WO2009122809A1 - Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel - Google Patents

Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel Download PDF

Info

Publication number
WO2009122809A1
WO2009122809A1 PCT/JP2009/053008 JP2009053008W WO2009122809A1 WO 2009122809 A1 WO2009122809 A1 WO 2009122809A1 JP 2009053008 W JP2009053008 W JP 2009053008W WO 2009122809 A1 WO2009122809 A1 WO 2009122809A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
phosphor
image conversion
conversion panel
evaporation sources
Prior art date
Application number
PCT/JP2009/053008
Other languages
French (fr)
Japanese (ja)
Inventor
惠民 笠井
康史 永田
寛 伊佐
誠 飯島
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2009122809A1 publication Critical patent/WO2009122809A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a radiation image conversion panel, and more particularly, to a manufacturing apparatus for a radiation image conversion panel in which a phosphor layer is formed and a method for manufacturing the radiation image conversion panel.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • radiographic images using intensifying screens and film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. Used in the medical field.
  • the flat plate X-ray detector (FPD) is smaller than the CR and is characterized by superior image quality at high doses.
  • FPD flat plate X-ray detector
  • a scintillator plate made of an X-ray phosphor having the property of emitting light by radiation is used to convert the radiation into visible light.
  • the light emission efficiency is high. It will be necessary to use scintillator plates.
  • the light emission efficiency of the scintillator plate is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the more scattered the emitted light in the phosphor layer. Occurs and sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the film thickness is determined.
  • CsI cesium iodide
  • phosphors can be easily formed into a columnar crystal structure by vapor deposition. And the thickness of the phosphor layer can be increased (see Patent Document 1).
  • cesium iodide contains an element called an activator such as thallium, sodium, or rubidium in order to improve luminous efficiency.
  • the present invention has been made in view of the above points, and a radiation image conversion panel manufacturing apparatus capable of obtaining a highly sharp radiation image without unevenness of sensitivity by making the crystallinity of a phosphor deposited on a support uniform. And it aims at providing the manufacturing method of a radiographic image conversion panel.
  • a vacuum vessel a support holder provided in the vacuum vessel, a support held by the support holder, and arranged on the circumference of a circle centering on a center line perpendicular to the support,
  • An apparatus for manufacturing a radiation image conversion panel comprising: a plurality of evaporation sources for evaporating a phosphor made of cesium iodide and an activator to deposit the phosphor on the support.
  • a step of holding the support by a support holder, and a plurality of vaporizing phosphors made of cesium iodide and an activator on the circumference of a circle centered on a center line perpendicular to the support A method for manufacturing a radiation image conversion panel, comprising the steps of: disposing an evaporation source; and depositing the phosphor evaporating from the plurality of evaporation sources on the support to form a phosphor layer.
  • a radiographic image conversion panel manufacturing apparatus and a radiographic image conversion panel manufacturing method in which the crystallinity of the phosphor deposited on the support is uniform, and there is no sensitivity unevenness and a highly sharp radiographic image can be obtained. I was able to.
  • the invention of claim 1 is a radiological image conversion panel manufacturing apparatus, comprising: a vacuum vessel; a support holder provided in the vacuum vessel; a support held by the support holder; and the support A plurality of evaporation sources disposed on the circumference of a circle centering on a center line perpendicular to the body, evaporating a phosphor composed of cesium iodide and an activator, and depositing the phosphor on the support; It is characterized by providing.
  • the portions where the vapor flows of the respective evaporation sources overlap are rectified, and the crystallinity of the support deposited on the surface of the support is made uniform. Can do.
  • the vapor flow is rectified at more locations, so that the crystallinity of the phosphor can be made uniform in a wider range.
  • the effect of uniforming the crystallinity due to the rectification of the vapor flow is achieved on the surface of the support. It can be obtained isotropically.
  • Invention of Claim 2 is a manufacturing apparatus of the radiation image conversion panel of Claim 1, Comprising: The said support body holder rotates the said support body when vapor-depositing the said fluorescent substance from the said evaporation source. A support rotating mechanism is provided.
  • the phosphor can be uniformly deposited on the surface of the support by performing the deposition of the phosphor while rotating the support by the support rotating mechanism.
  • a third aspect of the present invention is the radiation image conversion panel manufacturing apparatus according to the first or second aspect, wherein each of the plurality of evaporation sources and a center line perpendicular to the support are provided. And a plurality of shielding plates that shield the phosphor that evaporates from the plurality of evaporation sources and reaches the support at a predetermined incident angle.
  • the incident angle of the phosphor deposited on the support is reduced by shielding the phosphor that evaporates from the evaporation source and reaches the support at a predetermined incident angle by the shielding plate. It can be limited to a predetermined range. Thereby, it is possible to make the crystallinity uniform by preventing the variation in the incident angle of the phosphor.
  • the invention of claim 4 is a method for manufacturing a radiation image conversion panel, comprising: a step of holding a support by a support holder in a vacuum vessel; and a circle centered on a center line perpendicular to the support Arranging a plurality of evaporation sources for evaporating the phosphor on the circumference, and depositing the phosphors evaporated from the plurality of evaporation sources on the support to form a phosphor layer. It is characterized by that.
  • the overlapping portions of the vapor flows of the respective evaporation sources are rectified, and the crystallinity of the phosphor deposited on the surface of the support is made uniform. Can do.
  • the vapor flow is rectified at more locations, so that the crystallinity of the phosphor can be made uniform in a wider range.
  • the effect of uniforming the crystallinity due to the rectification of the vapor flow is achieved on the surface of the support. It can be obtained isotropically.
  • Invention of Claim 5 is a manufacturing method of the radiographic image conversion panel of Claim 4, Comprising: The said support body holder rotates the said support body when vapor-depositing the said fluorescent substance from the said evaporation source. A support rotating mechanism is provided.
  • the phosphor can be uniformly deposited on the surface of the support by performing the deposition of the phosphor while rotating the support by the support rotating mechanism.
  • the invention of claim 6 is a method of manufacturing a radiation image conversion panel according to claim 4 or claim 5, wherein each of the plurality of evaporation sources and a center line perpendicular to the support are provided.
  • the method further includes the step of standing up a plurality of shielding plates that shield the phosphor that evaporates from the plurality of evaporation sources and reaches the support at a predetermined incident angle.
  • the phosphor that evaporates from the evaporation source and reaches the support at a predetermined incident angle is shielded by the shielding plate, so that the incident angle of the phosphor deposited on the support is reduced. It can be limited to a predetermined range. Thereby, it is possible to make the crystallinity uniform by preventing the variation in the incident angle of the phosphor.
  • the radiation image conversion panel manufacturing apparatus 1 includes a vacuum container 2, and the vacuum container 2 includes a vacuum pump 3 that evacuates the inside of the vacuum container 2 and introduces the atmosphere. .
  • a support holder 5 that holds the support 4 is provided near the upper surface inside the vacuum vessel 2.
  • the support 4 can be arbitrarily selected from known materials as a support for a conventional radiation image conversion panel, and the support 4 of the present embodiment is made of quartz glass sheet, aluminum, iron, tin, chromium, or the like. A metal sheet or a carbon fiber reinforced sheet is preferred.
  • the support 4 may have a resin layer in order to make the surface smooth.
  • the resin layer preferably contains a compound such as polyimide, polyethylene phthalate, paraffin, graphite, and the film thickness is preferably about 5 ⁇ m to 50 ⁇ m. This resin layer may be provided on the front surface of the support 4 or on the back surface.
  • means for providing an adhesive layer on the surface of the support 4 there are means such as a bonding method and a coating method.
  • the laminating method is performed using heating and a pressure roller, the heating condition is about 80 to 150 ° C., the pressing condition is 4.90 ⁇ 10 to 2.94 ⁇ 10 2 N / cm, and the conveying speed is 0.1. ⁇ 2.0 m / s is preferred.
  • a phosphor layer is formed on the surface of the support 4 by a vapor deposition method.
  • a vapor deposition method a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used. In the present invention, the vapor deposition method is particularly preferable.
  • the support holder 5 is configured to hold the support 4 so that the surface of the support 4 on which the phosphor layer is formed faces the bottom surface of the vacuum vessel 2 and is parallel to the bottom surface of the vacuum vessel 2. It has become.
  • the support holder 5 is preferably provided with a heater (not shown) for heating the support 4.
  • a heater not shown for heating the support 4.
  • the adhesion of the support 4 to the support holder 5 is enhanced and the film quality of the phosphor layer is adjusted. Further, the adsorbate on the surface of the support 4 is removed and removed, and an impurity layer is prevented from being generated between the surface of the support 4 and a phosphor described later.
  • a heating medium or a mechanism (not shown) for circulating the heating medium may be provided as heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively low temperature of 50 to 150 ° C. during the vapor deposition of the phosphor.
  • a halogen lamp (not shown) may be provided as a heating means. This means is suitable for the case where vapor deposition is performed while keeping the temperature of the support 4 at a relatively high temperature such as 150 ° C. or higher during vapor deposition of the phosphor.
  • the support holder 5 is provided with a support rotating mechanism 6 that rotates the support 4 in the horizontal direction.
  • the support rotating mechanism 6 supports the support holder 5 and rotates the support 4 and a motor (not shown) that is disposed outside the vacuum vessel 2 and serves as a drive source for the support rotating shaft 7. Z).
  • evaporation sources 8 a and 8 b are arranged at positions facing each other on the circumference of a circle centering on the center line perpendicular to the support 4.
  • the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, and more preferably 200 mm to 1000 mm.
  • the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, more preferably 200 mm to 1000 mm.
  • each evaporation source may be arranged at equal intervals or at different intervals. Also good.
  • the radius of a circle centered on the center line perpendicular to the support 4 can be arbitrarily determined.
  • the plurality of evaporation sources are arranged on the circumference of the circle, but it is more preferable that the evaporation sources are arranged at the center of the circle.
  • the evaporation sources 8a and 8b may be composed of an alumina crucible wound with a heater, or a boat or a heater made of a refractory metal. You may do it.
  • a method of heating the phosphor described later may be a method such as heating by an electron beam or heating by high frequency induction, but in the present invention, the handling is relatively simple and inexpensive, and In view of the fact that it can be applied to a large number of substances, a method in which current is directly applied and resistance is heated, and a method in which a crucible is indirectly resistance heated with a surrounding heater is preferable.
  • the evaporation sources 8a and 8b may be molecular beam sources by a molecular source epitaxial method.
  • a shutter 9 that blocks the space from the evaporation sources 8a and 8b to the support 4 is provided between the evaporation sources 8a and 8b and the support 4 so as to be openable and closable in the horizontal direction.
  • the evaporation sources 8a and 8b it is possible to prevent substances other than the target substance attached to the surface of the phosphor described later from evaporating at the initial stage of vapor deposition and adhering to the support 4.
  • the support 4 is attached to the support holder 5. Further, in the vicinity of the bottom surface of the vacuum vessel 2, the evaporation sources 8 a and 8 b are arranged on the circumference of a circle centering on the center line perpendicular to the support 4.
  • the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, and more preferably 200 mm to 1000 mm.
  • the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, more preferably 200 mm to 1000 mm.
  • the inside of the vacuum vessel 2 is evacuated and adjusted to a desired degree of vacuum.
  • the support holder 5 is rotated with respect to the evaporation sources 8a and 8b by the support rotation mechanism 6, and when the vacuum vessel 2 reaches a vacuum degree capable of vapor deposition, a phosphor described later is heated from the heated evaporation sources 8a and 8b. By evaporating, a phosphor described later is grown on the surface of the support 4 to a desired thickness.
  • the phosphor layer can be formed by performing a process of growing a phosphor described later on the surface of the support 4 in a plurality of times.
  • the vapor deposition target (support 4, protective layer, or intermediate layer) may be cooled or heated as necessary during vapor deposition.
  • the phosphor layer may be heat-treated.
  • reactive vapor deposition may be performed in which vapor deposition is performed by introducing a gas such as O 2 or H 2 as necessary.
  • the film thickness of the phosphor layer to be formed is 50 ⁇ m to 2000 ⁇ m, preferably 50 ⁇ m to 1000 ⁇ m from the viewpoint of obtaining the effects of the present invention, although it varies depending on the purpose of use of the radiation image conversion panel and the type of phosphor described later. More preferably, it is 100 ⁇ m to 800 ⁇ m.
  • the temperature of the support 4 on which the phosphor layer is formed is preferably set to room temperature (rt) to 300 ° C., more preferably 50 to 250 ° C.
  • the phosphor layer is physically or chemically protected on the surface of the phosphor layer opposite to the support 4 as necessary.
  • a protective layer may be provided.
  • the protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the phosphor layer, or a protective layer separately formed in advance may be adhered to the phosphor layer.
  • the thickness of these protective layers is preferably 0.1 ⁇ m to 2000 ⁇ m.
  • the protective layer may be formed by laminating inorganic substances such as SiC, SiO 2 , SiN, Al 2 O 3 by vapor deposition or sputtering.
  • the radiographic image conversion panel manufacturing apparatus 1 by providing a plurality of evaporation sources 8a and 8b, the overlapping portions of the vapor flows of the evaporation sources 8a and 8b are rectified, and the surface of the support 4 is rectified.
  • the crystallinity of the phosphor to be described later can be made uniform.
  • the vapor flow is rectified at more points, so that the crystallinity of the phosphor described later can be made uniform in a wider range.
  • the evaporation sources 8a and 8b are disposed on the circumference of a circle having a center line perpendicular to the support 4 as a center, the effect that the crystallinity becomes uniform due to the rectification of the vapor flow is provided. Can be obtained isotropically on the surface.
  • the phosphor described later can be deposited uniformly on the surface of the support 4 by depositing the phosphor described later while rotating the support 4 by the support rotating mechanism 6.
  • the manufacturing apparatus 1 of the present embodiment includes a vacuum vessel 2, the vacuum vessel 2 is provided with a vacuum pump 3, and a support rotating mechanism 6 is provided near the upper surface inside the vacuum vessel 2.
  • the provided support holder 5 is provided and is the same as that of the first embodiment in that the support 4 is held by the support holder 5.
  • evaporation sources 8 a and 8 b are arranged on the circumference of a circle centering on a center line perpendicular to the support 4, and the evaporation sources 8 a and 8 b and the support are arranged.
  • 4 is the same as that of the first embodiment in that a shutter 9 is provided.
  • shielding plates 10 a and 10 b are erected between each of the evaporation sources 8 a and 8 b and a center line perpendicular to the support 4.
  • the shielding plates 10a and 10b shield phosphors described later that evaporate from the evaporation sources 8a and 8b and reach the support 4 at a predetermined incident angle.
  • the incident angle refers to an acute angle ⁇ formed by a surface of the support 4 on which the phosphor layer is formed and an incident direction of the phosphor described later.
  • the shielding plate 10a is formed on a line segment connecting the evaporation source 8a and the center point of the surface of the support 4 facing the evaporation sources 8a and 8b. It arrange
  • the shielding plate 10b has a height at which the upper end portion of the shielding plate 10b is in contact with a line segment connecting the evaporation source 8b and the center point of the surface of the support 4 facing the evaporation sources 8a and 8b. It arrange
  • the shielding plates 10a and 10b By arranging the shielding plates 10a and 10b in this way, a phosphor described later which is evaporated from the evaporation source 8a and is to be deposited near the upper portion of the evaporation source 8b of the support 4 is blocked by the shielding plate 10a. Therefore, the range in which a phosphor described later evaporated from the evaporation source 8a is deposited is limited to the vicinity of the upper portion of the evaporation source 8a in the support 4. Thereby, the incident angle of a phosphor to be described later deposited on the support 4 is limited within a certain range.
  • the range in which the phosphor to be described later evaporated from the evaporation source 8b is limited to the vicinity of the upper portion of the evaporation source 8b in the support 4, so that the incident angle of the phosphor to be described later deposited on the support 4 similarly. Is limited to within a certain range.
  • the shielding plates 10a and 10b by setting up the shielding plates 10a and 10b, the range of incident angles of phosphors to be described later deposited on the support 4 from the evaporation sources 8a and 8b is limited.
  • the support body 4 is attached to the support body holder 5 and the evaporation sources 8a and 8b are arranged on the circumference of a circle centering on the center line perpendicular to the support body 4, and then each of the evaporation sources 8a and 8b and the support body.
  • Shield plates 10 a and 10 b are erected between the center line and the center line perpendicular to 4.
  • the shielding plates 10a and 10b are placed at points on the line segment connecting the evaporation sources 8a and 8b and the center point of the surface of the support 4 facing the evaporation sources 8a and 8b.
  • 10b are arranged so as to be at a height and a position where the upper end portions are in contact.
  • the support holder 5 is rotated with respect to the evaporation sources 8a and 8b by the support rotation mechanism 6 so that the vacuum vessel 2 has a degree of vacuum that allows vapor deposition.
  • the phosphor is evaporated from the heated evaporation sources 8a and 8b, and a phosphor described later is grown on the surface of the support 4 to a desired thickness.
  • the shielding plates 10a and 10b By disposing the shielding plates 10a and 10b at such positions, phosphors described later which are evaporated from the evaporation source 8a and are to be deposited near the upper portion of the evaporation source 8b in the support 4 are blocked by the shielding plate 10a. . Therefore, the range in which the phosphor evaporated from the evaporation source 8a is deposited is limited to the vicinity of the upper portion of the evaporation source 8a in the support 4. As a result, the incident angle of the phosphor deposited on the support 4 is limited within a certain range.
  • the range of the phosphor to be described later evaporated from the evaporation source 8b is limited to the vicinity of the upper portion of the evaporation source 8b in the support 4, the incident angle of the phosphor to be described later deposited on the support 4 is also constant. It is limited within the range.
  • the same action as in the first embodiment can be obtained, and it can be evaporated from the evaporation sources 8a and 8b and reach the support 4 at a predetermined incident angle.
  • the incident angle of the later-described phosphors deposited on the support 4 can be limited to a predetermined range. As a result, it is possible to make the crystallinity uniform by preventing variations in the incident angle of the phosphor described later.
  • the phosphor layer is grown on the surface of the support 4 so that the crystallinity of the phosphor described later is uniform.
  • the sensitivity unevenness of the phosphor layer can be reduced, and the sharpness of the radiographic image obtained from the radiographic image conversion panel can be improved.
  • the crystallinity of the phosphor is made more uniform, and the radiation image conversion panel The sharpness of the radiographic image obtained from can be improved.
  • the support body holder 5 was equipped with the support body rotation mechanism 6, this invention is not necessarily restricted to this, It vapor-deposits in the state which the support body holder 5 hold
  • the present invention can also be applied to the case where a phosphor to be described later is evaporated from the evaporation sources 8a and 8b by moving the support 4 in the horizontal direction with respect to the evaporation sources 8a and 8b.
  • the phosphor material of the present invention has a relatively high change rate from X-rays to visible light, and the phosphor can be easily formed into a columnar crystal structure by vapor deposition. Therefore, scattering of emitted light in the crystal is suppressed by the light guide effect.
  • CsI is preferable because the thickness of the phosphor layer can be increased.
  • CsI alone has low luminous efficiency
  • various activators are added.
  • a mixture of CsI and sodium iodide (NaI) at an arbitrary molar ratio can be mentioned.
  • CsI is deposited by vapor deposition of indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium ( CsI containing an activating substance such as Na) is preferred.
  • thallium activated cesium iodide (CsI: Tl) is preferable because it has a broad emission wavelength from 400 nm to 750 nm.
  • thallium compound of the activator containing one or more kinds of thallium compounds according to the present invention various thallium compounds (compounds having + I and + III oxidation numbers) can be used.
  • thallium compounds are thallium iodide (TlI), thallium bromide (TlBr), thallium chloride (TlCl) and the like.
  • the melting point of the thallium compound according to the present invention is preferably in the range of 400 to 700 ° C. If the temperature exceeds 700 ° C., the activator in the columnar crystals exists non-uniformly, and the light emission efficiency decreases.
  • the melting point is a melting point at normal temperature and pressure.
  • the content of the activator is desirably an optimum amount according to the target performance and the like, but is 0.001 to 50 mol% with respect to the content of cesium iodide. .1 to 10.0 mol% is preferable.
  • the additive when the additive is less than 0.001 mol% with respect to cesium iodide, the intended emission luminance cannot be obtained without much difference from the emission luminance obtained by using cesium iodide alone. Moreover, when it exceeds 50 mol%, the property and function of cesium iodide cannot be maintained.
  • a protective layer for physically or chemically protecting the phosphor layer may be provided on the surface of the phosphor layer opposite to the support.
  • the protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the phosphor layer, or a protective layer separately formed in advance may be adhered to the phosphor layer.
  • the protective film can be formed using various materials.
  • a polyparaxylylene film is formed by a CVD method. That is, a polyparaxylylene film can be formed on the entire surface of the substrate on which the phosphor has been formed to form a protective film.
  • a polymer protective film can be provided as a protective film of another embodiment.
  • the thickness of the polymer protective film is preferably 12 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 60 ⁇ m, taking into consideration the formation of voids, the protective properties of the phosphor layer, sharpness, moisture resistance, workability and the like. The following is preferred.
  • the haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like.
  • a haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W.
  • the required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
  • the light transmittance of the protective film is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, phosphor emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Substantially 70 to 99% is preferable.
  • the moisture permeability of the protective film is preferably 50 g / m 2 ⁇ day (40 ° C., 90% RH) (measured in accordance with JIS Z0208) or less, more preferably 10 g / m 2 taking into account the protective properties and deliquescence of the phosphor layer.
  • m 2 ⁇ day (40 ° C, 90% RH) (measured according to JIS Z0208) or less is preferable, but a film with a water vapor transmission rate of 0.01 g / m 2 ⁇ day (40 ° C, 90% RH) or less is industrial.
  • it is substantially 0.01 g / m 2 ⁇ day (40 ° C, 90% RH) or more, 50 g / m 2 ⁇ day (40 ° C., 90% RH) (measured according to JIS Z0208) ) Or less, more preferably 0.1 g / m 2 ⁇ day (40 ° C./90% RH) or more and 10 g / m 2 ⁇ day (40 ° C./90% RH) (measured according to JIS Z0208) or less. .
  • a conductive metal reflective layer shown below can be provided on a substrate, a metal protective layer can be further provided thereon, and a phosphor layer can be provided thereon by vapor deposition.
  • the conductive metal reflective layer can function as a reflective layer because it emits light converted by the phosphor layer to the outside, and the conductive metal reflective layer has high reflectivity in terms of the efficiency of use of emitted light. It is preferable to form with a metal.
  • the metal film layer having high reflectivity include a material containing a substance in the group consisting of Al, Ag, Cr, Cu, Ni, Mg, Pt, and Au.
  • the method for forming the conductive metal reflective layer according to the present invention may be any known method, for example, a sputtering process using the above raw materials. Two or more such metal thin films may be formed.
  • the lower layer is a layer containing Cr from the viewpoint of improving the adhesion to the substrate.
  • a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal thin film to further improve the reflectance.
  • the thickness of the reflective layer is preferably 0.01 to 0.3 ⁇ m from the viewpoint of the emission light extraction efficiency.
  • the conductive metal is preferably one having an electric conductivity of 6.0 S / m (Siemens per meter) or more, more preferably 30 S / m or more. Specifically, Al (40 S / m), Ag (67 S / m), and Au (46 S / m) are preferable in terms of reflectivity and electrical conductivity.
  • the metal protective layer is preferably formed by applying and drying a resin dissolved in a solvent.
  • a polymer having a glass transition point of 30 to 100 ° C. is preferable in terms of attaching a film between the deposited crystal and the substrate.
  • a polyurethane resin a vinyl chloride copolymer, a vinyl chloride-vinyl acetate copolymer, Vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, polyester resin, cellulose derivatives (nitrocellulose, etc.), styrene-butadiene copolymer, various types Synthetic rubber resins, phenol resins, epoxy resins, urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins and the like can be mentioned, and polyester resins are particularly preferable.
  • the thickness of the metal protective layer is preferably 0.1 ⁇ m or more in terms of adhesion, and preferably 3.0 ⁇ m or less in terms of ensuring the smoothness of the surface of the metal protective layer. More preferably, the thickness of the metal protective layer is in the range of 0.2 to 2.5 ⁇ m.
  • Solvents used for metal protective layer preparation include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, Aromatic compounds such as toluene, benzene, cyclohexane, cyclohexanone, xylene, esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester, And mixtures thereof.
  • lower alcohols such as methanol, ethanol, n-propanol and n-butanol
  • chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride
  • ketones such
  • Example 1 (Production of radiation image conversion panel) A phosphor (CsI: 0.003 Tl) was deposited on one side of a support made of a polyimide resin sheet to form a phosphor layer.
  • a support was installed on a support holder equipped with a support rotation mechanism.
  • the phosphor raw material is filled in the evaporation source crucible as an evaporation material, and the two evaporation source crucibles are in the vicinity of the bottom of the inside of the vacuum vessel and are circles centered on the center line perpendicular to the support Arranged on the circumference.
  • the distance between the support and the evaporation source was adjusted to 500 mm, and the distance between the center line perpendicular to the support and the evaporation source was adjusted to 300 mm.
  • the inside of the vacuum vessel was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.1 Pa, and then the temperature of the support was maintained at 50 ° C. while rotating the support at a speed of 10 rpm.
  • the inside of the crucible was raised to a predetermined temperature by resistance heating to start the phosphor deposition, the substrate temperature was increased to 200 ° C., and the deposition was terminated when the phosphor layer thickness reached 450 ⁇ m.
  • the phosphor layer was put in a protective layer bag in dry air to obtain a radiation image conversion panel having a structure in which the phosphor layer was sealed.
  • Example 2 A radiation image conversion panel was obtained with four evaporation sources in Example 1.
  • Example 3 A radiation image conversion panel was obtained with eight evaporation sources in Example 1.
  • Example 4 A radiation image conversion panel was obtained with 16 evaporation sources in Example 1.
  • Example 5 A radiation image conversion panel was obtained with 32 evaporation sources in Example 1.
  • Comparative Example 1 A radiation image conversion panel was obtained by setting the number of evaporation sources in Example 1 to one.
  • MTF modulation transfer function
  • the sharpness when the number of evaporation sources is 2 in Example 1 is 104, and 100 when the number of evaporation sources is 1 in Comparative Example 2.
  • the sharpness is improved.
  • the sharpness is improved to 113, 122, 126, and 135 as the number of evaporation sources increases to 4, 8, 16, and 32. Recognize.
  • Example 6 (Production of radiation image conversion panel) A phosphor (CsI: 0.003 Tl) was deposited on one side of a support made of a polyimide resin sheet to form a phosphor layer.
  • a support was installed on a support holder equipped with a support rotation mechanism.
  • the phosphor raw material is filled in the evaporation source crucible as an evaporation material, and the two evaporation source crucibles are in the vicinity of the bottom of the inside of the vacuum vessel and are circles centered on the center line perpendicular to the support Arranged on the circumference.
  • the distance between the support and the evaporation source was adjusted to 450 mm, and the distance between the center line perpendicular to the support and the evaporation source was adjusted to 300 mm.
  • the two shielding plates are arranged so that the height and position where the upper end portion of the shielding plate is in contact with the line segment connecting the evaporation source and the center point of the surface of the support that faces the evaporation source.
  • the range of the incident angle when the phosphor is deposited on the support is limited.
  • the inside of the vacuum vessel was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.1 Pa, and then the temperature of the support was maintained at 50 ° C. while rotating the support at a speed of 10 rpm.
  • the inside of the crucible was raised to a predetermined temperature by resistance heating to start the phosphor deposition, the substrate temperature was increased to 200 ° C., and the deposition was terminated when the phosphor layer thickness reached 450 ⁇ m.
  • the phosphor layer was put in a protective layer bag in dry air to obtain a radiation image conversion panel having a structure in which the phosphor layer was sealed.
  • Example 7 A radiation image conversion panel was obtained with four evaporation sources in Example 6.
  • Example 8 A radiation image conversion panel was obtained with eight evaporation sources in Example 6.
  • Example 9 A radiation image conversion panel was obtained with 16 evaporation sources in Example 6.
  • Example 10 A radiation image conversion panel was obtained with 32 evaporation sources in Example 6.
  • Example 11 The number of evaporation sources in Example 6 was 32, and one evaporation source was arranged not only at the circumference but also at the center of the circle to obtain a radiation image conversion panel.
  • Comparative Example 2 A radiation image conversion panel was obtained in a state where the number of evaporation sources in Example 6 was one and no shielding plate was disposed.
  • Comparative Example 3 A radiation image conversion panel was obtained by setting the number of evaporation sources in Example 6 to one.
  • MTF modulation transfer function
  • MTF is a value when the spatial frequency is 1 cycle / mm.
  • the sharpness when the number of evaporation sources is 2 in Example 6 is 111, and 100 when the number of evaporation sources is 1 in Comparative Example 3.
  • the sharpness is improved.
  • the sharpness improved to 114, 126, 131, and 139 as the number of evaporation sources increased to 4, 8, 16, and 32.
  • the thickness distribution of the phosphor layer is good while maintaining the sharpness at 139 by arranging the evaporation source in the center of the circle in addition to the 32 evaporation sources in the circumferential portion, Good characteristics without unevenness of sensitivity were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

The manufacturing equipment for a radiographic image conversion panel that uniformizes the crystalline performance of a fluorescent material deposited on a support to ensure the radiographic images with no variation in the sensitivity and with high sharpness, and the manufacturing method for such a radiographic image conversion panel. The manufacturing equipment for a radiographic image conversion panel and the manufacturing method for such a radiographic image conversion panel are characterized in having a vacuum vessel, a support holder provided inside the vacuum vessel, a support held by the support holder, and a plurality of evaporation sources that are disposed on a circumference of a circle centering around a center line orthogonal to the support to deposit the fluorescent material consisting of cesium iodide and activator agent on the support by evaporating the fluorescent material.

Description

放射線画像変換パネルの製造装置及び放射線画像変換パネルの製造方法Radiation image conversion panel manufacturing apparatus and radiation image conversion panel manufacturing method
 本発明は、放射線画像変換パネルに係り、特に、蛍光体層が形成された放射線画像変換パネルの製造装置及びこの放射線画像変換パネルの製造方法に関する。 The present invention relates to a radiation image conversion panel, and more particularly, to a manufacturing apparatus for a radiation image conversion panel in which a phosphor layer is formed and a method for manufacturing the radiation image conversion panel.
 従来から、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙-フィルム系による放射線画像は、長い歴史のなかで高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、いまなお、世界中の医療現場で用いられている。 Conventionally, radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field. In particular, radiographic images using intensifying screens and film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. Used in the medical field.
 しかしながらこれら画像情報はいわゆるアナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送ができない。 However, these pieces of image information are so-called analog image information, and free image processing and instantaneous transmission cannot be performed like digital image information that has been developed in recent years.
 そして、近年ではコンピューテッドラジオグラフィ(CR)やフラットパネル型の放射線ディテクタ(FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。これらは、デジタルの放射線画像が直接得られ、陰極管や液晶パネル等の画像表示装置に画像を直接表示することが可能なので、必ずしも写真フィルム上への画像形成が必要なものではない。その結果、これらのデジタル方式のX線画像検出装置は、銀塩写真方式による画像形成の必要性を低減させ、病院や診療所での診断作業の利便性を大幅に向上させている。 In recent years, digital radiological image detection devices represented by computed radiography (CR), flat panel type radiation detectors (FPD) and the like have appeared. In these, since a digital radiographic image is directly obtained and an image can be directly displayed on an image display device such as a cathode tube or a liquid crystal panel, image formation on a photographic film is not necessarily required. As a result, these digital X-ray image detection devices reduce the need for image formation by the silver halide photography method, and greatly improve the convenience of diagnosis work in hospitals and clinics.
 X線画像のデジタル技術の一つとしてコンピューテッド・ラジオグラフィ(CR)が現在医療現場で受け入れられている。しかしながら鮮鋭性が十分でなく空間分解能も不充分であり、スクリーン・フィルムシステムの画質レベルには到達していない。そして、さらに新たなデジタルX線画像技術として、薄膜トランジスタ(TFT)を用いた平板X線検出装置(FPD)が開発されて(例えば、非特許文献1、2参照)いる。 * Computed radiography (CR) is currently accepted in the medical field as one of the digital technologies for X-ray images. However, the image quality level of the screen / film system has not been reached due to insufficient sharpness and insufficient spatial resolution. As a new digital X-ray imaging technique, a flat plate X-ray detector (FPD) using a thin film transistor (TFT) has been developed (for example, see Non-Patent Documents 1 and 2).
 平板X線検出装置(FPD)はCRより装置が小型化し、高線量での画質が優れているという特徴がある。しかし、一方ではTFTや回路自体のもつ電気ノイズのため、低線量の撮影においてSN比が低下し十分な画質レベルには至っていない。 The flat plate X-ray detector (FPD) is smaller than the CR and is characterized by superior image quality at high doses. However, on the other hand, due to the electrical noise of the TFT and the circuit itself, the signal-to-noise ratio has been reduced in low-dose imaging, and the image quality level has not been reached.
 放射線を可視光に変換する為に放射線により発光する特性を有するX線蛍光体で作られたシンチレータプレートが使用されるが、低線量の撮影においてSN比を向上するためには、発光効率の高いシンチレータプレートを使用することが必要になってくる。一般にシンチレータプレートの発光効率は、蛍光体層の厚さ、蛍光体のX線吸収係数によって決まるが、蛍光体層の厚さは厚くすればするほど、蛍光体層内での発光光の散乱が発生し、鮮鋭性は低下する。そのため、画質に必要な鮮鋭性を決めると、膜厚が決定する。 A scintillator plate made of an X-ray phosphor having the property of emitting light by radiation is used to convert the radiation into visible light. However, in order to improve the S / N ratio in low-dose imaging, the light emission efficiency is high. It will be necessary to use scintillator plates. In general, the light emission efficiency of the scintillator plate is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the more scattered the emitted light in the phosphor layer. Occurs and sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the film thickness is determined.
 その中でも、ヨウ化セシウム(CsI)はX線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成できるため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能(特許文献1参照)であった。 Among them, cesium iodide (CsI) has a relatively high rate of change from X-rays to visible light, and phosphors can be easily formed into a columnar crystal structure by vapor deposition. And the thickness of the phosphor layer can be increased (see Patent Document 1).
 また、発光効率を向上させるため、タリウム、ナトリウム、ルビジウムなどの賦活剤と呼ばれる元素をヨウ化セシウムに含有させることが知られている。 Also, it is known that cesium iodide contains an element called an activator such as thallium, sodium, or rubidium in order to improve luminous efficiency.
 しかし、賦活剤はヨウ化セシウムと結晶構造が違うため、濃度が高くなると柱状結晶構造が乱れて鮮鋭性が劣化するため、賦活剤濃度が不均一なほど感度ムラだけでなく鮮鋭性にもムラが現れるという問題があった。
特開昭63-215987号公報 Physics Today,1997年11月号24頁のジョン・ローランズ論文"Amorphous Semiconductor Usher in Digital X-ray Imaging" SPIEの1997年32巻2頁のエル・イー・アントヌクの論文"Development of a High Resolution,Active Matrix,Flat-Panel Imager with Enhanced Fill Factor"号公報
However, since the crystal structure of the activator is different from that of cesium iodide, the columnar crystal structure is disturbed and the sharpness deteriorates when the concentration is high, so that the non-uniform activator concentration causes not only uneven sensitivity but also uneven sharpness. There was a problem that appeared.
JP-A-63-215987 Physics Today, November 1997, page 24, John Laurans' paper "Amorphous Semiconductor User in Digital X-ray Imaging" SPIE, Vol. 32, 1997, E. Antonuk's paper "Development of a High Resolution, Active Matrix, Flat-Panel Image with Enhanced Fill Factor"
 本発明はこのような点に鑑みてなされたものであり、支持体に蒸着する蛍光体の結晶性を均一として、感度ムラがなく鮮鋭性の高い放射線画像が得られる放射線画像変換パネルの製造装置及び放射線画像変換パネルの製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and a radiation image conversion panel manufacturing apparatus capable of obtaining a highly sharp radiation image without unevenness of sensitivity by making the crystallinity of a phosphor deposited on a support uniform. And it aims at providing the manufacturing method of a radiographic image conversion panel.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.真空容器と、前記真空容器内に設けられた支持体ホルダと、前記支持体ホルダに保持された支持体と、前記支持体に垂直な中心線を中心とした円の円周上に配置され、ヨウ化セシウムと賦活剤からなる蛍光体を蒸発させて前記支持体に前記蛍光体を蒸着させる複数の蒸発源とを備えることを特徴とする放射線画像変換パネルの製造装置。 1. A vacuum vessel, a support holder provided in the vacuum vessel, a support held by the support holder, and arranged on the circumference of a circle centering on a center line perpendicular to the support, An apparatus for manufacturing a radiation image conversion panel, comprising: a plurality of evaporation sources for evaporating a phosphor made of cesium iodide and an activator to deposit the phosphor on the support.
 2.前記支持体ホルダは、前記蒸発源から前記蛍光体を蒸着させる際に前記支持体を回転させる支持体回転機構を備えていることを特徴とする前記1に記載の放射線画像変換パネルの製造装置。 2. 2. The apparatus for manufacturing a radiation image conversion panel according to 1 above, wherein the support holder includes a support rotating mechanism that rotates the support when the phosphor is deposited from the evaporation source.
 3.前記複数の蒸発源のそれぞれと前記支持体に垂直な中心線との間に立設され、前記複数の蒸発源から蒸発して所定の入射角で前記支持体に到達する前記蛍光体を遮蔽する複数の遮蔽板が備えられていることを特徴とする前記1又は2に記載の放射線画像変換パネルの製造装置。 3. Standing between each of the plurality of evaporation sources and a center line perpendicular to the support, the phosphor that evaporates from the plurality of evaporation sources and reaches the support at a predetermined incident angle is shielded. 3. The apparatus for manufacturing a radiation image conversion panel according to 1 or 2, wherein a plurality of shielding plates are provided.
 4.真空容器内において、支持体を支持体ホルダによって保持する工程と、前記支持体に垂直な中心線を中心とした円の円周上にヨウ化セシウムと賦活剤からなる蛍光体を蒸発させる複数の蒸発源を配置する工程と、前記複数の蒸発源から蒸発する前記蛍光体を前記支持体に蒸着させて蛍光体層を形成する工程とを備えることを特徴とする放射線画像変換パネルの製造方法。 4. In the vacuum vessel, a step of holding the support by a support holder, and a plurality of vaporizing phosphors made of cesium iodide and an activator on the circumference of a circle centered on a center line perpendicular to the support A method for manufacturing a radiation image conversion panel, comprising the steps of: disposing an evaporation source; and depositing the phosphor evaporating from the plurality of evaporation sources on the support to form a phosphor layer.
 5.前記支持体ホルダは、前記蒸発源から前記蛍光体を蒸着させる際に前記支持体を回転させる支持体回転機構を備えていることを特徴とする前記4に記載の放射線画像変換パネルの製造方法。 5. 5. The method of manufacturing a radiation image conversion panel according to 4, wherein the support holder includes a support rotating mechanism that rotates the support when the phosphor is deposited from the evaporation source.
 6.前記複数の蒸発源のそれぞれと前記支持体に垂直な中心線との間に、前記複数の蒸発源から蒸発して所定の入射角で前記支持体に到達する前記蛍光体を遮蔽する複数の遮蔽板を立設する工程が含まれていることを特徴とする前記4又は5に記載の放射線画像変換パネルの製造方法。 6. A plurality of shields for shielding the phosphors that evaporate from the plurality of evaporation sources and reach the support at a predetermined incident angle between each of the plurality of evaporation sources and a center line perpendicular to the support. 6. The method for producing a radiation image conversion panel as described in 4 or 5 above, further comprising a step of standing a plate.
 本発明により、支持体に蒸着する蛍光体の結晶性を均一として、感度ムラがなく鮮鋭性の高い放射線画像が得られる放射線画像変換パネルの製造装置及び放射線画像変換パネルの製造方法を提供することができた。 According to the present invention, there is provided a radiographic image conversion panel manufacturing apparatus and a radiographic image conversion panel manufacturing method in which the crystallinity of the phosphor deposited on the support is uniform, and there is no sensitivity unevenness and a highly sharp radiographic image can be obtained. I was able to.
本発明の第1の実施形態の放射線画像変換パネルの製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the radiographic image conversion panel of the 1st Embodiment of this invention. 本発明の第2の実施形態の放射線画像変換パネルの製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the radiographic image conversion panel of the 2nd Embodiment of this invention.
符号の説明Explanation of symbols
 1 放射線画像変換パネルの製造装置
 2 真空容器
 3 真空ポンプ
 4 支持体
 5 支持体ホルダ
 6 支持体回転機構
 7 支持体回転軸
 8 蒸発源
 9 シャッタ
 10 遮蔽板
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of a radiation image conversion panel 2 Vacuum container 3 Vacuum pump 4 Support body 5 Support body holder 6 Support body rotation mechanism 7 Support body rotating shaft 8 Evaporation source 9 Shutter 10 Shielding plate
 請求の範囲1の発明は、放射線画像変換パネルの製造装置であって、真空容器と、前記真空容器内に設けられた支持体ホルダと、前記支持体ホルダに保持された支持体と、前記支持体に垂直な中心線を中心とした円の円周上に配置され、ヨウ化セシウムと賦活剤からなる蛍光体を蒸発させて前記支持体に前記蛍光体を蒸着させる複数の蒸発源と、を備えることを特徴とする。 The invention of claim 1 is a radiological image conversion panel manufacturing apparatus, comprising: a vacuum vessel; a support holder provided in the vacuum vessel; a support held by the support holder; and the support A plurality of evaporation sources disposed on the circumference of a circle centering on a center line perpendicular to the body, evaporating a phosphor composed of cesium iodide and an activator, and depositing the phosphor on the support; It is characterized by providing.
 請求の範囲1の発明によれば、複数の蒸発源を設けることによって各蒸発源の蒸気流が重なり合う部分が整流化され、支持体の表面に蒸着する前記支持体の結晶性を均一にすることができる。このとき、多数の蒸発源を設けるほど多くの箇所で蒸気流が整流化されるため、より広範囲において蛍光体の結晶性を均一にすることができる。また、複数の蒸発源を支持体に垂直な中心線を中心とした円の円周上に配置することによって、蒸気流の整流化によって結晶性が均一になるという作用を、支持体の表面において等方的に得ることができる。 According to the invention of claim 1, by providing a plurality of evaporation sources, the portions where the vapor flows of the respective evaporation sources overlap are rectified, and the crystallinity of the support deposited on the surface of the support is made uniform. Can do. At this time, as the number of evaporation sources is increased, the vapor flow is rectified at more locations, so that the crystallinity of the phosphor can be made uniform in a wider range. In addition, by arranging a plurality of evaporation sources on the circumference of a circle centered on a center line perpendicular to the support, the effect of uniforming the crystallinity due to the rectification of the vapor flow is achieved on the surface of the support. It can be obtained isotropically.
 請求の範囲2の発明は、請求の範囲1に記載の放射線画像変換パネルの製造装置であって、前記支持体ホルダは、前記蒸発源から前記蛍光体を蒸着させる際に前記支持体を回転させる支持体回転機構を備えていることを特徴とする。 Invention of Claim 2 is a manufacturing apparatus of the radiation image conversion panel of Claim 1, Comprising: The said support body holder rotates the said support body when vapor-depositing the said fluorescent substance from the said evaporation source. A support rotating mechanism is provided.
 請求の範囲2の発明によれば、支持体回転機構によって支持体を回転しながら前記蛍光体の蒸着を行うことによって、支持体の表面に均一に蛍光体を蒸着させることができる。 According to the invention of claim 2, the phosphor can be uniformly deposited on the surface of the support by performing the deposition of the phosphor while rotating the support by the support rotating mechanism.
 請求の範囲3の発明は、請求の範囲1又は請求の範囲2に記載の放射線画像変換パネルの製造装置であって、前記複数の蒸発源のそれぞれと前記支持体に垂直な中心線との間に立設され、前記複数の蒸発源から蒸発して所定の入射角で前記支持体に到達する前記蛍光体を遮蔽する複数の遮蔽板が備えられていることを特徴とする。 A third aspect of the present invention is the radiation image conversion panel manufacturing apparatus according to the first or second aspect, wherein each of the plurality of evaporation sources and a center line perpendicular to the support are provided. And a plurality of shielding plates that shield the phosphor that evaporates from the plurality of evaporation sources and reaches the support at a predetermined incident angle.
 請求の範囲3の発明によれば、蒸発源から蒸発して所定の入射角で支持体に到達する前記蛍光体を遮蔽板により遮蔽することによって、支持体に蒸着する前記蛍光体の入射角を所定の範囲に制限することができる。これにより、前記蛍光体の入射角のばらつきを防いで結晶性を均一にすることができる。 According to the invention of claim 3, the incident angle of the phosphor deposited on the support is reduced by shielding the phosphor that evaporates from the evaporation source and reaches the support at a predetermined incident angle by the shielding plate. It can be limited to a predetermined range. Thereby, it is possible to make the crystallinity uniform by preventing the variation in the incident angle of the phosphor.
 請求の範囲4の発明は、放射線画像変換パネルの製造方法であって、真空容器内において、支持体を支持体ホルダによって保持する工程と、前記支持体に垂直な中心線を中心とした円の円周上に前期蛍光体を蒸発させる複数の蒸発源を配置する工程と、前記複数の蒸発源から蒸発する前記蛍光体を前記支持体に蒸着させて蛍光体層を形成する工程と、を備えることを特徴とする。 The invention of claim 4 is a method for manufacturing a radiation image conversion panel, comprising: a step of holding a support by a support holder in a vacuum vessel; and a circle centered on a center line perpendicular to the support Arranging a plurality of evaporation sources for evaporating the phosphor on the circumference, and depositing the phosphors evaporated from the plurality of evaporation sources on the support to form a phosphor layer. It is characterized by that.
 請求の範囲4の発明によれば、複数の蒸発源を設けることによって各蒸発源の蒸気流が重なり合う部分が整流化され、支持体の表面に蒸着する前記蛍光体の結晶性を均一にすることができる。このとき、多数の蒸発源を設けるほど多くの箇所で蒸気流が整流化されるため、より広範囲において前記蛍光体の結晶性を均一にすることができる。また、複数の蒸発源を支持体に垂直な中心線を中心とした円の円周上に配置することによって、蒸気流の整流化によって結晶性が均一になるという作用を、支持体の表面において等方的に得ることができる。 According to the invention of claim 4, by providing a plurality of evaporation sources, the overlapping portions of the vapor flows of the respective evaporation sources are rectified, and the crystallinity of the phosphor deposited on the surface of the support is made uniform. Can do. At this time, as the number of evaporation sources is increased, the vapor flow is rectified at more locations, so that the crystallinity of the phosphor can be made uniform in a wider range. In addition, by arranging a plurality of evaporation sources on the circumference of a circle centered on a center line perpendicular to the support, the effect of uniforming the crystallinity due to the rectification of the vapor flow is achieved on the surface of the support. It can be obtained isotropically.
 請求の範囲5の発明は、請求の範囲4に記載の放射線画像変換パネルの製造方法であって、前記支持体ホルダは、前記蒸発源から前記蛍光体を蒸着させる際に前記支持体を回転させる支持体回転機構を備えていることを特徴とする。 Invention of Claim 5 is a manufacturing method of the radiographic image conversion panel of Claim 4, Comprising: The said support body holder rotates the said support body when vapor-depositing the said fluorescent substance from the said evaporation source. A support rotating mechanism is provided.
 請求の範囲5の発明によれば、支持体回転機構によって支持体を回転しながら前記蛍光体の蒸着を行うことによって、支持体の表面に均一に前記蛍光体を蒸着させることができる。 According to the invention of claim 5, the phosphor can be uniformly deposited on the surface of the support by performing the deposition of the phosphor while rotating the support by the support rotating mechanism.
 請求の範囲6の発明は、請求の範囲4又は請求の範囲5に記載の放射線画像変換パネルの製造方法であって、前記複数の蒸発源のそれぞれと前記支持体に垂直な中心線との間に、前記複数の蒸発源から蒸発して所定の入射角で前記支持体に到達する前記蛍光体を遮蔽する複数の遮蔽板を立設する工程が含まれていることを特徴とする。 The invention of claim 6 is a method of manufacturing a radiation image conversion panel according to claim 4 or claim 5, wherein each of the plurality of evaporation sources and a center line perpendicular to the support are provided. The method further includes the step of standing up a plurality of shielding plates that shield the phosphor that evaporates from the plurality of evaporation sources and reaches the support at a predetermined incident angle.
 請求の範囲6の発明によれば、蒸発源から蒸発して所定の入射角で支持体に到達する前記蛍光体を遮蔽板により遮蔽することによって、支持体に蒸着する前記蛍光体の入射角を所定の範囲に制限することができる。これにより、前記蛍光体の入射角のばらつきを防いで結晶性を均一にすることができる。 According to the invention of claim 6, the phosphor that evaporates from the evaporation source and reaches the support at a predetermined incident angle is shielded by the shielding plate, so that the incident angle of the phosphor deposited on the support is reduced. It can be limited to a predetermined range. Thereby, it is possible to make the crystallinity uniform by preventing the variation in the incident angle of the phosphor.
 本発明を更に詳しく説明する。 The present invention will be described in more detail.
 (第1の実施形態)
 以下、本発明の第1の実施形態について、図1を参照しながら説明する。まず、本発明に係る放射線画像変換パネルの製造装置1について説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. First, the radiation image conversion panel manufacturing apparatus 1 according to the present invention will be described.
 図1に示すように、放射線画像変換パネルの製造装置1は真空容器2を備えており、真空容器2には真空容器2の内部の排気及び大気の導入を行う真空ポンプ3が備えられている。 As shown in FIG. 1, the radiation image conversion panel manufacturing apparatus 1 includes a vacuum container 2, and the vacuum container 2 includes a vacuum pump 3 that evacuates the inside of the vacuum container 2 and introduces the atmosphere. .
 真空容器2の内部の上面付近には、支持体4を保持する支持体ホルダ5が設けられている。 A support holder 5 that holds the support 4 is provided near the upper surface inside the vacuum vessel 2.
 支持体4は従来の放射線画像変換パネルの支持体として公知の材料から任意に選ぶことができるが、本実施形態の支持体4としては、石英ガラスシート、アルミニウム、鉄、スズ、クロムなどからなる金属シート又は炭素繊維強化シートなどが好ましい。 The support 4 can be arbitrarily selected from known materials as a support for a conventional radiation image conversion panel, and the support 4 of the present embodiment is made of quartz glass sheet, aluminum, iron, tin, chromium, or the like. A metal sheet or a carbon fiber reinforced sheet is preferred.
 また、支持体4は、その表面を平滑な面とするために樹脂層を有していてもよい。樹脂層は、ポリイミド、ポリエチレンフタレート、パラフィン、グラファイトなどの化合物を含有することが好ましく、その膜厚は、約5μm~50μmであることが好ましい。この樹脂層は、支持体4の表面に設けてもよく、裏面に設けてもよい。 The support 4 may have a resin layer in order to make the surface smooth. The resin layer preferably contains a compound such as polyimide, polyethylene phthalate, paraffin, graphite, and the film thickness is preferably about 5 μm to 50 μm. This resin layer may be provided on the front surface of the support 4 or on the back surface.
 また、支持体4の表面に接着層を設ける手段としては、貼合法、塗設法などの手段がある。このうち貼合法は加熱、加圧ローラを用いて行い、加熱条件は約80~150℃、加圧条件は4.90×10~2.94×102N/cm、搬送速度は0.1~2.0m/sが好ましい。 Moreover, as means for providing an adhesive layer on the surface of the support 4, there are means such as a bonding method and a coating method. Of these, the laminating method is performed using heating and a pressure roller, the heating condition is about 80 to 150 ° C., the pressing condition is 4.90 × 10 to 2.94 × 10 2 N / cm, and the conveying speed is 0.1. ~ 2.0 m / s is preferred.
 支持体4の表面には、蛍光体層が気相堆積法によって形成される。気相堆積法としては、蒸着法、スパッタリング法、CVD法、イオンプレーティング法その他を用いることができるが、本発明では特に蒸着法が好ましい。 A phosphor layer is formed on the surface of the support 4 by a vapor deposition method. As the vapor deposition method, a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used. In the present invention, the vapor deposition method is particularly preferable.
 支持体ホルダ5は、支持体4のうち前記蛍光体層を形成する面が真空容器2の底面に対向し、かつ、真空容器2の底面と平行となるように支持体4を保持する構成となっている。 The support holder 5 is configured to hold the support 4 so that the surface of the support 4 on which the phosphor layer is formed faces the bottom surface of the vacuum vessel 2 and is parallel to the bottom surface of the vacuum vessel 2. It has become.
 また、支持体ホルダ5には、支持体4を加熱する加熱ヒータ(図示せず)を備えることが好ましい。この加熱ヒータで支持体4を加熱することによって、支持体4の支持体ホルダ5に対する密着性の強化や、前記蛍光体層の膜質調整を行う。また、支持体4の表面の吸着物を離脱・除去し、支持体4の表面と後述する蛍光体との間に不純物層が発生することを防止する。 The support holder 5 is preferably provided with a heater (not shown) for heating the support 4. By heating the support 4 with this heater, the adhesion of the support 4 to the support holder 5 is enhanced and the film quality of the phosphor layer is adjusted. Further, the adsorbate on the surface of the support 4 is removed and removed, and an impurity layer is prevented from being generated between the surface of the support 4 and a phosphor described later.
 また、加熱手段として温媒又は熱媒を循環させるための機構(図示せず)を有していてもよい。この手段は蛍光体の蒸着時における支持体4の温度を50~150℃といった比較的低温に保持して蒸着する場合に適している。 Further, a heating medium or a mechanism (not shown) for circulating the heating medium may be provided as heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively low temperature of 50 to 150 ° C. during the vapor deposition of the phosphor.
 また、加熱手段としてハロゲンランプ(図示せず)を有していてもよい。この手段は蛍光体の蒸着時における支持体4の温度を150℃以上といった比較的高温に保持して蒸着する場合に適している。 Further, a halogen lamp (not shown) may be provided as a heating means. This means is suitable for the case where vapor deposition is performed while keeping the temperature of the support 4 at a relatively high temperature such as 150 ° C. or higher during vapor deposition of the phosphor.
 さらに、支持体ホルダ5には、支持体4を水平方向に回転させる支持体回転機構6が設けられている。支持体回転機構6は、支持体ホルダ5を支持すると共に支持体4を回転させる支持体回転軸7及び真空容器2の外部に配置されて支持体回転軸7の駆動源となるモータ(図示せず)から構成されている。 Furthermore, the support holder 5 is provided with a support rotating mechanism 6 that rotates the support 4 in the horizontal direction. The support rotating mechanism 6 supports the support holder 5 and rotates the support 4 and a motor (not shown) that is disposed outside the vacuum vessel 2 and serves as a drive source for the support rotating shaft 7. Z).
 また、真空容器2の内部の底面付近には、支持体4に垂直な中心線を中心とした円の円周上の互いに向かい合う位置に蒸発源8a,8bが配置されている。この場合において、支持体4と蒸発源8a,8bとの間隔は100mm~1500mmとされるのが好ましく、より好ましくは200mm~1000mmである。また、支持体4に垂直な中心線と蒸発源8a,8bとの間隔は100mm~1500mmとされるのが好ましく、より好ましくは200mm~1000mmである。 Also, near the bottom surface inside the vacuum vessel 2, evaporation sources 8 a and 8 b are arranged at positions facing each other on the circumference of a circle centering on the center line perpendicular to the support 4. In this case, the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, and more preferably 200 mm to 1000 mm. The distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, more preferably 200 mm to 1000 mm.
 なお、本発明の放射線画像変換パネル製造装置においては3個以上の多数の蒸発源を設けることも可能であり、各々の蒸発源は等間隔に配置してもよく、間隔を変えて配置してもよい。また、支持体4に垂直な中心線を中心とした円の半径は任意に定めることができる。本発明においては複数の蒸発源が円の円周上に配置されるが、さらに円の中心部にも蒸発源が配置されることがより好ましい。円の中心部にも蒸発源を配置することで、FPD等の大サイズのパネルに使用する場合でも蒸着層の膜厚変動をパネル全面にわたって小さくすることができ、感度むらを良好にすることができる。 In the radiation image conversion panel manufacturing apparatus of the present invention, it is possible to provide a large number of three or more evaporation sources, and each evaporation source may be arranged at equal intervals or at different intervals. Also good. Further, the radius of a circle centered on the center line perpendicular to the support 4 can be arbitrarily determined. In the present invention, the plurality of evaporation sources are arranged on the circumference of the circle, but it is more preferable that the evaporation sources are arranged at the center of the circle. By disposing an evaporation source in the center of the circle, even when used for a large panel such as an FPD, the film thickness variation of the vapor deposition layer can be reduced over the entire panel surface, and sensitivity unevenness can be improved. it can.
 蒸発源8a,8bは、後述する蛍光体を収容して抵抗加熱法で加熱するため、ヒータを巻いたアルミナ製のるつぼから構成しても良いし、ボートや、高融点金属からなるヒータから構成しても良い。また、後述する蛍光体を加熱する方法は、抵抗加熱法以外に電子ビームによる加熱や、高周波誘導による加熱等の方法でも良いが、本発明では比較的簡単な構成で取り扱いが容易、安価、かつ、非常に多くの物質に適用可能である点から直接電流を流し抵抗加熱する方法や、周りのヒーターでるつぼを間接的に抵抗加熱する方法が好ましい。また、蒸発源8a,8bは分子源エピタキシャル法による分子線源でも良い。 Since the evaporation sources 8a and 8b contain a phosphor to be described later and are heated by a resistance heating method, the evaporation sources 8a and 8b may be composed of an alumina crucible wound with a heater, or a boat or a heater made of a refractory metal. You may do it. In addition to the resistance heating method, a method of heating the phosphor described later may be a method such as heating by an electron beam or heating by high frequency induction, but in the present invention, the handling is relatively simple and inexpensive, and In view of the fact that it can be applied to a large number of substances, a method in which current is directly applied and resistance is heated, and a method in which a crucible is indirectly resistance heated with a surrounding heater is preferable. The evaporation sources 8a and 8b may be molecular beam sources by a molecular source epitaxial method.
 また、蒸発源8a,8bと支持体4との間には、蒸発源8a,8bから支持体4に至る空間を遮断するシャッタ9が水平方向に開閉自在に設けられており、このシャッタ9によって、蒸発源8a,8bにおいて後述する蛍光体の表面に付着した目的物以外の物質が蒸着の初期段階で蒸発し、支持体4に付着するのを防ぐことができるようになっている。 Further, a shutter 9 that blocks the space from the evaporation sources 8a and 8b to the support 4 is provided between the evaporation sources 8a and 8b and the support 4 so as to be openable and closable in the horizontal direction. In the evaporation sources 8a and 8b, it is possible to prevent substances other than the target substance attached to the surface of the phosphor described later from evaporating at the initial stage of vapor deposition and adhering to the support 4.
 次に、上述の放射線画像変換パネル製造装置1を用いた本発明の放射線画像変換パネル製造方法について説明する。 Next, a method for manufacturing a radiation image conversion panel according to the present invention using the above-described radiation image conversion panel manufacturing apparatus 1 will be described.
 まず、支持体ホルダ5に支持体4を取付ける。また、真空容器2の底面付近において、支持体4に垂直な中心線を中心とした円の円周上に蒸発源8a,8bを配置する。この場合において、支持体4と蒸発源8a,8bとの間隔は100mm~1500mmとされるのが好ましく、より好ましくは200mm~1000mmである。また、支持体4に垂直な中心線と蒸発源8a,8bとの間隔は100mm~1500mmとされるのが好ましく、より好ましくは200mm~1000mmである。 First, the support 4 is attached to the support holder 5. Further, in the vicinity of the bottom surface of the vacuum vessel 2, the evaporation sources 8 a and 8 b are arranged on the circumference of a circle centering on the center line perpendicular to the support 4. In this case, the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, and more preferably 200 mm to 1000 mm. The distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 mm to 1500 mm, more preferably 200 mm to 1000 mm.
 次いで、真空容器2の内部を真空排気し、所望の真空度に調整する。その後、支持体回転機構6により支持体ホルダ5を蒸発源8a,8bに対して回転させ、蒸着可能な真空度に真空容器2が達したら、加熱した蒸発源8a,8bから後述する蛍光体を蒸発させて、支持体4の表面に後述する蛍光体を所望の厚さに成長させる。 Next, the inside of the vacuum vessel 2 is evacuated and adjusted to a desired degree of vacuum. Thereafter, the support holder 5 is rotated with respect to the evaporation sources 8a and 8b by the support rotation mechanism 6, and when the vacuum vessel 2 reaches a vacuum degree capable of vapor deposition, a phosphor described later is heated from the heated evaporation sources 8a and 8b. By evaporating, a phosphor described later is grown on the surface of the support 4 to a desired thickness.
 なお、支持体4の表面に後述する蛍光体を成長させる工程を複数回に分けて行って蛍光体層を形成することも可能である。 It should be noted that the phosphor layer can be formed by performing a process of growing a phosphor described later on the surface of the support 4 in a plurality of times.
 また、蒸着法においては、蒸着時、必要に応じて、被蒸着体(支持体4、保護層又は中間層)を冷却あるいは加熱しても良い。 In the vapor deposition method, the vapor deposition target (support 4, protective layer, or intermediate layer) may be cooled or heated as necessary during vapor deposition.
 さらに、蒸着終了後、蛍光体層を加熱処理しても良い。また、蒸着法においては必要に応じてO2、H2などのガスを導入して蒸着する反応性蒸着を行っても良い。 Further, after the vapor deposition, the phosphor layer may be heat-treated. In the vapor deposition method, reactive vapor deposition may be performed in which vapor deposition is performed by introducing a gas such as O 2 or H 2 as necessary.
 形成する蛍光体層の膜厚は、放射線画像変換パネルの使用目的により、また後述する蛍光体の種類により異なるが、本発明の効果を得る観点から50μm~2000μmであり、好ましくは50μm~1000μmであり、さらに好ましくは100μm~800μmである。 The film thickness of the phosphor layer to be formed is 50 μm to 2000 μm, preferably 50 μm to 1000 μm from the viewpoint of obtaining the effects of the present invention, although it varies depending on the purpose of use of the radiation image conversion panel and the type of phosphor described later. More preferably, it is 100 μm to 800 μm.
 また、蛍光体層が形成される支持体4の温度は、室温(rt)~300℃に設定することが好ましく、さらに好ましくは50~250℃である。 Further, the temperature of the support 4 on which the phosphor layer is formed is preferably set to room temperature (rt) to 300 ° C., more preferably 50 to 250 ° C.
 以上のようにして前記蛍光体層を形成した後、必要に応じて、前記蛍光体層の支持体4とは反対の側の面に、物理的にあるいは化学的に前記蛍光体層を保護するための保護層を設けてもよい。保護層は、保護層用の塗布液を前記蛍光体層の表面に直接塗布して形成してもよく、また、予め別途形成した保護層を前記蛍光体層に接着してもよい。これらの保護層の層厚は0.1μm~2000μmが好ましい。 After the phosphor layer is formed as described above, the phosphor layer is physically or chemically protected on the surface of the phosphor layer opposite to the support 4 as necessary. A protective layer may be provided. The protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the phosphor layer, or a protective layer separately formed in advance may be adhered to the phosphor layer. The thickness of these protective layers is preferably 0.1 μm to 2000 μm.
 また、保護層は蒸着法、スパッタリング法などにより、SiC、SiO2、SiN、Al23などの無機物質を積層して形成してもよい。 The protective layer may be formed by laminating inorganic substances such as SiC, SiO 2 , SiN, Al 2 O 3 by vapor deposition or sputtering.
 以上の放射線画像変換パネルの製造装置1又は製造方法によれば、複数の蒸発源8a,8bを設けることによって蒸発源8a,8bの蒸気流が重なり合う部分が整流化され、支持体4の表面に蒸着する後述する蛍光体の結晶性を均一にすることができる。このとき、多数の蒸発源を設けるほど多くの箇所で蒸気流が整流化されるため、より広範囲において後述する蛍光体の結晶性を均一にすることができる。また、蒸発源8a,8bを支持体4に垂直な中心線を中心とした円の円周上に配置することによって、蒸気流の整流化によって結晶性が均一になるという作用を、支持体4の表面において等方的に得ることができる。 According to the radiographic image conversion panel manufacturing apparatus 1 or the manufacturing method described above, by providing a plurality of evaporation sources 8a and 8b, the overlapping portions of the vapor flows of the evaporation sources 8a and 8b are rectified, and the surface of the support 4 is rectified. The crystallinity of the phosphor to be described later can be made uniform. At this time, as the number of evaporation sources is increased, the vapor flow is rectified at more points, so that the crystallinity of the phosphor described later can be made uniform in a wider range. Further, by disposing the evaporation sources 8a and 8b on the circumference of a circle having a center line perpendicular to the support 4 as a center, the effect that the crystallinity becomes uniform due to the rectification of the vapor flow is provided. Can be obtained isotropically on the surface.
 また、支持体回転機構6によって支持体4を回転しながら後述する蛍光体の蒸着を行うことによって、支持体4の表面に均一に後述する蛍光体を蒸着させることができる。 Further, the phosphor described later can be deposited uniformly on the surface of the support 4 by depositing the phosphor described later while rotating the support 4 by the support rotating mechanism 6.
 (第2の実施形態)
 次に、本発明の第2の実施形態について、図2を参照しながら説明する。なお、第1の実施形態と同一部分には同一符号を付してその説明を省略し、第1の実施形態と異なる部分について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment, the description is abbreviate | omitted, and a different part from 1st Embodiment is demonstrated.
 図2に示すように、本実施形態の製造装置1は真空容器2を備え、真空容器2には真空ポンプ3が備えられると共に、真空容器2の内部の上面付近には支持体回転機構6を備えた支持体ホルダ5が設けられており、支持体ホルダ5によって支持体4が保持されている点で第1の実施形態と同様である。 As shown in FIG. 2, the manufacturing apparatus 1 of the present embodiment includes a vacuum vessel 2, the vacuum vessel 2 is provided with a vacuum pump 3, and a support rotating mechanism 6 is provided near the upper surface inside the vacuum vessel 2. The provided support holder 5 is provided and is the same as that of the first embodiment in that the support 4 is held by the support holder 5.
 また、真空容器2の内部の底面付近には、支持体4に垂直な中心線を中心とした円の円周上に蒸発源8a,8bが配置されており、蒸発源8a,8bと支持体4との間にはシャッタ9が設けられている点も第1の実施形態と同様である。
ここで、蒸発源8a,8bのそれぞれと、支持体4に垂直な中心線との間には、遮蔽板10a,10bが立設されている。これにより、遮蔽板10a,10bは蒸発源8a,8bから蒸発して所定の入射角で支持体4に到達する後述する蛍光体を遮蔽するようになっている。ここで、入射角とは、支持体4のうち前記蛍光体層が形成される面と後述する蛍光体の入射方向とが成す鋭角θをいう。
Further, near the bottom surface inside the vacuum vessel 2, evaporation sources 8 a and 8 b are arranged on the circumference of a circle centering on a center line perpendicular to the support 4, and the evaporation sources 8 a and 8 b and the support are arranged. 4 is the same as that of the first embodiment in that a shutter 9 is provided.
Here, shielding plates 10 a and 10 b are erected between each of the evaporation sources 8 a and 8 b and a center line perpendicular to the support 4. As a result, the shielding plates 10a and 10b shield phosphors described later that evaporate from the evaporation sources 8a and 8b and reach the support 4 at a predetermined incident angle. Here, the incident angle refers to an acute angle θ formed by a surface of the support 4 on which the phosphor layer is formed and an incident direction of the phosphor described later.
 図2に示すように、本実施形態においては、遮蔽板10aは、蒸発源8aと、支持体4のうち蒸発源8a,8bに対向する面の中心点とを結ぶ線分上に、遮蔽板10aの上端部分が接する高さ及び位置となるように配置されている。また、同様に遮蔽板10bは、蒸発源8bと、支持体4のうち蒸発源8a,8bに対向する面の中心点とを結ぶ線分上に、遮蔽板10bの上端部分が接する高さ及び位置となるように配置されている。
このように遮蔽板10a,10bを配置することにより、蒸発源8aから蒸発して支持体4のうち蒸発源8bの上部付近に蒸着しようとする後述する蛍光体は、遮蔽板10aによって遮られる。したがって、蒸発源8aから蒸発した後述する蛍光体が蒸着する範囲は、支持体4のうち蒸発源8aの上部付近に限られる。これによって、支持体4に蒸着する後述する蛍光体の入射角は一定の範囲内に制限される。逆に、蒸発源8bから蒸発した後述する蛍光体が蒸着する範囲は、支持体4のうち蒸発源8bの上部付近に限られるので、同様に支持体4に蒸着する後述する蛍光体の入射角は一定の範囲内に制限される。このように、遮蔽板10a,10bを立設することによって、蒸発源8a,8bから支持体4に蒸着する後述する蛍光体の入射角の範囲を制限するようになっている。
As shown in FIG. 2, in this embodiment, the shielding plate 10a is formed on a line segment connecting the evaporation source 8a and the center point of the surface of the support 4 facing the evaporation sources 8a and 8b. It arrange | positions so that it may become the height and position which the upper end part of 10a touches. Similarly, the shielding plate 10b has a height at which the upper end portion of the shielding plate 10b is in contact with a line segment connecting the evaporation source 8b and the center point of the surface of the support 4 facing the evaporation sources 8a and 8b. It arrange | positions so that it may become a position.
By arranging the shielding plates 10a and 10b in this way, a phosphor described later which is evaporated from the evaporation source 8a and is to be deposited near the upper portion of the evaporation source 8b of the support 4 is blocked by the shielding plate 10a. Therefore, the range in which a phosphor described later evaporated from the evaporation source 8a is deposited is limited to the vicinity of the upper portion of the evaporation source 8a in the support 4. Thereby, the incident angle of a phosphor to be described later deposited on the support 4 is limited within a certain range. On the contrary, the range in which the phosphor to be described later evaporated from the evaporation source 8b is limited to the vicinity of the upper portion of the evaporation source 8b in the support 4, so that the incident angle of the phosphor to be described later deposited on the support 4 similarly. Is limited to within a certain range. Thus, by setting up the shielding plates 10a and 10b, the range of incident angles of phosphors to be described later deposited on the support 4 from the evaporation sources 8a and 8b is limited.
 次に、上述の放射線画像変換パネル製造装置1を用いた本発明の放射線画像変換パネル製造方法のうち、第1の実施形態と異なる部分について説明する。 Next, portions of the radiation image conversion panel manufacturing method of the present invention using the above-described radiation image conversion panel manufacturing apparatus 1 that are different from the first embodiment will be described.
 支持体ホルダ5に支持体4を取付けて、蒸発源8a,8bを支持体4に垂直な中心線を中心とした円の円周上に配置した後、蒸発源8a,8bのそれぞれと支持体4に垂直な中心線との間に、遮蔽板10a,10bを立設する。すなわち、本実施形態においては、遮蔽板10a,10bを、蒸発源8a,8bと支持体4のうち蒸発源8a,8bに対向する面の中心点とを結ぶ線分上点に、遮蔽板10a,10bの上端部分が接する高さ及び位置となるように配置する。 The support body 4 is attached to the support body holder 5 and the evaporation sources 8a and 8b are arranged on the circumference of a circle centering on the center line perpendicular to the support body 4, and then each of the evaporation sources 8a and 8b and the support body. Shield plates 10 a and 10 b are erected between the center line and the center line perpendicular to 4. In other words, in the present embodiment, the shielding plates 10a and 10b are placed at points on the line segment connecting the evaporation sources 8a and 8b and the center point of the surface of the support 4 facing the evaporation sources 8a and 8b. , 10b are arranged so as to be at a height and a position where the upper end portions are in contact.
 次いで、真空容器2の内部を所望の真空度に調整してから、支持体回転機構6により支持体ホルダ5を蒸発源8a,8bに対して回転させ、蒸着可能な真空度に真空容器2が達したら、加熱した蒸発源8a,8bから蛍光体を蒸発させて、支持体4の表面に後述する蛍光体を所望の厚さに成長させる。 Next, after the inside of the vacuum vessel 2 is adjusted to a desired degree of vacuum, the support holder 5 is rotated with respect to the evaporation sources 8a and 8b by the support rotation mechanism 6 so that the vacuum vessel 2 has a degree of vacuum that allows vapor deposition. When it reaches, the phosphor is evaporated from the heated evaporation sources 8a and 8b, and a phosphor described later is grown on the surface of the support 4 to a desired thickness.
 このような位置に遮蔽板10a,10bを配置することにより、蒸発源8aから蒸発して支持体4のうち蒸発源8bの上部付近に蒸着しようとする後述する蛍光体は遮蔽板10aによって遮られる。したがって、蒸発源8aから蒸発した蛍光体が蒸着する範囲は支持体4のうち蒸発源8aの上部付近に限られる。これによって、支持体4に蒸着する蛍光体の入射角は一定の範囲内に制限される。逆に、蒸発源8bから蒸発した後述する蛍光体が蒸着する範囲は支持体4のうち蒸発源8bの上部付近に限られるので、やはり支持体4に蒸着する後述する蛍光体の入射角は一定の範囲内に制限される。 By disposing the shielding plates 10a and 10b at such positions, phosphors described later which are evaporated from the evaporation source 8a and are to be deposited near the upper portion of the evaporation source 8b in the support 4 are blocked by the shielding plate 10a. . Therefore, the range in which the phosphor evaporated from the evaporation source 8a is deposited is limited to the vicinity of the upper portion of the evaporation source 8a in the support 4. As a result, the incident angle of the phosphor deposited on the support 4 is limited within a certain range. On the contrary, since the range of the phosphor to be described later evaporated from the evaporation source 8b is limited to the vicinity of the upper portion of the evaporation source 8b in the support 4, the incident angle of the phosphor to be described later deposited on the support 4 is also constant. It is limited within the range.
 以上の放射線画像変換パネルの製造装置1又は製造方法によれば、第1の実施形態と同様の作用が得られる他、蒸発源8a,8bから蒸発して所定の入射角で支持体4に到達する後述する蛍光体を遮蔽板10a,10bにより遮蔽することによって、支持体4に蒸着する後述する蛍光体の入射角を所定の範囲に制限することができる。これにより後述する蛍光体の入射角のばらつきを防いで結晶性を均一にすることができる。 According to the manufacturing apparatus 1 or manufacturing method of the radiation image conversion panel described above, the same action as in the first embodiment can be obtained, and it can be evaporated from the evaporation sources 8a and 8b and reach the support 4 at a predetermined incident angle. By shielding the later-described phosphors with the shielding plates 10a and 10b, the incident angle of the later-described phosphors deposited on the support 4 can be limited to a predetermined range. As a result, it is possible to make the crystallinity uniform by preventing variations in the incident angle of the phosphor described later.
 以上述べたように本発明の放射線画像変換パネル製造装置1又は製造方法によれば、支持体4の表面において、後述する蛍光体の結晶性が均一となるように蛍光体層を成長させることによって、蛍光体層の感度ムラを低下させ、放射線画像変換パネルから得られる放射線画像の鮮鋭性を向上させることができる。 As described above, according to the radiation image conversion panel manufacturing apparatus 1 or the manufacturing method of the present invention, the phosphor layer is grown on the surface of the support 4 so that the crystallinity of the phosphor described later is uniform. The sensitivity unevenness of the phosphor layer can be reduced, and the sharpness of the radiographic image obtained from the radiographic image conversion panel can be improved.
 また、支持体4に蒸着する後述する蛍光体の入射角を所定の範囲に制限して蛍光体の入射角のばらつきを防ぐことによって、蛍光体の結晶性をより均一にして、放射線画像変換パネルから得られる放射線画像の鮮鋭性を向上させることができる。 Further, by limiting the incident angle of a phosphor to be described later deposited on the support 4 to a predetermined range to prevent variations in the incident angle of the phosphor, the crystallinity of the phosphor is made more uniform, and the radiation image conversion panel The sharpness of the radiographic image obtained from can be improved.
 なお、以上は支持体ホルダ5が支持体回転機構6を備える場合について説明したが、本発明は必ずしもこれに限らず、支持体ホルダ5が支持体4を保持して静止した状態で蒸着を行う場合や、支持体4を蒸発源8a,8bに対して水平方向に移動させることによって蒸発源8a,8bからの後述する蛍光体を蒸着させる場合などにおいても適用可能である。 In addition, although the above demonstrated the case where the support body holder 5 was equipped with the support body rotation mechanism 6, this invention is not necessarily restricted to this, It vapor-deposits in the state which the support body holder 5 hold | maintained the support body 4 and was still. The present invention can also be applied to the case where a phosphor to be described later is evaporated from the evaporation sources 8a and 8b by moving the support 4 in the horizontal direction with respect to the evaporation sources 8a and 8b.
 本発明の蛍光体材料は、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成できるため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であることから、CsIが好ましい。 The phosphor material of the present invention has a relatively high change rate from X-rays to visible light, and the phosphor can be easily formed into a columnar crystal structure by vapor deposition. Therefore, scattering of emitted light in the crystal is suppressed by the light guide effect. CsI is preferable because the thickness of the phosphor layer can be increased.
 但し、CsIのみでは発光効率が低いために各種の賦活剤が添加される。例えば、特公昭54-35060号公報に記載の如く、CsIとヨウ化ナトリウム(NaI)を任意のモル比で混合したものが挙げられる。また、例えば、特開2001-59899号公報に開示されているような、CsIを蒸着でインジウム(In)、タリウム(Tl)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)などの賦活物質を含有するCsIが好ましい。 However, since CsI alone has low luminous efficiency, various activators are added. For example, as described in JP-B-54-35060, a mixture of CsI and sodium iodide (NaI) at an arbitrary molar ratio can be mentioned. Further, for example, as disclosed in JP-A-2001-59899, CsI is deposited by vapor deposition of indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium ( CsI containing an activating substance such as Na) is preferred.
 なお、本発明においては、特に1種類以上のタリウム化合物を含む添加剤とヨウ化セシウムとを原材料とすることが好ましい。即ち、タリウム賦活ヨウ化セシウム(CsI:Tl)は400nmから750nmまでの広い発光波長を持つことから好ましい。 In the present invention, it is particularly preferable to use an additive containing one or more thallium compounds and cesium iodide as raw materials. That is, thallium activated cesium iodide (CsI: Tl) is preferable because it has a broad emission wavelength from 400 nm to 750 nm.
 本発明に係る1種類以上のタリウム化合物を含有する賦活剤のタリウム化合物としては、種々のタリウム化合物(+Iと+IIIの酸化数の化合物)を使用することができる。 As the thallium compound of the activator containing one or more kinds of thallium compounds according to the present invention, various thallium compounds (compounds having + I and + III oxidation numbers) can be used.
 本発明において、好ましいタリウム化合物はヨウ化タリウム(TlI)、臭化タリウム(TlBr)、塩化タリウム(TlCl)等である。 In the present invention, preferable thallium compounds are thallium iodide (TlI), thallium bromide (TlBr), thallium chloride (TlCl) and the like.
 また、本発明に係るタリウム化合物の融点は、400~700℃の範囲内にあることが好ましい。700℃以内を超えると柱状結晶内での賦活剤が不均一に存在してしまい、発光効率が低下する。なお、本発明での融点とは常温常圧下における融点である。 The melting point of the thallium compound according to the present invention is preferably in the range of 400 to 700 ° C. If the temperature exceeds 700 ° C., the activator in the columnar crystals exists non-uniformly, and the light emission efficiency decreases. In the present invention, the melting point is a melting point at normal temperature and pressure.
 本発明に係る蛍光体層において、当該賦活剤の含有量は目的性能等に応じて、最適量にすることが望ましいが、ヨウ化セシウムの含有量に対して0.001~50mol%、更に0.1~10.0mol%であることが好ましい。 In the phosphor layer according to the present invention, the content of the activator is desirably an optimum amount according to the target performance and the like, but is 0.001 to 50 mol% with respect to the content of cesium iodide. .1 to 10.0 mol% is preferable.
 ここで、ヨウ化セシウムに対し、添加剤が0.001mol%未満であるとヨウ化セシウム単独使用で得られる発光輝度と大差なく、目的とする発光輝度を得ることができない。また、50mol%を超えるとヨウ化セシウムの性質・機能を保持することができない。 Here, when the additive is less than 0.001 mol% with respect to cesium iodide, the intended emission luminance cannot be obtained without much difference from the emission luminance obtained by using cesium iodide alone. Moreover, when it exceeds 50 mol%, the property and function of cesium iodide cannot be maintained.
 さらに、必要に応じて、蛍光体層の支持体とは反対の側の面に、物理的にあるいは化学的に前記蛍光体層を保護するための保護層を設けてもよい。保護層は、保護層用の塗布液を蛍光体層の表面に直接塗布して形成もよいし、また、予め別途形成した保護層を蛍光体層に接着してもよい。 Furthermore, if necessary, a protective layer for physically or chemically protecting the phosphor layer may be provided on the surface of the phosphor layer opposite to the support. The protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the phosphor layer, or a protective layer separately formed in advance may be adhered to the phosphor layer.
 当該保護膜は種々の材料を用いて形成することができる。例えば、CVD法によりポリパラキシリレン膜を形成する。即ち、蛍光体を成膜した基板の表面全体にポリパラキシリレン膜を形成し、保護膜とすることができる。 The protective film can be formed using various materials. For example, a polyparaxylylene film is formed by a CVD method. That is, a polyparaxylylene film can be formed on the entire surface of the substrate on which the phosphor has been formed to form a protective film.
 また、別の態様の保護膜として、高分子保護フィルムを設けることもできる。 Also, a polymer protective film can be provided as a protective film of another embodiment.
 上記高分子保護フィルムの厚さは、空隙部の形成性、蛍光体層の保護性、鮮鋭性、防湿性、作業性等を考慮し、12μm以上、100μm以下が好ましく、更には20μm以上、60μm以下が好ましい。また、ヘイズ率が鮮鋭性、放射線画像ムラ、製造安定性、作業性等を考慮し、3%以上、40%以下が好ましく、更には3%以上、10%以下が好ましい。ヘイズ率は日本電色工業株式会社NDH 5000Wにより測定した値を示す。必要とするヘイズ率は市販されている高分子フィルムから適宜選択し、容易に入手することが可能である。 The thickness of the polymer protective film is preferably 12 μm or more and 100 μm or less, more preferably 20 μm or more and 60 μm, taking into consideration the formation of voids, the protective properties of the phosphor layer, sharpness, moisture resistance, workability and the like. The following is preferred. Further, the haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, manufacturing stability, workability, and the like. A haze rate shows the value measured by Nippon Denshoku Industries Co., Ltd. NDH 5000W. The required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
 保護フィルムの光透過率は光電変換効率、蛍光体発光波長等を考慮し、550nmで70%以上あることが好ましいが、99%以上の光透過率のフィルムは工業的に入手が困難であるため、実質的に70~99%が好ましい。 The light transmittance of the protective film is preferably 70% or more at 550 nm in consideration of photoelectric conversion efficiency, phosphor emission wavelength, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Substantially 70 to 99% is preferable.
 保護フィルムの透湿度は、蛍光体層の保護性、潮解性等を考慮し50g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には10g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましいが、0.01g/m2・day(40℃・90%RH)以下の透湿度のフィルムは工業的に入手が困難であるため、実質的に0.01g/m2・day(40℃・90%RH)以上、50g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には0.1g/m2・day(40℃・90%RH)以上、10g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましい。 The moisture permeability of the protective film is preferably 50 g / m 2 · day (40 ° C., 90% RH) (measured in accordance with JIS Z0208) or less, more preferably 10 g / m 2 taking into account the protective properties and deliquescence of the phosphor layer. m 2 · day (40 ° C, 90% RH) (measured according to JIS Z0208) or less is preferable, but a film with a water vapor transmission rate of 0.01 g / m 2 · day (40 ° C, 90% RH) or less is industrial. Therefore, it is substantially 0.01 g / m 2 · day (40 ° C, 90% RH) or more, 50 g / m 2 · day (40 ° C., 90% RH) (measured according to JIS Z0208) ) Or less, more preferably 0.1 g / m 2 · day (40 ° C./90% RH) or more and 10 g / m 2 · day (40 ° C./90% RH) (measured according to JIS Z0208) or less. .
 本発明のシンチレータパネルとして、基板上に下記に示す導電性金属反射層、更にその上に金属保護層を設け、その上に蒸着により蛍光体層を設けることもできる。 As the scintillator panel of the present invention, a conductive metal reflective layer shown below can be provided on a substrate, a metal protective layer can be further provided thereon, and a phosphor layer can be provided thereon by vapor deposition.
 (導電性金属反射層)
 導電性金属反射層は、蛍光体層で変換された光を外部へ出射するため反射層として機能させることが可能であり、発光光の利用効率の面で導電性金属反射層は反射率の高い金属で形成することが好ましい。反射率の高い金属膜層としては、Al、Ag、Cr、Cu、Ni、Mg、Pt、Auからなる群の中の物質を含む材料が挙げられる。本発明に係る導電性金属反射層の形成方法は既知のいかなる方法でも構わないが、例えば、上記原材料を使用したスパッタ処理が挙げられる。また、このような金属薄膜を2層以上形成するようにしても良い。金属薄膜を2層以上とする場合は、下層をCrを含む層とすることが基板との接着性を向上させる点から好ましい。また、金属薄膜上にSiO、TiO等の金属酸化物からなる層をこの順に設けてさらに反射率を向上させても良い。なお、反射層の厚さは、0.01~0.3μmであることが、発光光取り出し効率の観点から好ましい。
(Conductive metal reflective layer)
The conductive metal reflective layer can function as a reflective layer because it emits light converted by the phosphor layer to the outside, and the conductive metal reflective layer has high reflectivity in terms of the efficiency of use of emitted light. It is preferable to form with a metal. Examples of the metal film layer having high reflectivity include a material containing a substance in the group consisting of Al, Ag, Cr, Cu, Ni, Mg, Pt, and Au. The method for forming the conductive metal reflective layer according to the present invention may be any known method, for example, a sputtering process using the above raw materials. Two or more such metal thin films may be formed. When the metal thin film has two or more layers, it is preferable that the lower layer is a layer containing Cr from the viewpoint of improving the adhesion to the substrate. Further, a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal thin film to further improve the reflectance. The thickness of the reflective layer is preferably 0.01 to 0.3 μm from the viewpoint of the emission light extraction efficiency.
 導電性金属としては、電気伝導率で6.0S/m(ジーメンス毎メートル)以上のものであることが好ましく、より好ましくは30S/m以上である。具体的にはAl(40S/m)、Ag(67S/m)、Au(46S/m)が反射率や電気伝導率の点で好ましい。 The conductive metal is preferably one having an electric conductivity of 6.0 S / m (Siemens per meter) or more, more preferably 30 S / m or more. Specifically, Al (40 S / m), Ag (67 S / m), and Au (46 S / m) are preferable in terms of reflectivity and electrical conductivity.
 (金属保護層)
 金属保護層は溶剤に溶解した樹脂を塗布、乾燥して形成することが好ましい。ガラス転位点が30~100℃のポリマーであることが蒸着結晶と基板との膜付の点で好ましく、具体的には、ポリウレタン樹脂、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル樹脂、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられるが、特にポリエステル樹脂であることが好ましい。
(Metal protective layer)
The metal protective layer is preferably formed by applying and drying a resin dissolved in a solvent. A polymer having a glass transition point of 30 to 100 ° C. is preferable in terms of attaching a film between the deposited crystal and the substrate. Specifically, a polyurethane resin, a vinyl chloride copolymer, a vinyl chloride-vinyl acetate copolymer, Vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, polyester resin, cellulose derivatives (nitrocellulose, etc.), styrene-butadiene copolymer, various types Synthetic rubber resins, phenol resins, epoxy resins, urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins and the like can be mentioned, and polyester resins are particularly preferable.
 金属保護層の膜厚としては接着性の点で0.1μm以上が好ましく、金属保護層表面の平滑性確保の点で3.0μm以下が好ましい。より好ましくは金属保護層の厚さが0.2~2.5μmの範囲である。 The thickness of the metal protective layer is preferably 0.1 μm or more in terms of adhesion, and preferably 3.0 μm or less in terms of ensuring the smoothness of the surface of the metal protective layer. More preferably, the thickness of the metal protective layer is in the range of 0.2 to 2.5 μm.
 金属保護層作製に用いる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテル、及びそれらの混合物を挙げることができる。 Solvents used for metal protective layer preparation include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, Aromatic compounds such as toluene, benzene, cyclohexane, cyclohexanone, xylene, esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester, And mixtures thereof.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the embodiment of the present invention is not limited thereto.
 まず、実施例1~実施例5では、図1に示す第1の実施形態における製造装置を使用して以下の方法により放射線変換パネルを得た。 First, in Examples 1 to 5, radiation conversion panels were obtained by the following method using the manufacturing apparatus in the first embodiment shown in FIG.
 実施例1
 (放射線像変換パネルの作製)
 ポリイミド樹脂シートからなる支持体の片面に蛍光体(CsI:0.003Tl)を蒸着させて蛍光体層を形成した。
Example 1
(Production of radiation image conversion panel)
A phosphor (CsI: 0.003 Tl) was deposited on one side of a support made of a polyimide resin sheet to form a phosphor layer.
 すなわち、まず、支持体回転機構を備えた支持体ホルダに支持体を設置した。次に、上記蛍光体原料を蒸着材料として蒸発源るつぼに充填し、2個の蒸発源るつぼを真空容器の内部の底面付近であって、支持体に垂直な中心線を中心とした円の円周上に配置した。このとき、支持体と蒸発源との間隔を500mmに調節すると共に、支持体に垂直な中心線と蒸発源との間隔を300mmに調節した。続いて真空容器の内部を一旦排気し、Arガスを導入して0.1Paに真空度を調整した後、10rpmの速度で支持体を回転させながら支持体の温度を50℃に保持した。次いで、抵抗加熱によりるつぼ内を所定の温度に上昇させて蛍光体を蒸着開始したのち基板温度を200℃まで上昇させ、蛍光体層の膜厚が450μmとなったところで蒸着を終了させた。 That is, first, a support was installed on a support holder equipped with a support rotation mechanism. Next, the phosphor raw material is filled in the evaporation source crucible as an evaporation material, and the two evaporation source crucibles are in the vicinity of the bottom of the inside of the vacuum vessel and are circles centered on the center line perpendicular to the support Arranged on the circumference. At this time, the distance between the support and the evaporation source was adjusted to 500 mm, and the distance between the center line perpendicular to the support and the evaporation source was adjusted to 300 mm. Subsequently, the inside of the vacuum vessel was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.1 Pa, and then the temperature of the support was maintained at 50 ° C. while rotating the support at a speed of 10 rpm. Next, the inside of the crucible was raised to a predetermined temperature by resistance heating to start the phosphor deposition, the substrate temperature was increased to 200 ° C., and the deposition was terminated when the phosphor layer thickness reached 450 μm.
 次いで、乾燥空気内で蛍光体層を保護層袋に入れ、蛍光体層が密封された構造の放射線像変換パネルを得た。 Next, the phosphor layer was put in a protective layer bag in dry air to obtain a radiation image conversion panel having a structure in which the phosphor layer was sealed.
 実施例2
 実施例1の蒸発源の数を4個として放射線画像変換パネルを得た。
Example 2
A radiation image conversion panel was obtained with four evaporation sources in Example 1.
 実施例3
 実施例1の蒸発源の数を8個として放射線画像変換パネルを得た。
Example 3
A radiation image conversion panel was obtained with eight evaporation sources in Example 1.
 実施例4
 実施例1の蒸発源の数を16個として放射線画像変換パネルを得た。
Example 4
A radiation image conversion panel was obtained with 16 evaporation sources in Example 1.
 実施例5
 実施例1の蒸発源の数を32個として放射線画像変換パネルを得た。
Example 5
A radiation image conversion panel was obtained with 32 evaporation sources in Example 1.
 比較例1
 実施例1の蒸発源の数を1個として放射線画像変換パネルを得た。
Comparative Example 1
A radiation image conversion panel was obtained by setting the number of evaporation sources in Example 1 to one.
 そして、以上のようにして得られた放射線画像変換パネルについて下記のような評価を行った。 And the following evaluation was performed about the radiation image conversion panel obtained as mentioned above.
 <鮮鋭性>
 (鮮鋭性の評価)
 得られた蛍光体パネルをPaxScan(Varian社製FPD:2520)にセットし、蛍光体パネル全面の鮮鋭性の平均値を以下に示す方法で評価した。結果を表1に示す。
<Sharpness>
(Evaluation of sharpness)
The obtained phosphor panel was set in PaxScan (Varian FPD: 2520), and the average value of the sharpness of the entire phosphor panel was evaluated by the following method. The results are shown in Table 1.
 鉛製のMTFチャートを通して管電圧80kVpのX線をFPDの放射線入射面側に照射し、画像データを検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して、当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。表中、MTF値が高いほど鮮鋭性に優れていることを示す。MTFはModulation Transfer Functionの略号を示す。 X-rays with a tube voltage of 80 kVp were irradiated to the radiation incident side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness. In the table, the higher the MTF value, the better the sharpness. MTF is an abbreviation for Modulation Transfer Function.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上、表1の結果から明らかなように、実施例1で蒸発源の数を2個とした場合の鮮鋭性は104であり、比較例2で蒸発源の数を1個とした場合の100よりも鮮鋭性が向上している。さらに、実施例2~実施例5において、蒸発源の数が4個、8個、16個、32個と増加するにしたがって、鮮鋭性は113、122、126、135と向上していることがわかる。 As is apparent from the results of Table 1, the sharpness when the number of evaporation sources is 2 in Example 1 is 104, and 100 when the number of evaporation sources is 1 in Comparative Example 2. The sharpness is improved. Further, in Examples 2 to 5, the sharpness is improved to 113, 122, 126, and 135 as the number of evaporation sources increases to 4, 8, 16, and 32. Recognize.
 以上より、蒸発源の個数を増やすほど多くの箇所で蒸気流が整流化され、蛍光体の結晶性が均一となることにより、放射線画像の鮮鋭性が向上することが示された。 From the above, it has been shown that as the number of evaporation sources is increased, the vapor flow is rectified in many places, and the crystallinity of the phosphor becomes uniform, thereby improving the sharpness of the radiation image.
 次に、実施例6~実施例10では、図2に示す第2の実施形態における製造装置を使用して以下の方法により放射線変換パネルを得た。 Next, in Examples 6 to 10, radiation conversion panels were obtained by the following method using the manufacturing apparatus in the second embodiment shown in FIG.
 実施例6
 (放射線像変換パネルの作製)
 ポリイミド樹脂シートからなる支持体の片面に蛍光体(CsI:0.003Tl)を蒸着させて蛍光体層を形成した。
Example 6
(Production of radiation image conversion panel)
A phosphor (CsI: 0.003 Tl) was deposited on one side of a support made of a polyimide resin sheet to form a phosphor layer.
 すなわち、まず、支持体回転機構を備えた支持体ホルダに支持体を設置した。次に、上記蛍光体原料を蒸着材料として蒸発源るつぼに充填し、2個の蒸発源るつぼを真空容器の内部の底面付近であって、支持体に垂直な中心線を中心とした円の円周上に配置した。このとき、支持体と蒸発源との間隔を450mmに調節すると共に、支持体に垂直な中心線と蒸発源との間隔を300mmに調節した。さらに、2個の遮蔽板を、蒸発源と支持体のうち蒸発源に対向する面の中心点とを結ぶ線分上に、遮蔽板の上端部分が接する高さ及び位置となるように配置し、蛍光体が支持体に蒸着する際の入射角の範囲を制限するようにした。続いて真空容器の内部を一旦排気し、Arガスを導入して0.1Paに真空度を調整した後、10rpmの速度で支持体を回転させながら支持体の温度を50℃に保持した。次いで、抵抗加熱によりるつぼ内を所定の温度に上昇させて蛍光体を蒸着開始したのち基板温度を200℃まで上昇させ、蛍光体層の膜厚が450μmとなったところで蒸着を終了させた。 That is, first, a support was installed on a support holder equipped with a support rotation mechanism. Next, the phosphor raw material is filled in the evaporation source crucible as an evaporation material, and the two evaporation source crucibles are in the vicinity of the bottom of the inside of the vacuum vessel and are circles centered on the center line perpendicular to the support Arranged on the circumference. At this time, the distance between the support and the evaporation source was adjusted to 450 mm, and the distance between the center line perpendicular to the support and the evaporation source was adjusted to 300 mm. Further, the two shielding plates are arranged so that the height and position where the upper end portion of the shielding plate is in contact with the line segment connecting the evaporation source and the center point of the surface of the support that faces the evaporation source. The range of the incident angle when the phosphor is deposited on the support is limited. Subsequently, the inside of the vacuum vessel was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.1 Pa, and then the temperature of the support was maintained at 50 ° C. while rotating the support at a speed of 10 rpm. Next, the inside of the crucible was raised to a predetermined temperature by resistance heating to start the phosphor deposition, the substrate temperature was increased to 200 ° C., and the deposition was terminated when the phosphor layer thickness reached 450 μm.
 次いで、乾燥空気内で蛍光体層を保護層袋に入れ、蛍光体層が密封された構造の放射線像変換パネルを得た。 Next, the phosphor layer was put in a protective layer bag in dry air to obtain a radiation image conversion panel having a structure in which the phosphor layer was sealed.
 実施例7
 実施例6の蒸発源の数を4個として放射線画像変換パネルを得た。
Example 7
A radiation image conversion panel was obtained with four evaporation sources in Example 6.
 実施例8
 実施例6の蒸発源の数を8個として放射線画像変換パネルを得た。
Example 8
A radiation image conversion panel was obtained with eight evaporation sources in Example 6.
 実施例9
 実施例6の蒸発源の数を16個として放射線画像変換パネルを得た。
Example 9
A radiation image conversion panel was obtained with 16 evaporation sources in Example 6.
 実施例10
 実施例6の蒸発源の数を32個として放射線画像変換パネルを得た。
Example 10
A radiation image conversion panel was obtained with 32 evaporation sources in Example 6.
 実施例11
 実施例6の蒸発源の数を32個とし、さらに円周部だけでなく円の中心部にも蒸発源を1個配置して放射線画像変換パネルを得た。
Example 11
The number of evaporation sources in Example 6 was 32, and one evaporation source was arranged not only at the circumference but also at the center of the circle to obtain a radiation image conversion panel.
 比較例2
 実施例6の蒸発源の数を1個とし、かつ遮蔽板を配置しない状態として放射線画像変換パネルを得た。
Comparative Example 2
A radiation image conversion panel was obtained in a state where the number of evaporation sources in Example 6 was one and no shielding plate was disposed.
 比較例3
 実施例6の蒸発源の数を1個として放射線画像変換パネルを得た。
Comparative Example 3
A radiation image conversion panel was obtained by setting the number of evaporation sources in Example 6 to one.
 そして、以上のようにして得られた放射線画像変換パネルについて下記のような評価を行った。 And the following evaluation was performed about the radiation image conversion panel obtained as mentioned above.
 <鮮鋭性>
 得られた蛍光体パネルをPaxScan(Varian社製FPD:2520)にセットし、蛍光体パネル全面の鮮鋭性の平均値を以下に示す方法で評価した。結果を表2に示す。
<Sharpness>
The obtained phosphor panel was set in PaxScan (Varian FPD: 2520), and the average value of the sharpness of the entire phosphor panel was evaluated by the following method. The results are shown in Table 2.
 鉛製のMTFチャートを通して管電圧80kVpのX線をFPDの放射線入射面側に照射し、画像データを検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して、当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。表中、MTF値が高いほど鮮鋭性に優れていることを示す。MTFはModulation Transfer Functionの略号を示す。 X-rays with a tube voltage of 80 kVp were irradiated to the radiation incident side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness. In the table, the higher the MTF value, the better the sharpness. MTF is an abbreviation for Modulation Transfer Function.
 そして、蒸発源の数を1個とし、かつ遮蔽板を配置しない状態(比較例2)の値を100として、その他の場合について相対値で示した。なお、MTFは、空間周波数が1サイクル/mmの時の値である。 Then, the number of evaporation sources is one, and the value of the state where the shielding plate is not arranged (Comparative Example 2) is 100, and the other cases are shown as relative values. MTF is a value when the spatial frequency is 1 cycle / mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、表2の結果から明らかなように、実施例6で蒸発源の数を2個とした場合の鮮鋭性は111であり、比較例3で蒸発源の数を1個とした場合の100よりも鮮鋭性が向上している。さらに、実施例7~実施例10において、蒸発源の数が4個、8個、16個、32個と増加するにしたがって、鮮鋭性は114、126、131、139と向上していることが示された。また実施例11において、円周部の蒸発源32個に加えて円の中心部にも蒸発源を配置することで鮮鋭性は139と維持したまま、蛍光体層の膜厚分布が良好で、感度むらがなく良好な特性が得られた。 As is apparent from the results of Table 2, the sharpness when the number of evaporation sources is 2 in Example 6 is 111, and 100 when the number of evaporation sources is 1 in Comparative Example 3. The sharpness is improved. Furthermore, in Examples 7 to 10, the sharpness improved to 114, 126, 131, and 139 as the number of evaporation sources increased to 4, 8, 16, and 32. Indicated. Further, in Example 11, the thickness distribution of the phosphor layer is good while maintaining the sharpness at 139 by arranging the evaporation source in the center of the circle in addition to the 32 evaporation sources in the circumferential portion, Good characteristics without unevenness of sensitivity were obtained.

Claims (6)

  1. 真空容器と、前記真空容器内に設けられた支持体ホルダと、前記支持体ホルダに保持された支持体と、前記支持体に垂直な中心線を中心とした円の円周上に配置され、ヨウ化セシウムと賦活剤からなる蛍光体を蒸発させて前記支持体に前記蛍光体を蒸着させる複数の蒸発源とを備えることを特徴とする放射線画像変換パネルの製造装置。 A vacuum vessel, a support holder provided in the vacuum vessel, a support held by the support holder, and arranged on the circumference of a circle centering on a center line perpendicular to the support, An apparatus for manufacturing a radiation image conversion panel, comprising: a plurality of evaporation sources for evaporating a phosphor made of cesium iodide and an activator to deposit the phosphor on the support.
  2. 前記支持体ホルダは、前記蒸発源から前記蛍光体を蒸着させる際に前記支持体を回転させる支持体回転機構を備えていることを特徴とする請求の範囲第1項に記載の放射線画像変換パネルの製造装置。 The radiation image conversion panel according to claim 1, wherein the support holder includes a support rotating mechanism that rotates the support when the phosphor is deposited from the evaporation source. Manufacturing equipment.
  3. 前記複数の蒸発源のそれぞれと前記支持体に垂直な中心線との間に立設され、前記複数の蒸発源から蒸発して所定の入射角で前記支持体に到達する前記蛍光体を遮蔽する複数の遮蔽板が備えられていることを特徴とする請求の範囲第1項又は第2項に記載の放射線画像変換パネルの製造装置。 Standing between each of the plurality of evaporation sources and a center line perpendicular to the support, the phosphor that evaporates from the plurality of evaporation sources and reaches the support at a predetermined incident angle is shielded. The apparatus for manufacturing a radiation image conversion panel according to claim 1 or 2, wherein a plurality of shielding plates are provided.
  4. 真空容器内において、支持体を支持体ホルダによって保持する工程と、前記支持体に垂直な中心線を中心とした円の円周上にヨウ化セシウムと賦活剤からなる蛍光体を蒸発させる複数の蒸発源を配置する工程と、前記複数の蒸発源から蒸発する前記蛍光体を前記支持体に蒸着させて蛍光体層を形成する工程とを備えることを特徴とする放射線画像変換パネルの製造方法。 In the vacuum vessel, a step of holding the support by a support holder, and a plurality of vaporizing phosphors made of cesium iodide and an activator on the circumference of a circle centered on a center line perpendicular to the support A method for manufacturing a radiation image conversion panel, comprising the steps of: disposing an evaporation source; and depositing the phosphor evaporating from the plurality of evaporation sources on the support to form a phosphor layer.
  5. 前記支持体ホルダは、前記蒸発源から前記蛍光体を蒸着させる際に前記支持体を回転させる支持体回転機構を備えていることを特徴とする請求の範囲第4項に記載の放射線画像変換パネルの製造方法。 The radiation image conversion panel according to claim 4, wherein the support holder includes a support rotating mechanism that rotates the support when vapor-depositing the phosphor from the evaporation source. Manufacturing method.
  6. 前記複数の蒸発源のそれぞれと前記支持体に垂直な中心線との間に、前記複数の蒸発源から蒸発して所定の入射角で前記支持体に到達する前記蛍光体を遮蔽する複数の遮蔽板を立設する工程が含まれていることを特徴とする請求の範囲第4項又は第5項に記載の放射線画像変換パネルの製造方法。 A plurality of shields for shielding the phosphors that evaporate from the plurality of evaporation sources and reach the support at a predetermined incident angle between each of the plurality of evaporation sources and a center line perpendicular to the support. 6. The method for manufacturing a radiation image conversion panel according to claim 4, further comprising a step of standing a plate.
PCT/JP2009/053008 2008-04-03 2009-02-20 Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel WO2009122809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008096964 2008-04-03
JP2008-096964 2008-04-03

Publications (1)

Publication Number Publication Date
WO2009122809A1 true WO2009122809A1 (en) 2009-10-08

Family

ID=41135208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053008 WO2009122809A1 (en) 2008-04-03 2009-02-20 Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel

Country Status (1)

Country Link
WO (1) WO2009122809A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720566B2 (en) * 2009-06-26 2015-05-20 コニカミノルタ株式会社 Scintillator panel, scintillator panel manufacturing method, radiographic image detector, and radiographic image detector manufacturing method
CN112442661A (en) * 2019-08-28 2021-03-05 佳能株式会社 Evaporation plating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225733A (en) * 2005-02-18 2006-08-31 Ulvac Japan Ltd Film-forming apparatus and film-forming method
JP2008051793A (en) * 2006-03-02 2008-03-06 Canon Inc Radiation detector and scintillator panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225733A (en) * 2005-02-18 2006-08-31 Ulvac Japan Ltd Film-forming apparatus and film-forming method
JP2008051793A (en) * 2006-03-02 2008-03-06 Canon Inc Radiation detector and scintillator panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720566B2 (en) * 2009-06-26 2015-05-20 コニカミノルタ株式会社 Scintillator panel, scintillator panel manufacturing method, radiographic image detector, and radiographic image detector manufacturing method
CN112442661A (en) * 2019-08-28 2021-03-05 佳能株式会社 Evaporation plating device
CN112442661B (en) * 2019-08-28 2023-07-25 佳能株式会社 Vapor deposition device

Similar Documents

Publication Publication Date Title
JP5720566B2 (en) Scintillator panel, scintillator panel manufacturing method, radiographic image detector, and radiographic image detector manufacturing method
JP5402933B2 (en) Radiation image conversion panel and manufacturing method thereof
JP5862302B2 (en) Radiation image conversion panel and radiation image detector using the same
JP5889531B2 (en) Manufacturing method of scintillator panel
JP4725533B2 (en) Scintillator panel
JP5499706B2 (en) Scintillator panel
WO2010050358A1 (en) Scintillator panel, radiation detector, and processes for producing these
US20120009375A1 (en) Scintillator panel
JP5429174B2 (en) Radiation conversion panel
JP2008224357A (en) Scintillator plate
WO2009122809A1 (en) Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel
JP5267458B2 (en) Scintillator panel and radiation image sensor
JP5597930B2 (en) Radiation image detection apparatus and manufacturing method thereof
JP5347967B2 (en) Scintillator plate
JPWO2008108402A1 (en) Scintillator plate
JP2010060414A (en) Scintillator plate
JP5369906B2 (en) Radiation image conversion panel and radiation image detection apparatus
WO2010032504A1 (en) Radiation image conversion panel and method for producing the same
WO2011086987A1 (en) Radiation image sensor and method for manufacturing same
JPWO2008102645A1 (en) Scintillator panel and radiation image sensor
JP2010107354A (en) Radiation conversion panel and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP