the mask pattern according to the present embodiment.
  • the first pattern of the present embodiment is made of a rectangle having, for example, the Y axis as the major axis direction.
  • the second pattern of the present embodiment is a rectangular pattern whose major axis is the X axis orthogonal to the major axis of the first pattern.
  • FIG. 1 (c) shows the hole dimensions obtained after exposure when the short side dimensions of the first pattern and the second pattern are set to 40 nm, 45 nm, and 50 nm, respectively, and the long side dimensions are changed. Is a result of calculation by simulation. The difference between the calculated hole size and the desired hole size (target size) is shown on the vertical axis as the amount of change in the hole size.
  • the amount of change in the hole size with respect to the long side dimension is larger than when the target dimension is set to 45 nm and 50 nm. .
  • the inventor of the present application has found that the hole size varies by changing not only the short side but also the long side dimension of the mask pattern. If the target dimension is relatively large as in the conventional case, the hole size does not change so much even if the long side dimension is changed, but if the target dimension is sufficiently small due to miniaturization of the semiconductor device, the long side dimension The change is thought to have a significant effect on the hole size. From the results shown in FIG. 1 (c), it can be seen that the variation of the hole dimension can be controlled by setting the dimension of the long side in the range of 250 to 400 nm, for example. The dimensions can be arbitrarily set even outside the above range.
  • FIG. 2 is a simulation result showing the pitch dependence of the hole size when the long side dimension of the mask pattern is made constant.
  • FIG. 3 is a simulation result showing the pitch dependence of the hole size when the dimension of the long side of the mask pattern is changed. 2 and 3, the horizontal axis indicates the hole pattern interval (Pitch), and the vertical axis indicates the hole size. In both figures, the hole dimensions are plotted when the dimension of the short side of the mask pattern is changed in increments of 5 nm in the range of 50 nm to 110 nm.
  • the hole dimension varies depending on the pitch.
  • This is a general phenomenon called an optical proximity effect (OPE).
  • OPE optical proximity effect
  • a difference in pattern conversion at the time of exposure varies depending on the density of the mask pattern, so that a dimensional variation and a shape change occur between the mask pattern for exposure and the pattern obtained on the substrate.
  • the mask grid of the mask pattern is set to a value that balances both the accuracy of correction and the manufacturing cost.
  • the results shown in FIGS. 2 and 3 are results when the dimension of the short side of the mask pattern is changed in increments of 5 nm, that is, when the mask grid is set to 5 nm.
  • the desired hole dimension (target dimension) is set to 45 nm.
  • FIG. 2 and 3 in FIG. 2, one hole size data is obtained for one short side dimension, whereas in FIG. 3, seven holes are obtained for one short side dimension.
  • Dimension data is obtained.
  • FIG. 3 since the dimension of the long side of the mask pattern is changed in increments of 50 nm in the range of 100 to 400 nm, seven types of masks having different long side dimensions with respect to one short side dimension. A pattern is generated. With respect to these seven types of mask patterns, the data of the seven types of hole dimensions are obtained, and it can be seen that the hole dimensions also change in accordance with the long side dimensions of the mask pattern. From the above results, it can be said that the hole dimensions can be controlled with higher accuracy by correcting the short side and long side dimensions together, rather than correcting only the short side of the mask pattern.
  • FIG. 4 is a simulation result showing the pitch dependence of the hole size according to the present invention.
  • the pitch is changed in the range of 110 nm to 990 nm, and the size of the 45 nm diameter hole is evaluated in the region where the hole pattern is isolated from the region where the hole patterns are dense.
  • FIG. 4 shows the results when the long side dimension of the mask pattern can be set in increments of 25 nm.
  • the desired hole dimension is set to 45 nm.
  • FIG. 5 is a flowchart showing a mask pattern generation method according to this embodiment.
  • FIGS. 6A to 6J are plan views showing the mask pattern generation method of this embodiment.
  • a method of generating a contact hole pattern (hole pattern) having a random pattern pitch, which is used in a logic LSI is given as an example.
  • the density of the hole pattern of the present embodiment is high at the center and small at the ends.
  • W is a desired dimension of a hole formed using the hole pattern of the present embodiment.
  • the hole pattern is divided into layer Y and layer X as shown in S1 to S3 of FIG.
  • the length of the long side of the first pattern formed on the layer Y is Wy
  • the length of the long side of the second pattern formed on the layer X is Wx
  • N is set to an arbitrary real number of 1 or more.
  • a first pattern and a second pattern each formed of a rectangle are formed.
  • the layer Y includes a hole pattern and has a first pattern that is a rectangle having the Y axis as the major axis direction.
  • the layer X has a second pattern that includes a hole pattern and is formed of a rectangle having the X axis as the major axis direction.
  • the layer Y and the layer X are overlapped so that the hole pattern provided in the layer Y and the hole pattern provided in the layer X coincide with each other.
  • a combined pattern is formed by combining the above pattern and the second pattern. This synthetic pattern is shown in FIG.
  • an overlapping portion where the first pattern and the second pattern overlap is extracted from the composite pattern.
  • FIG. 6F at least one of the long side of the first pattern and the long side of the second pattern is shortened, and the extracted overlapping portion is a region different from the hole pattern. By eliminating, the overlapping part matches the hole pattern.
  • FIGS. 6 (e) and 6 (g) the first pattern and the second pattern after the correction are compared with those in FIGS. 6 (b) and 6 (d). The length of the long side of the part is reduced.
  • the length of the short side of the first pattern provided in the layer Y by optical simulation so that the dimension of the contact hole after exposure approaches a desired dimension. And the length of the short side of the first pattern is corrected.
  • the length of the short side of the second pattern provided in layer X is calculated by optical simulation so that the dimension of the contact hole after exposure approaches the desired dimension. The length of the short side of the second pattern is corrected.
  • the length of the long side of the first pattern is calculated by optical simulation so that the size of the contact hole becomes a desired size, and the first pattern Correct the length of the long side.
  • the length of the long side of the second pattern is calculated by optical simulation so that the contact hole has a desired size, and the length of the long side of the second pattern is calculated. Correct the thickness.
  • the second layer provided with the pattern is overlapped to form a synthesized pattern in which the first pattern and the second pattern are synthesized. This synthetic pattern is shown in FIG.
  • an overlapping portion where the first pattern and the second pattern overlap is extracted from the composite pattern shown in FIG. 6 (i), and it is confirmed whether or not there is a region different from the hole pattern in the extracted overlapping portion.
  • at least one of the long side of the first pattern and the long side of the second pattern is shortened so that the overlapping portion matches the hole pattern.
  • a feature of the mask pattern generation method of the present embodiment is that the lengths of the long side of the first pattern and the long side of the second pattern are corrected in the steps shown in S8 and S9 of FIG. According to this method, by correcting not only the short side but also the long side length of the first pattern and the second pattern, a contact hole pattern with good transferability and controllable with high accuracy is generated. be able to. Therefore, if the mask pattern generation method of this embodiment is used, the contact hole pattern can be formed with good accuracy without increasing the MEEF of the contact hole pattern even if it is miniaturized. It is possible to form a contact hole having a desired dimension in the resist substrate using the.
  • an overlapping portion where the first pattern and the second pattern overlap is extracted from the composite pattern in the steps shown in S4 and S10 of FIG. Among them, the length of at least one of the long sides of the first pattern and the second pattern is shortened so that there is no region different from the hole pattern. By this step, it is possible to suppress the overlapping of rectangular patterns in a region where the contact holes are dense, and it is possible to prevent unnecessary contact holes from being formed other than the desired position.
  • a desired mask can be relatively easily applied not only to a regularly arranged pattern such as a DRAM but also to a randomly arranged pattern such as an SRAM. Patterns can be created with good accuracy, and miniaturization of all semiconductor devices can be realized.
  • the first pattern and the second pattern are shown as patterns in which the desired hole dimension (W) is enlarged. Thereby, the first pattern and the second pattern can be created relatively easily.
  • the initial value of the length of the long side of the first pattern and the second pattern can be set to an appropriate value with N being an arbitrary real number.
  • the size of the contact hole is calculated by performing an optical simulation using a computer.
  • the present invention is not limited to this.
  • a desired size of the contact hole is obtained by using a comparison table in which the size of the contact hole formed from the first pattern and the second pattern having various dimensions is calculated in advance.
  • the dimension of each pattern may be set by extracting the dimension of each pattern in the case of being closest.
  • the lengths of the long side and the short side of the first pattern and the second pattern were calculated by performing an optical simulation using a computer. It is not limited.
  • the size of the contact hole formed from the first pattern and the second pattern having various dimensions can be set to the desired dimension of the contact hole by using a comparison table in which the respective dimensions are calculated in advance.
  • the dimension of each pattern may be set by extracting the dimension of each pattern when close.
  • the pattern forming method of the present embodiment uses the mask pattern generated by the above-described mask pattern generating method of the present embodiment to manufacture two masks, and uses the manufactured two masks to form a resist substrate. For example, a contact hole pattern is formed.
  • 7A to 7G are plan views showing the pattern forming method of this embodiment.
  • a first photomask 1 used for the first exposure is prepared.
  • a first rectangular pattern 2 made of a light shielding film is formed on the first photomask 1.
  • the exposure light is blocked or attenuated by the light shielding film, while in the portion where the first rectangular pattern 2 is not formed, the light is completely transmitted.
  • the first rectangular pattern 2 is used to transfer the contact hole pattern with a desired dimension like the first pattern generated by the mask pattern generation method of the present embodiment shown in FIG.
  • Each is composed of a short side and a long side provided with predetermined dimensions.
  • the first rectangular pattern 2 is made of, for example, a chromium film that can completely block light or a molybdenum silicide film that attenuates light.
  • the first photomask 1 is any one of a binary type, a halftone phase shift type, and an edge enhancement type phase shift mask.
  • the first exposure is performed on the substrate provided with the negative resist film 5 using the first photomask 1.
  • a first latent image 6 to which the first rectangular pattern 2 is transferred is formed on the negative resist film 5.
  • exposure is performed using the first illumination stop 3 shown in FIG.
  • the first illumination stop 3 has two openings 4 provided at positions facing each other along the X-axis direction.
  • the opening 4 has a trapezoidal shape surrounded by two arcs and two straight lines, and each opening 4 extends in a direction parallel to the Y axis.
  • the opening 4 is provided near the outer periphery of the illumination stop 3.
  • the short side of the first rectangular pattern 2 needs to be transferred to the negative resist film 5 with high dimensional accuracy, but the dimensional accuracy of the long side is not so required as compared to the short side. Therefore, by using the first illumination stop 3, only the diffracted light that has passed through the short side direction of the first rectangular pattern 2 can be selectively transmitted, and the first rectangular pattern 2 can be further improved in contrast. It can be formed on the negative resist film 5.
  • a second photomask 8 used for the second exposure is prepared.
  • a second rectangular pattern 7 made of a light shielding film is formed on the second photomask 8.
  • the second rectangular pattern 7 is used to transfer the contact hole pattern with a desired dimension, like the second pattern generated by the mask pattern generating method of the present embodiment shown in FIG. It is composed of a short side and a long side provided with desired dimensions.
  • the major axis of the second rectangular pattern 7 extends in a direction orthogonal to the major axis of the first rectangular pattern 2.
  • the second rectangular pattern 7 is made of, for example, a chromium film that can completely block light, or a molybdenum silicide film that attenuates light.
  • the second photomask 8 is any one of a binary type, a halftone phase shift type, and an edge enhancement type phase shift mask.
  • the second photomask 8 is used for the second resist film 5 to which the first latent image 6 has been transferred. Exposure. At this time, overlay exposure is performed using the second photomask 8 so that the position does not shift with respect to the first latent image 6. By this step, a second latent image 12 to which the second rectangular pattern 7 is transferred is further formed on the negative resist film 5, and the first latent image 6 and the second latent image 12 intersect. Intersection 11 is formed.
  • exposure is performed using the second illumination stop 10 shown in FIG.
  • the second illumination stop 10 has two openings 9 provided at positions facing each other along the Y-axis direction.
  • the opening 9 has a trapezoidal shape surrounded by two arcs and two straight lines, and each opening extends parallel to the X axis.
  • the opening 9 is provided near the outer periphery of the illumination stop 10.
  • the substrate on which the negative resist film 5 is provided is subjected to a positive development process.
  • a negative resist when used, a portion exposed to light becomes a development insoluble portion, and only a crossing portion 11 that has never been exposed to light becomes a development soluble portion. Accordingly, the contact hole 13 is formed in the negative resist film 5 by the intersection 11 being dissolved by the developer.
  • the contact hole 13 can be formed in the negative resist film 5 using the mask pattern of this embodiment.
  • a positive resist can be used instead of using the negative resist.
  • the contact hole 13 can be formed in the resist film.
  • the first rectangular pattern 2 and the second rectangular pattern 7 shown in FIGS. 7A and 7D are formed with high dimensional accuracy. It becomes possible to form the contact hole 13 shown in FIG.
  • the first photomask 1 and the second photomask 8 provided with one rectangular pattern are given as an example.
  • the present invention is not limited, and a mask in which a plurality of line and space patterns are formed as in the first pattern and the second pattern shown in FIGS. 6 (h) and 6 (j), respectively, may be used. Good.
  • FIGS. 8A to 8G are plan views showing modifications of the mask pattern generation method of the present embodiment.
  • a mask pattern generation method for forming a rectangular contact hole will be described.
  • the modified example of the mask pattern generation method of the present embodiment is the same as the mask pattern generation method of the present embodiment shown in FIGS. 7A to 7G except for some processes. These parts will be described briefly.
  • a first photomask 1 used for the first exposure is prepared.
  • the first photomask has the same configuration as the photomask shown in FIG.
  • FIGS. 8B and 8C the first exposure is performed on the substrate provided with the negative resist film 5 using the first photomask 1.
  • exposure is performed using the first illumination stop 3 as shown in FIG.
  • a first latent image 6 to which the first rectangular pattern is transferred is formed on the negative resist film 5.
  • a second photomask 8a used for the second exposure is prepared.
  • a third rectangular pattern 7a made of a light shielding film is formed on the second photomask 8a.
  • the third rectangular pattern 7 a has a long axis extending in a direction perpendicular to the long axis of the first rectangular pattern 2 and has a short side dimension larger than the short side of the second rectangular pattern 7.
  • the third rectangular pattern 7a is different from the second rectangular pattern 7 shown in FIG. 7D in that the dimension of the short side is larger than the short side of the second rectangular pattern 7.
  • the second photomask 8a is used to apply the second time to the negative resist film 5 to which the first latent image 6 has been transferred. Exposure. At this time, overlay exposure is performed using the second photomask 8a so that the position does not shift with respect to the first latent image 6. At this time, the second illumination stop 10 shown in FIG. By this step, a second latent image 12a to which the third rectangular pattern 7a is transferred is further formed on the negative resist film 5, and the first latent image 6 and the second latent image 12a intersect each other. Intersection 11a is formed.
  • the intersecting portion 11a has a rectangular shape.
  • the dimension of the short side of the third rectangular pattern 7a provided on the second photomask 8a is made larger than that of the first rectangular pattern 2.
  • the contact hole pattern made of a rectangle can be easily formed with good dimensional accuracy. Even when a rectangular pattern having a shape such as the third rectangular pattern 7a is used, both the short side and the long side of the mask pattern are corrected by using the mask pattern generation method of the present invention described above. In FIG. 8G, a mask pattern capable of forming a rectangular pattern having a desired dimension can be generated.
  • the mask pattern generation method and pattern formation method of the present invention are useful for miniaturization of semiconductor devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

A method of generating a mask pattern is provided with a process (a) of generating, in a first layer, first pattern consisting of rectangles with Y-axis as the long axis direction; a process (b) of generating, in a second layer, second pattern consisting of rectangles with X-axis as the long axis direction; a process (c) of forming a synthetic pattern wherein the first pattern and the second pattern are synthesized; a process (d) of extracting superposed portions of the first pattern and the second pattern from the synthetic pattern and shortening the length of the long side of at least the first pattern or the second pattern; and a process (e) of calculating the dimensions of holes formed using the first layer and the second layer. After the process (e), a process (f) of correcting the length the long side of at least the first pattern or the second pattern is performed.

Description

マスクパターンの生成方法及びパターン形成方法Mask pattern generation method and pattern formation method
 本明細書に記載された技術は、コンタクトホールなどを形成するためのマスクパターンの生成方法と、該マスクパターンを用いたパターン形成方法に関する。 The technique described in the present specification relates to a method for generating a mask pattern for forming a contact hole and the like, and a pattern forming method using the mask pattern.
 半導体デバイスの微細化が進展するにつれ、従来技術の延長ではパターン形成が困難な状況が訪れつつある。具体的には、パターンサイズを縮小する手法として、光リソグラフィに用いる光源の短波長化、レンズの大口径化、及びレジストの高性能化などが用いられてきた。現在はそれらの手法に加えて、縮小投影レンズと基板との間を水で満たすことでNA(レンズ開口数)が1以上を可能にする、液浸リソグラフィが実用化されつつある。このような技術により微細化は進展してきたが、さらなる微細化を進めるにあたって、前述以外の技術を組み合わせる試みが提案されている。コンタクトホールについては、レジストホールを熱により縮小させるサーマルフロープロセスや、レジストホール側壁にケミカル材料を反応させてホール径を縮小させる、RELACS(Resolution Enhancement Lithography Assisted by Chemical Shrink)技術が提案されている。 As the miniaturization of semiconductor devices progresses, it is becoming difficult to form patterns with the extension of the prior art. Specifically, as a technique for reducing the pattern size, shortening the wavelength of a light source used in photolithography, increasing the diameter of a lens, and improving the performance of a resist have been used. Currently, in addition to these methods, immersion lithography is being put into practical use in which the NA (lens numerical aperture) can be 1 or more by filling the space between the reduction projection lens and the substrate with water. Although miniaturization has progressed by such a technique, an attempt to combine techniques other than those described above has been proposed for further miniaturization. As for contact holes, a thermal flow process in which the resist hole is reduced by heat and a RELACS (Resolution Enhancement-Lithography-Assisted-by Chemical-Shrink) technique in which a chemical material is reacted with the sidewall of the resist hole to reduce the hole diameter have been proposed.
 しかし、これらの技術はホール径を縮小させることはできるが、最小ピッチを小さくすることはできない。解像できる最小ピッチは、光学理論により限界点が示されている。ここで、解像度はレーリーの式で示され、R=k1×λ/NA(R:解像寸法、λ:光源波長、NA:レンズ開口数、k1:プロセスファクタ)である。例えば、光源波長λ=193nm、NA=1.07、Quasar20°σout0.97/σin0.82の条件において、6%透過ハーフトーン位相シフトマスクを用いて、ホールサイズ70nm、ピッチ140nmのコンタクトホールを形成すると、潜像コントラストは0.651となる。この数値は、パターンを解像するのに十分な値を示している。なお、この時、プロセスファクタ(k1)は0.388である。次に、同一の照明条件において、ホールサイズ60nm、ピッチ120nmのコンタクトホールを形成すると、潜像コントラストは0.162となる。この値は、パターン解像に不十分である。なお、この時、k1は0.333である。このようにしてコンタクトホールの解像に必要なk1を計算すると、0.37程度と見積もることができる。 However, although these techniques can reduce the hole diameter, the minimum pitch cannot be reduced. The minimum pitch that can be resolved is limited by optical theory. Here, the resolution is expressed by the Rayleigh equation, and is R = k1 × λ / NA (R: resolution size, λ: light source wavelength, NA: lens numerical aperture, k1: process factor). For example, contact holes having a hole size of 70 nm and a pitch of 140 nm are formed using a 6% transmission halftone phase shift mask under the conditions of the light source wavelength λ = 193 nm, NA = 1.07, and Quasar20 ° σout0.97 / σin0.82. Then, the latent image contrast becomes 0.651. This numerical value indicates a value sufficient for resolving the pattern. At this time, the process factor (k1) is 0.388. Next, when contact holes having a hole size of 60 nm and a pitch of 120 nm are formed under the same illumination conditions, the latent image contrast is 0.162. This value is insufficient for pattern resolution. At this time, k1 is 0.333. When k1 necessary for resolution of the contact hole is calculated in this way, it can be estimated to be about 0.37.
 一方、ラインアンドスペースパターンにおいて同様に計算すると、光源波長λ=193nm、NA=1.07、Cross Quasar20°、σout0.97/σin0.82、XY偏光照明の条件において、6%透過ハーフトーン位相シフトマスクを用いて、60nmラインでピッチ120nmのコンタクトホールを形成すると、潜像コントラストは0.617、k1は0.333となる。以上より、同じk1値であっても、潜像コントラストはラインアンドスペースパターンを用いた方が高いことがわかる。この特性を利用して、より微細なピッチで設けられるコンタクトホールを2つのラインパターンで二重露光して形成する方法が提案されている(例えば特許文献1参照)。 On the other hand, when the same calculation is performed for the line and space pattern, 6% transmission halftone phase shift is performed under the conditions of the light source wavelength λ = 193 nm, NA = 1.07, CrossCQuasar 20 °, σout 0.97 / σin 0.82, and XY polarization illumination. When contact holes with a pitch of 120 nm are formed on a 60 nm line using a mask, the latent image contrast is 0.617 and k1 is 0.333. From the above, it can be seen that, even with the same k1 value, the latent image contrast is higher when the line and space pattern is used. Using this characteristic, a method has been proposed in which contact holes provided with a finer pitch are formed by double exposure with two line patterns (see, for example, Patent Document 1).
 以下、図9を参照しながら、2枚のマスクを用いた微細なコンタクトホールパターンの形成方法について説明する。図9(a)~(e)は、微細なコンタクトホールパターンの形成方法を示す平面図である。 Hereinafter, a method for forming a fine contact hole pattern using two masks will be described with reference to FIG. FIGS. 9A to 9E are plan views showing a method for forming a fine contact hole pattern.
 まず、図9(a)に示す工程で、第1回目の露光に使用する第1のフォトマスク51を準備する。第1のフォトマスク51には、第1の長方形遮光膜52が形成されている。この第1の長方形遮光膜52により露光光が遮断もしくは減衰される一方で、第1の長方形遮光膜52が形成されていない部分は光が完全に透過する。第1の長方形遮光膜52は、レジスト基板に所望の寸法でコンタクトホールパターン転写するため所定の寸法で形成された短辺と、該短辺に対して垂直方向に延びる長辺とから構成されている。なお、第1の長方形遮光膜52は、例えば完全に光を遮光できるクロム膜、又は、光を減衰させるモリブデンシリサイド膜などからなる。 First, in the step shown in FIG. 9A, a first photomask 51 used for the first exposure is prepared. A first rectangular light shielding film 52 is formed on the first photomask 51. While the exposure light is blocked or attenuated by the first rectangular light shielding film 52, the light is completely transmitted through the portion where the first rectangular light shielding film 52 is not formed. The first rectangular light shielding film 52 is composed of a short side formed with a predetermined dimension for transferring a contact hole pattern to a resist substrate with a desired dimension, and a long side extending in a direction perpendicular to the short side. Yes. Note that the first rectangular light shielding film 52 is made of, for example, a chromium film that can completely shield light, or a molybdenum silicide film that attenuates light.
 次に、図9(b)に示す工程で、第1のフォトマスク51を用いてレジスト基板53に対して第1回目の露光を行う。これにより、レジスト基板53には、長方形パターンが転写された第1の潜像54が形成される。 Next, in the step shown in FIG. 9B, the first exposure is performed on the resist substrate 53 using the first photomask 51. As a result, a first latent image 54 to which the rectangular pattern is transferred is formed on the resist substrate 53.
 次に、図9(c)に示す工程で、第2回目の露光に使用する第2のフォトマスク56を準備する。第2のフォトマスク56には、第2の長方形遮光膜55が形成されている。第2の長方形遮光膜55は、長辺が第1の長方形遮光膜52の長辺に対して垂直となるように配置されている。 Next, in the step shown in FIG. 9C, a second photomask 56 used for the second exposure is prepared. A second rectangular light shielding film 55 is formed on the second photomask 56. The second rectangular light shielding film 55 is arranged such that the long side is perpendicular to the long side of the first rectangular light shielding film 52.
 続いて、図9(d)に示すように、第2のフォトマスク56を用いてレジスト基板53に対して第2回目の露光を行う。このとき、レジスト基板53に形成された第1の潜像54に対して位置がずれないように、第2のフォトマスク56を用いて重ね合わせ露光を行う。本工程により、レジスト基板53には、長方形パターンが転写された第2の潜像57がさらに形成され、第1の潜像54と第2の潜像57とが交差する交差部58が形成される。 Subsequently, as shown in FIG. 9D, a second exposure is performed on the resist substrate 53 using the second photomask 56. At this time, overlay exposure is performed using the second photomask 56 so that the position does not shift with respect to the first latent image 54 formed on the resist substrate 53. By this step, the second latent image 57 to which the rectangular pattern is transferred is further formed on the resist substrate 53, and an intersection 58 where the first latent image 54 and the second latent image 57 intersect is formed. The
 次に、図9(e)に示すように、レジスト基板53を現像処理する。ここで、ネガ型レジストを用いた場合、光が当たった部分は現像不溶部となり、一度も光が当たっていない交差部58だけが現像可溶部となる。従って、交差部58が現像液により溶けることで、コンタクトホール59がレジスト基板53に形成される。以上の方法により、従来では、2枚のマスクを用いて2回露光することで、コンタクトホールを形成することができる。
特開平5-326358号公報
Next, as shown in FIG. 9E, the resist substrate 53 is developed. Here, when a negative resist is used, a portion exposed to light becomes a development insoluble portion, and only a crossing portion 58 that has never been exposed to light becomes a development soluble portion. Accordingly, the contact hole 59 is formed in the resist substrate 53 by melting the intersecting portion 58 with the developer. According to the above method, conventionally, a contact hole can be formed by performing exposure twice using two masks.
JP-A-5-326358
 しかしながら、従来のコンタクトホールの形成方法によると、コンタクトホールのサイズ調整を長方形遮光膜の短辺の寸法でのみ行っているので、解像限界近くのサイズであるコンタクトホールパターンや、コンタクトホールパターンが密集した領域では、コンタクトホールの寸法ばらつきが大きくなる恐れがあった。この不具合について、以下、具体的に説明する。 However, according to the conventional contact hole formation method, the contact hole size is adjusted only by the short side dimension of the rectangular light-shielding film, so that a contact hole pattern having a size near the resolution limit or a contact hole pattern can be obtained. In a dense region, there is a fear that the dimensional variation of the contact hole becomes large. This problem will be specifically described below.
 図10は、1枚のマスクを用いてコンタクトホールを形成する場合のコンタクトホールパターンのピッチとMEEF(Mask Error Enhancement Factor)との関係を示す図である。MEEFは、マスク上の寸法が1nm変動した場合にレジストパターンがどの程度変動するかを表すパラメータであり、通常小さい程パターン転写性に優れることを示す。なお、図10は、照明条件としてNA=1.07、輪帯照明、σout0.85/σin0.57、XY偏光を用いた場合の結果である。 FIG. 10 is a diagram showing the relationship between the pitch of the contact hole pattern and MEEF (Mask Error Factor) when a contact hole is formed using one mask. MEEF is a parameter indicating how much the resist pattern changes when the dimension on the mask changes by 1 nm. The smaller the MEEF, the better the pattern transferability. FIG. 10 shows the results when NA = 1.07, annular illumination, σout 0.85 / σin 0.57, and XY polarized light are used as illumination conditions.
 図10に示すように、ラインアンドスペースを1:1、ピッチを150nmで形成した場合のMEEFは、2.7であるのに対し、ピッチを110nmで形成した場合のMEEFは、8.4である。これは、ピッチが小さくなるに従いMEEFが増大し、パターン転写性が悪くなることを示している。 As shown in FIG. 10, the MEEF when the line and space is 1: 1 and the pitch is 150 nm is 2.7, whereas the MEEF when the pitch is 110 nm is 8.4. is there. This indicates that MEEF increases as the pitch becomes smaller, and the pattern transferability deteriorates.
 また、図11は、上述の図9に示す方法のように、2枚のマスクを用いてコンタクトホールを形成する場合のコンタクトホールのピッチとMEEFとの関係、及び、コンタクトホールのピッチと潜像コントラストとの関係をそれぞれ示す図である。なお、図11は、照明条件としてNA=1.07、Dipole照明開口角40°、σout0.8/σin0.6、偏光照明を用いた場合の結果である。 Further, FIG. 11 shows the relationship between the contact hole pitch and MEEF when the contact hole is formed using two masks as in the method shown in FIG. 9, and the contact hole pitch and the latent image. It is a figure which shows the relationship with contrast, respectively. FIG. 11 shows the results when NA = 1.07, Dipole illumination aperture angle 40 °, σout 0.8 / σin 0.6, and polarized illumination are used as illumination conditions.
 図11に示すように、ラインアンドスペースを1:1、ピッチを150nm及び110nmで形成した場合のMEEFは、それぞれ1及び2.3であり、図10に示す結果よりもMEEFが改善していることがわかる。しかしながら、ピッチを100nm(ホールサイズを50nm)で形成した場合、MEEFは50となりピッチ110nmの場合と比べて大きく悪化している。また、ピッチ100nmの場合の潜像コントラストは0.284であり、ピッチ110nmの場合(0.684)と比べて大きく悪化している。 As shown in FIG. 11, when the line and space is 1: 1 and the pitch is 150 nm and 110 nm, the MEEF is 1 and 2.3, respectively, and the MEEF is improved from the result shown in FIG. I understand that. However, when the pitch is formed at 100 nm (hole size is 50 nm), MEEF is 50, which is greatly deteriorated compared to the case where the pitch is 110 nm. Further, the latent image contrast when the pitch is 100 nm is 0.284, which is much worse than that when the pitch is 110 nm (0.684).
 続いて、図12は、2枚のマスクを用いてコンタクトホールを形成する場合の孤立したコンタクトホールの寸法とMEEFとの関係を示す図である。なお、図12に示す結果は、照明条件としてNA=1.07、Dipole照明開口角40°、σout0.8/σin0.6、偏光照明を用いた場合の結果である。 Subsequently, FIG. 12 is a diagram showing the relationship between the dimension of the isolated contact hole and MEEF when the contact hole is formed using two masks. The results shown in FIG. 12 are the results when NA = 1.07, Dipole illumination aperture angle 40 °, σout 0.8 / σin 0.6, and polarized illumination are used as illumination conditions.
 図12に示すように、孤立したコンタクトホールの寸法が50nmである場合のMEEFが2.3であるのに対し、コンタクトホールの寸法が40nmである場合のMEEFは10である。これにより、孤立したコンタクトホールパターンにおいても、寸法を微細化するにつれて、MEEFが増大してしまうことがわかる。 As shown in FIG. 12, the MEEF when the dimension of the isolated contact hole is 50 nm is 2.3, whereas the MEEF when the dimension of the contact hole is 40 nm is 10. As a result, it can be seen that even in an isolated contact hole pattern, MEEF increases as the dimensions are reduced.
 ここで、従来の方法では、コンタクトホールパターンのピッチの微細化や、マスクパターン寸法の微細化に対応するため、1枚のマスクを用いる場合はマスクの長辺及び短辺の両端部のサイズを調整することで、2枚のマスクを用いる場合はマスクの短辺の端部のサイズを調整することで、マスクの寸法を制御している。そのため、MEEFの悪化によりパターンの転写性が直結して悪化してしまう。MEEFが悪化した場合には、より高精度なマスク加工やマスク寸法の補正が必要となるが、高精度なマスクの作成は技術的に難しく、マスクの作成時間の増大とそれに伴うコストの増加が問題となる。このように、マスク側でパターン寸法を補正するには限界があり、マスク寸法の精度向上は難しくなっている。 Here, in the conventional method, in order to cope with the miniaturization of the pitch of the contact hole pattern and the miniaturization of the mask pattern dimension, when using one mask, the sizes of both ends of the long side and the short side of the mask are set. By adjusting, when two masks are used, the size of the mask is controlled by adjusting the size of the end of the short side of the mask. Therefore, the transferability of the pattern is directly connected and deteriorated due to the deterioration of MEEF. When MEEF deteriorates, more accurate mask processing and mask dimension correction are required. However, it is technically difficult to create a high-accuracy mask, which increases the time required for mask creation and the associated increase in cost. It becomes a problem. As described above, there is a limit in correcting the pattern dimension on the mask side, and it is difficult to improve the accuracy of the mask dimension.
 このような状況において、パターンレイアウトが例えば、DRAM(Dynamic Random Access Memory)で用いられるセル配置のような、規則的で均一なパターンピッチの場合は、露光量の調整及び簡易的なマスク寸法の補正によって、ホール寸法を均一に形成することができた。しかし、パターンレイアウトがロジックLSI(Large Scale Integration)で用いられるSRAM(Static Random Access Memory)等のような、ランダムなパターンピッチの場合は、パターンが密な部分、疎な部分、及びその中間の部分が混在する。このような場合、露光量をどれか1つの密度に合わせて調整するとともに、他の密度の部分の寸法制御をマスク補正で行う必要がある。通常は、密な部分に合わせて露光量を調整し、中間の部分から疎な部分(孤立した部分)にかけてマスク補正を行う。このため、密な部分では寸法精度が良好なパターンを形成できるが、密度が中間の部分や孤立した部分ではMEEFが悪化した場合に寸法精度が悪化する不具合が生じていた。 In such a situation, when the pattern layout is a regular and uniform pattern pitch, such as a cell layout used in a DRAM (Dynamic Random Access Memory), for example, exposure amount adjustment and simple mask dimension correction As a result, the hole dimensions could be formed uniformly. However, in the case of a random pattern pitch such as SRAM (Static Random Access Memory) used in a logic LSI (Large Scale Integration), the pattern layout is a dense part, a sparse part, and an intermediate part thereof. Are mixed. In such a case, it is necessary to adjust the exposure amount according to any one of the densities and to perform dimension control of the other density portions by mask correction. Normally, the exposure amount is adjusted in accordance with a dense portion, and mask correction is performed from an intermediate portion to a sparse portion (isolated portion). For this reason, a pattern with good dimensional accuracy can be formed in a dense portion, but there has been a problem that the dimensional accuracy is deteriorated when MEEF deteriorates in an intermediate density portion or an isolated portion.
 以上のように、従来の2枚マスクを用いた技術によれば、遮光膜からなる長方形パターンの短辺側でのみマスク補正を行っているため、パターン寸法が限界まで微細になると、MEEFの増加によりマスクを補正しきれない恐れがある。また、従来の技術では、DRAMのような規則的なパターンの場合は人の手で設計できるが、SRAMのようなランダムなパターンの場合、工数と時間の関係からパターン設計は困難であり、2枚マスクを用いてコンタクトホールを形成することは容易ではない。 As described above, according to the technique using the conventional two-mask, the mask correction is performed only on the short side of the rectangular pattern made of the light-shielding film. There is a risk that the mask cannot be corrected. In the conventional technique, a regular pattern such as a DRAM can be designed manually, but in the case of a random pattern such as an SRAM, pattern design is difficult due to the relationship between man-hours and time. It is not easy to form a contact hole using a sheet mask.
 上記に鑑み、本発明は、ホールの寸法が微細化されても、パターン転写性が良好で、高精度に寸法制御が可能なマスクパターンの生成方法およびパターン形成方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a mask pattern generation method and a pattern formation method that have good pattern transferability and allow high-precision dimension control even when the hole size is reduced. .
 上記目的を達成するため、本発明のマスクパターンの生成方法は、ホールを形成するためのマスクパターンの生成方法であって、ホールパターンを含み、Y軸を長軸方向とする長方形からなる第1のパターンを第1のレイヤに発生させる工程(a)と、前記ホールパターンを含み、X軸を長軸方向とする長方形からなる第2のパターンを第2のレイヤに発生させる工程(b)と、前記第1のレイヤに設けられた前記ホールパターンと、前記第2のレイヤに設けられた前記ホールパターンとが互いに一致するように前記第1のレイヤと前記第2のレイヤを重ね合わせて、前記第1のパターンと前記第2のパターンを合成させた合成パターンを形成する工程(c)と、前記合成パターンから、前記第1のパターンと前記第2のパターンとが重なる重なり部を抽出した後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを短くして前記重なり部を前記ホールパターンと一致させる工程(d)と、前記工程(d)の後、前記第1のレイヤと前記第2のレイヤを用いて形成されるホールの寸法を計算する工程(e)と、前記工程(e)の後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを修正する工程(f)とを備えている。 In order to achieve the above object, a mask pattern generation method according to the present invention is a mask pattern generation method for forming a hole, and includes a first rectangle comprising a hole pattern and having a Y axis as a major axis direction. (A) generating a pattern of the first layer on the first layer, and (b) generating a second pattern made of a rectangle including the hole pattern and having the X axis as the major axis direction on the second layer; The first layer and the second layer are overlapped so that the hole pattern provided in the first layer and the hole pattern provided in the second layer coincide with each other, The step (c) of forming a composite pattern obtained by combining the first pattern and the second pattern, and the first pattern and the second pattern overlap from the composite pattern. (D) a step of extracting at least one of the long side of the first pattern and the long side of the second pattern and extracting the overlapping part to match the hole pattern after extracting the overlapping part; After the step (d), the step (e) of calculating the dimensions of the holes formed using the first layer and the second layer, and after the step (e), the first And a step (f) of correcting at least one of the long side of the pattern and the long side of the second pattern.
 この方法によれば、工程(f)で第1のパターン及び第2のパターンの長辺の少なくとも一方の長さを修正することで、第1のパターン及び第2のパターンの短辺の長さのみを調整する従来の方法に比べて、第1のパターン及び第2のパターンを用いて形成されるホールパターンの転写性を高精度に制御することができる。そのため、本発明のマスクパターンの生成方法を用いれば、微細化されても、ホールパターンのMEEFを増加させることなく、寸法の精度良くホールパターンを形成することができ、該ホールパターンを用いて所望の寸法を有するホールをレジスト基板に形成することが可能となる。 According to this method, the length of the short sides of the first pattern and the second pattern is corrected by correcting the length of at least one of the long sides of the first pattern and the second pattern in the step (f). Compared with the conventional method of adjusting only the pattern, the transferability of the hole pattern formed using the first pattern and the second pattern can be controlled with high accuracy. Therefore, if the mask pattern generation method of the present invention is used, a hole pattern can be formed with high dimensional accuracy without increasing the MEEF of the hole pattern even if the mask pattern is miniaturized. It is possible to form a hole having the dimensions of the resist substrate.
 また、本発明のパターン形成方法は、レジスト膜にホールパターンを形成するためのパターン形成方法であって、前記ホールパターンを含み、Y軸を長軸方向とする長方形からなる第1のパターンを第1のレイヤに発生させる工程(a)と、前記ホールパターンを含み、X軸を長軸方向とする長方形からなる第2のパターンを第2のレイヤに発生させる工程(b)と、前記第1のレイヤに設けられた前記ホールパターンと、前記第2のレイヤに設けられた前記ホールパターンとが互いに一致するように前記第1のレイヤと前記第2のレイヤを重ね合わせて、前記第1のパターンと前記第2のパターンを合成させた合成パターンを形成する工程(c)と、前記合成パターンから、前記第1のパターンと前記第2のパターンとが重なる重なり部を抽出した後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを短くして前記重なり部を前記ホールパターンと一致させる工程(d)と、前記工程(d)の後、前記第1のレイヤと前記第2のレイヤを用いて形成されるホールの寸法を計算する工程(e)と、前記工程(e)の後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを修正する工程(f)と、前記工程(f)の後、前記第1のパターンを用いて、第1のマスクを製作する第1のマスク製作工程(g)と、前記工程(f)の後、前記第2のパターンを用いて、第2のマスクを製作する第2マスク製作工程(h)と、前記工程(g)及び前記工程(h)の後、ネガ型レジスト膜が設けられた基板を、前記第1のマスクを用いて露光することで、前記ネガ型レジスト膜に前記第1のパターンを転写する工程(i)と、前記工程(g)及び前記工程(h)の後、前記基板を前記第2のマスクを用いて露光することで、前記ネガ型レジスト膜に前記第2のパターンを転写する工程(j)と、前記工程(i)及び前記工程(j)の後、前記ネガ型レジスト膜を現像することで、前記ネガ型レジスト膜に前記ホールパターンを形成する工程(k)とを備えている。 The pattern forming method of the present invention is a pattern forming method for forming a hole pattern in a resist film, wherein the first pattern including the hole pattern and having a rectangle with the Y axis as the major axis direction is a first pattern. A step (a) for generating in the first layer, a step (b) for generating in the second layer a second pattern comprising a rectangle including the hole pattern and having the X axis as the major axis direction, and the first The first layer and the second layer are overlapped so that the hole pattern provided in the layer and the hole pattern provided in the second layer coincide with each other, A step (c) of forming a synthesized pattern obtained by synthesizing the pattern and the second pattern, and an overlapping portion where the first pattern and the second pattern overlap from the synthesized pattern After the extraction, the step (d) of shortening the length of at least one of the long side of the first pattern and the long side of the second pattern to match the overlapping portion with the hole pattern; and After (d), the step (e) of calculating the dimensions of the holes formed using the first layer and the second layer, and the length of the first pattern after the step (e) A step (f) of correcting at least one of a side and a long side of the second pattern, and after the step (f), a first mask is manufactured using the first pattern. After the first mask manufacturing step (g) and the step (f), a second mask manufacturing step (h) for manufacturing a second mask using the second pattern, and the step (g) And after the step (h), the substrate on which the negative resist film is provided is the first After the step (i) of transferring the first pattern to the negative resist film by exposing using a mask, and after the step (g) and the step (h), the substrate is moved to the second resist film. Step (j) of transferring the second pattern to the negative resist film by exposure using a mask, and developing the negative resist film after the steps (i) and (j) Thus, the method includes the step (k) of forming the hole pattern in the negative resist film.
 この方法によれば、工程(f)で第1のパターン及び第2のパターンの長辺の少なくとも一方の長さを修正することで、微細化されても、ホールパターンのMEEFを増加させることなく、寸法の精度良くマスクパターンを形成することができる。その結果、前記マスクパターンを用いて、所望の寸法を有する微細なホールを制御良くレジスト基板に形成することが可能となる。 According to this method, at least one of the long sides of the first pattern and the second pattern is corrected in the step (f), so that the MEEF of the hole pattern is not increased even if the length is reduced. The mask pattern can be formed with high dimensional accuracy. As a result, it is possible to form fine holes having desired dimensions on the resist substrate with good control using the mask pattern.
 本発明のマスクパターンの生成方法によれば、微細化されても、高精度にマスクパターンの寸法を制御できるため、所望の寸法からなるホールを形成可能なマスクパターンを比較的容易に生成することができる。また、本発明のパターン形成方法によれば、上記マスクパターンを用いて、微細なホールを制御良くレジスト基板に形成することができる。 According to the mask pattern generation method of the present invention, the mask pattern dimension can be controlled with high precision even if the mask pattern is miniaturized, so that a mask pattern capable of forming a hole having a desired dimension can be generated relatively easily. Can do. Further, according to the pattern forming method of the present invention, fine holes can be formed on the resist substrate with good control using the mask pattern.
図1(a)及び(b)は、それぞれ本発明の第1の実施形態に第1のパターン及び第2のパターンを示す図であり、図1(c)は、第1の実施形態に係るマスクパターンの長辺の寸法に対するホールサイズの変化量を示す図である。FIGS. 1A and 1B are diagrams showing a first pattern and a second pattern, respectively, in the first embodiment of the present invention, and FIG. 1C is related to the first embodiment. It is a figure which shows the variation | change_quantity of the hole size with respect to the dimension of the long side of a mask pattern. 図2は、従来のマスクパターンの長辺の寸法を一定にした際のホールサイズのピッチ依存性を示すシミュレーション結果である。FIG. 2 is a simulation result showing the pitch dependence of the hole size when the long side dimension of the conventional mask pattern is made constant. 図3は、本発明に係るマスクパターンの長辺の寸法を変化させた際のホールサイズのピッチ依存性を示すシミュレーション結果である。FIG. 3 is a simulation result showing the pitch dependence of the hole size when the dimension of the long side of the mask pattern according to the present invention is changed. 図4は、本発明に係るマスク寸法のピッチ依存性を示すシミュレーション結果である。FIG. 4 is a simulation result showing the pitch dependence of the mask dimension according to the present invention. 図5は、第1の実施形態のマスクパターンの生成方法を示すフローチャートである。FIG. 5 is a flowchart illustrating a mask pattern generation method according to the first embodiment. 図6は、(a)~(j)は、第1の実施形態のマスクパターンの生成方法を示す平面図である。FIGS. 6A to 6J are plan views showing a mask pattern generation method according to the first embodiment. 図7は、(a)~(g)は、第1の実施形態に係るパターン形成方法を示す平面図である。FIGS. 7A to 7G are plan views showing the pattern forming method according to the first embodiment. 図8は、(a)~(g)は、第1の実施形態に係るマスクパターンの生成方法の変形例を示す平面図である。FIGS. 8A to 8G are plan views showing a modification of the mask pattern generation method according to the first embodiment. 図9は、(a)~(e)は、従来の微細なコンタクトホールパターンの形成方法を示す平面図である。FIGS. 9A to 9E are plan views showing a conventional method for forming a fine contact hole pattern. 図10は、従来の1枚のマスクを用いた場合のコンタクトホールパターンのピッチとMEEFとの関係を示す図である。FIG. 10 is a diagram showing the relationship between the pitch of the contact hole pattern and MEEF when one conventional mask is used. 図11は、従来の2枚のマスクを用いた場合のコンタクトホールパターンのピッチとMEEFとの関係を示す図である。FIG. 11 is a diagram showing the relationship between the pitch of the contact hole pattern and MEEF when two conventional masks are used. 図12は、従来の2枚のマスクを用いた場合の孤立したコンタクトホールの寸法とMEEFとの関係を示す図である。FIG. 12 is a diagram showing the relationship between the size of an isolated contact hole and MEEF when two conventional masks are used.
符号の説明Explanation of symbols
      1   第1のフォトマスク 
      2   第1の長方形パターン 
      3   第1の照明絞り
      4   開口部 
      5   ネガ型レジスト膜 
      6   第1の潜像 
      7   第2の長方形パターン 
      7a  第3の長方形パターン 
      8   第2のフォトマスク 
      8a  第2のフォトマスク
      9   開口部 
     10   第2の照明絞り
     11   交差部 
     11a  交差部 
     12   第2の潜像 
     13   コンタクトホール 
     14   長方形コンタクトホール
1 First photomask
2 First rectangular pattern
3 First illumination stop 4 Opening
5 Negative resist film
6 First latent image
7 Second rectangular pattern
7a Third rectangular pattern
8 Second photomask
8a Second photomask 9 Opening
10 Second illumination stop 11 Intersection
11a Intersection
12 Second latent image
13 Contact hole
14 Rectangular contact hole
 (第1の実施形態)
 以下、本発明の第1の実施形態に係るホールを形成するためのマスクパターンの生成方法について、図面を参照しながら説明する。
(First embodiment)
Hereinafter, a method of generating a mask pattern for forming holes according to the first embodiment of the present invention will be described with reference to the drawings.
 本実施形態のマスクパターンの生成方法では、第1のパターン及び第2のパターンがそれぞれ形成された2枚のマスクパターンを用いてホールパターンを形成する。まず、この第1のパターン及び第2のパターンについて、図1(a)~(c)を参照しながら説明する。図1(a)は、本実施形態に係る第1のパターンを示す図であり、図1(b)は、本実施形態に係る第2のパターンを示す図である。また、図1(c)は、本実施形態に係るマスクパターンの長辺の寸法に対するホールサイズの変化量を示す図である。 In the mask pattern generation method of the present embodiment, a hole pattern is formed using two mask patterns each formed with a first pattern and a second pattern. First, the first pattern and the second pattern will be described with reference to FIGS. FIG. 1A is a diagram illustrating a first pattern according to the present embodiment, and FIG. 1B is a diagram illustrating a second pattern according to the present embodiment. FIG. 1C is a diagram showing the amount of change in hole size with respect to the long side dimension of the mask pattern according to the present embodiment.
 図1(a)に示すように、本実施形態の第1のパターンは、例えばY軸を長軸方向とする長方形からなる。また、図1(b)に示すように、本実施形態の第2のパターンは、第1のパターンの長軸と直交するX軸を長軸方向とする長方形パターンからなる。図1(c)は、第1のパターン及び第2のパターンの短辺の寸法を40nm、45nm、50nmにそれぞれ設定し、長辺の寸法を変化させた場合に、露光後に得られるホールの寸法をシミュレーションにより算出した結果である。なお、算出したホールの寸法と、ホールの所望の寸法(ターゲット寸法)との差をホールサイズの変化量として縦軸に示している。また、露光時の照明条件は、偏光照明を用いて、NA=1.07、Dipole40°、σout0.8/σin0.6とする。図1(c)から、第1のパターン及び第2のパターンの短辺の長さが短くなるほど、ホールサイズの変化量が大きくなることがわかる。ここで、短辺の長さが40nmの場合、ホールサイズの変化量は最大で12nmとなる。これは、パターンサイズが小さくなる程コントラストが低下する結果、周辺部分の光強度の影響を受けやすくなることを示している。さらに、ホールサイズは、短辺の長さだけでなく長辺の長さを変化させることで変動することが分かる。特に、ターゲット寸法を40nmに設定した場合(短辺の寸法を40nmに設定した場合)、45nm及び50nmに設定した場合と比べて、長辺の寸法に対するホールサイズの変化量がより大きくなっている。 As shown in FIG. 1A, the first pattern of the present embodiment is made of a rectangle having, for example, the Y axis as the major axis direction. As shown in FIG. 1B, the second pattern of the present embodiment is a rectangular pattern whose major axis is the X axis orthogonal to the major axis of the first pattern. FIG. 1 (c) shows the hole dimensions obtained after exposure when the short side dimensions of the first pattern and the second pattern are set to 40 nm, 45 nm, and 50 nm, respectively, and the long side dimensions are changed. Is a result of calculation by simulation. The difference between the calculated hole size and the desired hole size (target size) is shown on the vertical axis as the amount of change in the hole size. The illumination conditions during exposure are set to NA = 1.07, Dipole 40 °, and σout0.8 / σin0.6 using polarized illumination. From FIG. 1C, it can be seen that the amount of change in the hole size increases as the lengths of the short sides of the first pattern and the second pattern become shorter. Here, when the length of the short side is 40 nm, the amount of change in the hole size is 12 nm at the maximum. This indicates that as the pattern size is reduced, the contrast is lowered, and as a result, it is easily affected by the light intensity in the peripheral portion. Furthermore, it can be seen that the hole size varies not only by changing the length of the short side but also by changing the length of the long side. In particular, when the target dimension is set to 40 nm (when the short side dimension is set to 40 nm), the amount of change in the hole size with respect to the long side dimension is larger than when the target dimension is set to 45 nm and 50 nm. .
 以上の検討より、本願発明者は、マスクパターンの短辺だけでなく長辺の寸法を変化させることで、ホールサイズが変動することを見出した。従来のように、ターゲット寸法が比較的大きい場合は、長辺の寸法を変化させてもホールサイズはそれほど大きく変化しないが、半導体デバイスの微細化によりターゲット寸法が十分小さい場合、長辺の寸法の変化はホールサイズに大きく影響すると考えられる。なお、図1(c)に示す結果から、長辺の寸法を例えば250~400nmの範囲で設定することで、ホールの寸法の変動を制御することが可能であることがわかるが、長辺の寸法は上記範囲外でも任意に設定することができる。 From the above examination, the inventor of the present application has found that the hole size varies by changing not only the short side but also the long side dimension of the mask pattern. If the target dimension is relatively large as in the conventional case, the hole size does not change so much even if the long side dimension is changed, but if the target dimension is sufficiently small due to miniaturization of the semiconductor device, the long side dimension The change is thought to have a significant effect on the hole size. From the results shown in FIG. 1 (c), it can be seen that the variation of the hole dimension can be controlled by setting the dimension of the long side in the range of 250 to 400 nm, for example. The dimensions can be arbitrarily set even outside the above range.
 以下、マスクパターンの長辺の寸法を変化させた際のホール寸法への影響について、図2~図4を用いてより詳細に説明する。図2は、マスクパターンの長辺の寸法を一定にした際のホールサイズのピッチ依存性を示すシミュレーション結果である。また、図3は、マスクパターンの長辺の寸法を変化させた際のホールサイズのピッチ依存性を示すシミュレーション結果である。図2及び図3では、横軸にホールパターンの間隔(Pitch)を示し、縦軸にホールサイズを示している。なお、両図では、マスクパターンの短辺の寸法を50nm~110nmの範囲で5nm刻みで変化させた時のホール寸法をプロットしている。 Hereinafter, the influence on the hole size when the long side dimension of the mask pattern is changed will be described in more detail with reference to FIGS. FIG. 2 is a simulation result showing the pitch dependence of the hole size when the long side dimension of the mask pattern is made constant. FIG. 3 is a simulation result showing the pitch dependence of the hole size when the dimension of the long side of the mask pattern is changed. 2 and 3, the horizontal axis indicates the hole pattern interval (Pitch), and the vertical axis indicates the hole size. In both figures, the hole dimensions are plotted when the dimension of the short side of the mask pattern is changed in increments of 5 nm in the range of 50 nm to 110 nm.
 まず、図2及び図3に示すように、マスクパターンの短辺の寸法を一定にすると、ピッチに応じてホール寸法の変動が見られる。これは、光近接効果(OPE:Optical proximity effect)と呼ばれる一般的な現象である。光近接効果では、マスクパターンの疎密によって露光時のパターン変換差が異なることにより、露光用のマスクパターンと基板上で得られるパターンとの間に寸法変動や形状変化が生じる。通常、半導体製造プロセスでは、マスクパターンの密度にかかわらずホール寸法を一定にする必要があるため、マスクパターンのサイズを補正することで、ピッチサイズに依存することなくホール寸法が一定になるようにする。ここで、マスクパターンの補正を行う場合、補正の寸法の最小単位(マスクグリッド)が小さい程、精度良くマスクパターンのサイズ補正ができる反面、マスクパターンを生成する際のデータ量や描画時間が増加したり、マスクパターンの欠陥の修正が難しいなど、マスクパターンの製造コストが増大する恐れがある。従って、通常では、マスクパターンのマスクグリッドは、補正の精度及び製造コストの両者のバランスを取った値に設定する。なお、先に述べたように、図2及び図3に示す結果は、マスクパターンの短辺の寸法を5nm刻みで変化させた場合、すなわち、マスクグリッドを5nmに設定した場合の結果である。また、図2及び図3に示す結果では、ホールの所望の寸法(ターゲット寸法)を45nmに設定している。 First, as shown in FIG. 2 and FIG. 3, when the dimension of the short side of the mask pattern is made constant, the hole dimension varies depending on the pitch. This is a general phenomenon called an optical proximity effect (OPE). In the optical proximity effect, a difference in pattern conversion at the time of exposure varies depending on the density of the mask pattern, so that a dimensional variation and a shape change occur between the mask pattern for exposure and the pattern obtained on the substrate. Normally, in the semiconductor manufacturing process, it is necessary to make the hole dimensions constant regardless of the mask pattern density. Therefore, by correcting the mask pattern size, the hole dimensions become constant regardless of the pitch size. To do. Here, when correcting a mask pattern, the smaller the minimum unit of the correction dimension (mask grid), the more accurately the mask pattern size can be corrected, but the amount of data and the drawing time when generating the mask pattern increase. Or the mask pattern manufacturing cost may increase because it is difficult to correct a defect in the mask pattern. Therefore, normally, the mask grid of the mask pattern is set to a value that balances both the accuracy of correction and the manufacturing cost. As described above, the results shown in FIGS. 2 and 3 are results when the dimension of the short side of the mask pattern is changed in increments of 5 nm, that is, when the mask grid is set to 5 nm. In the results shown in FIGS. 2 and 3, the desired hole dimension (target dimension) is set to 45 nm.
 図2及び図3を照らし合わせてみると、図2では、1つの短辺の寸法につき1つのホール寸法のデータが得られるのに対し、図3では、1つの短辺の寸法につき7つのホール寸法のデータが得られる。ここで、図3では、マスクパターンの長辺の寸法を100~400nmの範囲で50nm刻みで変化させているため、1つの短辺の寸法に対して長辺の寸法が互いに異なる7種類のマスクパターンが生成される。この7種類のマスクパターンに対して、7種類のホールの寸法のデータがそれぞれ得られることより、マスクパターンの長辺の寸法に応じて、ホールの寸法も合わせて変化することがわかる。以上の結果より、マスクパターンの短辺だけを補正するよりも、短辺と長辺の寸法を合わせて補正することで、より高精度にホールの寸法を制御できると言える。 2 and 3, in FIG. 2, one hole size data is obtained for one short side dimension, whereas in FIG. 3, seven holes are obtained for one short side dimension. Dimension data is obtained. Here, in FIG. 3, since the dimension of the long side of the mask pattern is changed in increments of 50 nm in the range of 100 to 400 nm, seven types of masks having different long side dimensions with respect to one short side dimension. A pattern is generated. With respect to these seven types of mask patterns, the data of the seven types of hole dimensions are obtained, and it can be seen that the hole dimensions also change in accordance with the long side dimensions of the mask pattern. From the above results, it can be said that the hole dimensions can be controlled with higher accuracy by correcting the short side and long side dimensions together, rather than correcting only the short side of the mask pattern.
 続いて、図2及び図3の結果に基づいて、マスクパターンの短辺及び長辺の両方を補正した場合とマスクパターンの短辺のみを補正した場合について、ホールサイズのピッチ依存性をシミュレーションにより算出した。結果を図4に示す。図4は、本発明に係るホールサイズのピッチ依存性を示すシミュレーション結果である。なお、ピッチは110nmから990nmの範囲で変化させ、ホールパターンが密集した領域からホールパターンが孤立した領域において、45nm径ホールの寸法を評価している。また、図4は、マスクパターンの長辺の寸法が25nm刻みで設定可能である場合の結果であり、ホールの所望の寸法を45nmに設定している。 Next, based on the results of FIG. 2 and FIG. 3, the pitch dependence of the hole size is simulated by simulation when both the short side and the long side of the mask pattern are corrected and when only the short side of the mask pattern is corrected. Calculated. The results are shown in FIG. FIG. 4 is a simulation result showing the pitch dependence of the hole size according to the present invention. The pitch is changed in the range of 110 nm to 990 nm, and the size of the 45 nm diameter hole is evaluated in the region where the hole pattern is isolated from the region where the hole patterns are dense. FIG. 4 shows the results when the long side dimension of the mask pattern can be set in increments of 25 nm. The desired hole dimension is set to 45 nm.
 図4に示すように、マスクパターンの短辺のみを補正する従来の方法の場合、ピッチに対するホールサイズのバラツキが見られ、バラツキの範囲(range)は6.8nmである。一方、本発明のマスクパターンの生成方法を用いた場合、ピッチに対するホール寸法のバラツキはほとんど見られず、バラツキの範囲(range)は2.1nmと従来よりも小さい。以上の結果より、マスクパターンの短辺と長辺の両方の寸法を補正する本発明の方法を用いると、マスク寸法のピッチ依存性が小さく、所望の寸法からなるマスクパターンを高精度に生成できることが分かった。 As shown in FIG. 4, in the case of the conventional method for correcting only the short side of the mask pattern, there is a variation in the hole size with respect to the pitch, and the range of the variation is 6.8 nm. On the other hand, when the mask pattern generation method of the present invention is used, there is almost no variation in the hole size with respect to the pitch, and the range of the variation is 2.1 nm, which is smaller than the conventional one. From the above results, when the method of the present invention that corrects both the short side and long side dimensions of the mask pattern is used, the mask dimension is less dependent on the pitch, and a mask pattern having a desired dimension can be generated with high accuracy. I understood.
 なお、図4に示すように、従来の方法では、いくつかのピッチにおいて、所望の寸法との寸法差が大きいマスクパターンが生成されてしまう。これを解消するためには、マスク寸法の補正幅をさらに細かくする、つまり、マスクグリッドを小さくすることで、マスクパターンの寸法精度を向上させる必要がある。しかしながら、現実的にマスクグリッドの縮小には限界がある。これに対し、本願発明者は、上述したように、マスクパターンの長辺の寸法に着目することで、従来よりもマスクグリッドのサイズを縮小しなくとも、より高精度に寸法を制御できるマスクパターンの生成方法を見出すことができた。以下、本発明のマスクパターンの生成方法について、図5及び図6を用いて具体的に説明する。 As shown in FIG. 4, in the conventional method, a mask pattern having a large dimensional difference from a desired dimension is generated at several pitches. In order to solve this problem, it is necessary to improve the dimensional accuracy of the mask pattern by further reducing the correction width of the mask dimension, that is, by reducing the mask grid. However, there is a limit in reducing the mask grid in practice. On the other hand, as described above, the inventors of the present application pay attention to the dimension of the long side of the mask pattern, and can control the dimension with higher accuracy without reducing the size of the mask grid than before. I was able to find out how to generate The mask pattern generation method of the present invention will be specifically described below with reference to FIGS.
 図5は、本実施形態のマスクパターンの生成方法を示すフローチャートである。図6(a)~(j)は、本実施形態のマスクパターンの生成方法を示す平面図である。ここで、図6(a)に示すように、本実施形態のマスクパターンの生成方法では、ロジックLSIに用いられる、パターンピッチがランダムなコンタクトホールパターン(ホールパターン)を生成する方法を一例として挙げる。本実施形態のホールパターンの密度は、中央部が高く、端部が小さくなっている。ここで、ホールパターンのうち、コンタクトホールの形成位置には、便宜上、正方形内に×を加えた記号を表示しているが、実際にはこのような表示はない。なお、本実施形態のホールパターンを用いて形成されるホールの所望の寸法をWとする。 FIG. 5 is a flowchart showing a mask pattern generation method according to this embodiment. FIGS. 6A to 6J are plan views showing the mask pattern generation method of this embodiment. Here, as shown in FIG. 6A, in the mask pattern generation method of this embodiment, a method of generating a contact hole pattern (hole pattern) having a random pattern pitch, which is used in a logic LSI, is given as an example. . The density of the hole pattern of the present embodiment is high at the center and small at the ends. Here, in the hole pattern, for the sake of convenience, a symbol in which a cross is added is displayed at the contact hole formation position, but there is no such display in practice. Note that W is a desired dimension of a hole formed using the hole pattern of the present embodiment.
 まず、図5のS1~S3に示すように、ホールパターンをレイヤYとレイヤXに分割する。この時、レイヤYに形成する第1のパターンの長辺の長さをWy、レイヤXに形成する第2のパターンの長辺の長さをWxとし、Nを1以上の任意の実数で設定すると、例えば初期値として、Wy=N×W、Wx=N×Wに設定することで、それぞれ長方形からなる第1のパターン及び第2のパターンを形成する。具体的には、図6(b)に示すように、レイヤYは、ホールパターンを含み、Y軸を長軸方向とする長方形からなる第1のパターンを有する。一方、図6(d)に示すように、レイヤXは、ホールパターンを含み、X軸を長軸方向とする長方形からなる第2のパターンを有する。 First, the hole pattern is divided into layer Y and layer X as shown in S1 to S3 of FIG. At this time, the length of the long side of the first pattern formed on the layer Y is Wy, the length of the long side of the second pattern formed on the layer X is Wx, and N is set to an arbitrary real number of 1 or more. Then, for example, by setting Wy = N × W and Wx = N × W as initial values, a first pattern and a second pattern each formed of a rectangle are formed. Specifically, as illustrated in FIG. 6B, the layer Y includes a hole pattern and has a first pattern that is a rectangle having the Y axis as the major axis direction. On the other hand, as shown in FIG. 6D, the layer X has a second pattern that includes a hole pattern and is formed of a rectangle having the X axis as the major axis direction.
 次に、図5のS4に示すように、レイヤYに設けられたホールパターンと、レイヤXに設けられたホールパターンとが互いに一致するように、レイヤYとレイヤXを重ね合わせて、第1のパターンと第2のパターンを合成させた合成パターンを形成する。この合成パターンを図6(c)に示す。 Next, as shown in S4 of FIG. 5, the layer Y and the layer X are overlapped so that the hole pattern provided in the layer Y and the hole pattern provided in the layer X coincide with each other. A combined pattern is formed by combining the above pattern and the second pattern. This synthetic pattern is shown in FIG.
 次に、合成パターンから、第1のパターンと第2のパターンとが重なる重なり部を抽出する。その後、図6(f)に示すように、第1のパターンの長辺、及び第2のパターンの長辺の少なくとも一方の長さを短くして、抽出した重なり部のうちホールパターンと異なる領域を無くすことで、重なり部をホールパターンと一致させる。この時、図6(e)及び図6(g)にそれぞれ示すように、補正後の第1のパターン及び第2のパターンでは、図6(b)及び図6(d)に比べて、一部の長辺の長さが縮小している。 Next, an overlapping portion where the first pattern and the second pattern overlap is extracted from the composite pattern. After that, as shown in FIG. 6F, at least one of the long side of the first pattern and the long side of the second pattern is shortened, and the extracted overlapping portion is a region different from the hole pattern. By eliminating, the overlapping part matches the hole pattern. At this time, as shown in FIGS. 6 (e) and 6 (g), the first pattern and the second pattern after the correction are compared with those in FIGS. 6 (b) and 6 (d). The length of the long side of the part is reduced.
 次に、図5のS5に示すように、図6(e)及び図6(g)にそれぞれ示す補正後の第1のパターン及び第2のパターンを用いて、光学シミュレーションを行い、露光後のコンタクトホールの寸法を計算する。 Next, as shown in S5 of FIG. 5, an optical simulation is performed using the corrected first pattern and second pattern shown in FIG. 6E and FIG. Calculate contact hole dimensions.
 続いて、図5のS6及びS7に示すように、露光後のコンタクトホールの寸法が所望の寸法に近づくように、まず、光学シミュレーションによりレイヤYに設けられた第1のパターンの短辺の長さを計算し、該第1のパターンの短辺の長さを補正する。次に、レイヤYと同様にして、露光後のコンタクトホールの寸法が所望の寸法に近づくように、光学シミュレーションによりレイヤXに設けられた第2のパターンの短辺の長さを計算し、該第2のパターンの短辺の長さを補正する。 Subsequently, as shown in S6 and S7 of FIG. 5, first, the length of the short side of the first pattern provided in the layer Y by optical simulation so that the dimension of the contact hole after exposure approaches a desired dimension. And the length of the short side of the first pattern is corrected. Next, in the same manner as in layer Y, the length of the short side of the second pattern provided in layer X is calculated by optical simulation so that the dimension of the contact hole after exposure approaches the desired dimension. The length of the short side of the second pattern is corrected.
 次に、図5のS8及びS9に示すように、コンタクトホールの寸法が所望の寸法となるように、光学シミュレーションにより第1のパターンの長辺の長さを計算し、該第1のパターンの長辺の長さを補正する。次に、レイヤYと同様にして、コンタクトホールの寸法が所望の寸法となるように、光学シミュレーションにより第2のパターンの長辺の長さを計算し、該第2のパターンの長辺の長さを補正する。これにより、図6(h)及び図6(j)にそれぞれ示すように、短辺及び長辺の長さがそれぞれ補正された第1のパターン及び第2のパターンが形成される。 Next, as shown in S8 and S9 of FIG. 5, the length of the long side of the first pattern is calculated by optical simulation so that the size of the contact hole becomes a desired size, and the first pattern Correct the length of the long side. Next, in the same manner as in layer Y, the length of the long side of the second pattern is calculated by optical simulation so that the contact hole has a desired size, and the length of the long side of the second pattern is calculated. Correct the thickness. Thereby, as shown in FIG. 6H and FIG. 6J, the first pattern and the second pattern in which the lengths of the short side and the long side are corrected are formed.
 続いて、図5のS10及びS11に示すように、図6(h)に示す補正後の第1のパターンが設けられた第1のレイヤと、図6(j)に示す補正後の第2のパターンが設けられた第2のレイヤとを重ね合わせて、第1のパターンと第2のパターンを合成した合成パターンを形成する。この合成パターンを図6(i)に示す。 Subsequently, as shown in S10 and S11 of FIG. 5, the first layer provided with the corrected first pattern shown in FIG. 6 (h) and the corrected second shown in FIG. 6 (j). The second layer provided with the pattern is overlapped to form a synthesized pattern in which the first pattern and the second pattern are synthesized. This synthetic pattern is shown in FIG.
 次に、図6(i)に示す合成パターンから、第1のパターンと第2のパターンとが重なる重なり部を抽出し、抽出した重なり部のうちホールパターンと異なる領域があるかどうかを確認する。重なり部にホールパターンと異なる領域がある場合、第1のパターンの長辺、及び第2のパターンの長辺の少なくとも一方の長さを短くして、重なり部をホールパターンと一致させる。以上の工程により、コンタクトホールを形成するためのマスクパターンを生成することができる。 Next, an overlapping portion where the first pattern and the second pattern overlap is extracted from the composite pattern shown in FIG. 6 (i), and it is confirmed whether or not there is a region different from the hole pattern in the extracted overlapping portion. . When there is a region different from the hole pattern in the overlapping portion, at least one of the long side of the first pattern and the long side of the second pattern is shortened so that the overlapping portion matches the hole pattern. Through the above steps, a mask pattern for forming a contact hole can be generated.
 本実施形態のマスクパターンの生成方法の特徴は、図5のS8及びS9に示す工程で、第1のパターンの長辺及び第2のパターンの長辺の長さを補正することにある。この方法によれば、第1のパターン及び第2のパターンの短辺だけでなく長辺の長さを補正することで、転写性が良好で、高精度に制御可能なコンタクトホールパターンを生成することができる。従って、本実施形態のマスクパターンの生成方法を用いれば、微細化されてもコンタクトホールパターンのMEEFを増加させることなく、良好な精度でコンタクトホールパターンを形成することができるため、該コンタクトホールパターンを用いて所望の寸法を有するコンタクトホールをレジスト基板に形成することが可能となる。 A feature of the mask pattern generation method of the present embodiment is that the lengths of the long side of the first pattern and the long side of the second pattern are corrected in the steps shown in S8 and S9 of FIG. According to this method, by correcting not only the short side but also the long side length of the first pattern and the second pattern, a contact hole pattern with good transferability and controllable with high accuracy is generated. be able to. Therefore, if the mask pattern generation method of this embodiment is used, the contact hole pattern can be formed with good accuracy without increasing the MEEF of the contact hole pattern even if it is miniaturized. It is possible to form a contact hole having a desired dimension in the resist substrate using the.
 さらに、本実施形態のマスクパターンの生成方法によれば、図5のS4及びS10に示す工程で、合成パターンから第1のパターンと第2のパターンとが重なる重なり部を抽出し、該重なり部のうちホールパターンと異なる領域が無くなるように、第1のパターン及び第2のパターンの長辺の少なくとも一方の長さを短くする。この工程により、コンタクトホールが密集する領域において長方形からなるパターンが重なり合うのを抑制することができ、所望の位置以外に不要なコンタクトホールが形成されるのを防ぐことができる。その結果、本実施形態のマスクパターンの生成方法によれば、DRAMのような規則正しく配置されたパターンだけでなく、SRAMのようなランダムな配置のパターンに対しても、比較的容易に所望のマスクパターンを良好な精度で作成することができ、あらゆる半導体装置の微細化を実現することができる。 Furthermore, according to the mask pattern generation method of the present embodiment, an overlapping portion where the first pattern and the second pattern overlap is extracted from the composite pattern in the steps shown in S4 and S10 of FIG. Among them, the length of at least one of the long sides of the first pattern and the second pattern is shortened so that there is no region different from the hole pattern. By this step, it is possible to suppress the overlapping of rectangular patterns in a region where the contact holes are dense, and it is possible to prevent unnecessary contact holes from being formed other than the desired position. As a result, according to the mask pattern generation method of this embodiment, a desired mask can be relatively easily applied not only to a regularly arranged pattern such as a DRAM but also to a randomly arranged pattern such as an SRAM. Patterns can be created with good accuracy, and miniaturization of all semiconductor devices can be realized.
 なお、本実施形態のマスクパターンの生成方法では、初期値として、第1のパターンの長辺の長さをWy=N×W、第2のパターンの長辺の長さをWx=N×Wに設定することで、第1のパターン及び第2のパターンが所望のホールの寸法(W)を拡大したパターンとして示される。これにより、第1のパターン及び第2のパターンが比較的容易に作成できる。なお、第1のパターン及び第2のパターンの長辺の長さの初期値は、Nを任意の実数として、適切な値を設定することができる。 In the mask pattern generation method of this embodiment, the initial length of the long side of the first pattern is Wy = N × W, and the long side of the second pattern is Wx = N × W. By setting to, the first pattern and the second pattern are shown as patterns in which the desired hole dimension (W) is enlarged. Thereby, the first pattern and the second pattern can be created relatively easily. Note that the initial value of the length of the long side of the first pattern and the second pattern can be set to an appropriate value with N being an arbitrary real number.
 なお、図5のS5に示す工程では、コンピューターを用いた光学シミュレーションを行うことで、コンタクトホールの寸法を計算したが、これに限定されるものでない。また、例えば、光学シミュレーションの代わりに、種々の寸法からなる第1のパターン及び第2のパターンから形成されるコンタクトホールの寸法がそれぞれ予め算出された比較テーブルを用いて、コンタクトホールの所望の寸法に最も近くなる場合の各パターンの寸法を抽出することで、各パターンの寸法を設定してもよい。 In the step shown in S5 of FIG. 5, the size of the contact hole is calculated by performing an optical simulation using a computer. However, the present invention is not limited to this. Further, for example, instead of optical simulation, a desired size of the contact hole is obtained by using a comparison table in which the size of the contact hole formed from the first pattern and the second pattern having various dimensions is calculated in advance. The dimension of each pattern may be set by extracting the dimension of each pattern in the case of being closest.
 また、図5のS6~S9に示す工程では、コンピューターを用いた光学シミュレーションを行うことで、第1のパターン及び第2のパターンの長辺及び短辺の長さをそれぞれ計算したが、これに限定されるものではない。例えば、光学シミュレーションの代わりに、種々の寸法からなる第1のパターン及び第2のパターンから形成されるコンタクトホールの寸法がそれぞれ予め算出された比較テーブルを用いて、コンタクトホールの所望の寸法に最も近くなる場合の各パターンの寸法を抽出することで、各パターンの寸法を設定してもよい。  In the processes shown in S6 to S9 of FIG. 5, the lengths of the long side and the short side of the first pattern and the second pattern were calculated by performing an optical simulation using a computer. It is not limited. For example, instead of optical simulation, the size of the contact hole formed from the first pattern and the second pattern having various dimensions can be set to the desired dimension of the contact hole by using a comparison table in which the respective dimensions are calculated in advance. The dimension of each pattern may be set by extracting the dimension of each pattern when close. *
 続いて、本実施形態のパターン形成方法について説明する。本実施形態のパターン形成方法は、上述の本実施形態のマスクパターンの生成方法で生成されたマスクパターンを用いて、2枚のマスクを製作し、製作した2枚のマスクを用いてレジスト基板に例えばコンタクトホールパターンを形成する方法である。図7(a)~(g)は、本実施形態のパターン形成方法を示す平面図である。 Subsequently, the pattern forming method of this embodiment will be described. The pattern forming method of the present embodiment uses the mask pattern generated by the above-described mask pattern generating method of the present embodiment to manufacture two masks, and uses the manufactured two masks to form a resist substrate. For example, a contact hole pattern is formed. 7A to 7G are plan views showing the pattern forming method of this embodiment.
 まず、図7(a)に示すように、第1回目の露光に使用する第1のフォトマスク1を準備する。第1のフォトマスク1には、遮光膜からなる第1の長方形パターン2が形成されている。この第1の長方形パターン2が形成された部分は、遮光膜により露光光が遮断もしくは減衰される一方で、第1の長方形パターン2が形成されていない部分は光が完全に透過する。第1の長方形パターン2は、例えば、図6(h)に示す本実施形態のマスクパターンの生成方法により生成された第1のパターンのように、所望の寸法でコンタクトホールパターンを転写するためにそれぞれ所定の寸法で設けられた短辺と長辺とから構成されている。なお、第1の長方形パターン2は、例えば完全に光を遮光できるクロム膜、又は、光を減衰させるモリブデンシリサイド膜などからなる。この場合、第1のフォトマスク1は、バイナリ型、ハーフトーン位相シフト型、及びエッジ強調型位相シフトマスクのいずれかである。 First, as shown in FIG. 7A, a first photomask 1 used for the first exposure is prepared. A first rectangular pattern 2 made of a light shielding film is formed on the first photomask 1. In the portion where the first rectangular pattern 2 is formed, the exposure light is blocked or attenuated by the light shielding film, while in the portion where the first rectangular pattern 2 is not formed, the light is completely transmitted. For example, the first rectangular pattern 2 is used to transfer the contact hole pattern with a desired dimension like the first pattern generated by the mask pattern generation method of the present embodiment shown in FIG. Each is composed of a short side and a long side provided with predetermined dimensions. The first rectangular pattern 2 is made of, for example, a chromium film that can completely block light or a molybdenum silicide film that attenuates light. In this case, the first photomask 1 is any one of a binary type, a halftone phase shift type, and an edge enhancement type phase shift mask.
 次に、図7(b)及び図7(c)に示すように、第1のフォトマスク1を用いて、ネガ型レジスト膜5が設けられた基板に対して第1回目の露光を行う。これにより、ネガ型レジスト膜5には、第1の長方形パターン2が転写された第1の潜像6が形成される。ここで、本実施形態のパターン形成方法では、図7(b)に示す第1の照明絞り3を用いて露光を行う。第1の照明絞り3は、X軸方向に沿って互いに対向する位置に設けられた2つの開口部4を有する。開口部4は、2本の円弧と2本の直線で囲まれた台形状の形状をしており、各々の開口部4はY軸と平行方向に延伸している。また、開口部4は照明絞り3の外周部近くに設けられている。ここで、第1の長方形パターン2の短辺は、ネガ型レジスト膜5に寸法の精度良く転写する必要があるが、長辺の寸法精度は短辺に比べてそれほど要求されない。そのため、第1の照明絞り3を用いることで、第1の長方形パターン2の短辺方向を通過した回折光のみを選択的に透過させることができ、第1の長方形パターン2をより一層コントラスト良くネガ型レジスト膜5に形成することができる。 Next, as shown in FIGS. 7B and 7C, the first exposure is performed on the substrate provided with the negative resist film 5 using the first photomask 1. As a result, a first latent image 6 to which the first rectangular pattern 2 is transferred is formed on the negative resist film 5. Here, in the pattern forming method of the present embodiment, exposure is performed using the first illumination stop 3 shown in FIG. The first illumination stop 3 has two openings 4 provided at positions facing each other along the X-axis direction. The opening 4 has a trapezoidal shape surrounded by two arcs and two straight lines, and each opening 4 extends in a direction parallel to the Y axis. The opening 4 is provided near the outer periphery of the illumination stop 3. Here, the short side of the first rectangular pattern 2 needs to be transferred to the negative resist film 5 with high dimensional accuracy, but the dimensional accuracy of the long side is not so required as compared to the short side. Therefore, by using the first illumination stop 3, only the diffracted light that has passed through the short side direction of the first rectangular pattern 2 can be selectively transmitted, and the first rectangular pattern 2 can be further improved in contrast. It can be formed on the negative resist film 5.
 一方、図7(d)に示すように、第2回目の露光に使用する第2のフォトマスク8を準備する。第2のフォトマスク8には、遮光膜からなる第2の長方形パターン7が形成されている。第2の長方形パターン7は、例えば図6(j)に示す本実施形態のマスクパターンの生成方法により生成された第2のパターンのように、所望の寸法でコンタクトホールパターンを転写するためにそれぞれ所望の寸法で設けられた短辺と長辺とから構成されている。第2の長方形パターン7の長軸は、第1の長方形パターン2の長軸と直交する方向に延伸している。なお、第2の長方形パターン7は、例えば完全に光を遮光できるクロム膜、又は、光を減衰させるモリブデンシリサイド膜などからなる。この場合、第2のフォトマスク8は、バイナリ型、ハーフトーン位相シフト型、及びエッジ強調型位相シフトマスクのいずれかである。 On the other hand, as shown in FIG. 7 (d), a second photomask 8 used for the second exposure is prepared. A second rectangular pattern 7 made of a light shielding film is formed on the second photomask 8. For example, the second rectangular pattern 7 is used to transfer the contact hole pattern with a desired dimension, like the second pattern generated by the mask pattern generating method of the present embodiment shown in FIG. It is composed of a short side and a long side provided with desired dimensions. The major axis of the second rectangular pattern 7 extends in a direction orthogonal to the major axis of the first rectangular pattern 2. The second rectangular pattern 7 is made of, for example, a chromium film that can completely block light, or a molybdenum silicide film that attenuates light. In this case, the second photomask 8 is any one of a binary type, a halftone phase shift type, and an edge enhancement type phase shift mask.
 次に、図7(e)及び図7(f)に示すように、第2のフォトマスク8を用いて、第1の潜像6が転写されたネガ型レジスト膜5に対して第2回目の露光を行う。この時、第1の潜像6に対して位置がずれないように、第2のフォトマスク8を用いて重ね合わせ露光を行う。本工程により、ネガ型レジスト膜5には、第2の長方形パターン7が転写された第2の潜像12がさらに形成され、第1の潜像6と第2の潜像12とが交差する交差部11が形成される。ここで、本実施形態のパターン形成方法では、図7(e)に示す第2の照明絞り10を用いて露光を行う。第2の照明絞り10は、Y軸方向に沿って互いに対向する位置に設けられた2つの開口部9を有する。開口部9は、2本の円弧と2本の直線で囲まれた台形状の形状をしており、各々の開口部はX軸と平行に延伸している。また、開口部9は照明絞り10の外周部近くに設けられている。この第2の照明絞り10を用いることで、第2の長方形パターン7の短辺方向を通過した回折光のみを選択的に透過させることができるため、第2の長方形パターン7をより一層コントラスト良くネガ型レジスト膜5に形成することができる。 Next, as shown in FIGS. 7E and 7F, the second photomask 8 is used for the second resist film 5 to which the first latent image 6 has been transferred. Exposure. At this time, overlay exposure is performed using the second photomask 8 so that the position does not shift with respect to the first latent image 6. By this step, a second latent image 12 to which the second rectangular pattern 7 is transferred is further formed on the negative resist film 5, and the first latent image 6 and the second latent image 12 intersect. Intersection 11 is formed. Here, in the pattern forming method of the present embodiment, exposure is performed using the second illumination stop 10 shown in FIG. The second illumination stop 10 has two openings 9 provided at positions facing each other along the Y-axis direction. The opening 9 has a trapezoidal shape surrounded by two arcs and two straight lines, and each opening extends parallel to the X axis. The opening 9 is provided near the outer periphery of the illumination stop 10. By using this second illumination stop 10, only the diffracted light that has passed through the short side direction of the second rectangular pattern 7 can be selectively transmitted, so that the second rectangular pattern 7 can be further improved in contrast. It can be formed on the negative resist film 5.
 次に、図7(g)に示すように、ネガ型レジスト膜5が設けられた基板をポジ現像処理する。ここで、ネガ型レジストを用いた場合、光が当たった部分は現像不溶部となり、一度も光が当たっていない交差部11だけが現像可溶部となる。従って、交差部11が現像液により溶けることで、コンタクトホール13がネガ型レジスト膜5に形成される。以上の工程により、本実施形態のマスクパターンを用いて、ネガ型レジスト膜5にコンタクトホール13を形成することができる。ここでネガ型レジストを用いる代わりに、ポジ型レジストを用いることも可能である。この場合、現像処理をネガ型で行うことで、光が当たった部分は現像不溶部となり、一度も光が当たっていない交差部11だけが現像可溶部となる。すると同様にして、レジスト膜にコンタクトホール13を形成することができる。 Next, as shown in FIG. 7G, the substrate on which the negative resist film 5 is provided is subjected to a positive development process. Here, when a negative resist is used, a portion exposed to light becomes a development insoluble portion, and only a crossing portion 11 that has never been exposed to light becomes a development soluble portion. Accordingly, the contact hole 13 is formed in the negative resist film 5 by the intersection 11 being dissolved by the developer. Through the above steps, the contact hole 13 can be formed in the negative resist film 5 using the mask pattern of this embodiment. Here, instead of using the negative resist, a positive resist can be used. In this case, by performing the development process with a negative type, a portion exposed to light becomes a development insoluble portion, and only a crossing portion 11 that has never been exposed to light becomes a development soluble portion. In the same manner, the contact hole 13 can be formed in the resist film.
 本実施形態のパターン形成方法では、図7(a)及び図7(d)に示す第1の長方形パターン2及び第2の長方形パターン7が、それぞれ寸法の精度良く形成されているため、図7(g)に示すコンタクトホール13を所望の寸法で制御良く形成することが可能となる。 In the pattern forming method of the present embodiment, the first rectangular pattern 2 and the second rectangular pattern 7 shown in FIGS. 7A and 7D are formed with high dimensional accuracy. It becomes possible to form the contact hole 13 shown in FIG.
 なお、図7(a)~(g)に示すコンタクトホールの形成工程では、長方形パターンが1つ設けられた第1のフォトマスク1及び第2のフォトマスク8を一例に挙げたが、これに限定されるものではなく、図6(h)及び図6(j)にそれぞれ示す第1のパターン及び第2のパターンのように、複数本のラインアンドスペースパターンが形成されたマスクを用いてもよい。 In the contact hole forming process shown in FIGS. 7A to 7G, the first photomask 1 and the second photomask 8 provided with one rectangular pattern are given as an example. The present invention is not limited, and a mask in which a plurality of line and space patterns are formed as in the first pattern and the second pattern shown in FIGS. 6 (h) and 6 (j), respectively, may be used. Good.
 (第1の実施形態の変形例)
 以下、本発明の第1の実施形態に係るマスクパターンの生成方法の変形例を示す。図8(a)~(g)は、本実施形態のマスクパターンの生成方法の変形例を示す平面図である。本実施形態のマスクパターンの生成方法の変形例では、長方形からなるコンタクトホールを形成するためのマスクパターンの生成方法について説明する。なお、本実施形態のマスクパターンの生成方法の変形例では、図7(a)~(g)に示す本実施形態のマスクパターンの生成方法と一部の工程を除いて同様であるため、同様な部分については簡略して述べる。
(Modification of the first embodiment)
Hereinafter, modifications of the mask pattern generation method according to the first embodiment of the present invention will be described. FIGS. 8A to 8G are plan views showing modifications of the mask pattern generation method of the present embodiment. In the modification of the mask pattern generation method of the present embodiment, a mask pattern generation method for forming a rectangular contact hole will be described. The modified example of the mask pattern generation method of the present embodiment is the same as the mask pattern generation method of the present embodiment shown in FIGS. 7A to 7G except for some processes. These parts will be described briefly.
 まず、図8(a)に示すように、第1回目の露光に使用する第1のフォトマスク1を準備する。第1のフォトマスクは、図7(a)に示すフォトマスクと同じ構成である。その後、図8(b)及び図8(c)に示すように、第1のフォトマスク1を用いて、ネガ型レジスト膜5が設けられた基板に対して第1回目の露光を行う。この時、図8(b)に示すように、第1の照明絞り3を用いて露光を行う。これにより、ネガ型レジスト膜5には、第1の長方形パターンが転写された第1の潜像6が形成される。 First, as shown in FIG. 8A, a first photomask 1 used for the first exposure is prepared. The first photomask has the same configuration as the photomask shown in FIG. Thereafter, as shown in FIGS. 8B and 8C, the first exposure is performed on the substrate provided with the negative resist film 5 using the first photomask 1. At this time, exposure is performed using the first illumination stop 3 as shown in FIG. As a result, a first latent image 6 to which the first rectangular pattern is transferred is formed on the negative resist film 5.
 次に、図8(d)に示すように、第2回目の露光に使用する第2のフォトマスク8aを準備する。第2のフォトマスク8aには、遮光膜からなる第3の長方形パターン7aが形成されている。第3の長方形パターン7aは、長軸が第1の長方形パターン2の長軸と直交する方向に延伸し、短辺の寸法が第2の長方形パターン7の短辺よりも大きく形成されている。第3の長方形パターン7aでは、短辺の寸法が第2の長方形パターン7の短辺よりも大きい点が図7(d)に示す第2の長方形パターン7と異なる点である。 Next, as shown in FIG. 8D, a second photomask 8a used for the second exposure is prepared. A third rectangular pattern 7a made of a light shielding film is formed on the second photomask 8a. The third rectangular pattern 7 a has a long axis extending in a direction perpendicular to the long axis of the first rectangular pattern 2 and has a short side dimension larger than the short side of the second rectangular pattern 7. The third rectangular pattern 7a is different from the second rectangular pattern 7 shown in FIG. 7D in that the dimension of the short side is larger than the short side of the second rectangular pattern 7.
 続いて、図8(e)及び図8(f)に示すように、第2のフォトマスク8aを用いて、第1の潜像6が転写されたネガ型レジスト膜5に対して第2回目の露光を行う。この時、第1の潜像6に対して位置がずれないように、第2のフォトマスク8aを用いて重ね合わせ露光を行う。また、この際、図8(e)に示す第2の照明絞り10を用いる。本工程により、ネガ型レジスト膜5には、第3の長方形パターン7aが転写された第2の潜像12aがさらに形成され、第1の潜像6と第2の潜像12aとが交差する交差部11aが形成される。ここで、本実施形態のマスクパターンの生成方法の変形例では、交差部11aは長方形からなる。 Subsequently, as shown in FIGS. 8E and 8F, the second photomask 8a is used to apply the second time to the negative resist film 5 to which the first latent image 6 has been transferred. Exposure. At this time, overlay exposure is performed using the second photomask 8a so that the position does not shift with respect to the first latent image 6. At this time, the second illumination stop 10 shown in FIG. By this step, a second latent image 12a to which the third rectangular pattern 7a is transferred is further formed on the negative resist film 5, and the first latent image 6 and the second latent image 12a intersect each other. Intersection 11a is formed. Here, in the modification of the mask pattern generation method of the present embodiment, the intersecting portion 11a has a rectangular shape.
 次に、図8(g)に示すように、ネガ型レジスト膜5が設けられた基板を現像処理することで、交差部11aが現像液により溶けて、長方形コンタクトホール14がネガ型レジスト膜5に形成される。 Next, as shown in FIG. 8G, by developing the substrate on which the negative resist film 5 is provided, the crossing portion 11a is melted by the developer, and the rectangular contact hole 14 becomes the negative resist film 5. Formed.
 以上のように、本実施形態のマスクパターンの生成方法の変形例を用いると、第2のフォトマスク8aに設けられた第3の長方形パターン7aの短辺の寸法を第1の長方形パターン2よりも大きくすることで、長方形からなるコンタクトホールパターンを良好な寸法精度で容易に形成することができる。なお、第3の長方形パターン7aのような形状を有する長方形パターンを用いる際にも、上述の本発明のマスクパターンの生成方法を用いてマスクパターンの短辺及び長辺の両方を補正することで、図8(g)で所望の寸法からなる長方形パターンが形成可能なマスクパターンを生成することができる。 As described above, when the modified example of the mask pattern generation method of the present embodiment is used, the dimension of the short side of the third rectangular pattern 7a provided on the second photomask 8a is made larger than that of the first rectangular pattern 2. The contact hole pattern made of a rectangle can be easily formed with good dimensional accuracy. Even when a rectangular pattern having a shape such as the third rectangular pattern 7a is used, both the short side and the long side of the mask pattern are corrected by using the mask pattern generation method of the present invention described above. In FIG. 8G, a mask pattern capable of forming a rectangular pattern having a desired dimension can be generated.
 本発明のマスクパターンの生成方法及びパターン形成方法は、半導体デバイスの微細化に有用である。 The mask pattern generation method and pattern formation method of the present invention are useful for miniaturization of semiconductor devices.

Claims (15)

  1.  ホールを形成するためのマスクパターンの生成方法であって、
     ホールパターンを含み、Y軸を長軸方向とする長方形からなる第1のパターンを第1のレイヤに発生させる工程(a)と、
     前記ホールパターンを含み、X軸を長軸方向とする長方形からなる第2のパターンを第2のレイヤに発生させる工程(b)と、
     前記第1のレイヤに設けられた前記ホールパターンと、前記第2のレイヤに設けられた前記ホールパターンとが互いに一致するように前記第1のレイヤと前記第2のレイヤを重ね合わせて、前記第1のパターンと前記第2のパターンを合成させた合成パターンを形成する工程(c)と、
     前記合成パターンから、前記第1のパターンと前記第2のパターンとが重なる重なり部を抽出した後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを短くして前記重なり部を前記ホールパターンと一致させる工程(d)と、
     前記工程(d)の後、前記第1のレイヤと前記第2のレイヤを用いて形成されるホールの寸法を計算する工程(e)と、
     前記工程(e)の後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを修正する工程(f)とを備えているマスクパターンの生成方法。
    A method for generating a mask pattern for forming a hole, comprising:
    A step (a) of generating a first pattern comprising a rectangle including a hole pattern and having a major axis in the Y axis in a first layer;
    A step (b) of generating in the second layer a second pattern comprising a rectangle including the hole pattern and having an X axis as a major axis direction;
    The first layer and the second layer are overlapped so that the hole pattern provided in the first layer and the hole pattern provided in the second layer coincide with each other, A step (c) of forming a synthesized pattern obtained by synthesizing the first pattern and the second pattern;
    After extracting an overlapping portion where the first pattern and the second pattern overlap from the composite pattern, the length of at least one of the long side of the first pattern and the long side of the second pattern (D) to shorten the overlapping portion and match the hole pattern with the hole pattern;
    After the step (d), a step (e) of calculating a dimension of a hole formed using the first layer and the second layer;
    After the step (e), a mask pattern generation method comprising a step (f) of correcting at least one of the long side of the first pattern and the long side of the second pattern.
  2.  前記工程(e)で計算される前記ホールの寸法が所望の寸法となるまで、前記工程(f)の後、前記工程(c)、前記工程(d)、前記工程(e)を順次繰り返すことを特徴とする請求項1に記載のマスクパターンの生成方法。 The step (c), the step (d), and the step (e) are sequentially repeated after the step (f) until the size of the hole calculated in the step (e) becomes a desired size. The method of generating a mask pattern according to claim 1.
  3.  前記工程(f)は、前記第1のパターンの短辺、及び前記第2のパターンの短辺の少なくとも一方の長さを修正する工程を有することを特徴とする請求項1に記載のマスクパターンの生成方法。 2. The mask pattern according to claim 1, wherein the step (f) includes a step of correcting a length of at least one of a short side of the first pattern and a short side of the second pattern. Generation method.
  4.  前記工程(e)では、光学シミュレーションを行うことで、前記ホールの寸法を計算することを特徴とする請求項1に記載のマスクパターンの生成方法。 2. The method of generating a mask pattern according to claim 1, wherein in the step (e), the dimension of the hole is calculated by performing an optical simulation.
  5.  前記工程(e)では、種々の寸法からなる前記第1のパターン及び前記第2のパターンから形成されるホールの寸法がそれぞれ予め算出された比較テーブルを用いて、前記ホールの寸法を計算することを特徴とする請求項1に記載のマスクパターンの生成方法。 In the step (e), the dimensions of the holes are calculated using a comparison table in which the dimensions of the holes formed from the first pattern and the second pattern having various dimensions are calculated in advance. The method of generating a mask pattern according to claim 1.
  6.  前記工程(f)では、光学シミュレーションを用いて、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを修正することを特徴とする請求項1に記載のマスクパターンの生成方法。 2. The step (f) includes correcting the length of at least one of the long side of the first pattern and the long side of the second pattern using optical simulation. Mask pattern generation method.
  7.  前記工程(f)では、種々の寸法からなる前記第1のパターン及び前記第2のパターンから形成されるホールの寸法がそれぞれ予め算出された比較テーブルを用いて、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを修正することを特徴とする請求項1に記載のマスクパターンの生成方法。 In the step (f), a long side of the first pattern is calculated using a comparison table in which the dimensions of the holes formed from the first pattern and the second pattern having various dimensions are calculated in advance. 2. The method of generating a mask pattern according to claim 1, wherein the length of at least one of the long sides of the second pattern is corrected.
  8.  前記ホールの所望の寸法がWである場合、前記工程(a)で形成される前記第1のパターンの長辺の長さをWy、前記工程(b)で形成される前記第2のパターンの長辺の長さをWxとすると、Wy=N×W、Wx=N×W(N≧1)であることを特徴とする請求項1に記載のマスクパターンの生成方法。 When the desired dimension of the hole is W, the length of the long side of the first pattern formed in the step (a) is Wy, and the length of the second pattern formed in the step (b) is 2. The mask pattern generation method according to claim 1, wherein Wy = N.times.W and Wx = N.times.W (N.gtoreq.1), where Wx is the length of the long side.
  9.  レジスト膜にホールパターンを形成するためのパターン形成方法であって、
     前記ホールパターンを含み、Y軸を長軸方向とする長方形からなる第1のパターンを第1のレイヤに発生させる工程(a)と、
     前記ホールパターンを含み、X軸を長軸方向とする長方形からなる第2のパターンを第2のレイヤに発生させる工程(b)と、
     前記第1のレイヤに設けられた前記ホールパターンと、前記第2のレイヤに設けられた前記ホールパターンとが互いに一致するように前記第1のレイヤと前記第2のレイヤを重ね合わせて、前記第1のパターンと前記第2のパターンを合成させた合成パターンを形成する工程(c)と、
     前記合成パターンから、前記第1のパターンと前記第2のパターンとが重なる重なり部を抽出した後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを短くして前記重なり部を前記ホールパターンと一致させる工程(d)と、
     前記工程(d)の後、前記第1のレイヤと前記第2のレイヤを用いて形成されるホールの寸法を計算する工程(e)と、
     前記工程(e)の後、前記第1のパターンの長辺、及び前記第2のパターンの長辺の少なくとも一方の長さを修正する工程(f)と、
     前記工程(f)の後、前記第1のパターンを用いて、第1のマスクを製作する第1のマスク製作工程(g)と、
     前記工程(f)の後、前記第2のパターンを用いて、第2のマスクを製作する第2マスク製作工程(h)と、
     前記工程(g)及び前記工程(h)の後、レジスト膜が設けられた基板を、前記第1のマスクを用いて露光することで、前記レジスト膜に前記第1のパターンを転写する工程(i)と、
     前記工程(g)及び前記工程(h)の後、前記基板を前記第2のマスクを用いて露光することで、前記レジスト膜に前記第2のパターンを転写する工程(j)と、
     前記工程(i)及び前記工程(j)の後、前記レジスト膜を現像することで、前記レジスト膜に前記ホールパターンを形成する工程(k)とを備えているパターン形成方法。
    A pattern forming method for forming a hole pattern in a resist film,
    A step (a) of generating a first pattern comprising a rectangle including the hole pattern and having a major axis in the Y axis in a first layer;
    A step (b) of generating in the second layer a second pattern comprising a rectangle including the hole pattern and having an X axis as a major axis direction;
    The first layer and the second layer are overlapped so that the hole pattern provided in the first layer and the hole pattern provided in the second layer coincide with each other, A step (c) of forming a synthesized pattern obtained by synthesizing the first pattern and the second pattern;
    After extracting an overlapping portion where the first pattern and the second pattern overlap from the composite pattern, the length of at least one of the long side of the first pattern and the long side of the second pattern (D) to shorten the overlapping portion and match the hole pattern with the hole pattern;
    After the step (d), a step (e) of calculating a dimension of a hole formed using the first layer and the second layer;
    After the step (e), a step (f) of correcting the length of at least one of the long side of the first pattern and the long side of the second pattern;
    After the step (f), a first mask manufacturing step (g) for manufacturing a first mask using the first pattern;
    After the step (f), a second mask manufacturing step (h) for manufacturing a second mask using the second pattern;
    After the step (g) and the step (h), the substrate provided with the resist film is exposed using the first mask, thereby transferring the first pattern to the resist film ( i) and
    After the step (g) and the step (h), the step (j) of transferring the second pattern to the resist film by exposing the substrate using the second mask;
    After the step (i) and the step (j), the resist film is developed to form the hole pattern in the resist film (k).
  10.  前記工程(i)では、X軸方向に沿って互いに対向する位置に設けられた2つの開口部を有する照明絞りを用いて、前記基板を露光することを特徴とする請求項9に記載のパターン形成方法。 10. The pattern according to claim 9, wherein in the step (i), the substrate is exposed using an illumination stop having two openings provided at positions facing each other along the X-axis direction. Forming method.
  11.  前記工程(j)では、Y軸方向に沿って互いに対向する位置に設けられた2つの開口部を有する照明絞りを用いて、前記基板を露光することを特徴とする請求項9に記載のパターン形成方法。 The pattern according to claim 9, wherein in the step (j), the substrate is exposed using an illumination stop having two openings provided at positions facing each other along the Y-axis direction. Forming method.
  12.  前記第1のパターン及び前記第2のパターンは、遮光膜からなることを特徴とする請求項9に記載のパターン形成方法。 The pattern forming method according to claim 9, wherein the first pattern and the second pattern are made of a light shielding film.
  13.  前記第1のマスク及び前記第2のマスクは、バイナリ型、ハーフトーン位相シフト型、及びエッジ強調型位相シフトマスクのいずれかであることを特徴とする請求項9に記載のパターン形成方法。 10. The pattern forming method according to claim 9, wherein the first mask and the second mask are any one of a binary type, a halftone phase shift type, and an edge enhancement type phase shift mask.
  14.  前記第1のパターン形成および第2のパターン形成に用いるレジスト膜は、ネガ型レジスト膜であり、現像はポジ型であることを特徴とする請求項9に記載のパターン形成方法。 10. The pattern forming method according to claim 9, wherein the resist film used for the first pattern formation and the second pattern formation is a negative resist film, and development is a positive type.
  15.  前記第1のパターン形成および第2のパターン形成に用いるレジスト膜は、ポジ型レジスト膜であり、現像はネガ型であることを特徴とする請求項9に記載のパターン形成方法。 10. The pattern forming method according to claim 9, wherein the resist film used for the first pattern formation and the second pattern formation is a positive resist film, and development is a negative type.
PCT/JP2009/000328 2008-04-11 2009-01-28 Method of generating mask pattern and method of forming pattern WO2009125529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-103465 2008-04-11
JP2008103465 2008-04-11

Publications (1)

Publication Number Publication Date
WO2009125529A1 true WO2009125529A1 (en) 2009-10-15

Family

ID=41161667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000328 WO2009125529A1 (en) 2008-04-11 2009-01-28 Method of generating mask pattern and method of forming pattern

Country Status (1)

Country Link
WO (1) WO2009125529A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215672A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Mask pattern drawing method
US11815348B2 (en) 2021-03-23 2023-11-14 Kioxia Corporation Template, workpiece, and alignment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232318A (en) * 1987-03-20 1988-09-28 Hitachi Ltd Formation of fine pattern
JPH05326358A (en) * 1992-05-18 1993-12-10 Sony Corp Method for forming fine pattern
JP2000091221A (en) * 1998-09-10 2000-03-31 Canon Inc Exposing method, manufacture of device using the same, and semiconductor device
JP2000306830A (en) * 1991-02-28 2000-11-02 Nikon Corp Method of exposure
JP2000349012A (en) * 1999-06-04 2000-12-15 Canon Inc Method and apparatus for exposure as well as manufacture of device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232318A (en) * 1987-03-20 1988-09-28 Hitachi Ltd Formation of fine pattern
JP2000306830A (en) * 1991-02-28 2000-11-02 Nikon Corp Method of exposure
JPH05326358A (en) * 1992-05-18 1993-12-10 Sony Corp Method for forming fine pattern
JP2000091221A (en) * 1998-09-10 2000-03-31 Canon Inc Exposing method, manufacture of device using the same, and semiconductor device
JP2000349012A (en) * 1999-06-04 2000-12-15 Canon Inc Method and apparatus for exposure as well as manufacture of device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215672A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Mask pattern drawing method
US11815348B2 (en) 2021-03-23 2023-11-14 Kioxia Corporation Template, workpiece, and alignment method

Similar Documents

Publication Publication Date Title
US7131102B2 (en) Full sized scattering bar alt-PSM technique for IC manufacturing in sub-resolution era
US6783904B2 (en) Lithography correction method and device
US20040248016A1 (en) Method of designing a reticle and forming a semiconductor device therewith
US20090258302A1 (en) Sub-resolution assist feature of a photomask
US9213233B2 (en) Photolithography scattering bar structure and method
WO2009125529A1 (en) Method of generating mask pattern and method of forming pattern
US20040202943A1 (en) Set of at least two masks for the projection of structure patterns and method for producing the masks
JP2009210707A (en) Photomask, method for designing the same and design program
US20120135341A1 (en) Method for double patterning lithography and photomask layout
JP2008020734A (en) Design pattern preparation method for semiconductor device, program, and method of manufacturing the semiconductor device
US8092958B2 (en) Mask and method for patterning a semiconductor wafer
CN107643651B (en) Design method of photoetching auxiliary pattern
JP2004309958A (en) Photomask, method of forming pattern using the photomask, and method of creating mask data
US6413685B1 (en) Method of reducing optical proximity effect
US8742546B2 (en) Semiconductor device with a plurality of dot patterns and a line pattern having a projection part
JP4562934B2 (en) Verification method for OPC correction processing of photomask data
JP2004157160A (en) Method for forming process model, method for designing mask pattern, mask and method for manufacturing semiconductor device
JP4580656B2 (en) Double exposure photomask and exposure method
JP4408732B2 (en) Method for forming hole pattern
JP2005276852A (en) Forming method of fine hole pattern
KR100706813B1 (en) Method for arranging patterns of a semiconductor device
JPH11133585A (en) Mask for exposure and its production
Pierrat et al. Full phase-shifting methodology for 65-nm node lithography
KR20080001439A (en) Method for manufacturing photo-mask by using layout design correction
Spence et al. Integration of optical proximity correction strategies in strong phase-shifter design for polygate layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09729402

Country of ref document: EP

Kind code of ref document: A1