WO2009122739A1 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
WO2009122739A1
WO2009122739A1 PCT/JP2009/001524 JP2009001524W WO2009122739A1 WO 2009122739 A1 WO2009122739 A1 WO 2009122739A1 JP 2009001524 W JP2009001524 W JP 2009001524W WO 2009122739 A1 WO2009122739 A1 WO 2009122739A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit unit
signal
unit
failure
output
Prior art date
Application number
PCT/JP2009/001524
Other languages
English (en)
French (fr)
Inventor
植村猛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008097919A external-priority patent/JP4311496B1/ja
Priority claimed from JP2008267024A external-priority patent/JP4289439B1/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09700066.5A priority Critical patent/EP2284489B1/en
Priority to GB0911551A priority patent/GB2461974B/en
Priority to CN2009800000850A priority patent/CN101680761B/zh
Priority to US12/486,227 priority patent/US7730782B2/en
Publication of WO2009122739A1 publication Critical patent/WO2009122739A1/ja
Priority to US12/615,848 priority patent/US7775109B2/en
Priority to US12/834,419 priority patent/US8322214B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C25/00Arrangements for preventing or correcting errors; Monitoring arrangements

Definitions

  • the present invention relates to a sensor device used in automobiles and various electronic devices.
  • FIG. 9 is a block diagram of an inertial sensor which is an example of a conventional sensor device.
  • the sensor device includes drive circuit units 1A and 1B, a detection element 2, detection circuit units 3A and 3B, processing circuit units 4A and 4B, output circuit units 5A and 5B, and a failure diagnosis circuit 6.
  • the drive circuit units 1A and 1B output drive signals.
  • Drive signals from the drive circuit units 1A and 1B are input to the detection element 2.
  • the sensing element 2 includes an angular velocity detector and an acceleration detector.
  • the detection circuit units 3 ⁇ / b> A and 3 ⁇ / b> B take out a response signal from the detection element 2.
  • the processing circuit units 4A and 4B extract a sense signal from the response signals from the detection circuit units 3A and 3B.
  • the output circuit units 5A and 5B output the sense signals from the processing circuit units 4A and 4B.
  • the failure diagnosis circuit 6 determines whether the failure diagnosis unit is normal or abnormal, and outputs a failure detection signal based on the result.
  • at least one of the detection circuit units 3A and 3B, the processing circuit units 4A and 4B, and the output circuit units 5A and 5B is set as a fault diagnosis unit.
  • Patent Document 1 is known.
  • Such a conventional sensor device has a problem in improving its reliability. That is, in the above configuration, since the sense signal and the failure detection signal are not associated with each other in time, it cannot be instantaneously accurately determined whether the output sense signal is normal or failure. For this reason, there is a possibility that a control object such as an automobile controlled based on the output of the sensor device is controlled using a sense signal at the time of failure. JP-A-8-327363
  • the present invention is a sensor device with improved reliability.
  • the sensor device of the present invention includes a time point measurement unit that measures time point information and adds time point information to an output related to generation of a failure detection signal and an output related to generation of a sense signal output from the failure diagnosis unit.
  • the failure detection signal and the sense signal can be associated with each other by time information.
  • an output circuit unit that outputs the failure detection signal and the failure detection signal in association with the sense signal at the same time point by a time division method is provided.
  • This configuration makes it possible to temporally associate the failure detection signal with the sense signal. Therefore, it is possible to accurately determine whether the output sense signal is a normal one or a fault one. As a result, the reliability of control based on the sense signal can be improved.
  • FIG. 1 is a block diagram of a sensor device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a response signal to which time point information is added in the sensor device shown in FIG.
  • FIG. 3 is a diagram showing a failure detection signal to which time point information is added in the sensor device shown in FIG.
  • FIG. 4 is a block diagram of another sensor device according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram of a sensor device according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing a change in the output signal of the sensor device shown in FIG.
  • FIG. 7 is a block diagram of another sensor device according to Embodiment 2 of the present invention.
  • FIG. 8 is a diagram showing a change in the output signal of the sensor device shown in FIG.
  • FIG. 9 is a block diagram of a conventional sensor device.
  • FIG. 1 is a block diagram of a sensor device according to Embodiment 1 of the present invention.
  • the sensor device in the present embodiment includes a first control circuit 50A, a second control circuit 50B, a detection element unit 12, a failure diagnosis circuit 16, and a time point measurement unit 17.
  • the first control circuit 50A includes a first drive circuit unit (hereinafter referred to as drive circuit unit) 11A, a first detection circuit unit (hereinafter referred to as detection circuit unit) 13A, and a first processing circuit unit (hereinafter referred to as processing circuit unit) 14A. And a first output circuit unit (hereinafter referred to as output circuit unit) 15A.
  • the second control circuit 50B includes a second drive circuit unit (hereinafter referred to as drive circuit unit) 11B, a second detection circuit unit (hereinafter referred to as detection circuit unit) 13B, and a second processing circuit unit (hereinafter referred to as processing circuit unit). 14B and a second output circuit section (hereinafter, output circuit section) 15B.
  • drive circuit unit hereinafter referred to as drive circuit unit
  • detection circuit unit hereinafter referred to as detection circuit unit
  • processing circuit unit hereinafter referred to as processing circuit unit
  • the drive circuit units 11A and 11B output drive signals.
  • a drive signal from the drive circuit unit 11A is input to the angular velocity detection element 12A which is the first detection element of the detection element unit 12.
  • a drive signal from the drive circuit unit 11B is input to the acceleration detection element 12B, which is the second detection element of the detection element unit 12.
  • the detection circuit units 13A and 13B take out a response signal from the detection element unit 12.
  • the processing circuit units 14A and 14B extract the first and second sense signals from the response signals from the detection circuit units 13A and 13B. Further, the first and second monitor signals may be taken out simultaneously.
  • the output circuit units 15A and 15B output sense signals from the processing circuit units 14A and 14B.
  • the failure diagnosis circuit 16 determines whether the failure diagnosis unit is normal or abnormal and outputs a failure detection signal based on the result.
  • at least one of the detection circuit units 13A and 13B, the processing circuit units 14A and 14B, and the output circuit units 15A and 15B is set as a fault diagnosis unit.
  • the drive circuit unit 11A can adjust the vibration amplitude of the first drive signal based on the first monitor signal from the processing circuit unit 14A.
  • the drive circuit unit 11B can adjust the vibration amplitude of the second drive signal based on the second monitor signal from the processing circuit unit 14B.
  • the time point measurement unit 17 measures time point information and adds the time point information to the output from the failure diagnosis unit, thereby associating the failure detection signal and the sense signal with the time point information.
  • FIGS. 2 is a diagram showing a response signal to which time point information is added in the sensor device shown in FIG. 1, and
  • FIG. 3 is a diagram showing a failure detection signal to which time point information is added.
  • the time measurement unit 17 is electrically connected to the detection circuit units 13A and 13B. Thereby, the time measuring unit 17 transmits the measured time point information to the detection circuit units 13A and 13B. As shown in FIG. 2, when the response signals (r011 to r998) are output from the detection circuit units 13A and 13B, time point information (t01 to t99) is added. Then, response signals (r011 to r998) to which the time information (t01 to t99) is added are output as sense signals from the output circuit units 15A and 15B via the processing circuit units 14A and 14B. Also in this case, time point information (t01 to t99) is added to the sense signal.
  • the failure diagnosis circuit 16 determines whether the detection circuit portions 13A and 13B, which are failure diagnosis portions, are normal or abnormal.
  • the failure diagnosis circuit 16 outputs a failure detection signal based on the result.
  • the detection circuit units 13A and 13B output information relating to failure detection to the failure diagnosis circuit 16, the same time point information (t01 to t99) as the response signals (r011 to r998) described above is added. Therefore, when the failure diagnosis circuit 16 generates and outputs a failure detection signal (f011 to f998) from information related to failure detection, as shown in FIG. 3, the time point information (t01) is added to the failure detection signal (f011 to f998). To t99) are added.
  • the failure detection signals (f011 to f998) and the sense signals can be temporally associated with each other using the time point information (t01 to t99). That is, the time point measurement unit 17 adds time point information to the output related to the generation of the failure detection signal and the output related to the generation of the sense signal output from the failure diagnosis unit. Thereby, the failure detection signal and the sense signal are associated with each other by the time point information. Therefore, it is possible to accurately determine whether the output sense signal is a normal one or a fault one. As a result, it is possible to reduce the possibility that a controlled object such as an automobile controlled based on the output of the sensor device is controlled using the sense signal at the time of failure. Thus, reliability is improved.
  • two angular velocity detecting elements 12A and acceleration detecting elements 12B are used as the detecting element unit 12.
  • the description has been given using the configuration including the drive circuit units 11A and 11B, the detection circuit units 13A and 13B, and the processing circuit units 14A and 14B.
  • one detection element may be provided, and as a circuit configuration corresponding to this, only one drive circuit unit, one detection circuit unit, and one processing circuit unit may be provided.
  • the example in which the fault diagnosis unit is the detection circuit units 13A and 13B and the same part in each of the angular velocity detection system and the acceleration detection system is the fault diagnosis unit.
  • the two fault diagnosis units are the same in each of the angular velocity detection system and the acceleration detection system so that the first fault diagnosis unit is the output circuit unit 15A and the second fault diagnosis unit is the processing circuit unit 14B. It does not matter if the configuration does not. In that case, the first time point information common to both the sense signal from the output circuit unit 15A and the information related to the failure detection output from the output circuit unit 15A to the failure diagnosis circuit 16 is set as the sense signal and It is necessary to add to the information regarding the failure detection.
  • the second time point information common to both the sense signal from the processing circuit unit 14B and the information related to the failure detection output from the processing circuit unit 14B to the failure diagnosis circuit 16 is the information related to the sense signal and the failure detection. It is necessary to add to.
  • the fault diagnosis circuit 16 may have a plurality of fault diagnosis units. Specifically, for example, the failure diagnosis circuit 16 is electrically connected to all of the detection circuit units 13A and 13B, the processing circuit units 14A and 14B, and the output circuit units 15A and 15B, and each failure detection signal is output. Is possible. With such a configuration, a failure that could not be detected by one failure diagnosis unit can be detected by performing failure diagnosis using a plurality of failure diagnosis units, and the accuracy of failure detection can be improved.
  • the angular velocity detection element 12A, the acceleration detection element 12B, and the like have been described.
  • other various sensor devices such as a pressure sensor and a temperature sensor can be implemented.
  • the output circuit unit 15A outputs a failure detection signal indicating that the failure diagnosis unit is abnormal
  • the output circuit unit 15B does not output. That is, when receiving a sense signal having time information at the same time as the time information included in the failure detection signal, the output circuit units 15A and 15B prohibit the output circuit units 15A and 15B from outputting the sense signal. .
  • a control unit (not shown) may be provided to prohibit the output circuit units 15A and 15B from outputting the sense signal.
  • the output circuit units 15A and 15B themselves or the above-described control unit may cause the output circuit units 15A and 15B to output signals having a level that cannot be detected on the control target side such as an automobile.
  • the output circuit units 15A and 15B need not substantially output a sense signal, and the method is not limited.
  • This control eliminates the need to determine whether or not the sense signal associated therewith can be used based on the failure detection signal from the sensor device on the control target side such as an automobile. That is, it is possible to prevent the controlled object from being controlled using the sense signal associated with the failure detection signal.
  • the fault diagnosis circuit 16 is electrically connected, or an output circuit unit control circuit (not shown) is provided in the fault diagnosis circuit 16 or in the output circuit units 15A and 15B. Then, the output circuit unit control circuit determines whether or not the failure diagnosis circuit 16 has output a failure detection signal indicating an abnormality of the failure diagnosis unit. When the output circuit unit control circuit determines the output of the failure detection signal, the output circuit unit control circuit does not cause the output circuit units 15A and 15B to output the sense signal having the same time point information as the time point information included in the failure detection signal. . In this way, it is possible to prevent a sense signal having time information at the same time as the failure detection signal from being output.
  • FIG. 4 is a block diagram of another sensor device according to the present embodiment.
  • the output circuit unit 18 that outputs the first and second sense signals from the processing circuit units 14A and 14B and the failure detection signal from the failure diagnosis circuit 16 is shared.
  • the output circuit unit 18 digitally outputs the sense signal and the failure detection signal in a time division manner. With such a configuration, the number of terminals 30 can be reduced, and the sensor device can be downsized.
  • the output circuit unit 18 connects the first and second sense signals and the failure detection signal associated with each other based on the time point information in a time division manner and outputs the result. Therefore, it is desirable on the control target side because the process of connecting the sense signal associated with the time point information and the failure detection signal can be omitted.
  • the failure diagnosis circuit 16 when the failure diagnosis circuit 16 outputs a failure detection signal indicating that the failure diagnosis unit is abnormal, a sense signal having time information at the same time as the time information included in the failure detection signal. Is preferably not output by the output circuit unit 18.
  • This control eliminates the need to determine whether or not the sense signal associated therewith can be used based on the failure detection signal from the sensor device on the control target side. That is, it is possible to prevent the controlled object from being controlled using the sense signal associated with the failure detection signal.
  • the fault diagnosis circuit 16 is electrically connected, or an output circuit unit control circuit (not shown) is provided in the fault diagnosis circuit 16 or the output circuit unit 18. Then, the output circuit unit control circuit determines whether or not the failure diagnosis circuit 16 has output a failure detection signal indicating an abnormality of the failure diagnosis unit. When the output circuit unit control circuit determines the output of the failure detection signal, the output circuit unit control circuit does not cause the output circuit unit 18 to output the sense signal having the time information at the same time as the time information included in the failure detection signal. In this way, it is possible to prevent a sense signal having time information at the same time as the failure detection signal from being output.
  • the fault diagnosis unit may use one part of each of the angular velocity detection system and the acceleration detection system as the fault diagnosis unit. Moreover, it is good also as a structure which has a some failure diagnosis part. With a configuration having multiple fault diagnosis units, faults that could not be detected by one fault diagnosis unit can be detected by fault diagnosis using multiple fault diagnosis units, improving the accuracy of fault detection Can be made.
  • the fault diagnosis unit since it is necessary to add time point information, the fault diagnosis unit needs to be a digital circuit. Therefore, the drive circuit units 11A and 11B are not included in the fault diagnosis unit.
  • the failure diagnosis circuit 16 is located before the output circuit unit 18, so that if the output circuit unit 18 is out of order, is the output of the sense signal in an abnormal state being an abnormal state, It cannot be distinguished whether it is normal. Therefore, in the configuration of FIG. 4, the output circuit unit 18 is not included in the fault diagnosis unit.
  • FIG. 5 is a block diagram of a sensor device according to Embodiment 2 of the present invention.
  • the sensor device in this embodiment is different from the configuration shown in FIG. 4 in that it has a first control circuit 51A and a second control circuit 51B in place of the first control circuit 50A and the second control circuit 50B, and a time point measurement unit. 17 is missing. Further, an output circuit unit 19 is provided instead of the output circuit unit 18. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the first control circuit 51A includes a first drive circuit unit (hereinafter referred to as drive circuit unit) 11A, a first detection circuit unit (hereinafter referred to as detection circuit unit) 113A, and a first processing circuit unit (hereinafter referred to as processing circuit unit) 114A.
  • the second control circuit 51B includes a second drive circuit unit (hereinafter referred to as drive circuit unit) 11B, a second detection circuit unit (hereinafter referred to as detection circuit unit) 113B, and a second processing circuit unit (hereinafter referred to as processing circuit unit) 114B.
  • the detection circuit unit 113A takes out the first response signal from the angular velocity detection element 12A.
  • the detection circuit unit 113B takes out the second response signal from the acceleration detection element 12B.
  • the first response signal from the detection circuit unit 113A is input to the processing circuit unit 114A.
  • the processing circuit unit 114A extracts the first sense signal from the first response signal. At the same time, the first monitor signal may be taken out.
  • the second response signal from the detection circuit unit 113B is input to the processing circuit unit 114B.
  • the processing circuit unit 114B extracts the second sense signal from the second response signal. At the same time, the second monitor signal may be taken out.
  • the drive circuit unit 11A can adjust the vibration amplitude of the first drive signal based on the first monitor signal from the processing circuit unit 114A.
  • the drive circuit unit 11B can adjust the vibration amplitude of the second drive signal based on the second monitor signal from the processing circuit unit 114B.
  • the fault diagnosis circuit 16 is electrically connected to at least one of the drive circuit unit 11A, the detection circuit unit 113A, and the processing circuit unit 114A.
  • the failure diagnosis circuit 16 is also electrically connected to at least one of the drive circuit unit 11B, the detection circuit unit 113B, and the processing circuit unit 114B. That is, at least one of the drive circuit unit 11A, the detection circuit unit 113A, and the processing circuit unit 114A is a first fault diagnosis unit.
  • At least one of the drive circuit unit 11B, the detection circuit unit 113B, and the processing circuit unit 114B is a second fault diagnosis unit.
  • the output circuit unit 19 digitally outputs the failure detection signal from the failure diagnosis circuit 16 and the first and second sense signals from the processing circuit units 114A and 114B in a time division manner.
  • FIG. 6 is a diagram showing a state of digital output from the output circuit unit 19.
  • the first and second sense signals output from the processing circuit units 114A and 114B change with time.
  • the failure detection signal output from the failure diagnosis circuit 16 also changes with time.
  • the output circuit unit 19 detects the information of the first and second sense signals at each timing and the failure detection signal corresponding to them. And digitally output in time division.
  • the output circuit unit 19 digitally outputs the failure detection signal and the first and second sense signals at the same time as the failure detection signal in a time division manner. This makes it possible to determine whether the first and second sense signals are normal results or abnormal results.
  • the determination based on the failure detection signal is “normal” at time t s1 , but “abnormal” at time t s2 .
  • Outputs by the first and second sense signals associated with the failure detection signal information determined to be abnormal are treated as “results upon abnormality”. Therefore, for example, if the sensor device shown in the present embodiment is used for controlling an automobile, the determination that the first and second sense signals at time t s2 determined as “result of abnormality” are not used for the control is performed. This is performed by a control unit (not shown) of the automobile. By this determination, it is possible to suppress the occurrence of malfunction of the vehicle itself due to the control of the vehicle based on the first and second sense signals at time ts2 .
  • the sensor device can be reduced in size.
  • a single detection element may be provided, and as the corresponding circuit configuration, only one drive circuit unit, one detection circuit unit, and one processing circuit unit may be provided.
  • the output circuit unit 19 digitally outputs the failure detection signal from the failure diagnosis circuit 16 and the sense signal from the processing circuit unit 114A at the same time as the failure detection signal in a time division manner. This makes it possible to determine whether the sense signal is a normal result or an abnormal result.
  • the failure diagnosis circuit 16 may be composed of a plurality of failure diagnosis circuits.
  • Each of the plurality of failure diagnosis circuits may be electrically connected to at least one of the drive circuit units 11A and 11B, the detection circuit units 113A and 113B, and the processing circuit units 114A and 114B.
  • the output circuit unit digitally outputs the plurality of failure detection signals from the plurality of failure diagnosis circuits and the sense signals from the processing circuit units 114A and 114B in a time division manner.
  • FIG. 7 is a block diagram of another sensor device according to Embodiment 2 of the present invention.
  • a first failure diagnosis circuit 16A and a second failure diagnosis circuit 16B are provided instead of the failure diagnosis circuit 16. They are electrically connected to the output circuit unit 20.
  • the failure diagnosis circuit 16A is electrically connected to the detection circuit portions 113A and 113B, and the failure diagnosis circuit 16B is electrically connected to the drive circuit portions 11A and 11B.
  • the output signal from the output circuit unit 20 is as shown in FIG. That is, the first and second sense signals output from the processing circuit units 114A and 114B change with time. Similarly, the first failure detection signal output from the failure diagnosis circuit 16A electrically connected to the detection circuit units 113A and 113B also changes with time. The second failure detection signal output from the failure diagnosis circuit 16B electrically connected to the drive circuit units 11A and 11B also changes with time. The first and second sense signals and the first and second failure detection signals are input to the output circuit unit 20. The output circuit unit 20 digitally outputs the information of the first and second sense signals and the information of the first and second failure detection signals corresponding to the information at each timing in a time division manner.
  • the determination based on the failure detection signal is “normal” at time t s1 , but the first failure detection signal is normal but the second failure detection signal is abnormal at time t s2. Yes. Therefore, it is judged as “abnormal” as a whole, and the outputs of the first and second sense signals associated with the second failure detection signal information judged as abnormal are “results at the time of abnormality”. Be treated.
  • the determination that the first and second sense signals at time t s2 determined as “result of abnormality” are not used for the control is performed. This is performed by a control unit (not shown) of the automobile. By this determination, it is possible to suppress the occurrence of malfunction of the vehicle itself due to the control of the vehicle based on the first and second sense signals at time ts2 .
  • the sensor device can be reduced in size.
  • the number of output terminals 30 does not increase in proportion to the number of failure diagnosis circuits.
  • the sensor device can be reduced in size.
  • the use of a plurality of failure diagnosis circuits 16A and 16B increases the number of failure diagnosis units and further improves the reliability.
  • a plurality of fault diagnosis circuits may be provided for a configuration in which only one drive circuit unit, one detection circuit unit, and one processing circuit unit are provided as a circuit configuration corresponding to one detection element.
  • the second control circuit 51B and the acceleration detection element 12B may be eliminated, and the failure diagnosis circuit 16A may be connected to the detection circuit unit 113A and the failure diagnosis circuit 16B may be connected to the drive circuit unit 11A.
  • the detection circuit unit 113A is a first fault diagnosis unit
  • the drive circuit unit 11A is a second fault diagnosis unit.
  • Failure diagnosis circuit 16A determines whether detection circuit unit 113A is normal or abnormal, and outputs a first failure detection signal based on the determination result.
  • the failure diagnosis circuit 16B determines whether the drive circuit unit 11A is normal or abnormal, and outputs a second failure detection signal based on the determination result.
  • the output circuit unit 20 digitally converts the first failure detection signal from the failure diagnosis circuit 16A, the second failure detection signal from the failure diagnosis circuit 16B, and the first sense signal from the processing circuit unit 114A in a time division manner. Output. In this way, the reliability of failure diagnosis is further improved by providing failure diagnosis circuits corresponding respectively to two or more of the circuit units constituting the first control circuit 51A.
  • the sense signal may not be a digital signal.
  • the fault diagnosis unit may be the drive circuit units 11A and 11B in addition to the detection circuit units 113A and 113B and the processing circuit units 114A and 114B. These circuit units may be analog circuits.
  • the output circuit unit 19 (20) that outputs a signal to the outside in a time division manner may be a digital circuit.
  • the sensor device of the present invention has an effect that the reliability can be improved, and is useful in various electronic devices such as a digital camera and a car navigation system and an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

 センサ装置は、時点情報を測定し、被故障診断部から出力される故障検知信号の生成に関する出力及びセンス信号の生成に関する出力に時点情報を付加する時点測定部を有する。これにより故障検知信号とセンス信号とを時間情報により対応付けることができる。あるいは、故障検知信号と、その故障検知信号と同一時点のセンス信号とを対応付けて時分割方式にて出力する出力回路部を有する。

Description

センサ装置
 本発明は、自動車や各種電子機器等に用いられるセンサ装置に関する。
 図9は従来のセンサ装置の例である慣性センサのブロック図である。このセンサ装置は、駆動回路部1A、1Bと、検知素子2と、検出回路部3A、3Bと、処理回路部4A、4Bと、出力回路部5A、5Bと、故障診断回路6とを有する。駆動回路部1A、1Bは駆動信号を出力する。検知素子2には駆動回路部1A、1Bからの駆動信号が入力される。検知素子2は角速度検出部と加速度検出部を含む。検出回路部3A、3Bは検知素子2から応答信号を取り出す。処理回路部4A、4Bは検出回路部3A、3Bからの応答信号からセンス信号を取り出す。出力回路部5A、5Bは処理回路部4A、4Bからのセンス信号を出力する。故障診断回路6は被故障診断部が正常か異常かを判断し、その結果に基づいた故障検知信号を出力する。ここで、検出回路部3A、3B、処理回路部4A、4B、出力回路部5A、5Bの内少なくともいずれか1つが被故障診断部とされる。なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
 このような従来のセンサ装置では、その信頼性の向上に課題がある。すなわち、上記の構成では、センス信号と故障検知信号とが時間的に対応付けされていないため出力されたセンス信号が正常時のものか故障時のものか瞬時に正確に判断することができない。そのため、このセンサ装置の出力に基づいて制御される自動車等の制御対象が、故障時のセンス信号を用いて制御されてしまう可能性がある。
特開平8-327363号公報
 本発明は、信頼性を向上させたセンサ装置である。本発明のセンサ装置は、時点情報を測定し、被故障診断部から出力される故障検知信号の生成に関する出力及びセンス信号の生成に関する出力に時点情報を付加する時点測定部を有する。これにより故障検知信号とセンス信号とを時間情報により対応付けることができる。あるいは、故障検知信号と、その故障検知信号と同一時点のセンス信号とを対応付けて時分割方式にて出力する出力回路部を有する。
 このいずれかの構成により、故障検知信号とセンス信号とを時間的に対応付けることが可能となる。そのため、出力されたセンス信号が正常時のものか故障時のものかを正確に判断することができる。その結果、センス信号に基づく制御の信頼性を向上させることができる。
図1は本発明の実施の形態1におけるセンサ装置のブロック図である。 図2は図1に示すセンサ装置において時点情報が付加された応答信号を示す図である。 図3は図1に示すセンサ装置において時点情報が付加された故障検知信号を示す図である。 図4は本発明の実施の形態1における他のセンサ装置のブロック図である。 図5は本発明の実施の形態2におけるセンサ装置のブロック図である。 図6は図5に示すセンサ装置の出力信号の変化を示す図である。 図7は本発明の実施の形態2における他のセンサ装置のブロック図である。 図8は図7に示すセンサ装置の出力信号の変化を示す図である。 図9は従来のセンサ装置のブロック図である。
符号の説明
11A  第1駆動回路部(駆動回路部)
11B  第2駆動回路部(駆動回路部)
12  検知素子部
12A  角速度検知素子(第1検知素子)
12B  加速度検知素子(第2検知素子)
13A,113A  第1検出回路部(検出回路部)
13B,113B  第2検出回路部(検出回路部)
14A,114A  第1処理回路部(処理回路部)
14B,114B  第2処理回路部(処理回路部)
15A  第1出力回路部(出力回路部)
15B  第2出力回路部(出力回路部)
16  故障診断回路
16A  第1故障診断回路(故障診断回路)
16B  第2故障診断回路(故障診断回路)
17  時点測定部
18,19,20  出力回路部
30  端子
50A,51A  第1制御回路
50B,51B  第2制御回路
 (実施の形態1)
 図1は本発明の実施の形態1におけるセンサ装置のブロック図である。本実施の形態におけるセンサ装置は、第1制御回路50Aと、第2制御回路50Bと、検知素子部12と、故障診断回路16と、時点測定部17とを有する。第1制御回路50Aは第1駆動回路部(以下、駆動回路部)11Aと、第1検出回路部(以下、検出回路部)13Aと、第1処理回路部(以下、処理回路部)14Aと、第1出力回路部(以下、出力回路部)15Aとを含む。同様に第2制御回路50Bは第2駆動回路部(以下、駆動回路部)11Bと、第2検出回路部(以下、検出回路部)13Bと、第2処理回路部(以下、処理回路部)14Bと、第2出力回路部(以下、出力回路部)15Bとを含む。
 駆動回路部11A、11Bは駆動信号を出力する。検知素子部12の第1検知素子である角速度検知素子12Aには駆動回路部11Aからの駆動信号が入力される。また検知素子部12の第2検知素子である加速度検知素子12Bには駆動回路部11Bからの駆動信号が入力される。検出回路部13A、13Bは検知素子部12から応答信号を取り出す。処理回路部14A、14Bは検出回路部13A、13Bからの応答信号から第1、第2のセンス信号を取り出す。また第1、第2のモニタ信号を同時に取り出してもよい。出力回路部15A、15Bは処理回路部14A、14Bからのセンス信号を出力する。故障診断回路16は被故障診断部が正常か異常かを判断し、その結果に基づいた故障検知信号を出力する。ここで、検出回路部13A、13B、処理回路部14A、14B、出力回路部15A、15Bの内少なくともいずれか1つが被故障診断部とされる。
 処理回路部14A、14Bがモニタ信号を取り出している場合、駆動回路部11Aは、処理回路部14Aからの第1のモニタ信号に基づき第1の駆動信号の振動振幅を調整することができる。同様に、駆動回路部11Bは、処理回路部14Bからの第2のモニタ信号に基づき第2の駆動信号の振動振幅を調整することができる。
 そして、時点測定部17は時点情報を測定し、被故障診断部からの出力にこの時点情報を付加することで、故障検知信号とセンス信号とを時点情報により対応付けている。
 一例として、検出回路部13A、13Bが被故障診断部である場合を、図1~図3を参照しながら説明する。図2は図1に示すセンサ装置において時点情報が付加された応答信号を示す図、図3は時点情報が付加された故障検知信号を示す図である。
 まず、時点測定部17を検出回路部13A、13Bに電気的に接続する。これにより時点測定部17は測定した時点情報を検出回路部13A、13Bに伝達する。そして、図2に示すように、検出回路部13A、13Bから、応答信号(r011~r998)を出力するに際し、時点情報(t01~t99)が付加される。そして、この時点情報(t01~t99)が付加された応答信号(r011~r998)が、処理回路部14A、14Bを経由し、出力回路部15A、15Bよりセンス信号として出力される。この際にも、センス信号に時点情報(t01~t99)が付加された状態となっている。
 一方、故障診断回路16は被故障診断部である検出回路部13A、13Bが正常か異常かを判断している。故障診断回路16はその結果に基づいた故障検知信号を出力する。そして検出回路部13A、13Bが故障診断回路16へ向けて故障検知に関する情報を出力する際にも、上述した応答信号(r011~r998)と同一の時点情報(t01~t99)が付加される。そのため、故障診断回路16が故障検知に関する情報から故障検知信号(f011~f998)を生成し、出力する際にも、図3に示すように、故障検知信号(f011~f998)に時点情報(t01~t99)が付加される。
 このような構成により、故障検知信号(f011~f998)とセンス信号とを、時点情報(t01~t99)を用いて時間的に対応付けることが可能となる。すなわち、時点測定部17は、被故障診断部から出力される故障検知信号の生成に関する出力及びセンス信号の生成に関する出力に時点情報を付加する。これにより故障検知信号とセンス信号とが時点情報により対応付けられる。そのため、出力されたセンス信号が正常時のものか故障時のものかを正確に判断することができる。その結果、センサ装置の出力に基づき制御される自動車等の制御対象が、故障時のセンス信号を用いて制御されてしまう可能性を低減することができる。このように、信頼性が向上する。
 なお、本実施の形態においては、検知素子部12として角速度検知素子12Aと加速度検知素子12Bとの2つが用いられている。そして、これらに対応する回路構成として、駆動回路部11A、11B、検出回路部13A、13B、処理回路部14A、14Bを有する構成を用いて説明した。しかしながら検知素子を1つとし、これに対応する回路構成として、駆動回路部、検出回路部、処理回路部をそれぞれ1つずつのみ設ける構成としても構わない。
 なお、本実施の形態では被故障診断部を検出回路部13A、13Bとし、角速度検知系、加速度検知系それぞれにおける同一部分を被故障診断部とする例を説明したが、この構成に限定されない。第1の被故障診断部を出力回路部15Aとし、第2の被故障診断部を処理回路部14Bとするように、2つの被故障診断部を角速度検知系、加速度検知系のそれぞれにおいて同一部分としない構成としても構わない。その際には、出力回路部15Aからのセンス信号と、出力回路部15Aが故障診断回路16へ向けて出力する故障検知に関する情報との双方に共通する第1の時点情報を、前記センス信号及び前記故障検知に関する情報に付加する必要がある。一方、処理回路部14Bからのセンス信号と、処理回路部14Bが故障診断回路16へ向けて出力する故障検知に関する情報との双方に共通する第2の時点情報を、センス信号及び故障検知に関する情報に付加する必要がある。
 また、本実施の形態においては、角速度検知系、加速度検知系それぞれにおける、ある1つの部分を被故障診断部としたが、故障診断回路16が複数の被故障診断部を有する構成としても構わない。具体的には、例えば検出回路部13A、13B、処理回路部14A、14B、出力回路部15A、15Bの全てに故障診断回路16を電気的に接続し、それぞれの故障検知信号を出力する構成とすることが可能である。このような構成により、1つの被故障診断部では検知できなかった故障を複数の被故障診断部で故障診断することにより検知することができ、故障検知の精度を向上させることができる。
 なお、本実施の形態においては、角速度検知素子12A、加速度検知素子12Bなどを用いて説明したが、圧力センサや温度センサなど、その他の各種センサ装置についても実施することが可能である。
 なお、被故障診断部は異常である旨の故障検知信号を故障診断回路16が出力した場合には、故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を出力回路部15A、15Bが出力しない構成とすることが望ましい。すなわち故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を受けた場合、出力回路部15A、15Bは、出力回路部15A、15B自身に対しそのセンス信号を出力することを禁止する。あるいは、図示しない制御部を設けて出力回路部15A、15Bに対しそのセンス信号を出力することを禁止するようにしてもよい。また、出力回路部15A、15B自身、あるいは上述の制御部により、自動車等の制御対象側で検出できないレベルの信号を出力回路部15A、15Bに出力させてもよい。出力回路部15A、15Bが実質的にセンス信号を出力しなければよく、その手法は限定されない。
 この制御により自動車等の制御対象側でセンサ装置からの故障検知信号に基づき、それに対応付けられたセンス信号の使用可否を判断する必要がなくなる。すなわち、故障検知信号に対応付けられたセンス信号を用いて制御対象が制御されることを防ぐことができる。
 具体的な構成としては、故障診断回路16に電気的に接続されるか、あるいは故障診断回路16内又は出力回路部15A、15B内に出力回路部制御回路(図示せず)を設ける。そして、被故障診断部の異常を示す故障検知信号を故障診断回路16が出力したか否かを出力回路部制御回路が判断する。出力回路部制御回路が故障検知信号の出力を判断した場合、出力回路部制御回路は、故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を出力回路部15A、15Bから出力させない。このようにして故障検知信号と同一時点の時点情報を有するセンス信号が出力されるのを防ぐことができる。
 次に本実施の形態によるセンサ装置の他の例を、図4を参照して説明する。図4は本実施の形態における他のセンサ装置のブロック図である。この構成では、処理回路部14A、14Bからの第1、第2のセンス信号と故障診断回路16からの故障検知信号とを出力する出力回路部18が共通化されている。出力回路部18は、センス信号と故障検知信号とを時分割方式にてデジタル出力する。このような構成により端子30の数を削減し、センサ装置を小型化することができる。
 また、出力回路部18は、時点情報に基づいて対応付けられた第1、第2のセンス信号と故障検知信号とを、時分割方式にて連結させて出力する。そのため、制御対象側において、時点情報に基づいて対応付けられたセンス信号と故障検知信号とを連結させる処理を省略することができるため望ましい。
 なお、図4に示す構成においても、被故障診断部は異常である旨の故障検知信号を故障診断回路16が出力した場合、故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を出力回路部18が出力しないことが望ましい。この制御により制御対象側でセンサ装置からの故障検知信号に基づき、それに対応付けられたセンス信号の使用可否を判断する必要がなくなる。すなわち、故障検知信号に対応付けられたセンス信号を用いて制御対象が制御されることを防ぐことができる。
 具体的な構成としては、故障診断回路16に電気的に接続されるか、あるいは故障診断回路16内又は出力回路部18内に出力回路部制御回路(図示せず)を設ける。そして、被故障診断部の異常を示す故障検知信号を故障診断回路16が出力したか否かを出力回路部制御回路が判断する。出力回路部制御回路が故障検知信号の出力を判断した場合、出力回路部制御回路は、故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を出力回路部18から出力させない。このようにして故障検知信号と同一時点の時点情報を有するセンス信号が出力されるのを防ぐことができる。
 なお、図4に示す構成でも、被故障診断部は、角速度検知系、加速度検知系それぞれにおけるある1つの部分を被故障診断部としてもよい。また、複数の被故障診断部を有する構成としても構わない。複数の被故障診断部を有する構成とすれば、1つの被故障診断部では検知できなかった故障を複数の被故障診断部で故障診断することにより検知することができ、故障検知の精度を向上させることができる。
 なお、本実施の形態では時点情報を付加する必要があるため、被故障診断部はデジタル回路である必要がある。そのため駆動回路部11A、11Bは被故障診断部に含まれない。また図4の構成では故障診断回路16が出力回路部18よりも前段にあることから、出力回路部18が故障している場合には異常状態にあるセンス信号の出力が異常時のものか、正常時のものか区別できない。したがって図4の構成においては、被故障診断部には出力回路部18は含まれない。
 (実施の形態2)
 図5は本発明の実施の形態2におけるセンサ装置のブロック図である。本実施の形態におけるセンサ装置が図4に示す構成と異なる点は、第1制御回路50A、第2制御回路50Bに代わって第1制御回路51A、第2制御回路51Bを有し、時点測定部17がないことである。また出力回路部18に代わって出力回路部19を有する。それ以外の構成は実施の形態1と同様であるので説明を省略する。
 第1制御回路51Aは第1駆動回路部(以下、駆動回路部)11Aと、第1検出回路部(以下、検出回路部)113Aと、第1処理回路部(以下、処理回路部)114Aとを有する。第2制御回路51Bは第2駆動回路部(以下、駆動回路部)11Bと、第2検出回路部(以下、検出回路部)113Bと、第2処理回路部(以下、処理回路部)114Bとを有する。
 検出回路部113Aは角速度検知素子12Aから第1の応答信号を取り出す。検出回路部113Bは加速度検知素子12Bからの第2の応答信号を取り出す。処理回路部114Aには検出回路部113Aからの第1の応答信号が入力される。処理回路部114Aは第1の応答信号から第1のセンス信号を取り出す。また同時に第1のモニタ信号を取り出してもよい。処理回路部114Bには検出回路部113Bからの第2の応答信号が入力される。処理回路部114Bは第2の応答信号から第2のセンス信号を取り出す。また同時に第2のモニタ信号を取り出してもよい。
 処理回路部114A、114Bがモニタ信号を取り出している場合、駆動回路部11Aは、処理回路部114Aからの第1のモニタ信号に基づき第1の駆動信号の振動振幅を調整することができる。同様に、駆動回路部11Bは、処理回路部114Bからの第2のモニタ信号に基づき第2の駆動信号の振動振幅を調整することができる。
 故障診断回路16は駆動回路部11A、検出回路部113A、処理回路部114Aの内少なくとも1つに電気的に接続されている。また故障診断回路16は駆動回路部11B、検出回路部113B、処理回路部114Bの内少なくとも1つにも電気的に接続されている。すなわち、駆動回路部11A、検出回路部113A、処理回路部114Aの内少なくとも1つは第1被故障診断部である。駆動回路部11B、検出回路部113B、処理回路部114Bの内少なくとも1つは第2被故障診断部である。出力回路部19は、故障診断回路16からの故障検知信号と処理回路部114A、114Bからの第1、第2のセンス信号とを時分割方式にてデジタル出力する。
 図6は出力回路部19からのデジタル出力の様子を示す図である。処理回路部114A、114Bから出力される第1、第2のセンス信号は時間に伴って変化している。同様に故障診断回路16から出力される故障検知信号も時間に伴って変化している。第1、第2のセンス信号と故障検知信号が出力回路部19に入力されると、出力回路部19は各タイミングにおいて第1、第2のセンス信号の情報と、これらに対応する故障検知信号とを時分割でデジタル出力する。
 このように出力回路部19は、故障検知信号と、故障検知信号と同一時点の第1、第2のセンス信号とを時分割方式にてデジタル出力する。これにより第1、第2のセンス信号が、正常時の結果であるのか異常時の結果であるのかを判断することができる。
 図6に示す例では、ts1時点では故障検知信号による判断が「正常」であるが、ts2時点では「異常」となっている。この異常と判断された故障検知信号情報と対応付けられた第1、第2のセンス信号による出力は「異常時の結果」として扱われる。したがって、例えば自動車の制御に本実施の形態に示すセンサ装置を用いれば、「異常時の結果」と判断されたts2時点における第1、第2のセンス信号を制御に使用しない等の判断を自動車の制御部(図示せず)が行う。この判断により、ts2時点における第1、第2のセンス信号に基づいて自動車を制御することに起因する自動車自身の誤作動の発生を抑制することができる。
 このような構成により、故障診断回路16に出力端子を設けることなく、センス信号に1対1に対応した故障検知信号を出力回路部19の出力端子30から出力することができる。その結果、センサ装置を小型化することができる。
 なお、本実施の形態においても、検知素子を1つとし、これに対応する回路構成として、駆動回路部、検出回路部、処理回路部をそれぞれ1つずつのみ設ける構成としても構わない。
 例えば駆動回路部11A、検出回路部113A、処理回路部114Aのみを設ける。この場合、出力回路部19は、故障診断回路16からの故障検知信号と、この故障検知信号と同一時点の処理回路部114Aからのセンス信号とを時分割方式にてデジタル出力する。これによりセンス信号が正常時の結果であるのか異常時の結果であるのかを判断することができる。
 また、本実施の形態においても、故障診断回路16が複数の故障診断回路からなっていてもよい。そしてこの複数の故障診断回路のそれぞれが駆動回路部11A、11B、検出回路部113A、113B、及び処理回路部114A、114Bの内少なくともいずれか1つに電気的に接続されていてもよい。この場合、出力回路部は、この複数の故障診断回路からの複数の故障検知信号と処理回路部114A、114Bからのセンス信号とを時分割方式にてデジタル出力する。このような構成も可能である。このような構成について、図7を参照して説明する。図7は本発明の実施の形態2における他のセンサ装置のブロック図である。
 この構成例では故障診断回路16に代わって、第1故障診断回路16A、第2故障診断回路16B(以下、いずれも故障診断回路)が設けられている。それらが出力回路部20に電気的に接続されている。故障診断回路16Aは検出回路部113A、113Bに電気的に接続され、故障診断回路16Bは駆動回路部11A、11Bに電気的に接続されている。
 このような構成では、出力回路部20からの出力信号は図8のようになる。すなわち、処理回路部114A、114Bから出力される第1、第2のセンス信号は時間に伴って変化している。同様に、検出回路部113A、113Bに電気的に接続された故障診断回路16Aから出力される第1の故障検知信号も時間に伴って変化している。駆動回路部11A、11Bに電気的に接続された故障診断回路16Bから出力される第2の故障検知信号も時間に伴って変化している。この第1、第2のセンス信号と第1、第2の故障検知信号が出力回路部20に入力される。出力回路部20は、各タイミングにおいて第1、第2のセンス信号の情報と、これに対応する第1、第2の故障検知信号の情報とを時分割でデジタル出力する。
 図6に示す例では、ts1時点では故障検知信号による判断が「正常」であるが、ts2時点では第1の故障検知信号は正常であるものの第2の故障検知信号が異常となっている。そのため、全体として「異常」の判断となっており、この異常と判断された第2の故障検知信号情報と対応付けられた第1、第2のセンス信号による出力は「異常時の結果」として扱われる。
 したがって、例えば自動車の制御に本実施の形態に示すセンサ装置を用いれば、「異常時の結果」と判断されたts2時点における第1、第2のセンス信号を制御に使用しない等の判断を自動車の制御部(図示せず)が行う。この判断により、ts2時点における第1、第2のセンス信号に基づいて自動車を制御することに起因する自動車自身の誤作動の発生を抑制することができる。
 このような構成により、故障診断回路16A、16Bに出力端子を設けることなく、センス信号に1対1に対応した故障検知信号を出力回路部20の出力端子30から出力することができる。その結果、センサ装置を小型化することができる。
 さらに、複数の故障診断回路16A、16Bを用いても、故障診断回路の数に比例して出力端子30の数が増えることがない。その結果、センサ装置を小型化することができる。しかも複数の故障診断回路16A、16Bを用いることによって被故障診断部の数が増え、信頼性がさらに向上する。
 また、検知素子を1つとし、これに対応する回路構成として、駆動回路部、検出回路部、処理回路部をそれぞれ1つずつのみ設ける構成に対し、複数の故障診断回路を設けてもよい。例えば図7に示す構成において、第2制御回路51Bおよび加速度検知素子12Bを無くし、故障診断回路16Aを検出回路部113Aに、故障診断回路16Bを駆動回路部11Aにそれぞれ接続してもよい。
 この場合、検出回路部113Aは第1被故障診断部、駆動回路部11Aは第2被故障診断部である。故障診断回路16Aは検出回路部113Aが正常か異常かを判断し、判定結果に基づいた第1故障検知信号を出力する。一方、故障診断回路16Bは駆動回路部11Aが正常か異常かを判断し、判定結果に基づいた第2故障検知信号を出力する。出力回路部20は、故障診断回路16Aからの第1故障検知信号と、故障診断回路16Bからの第2故障検知信号と、処理回路部114Aからの第1センス信号とを時分割方式にてデジタル出力する。このように第1制御回路51Aを構成する回路部のうちの2つ以上に対し、それぞれ別個に対応する故障診断回路を設けることで故障診断の信頼性がさらに向上する。
 なお本実施の形態では実施の形態1のように時点情報を応答信号等に付加する必要がない。したがって図6、図8に示すように、センス信号はデジタル信号でなくてもよい。すなわち、被故障診断部は検出回路部113A、113B、処理回路部114A、114Bに加え、駆動回路部11A、11Bでもよい。またこれらの回路部がアナログ回路でもよい。外部へ時分割方式で信号を出力する出力回路部19(20)がデジタル回路であればよい。
 本発明のセンサ装置は、信頼性を向上させることができるという効果を有し、デジタルカメラ、カーナビゲーション等の各種電子機器や自動車において有用である。

Claims (8)

  1. 駆動信号を出力する駆動回路部と、
    前記駆動回路部からの前記駆動信号が入力される検知素子と、
    前記検知素子から応答信号を取り出す検出回路部と、
    前記検出回路部からの前記応答信号からセンス信号を取り出す処理回路部と、
    前記処理回路部からの前記センス信号を出力する出力回路部と、
    前記検出回路部、前記処理回路部、前記出力回路部の内少なくともいずれか1つを被故障診断部とし、前記被故障診断部に電気的に接続され、前記被故障診断部が正常か異常かを判断し、判断結果に基づいた故障検知信号を出力する故障診断回路と、
    時点情報を測定し、前記被故障診断部から出力される前記故障検知信号の生成に関する出力及び前記センス信号の生成に関する出力に前記時点情報を付加することで前記故障検知信号と前記センス信号とを前記時点情報により対応付ける時点測定部と、を備えた、
    センサ装置。
  2. 前記出力回路部が、前記故障診断回路から前記被故障診断部が異常である旨の故障検知信号を受信した場合、前記出力回路部は前記故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を前記出力回路部が出力しない、
    請求項1記載のセンサ装置。
  3. 駆動信号を出力する駆動回路部と、
    前記駆動回路部からの前記駆動信号が入力される検知素子と、
    前記検知素子から応答信号を取り出す検出回路部と、
    前記検出回路部からの前記応答信号からセンス信号を取り出す処理回路部と、
    前記検出回路部、前記処理回路部の内少なくともいずれか1つを被故障診断部とし、前記被故障診断部に電気的に接続され、前記被故障診断部が正常か異常かを判断し、判定結果に基づいた故障検知信号を出力する故障診断回路と、
    前記処理回路部からの前記センス信号と前記故障診断回路からの前記故障検知信号とを時分割方式により出力する出力回路部と、
    時点情報を測定し、前記被故障診断部から出力される前記故障検知信号の生成に関する出力及び前記センス信号の生成に関する出力に前記時点情報を付加することで前記故障検知信号と前記センス信号とを前記時点情報により対応付ける時点測定部と、を備えた、
    センサ装置。
  4. 前記出力回路部が、前記故障診断回路から前記被故障診断部が異常である旨の故障検知信号を受信した場合、前記出力回路部は前記故障検知信号が有する時点情報と同一時点の時点情報を有するセンス信号を前記出力回路部が出力しない、
    請求項3記載のセンサ装置。
  5. 第1駆動信号を出力する第1駆動回路部と、
    前記駆動回路部からの前記第1駆動信号が入力される第1検知素子と、
    前記第1検知素子から応答信号を取り出す第1検出回路部と、
    前記検出回路部からの前記応答信号から第1センス信号を取り出す第1処理回路部と、
    前記第1駆動回路部、前記第1検出回路部、及び前記第1処理回路部の内少なくともいずれか1つを第1被故障診断部とし、前記第1被故障診断部に電気的に接続され、前記第1被故障診断部が正常か異常かを判断し、判定結果に基づいた第1故障検知信号を出力する第1故障診断回路と、
    前記第1センス信号が正常時の結果であるのか異常時の結果であるのかを判断することができるように、前記第1故障診断回路からの前記第1故障検知信号と、前記第1故障検知信号と同一時点の前記第1処理回路部からの前記第1センス信号とを時分割方式にてデジタル出力する出力回路部と、を備えた、
    センサ装置。
  6. 前記第1駆動回路部、前記第1検出回路部、及び前記第1処理回路部の内少なくともいずれか1つを第2被故障診断部とし、前記第2被故障診断部に電気的に接続され、前記第2被故障診断部が正常か異常かを判断し、判定結果に基づいた第2故障検知信号を出力する第2故障診断回路をさらに備え、
    前記出力回路部は、前記第1故障診断回路からの前記第1故障検知信号と、前記第2故障診断回路からの前記第2故障検知信号と、前記第1処理回路部からの前記第1センス信号とを時分割方式にてデジタル出力する、
    請求項5記載のセンサ装置。
  7. 第2駆動信号を出力する第2駆動回路部と、
    前記第2駆動回路部からの前記第2駆動信号が入力される第2検知素子と、
    前記第2検知素子から第2の応答信号を取り出す第2検出回路部と、
    前記第2検出回路部からの前記第2の応答信号が入力されるとともに、前記第2の応答信号から第2のセンス信号を取り出す第2の処理回路部と、
    前記第2駆動回路部、前記第2検出回路部、及び前記第2処理回路部の内少なくともいずれか1つを第2被故障診断部とし、前記第2被故障診断部に電気的に接続され、前記第2被故障診断部が正常か異常かを判断し、判定結果に基づいた第2故障検知信号を出力する第2故障診断回路と、をさらに備え、
    前記出力回路部は、前記第1故障診断回路からの前記第1故障検知信号と、前記第2故障診断回路からの前記第2故障検知信号と、前記第1、第2の処理回路部からの前記第1、第2のセンス信号とを時分割方式にてデジタル出力する、
    請求項5記載のセンサ装置。
  8. 第1駆動信号を出力する第1駆動回路部と、
    前記駆動回路部からの前記第1駆動信号が入力される第1検知素子と、
    前記第1検知素子から応答信号を取り出す第1検出回路部と、
    前記検出回路部からの前記応答信号から第1センス信号を取り出す第1処理回路部と、
    第2駆動信号を出力する第2駆動回路部と、
    前記第2駆動回路部からの前記第2駆動信号が入力される第2検知素子と、
    前記第2検知素子から第2の応答信号を取り出す第2検出回路部と、
    前記第2検出回路部からの前記第2の応答信号が入力されるとともに、前記第2の応答信号から第2のセンス信号を取り出す第2の処理回路部と、
    前記第1駆動回路部、前記第1検出回路部、及び前記第1処理回路部の内少なくともいずれか1つを第1被故障診断部とし、前記第2駆動回路部、前記第2検出回路部、及び前記第2処理回路部の内少なくともいずれか1つを第2被故障診断部とし、前記第1、第2被故障診断部に電気的に接続されるとともに、前記第1被故障診断部と前記第2被故障診断部の両方が正常か、前記第1被故障診断部と前記第2被故障診断部の少なくともいずれか一方が異常かを判断し、判定結果に基づいた故障検知信号を出力する故障診断回路と、
    前記第1、第2のセンス信号が、正常時の結果であるのか異常時の結果であるのかを判断することができるように、前記故障診断回路からの前記故障検知信号と、前記故障検知信号と同一時点の前記第1、第2の処理回路部からの前記第1、第2のセンス信号とを時分割方式にてデジタル出力する出力回路部と、を備えた、
    センサ装置。
PCT/JP2009/001524 2008-04-04 2009-04-01 センサ装置 WO2009122739A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09700066.5A EP2284489B1 (en) 2008-04-04 2009-04-01 Sensor device
GB0911551A GB2461974B (en) 2008-04-04 2009-04-01 Sensor device
CN2009800000850A CN101680761B (zh) 2008-04-04 2009-04-01 传感器装置
US12/486,227 US7730782B2 (en) 2008-04-04 2009-06-17 Sensor device
US12/615,848 US7775109B2 (en) 2008-04-04 2009-11-10 Sensor device
US12/834,419 US8322214B2 (en) 2008-04-04 2010-07-12 Sensor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-097919 2008-04-04
JP2008097919A JP4311496B1 (ja) 2008-04-04 2008-04-04 慣性センサ
JP2008267024A JP4289439B1 (ja) 2008-10-16 2008-10-16 センサ装置
JP2008-267024 2008-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/486,227 Continuation US7730782B2 (en) 2008-04-04 2009-06-17 Sensor device

Publications (1)

Publication Number Publication Date
WO2009122739A1 true WO2009122739A1 (ja) 2009-10-08

Family

ID=41135139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001524 WO2009122739A1 (ja) 2008-04-04 2009-04-01 センサ装置

Country Status (5)

Country Link
EP (2) EP2634532A1 (ja)
KR (1) KR100972078B1 (ja)
CN (1) CN101680761B (ja)
GB (2) GB2461974B (ja)
WO (1) WO2009122739A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145273A (ja) 2008-12-19 2010-07-01 Panasonic Corp センサ装置
CN104279063A (zh) * 2013-07-08 2015-01-14 博世(中国)投资有限公司 控制发动机运行的方法和发动机控制***
US20190257655A1 (en) * 2016-03-24 2019-08-22 Panasonic Intellectual Property Management Co., Ltd. Composite sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698382A (ja) * 1992-02-19 1994-04-08 Namco Controls Corp センサ接続装置
JPH08327363A (ja) * 1995-05-30 1996-12-13 Matsushita Electric Ind Co Ltd 角速度センサ
JPH0944798A (ja) * 1995-07-28 1997-02-14 Mori Denki Kk 駐車場在車管理装置
JP2002174521A (ja) * 2000-09-15 2002-06-21 Bei Technologies Inc 内蔵テスト手段を備えた慣性速度センサー及び方法
JP2004023279A (ja) * 2002-06-13 2004-01-22 Renesas Technology Corp 半導体装置、携帯端末システムおよびセンサモジュール
JP2005331332A (ja) * 2004-05-19 2005-12-02 Denso Corp センサ装置
JP2007285747A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 角速度センサ
WO2007129494A1 (ja) * 2006-04-26 2007-11-15 Murata Manufacturing Co., Ltd. 角速度センサインタフェース回路および角速度検出装置
JP2008002890A (ja) * 2006-06-21 2008-01-10 Yokogawa Electric Corp 計測装置管理システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159302A (en) * 1981-03-26 1982-10-01 Toshiba Corp Car controller
JPH085654A (ja) * 1994-06-23 1996-01-12 Murata Mfg Co Ltd 加速度センサ
US5586130A (en) * 1994-10-03 1996-12-17 Qualcomm Incorporated Method and apparatus for detecting fault conditions in a vehicle data recording device to detect tampering or unauthorized access
CN1090313C (zh) * 1995-05-30 2002-09-04 松下电器产业株式会社 角速度传感器
JP3447860B2 (ja) * 1995-09-18 2003-09-16 株式会社ミクニ 故障判定機能を有する磁気式位置センサ
JP4019504B2 (ja) * 1998-06-15 2007-12-12 松下電器産業株式会社 角速度センサ
US6422088B1 (en) * 1999-09-24 2002-07-23 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
JP4633234B2 (ja) * 2000-07-04 2011-02-16 本田技研工業株式会社 センサ機能の故障診断方法
AU2002349656A1 (en) * 2001-11-20 2003-06-10 Arkray, Inc. Fail judging method and analyzer
DE10235163A1 (de) * 2002-08-01 2004-02-19 Robert Bosch Gmbh Verfahren zur Überwachung wenigstens eines Sensors
DE10238529A1 (de) * 2002-08-22 2004-03-04 Robert Bosch Gmbh Steuergerät
JP3937334B2 (ja) * 2003-03-27 2007-06-27 株式会社デンソー 振動型角速度センサの異常検出装置、異常検出方法、異常検出用プログラム並びに車両制御システム
JP4599848B2 (ja) * 2004-02-18 2010-12-15 パナソニック株式会社 角速度センサ
JP2005283481A (ja) * 2004-03-30 2005-10-13 Denso Corp センサシステム
US7237169B2 (en) * 2004-07-26 2007-06-26 Bei Technologies, Inc. Cross-monitoring sensor system and method
JP4056532B2 (ja) 2005-03-31 2008-03-05 日本航空電子工業株式会社 故障診断機能付きmemsデバイス
JP5215195B2 (ja) * 2006-03-15 2013-06-19 クゥアルコム・インコーポレイテッド センサベースのオリエンテーションシステム
JP2007285745A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 角速度センサ
DE102006032727A1 (de) * 2006-07-14 2008-01-31 Lucas Automotive Gmbh Verfahren und Vorrichtung zur Plausibilitätskontrolle von Messwerten im Kraftfahrzeugumfeld

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698382A (ja) * 1992-02-19 1994-04-08 Namco Controls Corp センサ接続装置
JPH08327363A (ja) * 1995-05-30 1996-12-13 Matsushita Electric Ind Co Ltd 角速度センサ
JPH0944798A (ja) * 1995-07-28 1997-02-14 Mori Denki Kk 駐車場在車管理装置
JP2002174521A (ja) * 2000-09-15 2002-06-21 Bei Technologies Inc 内蔵テスト手段を備えた慣性速度センサー及び方法
JP2004023279A (ja) * 2002-06-13 2004-01-22 Renesas Technology Corp 半導体装置、携帯端末システムおよびセンサモジュール
JP2005331332A (ja) * 2004-05-19 2005-12-02 Denso Corp センサ装置
JP2007285747A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 角速度センサ
WO2007129494A1 (ja) * 2006-04-26 2007-11-15 Murata Manufacturing Co., Ltd. 角速度センサインタフェース回路および角速度検出装置
JP2008002890A (ja) * 2006-06-21 2008-01-10 Yokogawa Electric Corp 計測装置管理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2284489A4 *

Also Published As

Publication number Publication date
KR20100018045A (ko) 2010-02-16
GB2463191A (en) 2010-03-10
GB2461974A9 (en) 2010-02-17
EP2634532A1 (en) 2013-09-04
CN101680761A (zh) 2010-03-24
GB2461974B (en) 2010-06-16
GB2461974A (en) 2010-01-27
GB0921880D0 (en) 2010-01-27
GB2463191B (en) 2010-10-20
KR100972078B1 (ko) 2010-07-22
EP2284489A1 (en) 2011-02-16
CN101680761B (zh) 2011-10-12
GB0911551D0 (en) 2009-08-12
EP2284489B1 (en) 2014-05-07
EP2284489A4 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP4386143B1 (ja) センサ装置
US7775109B2 (en) Sensor device
KR101095743B1 (ko) 센서 장치
KR100972077B1 (ko) 센서 장치
JP2010145273A (ja) センサ装置
JP4311496B1 (ja) 慣性センサ
WO2009122739A1 (ja) センサ装置
JP2010145274A (ja) 慣性センサ
US8131508B2 (en) Sensor apparatus
JP4358301B1 (ja) センサ装置
JP4289439B1 (ja) センサ装置
US8322214B2 (en) Sensor device
KR100950387B1 (ko) 센서 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000085.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009700066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 0911551

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20090401

WWE Wipo information: entry into national phase

Ref document number: 1020097014347

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020107000226

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE