WO2009123023A1 - Cigarette filters - Google Patents

Cigarette filters Download PDF

Info

Publication number
WO2009123023A1
WO2009123023A1 PCT/JP2009/056181 JP2009056181W WO2009123023A1 WO 2009123023 A1 WO2009123023 A1 WO 2009123023A1 JP 2009056181 W JP2009056181 W JP 2009056181W WO 2009123023 A1 WO2009123023 A1 WO 2009123023A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
supported
surface area
activated carbon
specific surface
Prior art date
Application number
PCT/JP2009/056181
Other languages
French (fr)
Japanese (ja)
Inventor
一紀 菅井
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2009123023A1 publication Critical patent/WO2009123023A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • A24D3/163Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals

Definitions

  • the present invention relates to a cigarette filter.
  • a precious metal catalyst, a metal oxide catalyst, or a Wacker type catalyst has been added to a filter, a cigarette cut, a wrapping paper, or the like.
  • Patent Document 1 a partial reduction additive such as Fe 2 O 3 that acts as a catalyst for converting carbon monoxide into carbon dioxide is used in the filler composition. It is also disclosed to oxidize CO using a catalyst such as CuO—ZnO—CeO 2 for a cigarette filter (Patent Document 2).
  • Patent Document 2 a partial reduction additive such as Fe 2 O 3 that acts as a catalyst for converting carbon monoxide into carbon dioxide.
  • Patent Document 3 a cigarette filter using a surface of activated carbon particles coated with copper and a surface of which is coated with platinum is known (Patent Document 3). It is disclosed that this cigarette filter can reduce the vapor component but does not affect the gas component. It is shown that the amount of CO increases rather.
  • a cigarette smoke filter in which activated carbon is impregnated with one or more of copper, molybdenum, manganese, cobalt, zinc and iron (Patent Document 4).
  • a supported catalyst in which Au—Ti oxide or Au—Zn oxide is supported on a support is also disclosed (Patent Documents 5 and 6).
  • the CO reduction rate is only about 20 to 48%.
  • An object of the present invention is to provide a cigarette filter that can effectively control the amount of CO delivery in the mainstream cigarette smoke without impairing the flavor components.
  • the cigarette filter according to the present invention is provided on the suction side of the tobacco rod and has a ratio of (specific surface area of micropores / specific surface area of meso-macropores) of 0.5 to 10.0, and (fine pores of micropores).
  • Pt, Pd, Au, Rh, Ru, Ag, Ti, Fe, Co, Cr, Ni are applied to a porous carrier having a ratio of pore volume / meso-macropore pore volume) of 0.3 to 6.0.
  • part which contains is provided.
  • FIG. 1 is a diagram showing the configuration of a cigarette used for testing.
  • FIG. 2 is a graph showing the transmittance of CO or nicotine with respect to the amount of supported catalyst of Pt-supported activated carbon or Pt-supported silica gel.
  • FIG. 3 is a graph showing CO permeability and nicotine permeability with respect to the amount of supported catalyst of Pt-supported activated carbon or Pt / Rh-supported activated carbon.
  • FIG. 4 is a diagram showing the relationship between the number of smokers and the CO delivery amount.
  • FIG. 5 is a graph showing the relationship between the surface area of Pt supported on activated carbon and the CO transmittance (1-E_CO).
  • FIG. 1 is a diagram showing the configuration of a cigarette used for testing.
  • FIG. 2 is a graph showing the transmittance of CO or nicotine with respect to the amount of supported catalyst of Pt-supported activated carbon or Pt-supported silica gel.
  • FIG. 3 is a graph showing CO permeability and nicotine permeability
  • FIG. 6 is a graph showing the CO permeability with respect to the amount of supported catalyst in which Pt is supported on activated carbon 1 at 5 wt%, 10 wt%, or 20 wt%.
  • FIG. 7 is a graph showing CO permeability with respect to the amount of supported catalyst in which Pt is supported on activated carbon 2 (highly activated charcoal) at 5 wt%, 10 wt%, and 20 wt%.
  • porous carbon materials coconut husk charcoal, bituminous coal, synthetic charcoal, carbon fiber, mesoporous carbon, carbon sheet, molecular sieve charcoal, etc.), coke, carbon black, nanoporous carbon (carbon nanotubes, etc.) ).
  • the particle size of the carrier is preferably 200 to 2000 ⁇ m from the viewpoint of ventilation resistance.
  • the carrier may have a honeycomb structure or may be fibrous.
  • the catalyst is selected from the group consisting of noble metal catalysts Pt, Pd, Au, Rh and Ru, metal oxide catalysts CuO, ZnO, CeO 2 , MnO 2 and AgO, and Wacker catalysts. At least one is used.
  • the ratio of (specific surface area of micropores / specific surface area of meso-macropores) is 0.5 to 10.0, (pore volume of micropores / pore volume of meso-macropores) The ratio is 0.3 to 6.0.
  • micropores have a pore diameter of 2 nm or less, mesopores have a pore diameter of 2 to 50 nm, and macropores have a pore diameter of 50 nm or more.
  • the total specific surface area is measured by the BET method.
  • the specific surface area of the meso-macropores is measured by the DH method.
  • the specific surface area of the micropores is determined by subtracting the specific surface area of the meso-macropores from the total specific surface area.
  • the total pore volume is measured by the BET method.
  • the pore volume of meso-macropores is measured by the DH method.
  • the pore volume of the micropore is determined by subtracting the pore volume of the meso-macropore from the total pore volume.
  • porous carrier when the ratio of (micropore specific surface area / meso-macropore specific surface area) or (micropore pore volume / meso-macropore pore volume) is out of the above range, This means that the degree of dispersion of the catalyst is reduced, the particle size of the catalyst is increased, and the catalytic activity is reduced, so that CO cannot be effectively removed.
  • a part containing activated carbon having a specific surface area of 700 to 2000 m 2 / g may be provided before the part containing the supported catalyst. If a site containing highly activated charcoal is provided in the previous stage of the site containing the supported catalyst, the catalytic activity can be maintained for a long time.
  • the surface area of the catalyst is preferably 0.6 m 2 or more, and more preferably 2.4 m 2 or more. If the surface area of the catalyst is 0.6 m 2 or more, 20% or more of CO can be removed, and if it is 2.4 m 2 or more, CO can be removed by nearly 10%.
  • the particle size of the catalyst is preferably 20 nm or less, and more preferably 5 nm or less.
  • the particle size of the catalyst exceeds 20 nm, the catalytic activity becomes low.
  • the smaller the particle size of the catalyst the higher the catalytic activity.
  • the particle size of the catalyst can be calculated from chemical adsorption by the pulse method. For example, CO is used as the adsorption chemical species.
  • the supported catalyst can be filled as it is to be used for a filter, or can be dispersed in notches or wrapping paper.
  • the test cigarette of FIG. 1A is a filter in which a brass tube filled with a cavity of the supported catalyst 1 is arranged as a filter provided on the suction side of a commercially available single cigarette rod 10.
  • the test cigarette in FIG. 1 (b) is a brass provided with a cavity filled with 200 mg of highly activated charcoal (specific surface area 1700 m 2 / g) 2 in the previous stage as a filter provided on the suction side of a commercially available single cigarette rod 10.
  • a brass tube filled with a cavity of the supported catalyst 1 is arranged in the tube and the latter stage.
  • test cigarette having such a configuration was attached to an automatic smoking machine, smoked under conditions of 17.5 ml and 7 puffs, and the permeability of CO or nicotine was examined.
  • 17.5 ml is 1/2 of ISO smoking conditions (equivalent to 50% Vf). The reason for setting this condition is that if the flow rate is too high, the catalyst activity decreases.
  • CO permeability (1-E_CO) and nicotine permeability (1-E_Nic) are expressed by the following equations, respectively.
  • a catalyst in which Pt was supported on activated carbon referred to as Pt-supported activated carbon
  • a catalyst in which Pt was supported on silica gel referred to as Pt-supported silica gel
  • An impregnation method was used as a loading method.
  • FIG. 2 shows the permeability of CO or nicotine to the amount of Pt-supported activated carbon or Pt-supported silica gel (supported catalyst amount).
  • FIG. 2 shows that when activated carbon is used as the carrier, the CO reduction rate is higher with the same amount of supported catalyst than when silica gel is used as the carrier.
  • FIG. 3 shows the CO permeability and nicotine permeability with respect to the amount of Pt-supported activated carbon or Pt / Rh-supported activated carbon.
  • FIG. 3 shows that when Pt-supported activated carbon is used, the CO reduction rate is high with the same supported catalyst amount as compared with the case where Pt / Rh-supported activated carbon is used.
  • the transmittance of nicotine there is not much difference in the reduction rate depending on the supported catalyst.
  • Fig. 4 shows the relationship between the number of smokers and CO delivery. From FIG. 4, it can be seen that the CO reduction effect is sustained in the configuration of FIG. 1B in which highly activated charcoal is disposed in front of the Pt-supported activated carbon.
  • FIG. 5 shows the relationship between the surface area of Pt supported on activated carbon and the CO permeability (1-E_CO). From FIG. 5, if the target is to reduce CO by about 20%, the Pt surface area should be 0.6 m 2 or more. If the target is to reduce CO by 10%, the Pt surface area should be 2.4 m 2 or more. Recognize.
  • activated carbon 1 Two types were prepared as carriers. These activated carbons have different mesopore-macropore cumulative pore volumes.
  • a supported catalyst was prepared by supporting activated carbon 1 or activated carbon 2 (highly activated charcoal) with 5 wt%, 10 wt%, or 20 wt% Pt. Table 1 shows the Pt dispersion degree and the Pt particle diameter of these supported catalysts.
  • ⁇ Pt dispersion (%) is measured by the pulse method. CO gas is introduced into the sample in pulses until saturation is reached, the surface area of Pt on the sample is measured from the total gas consumption, and the degree of dispersion is calculated from the surface area and Pt weight.
  • the particle size of Pt is preferably less than 20 nm, and more preferably less than 5 nm.
  • activated carbon Six types were prepared as carriers. Table 2 shows the specific surface area and pore volume of these activated carbons 1 to 5. A supported catalyst in which 20 wt% of Pt was supported on activated carbon 1 to 5 was prepared, and the degree of Pt dispersion was examined. Table 2 also shows the Pt dispersion of these supported catalysts.
  • the ratio of (specific surface area of micropores / specific surface area of meso-macropores) is from 0.5 to 10.0, and the ratio of (pore volume of micropores / pore volume of meso-macropores) is from 0.3 to 6.0.
  • FIG. 6 shows the CO permeability with respect to the amount of the supported catalyst in which Pt is supported on activated carbon 1 at 5 wt%, 10 wt%, or 20 wt%.
  • FIG. 7 shows the CO permeability with respect to the amount of supported catalyst in which Pt is supported on activated carbon 2 (highly activated charcoal) at 5 wt%, 10 wt%, and 20 wt%.

Abstract

Disclosed is a cigarette filter that is provided on the inhaling side of the tobacco rod, which is provided with a part that comprises a carrier catalyst wherein at least one catalyst selected from a group comprising metal catalysts that include Pt, Pd, Au, Rh, Ru, Ag, Ti, Fe, Co, Cr, Ni, Cu, Zn, Mn, Zr, V, Nb, Mo, Ce, Hf, Ta, W, Re, Os, Ir, Y, Tc, B, Mg, Na, Al, Ca, K, Si, Sn, Ge, Sr, Rb and In, metal oxide catalysts that include oxides and compound oxides of these metals, as well as Wacker catalysts, is loaded on a porous carrier wherein the (micropore specific surface area/meso-macropore specific surface area) ratio is 0.5 to 10.0 and the (micropore pore volume/meso-macropore pore volume) ratio is 0.3 to 6.0.

Description

シガレットフィルターCigarette filter
 本発明は、シガレットフィルターに関する。 The present invention relates to a cigarette filter.
 これまで、たばこ主流煙中のCOを低減するために、貴金属触媒や金属酸化物触媒やWacker型触媒を、フィルター、たばこ刻み、巻紙などへ添加することが行われている。 Until now, in order to reduce CO in the mainstream smoke of cigarettes, a precious metal catalyst, a metal oxide catalyst, or a Wacker type catalyst has been added to a filter, a cigarette cut, a wrapping paper, or the like.
 たとえば、一酸化炭素を二酸化炭素に変換するための触媒として作用するFeなどの部分還元添加剤を充填剤組成物に用いることが開示されている(特許文献1)。CuO-ZnO-CeOなどの触媒をシガレットフィルターに用いてCOを酸化することも開示されている(特許文献2)。しかし、これらの文献はモデルガスを用いた場合にCOを低減可能な触媒に言及しているだけであり、たばこ主流煙中のCOデリバリー量の制御については開示していない。 For example, it is disclosed that a partial reduction additive such as Fe 2 O 3 that acts as a catalyst for converting carbon monoxide into carbon dioxide is used in the filler composition (Patent Document 1). It is also disclosed to oxidize CO using a catalyst such as CuO—ZnO—CeO 2 for a cigarette filter (Patent Document 2). However, these documents only refer to a catalyst capable of reducing CO when a model gas is used, and does not disclose control of the amount of CO delivered in tobacco mainstream smoke.
 また、活性炭粒子の表面を銅で被覆し、その表面を白金で被覆したものを用いたシガレットフィルターが知られている(特許文献3)。このシガレットフィルターは蒸気成分を低減できるが、気体成分には影響を及ぼさないことが開示されている。なお、COの量はむしろ増加する結果が示されている。 Further, a cigarette filter using a surface of activated carbon particles coated with copper and a surface of which is coated with platinum is known (Patent Document 3). It is disclosed that this cigarette filter can reduce the vapor component but does not affect the gas component. It is shown that the amount of CO increases rather.
 さらに、活性炭に銅、モリブデン、マンガン、コバルト、亜鉛および鉄の1以上を添着したタバコ煙フィルターが開示されている(特許文献4)。担体にAu-Ti酸化物やAu-Zn酸化物を担持させた担持触媒も開示されている(特許文献5、6)。しかし、これらの担持触媒を用いた場合、CO低減率は20~48%程度にすぎない。 Furthermore, a cigarette smoke filter is disclosed in which activated carbon is impregnated with one or more of copper, molybdenum, manganese, cobalt, zinc and iron (Patent Document 4). A supported catalyst in which Au—Ti oxide or Au—Zn oxide is supported on a support is also disclosed (Patent Documents 5 and 6). However, when these supported catalysts are used, the CO reduction rate is only about 20 to 48%.
 上記のように従来は、たばこ主流煙中のCOデリバリー量を有効に制御できるシガレットフィルターは知られていなかった。
特表2005-522206号公報 米国特許出願公開第2006/0289024号明細書 特開平7-250666号公報 特表2005-522206号公報 米国特許出願公開第2007/0204870号明細書 米国特許出願公開第2007/0215166号明細書
As described above, conventionally, a cigarette filter that can effectively control the amount of CO delivery in the mainstream smoke of cigarettes has not been known.
JP 2005-522206 A US Patent Application Publication No. 2006/0289024 JP-A-7-250666 JP 2005-522206 A US Patent Application Publication No. 2007/0204870 US Patent Application Publication No. 2007/0215166
 本発明の目的は、香喫味成分を損なわずに、たばこ主流煙中のCOデリバリー量を有効に制御できるシガレットフィルターを提供することにある。 An object of the present invention is to provide a cigarette filter that can effectively control the amount of CO delivery in the mainstream cigarette smoke without impairing the flavor components.
 本発明に係るシガレットフィルターは、たばこロッドの吸口側に設けられ、(ミクロ孔の比表面積/メソ-マクロ孔の比表面積)の比が0.5~10.0であり、(ミクロ孔の細孔容積/メソ-マクロ孔の細孔容積)の比が0.3~6.0である多孔質担体に、Pt、Pd、Au、Rh、Ru、Ag、Ti、Fe、Co、Cr、Ni、Cu、Zn、Mn、Zr、V、Nb、Mo、Ce、Hf、Ta、W、Re、Os、Ir、Y、Tc、B、Mg、Na、Al、Ca、K、Si、Sn、Ge、Sr、RbおよびInを含む金属触媒、これらの金属の酸化物および複合酸化物を含む金属酸化物触媒、ならびにWacker触媒からなる群より選択される少なくとも1種の触媒を担持させた担持触媒を含む部位を設けたことを特徴とする。 The cigarette filter according to the present invention is provided on the suction side of the tobacco rod and has a ratio of (specific surface area of micropores / specific surface area of meso-macropores) of 0.5 to 10.0, and (fine pores of micropores). Pt, Pd, Au, Rh, Ru, Ag, Ti, Fe, Co, Cr, Ni are applied to a porous carrier having a ratio of pore volume / meso-macropore pore volume) of 0.3 to 6.0. Cu, Zn, Mn, Zr, V, Nb, Mo, Ce, Hf, Ta, W, Re, Os, Ir, Y, Tc, B, Mg, Na, Al, Ca, K, Si, Sn, Ge , A metal catalyst containing Sr, Rb and In, a metal oxide catalyst containing these metal oxides and composite oxides, and a supported catalyst carrying at least one catalyst selected from the group consisting of Wacker catalysts The site | part which contains is provided.
 本発明によれば、香喫味成分を損なわずに、たばこ主流煙中のCOデリバリー量を有効に制御できるシガレットフィルターを提供することができる。 According to the present invention, it is possible to provide a cigarette filter that can effectively control the CO delivery amount in the mainstream cigarette smoke without impairing the flavor component.
図1は、試験のために用いたシガレットの構成を示す図。FIG. 1 is a diagram showing the configuration of a cigarette used for testing. 図2は、Pt担持活性炭またはPt担持シリカゲルの担持触媒量に対するCOまたはニコチンの透過率を示す図。FIG. 2 is a graph showing the transmittance of CO or nicotine with respect to the amount of supported catalyst of Pt-supported activated carbon or Pt-supported silica gel. 図3は、Pt担持活性炭またはPt/Rh担持活性炭の担持触媒量に対するCOの透過率およびニコチンの透過率を示す図。FIG. 3 is a graph showing CO permeability and nicotine permeability with respect to the amount of supported catalyst of Pt-supported activated carbon or Pt / Rh-supported activated carbon. 図4は、喫煙本数とCOデリバリー量との関係を示す図。FIG. 4 is a diagram showing the relationship between the number of smokers and the CO delivery amount. 図5は、活性炭に担持させたPtの表面積と、COの透過率(1-E_CO)との関係を示す図。FIG. 5 is a graph showing the relationship between the surface area of Pt supported on activated carbon and the CO transmittance (1-E_CO). 図6は、活性炭1にPtを5wt%、10wt%または20wt%担持させた担持触媒の量に対する、COの透過率を示す図。FIG. 6 is a graph showing the CO permeability with respect to the amount of supported catalyst in which Pt is supported on activated carbon 1 at 5 wt%, 10 wt%, or 20 wt%. 図7は、活性炭2(高賦活炭)にPtを5wt%、10wt%、20wt%担持させた担持触媒の量に対する、COの透過率を示す図。FIG. 7 is a graph showing CO permeability with respect to the amount of supported catalyst in which Pt is supported on activated carbon 2 (highly activated charcoal) at 5 wt%, 10 wt%, and 20 wt%.
 本発明において、多孔質担体としては、多孔質炭素材料(ヤシガラ炭、瀝青炭、合成炭、炭素繊維、メソポーラスカーボン、カーボンシート、分子篩炭など)、コークス、カーボンブラック、ナノ細孔炭素(カーボンナノチューブなど)が挙げられる。担体の粒径は、通気抵抗の観点から、200~2000μmであることが好ましい。担体は、ハニカム構造を有していてもよいし、繊維状であってもよい。 In the present invention, as the porous carrier, porous carbon materials (coconut husk charcoal, bituminous coal, synthetic charcoal, carbon fiber, mesoporous carbon, carbon sheet, molecular sieve charcoal, etc.), coke, carbon black, nanoporous carbon (carbon nanotubes, etc.) ). The particle size of the carrier is preferably 200 to 2000 μm from the viewpoint of ventilation resistance. The carrier may have a honeycomb structure or may be fibrous.
 本発明において、触媒としては、貴金属触媒であるPt、Pd、Au、RhおよびRu、金属酸化物触媒であるCuO、ZnO、CeO、MnOおよびAgO、ならびにWacker触媒からなる群より選択される少なくとも1種が用いられる。 In the present invention, the catalyst is selected from the group consisting of noble metal catalysts Pt, Pd, Au, Rh and Ru, metal oxide catalysts CuO, ZnO, CeO 2 , MnO 2 and AgO, and Wacker catalysts. At least one is used.
 多孔質担体について、(ミクロ孔の比表面積/メソ-マクロ孔の比表面積)の比が0.5~10.0であり、(ミクロ孔の細孔容積/メソ-マクロ孔の細孔容積)の比が0.3~6.0である。ここで、ミクロ孔とは細孔直径が2nm以下のもの、メソ孔とは細孔直径が2~50nmのもの、マクロ孔とは細孔直径が50nm以上のものをいう。 For the porous carrier, the ratio of (specific surface area of micropores / specific surface area of meso-macropores) is 0.5 to 10.0, (pore volume of micropores / pore volume of meso-macropores) The ratio is 0.3 to 6.0. Here, micropores have a pore diameter of 2 nm or less, mesopores have a pore diameter of 2 to 50 nm, and macropores have a pore diameter of 50 nm or more.
 全比表面積はBET法により測定する。メソ-マクロ孔の比表面積はDH法により測定する。ミクロ孔の比表面積は全比表面積からメソ-マクロ孔の比表面積を差し引いて求める。 The total specific surface area is measured by the BET method. The specific surface area of the meso-macropores is measured by the DH method. The specific surface area of the micropores is determined by subtracting the specific surface area of the meso-macropores from the total specific surface area.
 全細孔容積はBET法により測定する。メソ-マクロ孔の細孔容積はDH法により測定する。ミクロ孔の細孔容積は全細孔容積からメソ-マクロ孔の細孔容積を差し引いて求める。 The total pore volume is measured by the BET method. The pore volume of meso-macropores is measured by the DH method. The pore volume of the micropore is determined by subtracting the pore volume of the meso-macropore from the total pore volume.
 多孔質担体について、(ミクロ孔の比表面積/メソ-マクロ孔の比表面積)の比または(ミクロ孔の細孔容積/メソ-マクロ孔の細孔容積)の比が上記範囲をはずれた場合、触媒の分散度が低下し、触媒の粒径が大きくなり、触媒活性が低下することを意味するため、COを効果的に除去できなくなる。 For the porous carrier, when the ratio of (micropore specific surface area / meso-macropore specific surface area) or (micropore pore volume / meso-macropore pore volume) is out of the above range, This means that the degree of dispersion of the catalyst is reduced, the particle size of the catalyst is increased, and the catalytic activity is reduced, so that CO cannot be effectively removed.
 本発明においては、前記担持触媒を含む部位の前段に、比表面積が700~2000m/gである活性炭(以下、「高賦活炭」という場合がある)を含む部位を設けてもよい。担持触媒を含む部位の前段に、高賦活炭を含む部位を設けると、長時間にわたって触媒活性を維持することができる。 In the present invention, a part containing activated carbon having a specific surface area of 700 to 2000 m 2 / g (hereinafter sometimes referred to as “highly activated charcoal”) may be provided before the part containing the supported catalyst. If a site containing highly activated charcoal is provided in the previous stage of the site containing the supported catalyst, the catalytic activity can be maintained for a long time.
 本発明において、触媒の表面積は0.6m以上であることが好ましく、2.4m以上であることがより好ましい。触媒の表面積が0.6m以上であればCOを2割以上除去することができ、2.4m以上であればCOを10割近く除去することができる。なお、触媒の表面積は、下記の式
 (触媒の表面積)=(触媒の比表面積)[m/g]×(触媒の担持量)[g]
によって求めることができる。
In the present invention, the surface area of the catalyst is preferably 0.6 m 2 or more, and more preferably 2.4 m 2 or more. If the surface area of the catalyst is 0.6 m 2 or more, 20% or more of CO can be removed, and if it is 2.4 m 2 or more, CO can be removed by nearly 10%. The surface area of the catalyst is expressed by the following formula (surface area of the catalyst) = (specific surface area of the catalyst) [m 2 / g] × (amount of catalyst supported) [g]
Can be obtained.
 本発明において、触媒の粒径は20nm以下であることが好ましく、5nm以下であることがより好ましい。触媒の粒径が20nmを超えると触媒活性が低くなる。触媒の粒径が小さいほど、触媒活性が高い。触媒の粒径はパルス法による化学吸着から算出できる。吸着化学種としては例えばCOを使用する。 In the present invention, the particle size of the catalyst is preferably 20 nm or less, and more preferably 5 nm or less. When the particle size of the catalyst exceeds 20 nm, the catalytic activity becomes low. The smaller the particle size of the catalyst, the higher the catalytic activity. The particle size of the catalyst can be calculated from chemical adsorption by the pulse method. For example, CO is used as the adsorption chemical species.
 本発明において、担持触媒はそのまま充填してフィルターに用いることができるし、刻みや巻紙に分散させることもできる。 In the present invention, the supported catalyst can be filled as it is to be used for a filter, or can be dispersed in notches or wrapping paper.
 以下、図面を参照しながら本発明の実施例を説明する。 
 図1(a)および(b)に試験のために用いたシガレットの構成を示す。図1(a)の試験用シガレットは、市販品の単巻のたばこロッド10の吸口側に設けるフィルターとして、担持触媒1をキャビティー充填した真鍮管を配置したものである。図1(b)の試験用シガレットは、市販品の単巻のたばこロッド10の吸口側に設けるフィルターとして、前段に200mgの高賦活炭(比表面積1700m/g)2をキャビティー充填した真鍮管、後段に担持触媒1をキャビティー充填した真鍮管を配置したものである。
Embodiments of the present invention will be described below with reference to the drawings.
The structure of the cigarette used for the test to Fig.1 (a) and (b) is shown. The test cigarette of FIG. 1A is a filter in which a brass tube filled with a cavity of the supported catalyst 1 is arranged as a filter provided on the suction side of a commercially available single cigarette rod 10. The test cigarette in FIG. 1 (b) is a brass provided with a cavity filled with 200 mg of highly activated charcoal (specific surface area 1700 m 2 / g) 2 in the previous stage as a filter provided on the suction side of a commercially available single cigarette rod 10. A brass tube filled with a cavity of the supported catalyst 1 is arranged in the tube and the latter stage.
 このような構成の試験用シガレットを自動喫煙機に装着し、17.5ml、7パフの条件で喫煙を行い、COまたはニコチンの透過率を調べた。17.5mlはISO喫煙条件の1/2(Vf50%相当)である。この条件に設定したのは、流速が速すぎると、触媒活性が低下するためである。 The test cigarette having such a configuration was attached to an automatic smoking machine, smoked under conditions of 17.5 ml and 7 puffs, and the permeability of CO or nicotine was examined. 17.5 ml is 1/2 of ISO smoking conditions (equivalent to 50% Vf). The reason for setting this condition is that if the flow rate is too high, the catalyst activity decreases.
 COの透過率(1-E_CO)とニコチンの透過率(1-E_Nic)はそれぞれ下記の式で表される。 CO permeability (1-E_CO) and nicotine permeability (1-E_Nic) are expressed by the following equations, respectively.
  1-E_CO=C/C
(ここで、Cは担持触媒通過後のCOデリバリー量、Cは単巻のCOデリバリー量である)、
  1-E_Nic=N/N
(ここで、Nは担持触媒通過後のニコチンデリバリー量、Nは単巻のニコチンデリバリー量である)。
1-E_CO = C 1 / C 0
(Where C 1 is the CO delivery amount after passing the supported catalyst, and C 0 is the single volume CO delivery amount),
1-E_Nic = N 1 / N 0
(Here, N 1 is the amount of nicotine delivered after passing through the supported catalyst, and N 0 is the amount of nicotine delivered in a single roll).
 まず、図1(a)の試験用シガレットにおける担持触媒1として、活性炭にPtを担持させたもの(Pt担持活性炭という)、またはシリカゲルにPtを担持させたもの(Pt担持シリカゲルという)を用いた。担持方法としては含浸法を用いた。 First, as the supported catalyst 1 in the test cigarette of FIG. 1 (a), a catalyst in which Pt was supported on activated carbon (referred to as Pt-supported activated carbon) or a catalyst in which Pt was supported on silica gel (referred to as Pt-supported silica gel) was used. . An impregnation method was used as a loading method.
 図2に、Pt担持活性炭またはPt担持シリカゲルの量(担持触媒量)に対するCOまたはニコチンの透過率を示す。 FIG. 2 shows the permeability of CO or nicotine to the amount of Pt-supported activated carbon or Pt-supported silica gel (supported catalyst amount).
 図2から、担体として活性炭を使用した場合には、担体としてシリカゲルを使用した場合と比較して、同じ担持触媒量でCOの低減率が高いことがわかる。 FIG. 2 shows that when activated carbon is used as the carrier, the CO reduction rate is higher with the same amount of supported catalyst than when silica gel is used as the carrier.
 次に、図1(a)の試験用シガレットにおける担持触媒1として、活性炭にPtを担持させたもの(Pt担持活性炭という)、または活性炭にPt/Rh(=5/1)を担持させたもの(Pt/Rh担持活性炭という)を用いた。 Next, as the supported catalyst 1 in the test cigarette of FIG. 1 (a), a catalyst in which Pt is supported on activated carbon (referred to as Pt-supported activated carbon), or a catalyst in which Pt / Rh (= 5/1) is supported on activated carbon. (Pt / Rh-supported activated carbon) was used.
 図3に、Pt担持活性炭またはPt/Rh担持活性炭の量に対するCOの透過率およびニコチンの透過率を示す。図3から、Pt担持活性炭を使用した場合には、Pt/Rh担持活性炭を使用した場合に比較して、同じ担持触媒量でCOの低減率が高いことがわかる。一方、ニコチンの透過率については、担持触媒により低減率にそれほど差が出ない。 FIG. 3 shows the CO permeability and nicotine permeability with respect to the amount of Pt-supported activated carbon or Pt / Rh-supported activated carbon. FIG. 3 shows that when Pt-supported activated carbon is used, the CO reduction rate is high with the same supported catalyst amount as compared with the case where Pt / Rh-supported activated carbon is used. On the other hand, regarding the transmittance of nicotine, there is not much difference in the reduction rate depending on the supported catalyst.
 次に、フィルター部にPt担持活性炭のみを配置した図1(a)の試験用シガレットの構成、またはフィルター部の前段に比表面積1700m/gの高賦活炭、後段にPt担持活性炭を配置した図1(b)の試験用シガレットの構成で、多数本のたばこロッド10の喫煙を繰り返して行い、COデリバリー量の変化を調べた。 Next, the configuration of the test cigarette of FIG. 1A in which only the Pt-supported activated carbon is arranged in the filter part, or highly activated charcoal having a specific surface area of 1700 m 2 / g is arranged in the front stage of the filter part, and Pt-supported activated carbon is arranged in the latter stage. With the configuration of the test cigarette of FIG. 1 (b), smoking of a large number of tobacco rods 10 was repeated, and the change in the CO delivery amount was examined.
 図4に喫煙本数とCOデリバリー量との関係を示す。図4から、Pt担持活性炭の前段に高賦活炭を配置した図1(b)の構成では、CO低減効果が持続することがわかる。 Fig. 4 shows the relationship between the number of smokers and CO delivery. From FIG. 4, it can be seen that the CO reduction effect is sustained in the configuration of FIG. 1B in which highly activated charcoal is disposed in front of the Pt-supported activated carbon.
 図5に、活性炭に担持させたPtの表面積と、COの透過率(1-E_CO)との関係を示す。図5から、約2割のCO低減を目標とするならばPt表面積を0.6m以上、10割のCO低減を目標とするならばPt表面積を2.4m以上にすればよいことがわかる。 FIG. 5 shows the relationship between the surface area of Pt supported on activated carbon and the CO permeability (1-E_CO). From FIG. 5, if the target is to reduce CO by about 20%, the Pt surface area should be 0.6 m 2 or more. If the target is to reduce CO by 10%, the Pt surface area should be 2.4 m 2 or more. Recognize.
 次に、担体として各種の活性炭を用い、Ptを担持させて担持触媒を調製し、担持触媒の性能を評価した。 Next, various activated carbons were used as carriers, and Pt was supported to prepare a supported catalyst, and the performance of the supported catalyst was evaluated.
 担体として2種の活性炭(活性炭1、2)を用意した。これらの活性炭は、メソ孔-マクロ孔の積算細孔容積が異なる。活性炭1または活性炭2(高賦活炭)に、Ptを5wt%、10wt%または20wt%担持させた担持触媒を調製した。表1に、これらの担持触媒のPt分散度およびPt粒子径を示す。 Two types of activated carbon (activated carbon 1, 2) were prepared as carriers. These activated carbons have different mesopore-macropore cumulative pore volumes. A supported catalyst was prepared by supporting activated carbon 1 or activated carbon 2 (highly activated charcoal) with 5 wt%, 10 wt%, or 20 wt% Pt. Table 1 shows the Pt dispersion degree and the Pt particle diameter of these supported catalysts.
 Pt分散度(%)はパルス法により測定する。試料に対して、パルスでCOガスを飽和に達するまで導入し、トータルのガス消費量から試料上のPtの表面積を測定し、その表面積とPt重量から分散度を算出する。 ¡Pt dispersion (%) is measured by the pulse method. CO gas is introduced into the sample in pulses until saturation is reached, the surface area of Pt on the sample is measured from the total gas consumption, and the degree of dispersion is calculated from the surface area and Pt weight.
 担体に活性炭2を用いた場合には、Pt担持量にかかわらずPt分散度が高いことがわかる。Ptの粒径は20nm未満であることが好ましく、5nm未満であることがより好ましい。
Figure JPOXMLDOC01-appb-T000001
When activated carbon 2 is used as the carrier, it can be seen that the degree of Pt dispersion is high regardless of the amount of Pt supported. The particle size of Pt is preferably less than 20 nm, and more preferably less than 5 nm.
Figure JPOXMLDOC01-appb-T000001
 担体として6種の活性炭(活性炭1~5)を用意した。表2に、これらの活性炭1~5について比表面積、細孔容積を示す。活性炭1~5にPtを20wt%担持させた担持触媒を調製し、Pt分散度を調べた。表2に、これらの担持触媒のPt分散度を併記する。 Six types of activated carbon (activated carbon 1-5) were prepared as carriers. Table 2 shows the specific surface area and pore volume of these activated carbons 1 to 5. A supported catalyst in which 20 wt% of Pt was supported on activated carbon 1 to 5 was prepared, and the degree of Pt dispersion was examined. Table 2 also shows the Pt dispersion of these supported catalysts.
 (ミクロ孔の比表面積/メソ-マクロ孔の比表面積)の比は0.5~10.0、(ミクロ孔の細孔容積/メソ-マクロ孔の細孔容積)の比は0.3~6.0である。
Figure JPOXMLDOC01-appb-T000002
The ratio of (specific surface area of micropores / specific surface area of meso-macropores) is from 0.5 to 10.0, and the ratio of (pore volume of micropores / pore volume of meso-macropores) is from 0.3 to 6.0.
Figure JPOXMLDOC01-appb-T000002
 図6に、活性炭1にPtを5wt%、10wt%または20wt%担持させた担持触媒の量に対する、COの透過率を示す。 FIG. 6 shows the CO permeability with respect to the amount of the supported catalyst in which Pt is supported on activated carbon 1 at 5 wt%, 10 wt%, or 20 wt%.
 図7は、活性炭2(高賦活炭)にPtを5wt%、10wt%、20wt%担持させた担持触媒の量に対する、COの透過率を示す。 FIG. 7 shows the CO permeability with respect to the amount of supported catalyst in which Pt is supported on activated carbon 2 (highly activated charcoal) at 5 wt%, 10 wt%, and 20 wt%.
 担体として高賦活炭を用いた場合(図7)には、担体として活性炭を用いた場合(図6)と比較して、担持触媒量が同量でもCOの透過率が高いことがわかる。 It can be seen that when highly activated charcoal is used as the carrier (FIG. 7), the CO permeability is high even when the amount of the supported catalyst is the same as when activated carbon is used as the carrier (FIG. 6).

Claims (6)

  1.  たばこロッドの吸口側に設けられ、(ミクロ孔の比表面積/メソ-マクロ孔の比表面積)の比が0.5~10.0であり、(ミクロ孔の細孔容積/メソ-マクロ孔の細孔容積)の比が0.3~6.0である多孔質担体に、Pt、Pd、Au、Rh、Ru、Ag、Ti、Fe、Co、Cr、Ni、Cu、Zn、Mn、Zr、V、Nb、Mo、Ce、Hf、Ta、W、Re、Os、Ir、Y、Tc、B、Mg、Na、Al、Ca、K、Si、Sn、Ge、Sr、RbおよびInを含む金属触媒、これらの金属の酸化物および複合酸化物を含む金属酸化物触媒、ならびにWacker触媒からなる群より選択される少なくとも1種の触媒を担持させた担持触媒を含む部位を設けたことを特徴とするシガレットフィルター。 Provided on the suction side of the tobacco rod, the ratio of (specific surface area of micropores / specific surface area of meso-macropores) is 0.5 to 10.0, and (pore volume of micropores / meso-macropores) A porous carrier having a pore volume ratio of 0.3 to 6.0 is added to Pt, Pd, Au, Rh, Ru, Ag, Ti, Fe, Co, Cr, Ni, Cu, Zn, Mn, Zr. V, Nb, Mo, Ce, Hf, Ta, W, Re, Os, Ir, Y, Tc, B, Mg, Na, Al, Ca, K, Si, Sn, Ge, Sr, Rb, and In A site comprising a metal catalyst, a metal oxide catalyst containing oxides and composite oxides of these metals, and a supported catalyst supporting at least one catalyst selected from the group consisting of Wacker catalysts is provided. Cigarette filter.
  2.  前記担持触媒を含む部位の前段に、比表面積が700~2000m/gである活性炭を含む部位を設けたことを特徴とする請求項1に記載のシガレットフィルター。 2. The cigarette filter according to claim 1, wherein a site containing activated carbon having a specific surface area of 700 to 2000 m 2 / g is provided in a stage preceding the site containing the supported catalyst.
  3.  前記触媒の表面積が0.6m以上であることを特徴とする請求項1に記載のシガレットフィルター。 The cigarette filter according to claim 1, wherein the catalyst has a surface area of 0.6 m 2 or more.
  4.  前記触媒の表面積が2.4m以上であることを特徴とする請求項3に記載のシガレットフィルター。 The cigarette filter according to claim 3, wherein a surface area of the catalyst is 2.4 m 2 or more.
  5.  前記触媒の粒径が20nm以下であることを特徴とする請求項1に記載のシガレットフィルター。 The cigarette filter according to claim 1, wherein the catalyst has a particle size of 20 nm or less.
  6.  前記触媒の粒径が5nm以下であることを特徴とする請求項5に記載のシガレットフィルター。 The cigarette filter according to claim 5, wherein the catalyst has a particle size of 5 nm or less.
PCT/JP2009/056181 2008-04-01 2009-03-26 Cigarette filters WO2009123023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094816 2008-04-01
JP2008-094816 2008-04-01

Publications (1)

Publication Number Publication Date
WO2009123023A1 true WO2009123023A1 (en) 2009-10-08

Family

ID=41135401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056181 WO2009123023A1 (en) 2008-04-01 2009-03-26 Cigarette filters

Country Status (2)

Country Link
TW (1) TW200944141A (en)
WO (1) WO2009123023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116943A1 (en) * 2009-04-07 2010-10-14 日本たばこ産業株式会社 Compound filter for cigarettes
CN104525095A (en) * 2014-12-11 2015-04-22 上海烟草集团有限责任公司 Magnesium-aluminum bimetal hydroxide nanosheet material for selectively reducing nitrosamine in cigarette smoke as well as preparation method and application of magnesium-aluminum bimetal hydroxide nanosheet material
US9642394B2 (en) 2011-07-21 2017-05-09 British American Tobacco (Investments) Limited Porous carbon and methods of production thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102793273A (en) * 2012-08-08 2012-11-28 刘光明 Nano-catalysis filter cigarette filter tip
CN104687250B (en) * 2014-12-31 2018-09-11 东莞市车宝节能科技有限公司 A kind of filtration core, the filter-tip and preparation method thereof containing filtration core
CN106858717A (en) * 2017-04-10 2017-06-20 滁州卷烟材料厂 The filter tip of carbonyls in a kind of selectivity reducing cigarette fume
CN113477068B (en) * 2021-05-30 2023-05-16 中国人民解放军东部战区疾病预防控制中心 Preparation method and adding method of cigarette smoke active oxygen scavenger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322185B2 (en) * 1984-09-11 1988-05-11 Topii Kogyo Kk
JPH07250666A (en) * 1993-12-14 1995-10-03 Rothmans Internatl Services Ltd Filter for smoking supplies and cigaret
JP2005522206A (en) * 2002-04-12 2005-07-28 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Partially reduced nanoparticle additives for reducing the amount of carbon monoxide and / or nitric oxide in cigarette mainstream smoke
JP3706422B2 (en) * 1995-11-21 2005-10-12 ダイセル化学工業株式会社 Tobacco element and manufacturing method thereof
JP3806259B2 (en) * 1999-01-22 2006-08-09 日本たばこ産業株式会社 Cigarette filter
US20060289024A1 (en) * 2005-03-11 2006-12-28 Philip Morris Usa Inc. Catalysts for low temperature oxidation of carbon monoxide
US20070204870A1 (en) * 2006-02-27 2007-09-06 Sarojini Deevi Catalysts to reduce carbon monoxide such as in the mainstream smoke of a cigarette
US20070215166A1 (en) * 2004-05-28 2007-09-20 Branton Peter J Smoking Articles and Smoking Materials
JP2007527698A (en) * 2003-06-13 2007-10-04 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Catalyst for reducing carbon monoxide in cigarette mainstream smoke

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322185B2 (en) * 1984-09-11 1988-05-11 Topii Kogyo Kk
JPH07250666A (en) * 1993-12-14 1995-10-03 Rothmans Internatl Services Ltd Filter for smoking supplies and cigaret
JP3706422B2 (en) * 1995-11-21 2005-10-12 ダイセル化学工業株式会社 Tobacco element and manufacturing method thereof
JP3806259B2 (en) * 1999-01-22 2006-08-09 日本たばこ産業株式会社 Cigarette filter
JP2005522206A (en) * 2002-04-12 2005-07-28 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Partially reduced nanoparticle additives for reducing the amount of carbon monoxide and / or nitric oxide in cigarette mainstream smoke
JP2007527698A (en) * 2003-06-13 2007-10-04 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Catalyst for reducing carbon monoxide in cigarette mainstream smoke
US20070215166A1 (en) * 2004-05-28 2007-09-20 Branton Peter J Smoking Articles and Smoking Materials
US20060289024A1 (en) * 2005-03-11 2006-12-28 Philip Morris Usa Inc. Catalysts for low temperature oxidation of carbon monoxide
US20070204870A1 (en) * 2006-02-27 2007-09-06 Sarojini Deevi Catalysts to reduce carbon monoxide such as in the mainstream smoke of a cigarette

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116943A1 (en) * 2009-04-07 2010-10-14 日本たばこ産業株式会社 Compound filter for cigarettes
JP5361012B2 (en) * 2009-04-07 2013-12-04 日本たばこ産業株式会社 Composite filter for cigarette
US9642394B2 (en) 2011-07-21 2017-05-09 British American Tobacco (Investments) Limited Porous carbon and methods of production thereof
CN104525095A (en) * 2014-12-11 2015-04-22 上海烟草集团有限责任公司 Magnesium-aluminum bimetal hydroxide nanosheet material for selectively reducing nitrosamine in cigarette smoke as well as preparation method and application of magnesium-aluminum bimetal hydroxide nanosheet material

Also Published As

Publication number Publication date
TW200944141A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
WO2009123023A1 (en) Cigarette filters
JP5133258B2 (en) Smoking articles having activated carbon and sodium bicarbonate treated fibers
JP4970252B2 (en) Smoking goods and materials
WO2006089404A1 (en) Tobacco smoke filter and tobacco blend for altering mainstream smoke
JP5786267B2 (en) Smoking articles containing alkanoylated glycosides and methods of making
JP2011505851A (en) Filters containing randomly oriented fibers for particle breakage reduction
JP2008528011A (en) Cigarette with filter
WO2010053132A1 (en) Smoking article and method for manufacturing same, and method for manufacturing carbon monoxide reducing agent
US20120247491A1 (en) Smoking articles comprising copper-exchanged molecular sieves
CN101947435A (en) Chitosan polycation additive for reducing phenols in cigarette smoke
US20050121045A1 (en) Treatment of mainstream smoke constituents by use of oxygen storage and donor metal oxide oxidation catalyst
JP2007519507A (en) Catalyst containing ultrafine particles
WO2001030184A1 (en) Cigarette filter
WO2008018617A1 (en) Cigarette filter
JP3905883B2 (en) Cigarette filter
JP3706422B2 (en) Tobacco element and manufacturing method thereof
WO2003013287A1 (en) Filter for cigarette
JP6682428B2 (en) Functionalized materials for selective removal of smoke constituents
EP2937001A1 (en) Aluminosilicate sab-15 as an additive for reducing the toxic and carcinogenic compounds present in tobacco smoke
KR100588056B1 (en) Cigarette filter
KR100809390B1 (en) The processing for precious metal catalyst adhered leaf of tobacco and a tobacco based on the processing
JPH02308784A (en) Filter for tobacco
RU2345684C2 (en) Cigarette item
CN113598411A (en) Composite filter tip for adsorbing crotonaldehyde in cigarette smoke and cigarette
CN113647675A (en) Composite filter tip for adsorbing 2-butanone in cigarette smoke and cigarette

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP